mfd: wm8350-i2c: Make sure the i2c regmap functions are compiled
[linux/fpc-iii.git] / drivers / md / md.c
blob81bf511b3182e50932c7a842d7bdbbb9f9b3fcb4
1 /*
2 md.c : Multiple Devices driver for Linux
3 Copyright (C) 1998, 1999, 2000 Ingo Molnar
5 completely rewritten, based on the MD driver code from Marc Zyngier
7 Changes:
9 - RAID-1/RAID-5 extensions by Miguel de Icaza, Gadi Oxman, Ingo Molnar
10 - RAID-6 extensions by H. Peter Anvin <hpa@zytor.com>
11 - boot support for linear and striped mode by Harald Hoyer <HarryH@Royal.Net>
12 - kerneld support by Boris Tobotras <boris@xtalk.msk.su>
13 - kmod support by: Cyrus Durgin
14 - RAID0 bugfixes: Mark Anthony Lisher <markal@iname.com>
15 - Devfs support by Richard Gooch <rgooch@atnf.csiro.au>
17 - lots of fixes and improvements to the RAID1/RAID5 and generic
18 RAID code (such as request based resynchronization):
20 Neil Brown <neilb@cse.unsw.edu.au>.
22 - persistent bitmap code
23 Copyright (C) 2003-2004, Paul Clements, SteelEye Technology, Inc.
25 This program is free software; you can redistribute it and/or modify
26 it under the terms of the GNU General Public License as published by
27 the Free Software Foundation; either version 2, or (at your option)
28 any later version.
30 You should have received a copy of the GNU General Public License
31 (for example /usr/src/linux/COPYING); if not, write to the Free
32 Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
35 #include <linux/kthread.h>
36 #include <linux/blkdev.h>
37 #include <linux/sysctl.h>
38 #include <linux/seq_file.h>
39 #include <linux/fs.h>
40 #include <linux/poll.h>
41 #include <linux/ctype.h>
42 #include <linux/string.h>
43 #include <linux/hdreg.h>
44 #include <linux/proc_fs.h>
45 #include <linux/random.h>
46 #include <linux/module.h>
47 #include <linux/reboot.h>
48 #include <linux/file.h>
49 #include <linux/compat.h>
50 #include <linux/delay.h>
51 #include <linux/raid/md_p.h>
52 #include <linux/raid/md_u.h>
53 #include <linux/slab.h>
54 #include "md.h"
55 #include "bitmap.h"
57 #ifndef MODULE
58 static void autostart_arrays(int part);
59 #endif
61 /* pers_list is a list of registered personalities protected
62 * by pers_lock.
63 * pers_lock does extra service to protect accesses to
64 * mddev->thread when the mutex cannot be held.
66 static LIST_HEAD(pers_list);
67 static DEFINE_SPINLOCK(pers_lock);
69 static void md_print_devices(void);
71 static DECLARE_WAIT_QUEUE_HEAD(resync_wait);
72 static struct workqueue_struct *md_wq;
73 static struct workqueue_struct *md_misc_wq;
75 static int remove_and_add_spares(struct mddev *mddev,
76 struct md_rdev *this);
78 #define MD_BUG(x...) { printk("md: bug in file %s, line %d\n", __FILE__, __LINE__); md_print_devices(); }
81 * Default number of read corrections we'll attempt on an rdev
82 * before ejecting it from the array. We divide the read error
83 * count by 2 for every hour elapsed between read errors.
85 #define MD_DEFAULT_MAX_CORRECTED_READ_ERRORS 20
87 * Current RAID-1,4,5 parallel reconstruction 'guaranteed speed limit'
88 * is 1000 KB/sec, so the extra system load does not show up that much.
89 * Increase it if you want to have more _guaranteed_ speed. Note that
90 * the RAID driver will use the maximum available bandwidth if the IO
91 * subsystem is idle. There is also an 'absolute maximum' reconstruction
92 * speed limit - in case reconstruction slows down your system despite
93 * idle IO detection.
95 * you can change it via /proc/sys/dev/raid/speed_limit_min and _max.
96 * or /sys/block/mdX/md/sync_speed_{min,max}
99 static int sysctl_speed_limit_min = 1000;
100 static int sysctl_speed_limit_max = 200000;
101 static inline int speed_min(struct mddev *mddev)
103 return mddev->sync_speed_min ?
104 mddev->sync_speed_min : sysctl_speed_limit_min;
107 static inline int speed_max(struct mddev *mddev)
109 return mddev->sync_speed_max ?
110 mddev->sync_speed_max : sysctl_speed_limit_max;
113 static struct ctl_table_header *raid_table_header;
115 static ctl_table raid_table[] = {
117 .procname = "speed_limit_min",
118 .data = &sysctl_speed_limit_min,
119 .maxlen = sizeof(int),
120 .mode = S_IRUGO|S_IWUSR,
121 .proc_handler = proc_dointvec,
124 .procname = "speed_limit_max",
125 .data = &sysctl_speed_limit_max,
126 .maxlen = sizeof(int),
127 .mode = S_IRUGO|S_IWUSR,
128 .proc_handler = proc_dointvec,
133 static ctl_table raid_dir_table[] = {
135 .procname = "raid",
136 .maxlen = 0,
137 .mode = S_IRUGO|S_IXUGO,
138 .child = raid_table,
143 static ctl_table raid_root_table[] = {
145 .procname = "dev",
146 .maxlen = 0,
147 .mode = 0555,
148 .child = raid_dir_table,
153 static const struct block_device_operations md_fops;
155 static int start_readonly;
157 /* bio_clone_mddev
158 * like bio_clone, but with a local bio set
161 struct bio *bio_alloc_mddev(gfp_t gfp_mask, int nr_iovecs,
162 struct mddev *mddev)
164 struct bio *b;
166 if (!mddev || !mddev->bio_set)
167 return bio_alloc(gfp_mask, nr_iovecs);
169 b = bio_alloc_bioset(gfp_mask, nr_iovecs, mddev->bio_set);
170 if (!b)
171 return NULL;
172 return b;
174 EXPORT_SYMBOL_GPL(bio_alloc_mddev);
176 struct bio *bio_clone_mddev(struct bio *bio, gfp_t gfp_mask,
177 struct mddev *mddev)
179 if (!mddev || !mddev->bio_set)
180 return bio_clone(bio, gfp_mask);
182 return bio_clone_bioset(bio, gfp_mask, mddev->bio_set);
184 EXPORT_SYMBOL_GPL(bio_clone_mddev);
186 void md_trim_bio(struct bio *bio, int offset, int size)
188 /* 'bio' is a cloned bio which we need to trim to match
189 * the given offset and size.
190 * This requires adjusting bi_sector, bi_size, and bi_io_vec
192 int i;
193 struct bio_vec *bvec;
194 int sofar = 0;
196 size <<= 9;
197 if (offset == 0 && size == bio->bi_size)
198 return;
200 clear_bit(BIO_SEG_VALID, &bio->bi_flags);
202 bio_advance(bio, offset << 9);
204 bio->bi_size = size;
206 /* avoid any complications with bi_idx being non-zero*/
207 if (bio->bi_idx) {
208 memmove(bio->bi_io_vec, bio->bi_io_vec+bio->bi_idx,
209 (bio->bi_vcnt - bio->bi_idx) * sizeof(struct bio_vec));
210 bio->bi_vcnt -= bio->bi_idx;
211 bio->bi_idx = 0;
213 /* Make sure vcnt and last bv are not too big */
214 bio_for_each_segment(bvec, bio, i) {
215 if (sofar + bvec->bv_len > size)
216 bvec->bv_len = size - sofar;
217 if (bvec->bv_len == 0) {
218 bio->bi_vcnt = i;
219 break;
221 sofar += bvec->bv_len;
224 EXPORT_SYMBOL_GPL(md_trim_bio);
227 * We have a system wide 'event count' that is incremented
228 * on any 'interesting' event, and readers of /proc/mdstat
229 * can use 'poll' or 'select' to find out when the event
230 * count increases.
232 * Events are:
233 * start array, stop array, error, add device, remove device,
234 * start build, activate spare
236 static DECLARE_WAIT_QUEUE_HEAD(md_event_waiters);
237 static atomic_t md_event_count;
238 void md_new_event(struct mddev *mddev)
240 atomic_inc(&md_event_count);
241 wake_up(&md_event_waiters);
243 EXPORT_SYMBOL_GPL(md_new_event);
245 /* Alternate version that can be called from interrupts
246 * when calling sysfs_notify isn't needed.
248 static void md_new_event_inintr(struct mddev *mddev)
250 atomic_inc(&md_event_count);
251 wake_up(&md_event_waiters);
255 * Enables to iterate over all existing md arrays
256 * all_mddevs_lock protects this list.
258 static LIST_HEAD(all_mddevs);
259 static DEFINE_SPINLOCK(all_mddevs_lock);
263 * iterates through all used mddevs in the system.
264 * We take care to grab the all_mddevs_lock whenever navigating
265 * the list, and to always hold a refcount when unlocked.
266 * Any code which breaks out of this loop while own
267 * a reference to the current mddev and must mddev_put it.
269 #define for_each_mddev(_mddev,_tmp) \
271 for (({ spin_lock(&all_mddevs_lock); \
272 _tmp = all_mddevs.next; \
273 _mddev = NULL;}); \
274 ({ if (_tmp != &all_mddevs) \
275 mddev_get(list_entry(_tmp, struct mddev, all_mddevs));\
276 spin_unlock(&all_mddevs_lock); \
277 if (_mddev) mddev_put(_mddev); \
278 _mddev = list_entry(_tmp, struct mddev, all_mddevs); \
279 _tmp != &all_mddevs;}); \
280 ({ spin_lock(&all_mddevs_lock); \
281 _tmp = _tmp->next;}) \
285 /* Rather than calling directly into the personality make_request function,
286 * IO requests come here first so that we can check if the device is
287 * being suspended pending a reconfiguration.
288 * We hold a refcount over the call to ->make_request. By the time that
289 * call has finished, the bio has been linked into some internal structure
290 * and so is visible to ->quiesce(), so we don't need the refcount any more.
292 static void md_make_request(struct request_queue *q, struct bio *bio)
294 const int rw = bio_data_dir(bio);
295 struct mddev *mddev = q->queuedata;
296 int cpu;
297 unsigned int sectors;
299 if (mddev == NULL || mddev->pers == NULL
300 || !mddev->ready) {
301 bio_io_error(bio);
302 return;
304 if (mddev->ro == 1 && unlikely(rw == WRITE)) {
305 bio_endio(bio, bio_sectors(bio) == 0 ? 0 : -EROFS);
306 return;
308 smp_rmb(); /* Ensure implications of 'active' are visible */
309 rcu_read_lock();
310 if (mddev->suspended) {
311 DEFINE_WAIT(__wait);
312 for (;;) {
313 prepare_to_wait(&mddev->sb_wait, &__wait,
314 TASK_UNINTERRUPTIBLE);
315 if (!mddev->suspended)
316 break;
317 rcu_read_unlock();
318 schedule();
319 rcu_read_lock();
321 finish_wait(&mddev->sb_wait, &__wait);
323 atomic_inc(&mddev->active_io);
324 rcu_read_unlock();
327 * save the sectors now since our bio can
328 * go away inside make_request
330 sectors = bio_sectors(bio);
331 mddev->pers->make_request(mddev, bio);
333 cpu = part_stat_lock();
334 part_stat_inc(cpu, &mddev->gendisk->part0, ios[rw]);
335 part_stat_add(cpu, &mddev->gendisk->part0, sectors[rw], sectors);
336 part_stat_unlock();
338 if (atomic_dec_and_test(&mddev->active_io) && mddev->suspended)
339 wake_up(&mddev->sb_wait);
342 /* mddev_suspend makes sure no new requests are submitted
343 * to the device, and that any requests that have been submitted
344 * are completely handled.
345 * Once ->stop is called and completes, the module will be completely
346 * unused.
348 void mddev_suspend(struct mddev *mddev)
350 BUG_ON(mddev->suspended);
351 mddev->suspended = 1;
352 synchronize_rcu();
353 wait_event(mddev->sb_wait, atomic_read(&mddev->active_io) == 0);
354 mddev->pers->quiesce(mddev, 1);
356 del_timer_sync(&mddev->safemode_timer);
358 EXPORT_SYMBOL_GPL(mddev_suspend);
360 void mddev_resume(struct mddev *mddev)
362 mddev->suspended = 0;
363 wake_up(&mddev->sb_wait);
364 mddev->pers->quiesce(mddev, 0);
366 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
367 md_wakeup_thread(mddev->thread);
368 md_wakeup_thread(mddev->sync_thread); /* possibly kick off a reshape */
370 EXPORT_SYMBOL_GPL(mddev_resume);
372 int mddev_congested(struct mddev *mddev, int bits)
374 return mddev->suspended;
376 EXPORT_SYMBOL(mddev_congested);
379 * Generic flush handling for md
382 static void md_end_flush(struct bio *bio, int err)
384 struct md_rdev *rdev = bio->bi_private;
385 struct mddev *mddev = rdev->mddev;
387 rdev_dec_pending(rdev, mddev);
389 if (atomic_dec_and_test(&mddev->flush_pending)) {
390 /* The pre-request flush has finished */
391 queue_work(md_wq, &mddev->flush_work);
393 bio_put(bio);
396 static void md_submit_flush_data(struct work_struct *ws);
398 static void submit_flushes(struct work_struct *ws)
400 struct mddev *mddev = container_of(ws, struct mddev, flush_work);
401 struct md_rdev *rdev;
403 INIT_WORK(&mddev->flush_work, md_submit_flush_data);
404 atomic_set(&mddev->flush_pending, 1);
405 rcu_read_lock();
406 rdev_for_each_rcu(rdev, mddev)
407 if (rdev->raid_disk >= 0 &&
408 !test_bit(Faulty, &rdev->flags)) {
409 /* Take two references, one is dropped
410 * when request finishes, one after
411 * we reclaim rcu_read_lock
413 struct bio *bi;
414 atomic_inc(&rdev->nr_pending);
415 atomic_inc(&rdev->nr_pending);
416 rcu_read_unlock();
417 bi = bio_alloc_mddev(GFP_NOIO, 0, mddev);
418 bi->bi_end_io = md_end_flush;
419 bi->bi_private = rdev;
420 bi->bi_bdev = rdev->bdev;
421 atomic_inc(&mddev->flush_pending);
422 submit_bio(WRITE_FLUSH, bi);
423 rcu_read_lock();
424 rdev_dec_pending(rdev, mddev);
426 rcu_read_unlock();
427 if (atomic_dec_and_test(&mddev->flush_pending))
428 queue_work(md_wq, &mddev->flush_work);
431 static void md_submit_flush_data(struct work_struct *ws)
433 struct mddev *mddev = container_of(ws, struct mddev, flush_work);
434 struct bio *bio = mddev->flush_bio;
436 if (bio->bi_size == 0)
437 /* an empty barrier - all done */
438 bio_endio(bio, 0);
439 else {
440 bio->bi_rw &= ~REQ_FLUSH;
441 mddev->pers->make_request(mddev, bio);
444 mddev->flush_bio = NULL;
445 wake_up(&mddev->sb_wait);
448 void md_flush_request(struct mddev *mddev, struct bio *bio)
450 spin_lock_irq(&mddev->write_lock);
451 wait_event_lock_irq(mddev->sb_wait,
452 !mddev->flush_bio,
453 mddev->write_lock);
454 mddev->flush_bio = bio;
455 spin_unlock_irq(&mddev->write_lock);
457 INIT_WORK(&mddev->flush_work, submit_flushes);
458 queue_work(md_wq, &mddev->flush_work);
460 EXPORT_SYMBOL(md_flush_request);
462 void md_unplug(struct blk_plug_cb *cb, bool from_schedule)
464 struct mddev *mddev = cb->data;
465 md_wakeup_thread(mddev->thread);
466 kfree(cb);
468 EXPORT_SYMBOL(md_unplug);
470 static inline struct mddev *mddev_get(struct mddev *mddev)
472 atomic_inc(&mddev->active);
473 return mddev;
476 static void mddev_delayed_delete(struct work_struct *ws);
478 static void mddev_put(struct mddev *mddev)
480 struct bio_set *bs = NULL;
482 if (!atomic_dec_and_lock(&mddev->active, &all_mddevs_lock))
483 return;
484 if (!mddev->raid_disks && list_empty(&mddev->disks) &&
485 mddev->ctime == 0 && !mddev->hold_active) {
486 /* Array is not configured at all, and not held active,
487 * so destroy it */
488 list_del_init(&mddev->all_mddevs);
489 bs = mddev->bio_set;
490 mddev->bio_set = NULL;
491 if (mddev->gendisk) {
492 /* We did a probe so need to clean up. Call
493 * queue_work inside the spinlock so that
494 * flush_workqueue() after mddev_find will
495 * succeed in waiting for the work to be done.
497 INIT_WORK(&mddev->del_work, mddev_delayed_delete);
498 queue_work(md_misc_wq, &mddev->del_work);
499 } else
500 kfree(mddev);
502 spin_unlock(&all_mddevs_lock);
503 if (bs)
504 bioset_free(bs);
507 void mddev_init(struct mddev *mddev)
509 mutex_init(&mddev->open_mutex);
510 mutex_init(&mddev->reconfig_mutex);
511 mutex_init(&mddev->bitmap_info.mutex);
512 INIT_LIST_HEAD(&mddev->disks);
513 INIT_LIST_HEAD(&mddev->all_mddevs);
514 init_timer(&mddev->safemode_timer);
515 atomic_set(&mddev->active, 1);
516 atomic_set(&mddev->openers, 0);
517 atomic_set(&mddev->active_io, 0);
518 spin_lock_init(&mddev->write_lock);
519 atomic_set(&mddev->flush_pending, 0);
520 init_waitqueue_head(&mddev->sb_wait);
521 init_waitqueue_head(&mddev->recovery_wait);
522 mddev->reshape_position = MaxSector;
523 mddev->reshape_backwards = 0;
524 mddev->last_sync_action = "none";
525 mddev->resync_min = 0;
526 mddev->resync_max = MaxSector;
527 mddev->level = LEVEL_NONE;
529 EXPORT_SYMBOL_GPL(mddev_init);
531 static struct mddev * mddev_find(dev_t unit)
533 struct mddev *mddev, *new = NULL;
535 if (unit && MAJOR(unit) != MD_MAJOR)
536 unit &= ~((1<<MdpMinorShift)-1);
538 retry:
539 spin_lock(&all_mddevs_lock);
541 if (unit) {
542 list_for_each_entry(mddev, &all_mddevs, all_mddevs)
543 if (mddev->unit == unit) {
544 mddev_get(mddev);
545 spin_unlock(&all_mddevs_lock);
546 kfree(new);
547 return mddev;
550 if (new) {
551 list_add(&new->all_mddevs, &all_mddevs);
552 spin_unlock(&all_mddevs_lock);
553 new->hold_active = UNTIL_IOCTL;
554 return new;
556 } else if (new) {
557 /* find an unused unit number */
558 static int next_minor = 512;
559 int start = next_minor;
560 int is_free = 0;
561 int dev = 0;
562 while (!is_free) {
563 dev = MKDEV(MD_MAJOR, next_minor);
564 next_minor++;
565 if (next_minor > MINORMASK)
566 next_minor = 0;
567 if (next_minor == start) {
568 /* Oh dear, all in use. */
569 spin_unlock(&all_mddevs_lock);
570 kfree(new);
571 return NULL;
574 is_free = 1;
575 list_for_each_entry(mddev, &all_mddevs, all_mddevs)
576 if (mddev->unit == dev) {
577 is_free = 0;
578 break;
581 new->unit = dev;
582 new->md_minor = MINOR(dev);
583 new->hold_active = UNTIL_STOP;
584 list_add(&new->all_mddevs, &all_mddevs);
585 spin_unlock(&all_mddevs_lock);
586 return new;
588 spin_unlock(&all_mddevs_lock);
590 new = kzalloc(sizeof(*new), GFP_KERNEL);
591 if (!new)
592 return NULL;
594 new->unit = unit;
595 if (MAJOR(unit) == MD_MAJOR)
596 new->md_minor = MINOR(unit);
597 else
598 new->md_minor = MINOR(unit) >> MdpMinorShift;
600 mddev_init(new);
602 goto retry;
605 static inline int mddev_lock(struct mddev * mddev)
607 return mutex_lock_interruptible(&mddev->reconfig_mutex);
610 static inline int mddev_is_locked(struct mddev *mddev)
612 return mutex_is_locked(&mddev->reconfig_mutex);
615 static inline int mddev_trylock(struct mddev * mddev)
617 return mutex_trylock(&mddev->reconfig_mutex);
620 static struct attribute_group md_redundancy_group;
622 static void mddev_unlock(struct mddev * mddev)
624 if (mddev->to_remove) {
625 /* These cannot be removed under reconfig_mutex as
626 * an access to the files will try to take reconfig_mutex
627 * while holding the file unremovable, which leads to
628 * a deadlock.
629 * So hold set sysfs_active while the remove in happeing,
630 * and anything else which might set ->to_remove or my
631 * otherwise change the sysfs namespace will fail with
632 * -EBUSY if sysfs_active is still set.
633 * We set sysfs_active under reconfig_mutex and elsewhere
634 * test it under the same mutex to ensure its correct value
635 * is seen.
637 struct attribute_group *to_remove = mddev->to_remove;
638 mddev->to_remove = NULL;
639 mddev->sysfs_active = 1;
640 mutex_unlock(&mddev->reconfig_mutex);
642 if (mddev->kobj.sd) {
643 if (to_remove != &md_redundancy_group)
644 sysfs_remove_group(&mddev->kobj, to_remove);
645 if (mddev->pers == NULL ||
646 mddev->pers->sync_request == NULL) {
647 sysfs_remove_group(&mddev->kobj, &md_redundancy_group);
648 if (mddev->sysfs_action)
649 sysfs_put(mddev->sysfs_action);
650 mddev->sysfs_action = NULL;
653 mddev->sysfs_active = 0;
654 } else
655 mutex_unlock(&mddev->reconfig_mutex);
657 /* As we've dropped the mutex we need a spinlock to
658 * make sure the thread doesn't disappear
660 spin_lock(&pers_lock);
661 md_wakeup_thread(mddev->thread);
662 spin_unlock(&pers_lock);
665 static struct md_rdev * find_rdev_nr(struct mddev *mddev, int nr)
667 struct md_rdev *rdev;
669 rdev_for_each(rdev, mddev)
670 if (rdev->desc_nr == nr)
671 return rdev;
673 return NULL;
676 static struct md_rdev *find_rdev_nr_rcu(struct mddev *mddev, int nr)
678 struct md_rdev *rdev;
680 rdev_for_each_rcu(rdev, mddev)
681 if (rdev->desc_nr == nr)
682 return rdev;
684 return NULL;
687 static struct md_rdev *find_rdev(struct mddev *mddev, dev_t dev)
689 struct md_rdev *rdev;
691 rdev_for_each(rdev, mddev)
692 if (rdev->bdev->bd_dev == dev)
693 return rdev;
695 return NULL;
698 static struct md_rdev *find_rdev_rcu(struct mddev *mddev, dev_t dev)
700 struct md_rdev *rdev;
702 rdev_for_each_rcu(rdev, mddev)
703 if (rdev->bdev->bd_dev == dev)
704 return rdev;
706 return NULL;
709 static struct md_personality *find_pers(int level, char *clevel)
711 struct md_personality *pers;
712 list_for_each_entry(pers, &pers_list, list) {
713 if (level != LEVEL_NONE && pers->level == level)
714 return pers;
715 if (strcmp(pers->name, clevel)==0)
716 return pers;
718 return NULL;
721 /* return the offset of the super block in 512byte sectors */
722 static inline sector_t calc_dev_sboffset(struct md_rdev *rdev)
724 sector_t num_sectors = i_size_read(rdev->bdev->bd_inode) / 512;
725 return MD_NEW_SIZE_SECTORS(num_sectors);
728 static int alloc_disk_sb(struct md_rdev * rdev)
730 if (rdev->sb_page)
731 MD_BUG();
733 rdev->sb_page = alloc_page(GFP_KERNEL);
734 if (!rdev->sb_page) {
735 printk(KERN_ALERT "md: out of memory.\n");
736 return -ENOMEM;
739 return 0;
742 void md_rdev_clear(struct md_rdev *rdev)
744 if (rdev->sb_page) {
745 put_page(rdev->sb_page);
746 rdev->sb_loaded = 0;
747 rdev->sb_page = NULL;
748 rdev->sb_start = 0;
749 rdev->sectors = 0;
751 if (rdev->bb_page) {
752 put_page(rdev->bb_page);
753 rdev->bb_page = NULL;
755 kfree(rdev->badblocks.page);
756 rdev->badblocks.page = NULL;
758 EXPORT_SYMBOL_GPL(md_rdev_clear);
760 static void super_written(struct bio *bio, int error)
762 struct md_rdev *rdev = bio->bi_private;
763 struct mddev *mddev = rdev->mddev;
765 if (error || !test_bit(BIO_UPTODATE, &bio->bi_flags)) {
766 printk("md: super_written gets error=%d, uptodate=%d\n",
767 error, test_bit(BIO_UPTODATE, &bio->bi_flags));
768 WARN_ON(test_bit(BIO_UPTODATE, &bio->bi_flags));
769 md_error(mddev, rdev);
772 if (atomic_dec_and_test(&mddev->pending_writes))
773 wake_up(&mddev->sb_wait);
774 bio_put(bio);
777 void md_super_write(struct mddev *mddev, struct md_rdev *rdev,
778 sector_t sector, int size, struct page *page)
780 /* write first size bytes of page to sector of rdev
781 * Increment mddev->pending_writes before returning
782 * and decrement it on completion, waking up sb_wait
783 * if zero is reached.
784 * If an error occurred, call md_error
786 struct bio *bio = bio_alloc_mddev(GFP_NOIO, 1, mddev);
788 bio->bi_bdev = rdev->meta_bdev ? rdev->meta_bdev : rdev->bdev;
789 bio->bi_sector = sector;
790 bio_add_page(bio, page, size, 0);
791 bio->bi_private = rdev;
792 bio->bi_end_io = super_written;
794 atomic_inc(&mddev->pending_writes);
795 submit_bio(WRITE_FLUSH_FUA, bio);
798 void md_super_wait(struct mddev *mddev)
800 /* wait for all superblock writes that were scheduled to complete */
801 DEFINE_WAIT(wq);
802 for(;;) {
803 prepare_to_wait(&mddev->sb_wait, &wq, TASK_UNINTERRUPTIBLE);
804 if (atomic_read(&mddev->pending_writes)==0)
805 break;
806 schedule();
808 finish_wait(&mddev->sb_wait, &wq);
811 static void bi_complete(struct bio *bio, int error)
813 complete((struct completion*)bio->bi_private);
816 int sync_page_io(struct md_rdev *rdev, sector_t sector, int size,
817 struct page *page, int rw, bool metadata_op)
819 struct bio *bio = bio_alloc_mddev(GFP_NOIO, 1, rdev->mddev);
820 struct completion event;
821 int ret;
823 rw |= REQ_SYNC;
825 bio->bi_bdev = (metadata_op && rdev->meta_bdev) ?
826 rdev->meta_bdev : rdev->bdev;
827 if (metadata_op)
828 bio->bi_sector = sector + rdev->sb_start;
829 else if (rdev->mddev->reshape_position != MaxSector &&
830 (rdev->mddev->reshape_backwards ==
831 (sector >= rdev->mddev->reshape_position)))
832 bio->bi_sector = sector + rdev->new_data_offset;
833 else
834 bio->bi_sector = sector + rdev->data_offset;
835 bio_add_page(bio, page, size, 0);
836 init_completion(&event);
837 bio->bi_private = &event;
838 bio->bi_end_io = bi_complete;
839 submit_bio(rw, bio);
840 wait_for_completion(&event);
842 ret = test_bit(BIO_UPTODATE, &bio->bi_flags);
843 bio_put(bio);
844 return ret;
846 EXPORT_SYMBOL_GPL(sync_page_io);
848 static int read_disk_sb(struct md_rdev * rdev, int size)
850 char b[BDEVNAME_SIZE];
851 if (!rdev->sb_page) {
852 MD_BUG();
853 return -EINVAL;
855 if (rdev->sb_loaded)
856 return 0;
859 if (!sync_page_io(rdev, 0, size, rdev->sb_page, READ, true))
860 goto fail;
861 rdev->sb_loaded = 1;
862 return 0;
864 fail:
865 printk(KERN_WARNING "md: disabled device %s, could not read superblock.\n",
866 bdevname(rdev->bdev,b));
867 return -EINVAL;
870 static int uuid_equal(mdp_super_t *sb1, mdp_super_t *sb2)
872 return sb1->set_uuid0 == sb2->set_uuid0 &&
873 sb1->set_uuid1 == sb2->set_uuid1 &&
874 sb1->set_uuid2 == sb2->set_uuid2 &&
875 sb1->set_uuid3 == sb2->set_uuid3;
878 static int sb_equal(mdp_super_t *sb1, mdp_super_t *sb2)
880 int ret;
881 mdp_super_t *tmp1, *tmp2;
883 tmp1 = kmalloc(sizeof(*tmp1),GFP_KERNEL);
884 tmp2 = kmalloc(sizeof(*tmp2),GFP_KERNEL);
886 if (!tmp1 || !tmp2) {
887 ret = 0;
888 printk(KERN_INFO "md.c sb_equal(): failed to allocate memory!\n");
889 goto abort;
892 *tmp1 = *sb1;
893 *tmp2 = *sb2;
896 * nr_disks is not constant
898 tmp1->nr_disks = 0;
899 tmp2->nr_disks = 0;
901 ret = (memcmp(tmp1, tmp2, MD_SB_GENERIC_CONSTANT_WORDS * 4) == 0);
902 abort:
903 kfree(tmp1);
904 kfree(tmp2);
905 return ret;
909 static u32 md_csum_fold(u32 csum)
911 csum = (csum & 0xffff) + (csum >> 16);
912 return (csum & 0xffff) + (csum >> 16);
915 static unsigned int calc_sb_csum(mdp_super_t * sb)
917 u64 newcsum = 0;
918 u32 *sb32 = (u32*)sb;
919 int i;
920 unsigned int disk_csum, csum;
922 disk_csum = sb->sb_csum;
923 sb->sb_csum = 0;
925 for (i = 0; i < MD_SB_BYTES/4 ; i++)
926 newcsum += sb32[i];
927 csum = (newcsum & 0xffffffff) + (newcsum>>32);
930 #ifdef CONFIG_ALPHA
931 /* This used to use csum_partial, which was wrong for several
932 * reasons including that different results are returned on
933 * different architectures. It isn't critical that we get exactly
934 * the same return value as before (we always csum_fold before
935 * testing, and that removes any differences). However as we
936 * know that csum_partial always returned a 16bit value on
937 * alphas, do a fold to maximise conformity to previous behaviour.
939 sb->sb_csum = md_csum_fold(disk_csum);
940 #else
941 sb->sb_csum = disk_csum;
942 #endif
943 return csum;
948 * Handle superblock details.
949 * We want to be able to handle multiple superblock formats
950 * so we have a common interface to them all, and an array of
951 * different handlers.
952 * We rely on user-space to write the initial superblock, and support
953 * reading and updating of superblocks.
954 * Interface methods are:
955 * int load_super(struct md_rdev *dev, struct md_rdev *refdev, int minor_version)
956 * loads and validates a superblock on dev.
957 * if refdev != NULL, compare superblocks on both devices
958 * Return:
959 * 0 - dev has a superblock that is compatible with refdev
960 * 1 - dev has a superblock that is compatible and newer than refdev
961 * so dev should be used as the refdev in future
962 * -EINVAL superblock incompatible or invalid
963 * -othererror e.g. -EIO
965 * int validate_super(struct mddev *mddev, struct md_rdev *dev)
966 * Verify that dev is acceptable into mddev.
967 * The first time, mddev->raid_disks will be 0, and data from
968 * dev should be merged in. Subsequent calls check that dev
969 * is new enough. Return 0 or -EINVAL
971 * void sync_super(struct mddev *mddev, struct md_rdev *dev)
972 * Update the superblock for rdev with data in mddev
973 * This does not write to disc.
977 struct super_type {
978 char *name;
979 struct module *owner;
980 int (*load_super)(struct md_rdev *rdev,
981 struct md_rdev *refdev,
982 int minor_version);
983 int (*validate_super)(struct mddev *mddev,
984 struct md_rdev *rdev);
985 void (*sync_super)(struct mddev *mddev,
986 struct md_rdev *rdev);
987 unsigned long long (*rdev_size_change)(struct md_rdev *rdev,
988 sector_t num_sectors);
989 int (*allow_new_offset)(struct md_rdev *rdev,
990 unsigned long long new_offset);
994 * Check that the given mddev has no bitmap.
996 * This function is called from the run method of all personalities that do not
997 * support bitmaps. It prints an error message and returns non-zero if mddev
998 * has a bitmap. Otherwise, it returns 0.
1001 int md_check_no_bitmap(struct mddev *mddev)
1003 if (!mddev->bitmap_info.file && !mddev->bitmap_info.offset)
1004 return 0;
1005 printk(KERN_ERR "%s: bitmaps are not supported for %s\n",
1006 mdname(mddev), mddev->pers->name);
1007 return 1;
1009 EXPORT_SYMBOL(md_check_no_bitmap);
1012 * load_super for 0.90.0
1014 static int super_90_load(struct md_rdev *rdev, struct md_rdev *refdev, int minor_version)
1016 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
1017 mdp_super_t *sb;
1018 int ret;
1021 * Calculate the position of the superblock (512byte sectors),
1022 * it's at the end of the disk.
1024 * It also happens to be a multiple of 4Kb.
1026 rdev->sb_start = calc_dev_sboffset(rdev);
1028 ret = read_disk_sb(rdev, MD_SB_BYTES);
1029 if (ret) return ret;
1031 ret = -EINVAL;
1033 bdevname(rdev->bdev, b);
1034 sb = page_address(rdev->sb_page);
1036 if (sb->md_magic != MD_SB_MAGIC) {
1037 printk(KERN_ERR "md: invalid raid superblock magic on %s\n",
1039 goto abort;
1042 if (sb->major_version != 0 ||
1043 sb->minor_version < 90 ||
1044 sb->minor_version > 91) {
1045 printk(KERN_WARNING "Bad version number %d.%d on %s\n",
1046 sb->major_version, sb->minor_version,
1048 goto abort;
1051 if (sb->raid_disks <= 0)
1052 goto abort;
1054 if (md_csum_fold(calc_sb_csum(sb)) != md_csum_fold(sb->sb_csum)) {
1055 printk(KERN_WARNING "md: invalid superblock checksum on %s\n",
1057 goto abort;
1060 rdev->preferred_minor = sb->md_minor;
1061 rdev->data_offset = 0;
1062 rdev->new_data_offset = 0;
1063 rdev->sb_size = MD_SB_BYTES;
1064 rdev->badblocks.shift = -1;
1066 if (sb->level == LEVEL_MULTIPATH)
1067 rdev->desc_nr = -1;
1068 else
1069 rdev->desc_nr = sb->this_disk.number;
1071 if (!refdev) {
1072 ret = 1;
1073 } else {
1074 __u64 ev1, ev2;
1075 mdp_super_t *refsb = page_address(refdev->sb_page);
1076 if (!uuid_equal(refsb, sb)) {
1077 printk(KERN_WARNING "md: %s has different UUID to %s\n",
1078 b, bdevname(refdev->bdev,b2));
1079 goto abort;
1081 if (!sb_equal(refsb, sb)) {
1082 printk(KERN_WARNING "md: %s has same UUID"
1083 " but different superblock to %s\n",
1084 b, bdevname(refdev->bdev, b2));
1085 goto abort;
1087 ev1 = md_event(sb);
1088 ev2 = md_event(refsb);
1089 if (ev1 > ev2)
1090 ret = 1;
1091 else
1092 ret = 0;
1094 rdev->sectors = rdev->sb_start;
1095 /* Limit to 4TB as metadata cannot record more than that.
1096 * (not needed for Linear and RAID0 as metadata doesn't
1097 * record this size)
1099 if (rdev->sectors >= (2ULL << 32) && sb->level >= 1)
1100 rdev->sectors = (2ULL << 32) - 2;
1102 if (rdev->sectors < ((sector_t)sb->size) * 2 && sb->level >= 1)
1103 /* "this cannot possibly happen" ... */
1104 ret = -EINVAL;
1106 abort:
1107 return ret;
1111 * validate_super for 0.90.0
1113 static int super_90_validate(struct mddev *mddev, struct md_rdev *rdev)
1115 mdp_disk_t *desc;
1116 mdp_super_t *sb = page_address(rdev->sb_page);
1117 __u64 ev1 = md_event(sb);
1119 rdev->raid_disk = -1;
1120 clear_bit(Faulty, &rdev->flags);
1121 clear_bit(In_sync, &rdev->flags);
1122 clear_bit(Bitmap_sync, &rdev->flags);
1123 clear_bit(WriteMostly, &rdev->flags);
1125 if (mddev->raid_disks == 0) {
1126 mddev->major_version = 0;
1127 mddev->minor_version = sb->minor_version;
1128 mddev->patch_version = sb->patch_version;
1129 mddev->external = 0;
1130 mddev->chunk_sectors = sb->chunk_size >> 9;
1131 mddev->ctime = sb->ctime;
1132 mddev->utime = sb->utime;
1133 mddev->level = sb->level;
1134 mddev->clevel[0] = 0;
1135 mddev->layout = sb->layout;
1136 mddev->raid_disks = sb->raid_disks;
1137 mddev->dev_sectors = ((sector_t)sb->size) * 2;
1138 mddev->events = ev1;
1139 mddev->bitmap_info.offset = 0;
1140 mddev->bitmap_info.space = 0;
1141 /* bitmap can use 60 K after the 4K superblocks */
1142 mddev->bitmap_info.default_offset = MD_SB_BYTES >> 9;
1143 mddev->bitmap_info.default_space = 64*2 - (MD_SB_BYTES >> 9);
1144 mddev->reshape_backwards = 0;
1146 if (mddev->minor_version >= 91) {
1147 mddev->reshape_position = sb->reshape_position;
1148 mddev->delta_disks = sb->delta_disks;
1149 mddev->new_level = sb->new_level;
1150 mddev->new_layout = sb->new_layout;
1151 mddev->new_chunk_sectors = sb->new_chunk >> 9;
1152 if (mddev->delta_disks < 0)
1153 mddev->reshape_backwards = 1;
1154 } else {
1155 mddev->reshape_position = MaxSector;
1156 mddev->delta_disks = 0;
1157 mddev->new_level = mddev->level;
1158 mddev->new_layout = mddev->layout;
1159 mddev->new_chunk_sectors = mddev->chunk_sectors;
1162 if (sb->state & (1<<MD_SB_CLEAN))
1163 mddev->recovery_cp = MaxSector;
1164 else {
1165 if (sb->events_hi == sb->cp_events_hi &&
1166 sb->events_lo == sb->cp_events_lo) {
1167 mddev->recovery_cp = sb->recovery_cp;
1168 } else
1169 mddev->recovery_cp = 0;
1172 memcpy(mddev->uuid+0, &sb->set_uuid0, 4);
1173 memcpy(mddev->uuid+4, &sb->set_uuid1, 4);
1174 memcpy(mddev->uuid+8, &sb->set_uuid2, 4);
1175 memcpy(mddev->uuid+12,&sb->set_uuid3, 4);
1177 mddev->max_disks = MD_SB_DISKS;
1179 if (sb->state & (1<<MD_SB_BITMAP_PRESENT) &&
1180 mddev->bitmap_info.file == NULL) {
1181 mddev->bitmap_info.offset =
1182 mddev->bitmap_info.default_offset;
1183 mddev->bitmap_info.space =
1184 mddev->bitmap_info.default_space;
1187 } else if (mddev->pers == NULL) {
1188 /* Insist on good event counter while assembling, except
1189 * for spares (which don't need an event count) */
1190 ++ev1;
1191 if (sb->disks[rdev->desc_nr].state & (
1192 (1<<MD_DISK_SYNC) | (1 << MD_DISK_ACTIVE)))
1193 if (ev1 < mddev->events)
1194 return -EINVAL;
1195 } else if (mddev->bitmap) {
1196 /* if adding to array with a bitmap, then we can accept an
1197 * older device ... but not too old.
1199 if (ev1 < mddev->bitmap->events_cleared)
1200 return 0;
1201 if (ev1 < mddev->events)
1202 set_bit(Bitmap_sync, &rdev->flags);
1203 } else {
1204 if (ev1 < mddev->events)
1205 /* just a hot-add of a new device, leave raid_disk at -1 */
1206 return 0;
1209 if (mddev->level != LEVEL_MULTIPATH) {
1210 desc = sb->disks + rdev->desc_nr;
1212 if (desc->state & (1<<MD_DISK_FAULTY))
1213 set_bit(Faulty, &rdev->flags);
1214 else if (desc->state & (1<<MD_DISK_SYNC) /* &&
1215 desc->raid_disk < mddev->raid_disks */) {
1216 set_bit(In_sync, &rdev->flags);
1217 rdev->raid_disk = desc->raid_disk;
1218 } else if (desc->state & (1<<MD_DISK_ACTIVE)) {
1219 /* active but not in sync implies recovery up to
1220 * reshape position. We don't know exactly where
1221 * that is, so set to zero for now */
1222 if (mddev->minor_version >= 91) {
1223 rdev->recovery_offset = 0;
1224 rdev->raid_disk = desc->raid_disk;
1227 if (desc->state & (1<<MD_DISK_WRITEMOSTLY))
1228 set_bit(WriteMostly, &rdev->flags);
1229 } else /* MULTIPATH are always insync */
1230 set_bit(In_sync, &rdev->flags);
1231 return 0;
1235 * sync_super for 0.90.0
1237 static void super_90_sync(struct mddev *mddev, struct md_rdev *rdev)
1239 mdp_super_t *sb;
1240 struct md_rdev *rdev2;
1241 int next_spare = mddev->raid_disks;
1244 /* make rdev->sb match mddev data..
1246 * 1/ zero out disks
1247 * 2/ Add info for each disk, keeping track of highest desc_nr (next_spare);
1248 * 3/ any empty disks < next_spare become removed
1250 * disks[0] gets initialised to REMOVED because
1251 * we cannot be sure from other fields if it has
1252 * been initialised or not.
1254 int i;
1255 int active=0, working=0,failed=0,spare=0,nr_disks=0;
1257 rdev->sb_size = MD_SB_BYTES;
1259 sb = page_address(rdev->sb_page);
1261 memset(sb, 0, sizeof(*sb));
1263 sb->md_magic = MD_SB_MAGIC;
1264 sb->major_version = mddev->major_version;
1265 sb->patch_version = mddev->patch_version;
1266 sb->gvalid_words = 0; /* ignored */
1267 memcpy(&sb->set_uuid0, mddev->uuid+0, 4);
1268 memcpy(&sb->set_uuid1, mddev->uuid+4, 4);
1269 memcpy(&sb->set_uuid2, mddev->uuid+8, 4);
1270 memcpy(&sb->set_uuid3, mddev->uuid+12,4);
1272 sb->ctime = mddev->ctime;
1273 sb->level = mddev->level;
1274 sb->size = mddev->dev_sectors / 2;
1275 sb->raid_disks = mddev->raid_disks;
1276 sb->md_minor = mddev->md_minor;
1277 sb->not_persistent = 0;
1278 sb->utime = mddev->utime;
1279 sb->state = 0;
1280 sb->events_hi = (mddev->events>>32);
1281 sb->events_lo = (u32)mddev->events;
1283 if (mddev->reshape_position == MaxSector)
1284 sb->minor_version = 90;
1285 else {
1286 sb->minor_version = 91;
1287 sb->reshape_position = mddev->reshape_position;
1288 sb->new_level = mddev->new_level;
1289 sb->delta_disks = mddev->delta_disks;
1290 sb->new_layout = mddev->new_layout;
1291 sb->new_chunk = mddev->new_chunk_sectors << 9;
1293 mddev->minor_version = sb->minor_version;
1294 if (mddev->in_sync)
1296 sb->recovery_cp = mddev->recovery_cp;
1297 sb->cp_events_hi = (mddev->events>>32);
1298 sb->cp_events_lo = (u32)mddev->events;
1299 if (mddev->recovery_cp == MaxSector)
1300 sb->state = (1<< MD_SB_CLEAN);
1301 } else
1302 sb->recovery_cp = 0;
1304 sb->layout = mddev->layout;
1305 sb->chunk_size = mddev->chunk_sectors << 9;
1307 if (mddev->bitmap && mddev->bitmap_info.file == NULL)
1308 sb->state |= (1<<MD_SB_BITMAP_PRESENT);
1310 sb->disks[0].state = (1<<MD_DISK_REMOVED);
1311 rdev_for_each(rdev2, mddev) {
1312 mdp_disk_t *d;
1313 int desc_nr;
1314 int is_active = test_bit(In_sync, &rdev2->flags);
1316 if (rdev2->raid_disk >= 0 &&
1317 sb->minor_version >= 91)
1318 /* we have nowhere to store the recovery_offset,
1319 * but if it is not below the reshape_position,
1320 * we can piggy-back on that.
1322 is_active = 1;
1323 if (rdev2->raid_disk < 0 ||
1324 test_bit(Faulty, &rdev2->flags))
1325 is_active = 0;
1326 if (is_active)
1327 desc_nr = rdev2->raid_disk;
1328 else
1329 desc_nr = next_spare++;
1330 rdev2->desc_nr = desc_nr;
1331 d = &sb->disks[rdev2->desc_nr];
1332 nr_disks++;
1333 d->number = rdev2->desc_nr;
1334 d->major = MAJOR(rdev2->bdev->bd_dev);
1335 d->minor = MINOR(rdev2->bdev->bd_dev);
1336 if (is_active)
1337 d->raid_disk = rdev2->raid_disk;
1338 else
1339 d->raid_disk = rdev2->desc_nr; /* compatibility */
1340 if (test_bit(Faulty, &rdev2->flags))
1341 d->state = (1<<MD_DISK_FAULTY);
1342 else if (is_active) {
1343 d->state = (1<<MD_DISK_ACTIVE);
1344 if (test_bit(In_sync, &rdev2->flags))
1345 d->state |= (1<<MD_DISK_SYNC);
1346 active++;
1347 working++;
1348 } else {
1349 d->state = 0;
1350 spare++;
1351 working++;
1353 if (test_bit(WriteMostly, &rdev2->flags))
1354 d->state |= (1<<MD_DISK_WRITEMOSTLY);
1356 /* now set the "removed" and "faulty" bits on any missing devices */
1357 for (i=0 ; i < mddev->raid_disks ; i++) {
1358 mdp_disk_t *d = &sb->disks[i];
1359 if (d->state == 0 && d->number == 0) {
1360 d->number = i;
1361 d->raid_disk = i;
1362 d->state = (1<<MD_DISK_REMOVED);
1363 d->state |= (1<<MD_DISK_FAULTY);
1364 failed++;
1367 sb->nr_disks = nr_disks;
1368 sb->active_disks = active;
1369 sb->working_disks = working;
1370 sb->failed_disks = failed;
1371 sb->spare_disks = spare;
1373 sb->this_disk = sb->disks[rdev->desc_nr];
1374 sb->sb_csum = calc_sb_csum(sb);
1378 * rdev_size_change for 0.90.0
1380 static unsigned long long
1381 super_90_rdev_size_change(struct md_rdev *rdev, sector_t num_sectors)
1383 if (num_sectors && num_sectors < rdev->mddev->dev_sectors)
1384 return 0; /* component must fit device */
1385 if (rdev->mddev->bitmap_info.offset)
1386 return 0; /* can't move bitmap */
1387 rdev->sb_start = calc_dev_sboffset(rdev);
1388 if (!num_sectors || num_sectors > rdev->sb_start)
1389 num_sectors = rdev->sb_start;
1390 /* Limit to 4TB as metadata cannot record more than that.
1391 * 4TB == 2^32 KB, or 2*2^32 sectors.
1393 if (num_sectors >= (2ULL << 32) && rdev->mddev->level >= 1)
1394 num_sectors = (2ULL << 32) - 2;
1395 md_super_write(rdev->mddev, rdev, rdev->sb_start, rdev->sb_size,
1396 rdev->sb_page);
1397 md_super_wait(rdev->mddev);
1398 return num_sectors;
1401 static int
1402 super_90_allow_new_offset(struct md_rdev *rdev, unsigned long long new_offset)
1404 /* non-zero offset changes not possible with v0.90 */
1405 return new_offset == 0;
1409 * version 1 superblock
1412 static __le32 calc_sb_1_csum(struct mdp_superblock_1 * sb)
1414 __le32 disk_csum;
1415 u32 csum;
1416 unsigned long long newcsum;
1417 int size = 256 + le32_to_cpu(sb->max_dev)*2;
1418 __le32 *isuper = (__le32*)sb;
1420 disk_csum = sb->sb_csum;
1421 sb->sb_csum = 0;
1422 newcsum = 0;
1423 for (; size >= 4; size -= 4)
1424 newcsum += le32_to_cpu(*isuper++);
1426 if (size == 2)
1427 newcsum += le16_to_cpu(*(__le16*) isuper);
1429 csum = (newcsum & 0xffffffff) + (newcsum >> 32);
1430 sb->sb_csum = disk_csum;
1431 return cpu_to_le32(csum);
1434 static int md_set_badblocks(struct badblocks *bb, sector_t s, int sectors,
1435 int acknowledged);
1436 static int super_1_load(struct md_rdev *rdev, struct md_rdev *refdev, int minor_version)
1438 struct mdp_superblock_1 *sb;
1439 int ret;
1440 sector_t sb_start;
1441 sector_t sectors;
1442 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
1443 int bmask;
1446 * Calculate the position of the superblock in 512byte sectors.
1447 * It is always aligned to a 4K boundary and
1448 * depeding on minor_version, it can be:
1449 * 0: At least 8K, but less than 12K, from end of device
1450 * 1: At start of device
1451 * 2: 4K from start of device.
1453 switch(minor_version) {
1454 case 0:
1455 sb_start = i_size_read(rdev->bdev->bd_inode) >> 9;
1456 sb_start -= 8*2;
1457 sb_start &= ~(sector_t)(4*2-1);
1458 break;
1459 case 1:
1460 sb_start = 0;
1461 break;
1462 case 2:
1463 sb_start = 8;
1464 break;
1465 default:
1466 return -EINVAL;
1468 rdev->sb_start = sb_start;
1470 /* superblock is rarely larger than 1K, but it can be larger,
1471 * and it is safe to read 4k, so we do that
1473 ret = read_disk_sb(rdev, 4096);
1474 if (ret) return ret;
1477 sb = page_address(rdev->sb_page);
1479 if (sb->magic != cpu_to_le32(MD_SB_MAGIC) ||
1480 sb->major_version != cpu_to_le32(1) ||
1481 le32_to_cpu(sb->max_dev) > (4096-256)/2 ||
1482 le64_to_cpu(sb->super_offset) != rdev->sb_start ||
1483 (le32_to_cpu(sb->feature_map) & ~MD_FEATURE_ALL) != 0)
1484 return -EINVAL;
1486 if (calc_sb_1_csum(sb) != sb->sb_csum) {
1487 printk("md: invalid superblock checksum on %s\n",
1488 bdevname(rdev->bdev,b));
1489 return -EINVAL;
1491 if (le64_to_cpu(sb->data_size) < 10) {
1492 printk("md: data_size too small on %s\n",
1493 bdevname(rdev->bdev,b));
1494 return -EINVAL;
1496 if (sb->pad0 ||
1497 sb->pad3[0] ||
1498 memcmp(sb->pad3, sb->pad3+1, sizeof(sb->pad3) - sizeof(sb->pad3[1])))
1499 /* Some padding is non-zero, might be a new feature */
1500 return -EINVAL;
1502 rdev->preferred_minor = 0xffff;
1503 rdev->data_offset = le64_to_cpu(sb->data_offset);
1504 rdev->new_data_offset = rdev->data_offset;
1505 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RESHAPE_ACTIVE) &&
1506 (le32_to_cpu(sb->feature_map) & MD_FEATURE_NEW_OFFSET))
1507 rdev->new_data_offset += (s32)le32_to_cpu(sb->new_offset);
1508 atomic_set(&rdev->corrected_errors, le32_to_cpu(sb->cnt_corrected_read));
1510 rdev->sb_size = le32_to_cpu(sb->max_dev) * 2 + 256;
1511 bmask = queue_logical_block_size(rdev->bdev->bd_disk->queue)-1;
1512 if (rdev->sb_size & bmask)
1513 rdev->sb_size = (rdev->sb_size | bmask) + 1;
1515 if (minor_version
1516 && rdev->data_offset < sb_start + (rdev->sb_size/512))
1517 return -EINVAL;
1518 if (minor_version
1519 && rdev->new_data_offset < sb_start + (rdev->sb_size/512))
1520 return -EINVAL;
1522 if (sb->level == cpu_to_le32(LEVEL_MULTIPATH))
1523 rdev->desc_nr = -1;
1524 else
1525 rdev->desc_nr = le32_to_cpu(sb->dev_number);
1527 if (!rdev->bb_page) {
1528 rdev->bb_page = alloc_page(GFP_KERNEL);
1529 if (!rdev->bb_page)
1530 return -ENOMEM;
1532 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_BAD_BLOCKS) &&
1533 rdev->badblocks.count == 0) {
1534 /* need to load the bad block list.
1535 * Currently we limit it to one page.
1537 s32 offset;
1538 sector_t bb_sector;
1539 u64 *bbp;
1540 int i;
1541 int sectors = le16_to_cpu(sb->bblog_size);
1542 if (sectors > (PAGE_SIZE / 512))
1543 return -EINVAL;
1544 offset = le32_to_cpu(sb->bblog_offset);
1545 if (offset == 0)
1546 return -EINVAL;
1547 bb_sector = (long long)offset;
1548 if (!sync_page_io(rdev, bb_sector, sectors << 9,
1549 rdev->bb_page, READ, true))
1550 return -EIO;
1551 bbp = (u64 *)page_address(rdev->bb_page);
1552 rdev->badblocks.shift = sb->bblog_shift;
1553 for (i = 0 ; i < (sectors << (9-3)) ; i++, bbp++) {
1554 u64 bb = le64_to_cpu(*bbp);
1555 int count = bb & (0x3ff);
1556 u64 sector = bb >> 10;
1557 sector <<= sb->bblog_shift;
1558 count <<= sb->bblog_shift;
1559 if (bb + 1 == 0)
1560 break;
1561 if (md_set_badblocks(&rdev->badblocks,
1562 sector, count, 1) == 0)
1563 return -EINVAL;
1565 } else if (sb->bblog_offset != 0)
1566 rdev->badblocks.shift = 0;
1568 if (!refdev) {
1569 ret = 1;
1570 } else {
1571 __u64 ev1, ev2;
1572 struct mdp_superblock_1 *refsb = page_address(refdev->sb_page);
1574 if (memcmp(sb->set_uuid, refsb->set_uuid, 16) != 0 ||
1575 sb->level != refsb->level ||
1576 sb->layout != refsb->layout ||
1577 sb->chunksize != refsb->chunksize) {
1578 printk(KERN_WARNING "md: %s has strangely different"
1579 " superblock to %s\n",
1580 bdevname(rdev->bdev,b),
1581 bdevname(refdev->bdev,b2));
1582 return -EINVAL;
1584 ev1 = le64_to_cpu(sb->events);
1585 ev2 = le64_to_cpu(refsb->events);
1587 if (ev1 > ev2)
1588 ret = 1;
1589 else
1590 ret = 0;
1592 if (minor_version) {
1593 sectors = (i_size_read(rdev->bdev->bd_inode) >> 9);
1594 sectors -= rdev->data_offset;
1595 } else
1596 sectors = rdev->sb_start;
1597 if (sectors < le64_to_cpu(sb->data_size))
1598 return -EINVAL;
1599 rdev->sectors = le64_to_cpu(sb->data_size);
1600 return ret;
1603 static int super_1_validate(struct mddev *mddev, struct md_rdev *rdev)
1605 struct mdp_superblock_1 *sb = page_address(rdev->sb_page);
1606 __u64 ev1 = le64_to_cpu(sb->events);
1608 rdev->raid_disk = -1;
1609 clear_bit(Faulty, &rdev->flags);
1610 clear_bit(In_sync, &rdev->flags);
1611 clear_bit(Bitmap_sync, &rdev->flags);
1612 clear_bit(WriteMostly, &rdev->flags);
1614 if (mddev->raid_disks == 0) {
1615 mddev->major_version = 1;
1616 mddev->patch_version = 0;
1617 mddev->external = 0;
1618 mddev->chunk_sectors = le32_to_cpu(sb->chunksize);
1619 mddev->ctime = le64_to_cpu(sb->ctime) & ((1ULL << 32)-1);
1620 mddev->utime = le64_to_cpu(sb->utime) & ((1ULL << 32)-1);
1621 mddev->level = le32_to_cpu(sb->level);
1622 mddev->clevel[0] = 0;
1623 mddev->layout = le32_to_cpu(sb->layout);
1624 mddev->raid_disks = le32_to_cpu(sb->raid_disks);
1625 mddev->dev_sectors = le64_to_cpu(sb->size);
1626 mddev->events = ev1;
1627 mddev->bitmap_info.offset = 0;
1628 mddev->bitmap_info.space = 0;
1629 /* Default location for bitmap is 1K after superblock
1630 * using 3K - total of 4K
1632 mddev->bitmap_info.default_offset = 1024 >> 9;
1633 mddev->bitmap_info.default_space = (4096-1024) >> 9;
1634 mddev->reshape_backwards = 0;
1636 mddev->recovery_cp = le64_to_cpu(sb->resync_offset);
1637 memcpy(mddev->uuid, sb->set_uuid, 16);
1639 mddev->max_disks = (4096-256)/2;
1641 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_BITMAP_OFFSET) &&
1642 mddev->bitmap_info.file == NULL) {
1643 mddev->bitmap_info.offset =
1644 (__s32)le32_to_cpu(sb->bitmap_offset);
1645 /* Metadata doesn't record how much space is available.
1646 * For 1.0, we assume we can use up to the superblock
1647 * if before, else to 4K beyond superblock.
1648 * For others, assume no change is possible.
1650 if (mddev->minor_version > 0)
1651 mddev->bitmap_info.space = 0;
1652 else if (mddev->bitmap_info.offset > 0)
1653 mddev->bitmap_info.space =
1654 8 - mddev->bitmap_info.offset;
1655 else
1656 mddev->bitmap_info.space =
1657 -mddev->bitmap_info.offset;
1660 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RESHAPE_ACTIVE)) {
1661 mddev->reshape_position = le64_to_cpu(sb->reshape_position);
1662 mddev->delta_disks = le32_to_cpu(sb->delta_disks);
1663 mddev->new_level = le32_to_cpu(sb->new_level);
1664 mddev->new_layout = le32_to_cpu(sb->new_layout);
1665 mddev->new_chunk_sectors = le32_to_cpu(sb->new_chunk);
1666 if (mddev->delta_disks < 0 ||
1667 (mddev->delta_disks == 0 &&
1668 (le32_to_cpu(sb->feature_map)
1669 & MD_FEATURE_RESHAPE_BACKWARDS)))
1670 mddev->reshape_backwards = 1;
1671 } else {
1672 mddev->reshape_position = MaxSector;
1673 mddev->delta_disks = 0;
1674 mddev->new_level = mddev->level;
1675 mddev->new_layout = mddev->layout;
1676 mddev->new_chunk_sectors = mddev->chunk_sectors;
1679 } else if (mddev->pers == NULL) {
1680 /* Insist of good event counter while assembling, except for
1681 * spares (which don't need an event count) */
1682 ++ev1;
1683 if (rdev->desc_nr >= 0 &&
1684 rdev->desc_nr < le32_to_cpu(sb->max_dev) &&
1685 le16_to_cpu(sb->dev_roles[rdev->desc_nr]) < 0xfffe)
1686 if (ev1 < mddev->events)
1687 return -EINVAL;
1688 } else if (mddev->bitmap) {
1689 /* If adding to array with a bitmap, then we can accept an
1690 * older device, but not too old.
1692 if (ev1 < mddev->bitmap->events_cleared)
1693 return 0;
1694 if (ev1 < mddev->events)
1695 set_bit(Bitmap_sync, &rdev->flags);
1696 } else {
1697 if (ev1 < mddev->events)
1698 /* just a hot-add of a new device, leave raid_disk at -1 */
1699 return 0;
1701 if (mddev->level != LEVEL_MULTIPATH) {
1702 int role;
1703 if (rdev->desc_nr < 0 ||
1704 rdev->desc_nr >= le32_to_cpu(sb->max_dev)) {
1705 role = 0xffff;
1706 rdev->desc_nr = -1;
1707 } else
1708 role = le16_to_cpu(sb->dev_roles[rdev->desc_nr]);
1709 switch(role) {
1710 case 0xffff: /* spare */
1711 break;
1712 case 0xfffe: /* faulty */
1713 set_bit(Faulty, &rdev->flags);
1714 break;
1715 default:
1716 if ((le32_to_cpu(sb->feature_map) &
1717 MD_FEATURE_RECOVERY_OFFSET))
1718 rdev->recovery_offset = le64_to_cpu(sb->recovery_offset);
1719 else
1720 set_bit(In_sync, &rdev->flags);
1721 rdev->raid_disk = role;
1722 break;
1724 if (sb->devflags & WriteMostly1)
1725 set_bit(WriteMostly, &rdev->flags);
1726 if (le32_to_cpu(sb->feature_map) & MD_FEATURE_REPLACEMENT)
1727 set_bit(Replacement, &rdev->flags);
1728 } else /* MULTIPATH are always insync */
1729 set_bit(In_sync, &rdev->flags);
1731 return 0;
1734 static void super_1_sync(struct mddev *mddev, struct md_rdev *rdev)
1736 struct mdp_superblock_1 *sb;
1737 struct md_rdev *rdev2;
1738 int max_dev, i;
1739 /* make rdev->sb match mddev and rdev data. */
1741 sb = page_address(rdev->sb_page);
1743 sb->feature_map = 0;
1744 sb->pad0 = 0;
1745 sb->recovery_offset = cpu_to_le64(0);
1746 memset(sb->pad3, 0, sizeof(sb->pad3));
1748 sb->utime = cpu_to_le64((__u64)mddev->utime);
1749 sb->events = cpu_to_le64(mddev->events);
1750 if (mddev->in_sync)
1751 sb->resync_offset = cpu_to_le64(mddev->recovery_cp);
1752 else
1753 sb->resync_offset = cpu_to_le64(0);
1755 sb->cnt_corrected_read = cpu_to_le32(atomic_read(&rdev->corrected_errors));
1757 sb->raid_disks = cpu_to_le32(mddev->raid_disks);
1758 sb->size = cpu_to_le64(mddev->dev_sectors);
1759 sb->chunksize = cpu_to_le32(mddev->chunk_sectors);
1760 sb->level = cpu_to_le32(mddev->level);
1761 sb->layout = cpu_to_le32(mddev->layout);
1763 if (test_bit(WriteMostly, &rdev->flags))
1764 sb->devflags |= WriteMostly1;
1765 else
1766 sb->devflags &= ~WriteMostly1;
1767 sb->data_offset = cpu_to_le64(rdev->data_offset);
1768 sb->data_size = cpu_to_le64(rdev->sectors);
1770 if (mddev->bitmap && mddev->bitmap_info.file == NULL) {
1771 sb->bitmap_offset = cpu_to_le32((__u32)mddev->bitmap_info.offset);
1772 sb->feature_map = cpu_to_le32(MD_FEATURE_BITMAP_OFFSET);
1775 if (rdev->raid_disk >= 0 &&
1776 !test_bit(In_sync, &rdev->flags)) {
1777 sb->feature_map |=
1778 cpu_to_le32(MD_FEATURE_RECOVERY_OFFSET);
1779 sb->recovery_offset =
1780 cpu_to_le64(rdev->recovery_offset);
1782 if (test_bit(Replacement, &rdev->flags))
1783 sb->feature_map |=
1784 cpu_to_le32(MD_FEATURE_REPLACEMENT);
1786 if (mddev->reshape_position != MaxSector) {
1787 sb->feature_map |= cpu_to_le32(MD_FEATURE_RESHAPE_ACTIVE);
1788 sb->reshape_position = cpu_to_le64(mddev->reshape_position);
1789 sb->new_layout = cpu_to_le32(mddev->new_layout);
1790 sb->delta_disks = cpu_to_le32(mddev->delta_disks);
1791 sb->new_level = cpu_to_le32(mddev->new_level);
1792 sb->new_chunk = cpu_to_le32(mddev->new_chunk_sectors);
1793 if (mddev->delta_disks == 0 &&
1794 mddev->reshape_backwards)
1795 sb->feature_map
1796 |= cpu_to_le32(MD_FEATURE_RESHAPE_BACKWARDS);
1797 if (rdev->new_data_offset != rdev->data_offset) {
1798 sb->feature_map
1799 |= cpu_to_le32(MD_FEATURE_NEW_OFFSET);
1800 sb->new_offset = cpu_to_le32((__u32)(rdev->new_data_offset
1801 - rdev->data_offset));
1805 if (rdev->badblocks.count == 0)
1806 /* Nothing to do for bad blocks*/ ;
1807 else if (sb->bblog_offset == 0)
1808 /* Cannot record bad blocks on this device */
1809 md_error(mddev, rdev);
1810 else {
1811 struct badblocks *bb = &rdev->badblocks;
1812 u64 *bbp = (u64 *)page_address(rdev->bb_page);
1813 u64 *p = bb->page;
1814 sb->feature_map |= cpu_to_le32(MD_FEATURE_BAD_BLOCKS);
1815 if (bb->changed) {
1816 unsigned seq;
1818 retry:
1819 seq = read_seqbegin(&bb->lock);
1821 memset(bbp, 0xff, PAGE_SIZE);
1823 for (i = 0 ; i < bb->count ; i++) {
1824 u64 internal_bb = p[i];
1825 u64 store_bb = ((BB_OFFSET(internal_bb) << 10)
1826 | BB_LEN(internal_bb));
1827 bbp[i] = cpu_to_le64(store_bb);
1829 bb->changed = 0;
1830 if (read_seqretry(&bb->lock, seq))
1831 goto retry;
1833 bb->sector = (rdev->sb_start +
1834 (int)le32_to_cpu(sb->bblog_offset));
1835 bb->size = le16_to_cpu(sb->bblog_size);
1839 max_dev = 0;
1840 rdev_for_each(rdev2, mddev)
1841 if (rdev2->desc_nr+1 > max_dev)
1842 max_dev = rdev2->desc_nr+1;
1844 if (max_dev > le32_to_cpu(sb->max_dev)) {
1845 int bmask;
1846 sb->max_dev = cpu_to_le32(max_dev);
1847 rdev->sb_size = max_dev * 2 + 256;
1848 bmask = queue_logical_block_size(rdev->bdev->bd_disk->queue)-1;
1849 if (rdev->sb_size & bmask)
1850 rdev->sb_size = (rdev->sb_size | bmask) + 1;
1851 } else
1852 max_dev = le32_to_cpu(sb->max_dev);
1854 for (i=0; i<max_dev;i++)
1855 sb->dev_roles[i] = cpu_to_le16(0xfffe);
1857 rdev_for_each(rdev2, mddev) {
1858 i = rdev2->desc_nr;
1859 if (test_bit(Faulty, &rdev2->flags))
1860 sb->dev_roles[i] = cpu_to_le16(0xfffe);
1861 else if (test_bit(In_sync, &rdev2->flags))
1862 sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk);
1863 else if (rdev2->raid_disk >= 0)
1864 sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk);
1865 else
1866 sb->dev_roles[i] = cpu_to_le16(0xffff);
1869 sb->sb_csum = calc_sb_1_csum(sb);
1872 static unsigned long long
1873 super_1_rdev_size_change(struct md_rdev *rdev, sector_t num_sectors)
1875 struct mdp_superblock_1 *sb;
1876 sector_t max_sectors;
1877 if (num_sectors && num_sectors < rdev->mddev->dev_sectors)
1878 return 0; /* component must fit device */
1879 if (rdev->data_offset != rdev->new_data_offset)
1880 return 0; /* too confusing */
1881 if (rdev->sb_start < rdev->data_offset) {
1882 /* minor versions 1 and 2; superblock before data */
1883 max_sectors = i_size_read(rdev->bdev->bd_inode) >> 9;
1884 max_sectors -= rdev->data_offset;
1885 if (!num_sectors || num_sectors > max_sectors)
1886 num_sectors = max_sectors;
1887 } else if (rdev->mddev->bitmap_info.offset) {
1888 /* minor version 0 with bitmap we can't move */
1889 return 0;
1890 } else {
1891 /* minor version 0; superblock after data */
1892 sector_t sb_start;
1893 sb_start = (i_size_read(rdev->bdev->bd_inode) >> 9) - 8*2;
1894 sb_start &= ~(sector_t)(4*2 - 1);
1895 max_sectors = rdev->sectors + sb_start - rdev->sb_start;
1896 if (!num_sectors || num_sectors > max_sectors)
1897 num_sectors = max_sectors;
1898 rdev->sb_start = sb_start;
1900 sb = page_address(rdev->sb_page);
1901 sb->data_size = cpu_to_le64(num_sectors);
1902 sb->super_offset = rdev->sb_start;
1903 sb->sb_csum = calc_sb_1_csum(sb);
1904 md_super_write(rdev->mddev, rdev, rdev->sb_start, rdev->sb_size,
1905 rdev->sb_page);
1906 md_super_wait(rdev->mddev);
1907 return num_sectors;
1911 static int
1912 super_1_allow_new_offset(struct md_rdev *rdev,
1913 unsigned long long new_offset)
1915 /* All necessary checks on new >= old have been done */
1916 struct bitmap *bitmap;
1917 if (new_offset >= rdev->data_offset)
1918 return 1;
1920 /* with 1.0 metadata, there is no metadata to tread on
1921 * so we can always move back */
1922 if (rdev->mddev->minor_version == 0)
1923 return 1;
1925 /* otherwise we must be sure not to step on
1926 * any metadata, so stay:
1927 * 36K beyond start of superblock
1928 * beyond end of badblocks
1929 * beyond write-intent bitmap
1931 if (rdev->sb_start + (32+4)*2 > new_offset)
1932 return 0;
1933 bitmap = rdev->mddev->bitmap;
1934 if (bitmap && !rdev->mddev->bitmap_info.file &&
1935 rdev->sb_start + rdev->mddev->bitmap_info.offset +
1936 bitmap->storage.file_pages * (PAGE_SIZE>>9) > new_offset)
1937 return 0;
1938 if (rdev->badblocks.sector + rdev->badblocks.size > new_offset)
1939 return 0;
1941 return 1;
1944 static struct super_type super_types[] = {
1945 [0] = {
1946 .name = "0.90.0",
1947 .owner = THIS_MODULE,
1948 .load_super = super_90_load,
1949 .validate_super = super_90_validate,
1950 .sync_super = super_90_sync,
1951 .rdev_size_change = super_90_rdev_size_change,
1952 .allow_new_offset = super_90_allow_new_offset,
1954 [1] = {
1955 .name = "md-1",
1956 .owner = THIS_MODULE,
1957 .load_super = super_1_load,
1958 .validate_super = super_1_validate,
1959 .sync_super = super_1_sync,
1960 .rdev_size_change = super_1_rdev_size_change,
1961 .allow_new_offset = super_1_allow_new_offset,
1965 static void sync_super(struct mddev *mddev, struct md_rdev *rdev)
1967 if (mddev->sync_super) {
1968 mddev->sync_super(mddev, rdev);
1969 return;
1972 BUG_ON(mddev->major_version >= ARRAY_SIZE(super_types));
1974 super_types[mddev->major_version].sync_super(mddev, rdev);
1977 static int match_mddev_units(struct mddev *mddev1, struct mddev *mddev2)
1979 struct md_rdev *rdev, *rdev2;
1981 rcu_read_lock();
1982 rdev_for_each_rcu(rdev, mddev1)
1983 rdev_for_each_rcu(rdev2, mddev2)
1984 if (rdev->bdev->bd_contains ==
1985 rdev2->bdev->bd_contains) {
1986 rcu_read_unlock();
1987 return 1;
1989 rcu_read_unlock();
1990 return 0;
1993 static LIST_HEAD(pending_raid_disks);
1996 * Try to register data integrity profile for an mddev
1998 * This is called when an array is started and after a disk has been kicked
1999 * from the array. It only succeeds if all working and active component devices
2000 * are integrity capable with matching profiles.
2002 int md_integrity_register(struct mddev *mddev)
2004 struct md_rdev *rdev, *reference = NULL;
2006 if (list_empty(&mddev->disks))
2007 return 0; /* nothing to do */
2008 if (!mddev->gendisk || blk_get_integrity(mddev->gendisk))
2009 return 0; /* shouldn't register, or already is */
2010 rdev_for_each(rdev, mddev) {
2011 /* skip spares and non-functional disks */
2012 if (test_bit(Faulty, &rdev->flags))
2013 continue;
2014 if (rdev->raid_disk < 0)
2015 continue;
2016 if (!reference) {
2017 /* Use the first rdev as the reference */
2018 reference = rdev;
2019 continue;
2021 /* does this rdev's profile match the reference profile? */
2022 if (blk_integrity_compare(reference->bdev->bd_disk,
2023 rdev->bdev->bd_disk) < 0)
2024 return -EINVAL;
2026 if (!reference || !bdev_get_integrity(reference->bdev))
2027 return 0;
2029 * All component devices are integrity capable and have matching
2030 * profiles, register the common profile for the md device.
2032 if (blk_integrity_register(mddev->gendisk,
2033 bdev_get_integrity(reference->bdev)) != 0) {
2034 printk(KERN_ERR "md: failed to register integrity for %s\n",
2035 mdname(mddev));
2036 return -EINVAL;
2038 printk(KERN_NOTICE "md: data integrity enabled on %s\n", mdname(mddev));
2039 if (bioset_integrity_create(mddev->bio_set, BIO_POOL_SIZE)) {
2040 printk(KERN_ERR "md: failed to create integrity pool for %s\n",
2041 mdname(mddev));
2042 return -EINVAL;
2044 return 0;
2046 EXPORT_SYMBOL(md_integrity_register);
2048 /* Disable data integrity if non-capable/non-matching disk is being added */
2049 void md_integrity_add_rdev(struct md_rdev *rdev, struct mddev *mddev)
2051 struct blk_integrity *bi_rdev;
2052 struct blk_integrity *bi_mddev;
2054 if (!mddev->gendisk)
2055 return;
2057 bi_rdev = bdev_get_integrity(rdev->bdev);
2058 bi_mddev = blk_get_integrity(mddev->gendisk);
2060 if (!bi_mddev) /* nothing to do */
2061 return;
2062 if (rdev->raid_disk < 0) /* skip spares */
2063 return;
2064 if (bi_rdev && blk_integrity_compare(mddev->gendisk,
2065 rdev->bdev->bd_disk) >= 0)
2066 return;
2067 printk(KERN_NOTICE "disabling data integrity on %s\n", mdname(mddev));
2068 blk_integrity_unregister(mddev->gendisk);
2070 EXPORT_SYMBOL(md_integrity_add_rdev);
2072 static int bind_rdev_to_array(struct md_rdev * rdev, struct mddev * mddev)
2074 char b[BDEVNAME_SIZE];
2075 struct kobject *ko;
2076 char *s;
2077 int err;
2079 if (rdev->mddev) {
2080 MD_BUG();
2081 return -EINVAL;
2084 /* prevent duplicates */
2085 if (find_rdev(mddev, rdev->bdev->bd_dev))
2086 return -EEXIST;
2088 /* make sure rdev->sectors exceeds mddev->dev_sectors */
2089 if (rdev->sectors && (mddev->dev_sectors == 0 ||
2090 rdev->sectors < mddev->dev_sectors)) {
2091 if (mddev->pers) {
2092 /* Cannot change size, so fail
2093 * If mddev->level <= 0, then we don't care
2094 * about aligning sizes (e.g. linear)
2096 if (mddev->level > 0)
2097 return -ENOSPC;
2098 } else
2099 mddev->dev_sectors = rdev->sectors;
2102 /* Verify rdev->desc_nr is unique.
2103 * If it is -1, assign a free number, else
2104 * check number is not in use
2106 if (rdev->desc_nr < 0) {
2107 int choice = 0;
2108 if (mddev->pers) choice = mddev->raid_disks;
2109 while (find_rdev_nr(mddev, choice))
2110 choice++;
2111 rdev->desc_nr = choice;
2112 } else {
2113 if (find_rdev_nr(mddev, rdev->desc_nr))
2114 return -EBUSY;
2116 if (mddev->max_disks && rdev->desc_nr >= mddev->max_disks) {
2117 printk(KERN_WARNING "md: %s: array is limited to %d devices\n",
2118 mdname(mddev), mddev->max_disks);
2119 return -EBUSY;
2121 bdevname(rdev->bdev,b);
2122 while ( (s=strchr(b, '/')) != NULL)
2123 *s = '!';
2125 rdev->mddev = mddev;
2126 printk(KERN_INFO "md: bind<%s>\n", b);
2128 if ((err = kobject_add(&rdev->kobj, &mddev->kobj, "dev-%s", b)))
2129 goto fail;
2131 ko = &part_to_dev(rdev->bdev->bd_part)->kobj;
2132 if (sysfs_create_link(&rdev->kobj, ko, "block"))
2133 /* failure here is OK */;
2134 rdev->sysfs_state = sysfs_get_dirent_safe(rdev->kobj.sd, "state");
2136 list_add_rcu(&rdev->same_set, &mddev->disks);
2137 bd_link_disk_holder(rdev->bdev, mddev->gendisk);
2139 /* May as well allow recovery to be retried once */
2140 mddev->recovery_disabled++;
2142 return 0;
2144 fail:
2145 printk(KERN_WARNING "md: failed to register dev-%s for %s\n",
2146 b, mdname(mddev));
2147 return err;
2150 static void md_delayed_delete(struct work_struct *ws)
2152 struct md_rdev *rdev = container_of(ws, struct md_rdev, del_work);
2153 kobject_del(&rdev->kobj);
2154 kobject_put(&rdev->kobj);
2157 static void unbind_rdev_from_array(struct md_rdev * rdev)
2159 char b[BDEVNAME_SIZE];
2160 if (!rdev->mddev) {
2161 MD_BUG();
2162 return;
2164 bd_unlink_disk_holder(rdev->bdev, rdev->mddev->gendisk);
2165 list_del_rcu(&rdev->same_set);
2166 printk(KERN_INFO "md: unbind<%s>\n", bdevname(rdev->bdev,b));
2167 rdev->mddev = NULL;
2168 sysfs_remove_link(&rdev->kobj, "block");
2169 sysfs_put(rdev->sysfs_state);
2170 rdev->sysfs_state = NULL;
2171 rdev->badblocks.count = 0;
2172 /* We need to delay this, otherwise we can deadlock when
2173 * writing to 'remove' to "dev/state". We also need
2174 * to delay it due to rcu usage.
2176 synchronize_rcu();
2177 INIT_WORK(&rdev->del_work, md_delayed_delete);
2178 kobject_get(&rdev->kobj);
2179 queue_work(md_misc_wq, &rdev->del_work);
2183 * prevent the device from being mounted, repartitioned or
2184 * otherwise reused by a RAID array (or any other kernel
2185 * subsystem), by bd_claiming the device.
2187 static int lock_rdev(struct md_rdev *rdev, dev_t dev, int shared)
2189 int err = 0;
2190 struct block_device *bdev;
2191 char b[BDEVNAME_SIZE];
2193 bdev = blkdev_get_by_dev(dev, FMODE_READ|FMODE_WRITE|FMODE_EXCL,
2194 shared ? (struct md_rdev *)lock_rdev : rdev);
2195 if (IS_ERR(bdev)) {
2196 printk(KERN_ERR "md: could not open %s.\n",
2197 __bdevname(dev, b));
2198 return PTR_ERR(bdev);
2200 rdev->bdev = bdev;
2201 return err;
2204 static void unlock_rdev(struct md_rdev *rdev)
2206 struct block_device *bdev = rdev->bdev;
2207 rdev->bdev = NULL;
2208 if (!bdev)
2209 MD_BUG();
2210 blkdev_put(bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL);
2213 void md_autodetect_dev(dev_t dev);
2215 static void export_rdev(struct md_rdev * rdev)
2217 char b[BDEVNAME_SIZE];
2218 printk(KERN_INFO "md: export_rdev(%s)\n",
2219 bdevname(rdev->bdev,b));
2220 if (rdev->mddev)
2221 MD_BUG();
2222 md_rdev_clear(rdev);
2223 #ifndef MODULE
2224 if (test_bit(AutoDetected, &rdev->flags))
2225 md_autodetect_dev(rdev->bdev->bd_dev);
2226 #endif
2227 unlock_rdev(rdev);
2228 kobject_put(&rdev->kobj);
2231 static void kick_rdev_from_array(struct md_rdev * rdev)
2233 unbind_rdev_from_array(rdev);
2234 export_rdev(rdev);
2237 static void export_array(struct mddev *mddev)
2239 struct md_rdev *rdev, *tmp;
2241 rdev_for_each_safe(rdev, tmp, mddev) {
2242 if (!rdev->mddev) {
2243 MD_BUG();
2244 continue;
2246 kick_rdev_from_array(rdev);
2248 if (!list_empty(&mddev->disks))
2249 MD_BUG();
2250 mddev->raid_disks = 0;
2251 mddev->major_version = 0;
2254 static void print_desc(mdp_disk_t *desc)
2256 printk(" DISK<N:%d,(%d,%d),R:%d,S:%d>\n", desc->number,
2257 desc->major,desc->minor,desc->raid_disk,desc->state);
2260 static void print_sb_90(mdp_super_t *sb)
2262 int i;
2264 printk(KERN_INFO
2265 "md: SB: (V:%d.%d.%d) ID:<%08x.%08x.%08x.%08x> CT:%08x\n",
2266 sb->major_version, sb->minor_version, sb->patch_version,
2267 sb->set_uuid0, sb->set_uuid1, sb->set_uuid2, sb->set_uuid3,
2268 sb->ctime);
2269 printk(KERN_INFO "md: L%d S%08d ND:%d RD:%d md%d LO:%d CS:%d\n",
2270 sb->level, sb->size, sb->nr_disks, sb->raid_disks,
2271 sb->md_minor, sb->layout, sb->chunk_size);
2272 printk(KERN_INFO "md: UT:%08x ST:%d AD:%d WD:%d"
2273 " FD:%d SD:%d CSUM:%08x E:%08lx\n",
2274 sb->utime, sb->state, sb->active_disks, sb->working_disks,
2275 sb->failed_disks, sb->spare_disks,
2276 sb->sb_csum, (unsigned long)sb->events_lo);
2278 printk(KERN_INFO);
2279 for (i = 0; i < MD_SB_DISKS; i++) {
2280 mdp_disk_t *desc;
2282 desc = sb->disks + i;
2283 if (desc->number || desc->major || desc->minor ||
2284 desc->raid_disk || (desc->state && (desc->state != 4))) {
2285 printk(" D %2d: ", i);
2286 print_desc(desc);
2289 printk(KERN_INFO "md: THIS: ");
2290 print_desc(&sb->this_disk);
2293 static void print_sb_1(struct mdp_superblock_1 *sb)
2295 __u8 *uuid;
2297 uuid = sb->set_uuid;
2298 printk(KERN_INFO
2299 "md: SB: (V:%u) (F:0x%08x) Array-ID:<%pU>\n"
2300 "md: Name: \"%s\" CT:%llu\n",
2301 le32_to_cpu(sb->major_version),
2302 le32_to_cpu(sb->feature_map),
2303 uuid,
2304 sb->set_name,
2305 (unsigned long long)le64_to_cpu(sb->ctime)
2306 & MD_SUPERBLOCK_1_TIME_SEC_MASK);
2308 uuid = sb->device_uuid;
2309 printk(KERN_INFO
2310 "md: L%u SZ%llu RD:%u LO:%u CS:%u DO:%llu DS:%llu SO:%llu"
2311 " RO:%llu\n"
2312 "md: Dev:%08x UUID: %pU\n"
2313 "md: (F:0x%08x) UT:%llu Events:%llu ResyncOffset:%llu CSUM:0x%08x\n"
2314 "md: (MaxDev:%u) \n",
2315 le32_to_cpu(sb->level),
2316 (unsigned long long)le64_to_cpu(sb->size),
2317 le32_to_cpu(sb->raid_disks),
2318 le32_to_cpu(sb->layout),
2319 le32_to_cpu(sb->chunksize),
2320 (unsigned long long)le64_to_cpu(sb->data_offset),
2321 (unsigned long long)le64_to_cpu(sb->data_size),
2322 (unsigned long long)le64_to_cpu(sb->super_offset),
2323 (unsigned long long)le64_to_cpu(sb->recovery_offset),
2324 le32_to_cpu(sb->dev_number),
2325 uuid,
2326 sb->devflags,
2327 (unsigned long long)le64_to_cpu(sb->utime) & MD_SUPERBLOCK_1_TIME_SEC_MASK,
2328 (unsigned long long)le64_to_cpu(sb->events),
2329 (unsigned long long)le64_to_cpu(sb->resync_offset),
2330 le32_to_cpu(sb->sb_csum),
2331 le32_to_cpu(sb->max_dev)
2335 static void print_rdev(struct md_rdev *rdev, int major_version)
2337 char b[BDEVNAME_SIZE];
2338 printk(KERN_INFO "md: rdev %s, Sect:%08llu F:%d S:%d DN:%u\n",
2339 bdevname(rdev->bdev, b), (unsigned long long)rdev->sectors,
2340 test_bit(Faulty, &rdev->flags), test_bit(In_sync, &rdev->flags),
2341 rdev->desc_nr);
2342 if (rdev->sb_loaded) {
2343 printk(KERN_INFO "md: rdev superblock (MJ:%d):\n", major_version);
2344 switch (major_version) {
2345 case 0:
2346 print_sb_90(page_address(rdev->sb_page));
2347 break;
2348 case 1:
2349 print_sb_1(page_address(rdev->sb_page));
2350 break;
2352 } else
2353 printk(KERN_INFO "md: no rdev superblock!\n");
2356 static void md_print_devices(void)
2358 struct list_head *tmp;
2359 struct md_rdev *rdev;
2360 struct mddev *mddev;
2361 char b[BDEVNAME_SIZE];
2363 printk("\n");
2364 printk("md: **********************************\n");
2365 printk("md: * <COMPLETE RAID STATE PRINTOUT> *\n");
2366 printk("md: **********************************\n");
2367 for_each_mddev(mddev, tmp) {
2369 if (mddev->bitmap)
2370 bitmap_print_sb(mddev->bitmap);
2371 else
2372 printk("%s: ", mdname(mddev));
2373 rdev_for_each(rdev, mddev)
2374 printk("<%s>", bdevname(rdev->bdev,b));
2375 printk("\n");
2377 rdev_for_each(rdev, mddev)
2378 print_rdev(rdev, mddev->major_version);
2380 printk("md: **********************************\n");
2381 printk("\n");
2385 static void sync_sbs(struct mddev * mddev, int nospares)
2387 /* Update each superblock (in-memory image), but
2388 * if we are allowed to, skip spares which already
2389 * have the right event counter, or have one earlier
2390 * (which would mean they aren't being marked as dirty
2391 * with the rest of the array)
2393 struct md_rdev *rdev;
2394 rdev_for_each(rdev, mddev) {
2395 if (rdev->sb_events == mddev->events ||
2396 (nospares &&
2397 rdev->raid_disk < 0 &&
2398 rdev->sb_events+1 == mddev->events)) {
2399 /* Don't update this superblock */
2400 rdev->sb_loaded = 2;
2401 } else {
2402 sync_super(mddev, rdev);
2403 rdev->sb_loaded = 1;
2408 static void md_update_sb(struct mddev * mddev, int force_change)
2410 struct md_rdev *rdev;
2411 int sync_req;
2412 int nospares = 0;
2413 int any_badblocks_changed = 0;
2415 if (mddev->ro) {
2416 if (force_change)
2417 set_bit(MD_CHANGE_DEVS, &mddev->flags);
2418 return;
2420 repeat:
2421 /* First make sure individual recovery_offsets are correct */
2422 rdev_for_each(rdev, mddev) {
2423 if (rdev->raid_disk >= 0 &&
2424 mddev->delta_disks >= 0 &&
2425 !test_bit(In_sync, &rdev->flags) &&
2426 mddev->curr_resync_completed > rdev->recovery_offset)
2427 rdev->recovery_offset = mddev->curr_resync_completed;
2430 if (!mddev->persistent) {
2431 clear_bit(MD_CHANGE_CLEAN, &mddev->flags);
2432 clear_bit(MD_CHANGE_DEVS, &mddev->flags);
2433 if (!mddev->external) {
2434 clear_bit(MD_CHANGE_PENDING, &mddev->flags);
2435 rdev_for_each(rdev, mddev) {
2436 if (rdev->badblocks.changed) {
2437 rdev->badblocks.changed = 0;
2438 md_ack_all_badblocks(&rdev->badblocks);
2439 md_error(mddev, rdev);
2441 clear_bit(Blocked, &rdev->flags);
2442 clear_bit(BlockedBadBlocks, &rdev->flags);
2443 wake_up(&rdev->blocked_wait);
2446 wake_up(&mddev->sb_wait);
2447 return;
2450 spin_lock_irq(&mddev->write_lock);
2452 mddev->utime = get_seconds();
2454 if (test_and_clear_bit(MD_CHANGE_DEVS, &mddev->flags))
2455 force_change = 1;
2456 if (test_and_clear_bit(MD_CHANGE_CLEAN, &mddev->flags))
2457 /* just a clean<-> dirty transition, possibly leave spares alone,
2458 * though if events isn't the right even/odd, we will have to do
2459 * spares after all
2461 nospares = 1;
2462 if (force_change)
2463 nospares = 0;
2464 if (mddev->degraded)
2465 /* If the array is degraded, then skipping spares is both
2466 * dangerous and fairly pointless.
2467 * Dangerous because a device that was removed from the array
2468 * might have a event_count that still looks up-to-date,
2469 * so it can be re-added without a resync.
2470 * Pointless because if there are any spares to skip,
2471 * then a recovery will happen and soon that array won't
2472 * be degraded any more and the spare can go back to sleep then.
2474 nospares = 0;
2476 sync_req = mddev->in_sync;
2478 /* If this is just a dirty<->clean transition, and the array is clean
2479 * and 'events' is odd, we can roll back to the previous clean state */
2480 if (nospares
2481 && (mddev->in_sync && mddev->recovery_cp == MaxSector)
2482 && mddev->can_decrease_events
2483 && mddev->events != 1) {
2484 mddev->events--;
2485 mddev->can_decrease_events = 0;
2486 } else {
2487 /* otherwise we have to go forward and ... */
2488 mddev->events ++;
2489 mddev->can_decrease_events = nospares;
2492 if (!mddev->events) {
2494 * oops, this 64-bit counter should never wrap.
2495 * Either we are in around ~1 trillion A.C., assuming
2496 * 1 reboot per second, or we have a bug:
2498 MD_BUG();
2499 mddev->events --;
2502 rdev_for_each(rdev, mddev) {
2503 if (rdev->badblocks.changed)
2504 any_badblocks_changed++;
2505 if (test_bit(Faulty, &rdev->flags))
2506 set_bit(FaultRecorded, &rdev->flags);
2509 sync_sbs(mddev, nospares);
2510 spin_unlock_irq(&mddev->write_lock);
2512 pr_debug("md: updating %s RAID superblock on device (in sync %d)\n",
2513 mdname(mddev), mddev->in_sync);
2515 bitmap_update_sb(mddev->bitmap);
2516 rdev_for_each(rdev, mddev) {
2517 char b[BDEVNAME_SIZE];
2519 if (rdev->sb_loaded != 1)
2520 continue; /* no noise on spare devices */
2522 if (!test_bit(Faulty, &rdev->flags) &&
2523 rdev->saved_raid_disk == -1) {
2524 md_super_write(mddev,rdev,
2525 rdev->sb_start, rdev->sb_size,
2526 rdev->sb_page);
2527 pr_debug("md: (write) %s's sb offset: %llu\n",
2528 bdevname(rdev->bdev, b),
2529 (unsigned long long)rdev->sb_start);
2530 rdev->sb_events = mddev->events;
2531 if (rdev->badblocks.size) {
2532 md_super_write(mddev, rdev,
2533 rdev->badblocks.sector,
2534 rdev->badblocks.size << 9,
2535 rdev->bb_page);
2536 rdev->badblocks.size = 0;
2539 } else if (test_bit(Faulty, &rdev->flags))
2540 pr_debug("md: %s (skipping faulty)\n",
2541 bdevname(rdev->bdev, b));
2542 else
2543 pr_debug("(skipping incremental s/r ");
2545 if (mddev->level == LEVEL_MULTIPATH)
2546 /* only need to write one superblock... */
2547 break;
2549 md_super_wait(mddev);
2550 /* if there was a failure, MD_CHANGE_DEVS was set, and we re-write super */
2552 spin_lock_irq(&mddev->write_lock);
2553 if (mddev->in_sync != sync_req ||
2554 test_bit(MD_CHANGE_DEVS, &mddev->flags)) {
2555 /* have to write it out again */
2556 spin_unlock_irq(&mddev->write_lock);
2557 goto repeat;
2559 clear_bit(MD_CHANGE_PENDING, &mddev->flags);
2560 spin_unlock_irq(&mddev->write_lock);
2561 wake_up(&mddev->sb_wait);
2562 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
2563 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
2565 rdev_for_each(rdev, mddev) {
2566 if (test_and_clear_bit(FaultRecorded, &rdev->flags))
2567 clear_bit(Blocked, &rdev->flags);
2569 if (any_badblocks_changed)
2570 md_ack_all_badblocks(&rdev->badblocks);
2571 clear_bit(BlockedBadBlocks, &rdev->flags);
2572 wake_up(&rdev->blocked_wait);
2576 /* words written to sysfs files may, or may not, be \n terminated.
2577 * We want to accept with case. For this we use cmd_match.
2579 static int cmd_match(const char *cmd, const char *str)
2581 /* See if cmd, written into a sysfs file, matches
2582 * str. They must either be the same, or cmd can
2583 * have a trailing newline
2585 while (*cmd && *str && *cmd == *str) {
2586 cmd++;
2587 str++;
2589 if (*cmd == '\n')
2590 cmd++;
2591 if (*str || *cmd)
2592 return 0;
2593 return 1;
2596 struct rdev_sysfs_entry {
2597 struct attribute attr;
2598 ssize_t (*show)(struct md_rdev *, char *);
2599 ssize_t (*store)(struct md_rdev *, const char *, size_t);
2602 static ssize_t
2603 state_show(struct md_rdev *rdev, char *page)
2605 char *sep = "";
2606 size_t len = 0;
2608 if (test_bit(Faulty, &rdev->flags) ||
2609 rdev->badblocks.unacked_exist) {
2610 len+= sprintf(page+len, "%sfaulty",sep);
2611 sep = ",";
2613 if (test_bit(In_sync, &rdev->flags)) {
2614 len += sprintf(page+len, "%sin_sync",sep);
2615 sep = ",";
2617 if (test_bit(WriteMostly, &rdev->flags)) {
2618 len += sprintf(page+len, "%swrite_mostly",sep);
2619 sep = ",";
2621 if (test_bit(Blocked, &rdev->flags) ||
2622 (rdev->badblocks.unacked_exist
2623 && !test_bit(Faulty, &rdev->flags))) {
2624 len += sprintf(page+len, "%sblocked", sep);
2625 sep = ",";
2627 if (!test_bit(Faulty, &rdev->flags) &&
2628 !test_bit(In_sync, &rdev->flags)) {
2629 len += sprintf(page+len, "%sspare", sep);
2630 sep = ",";
2632 if (test_bit(WriteErrorSeen, &rdev->flags)) {
2633 len += sprintf(page+len, "%swrite_error", sep);
2634 sep = ",";
2636 if (test_bit(WantReplacement, &rdev->flags)) {
2637 len += sprintf(page+len, "%swant_replacement", sep);
2638 sep = ",";
2640 if (test_bit(Replacement, &rdev->flags)) {
2641 len += sprintf(page+len, "%sreplacement", sep);
2642 sep = ",";
2645 return len+sprintf(page+len, "\n");
2648 static ssize_t
2649 state_store(struct md_rdev *rdev, const char *buf, size_t len)
2651 /* can write
2652 * faulty - simulates an error
2653 * remove - disconnects the device
2654 * writemostly - sets write_mostly
2655 * -writemostly - clears write_mostly
2656 * blocked - sets the Blocked flags
2657 * -blocked - clears the Blocked and possibly simulates an error
2658 * insync - sets Insync providing device isn't active
2659 * write_error - sets WriteErrorSeen
2660 * -write_error - clears WriteErrorSeen
2662 int err = -EINVAL;
2663 if (cmd_match(buf, "faulty") && rdev->mddev->pers) {
2664 md_error(rdev->mddev, rdev);
2665 if (test_bit(Faulty, &rdev->flags))
2666 err = 0;
2667 else
2668 err = -EBUSY;
2669 } else if (cmd_match(buf, "remove")) {
2670 if (rdev->raid_disk >= 0)
2671 err = -EBUSY;
2672 else {
2673 struct mddev *mddev = rdev->mddev;
2674 kick_rdev_from_array(rdev);
2675 if (mddev->pers)
2676 md_update_sb(mddev, 1);
2677 md_new_event(mddev);
2678 err = 0;
2680 } else if (cmd_match(buf, "writemostly")) {
2681 set_bit(WriteMostly, &rdev->flags);
2682 err = 0;
2683 } else if (cmd_match(buf, "-writemostly")) {
2684 clear_bit(WriteMostly, &rdev->flags);
2685 err = 0;
2686 } else if (cmd_match(buf, "blocked")) {
2687 set_bit(Blocked, &rdev->flags);
2688 err = 0;
2689 } else if (cmd_match(buf, "-blocked")) {
2690 if (!test_bit(Faulty, &rdev->flags) &&
2691 rdev->badblocks.unacked_exist) {
2692 /* metadata handler doesn't understand badblocks,
2693 * so we need to fail the device
2695 md_error(rdev->mddev, rdev);
2697 clear_bit(Blocked, &rdev->flags);
2698 clear_bit(BlockedBadBlocks, &rdev->flags);
2699 wake_up(&rdev->blocked_wait);
2700 set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery);
2701 md_wakeup_thread(rdev->mddev->thread);
2703 err = 0;
2704 } else if (cmd_match(buf, "insync") && rdev->raid_disk == -1) {
2705 set_bit(In_sync, &rdev->flags);
2706 err = 0;
2707 } else if (cmd_match(buf, "write_error")) {
2708 set_bit(WriteErrorSeen, &rdev->flags);
2709 err = 0;
2710 } else if (cmd_match(buf, "-write_error")) {
2711 clear_bit(WriteErrorSeen, &rdev->flags);
2712 err = 0;
2713 } else if (cmd_match(buf, "want_replacement")) {
2714 /* Any non-spare device that is not a replacement can
2715 * become want_replacement at any time, but we then need to
2716 * check if recovery is needed.
2718 if (rdev->raid_disk >= 0 &&
2719 !test_bit(Replacement, &rdev->flags))
2720 set_bit(WantReplacement, &rdev->flags);
2721 set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery);
2722 md_wakeup_thread(rdev->mddev->thread);
2723 err = 0;
2724 } else if (cmd_match(buf, "-want_replacement")) {
2725 /* Clearing 'want_replacement' is always allowed.
2726 * Once replacements starts it is too late though.
2728 err = 0;
2729 clear_bit(WantReplacement, &rdev->flags);
2730 } else if (cmd_match(buf, "replacement")) {
2731 /* Can only set a device as a replacement when array has not
2732 * yet been started. Once running, replacement is automatic
2733 * from spares, or by assigning 'slot'.
2735 if (rdev->mddev->pers)
2736 err = -EBUSY;
2737 else {
2738 set_bit(Replacement, &rdev->flags);
2739 err = 0;
2741 } else if (cmd_match(buf, "-replacement")) {
2742 /* Similarly, can only clear Replacement before start */
2743 if (rdev->mddev->pers)
2744 err = -EBUSY;
2745 else {
2746 clear_bit(Replacement, &rdev->flags);
2747 err = 0;
2750 if (!err)
2751 sysfs_notify_dirent_safe(rdev->sysfs_state);
2752 return err ? err : len;
2754 static struct rdev_sysfs_entry rdev_state =
2755 __ATTR(state, S_IRUGO|S_IWUSR, state_show, state_store);
2757 static ssize_t
2758 errors_show(struct md_rdev *rdev, char *page)
2760 return sprintf(page, "%d\n", atomic_read(&rdev->corrected_errors));
2763 static ssize_t
2764 errors_store(struct md_rdev *rdev, const char *buf, size_t len)
2766 char *e;
2767 unsigned long n = simple_strtoul(buf, &e, 10);
2768 if (*buf && (*e == 0 || *e == '\n')) {
2769 atomic_set(&rdev->corrected_errors, n);
2770 return len;
2772 return -EINVAL;
2774 static struct rdev_sysfs_entry rdev_errors =
2775 __ATTR(errors, S_IRUGO|S_IWUSR, errors_show, errors_store);
2777 static ssize_t
2778 slot_show(struct md_rdev *rdev, char *page)
2780 if (rdev->raid_disk < 0)
2781 return sprintf(page, "none\n");
2782 else
2783 return sprintf(page, "%d\n", rdev->raid_disk);
2786 static ssize_t
2787 slot_store(struct md_rdev *rdev, const char *buf, size_t len)
2789 char *e;
2790 int err;
2791 int slot = simple_strtoul(buf, &e, 10);
2792 if (strncmp(buf, "none", 4)==0)
2793 slot = -1;
2794 else if (e==buf || (*e && *e!= '\n'))
2795 return -EINVAL;
2796 if (rdev->mddev->pers && slot == -1) {
2797 /* Setting 'slot' on an active array requires also
2798 * updating the 'rd%d' link, and communicating
2799 * with the personality with ->hot_*_disk.
2800 * For now we only support removing
2801 * failed/spare devices. This normally happens automatically,
2802 * but not when the metadata is externally managed.
2804 if (rdev->raid_disk == -1)
2805 return -EEXIST;
2806 /* personality does all needed checks */
2807 if (rdev->mddev->pers->hot_remove_disk == NULL)
2808 return -EINVAL;
2809 clear_bit(Blocked, &rdev->flags);
2810 remove_and_add_spares(rdev->mddev, rdev);
2811 if (rdev->raid_disk >= 0)
2812 return -EBUSY;
2813 set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery);
2814 md_wakeup_thread(rdev->mddev->thread);
2815 } else if (rdev->mddev->pers) {
2816 /* Activating a spare .. or possibly reactivating
2817 * if we ever get bitmaps working here.
2820 if (rdev->raid_disk != -1)
2821 return -EBUSY;
2823 if (test_bit(MD_RECOVERY_RUNNING, &rdev->mddev->recovery))
2824 return -EBUSY;
2826 if (rdev->mddev->pers->hot_add_disk == NULL)
2827 return -EINVAL;
2829 if (slot >= rdev->mddev->raid_disks &&
2830 slot >= rdev->mddev->raid_disks + rdev->mddev->delta_disks)
2831 return -ENOSPC;
2833 rdev->raid_disk = slot;
2834 if (test_bit(In_sync, &rdev->flags))
2835 rdev->saved_raid_disk = slot;
2836 else
2837 rdev->saved_raid_disk = -1;
2838 clear_bit(In_sync, &rdev->flags);
2839 clear_bit(Bitmap_sync, &rdev->flags);
2840 err = rdev->mddev->pers->
2841 hot_add_disk(rdev->mddev, rdev);
2842 if (err) {
2843 rdev->raid_disk = -1;
2844 return err;
2845 } else
2846 sysfs_notify_dirent_safe(rdev->sysfs_state);
2847 if (sysfs_link_rdev(rdev->mddev, rdev))
2848 /* failure here is OK */;
2849 /* don't wakeup anyone, leave that to userspace. */
2850 } else {
2851 if (slot >= rdev->mddev->raid_disks &&
2852 slot >= rdev->mddev->raid_disks + rdev->mddev->delta_disks)
2853 return -ENOSPC;
2854 rdev->raid_disk = slot;
2855 /* assume it is working */
2856 clear_bit(Faulty, &rdev->flags);
2857 clear_bit(WriteMostly, &rdev->flags);
2858 set_bit(In_sync, &rdev->flags);
2859 sysfs_notify_dirent_safe(rdev->sysfs_state);
2861 return len;
2865 static struct rdev_sysfs_entry rdev_slot =
2866 __ATTR(slot, S_IRUGO|S_IWUSR, slot_show, slot_store);
2868 static ssize_t
2869 offset_show(struct md_rdev *rdev, char *page)
2871 return sprintf(page, "%llu\n", (unsigned long long)rdev->data_offset);
2874 static ssize_t
2875 offset_store(struct md_rdev *rdev, const char *buf, size_t len)
2877 unsigned long long offset;
2878 if (kstrtoull(buf, 10, &offset) < 0)
2879 return -EINVAL;
2880 if (rdev->mddev->pers && rdev->raid_disk >= 0)
2881 return -EBUSY;
2882 if (rdev->sectors && rdev->mddev->external)
2883 /* Must set offset before size, so overlap checks
2884 * can be sane */
2885 return -EBUSY;
2886 rdev->data_offset = offset;
2887 rdev->new_data_offset = offset;
2888 return len;
2891 static struct rdev_sysfs_entry rdev_offset =
2892 __ATTR(offset, S_IRUGO|S_IWUSR, offset_show, offset_store);
2894 static ssize_t new_offset_show(struct md_rdev *rdev, char *page)
2896 return sprintf(page, "%llu\n",
2897 (unsigned long long)rdev->new_data_offset);
2900 static ssize_t new_offset_store(struct md_rdev *rdev,
2901 const char *buf, size_t len)
2903 unsigned long long new_offset;
2904 struct mddev *mddev = rdev->mddev;
2906 if (kstrtoull(buf, 10, &new_offset) < 0)
2907 return -EINVAL;
2909 if (mddev->sync_thread)
2910 return -EBUSY;
2911 if (new_offset == rdev->data_offset)
2912 /* reset is always permitted */
2914 else if (new_offset > rdev->data_offset) {
2915 /* must not push array size beyond rdev_sectors */
2916 if (new_offset - rdev->data_offset
2917 + mddev->dev_sectors > rdev->sectors)
2918 return -E2BIG;
2920 /* Metadata worries about other space details. */
2922 /* decreasing the offset is inconsistent with a backwards
2923 * reshape.
2925 if (new_offset < rdev->data_offset &&
2926 mddev->reshape_backwards)
2927 return -EINVAL;
2928 /* Increasing offset is inconsistent with forwards
2929 * reshape. reshape_direction should be set to
2930 * 'backwards' first.
2932 if (new_offset > rdev->data_offset &&
2933 !mddev->reshape_backwards)
2934 return -EINVAL;
2936 if (mddev->pers && mddev->persistent &&
2937 !super_types[mddev->major_version]
2938 .allow_new_offset(rdev, new_offset))
2939 return -E2BIG;
2940 rdev->new_data_offset = new_offset;
2941 if (new_offset > rdev->data_offset)
2942 mddev->reshape_backwards = 1;
2943 else if (new_offset < rdev->data_offset)
2944 mddev->reshape_backwards = 0;
2946 return len;
2948 static struct rdev_sysfs_entry rdev_new_offset =
2949 __ATTR(new_offset, S_IRUGO|S_IWUSR, new_offset_show, new_offset_store);
2951 static ssize_t
2952 rdev_size_show(struct md_rdev *rdev, char *page)
2954 return sprintf(page, "%llu\n", (unsigned long long)rdev->sectors / 2);
2957 static int overlaps(sector_t s1, sector_t l1, sector_t s2, sector_t l2)
2959 /* check if two start/length pairs overlap */
2960 if (s1+l1 <= s2)
2961 return 0;
2962 if (s2+l2 <= s1)
2963 return 0;
2964 return 1;
2967 static int strict_blocks_to_sectors(const char *buf, sector_t *sectors)
2969 unsigned long long blocks;
2970 sector_t new;
2972 if (kstrtoull(buf, 10, &blocks) < 0)
2973 return -EINVAL;
2975 if (blocks & 1ULL << (8 * sizeof(blocks) - 1))
2976 return -EINVAL; /* sector conversion overflow */
2978 new = blocks * 2;
2979 if (new != blocks * 2)
2980 return -EINVAL; /* unsigned long long to sector_t overflow */
2982 *sectors = new;
2983 return 0;
2986 static ssize_t
2987 rdev_size_store(struct md_rdev *rdev, const char *buf, size_t len)
2989 struct mddev *my_mddev = rdev->mddev;
2990 sector_t oldsectors = rdev->sectors;
2991 sector_t sectors;
2993 if (strict_blocks_to_sectors(buf, &sectors) < 0)
2994 return -EINVAL;
2995 if (rdev->data_offset != rdev->new_data_offset)
2996 return -EINVAL; /* too confusing */
2997 if (my_mddev->pers && rdev->raid_disk >= 0) {
2998 if (my_mddev->persistent) {
2999 sectors = super_types[my_mddev->major_version].
3000 rdev_size_change(rdev, sectors);
3001 if (!sectors)
3002 return -EBUSY;
3003 } else if (!sectors)
3004 sectors = (i_size_read(rdev->bdev->bd_inode) >> 9) -
3005 rdev->data_offset;
3006 if (!my_mddev->pers->resize)
3007 /* Cannot change size for RAID0 or Linear etc */
3008 return -EINVAL;
3010 if (sectors < my_mddev->dev_sectors)
3011 return -EINVAL; /* component must fit device */
3013 rdev->sectors = sectors;
3014 if (sectors > oldsectors && my_mddev->external) {
3015 /* need to check that all other rdevs with the same ->bdev
3016 * do not overlap. We need to unlock the mddev to avoid
3017 * a deadlock. We have already changed rdev->sectors, and if
3018 * we have to change it back, we will have the lock again.
3020 struct mddev *mddev;
3021 int overlap = 0;
3022 struct list_head *tmp;
3024 mddev_unlock(my_mddev);
3025 for_each_mddev(mddev, tmp) {
3026 struct md_rdev *rdev2;
3028 mddev_lock(mddev);
3029 rdev_for_each(rdev2, mddev)
3030 if (rdev->bdev == rdev2->bdev &&
3031 rdev != rdev2 &&
3032 overlaps(rdev->data_offset, rdev->sectors,
3033 rdev2->data_offset,
3034 rdev2->sectors)) {
3035 overlap = 1;
3036 break;
3038 mddev_unlock(mddev);
3039 if (overlap) {
3040 mddev_put(mddev);
3041 break;
3044 mddev_lock(my_mddev);
3045 if (overlap) {
3046 /* Someone else could have slipped in a size
3047 * change here, but doing so is just silly.
3048 * We put oldsectors back because we *know* it is
3049 * safe, and trust userspace not to race with
3050 * itself
3052 rdev->sectors = oldsectors;
3053 return -EBUSY;
3056 return len;
3059 static struct rdev_sysfs_entry rdev_size =
3060 __ATTR(size, S_IRUGO|S_IWUSR, rdev_size_show, rdev_size_store);
3063 static ssize_t recovery_start_show(struct md_rdev *rdev, char *page)
3065 unsigned long long recovery_start = rdev->recovery_offset;
3067 if (test_bit(In_sync, &rdev->flags) ||
3068 recovery_start == MaxSector)
3069 return sprintf(page, "none\n");
3071 return sprintf(page, "%llu\n", recovery_start);
3074 static ssize_t recovery_start_store(struct md_rdev *rdev, const char *buf, size_t len)
3076 unsigned long long recovery_start;
3078 if (cmd_match(buf, "none"))
3079 recovery_start = MaxSector;
3080 else if (kstrtoull(buf, 10, &recovery_start))
3081 return -EINVAL;
3083 if (rdev->mddev->pers &&
3084 rdev->raid_disk >= 0)
3085 return -EBUSY;
3087 rdev->recovery_offset = recovery_start;
3088 if (recovery_start == MaxSector)
3089 set_bit(In_sync, &rdev->flags);
3090 else
3091 clear_bit(In_sync, &rdev->flags);
3092 return len;
3095 static struct rdev_sysfs_entry rdev_recovery_start =
3096 __ATTR(recovery_start, S_IRUGO|S_IWUSR, recovery_start_show, recovery_start_store);
3099 static ssize_t
3100 badblocks_show(struct badblocks *bb, char *page, int unack);
3101 static ssize_t
3102 badblocks_store(struct badblocks *bb, const char *page, size_t len, int unack);
3104 static ssize_t bb_show(struct md_rdev *rdev, char *page)
3106 return badblocks_show(&rdev->badblocks, page, 0);
3108 static ssize_t bb_store(struct md_rdev *rdev, const char *page, size_t len)
3110 int rv = badblocks_store(&rdev->badblocks, page, len, 0);
3111 /* Maybe that ack was all we needed */
3112 if (test_and_clear_bit(BlockedBadBlocks, &rdev->flags))
3113 wake_up(&rdev->blocked_wait);
3114 return rv;
3116 static struct rdev_sysfs_entry rdev_bad_blocks =
3117 __ATTR(bad_blocks, S_IRUGO|S_IWUSR, bb_show, bb_store);
3120 static ssize_t ubb_show(struct md_rdev *rdev, char *page)
3122 return badblocks_show(&rdev->badblocks, page, 1);
3124 static ssize_t ubb_store(struct md_rdev *rdev, const char *page, size_t len)
3126 return badblocks_store(&rdev->badblocks, page, len, 1);
3128 static struct rdev_sysfs_entry rdev_unack_bad_blocks =
3129 __ATTR(unacknowledged_bad_blocks, S_IRUGO|S_IWUSR, ubb_show, ubb_store);
3131 static struct attribute *rdev_default_attrs[] = {
3132 &rdev_state.attr,
3133 &rdev_errors.attr,
3134 &rdev_slot.attr,
3135 &rdev_offset.attr,
3136 &rdev_new_offset.attr,
3137 &rdev_size.attr,
3138 &rdev_recovery_start.attr,
3139 &rdev_bad_blocks.attr,
3140 &rdev_unack_bad_blocks.attr,
3141 NULL,
3143 static ssize_t
3144 rdev_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
3146 struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr);
3147 struct md_rdev *rdev = container_of(kobj, struct md_rdev, kobj);
3148 struct mddev *mddev = rdev->mddev;
3149 ssize_t rv;
3151 if (!entry->show)
3152 return -EIO;
3154 rv = mddev ? mddev_lock(mddev) : -EBUSY;
3155 if (!rv) {
3156 if (rdev->mddev == NULL)
3157 rv = -EBUSY;
3158 else
3159 rv = entry->show(rdev, page);
3160 mddev_unlock(mddev);
3162 return rv;
3165 static ssize_t
3166 rdev_attr_store(struct kobject *kobj, struct attribute *attr,
3167 const char *page, size_t length)
3169 struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr);
3170 struct md_rdev *rdev = container_of(kobj, struct md_rdev, kobj);
3171 ssize_t rv;
3172 struct mddev *mddev = rdev->mddev;
3174 if (!entry->store)
3175 return -EIO;
3176 if (!capable(CAP_SYS_ADMIN))
3177 return -EACCES;
3178 rv = mddev ? mddev_lock(mddev): -EBUSY;
3179 if (!rv) {
3180 if (rdev->mddev == NULL)
3181 rv = -EBUSY;
3182 else
3183 rv = entry->store(rdev, page, length);
3184 mddev_unlock(mddev);
3186 return rv;
3189 static void rdev_free(struct kobject *ko)
3191 struct md_rdev *rdev = container_of(ko, struct md_rdev, kobj);
3192 kfree(rdev);
3194 static const struct sysfs_ops rdev_sysfs_ops = {
3195 .show = rdev_attr_show,
3196 .store = rdev_attr_store,
3198 static struct kobj_type rdev_ktype = {
3199 .release = rdev_free,
3200 .sysfs_ops = &rdev_sysfs_ops,
3201 .default_attrs = rdev_default_attrs,
3204 int md_rdev_init(struct md_rdev *rdev)
3206 rdev->desc_nr = -1;
3207 rdev->saved_raid_disk = -1;
3208 rdev->raid_disk = -1;
3209 rdev->flags = 0;
3210 rdev->data_offset = 0;
3211 rdev->new_data_offset = 0;
3212 rdev->sb_events = 0;
3213 rdev->last_read_error.tv_sec = 0;
3214 rdev->last_read_error.tv_nsec = 0;
3215 rdev->sb_loaded = 0;
3216 rdev->bb_page = NULL;
3217 atomic_set(&rdev->nr_pending, 0);
3218 atomic_set(&rdev->read_errors, 0);
3219 atomic_set(&rdev->corrected_errors, 0);
3221 INIT_LIST_HEAD(&rdev->same_set);
3222 init_waitqueue_head(&rdev->blocked_wait);
3224 /* Add space to store bad block list.
3225 * This reserves the space even on arrays where it cannot
3226 * be used - I wonder if that matters
3228 rdev->badblocks.count = 0;
3229 rdev->badblocks.shift = -1; /* disabled until explicitly enabled */
3230 rdev->badblocks.page = kmalloc(PAGE_SIZE, GFP_KERNEL);
3231 seqlock_init(&rdev->badblocks.lock);
3232 if (rdev->badblocks.page == NULL)
3233 return -ENOMEM;
3235 return 0;
3237 EXPORT_SYMBOL_GPL(md_rdev_init);
3239 * Import a device. If 'super_format' >= 0, then sanity check the superblock
3241 * mark the device faulty if:
3243 * - the device is nonexistent (zero size)
3244 * - the device has no valid superblock
3246 * a faulty rdev _never_ has rdev->sb set.
3248 static struct md_rdev *md_import_device(dev_t newdev, int super_format, int super_minor)
3250 char b[BDEVNAME_SIZE];
3251 int err;
3252 struct md_rdev *rdev;
3253 sector_t size;
3255 rdev = kzalloc(sizeof(*rdev), GFP_KERNEL);
3256 if (!rdev) {
3257 printk(KERN_ERR "md: could not alloc mem for new device!\n");
3258 return ERR_PTR(-ENOMEM);
3261 err = md_rdev_init(rdev);
3262 if (err)
3263 goto abort_free;
3264 err = alloc_disk_sb(rdev);
3265 if (err)
3266 goto abort_free;
3268 err = lock_rdev(rdev, newdev, super_format == -2);
3269 if (err)
3270 goto abort_free;
3272 kobject_init(&rdev->kobj, &rdev_ktype);
3274 size = i_size_read(rdev->bdev->bd_inode) >> BLOCK_SIZE_BITS;
3275 if (!size) {
3276 printk(KERN_WARNING
3277 "md: %s has zero or unknown size, marking faulty!\n",
3278 bdevname(rdev->bdev,b));
3279 err = -EINVAL;
3280 goto abort_free;
3283 if (super_format >= 0) {
3284 err = super_types[super_format].
3285 load_super(rdev, NULL, super_minor);
3286 if (err == -EINVAL) {
3287 printk(KERN_WARNING
3288 "md: %s does not have a valid v%d.%d "
3289 "superblock, not importing!\n",
3290 bdevname(rdev->bdev,b),
3291 super_format, super_minor);
3292 goto abort_free;
3294 if (err < 0) {
3295 printk(KERN_WARNING
3296 "md: could not read %s's sb, not importing!\n",
3297 bdevname(rdev->bdev,b));
3298 goto abort_free;
3302 return rdev;
3304 abort_free:
3305 if (rdev->bdev)
3306 unlock_rdev(rdev);
3307 md_rdev_clear(rdev);
3308 kfree(rdev);
3309 return ERR_PTR(err);
3313 * Check a full RAID array for plausibility
3317 static void analyze_sbs(struct mddev * mddev)
3319 int i;
3320 struct md_rdev *rdev, *freshest, *tmp;
3321 char b[BDEVNAME_SIZE];
3323 freshest = NULL;
3324 rdev_for_each_safe(rdev, tmp, mddev)
3325 switch (super_types[mddev->major_version].
3326 load_super(rdev, freshest, mddev->minor_version)) {
3327 case 1:
3328 freshest = rdev;
3329 break;
3330 case 0:
3331 break;
3332 default:
3333 printk( KERN_ERR \
3334 "md: fatal superblock inconsistency in %s"
3335 " -- removing from array\n",
3336 bdevname(rdev->bdev,b));
3337 kick_rdev_from_array(rdev);
3341 super_types[mddev->major_version].
3342 validate_super(mddev, freshest);
3344 i = 0;
3345 rdev_for_each_safe(rdev, tmp, mddev) {
3346 if (mddev->max_disks &&
3347 (rdev->desc_nr >= mddev->max_disks ||
3348 i > mddev->max_disks)) {
3349 printk(KERN_WARNING
3350 "md: %s: %s: only %d devices permitted\n",
3351 mdname(mddev), bdevname(rdev->bdev, b),
3352 mddev->max_disks);
3353 kick_rdev_from_array(rdev);
3354 continue;
3356 if (rdev != freshest)
3357 if (super_types[mddev->major_version].
3358 validate_super(mddev, rdev)) {
3359 printk(KERN_WARNING "md: kicking non-fresh %s"
3360 " from array!\n",
3361 bdevname(rdev->bdev,b));
3362 kick_rdev_from_array(rdev);
3363 continue;
3365 if (mddev->level == LEVEL_MULTIPATH) {
3366 rdev->desc_nr = i++;
3367 rdev->raid_disk = rdev->desc_nr;
3368 set_bit(In_sync, &rdev->flags);
3369 } else if (rdev->raid_disk >= (mddev->raid_disks - min(0, mddev->delta_disks))) {
3370 rdev->raid_disk = -1;
3371 clear_bit(In_sync, &rdev->flags);
3376 /* Read a fixed-point number.
3377 * Numbers in sysfs attributes should be in "standard" units where
3378 * possible, so time should be in seconds.
3379 * However we internally use a a much smaller unit such as
3380 * milliseconds or jiffies.
3381 * This function takes a decimal number with a possible fractional
3382 * component, and produces an integer which is the result of
3383 * multiplying that number by 10^'scale'.
3384 * all without any floating-point arithmetic.
3386 int strict_strtoul_scaled(const char *cp, unsigned long *res, int scale)
3388 unsigned long result = 0;
3389 long decimals = -1;
3390 while (isdigit(*cp) || (*cp == '.' && decimals < 0)) {
3391 if (*cp == '.')
3392 decimals = 0;
3393 else if (decimals < scale) {
3394 unsigned int value;
3395 value = *cp - '0';
3396 result = result * 10 + value;
3397 if (decimals >= 0)
3398 decimals++;
3400 cp++;
3402 if (*cp == '\n')
3403 cp++;
3404 if (*cp)
3405 return -EINVAL;
3406 if (decimals < 0)
3407 decimals = 0;
3408 while (decimals < scale) {
3409 result *= 10;
3410 decimals ++;
3412 *res = result;
3413 return 0;
3417 static void md_safemode_timeout(unsigned long data);
3419 static ssize_t
3420 safe_delay_show(struct mddev *mddev, char *page)
3422 int msec = (mddev->safemode_delay*1000)/HZ;
3423 return sprintf(page, "%d.%03d\n", msec/1000, msec%1000);
3425 static ssize_t
3426 safe_delay_store(struct mddev *mddev, const char *cbuf, size_t len)
3428 unsigned long msec;
3430 if (strict_strtoul_scaled(cbuf, &msec, 3) < 0)
3431 return -EINVAL;
3432 if (msec == 0)
3433 mddev->safemode_delay = 0;
3434 else {
3435 unsigned long old_delay = mddev->safemode_delay;
3436 mddev->safemode_delay = (msec*HZ)/1000;
3437 if (mddev->safemode_delay == 0)
3438 mddev->safemode_delay = 1;
3439 if (mddev->safemode_delay < old_delay || old_delay == 0)
3440 md_safemode_timeout((unsigned long)mddev);
3442 return len;
3444 static struct md_sysfs_entry md_safe_delay =
3445 __ATTR(safe_mode_delay, S_IRUGO|S_IWUSR,safe_delay_show, safe_delay_store);
3447 static ssize_t
3448 level_show(struct mddev *mddev, char *page)
3450 struct md_personality *p = mddev->pers;
3451 if (p)
3452 return sprintf(page, "%s\n", p->name);
3453 else if (mddev->clevel[0])
3454 return sprintf(page, "%s\n", mddev->clevel);
3455 else if (mddev->level != LEVEL_NONE)
3456 return sprintf(page, "%d\n", mddev->level);
3457 else
3458 return 0;
3461 static ssize_t
3462 level_store(struct mddev *mddev, const char *buf, size_t len)
3464 char clevel[16];
3465 ssize_t rv = len;
3466 struct md_personality *pers;
3467 long level;
3468 void *priv;
3469 struct md_rdev *rdev;
3471 if (mddev->pers == NULL) {
3472 if (len == 0)
3473 return 0;
3474 if (len >= sizeof(mddev->clevel))
3475 return -ENOSPC;
3476 strncpy(mddev->clevel, buf, len);
3477 if (mddev->clevel[len-1] == '\n')
3478 len--;
3479 mddev->clevel[len] = 0;
3480 mddev->level = LEVEL_NONE;
3481 return rv;
3484 /* request to change the personality. Need to ensure:
3485 * - array is not engaged in resync/recovery/reshape
3486 * - old personality can be suspended
3487 * - new personality will access other array.
3490 if (mddev->sync_thread ||
3491 mddev->reshape_position != MaxSector ||
3492 mddev->sysfs_active)
3493 return -EBUSY;
3495 if (!mddev->pers->quiesce) {
3496 printk(KERN_WARNING "md: %s: %s does not support online personality change\n",
3497 mdname(mddev), mddev->pers->name);
3498 return -EINVAL;
3501 /* Now find the new personality */
3502 if (len == 0 || len >= sizeof(clevel))
3503 return -EINVAL;
3504 strncpy(clevel, buf, len);
3505 if (clevel[len-1] == '\n')
3506 len--;
3507 clevel[len] = 0;
3508 if (kstrtol(clevel, 10, &level))
3509 level = LEVEL_NONE;
3511 if (request_module("md-%s", clevel) != 0)
3512 request_module("md-level-%s", clevel);
3513 spin_lock(&pers_lock);
3514 pers = find_pers(level, clevel);
3515 if (!pers || !try_module_get(pers->owner)) {
3516 spin_unlock(&pers_lock);
3517 printk(KERN_WARNING "md: personality %s not loaded\n", clevel);
3518 return -EINVAL;
3520 spin_unlock(&pers_lock);
3522 if (pers == mddev->pers) {
3523 /* Nothing to do! */
3524 module_put(pers->owner);
3525 return rv;
3527 if (!pers->takeover) {
3528 module_put(pers->owner);
3529 printk(KERN_WARNING "md: %s: %s does not support personality takeover\n",
3530 mdname(mddev), clevel);
3531 return -EINVAL;
3534 rdev_for_each(rdev, mddev)
3535 rdev->new_raid_disk = rdev->raid_disk;
3537 /* ->takeover must set new_* and/or delta_disks
3538 * if it succeeds, and may set them when it fails.
3540 priv = pers->takeover(mddev);
3541 if (IS_ERR(priv)) {
3542 mddev->new_level = mddev->level;
3543 mddev->new_layout = mddev->layout;
3544 mddev->new_chunk_sectors = mddev->chunk_sectors;
3545 mddev->raid_disks -= mddev->delta_disks;
3546 mddev->delta_disks = 0;
3547 mddev->reshape_backwards = 0;
3548 module_put(pers->owner);
3549 printk(KERN_WARNING "md: %s: %s would not accept array\n",
3550 mdname(mddev), clevel);
3551 return PTR_ERR(priv);
3554 /* Looks like we have a winner */
3555 mddev_suspend(mddev);
3556 mddev->pers->stop(mddev);
3558 if (mddev->pers->sync_request == NULL &&
3559 pers->sync_request != NULL) {
3560 /* need to add the md_redundancy_group */
3561 if (sysfs_create_group(&mddev->kobj, &md_redundancy_group))
3562 printk(KERN_WARNING
3563 "md: cannot register extra attributes for %s\n",
3564 mdname(mddev));
3565 mddev->sysfs_action = sysfs_get_dirent(mddev->kobj.sd, NULL, "sync_action");
3567 if (mddev->pers->sync_request != NULL &&
3568 pers->sync_request == NULL) {
3569 /* need to remove the md_redundancy_group */
3570 if (mddev->to_remove == NULL)
3571 mddev->to_remove = &md_redundancy_group;
3574 if (mddev->pers->sync_request == NULL &&
3575 mddev->external) {
3576 /* We are converting from a no-redundancy array
3577 * to a redundancy array and metadata is managed
3578 * externally so we need to be sure that writes
3579 * won't block due to a need to transition
3580 * clean->dirty
3581 * until external management is started.
3583 mddev->in_sync = 0;
3584 mddev->safemode_delay = 0;
3585 mddev->safemode = 0;
3588 rdev_for_each(rdev, mddev) {
3589 if (rdev->raid_disk < 0)
3590 continue;
3591 if (rdev->new_raid_disk >= mddev->raid_disks)
3592 rdev->new_raid_disk = -1;
3593 if (rdev->new_raid_disk == rdev->raid_disk)
3594 continue;
3595 sysfs_unlink_rdev(mddev, rdev);
3597 rdev_for_each(rdev, mddev) {
3598 if (rdev->raid_disk < 0)
3599 continue;
3600 if (rdev->new_raid_disk == rdev->raid_disk)
3601 continue;
3602 rdev->raid_disk = rdev->new_raid_disk;
3603 if (rdev->raid_disk < 0)
3604 clear_bit(In_sync, &rdev->flags);
3605 else {
3606 if (sysfs_link_rdev(mddev, rdev))
3607 printk(KERN_WARNING "md: cannot register rd%d"
3608 " for %s after level change\n",
3609 rdev->raid_disk, mdname(mddev));
3613 module_put(mddev->pers->owner);
3614 mddev->pers = pers;
3615 mddev->private = priv;
3616 strlcpy(mddev->clevel, pers->name, sizeof(mddev->clevel));
3617 mddev->level = mddev->new_level;
3618 mddev->layout = mddev->new_layout;
3619 mddev->chunk_sectors = mddev->new_chunk_sectors;
3620 mddev->delta_disks = 0;
3621 mddev->reshape_backwards = 0;
3622 mddev->degraded = 0;
3623 if (mddev->pers->sync_request == NULL) {
3624 /* this is now an array without redundancy, so
3625 * it must always be in_sync
3627 mddev->in_sync = 1;
3628 del_timer_sync(&mddev->safemode_timer);
3630 blk_set_stacking_limits(&mddev->queue->limits);
3631 pers->run(mddev);
3632 set_bit(MD_CHANGE_DEVS, &mddev->flags);
3633 mddev_resume(mddev);
3634 sysfs_notify(&mddev->kobj, NULL, "level");
3635 md_new_event(mddev);
3636 return rv;
3639 static struct md_sysfs_entry md_level =
3640 __ATTR(level, S_IRUGO|S_IWUSR, level_show, level_store);
3643 static ssize_t
3644 layout_show(struct mddev *mddev, char *page)
3646 /* just a number, not meaningful for all levels */
3647 if (mddev->reshape_position != MaxSector &&
3648 mddev->layout != mddev->new_layout)
3649 return sprintf(page, "%d (%d)\n",
3650 mddev->new_layout, mddev->layout);
3651 return sprintf(page, "%d\n", mddev->layout);
3654 static ssize_t
3655 layout_store(struct mddev *mddev, const char *buf, size_t len)
3657 char *e;
3658 unsigned long n = simple_strtoul(buf, &e, 10);
3660 if (!*buf || (*e && *e != '\n'))
3661 return -EINVAL;
3663 if (mddev->pers) {
3664 int err;
3665 if (mddev->pers->check_reshape == NULL)
3666 return -EBUSY;
3667 mddev->new_layout = n;
3668 err = mddev->pers->check_reshape(mddev);
3669 if (err) {
3670 mddev->new_layout = mddev->layout;
3671 return err;
3673 } else {
3674 mddev->new_layout = n;
3675 if (mddev->reshape_position == MaxSector)
3676 mddev->layout = n;
3678 return len;
3680 static struct md_sysfs_entry md_layout =
3681 __ATTR(layout, S_IRUGO|S_IWUSR, layout_show, layout_store);
3684 static ssize_t
3685 raid_disks_show(struct mddev *mddev, char *page)
3687 if (mddev->raid_disks == 0)
3688 return 0;
3689 if (mddev->reshape_position != MaxSector &&
3690 mddev->delta_disks != 0)
3691 return sprintf(page, "%d (%d)\n", mddev->raid_disks,
3692 mddev->raid_disks - mddev->delta_disks);
3693 return sprintf(page, "%d\n", mddev->raid_disks);
3696 static int update_raid_disks(struct mddev *mddev, int raid_disks);
3698 static ssize_t
3699 raid_disks_store(struct mddev *mddev, const char *buf, size_t len)
3701 char *e;
3702 int rv = 0;
3703 unsigned long n = simple_strtoul(buf, &e, 10);
3705 if (!*buf || (*e && *e != '\n'))
3706 return -EINVAL;
3708 if (mddev->pers)
3709 rv = update_raid_disks(mddev, n);
3710 else if (mddev->reshape_position != MaxSector) {
3711 struct md_rdev *rdev;
3712 int olddisks = mddev->raid_disks - mddev->delta_disks;
3714 rdev_for_each(rdev, mddev) {
3715 if (olddisks < n &&
3716 rdev->data_offset < rdev->new_data_offset)
3717 return -EINVAL;
3718 if (olddisks > n &&
3719 rdev->data_offset > rdev->new_data_offset)
3720 return -EINVAL;
3722 mddev->delta_disks = n - olddisks;
3723 mddev->raid_disks = n;
3724 mddev->reshape_backwards = (mddev->delta_disks < 0);
3725 } else
3726 mddev->raid_disks = n;
3727 return rv ? rv : len;
3729 static struct md_sysfs_entry md_raid_disks =
3730 __ATTR(raid_disks, S_IRUGO|S_IWUSR, raid_disks_show, raid_disks_store);
3732 static ssize_t
3733 chunk_size_show(struct mddev *mddev, char *page)
3735 if (mddev->reshape_position != MaxSector &&
3736 mddev->chunk_sectors != mddev->new_chunk_sectors)
3737 return sprintf(page, "%d (%d)\n",
3738 mddev->new_chunk_sectors << 9,
3739 mddev->chunk_sectors << 9);
3740 return sprintf(page, "%d\n", mddev->chunk_sectors << 9);
3743 static ssize_t
3744 chunk_size_store(struct mddev *mddev, const char *buf, size_t len)
3746 char *e;
3747 unsigned long n = simple_strtoul(buf, &e, 10);
3749 if (!*buf || (*e && *e != '\n'))
3750 return -EINVAL;
3752 if (mddev->pers) {
3753 int err;
3754 if (mddev->pers->check_reshape == NULL)
3755 return -EBUSY;
3756 mddev->new_chunk_sectors = n >> 9;
3757 err = mddev->pers->check_reshape(mddev);
3758 if (err) {
3759 mddev->new_chunk_sectors = mddev->chunk_sectors;
3760 return err;
3762 } else {
3763 mddev->new_chunk_sectors = n >> 9;
3764 if (mddev->reshape_position == MaxSector)
3765 mddev->chunk_sectors = n >> 9;
3767 return len;
3769 static struct md_sysfs_entry md_chunk_size =
3770 __ATTR(chunk_size, S_IRUGO|S_IWUSR, chunk_size_show, chunk_size_store);
3772 static ssize_t
3773 resync_start_show(struct mddev *mddev, char *page)
3775 if (mddev->recovery_cp == MaxSector)
3776 return sprintf(page, "none\n");
3777 return sprintf(page, "%llu\n", (unsigned long long)mddev->recovery_cp);
3780 static ssize_t
3781 resync_start_store(struct mddev *mddev, const char *buf, size_t len)
3783 char *e;
3784 unsigned long long n = simple_strtoull(buf, &e, 10);
3786 if (mddev->pers && !test_bit(MD_RECOVERY_FROZEN, &mddev->recovery))
3787 return -EBUSY;
3788 if (cmd_match(buf, "none"))
3789 n = MaxSector;
3790 else if (!*buf || (*e && *e != '\n'))
3791 return -EINVAL;
3793 mddev->recovery_cp = n;
3794 if (mddev->pers)
3795 set_bit(MD_CHANGE_CLEAN, &mddev->flags);
3796 return len;
3798 static struct md_sysfs_entry md_resync_start =
3799 __ATTR(resync_start, S_IRUGO|S_IWUSR, resync_start_show, resync_start_store);
3802 * The array state can be:
3804 * clear
3805 * No devices, no size, no level
3806 * Equivalent to STOP_ARRAY ioctl
3807 * inactive
3808 * May have some settings, but array is not active
3809 * all IO results in error
3810 * When written, doesn't tear down array, but just stops it
3811 * suspended (not supported yet)
3812 * All IO requests will block. The array can be reconfigured.
3813 * Writing this, if accepted, will block until array is quiescent
3814 * readonly
3815 * no resync can happen. no superblocks get written.
3816 * write requests fail
3817 * read-auto
3818 * like readonly, but behaves like 'clean' on a write request.
3820 * clean - no pending writes, but otherwise active.
3821 * When written to inactive array, starts without resync
3822 * If a write request arrives then
3823 * if metadata is known, mark 'dirty' and switch to 'active'.
3824 * if not known, block and switch to write-pending
3825 * If written to an active array that has pending writes, then fails.
3826 * active
3827 * fully active: IO and resync can be happening.
3828 * When written to inactive array, starts with resync
3830 * write-pending
3831 * clean, but writes are blocked waiting for 'active' to be written.
3833 * active-idle
3834 * like active, but no writes have been seen for a while (100msec).
3837 enum array_state { clear, inactive, suspended, readonly, read_auto, clean, active,
3838 write_pending, active_idle, bad_word};
3839 static char *array_states[] = {
3840 "clear", "inactive", "suspended", "readonly", "read-auto", "clean", "active",
3841 "write-pending", "active-idle", NULL };
3843 static int match_word(const char *word, char **list)
3845 int n;
3846 for (n=0; list[n]; n++)
3847 if (cmd_match(word, list[n]))
3848 break;
3849 return n;
3852 static ssize_t
3853 array_state_show(struct mddev *mddev, char *page)
3855 enum array_state st = inactive;
3857 if (mddev->pers)
3858 switch(mddev->ro) {
3859 case 1:
3860 st = readonly;
3861 break;
3862 case 2:
3863 st = read_auto;
3864 break;
3865 case 0:
3866 if (mddev->in_sync)
3867 st = clean;
3868 else if (test_bit(MD_CHANGE_PENDING, &mddev->flags))
3869 st = write_pending;
3870 else if (mddev->safemode)
3871 st = active_idle;
3872 else
3873 st = active;
3875 else {
3876 if (list_empty(&mddev->disks) &&
3877 mddev->raid_disks == 0 &&
3878 mddev->dev_sectors == 0)
3879 st = clear;
3880 else
3881 st = inactive;
3883 return sprintf(page, "%s\n", array_states[st]);
3886 static int do_md_stop(struct mddev * mddev, int ro, struct block_device *bdev);
3887 static int md_set_readonly(struct mddev * mddev, struct block_device *bdev);
3888 static int do_md_run(struct mddev * mddev);
3889 static int restart_array(struct mddev *mddev);
3891 static ssize_t
3892 array_state_store(struct mddev *mddev, const char *buf, size_t len)
3894 int err = -EINVAL;
3895 enum array_state st = match_word(buf, array_states);
3896 switch(st) {
3897 case bad_word:
3898 break;
3899 case clear:
3900 /* stopping an active array */
3901 err = do_md_stop(mddev, 0, NULL);
3902 break;
3903 case inactive:
3904 /* stopping an active array */
3905 if (mddev->pers)
3906 err = do_md_stop(mddev, 2, NULL);
3907 else
3908 err = 0; /* already inactive */
3909 break;
3910 case suspended:
3911 break; /* not supported yet */
3912 case readonly:
3913 if (mddev->pers)
3914 err = md_set_readonly(mddev, NULL);
3915 else {
3916 mddev->ro = 1;
3917 set_disk_ro(mddev->gendisk, 1);
3918 err = do_md_run(mddev);
3920 break;
3921 case read_auto:
3922 if (mddev->pers) {
3923 if (mddev->ro == 0)
3924 err = md_set_readonly(mddev, NULL);
3925 else if (mddev->ro == 1)
3926 err = restart_array(mddev);
3927 if (err == 0) {
3928 mddev->ro = 2;
3929 set_disk_ro(mddev->gendisk, 0);
3931 } else {
3932 mddev->ro = 2;
3933 err = do_md_run(mddev);
3935 break;
3936 case clean:
3937 if (mddev->pers) {
3938 restart_array(mddev);
3939 spin_lock_irq(&mddev->write_lock);
3940 if (atomic_read(&mddev->writes_pending) == 0) {
3941 if (mddev->in_sync == 0) {
3942 mddev->in_sync = 1;
3943 if (mddev->safemode == 1)
3944 mddev->safemode = 0;
3945 set_bit(MD_CHANGE_CLEAN, &mddev->flags);
3947 err = 0;
3948 } else
3949 err = -EBUSY;
3950 spin_unlock_irq(&mddev->write_lock);
3951 } else
3952 err = -EINVAL;
3953 break;
3954 case active:
3955 if (mddev->pers) {
3956 restart_array(mddev);
3957 clear_bit(MD_CHANGE_PENDING, &mddev->flags);
3958 wake_up(&mddev->sb_wait);
3959 err = 0;
3960 } else {
3961 mddev->ro = 0;
3962 set_disk_ro(mddev->gendisk, 0);
3963 err = do_md_run(mddev);
3965 break;
3966 case write_pending:
3967 case active_idle:
3968 /* these cannot be set */
3969 break;
3971 if (err)
3972 return err;
3973 else {
3974 if (mddev->hold_active == UNTIL_IOCTL)
3975 mddev->hold_active = 0;
3976 sysfs_notify_dirent_safe(mddev->sysfs_state);
3977 return len;
3980 static struct md_sysfs_entry md_array_state =
3981 __ATTR(array_state, S_IRUGO|S_IWUSR, array_state_show, array_state_store);
3983 static ssize_t
3984 max_corrected_read_errors_show(struct mddev *mddev, char *page) {
3985 return sprintf(page, "%d\n",
3986 atomic_read(&mddev->max_corr_read_errors));
3989 static ssize_t
3990 max_corrected_read_errors_store(struct mddev *mddev, const char *buf, size_t len)
3992 char *e;
3993 unsigned long n = simple_strtoul(buf, &e, 10);
3995 if (*buf && (*e == 0 || *e == '\n')) {
3996 atomic_set(&mddev->max_corr_read_errors, n);
3997 return len;
3999 return -EINVAL;
4002 static struct md_sysfs_entry max_corr_read_errors =
4003 __ATTR(max_read_errors, S_IRUGO|S_IWUSR, max_corrected_read_errors_show,
4004 max_corrected_read_errors_store);
4006 static ssize_t
4007 null_show(struct mddev *mddev, char *page)
4009 return -EINVAL;
4012 static ssize_t
4013 new_dev_store(struct mddev *mddev, const char *buf, size_t len)
4015 /* buf must be %d:%d\n? giving major and minor numbers */
4016 /* The new device is added to the array.
4017 * If the array has a persistent superblock, we read the
4018 * superblock to initialise info and check validity.
4019 * Otherwise, only checking done is that in bind_rdev_to_array,
4020 * which mainly checks size.
4022 char *e;
4023 int major = simple_strtoul(buf, &e, 10);
4024 int minor;
4025 dev_t dev;
4026 struct md_rdev *rdev;
4027 int err;
4029 if (!*buf || *e != ':' || !e[1] || e[1] == '\n')
4030 return -EINVAL;
4031 minor = simple_strtoul(e+1, &e, 10);
4032 if (*e && *e != '\n')
4033 return -EINVAL;
4034 dev = MKDEV(major, minor);
4035 if (major != MAJOR(dev) ||
4036 minor != MINOR(dev))
4037 return -EOVERFLOW;
4040 if (mddev->persistent) {
4041 rdev = md_import_device(dev, mddev->major_version,
4042 mddev->minor_version);
4043 if (!IS_ERR(rdev) && !list_empty(&mddev->disks)) {
4044 struct md_rdev *rdev0
4045 = list_entry(mddev->disks.next,
4046 struct md_rdev, same_set);
4047 err = super_types[mddev->major_version]
4048 .load_super(rdev, rdev0, mddev->minor_version);
4049 if (err < 0)
4050 goto out;
4052 } else if (mddev->external)
4053 rdev = md_import_device(dev, -2, -1);
4054 else
4055 rdev = md_import_device(dev, -1, -1);
4057 if (IS_ERR(rdev))
4058 return PTR_ERR(rdev);
4059 err = bind_rdev_to_array(rdev, mddev);
4060 out:
4061 if (err)
4062 export_rdev(rdev);
4063 return err ? err : len;
4066 static struct md_sysfs_entry md_new_device =
4067 __ATTR(new_dev, S_IWUSR, null_show, new_dev_store);
4069 static ssize_t
4070 bitmap_store(struct mddev *mddev, const char *buf, size_t len)
4072 char *end;
4073 unsigned long chunk, end_chunk;
4075 if (!mddev->bitmap)
4076 goto out;
4077 /* buf should be <chunk> <chunk> ... or <chunk>-<chunk> ... (range) */
4078 while (*buf) {
4079 chunk = end_chunk = simple_strtoul(buf, &end, 0);
4080 if (buf == end) break;
4081 if (*end == '-') { /* range */
4082 buf = end + 1;
4083 end_chunk = simple_strtoul(buf, &end, 0);
4084 if (buf == end) break;
4086 if (*end && !isspace(*end)) break;
4087 bitmap_dirty_bits(mddev->bitmap, chunk, end_chunk);
4088 buf = skip_spaces(end);
4090 bitmap_unplug(mddev->bitmap); /* flush the bits to disk */
4091 out:
4092 return len;
4095 static struct md_sysfs_entry md_bitmap =
4096 __ATTR(bitmap_set_bits, S_IWUSR, null_show, bitmap_store);
4098 static ssize_t
4099 size_show(struct mddev *mddev, char *page)
4101 return sprintf(page, "%llu\n",
4102 (unsigned long long)mddev->dev_sectors / 2);
4105 static int update_size(struct mddev *mddev, sector_t num_sectors);
4107 static ssize_t
4108 size_store(struct mddev *mddev, const char *buf, size_t len)
4110 /* If array is inactive, we can reduce the component size, but
4111 * not increase it (except from 0).
4112 * If array is active, we can try an on-line resize
4114 sector_t sectors;
4115 int err = strict_blocks_to_sectors(buf, &sectors);
4117 if (err < 0)
4118 return err;
4119 if (mddev->pers) {
4120 err = update_size(mddev, sectors);
4121 md_update_sb(mddev, 1);
4122 } else {
4123 if (mddev->dev_sectors == 0 ||
4124 mddev->dev_sectors > sectors)
4125 mddev->dev_sectors = sectors;
4126 else
4127 err = -ENOSPC;
4129 return err ? err : len;
4132 static struct md_sysfs_entry md_size =
4133 __ATTR(component_size, S_IRUGO|S_IWUSR, size_show, size_store);
4136 /* Metadata version.
4137 * This is one of
4138 * 'none' for arrays with no metadata (good luck...)
4139 * 'external' for arrays with externally managed metadata,
4140 * or N.M for internally known formats
4142 static ssize_t
4143 metadata_show(struct mddev *mddev, char *page)
4145 if (mddev->persistent)
4146 return sprintf(page, "%d.%d\n",
4147 mddev->major_version, mddev->minor_version);
4148 else if (mddev->external)
4149 return sprintf(page, "external:%s\n", mddev->metadata_type);
4150 else
4151 return sprintf(page, "none\n");
4154 static ssize_t
4155 metadata_store(struct mddev *mddev, const char *buf, size_t len)
4157 int major, minor;
4158 char *e;
4159 /* Changing the details of 'external' metadata is
4160 * always permitted. Otherwise there must be
4161 * no devices attached to the array.
4163 if (mddev->external && strncmp(buf, "external:", 9) == 0)
4165 else if (!list_empty(&mddev->disks))
4166 return -EBUSY;
4168 if (cmd_match(buf, "none")) {
4169 mddev->persistent = 0;
4170 mddev->external = 0;
4171 mddev->major_version = 0;
4172 mddev->minor_version = 90;
4173 return len;
4175 if (strncmp(buf, "external:", 9) == 0) {
4176 size_t namelen = len-9;
4177 if (namelen >= sizeof(mddev->metadata_type))
4178 namelen = sizeof(mddev->metadata_type)-1;
4179 strncpy(mddev->metadata_type, buf+9, namelen);
4180 mddev->metadata_type[namelen] = 0;
4181 if (namelen && mddev->metadata_type[namelen-1] == '\n')
4182 mddev->metadata_type[--namelen] = 0;
4183 mddev->persistent = 0;
4184 mddev->external = 1;
4185 mddev->major_version = 0;
4186 mddev->minor_version = 90;
4187 return len;
4189 major = simple_strtoul(buf, &e, 10);
4190 if (e==buf || *e != '.')
4191 return -EINVAL;
4192 buf = e+1;
4193 minor = simple_strtoul(buf, &e, 10);
4194 if (e==buf || (*e && *e != '\n') )
4195 return -EINVAL;
4196 if (major >= ARRAY_SIZE(super_types) || super_types[major].name == NULL)
4197 return -ENOENT;
4198 mddev->major_version = major;
4199 mddev->minor_version = minor;
4200 mddev->persistent = 1;
4201 mddev->external = 0;
4202 return len;
4205 static struct md_sysfs_entry md_metadata =
4206 __ATTR(metadata_version, S_IRUGO|S_IWUSR, metadata_show, metadata_store);
4208 static ssize_t
4209 action_show(struct mddev *mddev, char *page)
4211 char *type = "idle";
4212 if (test_bit(MD_RECOVERY_FROZEN, &mddev->recovery))
4213 type = "frozen";
4214 else if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
4215 (!mddev->ro && test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))) {
4216 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
4217 type = "reshape";
4218 else if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
4219 if (!test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
4220 type = "resync";
4221 else if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery))
4222 type = "check";
4223 else
4224 type = "repair";
4225 } else if (test_bit(MD_RECOVERY_RECOVER, &mddev->recovery))
4226 type = "recover";
4228 return sprintf(page, "%s\n", type);
4231 static ssize_t
4232 action_store(struct mddev *mddev, const char *page, size_t len)
4234 if (!mddev->pers || !mddev->pers->sync_request)
4235 return -EINVAL;
4237 if (cmd_match(page, "frozen"))
4238 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
4239 else
4240 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
4242 if (cmd_match(page, "idle") || cmd_match(page, "frozen")) {
4243 if (mddev->sync_thread) {
4244 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
4245 md_reap_sync_thread(mddev);
4247 } else if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
4248 test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))
4249 return -EBUSY;
4250 else if (cmd_match(page, "resync"))
4251 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4252 else if (cmd_match(page, "recover")) {
4253 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
4254 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4255 } else if (cmd_match(page, "reshape")) {
4256 int err;
4257 if (mddev->pers->start_reshape == NULL)
4258 return -EINVAL;
4259 err = mddev->pers->start_reshape(mddev);
4260 if (err)
4261 return err;
4262 sysfs_notify(&mddev->kobj, NULL, "degraded");
4263 } else {
4264 if (cmd_match(page, "check"))
4265 set_bit(MD_RECOVERY_CHECK, &mddev->recovery);
4266 else if (!cmd_match(page, "repair"))
4267 return -EINVAL;
4268 set_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
4269 set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
4271 if (mddev->ro == 2) {
4272 /* A write to sync_action is enough to justify
4273 * canceling read-auto mode
4275 mddev->ro = 0;
4276 md_wakeup_thread(mddev->sync_thread);
4278 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4279 md_wakeup_thread(mddev->thread);
4280 sysfs_notify_dirent_safe(mddev->sysfs_action);
4281 return len;
4284 static struct md_sysfs_entry md_scan_mode =
4285 __ATTR(sync_action, S_IRUGO|S_IWUSR, action_show, action_store);
4287 static ssize_t
4288 last_sync_action_show(struct mddev *mddev, char *page)
4290 return sprintf(page, "%s\n", mddev->last_sync_action);
4293 static struct md_sysfs_entry md_last_scan_mode = __ATTR_RO(last_sync_action);
4295 static ssize_t
4296 mismatch_cnt_show(struct mddev *mddev, char *page)
4298 return sprintf(page, "%llu\n",
4299 (unsigned long long)
4300 atomic64_read(&mddev->resync_mismatches));
4303 static struct md_sysfs_entry md_mismatches = __ATTR_RO(mismatch_cnt);
4305 static ssize_t
4306 sync_min_show(struct mddev *mddev, char *page)
4308 return sprintf(page, "%d (%s)\n", speed_min(mddev),
4309 mddev->sync_speed_min ? "local": "system");
4312 static ssize_t
4313 sync_min_store(struct mddev *mddev, const char *buf, size_t len)
4315 int min;
4316 char *e;
4317 if (strncmp(buf, "system", 6)==0) {
4318 mddev->sync_speed_min = 0;
4319 return len;
4321 min = simple_strtoul(buf, &e, 10);
4322 if (buf == e || (*e && *e != '\n') || min <= 0)
4323 return -EINVAL;
4324 mddev->sync_speed_min = min;
4325 return len;
4328 static struct md_sysfs_entry md_sync_min =
4329 __ATTR(sync_speed_min, S_IRUGO|S_IWUSR, sync_min_show, sync_min_store);
4331 static ssize_t
4332 sync_max_show(struct mddev *mddev, char *page)
4334 return sprintf(page, "%d (%s)\n", speed_max(mddev),
4335 mddev->sync_speed_max ? "local": "system");
4338 static ssize_t
4339 sync_max_store(struct mddev *mddev, const char *buf, size_t len)
4341 int max;
4342 char *e;
4343 if (strncmp(buf, "system", 6)==0) {
4344 mddev->sync_speed_max = 0;
4345 return len;
4347 max = simple_strtoul(buf, &e, 10);
4348 if (buf == e || (*e && *e != '\n') || max <= 0)
4349 return -EINVAL;
4350 mddev->sync_speed_max = max;
4351 return len;
4354 static struct md_sysfs_entry md_sync_max =
4355 __ATTR(sync_speed_max, S_IRUGO|S_IWUSR, sync_max_show, sync_max_store);
4357 static ssize_t
4358 degraded_show(struct mddev *mddev, char *page)
4360 return sprintf(page, "%d\n", mddev->degraded);
4362 static struct md_sysfs_entry md_degraded = __ATTR_RO(degraded);
4364 static ssize_t
4365 sync_force_parallel_show(struct mddev *mddev, char *page)
4367 return sprintf(page, "%d\n", mddev->parallel_resync);
4370 static ssize_t
4371 sync_force_parallel_store(struct mddev *mddev, const char *buf, size_t len)
4373 long n;
4375 if (kstrtol(buf, 10, &n))
4376 return -EINVAL;
4378 if (n != 0 && n != 1)
4379 return -EINVAL;
4381 mddev->parallel_resync = n;
4383 if (mddev->sync_thread)
4384 wake_up(&resync_wait);
4386 return len;
4389 /* force parallel resync, even with shared block devices */
4390 static struct md_sysfs_entry md_sync_force_parallel =
4391 __ATTR(sync_force_parallel, S_IRUGO|S_IWUSR,
4392 sync_force_parallel_show, sync_force_parallel_store);
4394 static ssize_t
4395 sync_speed_show(struct mddev *mddev, char *page)
4397 unsigned long resync, dt, db;
4398 if (mddev->curr_resync == 0)
4399 return sprintf(page, "none\n");
4400 resync = mddev->curr_mark_cnt - atomic_read(&mddev->recovery_active);
4401 dt = (jiffies - mddev->resync_mark) / HZ;
4402 if (!dt) dt++;
4403 db = resync - mddev->resync_mark_cnt;
4404 return sprintf(page, "%lu\n", db/dt/2); /* K/sec */
4407 static struct md_sysfs_entry md_sync_speed = __ATTR_RO(sync_speed);
4409 static ssize_t
4410 sync_completed_show(struct mddev *mddev, char *page)
4412 unsigned long long max_sectors, resync;
4414 if (!test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4415 return sprintf(page, "none\n");
4417 if (mddev->curr_resync == 1 ||
4418 mddev->curr_resync == 2)
4419 return sprintf(page, "delayed\n");
4421 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ||
4422 test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
4423 max_sectors = mddev->resync_max_sectors;
4424 else
4425 max_sectors = mddev->dev_sectors;
4427 resync = mddev->curr_resync_completed;
4428 return sprintf(page, "%llu / %llu\n", resync, max_sectors);
4431 static struct md_sysfs_entry md_sync_completed = __ATTR_RO(sync_completed);
4433 static ssize_t
4434 min_sync_show(struct mddev *mddev, char *page)
4436 return sprintf(page, "%llu\n",
4437 (unsigned long long)mddev->resync_min);
4439 static ssize_t
4440 min_sync_store(struct mddev *mddev, const char *buf, size_t len)
4442 unsigned long long min;
4443 if (kstrtoull(buf, 10, &min))
4444 return -EINVAL;
4445 if (min > mddev->resync_max)
4446 return -EINVAL;
4447 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4448 return -EBUSY;
4450 /* Must be a multiple of chunk_size */
4451 if (mddev->chunk_sectors) {
4452 sector_t temp = min;
4453 if (sector_div(temp, mddev->chunk_sectors))
4454 return -EINVAL;
4456 mddev->resync_min = min;
4458 return len;
4461 static struct md_sysfs_entry md_min_sync =
4462 __ATTR(sync_min, S_IRUGO|S_IWUSR, min_sync_show, min_sync_store);
4464 static ssize_t
4465 max_sync_show(struct mddev *mddev, char *page)
4467 if (mddev->resync_max == MaxSector)
4468 return sprintf(page, "max\n");
4469 else
4470 return sprintf(page, "%llu\n",
4471 (unsigned long long)mddev->resync_max);
4473 static ssize_t
4474 max_sync_store(struct mddev *mddev, const char *buf, size_t len)
4476 if (strncmp(buf, "max", 3) == 0)
4477 mddev->resync_max = MaxSector;
4478 else {
4479 unsigned long long max;
4480 if (kstrtoull(buf, 10, &max))
4481 return -EINVAL;
4482 if (max < mddev->resync_min)
4483 return -EINVAL;
4484 if (max < mddev->resync_max &&
4485 mddev->ro == 0 &&
4486 test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4487 return -EBUSY;
4489 /* Must be a multiple of chunk_size */
4490 if (mddev->chunk_sectors) {
4491 sector_t temp = max;
4492 if (sector_div(temp, mddev->chunk_sectors))
4493 return -EINVAL;
4495 mddev->resync_max = max;
4497 wake_up(&mddev->recovery_wait);
4498 return len;
4501 static struct md_sysfs_entry md_max_sync =
4502 __ATTR(sync_max, S_IRUGO|S_IWUSR, max_sync_show, max_sync_store);
4504 static ssize_t
4505 suspend_lo_show(struct mddev *mddev, char *page)
4507 return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_lo);
4510 static ssize_t
4511 suspend_lo_store(struct mddev *mddev, const char *buf, size_t len)
4513 char *e;
4514 unsigned long long new = simple_strtoull(buf, &e, 10);
4515 unsigned long long old = mddev->suspend_lo;
4517 if (mddev->pers == NULL ||
4518 mddev->pers->quiesce == NULL)
4519 return -EINVAL;
4520 if (buf == e || (*e && *e != '\n'))
4521 return -EINVAL;
4523 mddev->suspend_lo = new;
4524 if (new >= old)
4525 /* Shrinking suspended region */
4526 mddev->pers->quiesce(mddev, 2);
4527 else {
4528 /* Expanding suspended region - need to wait */
4529 mddev->pers->quiesce(mddev, 1);
4530 mddev->pers->quiesce(mddev, 0);
4532 return len;
4534 static struct md_sysfs_entry md_suspend_lo =
4535 __ATTR(suspend_lo, S_IRUGO|S_IWUSR, suspend_lo_show, suspend_lo_store);
4538 static ssize_t
4539 suspend_hi_show(struct mddev *mddev, char *page)
4541 return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_hi);
4544 static ssize_t
4545 suspend_hi_store(struct mddev *mddev, const char *buf, size_t len)
4547 char *e;
4548 unsigned long long new = simple_strtoull(buf, &e, 10);
4549 unsigned long long old = mddev->suspend_hi;
4551 if (mddev->pers == NULL ||
4552 mddev->pers->quiesce == NULL)
4553 return -EINVAL;
4554 if (buf == e || (*e && *e != '\n'))
4555 return -EINVAL;
4557 mddev->suspend_hi = new;
4558 if (new <= old)
4559 /* Shrinking suspended region */
4560 mddev->pers->quiesce(mddev, 2);
4561 else {
4562 /* Expanding suspended region - need to wait */
4563 mddev->pers->quiesce(mddev, 1);
4564 mddev->pers->quiesce(mddev, 0);
4566 return len;
4568 static struct md_sysfs_entry md_suspend_hi =
4569 __ATTR(suspend_hi, S_IRUGO|S_IWUSR, suspend_hi_show, suspend_hi_store);
4571 static ssize_t
4572 reshape_position_show(struct mddev *mddev, char *page)
4574 if (mddev->reshape_position != MaxSector)
4575 return sprintf(page, "%llu\n",
4576 (unsigned long long)mddev->reshape_position);
4577 strcpy(page, "none\n");
4578 return 5;
4581 static ssize_t
4582 reshape_position_store(struct mddev *mddev, const char *buf, size_t len)
4584 struct md_rdev *rdev;
4585 char *e;
4586 unsigned long long new = simple_strtoull(buf, &e, 10);
4587 if (mddev->pers)
4588 return -EBUSY;
4589 if (buf == e || (*e && *e != '\n'))
4590 return -EINVAL;
4591 mddev->reshape_position = new;
4592 mddev->delta_disks = 0;
4593 mddev->reshape_backwards = 0;
4594 mddev->new_level = mddev->level;
4595 mddev->new_layout = mddev->layout;
4596 mddev->new_chunk_sectors = mddev->chunk_sectors;
4597 rdev_for_each(rdev, mddev)
4598 rdev->new_data_offset = rdev->data_offset;
4599 return len;
4602 static struct md_sysfs_entry md_reshape_position =
4603 __ATTR(reshape_position, S_IRUGO|S_IWUSR, reshape_position_show,
4604 reshape_position_store);
4606 static ssize_t
4607 reshape_direction_show(struct mddev *mddev, char *page)
4609 return sprintf(page, "%s\n",
4610 mddev->reshape_backwards ? "backwards" : "forwards");
4613 static ssize_t
4614 reshape_direction_store(struct mddev *mddev, const char *buf, size_t len)
4616 int backwards = 0;
4617 if (cmd_match(buf, "forwards"))
4618 backwards = 0;
4619 else if (cmd_match(buf, "backwards"))
4620 backwards = 1;
4621 else
4622 return -EINVAL;
4623 if (mddev->reshape_backwards == backwards)
4624 return len;
4626 /* check if we are allowed to change */
4627 if (mddev->delta_disks)
4628 return -EBUSY;
4630 if (mddev->persistent &&
4631 mddev->major_version == 0)
4632 return -EINVAL;
4634 mddev->reshape_backwards = backwards;
4635 return len;
4638 static struct md_sysfs_entry md_reshape_direction =
4639 __ATTR(reshape_direction, S_IRUGO|S_IWUSR, reshape_direction_show,
4640 reshape_direction_store);
4642 static ssize_t
4643 array_size_show(struct mddev *mddev, char *page)
4645 if (mddev->external_size)
4646 return sprintf(page, "%llu\n",
4647 (unsigned long long)mddev->array_sectors/2);
4648 else
4649 return sprintf(page, "default\n");
4652 static ssize_t
4653 array_size_store(struct mddev *mddev, const char *buf, size_t len)
4655 sector_t sectors;
4657 if (strncmp(buf, "default", 7) == 0) {
4658 if (mddev->pers)
4659 sectors = mddev->pers->size(mddev, 0, 0);
4660 else
4661 sectors = mddev->array_sectors;
4663 mddev->external_size = 0;
4664 } else {
4665 if (strict_blocks_to_sectors(buf, &sectors) < 0)
4666 return -EINVAL;
4667 if (mddev->pers && mddev->pers->size(mddev, 0, 0) < sectors)
4668 return -E2BIG;
4670 mddev->external_size = 1;
4673 mddev->array_sectors = sectors;
4674 if (mddev->pers) {
4675 set_capacity(mddev->gendisk, mddev->array_sectors);
4676 revalidate_disk(mddev->gendisk);
4678 return len;
4681 static struct md_sysfs_entry md_array_size =
4682 __ATTR(array_size, S_IRUGO|S_IWUSR, array_size_show,
4683 array_size_store);
4685 static struct attribute *md_default_attrs[] = {
4686 &md_level.attr,
4687 &md_layout.attr,
4688 &md_raid_disks.attr,
4689 &md_chunk_size.attr,
4690 &md_size.attr,
4691 &md_resync_start.attr,
4692 &md_metadata.attr,
4693 &md_new_device.attr,
4694 &md_safe_delay.attr,
4695 &md_array_state.attr,
4696 &md_reshape_position.attr,
4697 &md_reshape_direction.attr,
4698 &md_array_size.attr,
4699 &max_corr_read_errors.attr,
4700 NULL,
4703 static struct attribute *md_redundancy_attrs[] = {
4704 &md_scan_mode.attr,
4705 &md_last_scan_mode.attr,
4706 &md_mismatches.attr,
4707 &md_sync_min.attr,
4708 &md_sync_max.attr,
4709 &md_sync_speed.attr,
4710 &md_sync_force_parallel.attr,
4711 &md_sync_completed.attr,
4712 &md_min_sync.attr,
4713 &md_max_sync.attr,
4714 &md_suspend_lo.attr,
4715 &md_suspend_hi.attr,
4716 &md_bitmap.attr,
4717 &md_degraded.attr,
4718 NULL,
4720 static struct attribute_group md_redundancy_group = {
4721 .name = NULL,
4722 .attrs = md_redundancy_attrs,
4726 static ssize_t
4727 md_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
4729 struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr);
4730 struct mddev *mddev = container_of(kobj, struct mddev, kobj);
4731 ssize_t rv;
4733 if (!entry->show)
4734 return -EIO;
4735 spin_lock(&all_mddevs_lock);
4736 if (list_empty(&mddev->all_mddevs)) {
4737 spin_unlock(&all_mddevs_lock);
4738 return -EBUSY;
4740 mddev_get(mddev);
4741 spin_unlock(&all_mddevs_lock);
4743 rv = mddev_lock(mddev);
4744 if (!rv) {
4745 rv = entry->show(mddev, page);
4746 mddev_unlock(mddev);
4748 mddev_put(mddev);
4749 return rv;
4752 static ssize_t
4753 md_attr_store(struct kobject *kobj, struct attribute *attr,
4754 const char *page, size_t length)
4756 struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr);
4757 struct mddev *mddev = container_of(kobj, struct mddev, kobj);
4758 ssize_t rv;
4760 if (!entry->store)
4761 return -EIO;
4762 if (!capable(CAP_SYS_ADMIN))
4763 return -EACCES;
4764 spin_lock(&all_mddevs_lock);
4765 if (list_empty(&mddev->all_mddevs)) {
4766 spin_unlock(&all_mddevs_lock);
4767 return -EBUSY;
4769 mddev_get(mddev);
4770 spin_unlock(&all_mddevs_lock);
4771 if (entry->store == new_dev_store)
4772 flush_workqueue(md_misc_wq);
4773 rv = mddev_lock(mddev);
4774 if (!rv) {
4775 rv = entry->store(mddev, page, length);
4776 mddev_unlock(mddev);
4778 mddev_put(mddev);
4779 return rv;
4782 static void md_free(struct kobject *ko)
4784 struct mddev *mddev = container_of(ko, struct mddev, kobj);
4786 if (mddev->sysfs_state)
4787 sysfs_put(mddev->sysfs_state);
4789 if (mddev->gendisk) {
4790 del_gendisk(mddev->gendisk);
4791 put_disk(mddev->gendisk);
4793 if (mddev->queue)
4794 blk_cleanup_queue(mddev->queue);
4796 kfree(mddev);
4799 static const struct sysfs_ops md_sysfs_ops = {
4800 .show = md_attr_show,
4801 .store = md_attr_store,
4803 static struct kobj_type md_ktype = {
4804 .release = md_free,
4805 .sysfs_ops = &md_sysfs_ops,
4806 .default_attrs = md_default_attrs,
4809 int mdp_major = 0;
4811 static void mddev_delayed_delete(struct work_struct *ws)
4813 struct mddev *mddev = container_of(ws, struct mddev, del_work);
4815 sysfs_remove_group(&mddev->kobj, &md_bitmap_group);
4816 kobject_del(&mddev->kobj);
4817 kobject_put(&mddev->kobj);
4820 static int md_alloc(dev_t dev, char *name)
4822 static DEFINE_MUTEX(disks_mutex);
4823 struct mddev *mddev = mddev_find(dev);
4824 struct gendisk *disk;
4825 int partitioned;
4826 int shift;
4827 int unit;
4828 int error;
4830 if (!mddev)
4831 return -ENODEV;
4833 partitioned = (MAJOR(mddev->unit) != MD_MAJOR);
4834 shift = partitioned ? MdpMinorShift : 0;
4835 unit = MINOR(mddev->unit) >> shift;
4837 /* wait for any previous instance of this device to be
4838 * completely removed (mddev_delayed_delete).
4840 flush_workqueue(md_misc_wq);
4842 mutex_lock(&disks_mutex);
4843 error = -EEXIST;
4844 if (mddev->gendisk)
4845 goto abort;
4847 if (name) {
4848 /* Need to ensure that 'name' is not a duplicate.
4850 struct mddev *mddev2;
4851 spin_lock(&all_mddevs_lock);
4853 list_for_each_entry(mddev2, &all_mddevs, all_mddevs)
4854 if (mddev2->gendisk &&
4855 strcmp(mddev2->gendisk->disk_name, name) == 0) {
4856 spin_unlock(&all_mddevs_lock);
4857 goto abort;
4859 spin_unlock(&all_mddevs_lock);
4862 error = -ENOMEM;
4863 mddev->queue = blk_alloc_queue(GFP_KERNEL);
4864 if (!mddev->queue)
4865 goto abort;
4866 mddev->queue->queuedata = mddev;
4868 blk_queue_make_request(mddev->queue, md_make_request);
4869 blk_set_stacking_limits(&mddev->queue->limits);
4871 disk = alloc_disk(1 << shift);
4872 if (!disk) {
4873 blk_cleanup_queue(mddev->queue);
4874 mddev->queue = NULL;
4875 goto abort;
4877 disk->major = MAJOR(mddev->unit);
4878 disk->first_minor = unit << shift;
4879 if (name)
4880 strcpy(disk->disk_name, name);
4881 else if (partitioned)
4882 sprintf(disk->disk_name, "md_d%d", unit);
4883 else
4884 sprintf(disk->disk_name, "md%d", unit);
4885 disk->fops = &md_fops;
4886 disk->private_data = mddev;
4887 disk->queue = mddev->queue;
4888 blk_queue_flush(mddev->queue, REQ_FLUSH | REQ_FUA);
4889 /* Allow extended partitions. This makes the
4890 * 'mdp' device redundant, but we can't really
4891 * remove it now.
4893 disk->flags |= GENHD_FL_EXT_DEVT;
4894 mddev->gendisk = disk;
4895 /* As soon as we call add_disk(), another thread could get
4896 * through to md_open, so make sure it doesn't get too far
4898 mutex_lock(&mddev->open_mutex);
4899 add_disk(disk);
4901 error = kobject_init_and_add(&mddev->kobj, &md_ktype,
4902 &disk_to_dev(disk)->kobj, "%s", "md");
4903 if (error) {
4904 /* This isn't possible, but as kobject_init_and_add is marked
4905 * __must_check, we must do something with the result
4907 printk(KERN_WARNING "md: cannot register %s/md - name in use\n",
4908 disk->disk_name);
4909 error = 0;
4911 if (mddev->kobj.sd &&
4912 sysfs_create_group(&mddev->kobj, &md_bitmap_group))
4913 printk(KERN_DEBUG "pointless warning\n");
4914 mutex_unlock(&mddev->open_mutex);
4915 abort:
4916 mutex_unlock(&disks_mutex);
4917 if (!error && mddev->kobj.sd) {
4918 kobject_uevent(&mddev->kobj, KOBJ_ADD);
4919 mddev->sysfs_state = sysfs_get_dirent_safe(mddev->kobj.sd, "array_state");
4921 mddev_put(mddev);
4922 return error;
4925 static struct kobject *md_probe(dev_t dev, int *part, void *data)
4927 md_alloc(dev, NULL);
4928 return NULL;
4931 static int add_named_array(const char *val, struct kernel_param *kp)
4933 /* val must be "md_*" where * is not all digits.
4934 * We allocate an array with a large free minor number, and
4935 * set the name to val. val must not already be an active name.
4937 int len = strlen(val);
4938 char buf[DISK_NAME_LEN];
4940 while (len && val[len-1] == '\n')
4941 len--;
4942 if (len >= DISK_NAME_LEN)
4943 return -E2BIG;
4944 strlcpy(buf, val, len+1);
4945 if (strncmp(buf, "md_", 3) != 0)
4946 return -EINVAL;
4947 return md_alloc(0, buf);
4950 static void md_safemode_timeout(unsigned long data)
4952 struct mddev *mddev = (struct mddev *) data;
4954 if (!atomic_read(&mddev->writes_pending)) {
4955 mddev->safemode = 1;
4956 if (mddev->external)
4957 sysfs_notify_dirent_safe(mddev->sysfs_state);
4959 md_wakeup_thread(mddev->thread);
4962 static int start_dirty_degraded;
4964 int md_run(struct mddev *mddev)
4966 int err;
4967 struct md_rdev *rdev;
4968 struct md_personality *pers;
4970 if (list_empty(&mddev->disks))
4971 /* cannot run an array with no devices.. */
4972 return -EINVAL;
4974 if (mddev->pers)
4975 return -EBUSY;
4976 /* Cannot run until previous stop completes properly */
4977 if (mddev->sysfs_active)
4978 return -EBUSY;
4981 * Analyze all RAID superblock(s)
4983 if (!mddev->raid_disks) {
4984 if (!mddev->persistent)
4985 return -EINVAL;
4986 analyze_sbs(mddev);
4989 if (mddev->level != LEVEL_NONE)
4990 request_module("md-level-%d", mddev->level);
4991 else if (mddev->clevel[0])
4992 request_module("md-%s", mddev->clevel);
4995 * Drop all container device buffers, from now on
4996 * the only valid external interface is through the md
4997 * device.
4999 rdev_for_each(rdev, mddev) {
5000 if (test_bit(Faulty, &rdev->flags))
5001 continue;
5002 sync_blockdev(rdev->bdev);
5003 invalidate_bdev(rdev->bdev);
5005 /* perform some consistency tests on the device.
5006 * We don't want the data to overlap the metadata,
5007 * Internal Bitmap issues have been handled elsewhere.
5009 if (rdev->meta_bdev) {
5010 /* Nothing to check */;
5011 } else if (rdev->data_offset < rdev->sb_start) {
5012 if (mddev->dev_sectors &&
5013 rdev->data_offset + mddev->dev_sectors
5014 > rdev->sb_start) {
5015 printk("md: %s: data overlaps metadata\n",
5016 mdname(mddev));
5017 return -EINVAL;
5019 } else {
5020 if (rdev->sb_start + rdev->sb_size/512
5021 > rdev->data_offset) {
5022 printk("md: %s: metadata overlaps data\n",
5023 mdname(mddev));
5024 return -EINVAL;
5027 sysfs_notify_dirent_safe(rdev->sysfs_state);
5030 if (mddev->bio_set == NULL)
5031 mddev->bio_set = bioset_create(BIO_POOL_SIZE, 0);
5033 spin_lock(&pers_lock);
5034 pers = find_pers(mddev->level, mddev->clevel);
5035 if (!pers || !try_module_get(pers->owner)) {
5036 spin_unlock(&pers_lock);
5037 if (mddev->level != LEVEL_NONE)
5038 printk(KERN_WARNING "md: personality for level %d is not loaded!\n",
5039 mddev->level);
5040 else
5041 printk(KERN_WARNING "md: personality for level %s is not loaded!\n",
5042 mddev->clevel);
5043 return -EINVAL;
5045 mddev->pers = pers;
5046 spin_unlock(&pers_lock);
5047 if (mddev->level != pers->level) {
5048 mddev->level = pers->level;
5049 mddev->new_level = pers->level;
5051 strlcpy(mddev->clevel, pers->name, sizeof(mddev->clevel));
5053 if (mddev->reshape_position != MaxSector &&
5054 pers->start_reshape == NULL) {
5055 /* This personality cannot handle reshaping... */
5056 mddev->pers = NULL;
5057 module_put(pers->owner);
5058 return -EINVAL;
5061 if (pers->sync_request) {
5062 /* Warn if this is a potentially silly
5063 * configuration.
5065 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
5066 struct md_rdev *rdev2;
5067 int warned = 0;
5069 rdev_for_each(rdev, mddev)
5070 rdev_for_each(rdev2, mddev) {
5071 if (rdev < rdev2 &&
5072 rdev->bdev->bd_contains ==
5073 rdev2->bdev->bd_contains) {
5074 printk(KERN_WARNING
5075 "%s: WARNING: %s appears to be"
5076 " on the same physical disk as"
5077 " %s.\n",
5078 mdname(mddev),
5079 bdevname(rdev->bdev,b),
5080 bdevname(rdev2->bdev,b2));
5081 warned = 1;
5085 if (warned)
5086 printk(KERN_WARNING
5087 "True protection against single-disk"
5088 " failure might be compromised.\n");
5091 mddev->recovery = 0;
5092 /* may be over-ridden by personality */
5093 mddev->resync_max_sectors = mddev->dev_sectors;
5095 mddev->ok_start_degraded = start_dirty_degraded;
5097 if (start_readonly && mddev->ro == 0)
5098 mddev->ro = 2; /* read-only, but switch on first write */
5100 err = mddev->pers->run(mddev);
5101 if (err)
5102 printk(KERN_ERR "md: pers->run() failed ...\n");
5103 else if (mddev->pers->size(mddev, 0, 0) < mddev->array_sectors) {
5104 WARN_ONCE(!mddev->external_size, "%s: default size too small,"
5105 " but 'external_size' not in effect?\n", __func__);
5106 printk(KERN_ERR
5107 "md: invalid array_size %llu > default size %llu\n",
5108 (unsigned long long)mddev->array_sectors / 2,
5109 (unsigned long long)mddev->pers->size(mddev, 0, 0) / 2);
5110 err = -EINVAL;
5111 mddev->pers->stop(mddev);
5113 if (err == 0 && mddev->pers->sync_request &&
5114 (mddev->bitmap_info.file || mddev->bitmap_info.offset)) {
5115 err = bitmap_create(mddev);
5116 if (err) {
5117 printk(KERN_ERR "%s: failed to create bitmap (%d)\n",
5118 mdname(mddev), err);
5119 mddev->pers->stop(mddev);
5122 if (err) {
5123 module_put(mddev->pers->owner);
5124 mddev->pers = NULL;
5125 bitmap_destroy(mddev);
5126 return err;
5128 if (mddev->pers->sync_request) {
5129 if (mddev->kobj.sd &&
5130 sysfs_create_group(&mddev->kobj, &md_redundancy_group))
5131 printk(KERN_WARNING
5132 "md: cannot register extra attributes for %s\n",
5133 mdname(mddev));
5134 mddev->sysfs_action = sysfs_get_dirent_safe(mddev->kobj.sd, "sync_action");
5135 } else if (mddev->ro == 2) /* auto-readonly not meaningful */
5136 mddev->ro = 0;
5138 atomic_set(&mddev->writes_pending,0);
5139 atomic_set(&mddev->max_corr_read_errors,
5140 MD_DEFAULT_MAX_CORRECTED_READ_ERRORS);
5141 mddev->safemode = 0;
5142 mddev->safemode_timer.function = md_safemode_timeout;
5143 mddev->safemode_timer.data = (unsigned long) mddev;
5144 mddev->safemode_delay = (200 * HZ)/1000 +1; /* 200 msec delay */
5145 mddev->in_sync = 1;
5146 smp_wmb();
5147 mddev->ready = 1;
5148 rdev_for_each(rdev, mddev)
5149 if (rdev->raid_disk >= 0)
5150 if (sysfs_link_rdev(mddev, rdev))
5151 /* failure here is OK */;
5153 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5155 if (mddev->flags & MD_UPDATE_SB_FLAGS)
5156 md_update_sb(mddev, 0);
5158 md_new_event(mddev);
5159 sysfs_notify_dirent_safe(mddev->sysfs_state);
5160 sysfs_notify_dirent_safe(mddev->sysfs_action);
5161 sysfs_notify(&mddev->kobj, NULL, "degraded");
5162 return 0;
5164 EXPORT_SYMBOL_GPL(md_run);
5166 static int do_md_run(struct mddev *mddev)
5168 int err;
5170 err = md_run(mddev);
5171 if (err)
5172 goto out;
5173 err = bitmap_load(mddev);
5174 if (err) {
5175 bitmap_destroy(mddev);
5176 goto out;
5179 md_wakeup_thread(mddev->thread);
5180 md_wakeup_thread(mddev->sync_thread); /* possibly kick off a reshape */
5182 set_capacity(mddev->gendisk, mddev->array_sectors);
5183 revalidate_disk(mddev->gendisk);
5184 mddev->changed = 1;
5185 kobject_uevent(&disk_to_dev(mddev->gendisk)->kobj, KOBJ_CHANGE);
5186 out:
5187 return err;
5190 static int restart_array(struct mddev *mddev)
5192 struct gendisk *disk = mddev->gendisk;
5194 /* Complain if it has no devices */
5195 if (list_empty(&mddev->disks))
5196 return -ENXIO;
5197 if (!mddev->pers)
5198 return -EINVAL;
5199 if (!mddev->ro)
5200 return -EBUSY;
5201 mddev->safemode = 0;
5202 mddev->ro = 0;
5203 set_disk_ro(disk, 0);
5204 printk(KERN_INFO "md: %s switched to read-write mode.\n",
5205 mdname(mddev));
5206 /* Kick recovery or resync if necessary */
5207 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5208 md_wakeup_thread(mddev->thread);
5209 md_wakeup_thread(mddev->sync_thread);
5210 sysfs_notify_dirent_safe(mddev->sysfs_state);
5211 return 0;
5214 /* similar to deny_write_access, but accounts for our holding a reference
5215 * to the file ourselves */
5216 static int deny_bitmap_write_access(struct file * file)
5218 struct inode *inode = file->f_mapping->host;
5220 spin_lock(&inode->i_lock);
5221 if (atomic_read(&inode->i_writecount) > 1) {
5222 spin_unlock(&inode->i_lock);
5223 return -ETXTBSY;
5225 atomic_set(&inode->i_writecount, -1);
5226 spin_unlock(&inode->i_lock);
5228 return 0;
5231 void restore_bitmap_write_access(struct file *file)
5233 struct inode *inode = file->f_mapping->host;
5235 spin_lock(&inode->i_lock);
5236 atomic_set(&inode->i_writecount, 1);
5237 spin_unlock(&inode->i_lock);
5240 static void md_clean(struct mddev *mddev)
5242 mddev->array_sectors = 0;
5243 mddev->external_size = 0;
5244 mddev->dev_sectors = 0;
5245 mddev->raid_disks = 0;
5246 mddev->recovery_cp = 0;
5247 mddev->resync_min = 0;
5248 mddev->resync_max = MaxSector;
5249 mddev->reshape_position = MaxSector;
5250 mddev->external = 0;
5251 mddev->persistent = 0;
5252 mddev->level = LEVEL_NONE;
5253 mddev->clevel[0] = 0;
5254 mddev->flags = 0;
5255 mddev->ro = 0;
5256 mddev->metadata_type[0] = 0;
5257 mddev->chunk_sectors = 0;
5258 mddev->ctime = mddev->utime = 0;
5259 mddev->layout = 0;
5260 mddev->max_disks = 0;
5261 mddev->events = 0;
5262 mddev->can_decrease_events = 0;
5263 mddev->delta_disks = 0;
5264 mddev->reshape_backwards = 0;
5265 mddev->new_level = LEVEL_NONE;
5266 mddev->new_layout = 0;
5267 mddev->new_chunk_sectors = 0;
5268 mddev->curr_resync = 0;
5269 atomic64_set(&mddev->resync_mismatches, 0);
5270 mddev->suspend_lo = mddev->suspend_hi = 0;
5271 mddev->sync_speed_min = mddev->sync_speed_max = 0;
5272 mddev->recovery = 0;
5273 mddev->in_sync = 0;
5274 mddev->changed = 0;
5275 mddev->degraded = 0;
5276 mddev->safemode = 0;
5277 mddev->merge_check_needed = 0;
5278 mddev->bitmap_info.offset = 0;
5279 mddev->bitmap_info.default_offset = 0;
5280 mddev->bitmap_info.default_space = 0;
5281 mddev->bitmap_info.chunksize = 0;
5282 mddev->bitmap_info.daemon_sleep = 0;
5283 mddev->bitmap_info.max_write_behind = 0;
5286 static void __md_stop_writes(struct mddev *mddev)
5288 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5289 if (mddev->sync_thread) {
5290 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
5291 md_reap_sync_thread(mddev);
5294 del_timer_sync(&mddev->safemode_timer);
5296 bitmap_flush(mddev);
5297 md_super_wait(mddev);
5299 if (mddev->ro == 0 &&
5300 (!mddev->in_sync || (mddev->flags & MD_UPDATE_SB_FLAGS))) {
5301 /* mark array as shutdown cleanly */
5302 mddev->in_sync = 1;
5303 md_update_sb(mddev, 1);
5307 void md_stop_writes(struct mddev *mddev)
5309 mddev_lock(mddev);
5310 __md_stop_writes(mddev);
5311 mddev_unlock(mddev);
5313 EXPORT_SYMBOL_GPL(md_stop_writes);
5315 static void __md_stop(struct mddev *mddev)
5317 mddev->ready = 0;
5318 /* Ensure ->event_work is done */
5319 flush_workqueue(md_misc_wq);
5320 mddev->pers->stop(mddev);
5321 if (mddev->pers->sync_request && mddev->to_remove == NULL)
5322 mddev->to_remove = &md_redundancy_group;
5323 module_put(mddev->pers->owner);
5324 mddev->pers = NULL;
5325 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5328 void md_stop(struct mddev *mddev)
5330 /* stop the array and free an attached data structures.
5331 * This is called from dm-raid
5333 __md_stop(mddev);
5334 bitmap_destroy(mddev);
5335 if (mddev->bio_set)
5336 bioset_free(mddev->bio_set);
5339 EXPORT_SYMBOL_GPL(md_stop);
5341 static int md_set_readonly(struct mddev *mddev, struct block_device *bdev)
5343 int err = 0;
5344 mutex_lock(&mddev->open_mutex);
5345 if (atomic_read(&mddev->openers) > !!bdev) {
5346 printk("md: %s still in use.\n",mdname(mddev));
5347 err = -EBUSY;
5348 goto out;
5350 if (bdev && !test_bit(MD_STILL_CLOSED, &mddev->flags)) {
5351 /* Someone opened the device since we flushed it
5352 * so page cache could be dirty and it is too late
5353 * to flush. So abort
5355 mutex_unlock(&mddev->open_mutex);
5356 return -EBUSY;
5358 if (mddev->pers) {
5359 __md_stop_writes(mddev);
5361 err = -ENXIO;
5362 if (mddev->ro==1)
5363 goto out;
5364 mddev->ro = 1;
5365 set_disk_ro(mddev->gendisk, 1);
5366 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5367 sysfs_notify_dirent_safe(mddev->sysfs_state);
5368 err = 0;
5370 out:
5371 mutex_unlock(&mddev->open_mutex);
5372 return err;
5375 /* mode:
5376 * 0 - completely stop and dis-assemble array
5377 * 2 - stop but do not disassemble array
5379 static int do_md_stop(struct mddev * mddev, int mode,
5380 struct block_device *bdev)
5382 struct gendisk *disk = mddev->gendisk;
5383 struct md_rdev *rdev;
5385 mutex_lock(&mddev->open_mutex);
5386 if (atomic_read(&mddev->openers) > !!bdev ||
5387 mddev->sysfs_active) {
5388 printk("md: %s still in use.\n",mdname(mddev));
5389 mutex_unlock(&mddev->open_mutex);
5390 return -EBUSY;
5392 if (bdev && !test_bit(MD_STILL_CLOSED, &mddev->flags)) {
5393 /* Someone opened the device since we flushed it
5394 * so page cache could be dirty and it is too late
5395 * to flush. So abort
5397 mutex_unlock(&mddev->open_mutex);
5398 return -EBUSY;
5400 if (mddev->pers) {
5401 if (mddev->ro)
5402 set_disk_ro(disk, 0);
5404 __md_stop_writes(mddev);
5405 __md_stop(mddev);
5406 mddev->queue->merge_bvec_fn = NULL;
5407 mddev->queue->backing_dev_info.congested_fn = NULL;
5409 /* tell userspace to handle 'inactive' */
5410 sysfs_notify_dirent_safe(mddev->sysfs_state);
5412 rdev_for_each(rdev, mddev)
5413 if (rdev->raid_disk >= 0)
5414 sysfs_unlink_rdev(mddev, rdev);
5416 set_capacity(disk, 0);
5417 mutex_unlock(&mddev->open_mutex);
5418 mddev->changed = 1;
5419 revalidate_disk(disk);
5421 if (mddev->ro)
5422 mddev->ro = 0;
5423 } else
5424 mutex_unlock(&mddev->open_mutex);
5426 * Free resources if final stop
5428 if (mode == 0) {
5429 printk(KERN_INFO "md: %s stopped.\n", mdname(mddev));
5431 bitmap_destroy(mddev);
5432 if (mddev->bitmap_info.file) {
5433 restore_bitmap_write_access(mddev->bitmap_info.file);
5434 fput(mddev->bitmap_info.file);
5435 mddev->bitmap_info.file = NULL;
5437 mddev->bitmap_info.offset = 0;
5439 export_array(mddev);
5441 md_clean(mddev);
5442 kobject_uevent(&disk_to_dev(mddev->gendisk)->kobj, KOBJ_CHANGE);
5443 if (mddev->hold_active == UNTIL_STOP)
5444 mddev->hold_active = 0;
5446 blk_integrity_unregister(disk);
5447 md_new_event(mddev);
5448 sysfs_notify_dirent_safe(mddev->sysfs_state);
5449 return 0;
5452 #ifndef MODULE
5453 static void autorun_array(struct mddev *mddev)
5455 struct md_rdev *rdev;
5456 int err;
5458 if (list_empty(&mddev->disks))
5459 return;
5461 printk(KERN_INFO "md: running: ");
5463 rdev_for_each(rdev, mddev) {
5464 char b[BDEVNAME_SIZE];
5465 printk("<%s>", bdevname(rdev->bdev,b));
5467 printk("\n");
5469 err = do_md_run(mddev);
5470 if (err) {
5471 printk(KERN_WARNING "md: do_md_run() returned %d\n", err);
5472 do_md_stop(mddev, 0, NULL);
5477 * lets try to run arrays based on all disks that have arrived
5478 * until now. (those are in pending_raid_disks)
5480 * the method: pick the first pending disk, collect all disks with
5481 * the same UUID, remove all from the pending list and put them into
5482 * the 'same_array' list. Then order this list based on superblock
5483 * update time (freshest comes first), kick out 'old' disks and
5484 * compare superblocks. If everything's fine then run it.
5486 * If "unit" is allocated, then bump its reference count
5488 static void autorun_devices(int part)
5490 struct md_rdev *rdev0, *rdev, *tmp;
5491 struct mddev *mddev;
5492 char b[BDEVNAME_SIZE];
5494 printk(KERN_INFO "md: autorun ...\n");
5495 while (!list_empty(&pending_raid_disks)) {
5496 int unit;
5497 dev_t dev;
5498 LIST_HEAD(candidates);
5499 rdev0 = list_entry(pending_raid_disks.next,
5500 struct md_rdev, same_set);
5502 printk(KERN_INFO "md: considering %s ...\n",
5503 bdevname(rdev0->bdev,b));
5504 INIT_LIST_HEAD(&candidates);
5505 rdev_for_each_list(rdev, tmp, &pending_raid_disks)
5506 if (super_90_load(rdev, rdev0, 0) >= 0) {
5507 printk(KERN_INFO "md: adding %s ...\n",
5508 bdevname(rdev->bdev,b));
5509 list_move(&rdev->same_set, &candidates);
5512 * now we have a set of devices, with all of them having
5513 * mostly sane superblocks. It's time to allocate the
5514 * mddev.
5516 if (part) {
5517 dev = MKDEV(mdp_major,
5518 rdev0->preferred_minor << MdpMinorShift);
5519 unit = MINOR(dev) >> MdpMinorShift;
5520 } else {
5521 dev = MKDEV(MD_MAJOR, rdev0->preferred_minor);
5522 unit = MINOR(dev);
5524 if (rdev0->preferred_minor != unit) {
5525 printk(KERN_INFO "md: unit number in %s is bad: %d\n",
5526 bdevname(rdev0->bdev, b), rdev0->preferred_minor);
5527 break;
5530 md_probe(dev, NULL, NULL);
5531 mddev = mddev_find(dev);
5532 if (!mddev || !mddev->gendisk) {
5533 if (mddev)
5534 mddev_put(mddev);
5535 printk(KERN_ERR
5536 "md: cannot allocate memory for md drive.\n");
5537 break;
5539 if (mddev_lock(mddev))
5540 printk(KERN_WARNING "md: %s locked, cannot run\n",
5541 mdname(mddev));
5542 else if (mddev->raid_disks || mddev->major_version
5543 || !list_empty(&mddev->disks)) {
5544 printk(KERN_WARNING
5545 "md: %s already running, cannot run %s\n",
5546 mdname(mddev), bdevname(rdev0->bdev,b));
5547 mddev_unlock(mddev);
5548 } else {
5549 printk(KERN_INFO "md: created %s\n", mdname(mddev));
5550 mddev->persistent = 1;
5551 rdev_for_each_list(rdev, tmp, &candidates) {
5552 list_del_init(&rdev->same_set);
5553 if (bind_rdev_to_array(rdev, mddev))
5554 export_rdev(rdev);
5556 autorun_array(mddev);
5557 mddev_unlock(mddev);
5559 /* on success, candidates will be empty, on error
5560 * it won't...
5562 rdev_for_each_list(rdev, tmp, &candidates) {
5563 list_del_init(&rdev->same_set);
5564 export_rdev(rdev);
5566 mddev_put(mddev);
5568 printk(KERN_INFO "md: ... autorun DONE.\n");
5570 #endif /* !MODULE */
5572 static int get_version(void __user * arg)
5574 mdu_version_t ver;
5576 ver.major = MD_MAJOR_VERSION;
5577 ver.minor = MD_MINOR_VERSION;
5578 ver.patchlevel = MD_PATCHLEVEL_VERSION;
5580 if (copy_to_user(arg, &ver, sizeof(ver)))
5581 return -EFAULT;
5583 return 0;
5586 static int get_array_info(struct mddev * mddev, void __user * arg)
5588 mdu_array_info_t info;
5589 int nr,working,insync,failed,spare;
5590 struct md_rdev *rdev;
5592 nr = working = insync = failed = spare = 0;
5593 rcu_read_lock();
5594 rdev_for_each_rcu(rdev, mddev) {
5595 nr++;
5596 if (test_bit(Faulty, &rdev->flags))
5597 failed++;
5598 else {
5599 working++;
5600 if (test_bit(In_sync, &rdev->flags))
5601 insync++;
5602 else
5603 spare++;
5606 rcu_read_unlock();
5608 info.major_version = mddev->major_version;
5609 info.minor_version = mddev->minor_version;
5610 info.patch_version = MD_PATCHLEVEL_VERSION;
5611 info.ctime = mddev->ctime;
5612 info.level = mddev->level;
5613 info.size = mddev->dev_sectors / 2;
5614 if (info.size != mddev->dev_sectors / 2) /* overflow */
5615 info.size = -1;
5616 info.nr_disks = nr;
5617 info.raid_disks = mddev->raid_disks;
5618 info.md_minor = mddev->md_minor;
5619 info.not_persistent= !mddev->persistent;
5621 info.utime = mddev->utime;
5622 info.state = 0;
5623 if (mddev->in_sync)
5624 info.state = (1<<MD_SB_CLEAN);
5625 if (mddev->bitmap && mddev->bitmap_info.offset)
5626 info.state = (1<<MD_SB_BITMAP_PRESENT);
5627 info.active_disks = insync;
5628 info.working_disks = working;
5629 info.failed_disks = failed;
5630 info.spare_disks = spare;
5632 info.layout = mddev->layout;
5633 info.chunk_size = mddev->chunk_sectors << 9;
5635 if (copy_to_user(arg, &info, sizeof(info)))
5636 return -EFAULT;
5638 return 0;
5641 static int get_bitmap_file(struct mddev * mddev, void __user * arg)
5643 mdu_bitmap_file_t *file = NULL; /* too big for stack allocation */
5644 char *ptr, *buf = NULL;
5645 int err = -ENOMEM;
5647 file = kzalloc(sizeof(*file), GFP_NOIO);
5648 if (!file)
5649 goto out;
5651 /* bitmap disabled, zero the first byte and copy out */
5652 if (!mddev->bitmap || !mddev->bitmap->storage.file) {
5653 file->pathname[0] = '\0';
5654 goto copy_out;
5657 buf = kmalloc(sizeof(file->pathname), GFP_KERNEL);
5658 if (!buf)
5659 goto out;
5661 ptr = d_path(&mddev->bitmap->storage.file->f_path,
5662 buf, sizeof(file->pathname));
5663 if (IS_ERR(ptr))
5664 goto out;
5666 strcpy(file->pathname, ptr);
5668 copy_out:
5669 err = 0;
5670 if (copy_to_user(arg, file, sizeof(*file)))
5671 err = -EFAULT;
5672 out:
5673 kfree(buf);
5674 kfree(file);
5675 return err;
5678 static int get_disk_info(struct mddev * mddev, void __user * arg)
5680 mdu_disk_info_t info;
5681 struct md_rdev *rdev;
5683 if (copy_from_user(&info, arg, sizeof(info)))
5684 return -EFAULT;
5686 rcu_read_lock();
5687 rdev = find_rdev_nr_rcu(mddev, info.number);
5688 if (rdev) {
5689 info.major = MAJOR(rdev->bdev->bd_dev);
5690 info.minor = MINOR(rdev->bdev->bd_dev);
5691 info.raid_disk = rdev->raid_disk;
5692 info.state = 0;
5693 if (test_bit(Faulty, &rdev->flags))
5694 info.state |= (1<<MD_DISK_FAULTY);
5695 else if (test_bit(In_sync, &rdev->flags)) {
5696 info.state |= (1<<MD_DISK_ACTIVE);
5697 info.state |= (1<<MD_DISK_SYNC);
5699 if (test_bit(WriteMostly, &rdev->flags))
5700 info.state |= (1<<MD_DISK_WRITEMOSTLY);
5701 } else {
5702 info.major = info.minor = 0;
5703 info.raid_disk = -1;
5704 info.state = (1<<MD_DISK_REMOVED);
5706 rcu_read_unlock();
5708 if (copy_to_user(arg, &info, sizeof(info)))
5709 return -EFAULT;
5711 return 0;
5714 static int add_new_disk(struct mddev * mddev, mdu_disk_info_t *info)
5716 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
5717 struct md_rdev *rdev;
5718 dev_t dev = MKDEV(info->major,info->minor);
5720 if (info->major != MAJOR(dev) || info->minor != MINOR(dev))
5721 return -EOVERFLOW;
5723 if (!mddev->raid_disks) {
5724 int err;
5725 /* expecting a device which has a superblock */
5726 rdev = md_import_device(dev, mddev->major_version, mddev->minor_version);
5727 if (IS_ERR(rdev)) {
5728 printk(KERN_WARNING
5729 "md: md_import_device returned %ld\n",
5730 PTR_ERR(rdev));
5731 return PTR_ERR(rdev);
5733 if (!list_empty(&mddev->disks)) {
5734 struct md_rdev *rdev0
5735 = list_entry(mddev->disks.next,
5736 struct md_rdev, same_set);
5737 err = super_types[mddev->major_version]
5738 .load_super(rdev, rdev0, mddev->minor_version);
5739 if (err < 0) {
5740 printk(KERN_WARNING
5741 "md: %s has different UUID to %s\n",
5742 bdevname(rdev->bdev,b),
5743 bdevname(rdev0->bdev,b2));
5744 export_rdev(rdev);
5745 return -EINVAL;
5748 err = bind_rdev_to_array(rdev, mddev);
5749 if (err)
5750 export_rdev(rdev);
5751 return err;
5755 * add_new_disk can be used once the array is assembled
5756 * to add "hot spares". They must already have a superblock
5757 * written
5759 if (mddev->pers) {
5760 int err;
5761 if (!mddev->pers->hot_add_disk) {
5762 printk(KERN_WARNING
5763 "%s: personality does not support diskops!\n",
5764 mdname(mddev));
5765 return -EINVAL;
5767 if (mddev->persistent)
5768 rdev = md_import_device(dev, mddev->major_version,
5769 mddev->minor_version);
5770 else
5771 rdev = md_import_device(dev, -1, -1);
5772 if (IS_ERR(rdev)) {
5773 printk(KERN_WARNING
5774 "md: md_import_device returned %ld\n",
5775 PTR_ERR(rdev));
5776 return PTR_ERR(rdev);
5778 /* set saved_raid_disk if appropriate */
5779 if (!mddev->persistent) {
5780 if (info->state & (1<<MD_DISK_SYNC) &&
5781 info->raid_disk < mddev->raid_disks) {
5782 rdev->raid_disk = info->raid_disk;
5783 set_bit(In_sync, &rdev->flags);
5784 clear_bit(Bitmap_sync, &rdev->flags);
5785 } else
5786 rdev->raid_disk = -1;
5787 } else
5788 super_types[mddev->major_version].
5789 validate_super(mddev, rdev);
5790 if ((info->state & (1<<MD_DISK_SYNC)) &&
5791 rdev->raid_disk != info->raid_disk) {
5792 /* This was a hot-add request, but events doesn't
5793 * match, so reject it.
5795 export_rdev(rdev);
5796 return -EINVAL;
5799 if (test_bit(In_sync, &rdev->flags))
5800 rdev->saved_raid_disk = rdev->raid_disk;
5801 else
5802 rdev->saved_raid_disk = -1;
5804 clear_bit(In_sync, &rdev->flags); /* just to be sure */
5805 if (info->state & (1<<MD_DISK_WRITEMOSTLY))
5806 set_bit(WriteMostly, &rdev->flags);
5807 else
5808 clear_bit(WriteMostly, &rdev->flags);
5810 rdev->raid_disk = -1;
5811 err = bind_rdev_to_array(rdev, mddev);
5812 if (!err && !mddev->pers->hot_remove_disk) {
5813 /* If there is hot_add_disk but no hot_remove_disk
5814 * then added disks for geometry changes,
5815 * and should be added immediately.
5817 super_types[mddev->major_version].
5818 validate_super(mddev, rdev);
5819 err = mddev->pers->hot_add_disk(mddev, rdev);
5820 if (err)
5821 unbind_rdev_from_array(rdev);
5823 if (err)
5824 export_rdev(rdev);
5825 else
5826 sysfs_notify_dirent_safe(rdev->sysfs_state);
5828 set_bit(MD_CHANGE_DEVS, &mddev->flags);
5829 if (mddev->degraded)
5830 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
5831 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5832 if (!err)
5833 md_new_event(mddev);
5834 md_wakeup_thread(mddev->thread);
5835 return err;
5838 /* otherwise, add_new_disk is only allowed
5839 * for major_version==0 superblocks
5841 if (mddev->major_version != 0) {
5842 printk(KERN_WARNING "%s: ADD_NEW_DISK not supported\n",
5843 mdname(mddev));
5844 return -EINVAL;
5847 if (!(info->state & (1<<MD_DISK_FAULTY))) {
5848 int err;
5849 rdev = md_import_device(dev, -1, 0);
5850 if (IS_ERR(rdev)) {
5851 printk(KERN_WARNING
5852 "md: error, md_import_device() returned %ld\n",
5853 PTR_ERR(rdev));
5854 return PTR_ERR(rdev);
5856 rdev->desc_nr = info->number;
5857 if (info->raid_disk < mddev->raid_disks)
5858 rdev->raid_disk = info->raid_disk;
5859 else
5860 rdev->raid_disk = -1;
5862 if (rdev->raid_disk < mddev->raid_disks)
5863 if (info->state & (1<<MD_DISK_SYNC))
5864 set_bit(In_sync, &rdev->flags);
5866 if (info->state & (1<<MD_DISK_WRITEMOSTLY))
5867 set_bit(WriteMostly, &rdev->flags);
5869 if (!mddev->persistent) {
5870 printk(KERN_INFO "md: nonpersistent superblock ...\n");
5871 rdev->sb_start = i_size_read(rdev->bdev->bd_inode) / 512;
5872 } else
5873 rdev->sb_start = calc_dev_sboffset(rdev);
5874 rdev->sectors = rdev->sb_start;
5876 err = bind_rdev_to_array(rdev, mddev);
5877 if (err) {
5878 export_rdev(rdev);
5879 return err;
5883 return 0;
5886 static int hot_remove_disk(struct mddev * mddev, dev_t dev)
5888 char b[BDEVNAME_SIZE];
5889 struct md_rdev *rdev;
5891 rdev = find_rdev(mddev, dev);
5892 if (!rdev)
5893 return -ENXIO;
5895 clear_bit(Blocked, &rdev->flags);
5896 remove_and_add_spares(mddev, rdev);
5898 if (rdev->raid_disk >= 0)
5899 goto busy;
5901 kick_rdev_from_array(rdev);
5902 md_update_sb(mddev, 1);
5903 md_new_event(mddev);
5905 return 0;
5906 busy:
5907 printk(KERN_WARNING "md: cannot remove active disk %s from %s ...\n",
5908 bdevname(rdev->bdev,b), mdname(mddev));
5909 return -EBUSY;
5912 static int hot_add_disk(struct mddev * mddev, dev_t dev)
5914 char b[BDEVNAME_SIZE];
5915 int err;
5916 struct md_rdev *rdev;
5918 if (!mddev->pers)
5919 return -ENODEV;
5921 if (mddev->major_version != 0) {
5922 printk(KERN_WARNING "%s: HOT_ADD may only be used with"
5923 " version-0 superblocks.\n",
5924 mdname(mddev));
5925 return -EINVAL;
5927 if (!mddev->pers->hot_add_disk) {
5928 printk(KERN_WARNING
5929 "%s: personality does not support diskops!\n",
5930 mdname(mddev));
5931 return -EINVAL;
5934 rdev = md_import_device(dev, -1, 0);
5935 if (IS_ERR(rdev)) {
5936 printk(KERN_WARNING
5937 "md: error, md_import_device() returned %ld\n",
5938 PTR_ERR(rdev));
5939 return -EINVAL;
5942 if (mddev->persistent)
5943 rdev->sb_start = calc_dev_sboffset(rdev);
5944 else
5945 rdev->sb_start = i_size_read(rdev->bdev->bd_inode) / 512;
5947 rdev->sectors = rdev->sb_start;
5949 if (test_bit(Faulty, &rdev->flags)) {
5950 printk(KERN_WARNING
5951 "md: can not hot-add faulty %s disk to %s!\n",
5952 bdevname(rdev->bdev,b), mdname(mddev));
5953 err = -EINVAL;
5954 goto abort_export;
5956 clear_bit(In_sync, &rdev->flags);
5957 rdev->desc_nr = -1;
5958 rdev->saved_raid_disk = -1;
5959 err = bind_rdev_to_array(rdev, mddev);
5960 if (err)
5961 goto abort_export;
5964 * The rest should better be atomic, we can have disk failures
5965 * noticed in interrupt contexts ...
5968 rdev->raid_disk = -1;
5970 md_update_sb(mddev, 1);
5973 * Kick recovery, maybe this spare has to be added to the
5974 * array immediately.
5976 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5977 md_wakeup_thread(mddev->thread);
5978 md_new_event(mddev);
5979 return 0;
5981 abort_export:
5982 export_rdev(rdev);
5983 return err;
5986 static int set_bitmap_file(struct mddev *mddev, int fd)
5988 int err;
5990 if (mddev->pers) {
5991 if (!mddev->pers->quiesce)
5992 return -EBUSY;
5993 if (mddev->recovery || mddev->sync_thread)
5994 return -EBUSY;
5995 /* we should be able to change the bitmap.. */
5999 if (fd >= 0) {
6000 if (mddev->bitmap)
6001 return -EEXIST; /* cannot add when bitmap is present */
6002 mddev->bitmap_info.file = fget(fd);
6004 if (mddev->bitmap_info.file == NULL) {
6005 printk(KERN_ERR "%s: error: failed to get bitmap file\n",
6006 mdname(mddev));
6007 return -EBADF;
6010 err = deny_bitmap_write_access(mddev->bitmap_info.file);
6011 if (err) {
6012 printk(KERN_ERR "%s: error: bitmap file is already in use\n",
6013 mdname(mddev));
6014 fput(mddev->bitmap_info.file);
6015 mddev->bitmap_info.file = NULL;
6016 return err;
6018 mddev->bitmap_info.offset = 0; /* file overrides offset */
6019 } else if (mddev->bitmap == NULL)
6020 return -ENOENT; /* cannot remove what isn't there */
6021 err = 0;
6022 if (mddev->pers) {
6023 mddev->pers->quiesce(mddev, 1);
6024 if (fd >= 0) {
6025 err = bitmap_create(mddev);
6026 if (!err)
6027 err = bitmap_load(mddev);
6029 if (fd < 0 || err) {
6030 bitmap_destroy(mddev);
6031 fd = -1; /* make sure to put the file */
6033 mddev->pers->quiesce(mddev, 0);
6035 if (fd < 0) {
6036 if (mddev->bitmap_info.file) {
6037 restore_bitmap_write_access(mddev->bitmap_info.file);
6038 fput(mddev->bitmap_info.file);
6040 mddev->bitmap_info.file = NULL;
6043 return err;
6047 * set_array_info is used two different ways
6048 * The original usage is when creating a new array.
6049 * In this usage, raid_disks is > 0 and it together with
6050 * level, size, not_persistent,layout,chunksize determine the
6051 * shape of the array.
6052 * This will always create an array with a type-0.90.0 superblock.
6053 * The newer usage is when assembling an array.
6054 * In this case raid_disks will be 0, and the major_version field is
6055 * use to determine which style super-blocks are to be found on the devices.
6056 * The minor and patch _version numbers are also kept incase the
6057 * super_block handler wishes to interpret them.
6059 static int set_array_info(struct mddev * mddev, mdu_array_info_t *info)
6062 if (info->raid_disks == 0) {
6063 /* just setting version number for superblock loading */
6064 if (info->major_version < 0 ||
6065 info->major_version >= ARRAY_SIZE(super_types) ||
6066 super_types[info->major_version].name == NULL) {
6067 /* maybe try to auto-load a module? */
6068 printk(KERN_INFO
6069 "md: superblock version %d not known\n",
6070 info->major_version);
6071 return -EINVAL;
6073 mddev->major_version = info->major_version;
6074 mddev->minor_version = info->minor_version;
6075 mddev->patch_version = info->patch_version;
6076 mddev->persistent = !info->not_persistent;
6077 /* ensure mddev_put doesn't delete this now that there
6078 * is some minimal configuration.
6080 mddev->ctime = get_seconds();
6081 return 0;
6083 mddev->major_version = MD_MAJOR_VERSION;
6084 mddev->minor_version = MD_MINOR_VERSION;
6085 mddev->patch_version = MD_PATCHLEVEL_VERSION;
6086 mddev->ctime = get_seconds();
6088 mddev->level = info->level;
6089 mddev->clevel[0] = 0;
6090 mddev->dev_sectors = 2 * (sector_t)info->size;
6091 mddev->raid_disks = info->raid_disks;
6092 /* don't set md_minor, it is determined by which /dev/md* was
6093 * openned
6095 if (info->state & (1<<MD_SB_CLEAN))
6096 mddev->recovery_cp = MaxSector;
6097 else
6098 mddev->recovery_cp = 0;
6099 mddev->persistent = ! info->not_persistent;
6100 mddev->external = 0;
6102 mddev->layout = info->layout;
6103 mddev->chunk_sectors = info->chunk_size >> 9;
6105 mddev->max_disks = MD_SB_DISKS;
6107 if (mddev->persistent)
6108 mddev->flags = 0;
6109 set_bit(MD_CHANGE_DEVS, &mddev->flags);
6111 mddev->bitmap_info.default_offset = MD_SB_BYTES >> 9;
6112 mddev->bitmap_info.default_space = 64*2 - (MD_SB_BYTES >> 9);
6113 mddev->bitmap_info.offset = 0;
6115 mddev->reshape_position = MaxSector;
6118 * Generate a 128 bit UUID
6120 get_random_bytes(mddev->uuid, 16);
6122 mddev->new_level = mddev->level;
6123 mddev->new_chunk_sectors = mddev->chunk_sectors;
6124 mddev->new_layout = mddev->layout;
6125 mddev->delta_disks = 0;
6126 mddev->reshape_backwards = 0;
6128 return 0;
6131 void md_set_array_sectors(struct mddev *mddev, sector_t array_sectors)
6133 WARN(!mddev_is_locked(mddev), "%s: unlocked mddev!\n", __func__);
6135 if (mddev->external_size)
6136 return;
6138 mddev->array_sectors = array_sectors;
6140 EXPORT_SYMBOL(md_set_array_sectors);
6142 static int update_size(struct mddev *mddev, sector_t num_sectors)
6144 struct md_rdev *rdev;
6145 int rv;
6146 int fit = (num_sectors == 0);
6148 if (mddev->pers->resize == NULL)
6149 return -EINVAL;
6150 /* The "num_sectors" is the number of sectors of each device that
6151 * is used. This can only make sense for arrays with redundancy.
6152 * linear and raid0 always use whatever space is available. We can only
6153 * consider changing this number if no resync or reconstruction is
6154 * happening, and if the new size is acceptable. It must fit before the
6155 * sb_start or, if that is <data_offset, it must fit before the size
6156 * of each device. If num_sectors is zero, we find the largest size
6157 * that fits.
6159 if (mddev->sync_thread)
6160 return -EBUSY;
6162 rdev_for_each(rdev, mddev) {
6163 sector_t avail = rdev->sectors;
6165 if (fit && (num_sectors == 0 || num_sectors > avail))
6166 num_sectors = avail;
6167 if (avail < num_sectors)
6168 return -ENOSPC;
6170 rv = mddev->pers->resize(mddev, num_sectors);
6171 if (!rv)
6172 revalidate_disk(mddev->gendisk);
6173 return rv;
6176 static int update_raid_disks(struct mddev *mddev, int raid_disks)
6178 int rv;
6179 struct md_rdev *rdev;
6180 /* change the number of raid disks */
6181 if (mddev->pers->check_reshape == NULL)
6182 return -EINVAL;
6183 if (raid_disks <= 0 ||
6184 (mddev->max_disks && raid_disks >= mddev->max_disks))
6185 return -EINVAL;
6186 if (mddev->sync_thread || mddev->reshape_position != MaxSector)
6187 return -EBUSY;
6189 rdev_for_each(rdev, mddev) {
6190 if (mddev->raid_disks < raid_disks &&
6191 rdev->data_offset < rdev->new_data_offset)
6192 return -EINVAL;
6193 if (mddev->raid_disks > raid_disks &&
6194 rdev->data_offset > rdev->new_data_offset)
6195 return -EINVAL;
6198 mddev->delta_disks = raid_disks - mddev->raid_disks;
6199 if (mddev->delta_disks < 0)
6200 mddev->reshape_backwards = 1;
6201 else if (mddev->delta_disks > 0)
6202 mddev->reshape_backwards = 0;
6204 rv = mddev->pers->check_reshape(mddev);
6205 if (rv < 0) {
6206 mddev->delta_disks = 0;
6207 mddev->reshape_backwards = 0;
6209 return rv;
6214 * update_array_info is used to change the configuration of an
6215 * on-line array.
6216 * The version, ctime,level,size,raid_disks,not_persistent, layout,chunk_size
6217 * fields in the info are checked against the array.
6218 * Any differences that cannot be handled will cause an error.
6219 * Normally, only one change can be managed at a time.
6221 static int update_array_info(struct mddev *mddev, mdu_array_info_t *info)
6223 int rv = 0;
6224 int cnt = 0;
6225 int state = 0;
6227 /* calculate expected state,ignoring low bits */
6228 if (mddev->bitmap && mddev->bitmap_info.offset)
6229 state |= (1 << MD_SB_BITMAP_PRESENT);
6231 if (mddev->major_version != info->major_version ||
6232 mddev->minor_version != info->minor_version ||
6233 /* mddev->patch_version != info->patch_version || */
6234 mddev->ctime != info->ctime ||
6235 mddev->level != info->level ||
6236 /* mddev->layout != info->layout || */
6237 mddev->persistent != !info->not_persistent ||
6238 mddev->chunk_sectors != info->chunk_size >> 9 ||
6239 /* ignore bottom 8 bits of state, and allow SB_BITMAP_PRESENT to change */
6240 ((state^info->state) & 0xfffffe00)
6242 return -EINVAL;
6243 /* Check there is only one change */
6244 if (info->size >= 0 && mddev->dev_sectors / 2 != info->size)
6245 cnt++;
6246 if (mddev->raid_disks != info->raid_disks)
6247 cnt++;
6248 if (mddev->layout != info->layout)
6249 cnt++;
6250 if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT))
6251 cnt++;
6252 if (cnt == 0)
6253 return 0;
6254 if (cnt > 1)
6255 return -EINVAL;
6257 if (mddev->layout != info->layout) {
6258 /* Change layout
6259 * we don't need to do anything at the md level, the
6260 * personality will take care of it all.
6262 if (mddev->pers->check_reshape == NULL)
6263 return -EINVAL;
6264 else {
6265 mddev->new_layout = info->layout;
6266 rv = mddev->pers->check_reshape(mddev);
6267 if (rv)
6268 mddev->new_layout = mddev->layout;
6269 return rv;
6272 if (info->size >= 0 && mddev->dev_sectors / 2 != info->size)
6273 rv = update_size(mddev, (sector_t)info->size * 2);
6275 if (mddev->raid_disks != info->raid_disks)
6276 rv = update_raid_disks(mddev, info->raid_disks);
6278 if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT)) {
6279 if (mddev->pers->quiesce == NULL)
6280 return -EINVAL;
6281 if (mddev->recovery || mddev->sync_thread)
6282 return -EBUSY;
6283 if (info->state & (1<<MD_SB_BITMAP_PRESENT)) {
6284 /* add the bitmap */
6285 if (mddev->bitmap)
6286 return -EEXIST;
6287 if (mddev->bitmap_info.default_offset == 0)
6288 return -EINVAL;
6289 mddev->bitmap_info.offset =
6290 mddev->bitmap_info.default_offset;
6291 mddev->bitmap_info.space =
6292 mddev->bitmap_info.default_space;
6293 mddev->pers->quiesce(mddev, 1);
6294 rv = bitmap_create(mddev);
6295 if (!rv)
6296 rv = bitmap_load(mddev);
6297 if (rv)
6298 bitmap_destroy(mddev);
6299 mddev->pers->quiesce(mddev, 0);
6300 } else {
6301 /* remove the bitmap */
6302 if (!mddev->bitmap)
6303 return -ENOENT;
6304 if (mddev->bitmap->storage.file)
6305 return -EINVAL;
6306 mddev->pers->quiesce(mddev, 1);
6307 bitmap_destroy(mddev);
6308 mddev->pers->quiesce(mddev, 0);
6309 mddev->bitmap_info.offset = 0;
6312 md_update_sb(mddev, 1);
6313 return rv;
6316 static int set_disk_faulty(struct mddev *mddev, dev_t dev)
6318 struct md_rdev *rdev;
6319 int err = 0;
6321 if (mddev->pers == NULL)
6322 return -ENODEV;
6324 rcu_read_lock();
6325 rdev = find_rdev_rcu(mddev, dev);
6326 if (!rdev)
6327 err = -ENODEV;
6328 else {
6329 md_error(mddev, rdev);
6330 if (!test_bit(Faulty, &rdev->flags))
6331 err = -EBUSY;
6333 rcu_read_unlock();
6334 return err;
6338 * We have a problem here : there is no easy way to give a CHS
6339 * virtual geometry. We currently pretend that we have a 2 heads
6340 * 4 sectors (with a BIG number of cylinders...). This drives
6341 * dosfs just mad... ;-)
6343 static int md_getgeo(struct block_device *bdev, struct hd_geometry *geo)
6345 struct mddev *mddev = bdev->bd_disk->private_data;
6347 geo->heads = 2;
6348 geo->sectors = 4;
6349 geo->cylinders = mddev->array_sectors / 8;
6350 return 0;
6353 static int md_ioctl(struct block_device *bdev, fmode_t mode,
6354 unsigned int cmd, unsigned long arg)
6356 int err = 0;
6357 void __user *argp = (void __user *)arg;
6358 struct mddev *mddev = NULL;
6359 int ro;
6361 switch (cmd) {
6362 case RAID_VERSION:
6363 case GET_ARRAY_INFO:
6364 case GET_DISK_INFO:
6365 break;
6366 default:
6367 if (!capable(CAP_SYS_ADMIN))
6368 return -EACCES;
6372 * Commands dealing with the RAID driver but not any
6373 * particular array:
6375 switch (cmd) {
6376 case RAID_VERSION:
6377 err = get_version(argp);
6378 goto done;
6380 case PRINT_RAID_DEBUG:
6381 err = 0;
6382 md_print_devices();
6383 goto done;
6385 #ifndef MODULE
6386 case RAID_AUTORUN:
6387 err = 0;
6388 autostart_arrays(arg);
6389 goto done;
6390 #endif
6391 default:;
6395 * Commands creating/starting a new array:
6398 mddev = bdev->bd_disk->private_data;
6400 if (!mddev) {
6401 BUG();
6402 goto abort;
6405 /* Some actions do not requires the mutex */
6406 switch (cmd) {
6407 case GET_ARRAY_INFO:
6408 if (!mddev->raid_disks && !mddev->external)
6409 err = -ENODEV;
6410 else
6411 err = get_array_info(mddev, argp);
6412 goto abort;
6414 case GET_DISK_INFO:
6415 if (!mddev->raid_disks && !mddev->external)
6416 err = -ENODEV;
6417 else
6418 err = get_disk_info(mddev, argp);
6419 goto abort;
6421 case SET_DISK_FAULTY:
6422 err = set_disk_faulty(mddev, new_decode_dev(arg));
6423 goto abort;
6426 if (cmd == ADD_NEW_DISK)
6427 /* need to ensure md_delayed_delete() has completed */
6428 flush_workqueue(md_misc_wq);
6430 if (cmd == HOT_REMOVE_DISK)
6431 /* need to ensure recovery thread has run */
6432 wait_event_interruptible_timeout(mddev->sb_wait,
6433 !test_bit(MD_RECOVERY_NEEDED,
6434 &mddev->flags),
6435 msecs_to_jiffies(5000));
6436 if (cmd == STOP_ARRAY || cmd == STOP_ARRAY_RO) {
6437 /* Need to flush page cache, and ensure no-one else opens
6438 * and writes
6440 mutex_lock(&mddev->open_mutex);
6441 if (atomic_read(&mddev->openers) > 1) {
6442 mutex_unlock(&mddev->open_mutex);
6443 err = -EBUSY;
6444 goto abort;
6446 set_bit(MD_STILL_CLOSED, &mddev->flags);
6447 mutex_unlock(&mddev->open_mutex);
6448 sync_blockdev(bdev);
6450 err = mddev_lock(mddev);
6451 if (err) {
6452 printk(KERN_INFO
6453 "md: ioctl lock interrupted, reason %d, cmd %d\n",
6454 err, cmd);
6455 goto abort;
6458 if (cmd == SET_ARRAY_INFO) {
6459 mdu_array_info_t info;
6460 if (!arg)
6461 memset(&info, 0, sizeof(info));
6462 else if (copy_from_user(&info, argp, sizeof(info))) {
6463 err = -EFAULT;
6464 goto abort_unlock;
6466 if (mddev->pers) {
6467 err = update_array_info(mddev, &info);
6468 if (err) {
6469 printk(KERN_WARNING "md: couldn't update"
6470 " array info. %d\n", err);
6471 goto abort_unlock;
6473 goto done_unlock;
6475 if (!list_empty(&mddev->disks)) {
6476 printk(KERN_WARNING
6477 "md: array %s already has disks!\n",
6478 mdname(mddev));
6479 err = -EBUSY;
6480 goto abort_unlock;
6482 if (mddev->raid_disks) {
6483 printk(KERN_WARNING
6484 "md: array %s already initialised!\n",
6485 mdname(mddev));
6486 err = -EBUSY;
6487 goto abort_unlock;
6489 err = set_array_info(mddev, &info);
6490 if (err) {
6491 printk(KERN_WARNING "md: couldn't set"
6492 " array info. %d\n", err);
6493 goto abort_unlock;
6495 goto done_unlock;
6499 * Commands querying/configuring an existing array:
6501 /* if we are not initialised yet, only ADD_NEW_DISK, STOP_ARRAY,
6502 * RUN_ARRAY, and GET_ and SET_BITMAP_FILE are allowed */
6503 if ((!mddev->raid_disks && !mddev->external)
6504 && cmd != ADD_NEW_DISK && cmd != STOP_ARRAY
6505 && cmd != RUN_ARRAY && cmd != SET_BITMAP_FILE
6506 && cmd != GET_BITMAP_FILE) {
6507 err = -ENODEV;
6508 goto abort_unlock;
6512 * Commands even a read-only array can execute:
6514 switch (cmd) {
6515 case GET_BITMAP_FILE:
6516 err = get_bitmap_file(mddev, argp);
6517 goto done_unlock;
6519 case RESTART_ARRAY_RW:
6520 err = restart_array(mddev);
6521 goto done_unlock;
6523 case STOP_ARRAY:
6524 err = do_md_stop(mddev, 0, bdev);
6525 goto done_unlock;
6527 case STOP_ARRAY_RO:
6528 err = md_set_readonly(mddev, bdev);
6529 goto done_unlock;
6531 case HOT_REMOVE_DISK:
6532 err = hot_remove_disk(mddev, new_decode_dev(arg));
6533 goto done_unlock;
6535 case ADD_NEW_DISK:
6536 /* We can support ADD_NEW_DISK on read-only arrays
6537 * on if we are re-adding a preexisting device.
6538 * So require mddev->pers and MD_DISK_SYNC.
6540 if (mddev->pers) {
6541 mdu_disk_info_t info;
6542 if (copy_from_user(&info, argp, sizeof(info)))
6543 err = -EFAULT;
6544 else if (!(info.state & (1<<MD_DISK_SYNC)))
6545 /* Need to clear read-only for this */
6546 break;
6547 else
6548 err = add_new_disk(mddev, &info);
6549 goto done_unlock;
6551 break;
6553 case BLKROSET:
6554 if (get_user(ro, (int __user *)(arg))) {
6555 err = -EFAULT;
6556 goto done_unlock;
6558 err = -EINVAL;
6560 /* if the bdev is going readonly the value of mddev->ro
6561 * does not matter, no writes are coming
6563 if (ro)
6564 goto done_unlock;
6566 /* are we are already prepared for writes? */
6567 if (mddev->ro != 1)
6568 goto done_unlock;
6570 /* transitioning to readauto need only happen for
6571 * arrays that call md_write_start
6573 if (mddev->pers) {
6574 err = restart_array(mddev);
6575 if (err == 0) {
6576 mddev->ro = 2;
6577 set_disk_ro(mddev->gendisk, 0);
6580 goto done_unlock;
6584 * The remaining ioctls are changing the state of the
6585 * superblock, so we do not allow them on read-only arrays.
6586 * However non-MD ioctls (e.g. get-size) will still come through
6587 * here and hit the 'default' below, so only disallow
6588 * 'md' ioctls, and switch to rw mode if started auto-readonly.
6590 if (_IOC_TYPE(cmd) == MD_MAJOR && mddev->ro && mddev->pers) {
6591 if (mddev->ro == 2) {
6592 mddev->ro = 0;
6593 sysfs_notify_dirent_safe(mddev->sysfs_state);
6594 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
6595 /* mddev_unlock will wake thread */
6596 /* If a device failed while we were read-only, we
6597 * need to make sure the metadata is updated now.
6599 if (test_bit(MD_CHANGE_DEVS, &mddev->flags)) {
6600 mddev_unlock(mddev);
6601 wait_event(mddev->sb_wait,
6602 !test_bit(MD_CHANGE_DEVS, &mddev->flags) &&
6603 !test_bit(MD_CHANGE_PENDING, &mddev->flags));
6604 mddev_lock(mddev);
6606 } else {
6607 err = -EROFS;
6608 goto abort_unlock;
6612 switch (cmd) {
6613 case ADD_NEW_DISK:
6615 mdu_disk_info_t info;
6616 if (copy_from_user(&info, argp, sizeof(info)))
6617 err = -EFAULT;
6618 else
6619 err = add_new_disk(mddev, &info);
6620 goto done_unlock;
6623 case HOT_ADD_DISK:
6624 err = hot_add_disk(mddev, new_decode_dev(arg));
6625 goto done_unlock;
6627 case RUN_ARRAY:
6628 err = do_md_run(mddev);
6629 goto done_unlock;
6631 case SET_BITMAP_FILE:
6632 err = set_bitmap_file(mddev, (int)arg);
6633 goto done_unlock;
6635 default:
6636 err = -EINVAL;
6637 goto abort_unlock;
6640 done_unlock:
6641 abort_unlock:
6642 if (mddev->hold_active == UNTIL_IOCTL &&
6643 err != -EINVAL)
6644 mddev->hold_active = 0;
6645 mddev_unlock(mddev);
6647 return err;
6648 done:
6649 if (err)
6650 MD_BUG();
6651 abort:
6652 return err;
6654 #ifdef CONFIG_COMPAT
6655 static int md_compat_ioctl(struct block_device *bdev, fmode_t mode,
6656 unsigned int cmd, unsigned long arg)
6658 switch (cmd) {
6659 case HOT_REMOVE_DISK:
6660 case HOT_ADD_DISK:
6661 case SET_DISK_FAULTY:
6662 case SET_BITMAP_FILE:
6663 /* These take in integer arg, do not convert */
6664 break;
6665 default:
6666 arg = (unsigned long)compat_ptr(arg);
6667 break;
6670 return md_ioctl(bdev, mode, cmd, arg);
6672 #endif /* CONFIG_COMPAT */
6674 static int md_open(struct block_device *bdev, fmode_t mode)
6677 * Succeed if we can lock the mddev, which confirms that
6678 * it isn't being stopped right now.
6680 struct mddev *mddev = mddev_find(bdev->bd_dev);
6681 int err;
6683 if (!mddev)
6684 return -ENODEV;
6686 if (mddev->gendisk != bdev->bd_disk) {
6687 /* we are racing with mddev_put which is discarding this
6688 * bd_disk.
6690 mddev_put(mddev);
6691 /* Wait until bdev->bd_disk is definitely gone */
6692 flush_workqueue(md_misc_wq);
6693 /* Then retry the open from the top */
6694 return -ERESTARTSYS;
6696 BUG_ON(mddev != bdev->bd_disk->private_data);
6698 if ((err = mutex_lock_interruptible(&mddev->open_mutex)))
6699 goto out;
6701 err = 0;
6702 atomic_inc(&mddev->openers);
6703 clear_bit(MD_STILL_CLOSED, &mddev->flags);
6704 mutex_unlock(&mddev->open_mutex);
6706 check_disk_change(bdev);
6707 out:
6708 return err;
6711 static void md_release(struct gendisk *disk, fmode_t mode)
6713 struct mddev *mddev = disk->private_data;
6715 BUG_ON(!mddev);
6716 atomic_dec(&mddev->openers);
6717 mddev_put(mddev);
6720 static int md_media_changed(struct gendisk *disk)
6722 struct mddev *mddev = disk->private_data;
6724 return mddev->changed;
6727 static int md_revalidate(struct gendisk *disk)
6729 struct mddev *mddev = disk->private_data;
6731 mddev->changed = 0;
6732 return 0;
6734 static const struct block_device_operations md_fops =
6736 .owner = THIS_MODULE,
6737 .open = md_open,
6738 .release = md_release,
6739 .ioctl = md_ioctl,
6740 #ifdef CONFIG_COMPAT
6741 .compat_ioctl = md_compat_ioctl,
6742 #endif
6743 .getgeo = md_getgeo,
6744 .media_changed = md_media_changed,
6745 .revalidate_disk= md_revalidate,
6748 static int md_thread(void * arg)
6750 struct md_thread *thread = arg;
6753 * md_thread is a 'system-thread', it's priority should be very
6754 * high. We avoid resource deadlocks individually in each
6755 * raid personality. (RAID5 does preallocation) We also use RR and
6756 * the very same RT priority as kswapd, thus we will never get
6757 * into a priority inversion deadlock.
6759 * we definitely have to have equal or higher priority than
6760 * bdflush, otherwise bdflush will deadlock if there are too
6761 * many dirty RAID5 blocks.
6764 allow_signal(SIGKILL);
6765 while (!kthread_should_stop()) {
6767 /* We need to wait INTERRUPTIBLE so that
6768 * we don't add to the load-average.
6769 * That means we need to be sure no signals are
6770 * pending
6772 if (signal_pending(current))
6773 flush_signals(current);
6775 wait_event_interruptible_timeout
6776 (thread->wqueue,
6777 test_bit(THREAD_WAKEUP, &thread->flags)
6778 || kthread_should_stop(),
6779 thread->timeout);
6781 clear_bit(THREAD_WAKEUP, &thread->flags);
6782 if (!kthread_should_stop())
6783 thread->run(thread);
6786 return 0;
6789 void md_wakeup_thread(struct md_thread *thread)
6791 if (thread) {
6792 pr_debug("md: waking up MD thread %s.\n", thread->tsk->comm);
6793 set_bit(THREAD_WAKEUP, &thread->flags);
6794 wake_up(&thread->wqueue);
6798 struct md_thread *md_register_thread(void (*run) (struct md_thread *),
6799 struct mddev *mddev, const char *name)
6801 struct md_thread *thread;
6803 thread = kzalloc(sizeof(struct md_thread), GFP_KERNEL);
6804 if (!thread)
6805 return NULL;
6807 init_waitqueue_head(&thread->wqueue);
6809 thread->run = run;
6810 thread->mddev = mddev;
6811 thread->timeout = MAX_SCHEDULE_TIMEOUT;
6812 thread->tsk = kthread_run(md_thread, thread,
6813 "%s_%s",
6814 mdname(thread->mddev),
6815 name);
6816 if (IS_ERR(thread->tsk)) {
6817 kfree(thread);
6818 return NULL;
6820 return thread;
6823 void md_unregister_thread(struct md_thread **threadp)
6825 struct md_thread *thread = *threadp;
6826 if (!thread)
6827 return;
6828 pr_debug("interrupting MD-thread pid %d\n", task_pid_nr(thread->tsk));
6829 /* Locking ensures that mddev_unlock does not wake_up a
6830 * non-existent thread
6832 spin_lock(&pers_lock);
6833 *threadp = NULL;
6834 spin_unlock(&pers_lock);
6836 kthread_stop(thread->tsk);
6837 kfree(thread);
6840 void md_error(struct mddev *mddev, struct md_rdev *rdev)
6842 if (!mddev) {
6843 MD_BUG();
6844 return;
6847 if (!rdev || test_bit(Faulty, &rdev->flags))
6848 return;
6850 if (!mddev->pers || !mddev->pers->error_handler)
6851 return;
6852 mddev->pers->error_handler(mddev,rdev);
6853 if (mddev->degraded)
6854 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
6855 sysfs_notify_dirent_safe(rdev->sysfs_state);
6856 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
6857 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
6858 md_wakeup_thread(mddev->thread);
6859 if (mddev->event_work.func)
6860 queue_work(md_misc_wq, &mddev->event_work);
6861 md_new_event_inintr(mddev);
6864 /* seq_file implementation /proc/mdstat */
6866 static void status_unused(struct seq_file *seq)
6868 int i = 0;
6869 struct md_rdev *rdev;
6871 seq_printf(seq, "unused devices: ");
6873 list_for_each_entry(rdev, &pending_raid_disks, same_set) {
6874 char b[BDEVNAME_SIZE];
6875 i++;
6876 seq_printf(seq, "%s ",
6877 bdevname(rdev->bdev,b));
6879 if (!i)
6880 seq_printf(seq, "<none>");
6882 seq_printf(seq, "\n");
6886 static void status_resync(struct seq_file *seq, struct mddev * mddev)
6888 sector_t max_sectors, resync, res;
6889 unsigned long dt, db;
6890 sector_t rt;
6891 int scale;
6892 unsigned int per_milli;
6894 if (mddev->curr_resync <= 3)
6895 resync = 0;
6896 else
6897 resync = mddev->curr_resync
6898 - atomic_read(&mddev->recovery_active);
6900 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ||
6901 test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
6902 max_sectors = mddev->resync_max_sectors;
6903 else
6904 max_sectors = mddev->dev_sectors;
6907 * Should not happen.
6909 if (!max_sectors) {
6910 MD_BUG();
6911 return;
6913 /* Pick 'scale' such that (resync>>scale)*1000 will fit
6914 * in a sector_t, and (max_sectors>>scale) will fit in a
6915 * u32, as those are the requirements for sector_div.
6916 * Thus 'scale' must be at least 10
6918 scale = 10;
6919 if (sizeof(sector_t) > sizeof(unsigned long)) {
6920 while ( max_sectors/2 > (1ULL<<(scale+32)))
6921 scale++;
6923 res = (resync>>scale)*1000;
6924 sector_div(res, (u32)((max_sectors>>scale)+1));
6926 per_milli = res;
6928 int i, x = per_milli/50, y = 20-x;
6929 seq_printf(seq, "[");
6930 for (i = 0; i < x; i++)
6931 seq_printf(seq, "=");
6932 seq_printf(seq, ">");
6933 for (i = 0; i < y; i++)
6934 seq_printf(seq, ".");
6935 seq_printf(seq, "] ");
6937 seq_printf(seq, " %s =%3u.%u%% (%llu/%llu)",
6938 (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)?
6939 "reshape" :
6940 (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)?
6941 "check" :
6942 (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ?
6943 "resync" : "recovery"))),
6944 per_milli/10, per_milli % 10,
6945 (unsigned long long) resync/2,
6946 (unsigned long long) max_sectors/2);
6949 * dt: time from mark until now
6950 * db: blocks written from mark until now
6951 * rt: remaining time
6953 * rt is a sector_t, so could be 32bit or 64bit.
6954 * So we divide before multiply in case it is 32bit and close
6955 * to the limit.
6956 * We scale the divisor (db) by 32 to avoid losing precision
6957 * near the end of resync when the number of remaining sectors
6958 * is close to 'db'.
6959 * We then divide rt by 32 after multiplying by db to compensate.
6960 * The '+1' avoids division by zero if db is very small.
6962 dt = ((jiffies - mddev->resync_mark) / HZ);
6963 if (!dt) dt++;
6964 db = (mddev->curr_mark_cnt - atomic_read(&mddev->recovery_active))
6965 - mddev->resync_mark_cnt;
6967 rt = max_sectors - resync; /* number of remaining sectors */
6968 sector_div(rt, db/32+1);
6969 rt *= dt;
6970 rt >>= 5;
6972 seq_printf(seq, " finish=%lu.%lumin", (unsigned long)rt / 60,
6973 ((unsigned long)rt % 60)/6);
6975 seq_printf(seq, " speed=%ldK/sec", db/2/dt);
6978 static void *md_seq_start(struct seq_file *seq, loff_t *pos)
6980 struct list_head *tmp;
6981 loff_t l = *pos;
6982 struct mddev *mddev;
6984 if (l >= 0x10000)
6985 return NULL;
6986 if (!l--)
6987 /* header */
6988 return (void*)1;
6990 spin_lock(&all_mddevs_lock);
6991 list_for_each(tmp,&all_mddevs)
6992 if (!l--) {
6993 mddev = list_entry(tmp, struct mddev, all_mddevs);
6994 mddev_get(mddev);
6995 spin_unlock(&all_mddevs_lock);
6996 return mddev;
6998 spin_unlock(&all_mddevs_lock);
6999 if (!l--)
7000 return (void*)2;/* tail */
7001 return NULL;
7004 static void *md_seq_next(struct seq_file *seq, void *v, loff_t *pos)
7006 struct list_head *tmp;
7007 struct mddev *next_mddev, *mddev = v;
7009 ++*pos;
7010 if (v == (void*)2)
7011 return NULL;
7013 spin_lock(&all_mddevs_lock);
7014 if (v == (void*)1)
7015 tmp = all_mddevs.next;
7016 else
7017 tmp = mddev->all_mddevs.next;
7018 if (tmp != &all_mddevs)
7019 next_mddev = mddev_get(list_entry(tmp,struct mddev,all_mddevs));
7020 else {
7021 next_mddev = (void*)2;
7022 *pos = 0x10000;
7024 spin_unlock(&all_mddevs_lock);
7026 if (v != (void*)1)
7027 mddev_put(mddev);
7028 return next_mddev;
7032 static void md_seq_stop(struct seq_file *seq, void *v)
7034 struct mddev *mddev = v;
7036 if (mddev && v != (void*)1 && v != (void*)2)
7037 mddev_put(mddev);
7040 static int md_seq_show(struct seq_file *seq, void *v)
7042 struct mddev *mddev = v;
7043 sector_t sectors;
7044 struct md_rdev *rdev;
7046 if (v == (void*)1) {
7047 struct md_personality *pers;
7048 seq_printf(seq, "Personalities : ");
7049 spin_lock(&pers_lock);
7050 list_for_each_entry(pers, &pers_list, list)
7051 seq_printf(seq, "[%s] ", pers->name);
7053 spin_unlock(&pers_lock);
7054 seq_printf(seq, "\n");
7055 seq->poll_event = atomic_read(&md_event_count);
7056 return 0;
7058 if (v == (void*)2) {
7059 status_unused(seq);
7060 return 0;
7063 if (mddev_lock(mddev) < 0)
7064 return -EINTR;
7066 if (mddev->pers || mddev->raid_disks || !list_empty(&mddev->disks)) {
7067 seq_printf(seq, "%s : %sactive", mdname(mddev),
7068 mddev->pers ? "" : "in");
7069 if (mddev->pers) {
7070 if (mddev->ro==1)
7071 seq_printf(seq, " (read-only)");
7072 if (mddev->ro==2)
7073 seq_printf(seq, " (auto-read-only)");
7074 seq_printf(seq, " %s", mddev->pers->name);
7077 sectors = 0;
7078 rdev_for_each(rdev, mddev) {
7079 char b[BDEVNAME_SIZE];
7080 seq_printf(seq, " %s[%d]",
7081 bdevname(rdev->bdev,b), rdev->desc_nr);
7082 if (test_bit(WriteMostly, &rdev->flags))
7083 seq_printf(seq, "(W)");
7084 if (test_bit(Faulty, &rdev->flags)) {
7085 seq_printf(seq, "(F)");
7086 continue;
7088 if (rdev->raid_disk < 0)
7089 seq_printf(seq, "(S)"); /* spare */
7090 if (test_bit(Replacement, &rdev->flags))
7091 seq_printf(seq, "(R)");
7092 sectors += rdev->sectors;
7095 if (!list_empty(&mddev->disks)) {
7096 if (mddev->pers)
7097 seq_printf(seq, "\n %llu blocks",
7098 (unsigned long long)
7099 mddev->array_sectors / 2);
7100 else
7101 seq_printf(seq, "\n %llu blocks",
7102 (unsigned long long)sectors / 2);
7104 if (mddev->persistent) {
7105 if (mddev->major_version != 0 ||
7106 mddev->minor_version != 90) {
7107 seq_printf(seq," super %d.%d",
7108 mddev->major_version,
7109 mddev->minor_version);
7111 } else if (mddev->external)
7112 seq_printf(seq, " super external:%s",
7113 mddev->metadata_type);
7114 else
7115 seq_printf(seq, " super non-persistent");
7117 if (mddev->pers) {
7118 mddev->pers->status(seq, mddev);
7119 seq_printf(seq, "\n ");
7120 if (mddev->pers->sync_request) {
7121 if (mddev->curr_resync > 2) {
7122 status_resync(seq, mddev);
7123 seq_printf(seq, "\n ");
7124 } else if (mddev->curr_resync >= 1)
7125 seq_printf(seq, "\tresync=DELAYED\n ");
7126 else if (mddev->recovery_cp < MaxSector)
7127 seq_printf(seq, "\tresync=PENDING\n ");
7129 } else
7130 seq_printf(seq, "\n ");
7132 bitmap_status(seq, mddev->bitmap);
7134 seq_printf(seq, "\n");
7136 mddev_unlock(mddev);
7138 return 0;
7141 static const struct seq_operations md_seq_ops = {
7142 .start = md_seq_start,
7143 .next = md_seq_next,
7144 .stop = md_seq_stop,
7145 .show = md_seq_show,
7148 static int md_seq_open(struct inode *inode, struct file *file)
7150 struct seq_file *seq;
7151 int error;
7153 error = seq_open(file, &md_seq_ops);
7154 if (error)
7155 return error;
7157 seq = file->private_data;
7158 seq->poll_event = atomic_read(&md_event_count);
7159 return error;
7162 static unsigned int mdstat_poll(struct file *filp, poll_table *wait)
7164 struct seq_file *seq = filp->private_data;
7165 int mask;
7167 poll_wait(filp, &md_event_waiters, wait);
7169 /* always allow read */
7170 mask = POLLIN | POLLRDNORM;
7172 if (seq->poll_event != atomic_read(&md_event_count))
7173 mask |= POLLERR | POLLPRI;
7174 return mask;
7177 static const struct file_operations md_seq_fops = {
7178 .owner = THIS_MODULE,
7179 .open = md_seq_open,
7180 .read = seq_read,
7181 .llseek = seq_lseek,
7182 .release = seq_release_private,
7183 .poll = mdstat_poll,
7186 int register_md_personality(struct md_personality *p)
7188 spin_lock(&pers_lock);
7189 list_add_tail(&p->list, &pers_list);
7190 printk(KERN_INFO "md: %s personality registered for level %d\n", p->name, p->level);
7191 spin_unlock(&pers_lock);
7192 return 0;
7195 int unregister_md_personality(struct md_personality *p)
7197 printk(KERN_INFO "md: %s personality unregistered\n", p->name);
7198 spin_lock(&pers_lock);
7199 list_del_init(&p->list);
7200 spin_unlock(&pers_lock);
7201 return 0;
7204 static int is_mddev_idle(struct mddev *mddev, int init)
7206 struct md_rdev * rdev;
7207 int idle;
7208 int curr_events;
7210 idle = 1;
7211 rcu_read_lock();
7212 rdev_for_each_rcu(rdev, mddev) {
7213 struct gendisk *disk = rdev->bdev->bd_contains->bd_disk;
7214 curr_events = (int)part_stat_read(&disk->part0, sectors[0]) +
7215 (int)part_stat_read(&disk->part0, sectors[1]) -
7216 atomic_read(&disk->sync_io);
7217 /* sync IO will cause sync_io to increase before the disk_stats
7218 * as sync_io is counted when a request starts, and
7219 * disk_stats is counted when it completes.
7220 * So resync activity will cause curr_events to be smaller than
7221 * when there was no such activity.
7222 * non-sync IO will cause disk_stat to increase without
7223 * increasing sync_io so curr_events will (eventually)
7224 * be larger than it was before. Once it becomes
7225 * substantially larger, the test below will cause
7226 * the array to appear non-idle, and resync will slow
7227 * down.
7228 * If there is a lot of outstanding resync activity when
7229 * we set last_event to curr_events, then all that activity
7230 * completing might cause the array to appear non-idle
7231 * and resync will be slowed down even though there might
7232 * not have been non-resync activity. This will only
7233 * happen once though. 'last_events' will soon reflect
7234 * the state where there is little or no outstanding
7235 * resync requests, and further resync activity will
7236 * always make curr_events less than last_events.
7239 if (init || curr_events - rdev->last_events > 64) {
7240 rdev->last_events = curr_events;
7241 idle = 0;
7244 rcu_read_unlock();
7245 return idle;
7248 void md_done_sync(struct mddev *mddev, int blocks, int ok)
7250 /* another "blocks" (512byte) blocks have been synced */
7251 atomic_sub(blocks, &mddev->recovery_active);
7252 wake_up(&mddev->recovery_wait);
7253 if (!ok) {
7254 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
7255 set_bit(MD_RECOVERY_ERROR, &mddev->recovery);
7256 md_wakeup_thread(mddev->thread);
7257 // stop recovery, signal do_sync ....
7262 /* md_write_start(mddev, bi)
7263 * If we need to update some array metadata (e.g. 'active' flag
7264 * in superblock) before writing, schedule a superblock update
7265 * and wait for it to complete.
7267 void md_write_start(struct mddev *mddev, struct bio *bi)
7269 int did_change = 0;
7270 if (bio_data_dir(bi) != WRITE)
7271 return;
7273 BUG_ON(mddev->ro == 1);
7274 if (mddev->ro == 2) {
7275 /* need to switch to read/write */
7276 mddev->ro = 0;
7277 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
7278 md_wakeup_thread(mddev->thread);
7279 md_wakeup_thread(mddev->sync_thread);
7280 did_change = 1;
7282 atomic_inc(&mddev->writes_pending);
7283 if (mddev->safemode == 1)
7284 mddev->safemode = 0;
7285 if (mddev->in_sync) {
7286 spin_lock_irq(&mddev->write_lock);
7287 if (mddev->in_sync) {
7288 mddev->in_sync = 0;
7289 set_bit(MD_CHANGE_CLEAN, &mddev->flags);
7290 set_bit(MD_CHANGE_PENDING, &mddev->flags);
7291 md_wakeup_thread(mddev->thread);
7292 did_change = 1;
7294 spin_unlock_irq(&mddev->write_lock);
7296 if (did_change)
7297 sysfs_notify_dirent_safe(mddev->sysfs_state);
7298 wait_event(mddev->sb_wait,
7299 !test_bit(MD_CHANGE_PENDING, &mddev->flags));
7302 void md_write_end(struct mddev *mddev)
7304 if (atomic_dec_and_test(&mddev->writes_pending)) {
7305 if (mddev->safemode == 2)
7306 md_wakeup_thread(mddev->thread);
7307 else if (mddev->safemode_delay)
7308 mod_timer(&mddev->safemode_timer, jiffies + mddev->safemode_delay);
7312 /* md_allow_write(mddev)
7313 * Calling this ensures that the array is marked 'active' so that writes
7314 * may proceed without blocking. It is important to call this before
7315 * attempting a GFP_KERNEL allocation while holding the mddev lock.
7316 * Must be called with mddev_lock held.
7318 * In the ->external case MD_CHANGE_CLEAN can not be cleared until mddev->lock
7319 * is dropped, so return -EAGAIN after notifying userspace.
7321 int md_allow_write(struct mddev *mddev)
7323 if (!mddev->pers)
7324 return 0;
7325 if (mddev->ro)
7326 return 0;
7327 if (!mddev->pers->sync_request)
7328 return 0;
7330 spin_lock_irq(&mddev->write_lock);
7331 if (mddev->in_sync) {
7332 mddev->in_sync = 0;
7333 set_bit(MD_CHANGE_CLEAN, &mddev->flags);
7334 set_bit(MD_CHANGE_PENDING, &mddev->flags);
7335 if (mddev->safemode_delay &&
7336 mddev->safemode == 0)
7337 mddev->safemode = 1;
7338 spin_unlock_irq(&mddev->write_lock);
7339 md_update_sb(mddev, 0);
7340 sysfs_notify_dirent_safe(mddev->sysfs_state);
7341 } else
7342 spin_unlock_irq(&mddev->write_lock);
7344 if (test_bit(MD_CHANGE_PENDING, &mddev->flags))
7345 return -EAGAIN;
7346 else
7347 return 0;
7349 EXPORT_SYMBOL_GPL(md_allow_write);
7351 #define SYNC_MARKS 10
7352 #define SYNC_MARK_STEP (3*HZ)
7353 #define UPDATE_FREQUENCY (5*60*HZ)
7354 void md_do_sync(struct md_thread *thread)
7356 struct mddev *mddev = thread->mddev;
7357 struct mddev *mddev2;
7358 unsigned int currspeed = 0,
7359 window;
7360 sector_t max_sectors,j, io_sectors;
7361 unsigned long mark[SYNC_MARKS];
7362 unsigned long update_time;
7363 sector_t mark_cnt[SYNC_MARKS];
7364 int last_mark,m;
7365 struct list_head *tmp;
7366 sector_t last_check;
7367 int skipped = 0;
7368 struct md_rdev *rdev;
7369 char *desc, *action = NULL;
7370 struct blk_plug plug;
7372 /* just incase thread restarts... */
7373 if (test_bit(MD_RECOVERY_DONE, &mddev->recovery))
7374 return;
7375 if (mddev->ro) {/* never try to sync a read-only array */
7376 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
7377 return;
7380 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
7381 if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)) {
7382 desc = "data-check";
7383 action = "check";
7384 } else if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
7385 desc = "requested-resync";
7386 action = "repair";
7387 } else
7388 desc = "resync";
7389 } else if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
7390 desc = "reshape";
7391 else
7392 desc = "recovery";
7394 mddev->last_sync_action = action ?: desc;
7396 /* we overload curr_resync somewhat here.
7397 * 0 == not engaged in resync at all
7398 * 2 == checking that there is no conflict with another sync
7399 * 1 == like 2, but have yielded to allow conflicting resync to
7400 * commense
7401 * other == active in resync - this many blocks
7403 * Before starting a resync we must have set curr_resync to
7404 * 2, and then checked that every "conflicting" array has curr_resync
7405 * less than ours. When we find one that is the same or higher
7406 * we wait on resync_wait. To avoid deadlock, we reduce curr_resync
7407 * to 1 if we choose to yield (based arbitrarily on address of mddev structure).
7408 * This will mean we have to start checking from the beginning again.
7412 do {
7413 mddev->curr_resync = 2;
7415 try_again:
7416 if (kthread_should_stop())
7417 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
7419 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
7420 goto skip;
7421 for_each_mddev(mddev2, tmp) {
7422 if (mddev2 == mddev)
7423 continue;
7424 if (!mddev->parallel_resync
7425 && mddev2->curr_resync
7426 && match_mddev_units(mddev, mddev2)) {
7427 DEFINE_WAIT(wq);
7428 if (mddev < mddev2 && mddev->curr_resync == 2) {
7429 /* arbitrarily yield */
7430 mddev->curr_resync = 1;
7431 wake_up(&resync_wait);
7433 if (mddev > mddev2 && mddev->curr_resync == 1)
7434 /* no need to wait here, we can wait the next
7435 * time 'round when curr_resync == 2
7437 continue;
7438 /* We need to wait 'interruptible' so as not to
7439 * contribute to the load average, and not to
7440 * be caught by 'softlockup'
7442 prepare_to_wait(&resync_wait, &wq, TASK_INTERRUPTIBLE);
7443 if (!kthread_should_stop() &&
7444 mddev2->curr_resync >= mddev->curr_resync) {
7445 printk(KERN_INFO "md: delaying %s of %s"
7446 " until %s has finished (they"
7447 " share one or more physical units)\n",
7448 desc, mdname(mddev), mdname(mddev2));
7449 mddev_put(mddev2);
7450 if (signal_pending(current))
7451 flush_signals(current);
7452 schedule();
7453 finish_wait(&resync_wait, &wq);
7454 goto try_again;
7456 finish_wait(&resync_wait, &wq);
7459 } while (mddev->curr_resync < 2);
7461 j = 0;
7462 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
7463 /* resync follows the size requested by the personality,
7464 * which defaults to physical size, but can be virtual size
7466 max_sectors = mddev->resync_max_sectors;
7467 atomic64_set(&mddev->resync_mismatches, 0);
7468 /* we don't use the checkpoint if there's a bitmap */
7469 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
7470 j = mddev->resync_min;
7471 else if (!mddev->bitmap)
7472 j = mddev->recovery_cp;
7474 } else if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
7475 max_sectors = mddev->resync_max_sectors;
7476 else {
7477 /* recovery follows the physical size of devices */
7478 max_sectors = mddev->dev_sectors;
7479 j = MaxSector;
7480 rcu_read_lock();
7481 rdev_for_each_rcu(rdev, mddev)
7482 if (rdev->raid_disk >= 0 &&
7483 !test_bit(Faulty, &rdev->flags) &&
7484 !test_bit(In_sync, &rdev->flags) &&
7485 rdev->recovery_offset < j)
7486 j = rdev->recovery_offset;
7487 rcu_read_unlock();
7489 /* If there is a bitmap, we need to make sure all
7490 * writes that started before we added a spare
7491 * complete before we start doing a recovery.
7492 * Otherwise the write might complete and (via
7493 * bitmap_endwrite) set a bit in the bitmap after the
7494 * recovery has checked that bit and skipped that
7495 * region.
7497 if (mddev->bitmap) {
7498 mddev->pers->quiesce(mddev, 1);
7499 mddev->pers->quiesce(mddev, 0);
7503 printk(KERN_INFO "md: %s of RAID array %s\n", desc, mdname(mddev));
7504 printk(KERN_INFO "md: minimum _guaranteed_ speed:"
7505 " %d KB/sec/disk.\n", speed_min(mddev));
7506 printk(KERN_INFO "md: using maximum available idle IO bandwidth "
7507 "(but not more than %d KB/sec) for %s.\n",
7508 speed_max(mddev), desc);
7510 is_mddev_idle(mddev, 1); /* this initializes IO event counters */
7512 io_sectors = 0;
7513 for (m = 0; m < SYNC_MARKS; m++) {
7514 mark[m] = jiffies;
7515 mark_cnt[m] = io_sectors;
7517 last_mark = 0;
7518 mddev->resync_mark = mark[last_mark];
7519 mddev->resync_mark_cnt = mark_cnt[last_mark];
7522 * Tune reconstruction:
7524 window = 32*(PAGE_SIZE/512);
7525 printk(KERN_INFO "md: using %dk window, over a total of %lluk.\n",
7526 window/2, (unsigned long long)max_sectors/2);
7528 atomic_set(&mddev->recovery_active, 0);
7529 last_check = 0;
7531 if (j>2) {
7532 printk(KERN_INFO
7533 "md: resuming %s of %s from checkpoint.\n",
7534 desc, mdname(mddev));
7535 mddev->curr_resync = j;
7536 } else
7537 mddev->curr_resync = 3; /* no longer delayed */
7538 mddev->curr_resync_completed = j;
7539 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
7540 md_new_event(mddev);
7541 update_time = jiffies;
7543 blk_start_plug(&plug);
7544 while (j < max_sectors) {
7545 sector_t sectors;
7547 skipped = 0;
7549 if (!test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
7550 ((mddev->curr_resync > mddev->curr_resync_completed &&
7551 (mddev->curr_resync - mddev->curr_resync_completed)
7552 > (max_sectors >> 4)) ||
7553 time_after_eq(jiffies, update_time + UPDATE_FREQUENCY) ||
7554 (j - mddev->curr_resync_completed)*2
7555 >= mddev->resync_max - mddev->curr_resync_completed
7556 )) {
7557 /* time to update curr_resync_completed */
7558 wait_event(mddev->recovery_wait,
7559 atomic_read(&mddev->recovery_active) == 0);
7560 mddev->curr_resync_completed = j;
7561 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) &&
7562 j > mddev->recovery_cp)
7563 mddev->recovery_cp = j;
7564 update_time = jiffies;
7565 set_bit(MD_CHANGE_CLEAN, &mddev->flags);
7566 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
7569 while (j >= mddev->resync_max && !kthread_should_stop()) {
7570 /* As this condition is controlled by user-space,
7571 * we can block indefinitely, so use '_interruptible'
7572 * to avoid triggering warnings.
7574 flush_signals(current); /* just in case */
7575 wait_event_interruptible(mddev->recovery_wait,
7576 mddev->resync_max > j
7577 || kthread_should_stop());
7580 if (kthread_should_stop())
7581 goto interrupted;
7583 sectors = mddev->pers->sync_request(mddev, j, &skipped,
7584 currspeed < speed_min(mddev));
7585 if (sectors == 0) {
7586 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
7587 goto out;
7590 if (!skipped) { /* actual IO requested */
7591 io_sectors += sectors;
7592 atomic_add(sectors, &mddev->recovery_active);
7595 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
7596 break;
7598 j += sectors;
7599 if (j > 2)
7600 mddev->curr_resync = j;
7601 mddev->curr_mark_cnt = io_sectors;
7602 if (last_check == 0)
7603 /* this is the earliest that rebuild will be
7604 * visible in /proc/mdstat
7606 md_new_event(mddev);
7608 if (last_check + window > io_sectors || j == max_sectors)
7609 continue;
7611 last_check = io_sectors;
7612 repeat:
7613 if (time_after_eq(jiffies, mark[last_mark] + SYNC_MARK_STEP )) {
7614 /* step marks */
7615 int next = (last_mark+1) % SYNC_MARKS;
7617 mddev->resync_mark = mark[next];
7618 mddev->resync_mark_cnt = mark_cnt[next];
7619 mark[next] = jiffies;
7620 mark_cnt[next] = io_sectors - atomic_read(&mddev->recovery_active);
7621 last_mark = next;
7625 if (kthread_should_stop())
7626 goto interrupted;
7630 * this loop exits only if either when we are slower than
7631 * the 'hard' speed limit, or the system was IO-idle for
7632 * a jiffy.
7633 * the system might be non-idle CPU-wise, but we only care
7634 * about not overloading the IO subsystem. (things like an
7635 * e2fsck being done on the RAID array should execute fast)
7637 cond_resched();
7639 currspeed = ((unsigned long)(io_sectors-mddev->resync_mark_cnt))/2
7640 /((jiffies-mddev->resync_mark)/HZ +1) +1;
7642 if (currspeed > speed_min(mddev)) {
7643 if ((currspeed > speed_max(mddev)) ||
7644 !is_mddev_idle(mddev, 0)) {
7645 msleep(500);
7646 goto repeat;
7650 printk(KERN_INFO "md: %s: %s done.\n",mdname(mddev), desc);
7652 * this also signals 'finished resyncing' to md_stop
7654 out:
7655 blk_finish_plug(&plug);
7656 wait_event(mddev->recovery_wait, !atomic_read(&mddev->recovery_active));
7658 /* tell personality that we are finished */
7659 mddev->pers->sync_request(mddev, max_sectors, &skipped, 1);
7661 if (!test_bit(MD_RECOVERY_CHECK, &mddev->recovery) &&
7662 mddev->curr_resync > 2) {
7663 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
7664 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
7665 if (mddev->curr_resync >= mddev->recovery_cp) {
7666 printk(KERN_INFO
7667 "md: checkpointing %s of %s.\n",
7668 desc, mdname(mddev));
7669 if (test_bit(MD_RECOVERY_ERROR,
7670 &mddev->recovery))
7671 mddev->recovery_cp =
7672 mddev->curr_resync_completed;
7673 else
7674 mddev->recovery_cp =
7675 mddev->curr_resync;
7677 } else
7678 mddev->recovery_cp = MaxSector;
7679 } else {
7680 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery))
7681 mddev->curr_resync = MaxSector;
7682 rcu_read_lock();
7683 rdev_for_each_rcu(rdev, mddev)
7684 if (rdev->raid_disk >= 0 &&
7685 mddev->delta_disks >= 0 &&
7686 !test_bit(Faulty, &rdev->flags) &&
7687 !test_bit(In_sync, &rdev->flags) &&
7688 rdev->recovery_offset < mddev->curr_resync)
7689 rdev->recovery_offset = mddev->curr_resync;
7690 rcu_read_unlock();
7693 skip:
7694 set_bit(MD_CHANGE_DEVS, &mddev->flags);
7696 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
7697 /* We completed so min/max setting can be forgotten if used. */
7698 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
7699 mddev->resync_min = 0;
7700 mddev->resync_max = MaxSector;
7701 } else if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
7702 mddev->resync_min = mddev->curr_resync_completed;
7703 mddev->curr_resync = 0;
7704 wake_up(&resync_wait);
7705 set_bit(MD_RECOVERY_DONE, &mddev->recovery);
7706 md_wakeup_thread(mddev->thread);
7707 return;
7709 interrupted:
7711 * got a signal, exit.
7713 printk(KERN_INFO
7714 "md: md_do_sync() got signal ... exiting\n");
7715 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
7716 goto out;
7719 EXPORT_SYMBOL_GPL(md_do_sync);
7721 static int remove_and_add_spares(struct mddev *mddev,
7722 struct md_rdev *this)
7724 struct md_rdev *rdev;
7725 int spares = 0;
7726 int removed = 0;
7728 rdev_for_each(rdev, mddev)
7729 if ((this == NULL || rdev == this) &&
7730 rdev->raid_disk >= 0 &&
7731 !test_bit(Blocked, &rdev->flags) &&
7732 (test_bit(Faulty, &rdev->flags) ||
7733 ! test_bit(In_sync, &rdev->flags)) &&
7734 atomic_read(&rdev->nr_pending)==0) {
7735 if (mddev->pers->hot_remove_disk(
7736 mddev, rdev) == 0) {
7737 sysfs_unlink_rdev(mddev, rdev);
7738 rdev->raid_disk = -1;
7739 removed++;
7742 if (removed && mddev->kobj.sd)
7743 sysfs_notify(&mddev->kobj, NULL, "degraded");
7745 if (this)
7746 goto no_add;
7748 rdev_for_each(rdev, mddev) {
7749 if (rdev->raid_disk >= 0 &&
7750 !test_bit(In_sync, &rdev->flags) &&
7751 !test_bit(Faulty, &rdev->flags))
7752 spares++;
7753 if (rdev->raid_disk >= 0)
7754 continue;
7755 if (test_bit(Faulty, &rdev->flags))
7756 continue;
7757 if (mddev->ro &&
7758 ! (rdev->saved_raid_disk >= 0 &&
7759 !test_bit(Bitmap_sync, &rdev->flags)))
7760 continue;
7762 rdev->recovery_offset = 0;
7763 if (mddev->pers->
7764 hot_add_disk(mddev, rdev) == 0) {
7765 if (sysfs_link_rdev(mddev, rdev))
7766 /* failure here is OK */;
7767 spares++;
7768 md_new_event(mddev);
7769 set_bit(MD_CHANGE_DEVS, &mddev->flags);
7772 no_add:
7773 if (removed)
7774 set_bit(MD_CHANGE_DEVS, &mddev->flags);
7775 return spares;
7779 * This routine is regularly called by all per-raid-array threads to
7780 * deal with generic issues like resync and super-block update.
7781 * Raid personalities that don't have a thread (linear/raid0) do not
7782 * need this as they never do any recovery or update the superblock.
7784 * It does not do any resync itself, but rather "forks" off other threads
7785 * to do that as needed.
7786 * When it is determined that resync is needed, we set MD_RECOVERY_RUNNING in
7787 * "->recovery" and create a thread at ->sync_thread.
7788 * When the thread finishes it sets MD_RECOVERY_DONE
7789 * and wakeups up this thread which will reap the thread and finish up.
7790 * This thread also removes any faulty devices (with nr_pending == 0).
7792 * The overall approach is:
7793 * 1/ if the superblock needs updating, update it.
7794 * 2/ If a recovery thread is running, don't do anything else.
7795 * 3/ If recovery has finished, clean up, possibly marking spares active.
7796 * 4/ If there are any faulty devices, remove them.
7797 * 5/ If array is degraded, try to add spares devices
7798 * 6/ If array has spares or is not in-sync, start a resync thread.
7800 void md_check_recovery(struct mddev *mddev)
7802 if (mddev->suspended)
7803 return;
7805 if (mddev->bitmap)
7806 bitmap_daemon_work(mddev);
7808 if (signal_pending(current)) {
7809 if (mddev->pers->sync_request && !mddev->external) {
7810 printk(KERN_INFO "md: %s in immediate safe mode\n",
7811 mdname(mddev));
7812 mddev->safemode = 2;
7814 flush_signals(current);
7817 if (mddev->ro && !test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))
7818 return;
7819 if ( ! (
7820 (mddev->flags & MD_UPDATE_SB_FLAGS & ~ (1<<MD_CHANGE_PENDING)) ||
7821 test_bit(MD_RECOVERY_NEEDED, &mddev->recovery) ||
7822 test_bit(MD_RECOVERY_DONE, &mddev->recovery) ||
7823 (mddev->external == 0 && mddev->safemode == 1) ||
7824 (mddev->safemode == 2 && ! atomic_read(&mddev->writes_pending)
7825 && !mddev->in_sync && mddev->recovery_cp == MaxSector)
7827 return;
7829 if (mddev_trylock(mddev)) {
7830 int spares = 0;
7832 if (mddev->ro) {
7833 /* On a read-only array we can:
7834 * - remove failed devices
7835 * - add already-in_sync devices if the array itself
7836 * is in-sync.
7837 * As we only add devices that are already in-sync,
7838 * we can activate the spares immediately.
7840 remove_and_add_spares(mddev, NULL);
7841 /* There is no thread, but we need to call
7842 * ->spare_active and clear saved_raid_disk
7844 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
7845 md_reap_sync_thread(mddev);
7846 clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
7847 goto unlock;
7850 if (!mddev->external) {
7851 int did_change = 0;
7852 spin_lock_irq(&mddev->write_lock);
7853 if (mddev->safemode &&
7854 !atomic_read(&mddev->writes_pending) &&
7855 !mddev->in_sync &&
7856 mddev->recovery_cp == MaxSector) {
7857 mddev->in_sync = 1;
7858 did_change = 1;
7859 set_bit(MD_CHANGE_CLEAN, &mddev->flags);
7861 if (mddev->safemode == 1)
7862 mddev->safemode = 0;
7863 spin_unlock_irq(&mddev->write_lock);
7864 if (did_change)
7865 sysfs_notify_dirent_safe(mddev->sysfs_state);
7868 if (mddev->flags & MD_UPDATE_SB_FLAGS)
7869 md_update_sb(mddev, 0);
7871 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) &&
7872 !test_bit(MD_RECOVERY_DONE, &mddev->recovery)) {
7873 /* resync/recovery still happening */
7874 clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
7875 goto unlock;
7877 if (mddev->sync_thread) {
7878 md_reap_sync_thread(mddev);
7879 goto unlock;
7881 /* Set RUNNING before clearing NEEDED to avoid
7882 * any transients in the value of "sync_action".
7884 mddev->curr_resync_completed = 0;
7885 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
7886 /* Clear some bits that don't mean anything, but
7887 * might be left set
7889 clear_bit(MD_RECOVERY_INTR, &mddev->recovery);
7890 clear_bit(MD_RECOVERY_DONE, &mddev->recovery);
7892 if (!test_and_clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery) ||
7893 test_bit(MD_RECOVERY_FROZEN, &mddev->recovery))
7894 goto unlock;
7895 /* no recovery is running.
7896 * remove any failed drives, then
7897 * add spares if possible.
7898 * Spares are also removed and re-added, to allow
7899 * the personality to fail the re-add.
7902 if (mddev->reshape_position != MaxSector) {
7903 if (mddev->pers->check_reshape == NULL ||
7904 mddev->pers->check_reshape(mddev) != 0)
7905 /* Cannot proceed */
7906 goto unlock;
7907 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
7908 clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
7909 } else if ((spares = remove_and_add_spares(mddev, NULL))) {
7910 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
7911 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
7912 clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
7913 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
7914 } else if (mddev->recovery_cp < MaxSector) {
7915 set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
7916 clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
7917 } else if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
7918 /* nothing to be done ... */
7919 goto unlock;
7921 if (mddev->pers->sync_request) {
7922 if (spares) {
7923 /* We are adding a device or devices to an array
7924 * which has the bitmap stored on all devices.
7925 * So make sure all bitmap pages get written
7927 bitmap_write_all(mddev->bitmap);
7929 mddev->sync_thread = md_register_thread(md_do_sync,
7930 mddev,
7931 "resync");
7932 if (!mddev->sync_thread) {
7933 printk(KERN_ERR "%s: could not start resync"
7934 " thread...\n",
7935 mdname(mddev));
7936 /* leave the spares where they are, it shouldn't hurt */
7937 clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
7938 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
7939 clear_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
7940 clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
7941 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
7942 } else
7943 md_wakeup_thread(mddev->sync_thread);
7944 sysfs_notify_dirent_safe(mddev->sysfs_action);
7945 md_new_event(mddev);
7947 unlock:
7948 wake_up(&mddev->sb_wait);
7950 if (!mddev->sync_thread) {
7951 clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
7952 if (test_and_clear_bit(MD_RECOVERY_RECOVER,
7953 &mddev->recovery))
7954 if (mddev->sysfs_action)
7955 sysfs_notify_dirent_safe(mddev->sysfs_action);
7957 mddev_unlock(mddev);
7961 void md_reap_sync_thread(struct mddev *mddev)
7963 struct md_rdev *rdev;
7965 /* resync has finished, collect result */
7966 md_unregister_thread(&mddev->sync_thread);
7967 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery) &&
7968 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
7969 /* success...*/
7970 /* activate any spares */
7971 if (mddev->pers->spare_active(mddev)) {
7972 sysfs_notify(&mddev->kobj, NULL,
7973 "degraded");
7974 set_bit(MD_CHANGE_DEVS, &mddev->flags);
7977 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
7978 mddev->pers->finish_reshape)
7979 mddev->pers->finish_reshape(mddev);
7981 /* If array is no-longer degraded, then any saved_raid_disk
7982 * information must be scrapped. Also if any device is now
7983 * In_sync we must scrape the saved_raid_disk for that device
7984 * do the superblock for an incrementally recovered device
7985 * written out.
7987 rdev_for_each(rdev, mddev)
7988 if (!mddev->degraded ||
7989 test_bit(In_sync, &rdev->flags))
7990 rdev->saved_raid_disk = -1;
7992 md_update_sb(mddev, 1);
7993 clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
7994 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
7995 clear_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
7996 clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
7997 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
7998 /* flag recovery needed just to double check */
7999 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
8000 sysfs_notify_dirent_safe(mddev->sysfs_action);
8001 md_new_event(mddev);
8002 if (mddev->event_work.func)
8003 queue_work(md_misc_wq, &mddev->event_work);
8006 void md_wait_for_blocked_rdev(struct md_rdev *rdev, struct mddev *mddev)
8008 sysfs_notify_dirent_safe(rdev->sysfs_state);
8009 wait_event_timeout(rdev->blocked_wait,
8010 !test_bit(Blocked, &rdev->flags) &&
8011 !test_bit(BlockedBadBlocks, &rdev->flags),
8012 msecs_to_jiffies(5000));
8013 rdev_dec_pending(rdev, mddev);
8015 EXPORT_SYMBOL(md_wait_for_blocked_rdev);
8017 void md_finish_reshape(struct mddev *mddev)
8019 /* called be personality module when reshape completes. */
8020 struct md_rdev *rdev;
8022 rdev_for_each(rdev, mddev) {
8023 if (rdev->data_offset > rdev->new_data_offset)
8024 rdev->sectors += rdev->data_offset - rdev->new_data_offset;
8025 else
8026 rdev->sectors -= rdev->new_data_offset - rdev->data_offset;
8027 rdev->data_offset = rdev->new_data_offset;
8030 EXPORT_SYMBOL(md_finish_reshape);
8032 /* Bad block management.
8033 * We can record which blocks on each device are 'bad' and so just
8034 * fail those blocks, or that stripe, rather than the whole device.
8035 * Entries in the bad-block table are 64bits wide. This comprises:
8036 * Length of bad-range, in sectors: 0-511 for lengths 1-512
8037 * Start of bad-range, sector offset, 54 bits (allows 8 exbibytes)
8038 * A 'shift' can be set so that larger blocks are tracked and
8039 * consequently larger devices can be covered.
8040 * 'Acknowledged' flag - 1 bit. - the most significant bit.
8042 * Locking of the bad-block table uses a seqlock so md_is_badblock
8043 * might need to retry if it is very unlucky.
8044 * We will sometimes want to check for bad blocks in a bi_end_io function,
8045 * so we use the write_seqlock_irq variant.
8047 * When looking for a bad block we specify a range and want to
8048 * know if any block in the range is bad. So we binary-search
8049 * to the last range that starts at-or-before the given endpoint,
8050 * (or "before the sector after the target range")
8051 * then see if it ends after the given start.
8052 * We return
8053 * 0 if there are no known bad blocks in the range
8054 * 1 if there are known bad block which are all acknowledged
8055 * -1 if there are bad blocks which have not yet been acknowledged in metadata.
8056 * plus the start/length of the first bad section we overlap.
8058 int md_is_badblock(struct badblocks *bb, sector_t s, int sectors,
8059 sector_t *first_bad, int *bad_sectors)
8061 int hi;
8062 int lo;
8063 u64 *p = bb->page;
8064 int rv;
8065 sector_t target = s + sectors;
8066 unsigned seq;
8068 if (bb->shift > 0) {
8069 /* round the start down, and the end up */
8070 s >>= bb->shift;
8071 target += (1<<bb->shift) - 1;
8072 target >>= bb->shift;
8073 sectors = target - s;
8075 /* 'target' is now the first block after the bad range */
8077 retry:
8078 seq = read_seqbegin(&bb->lock);
8079 lo = 0;
8080 rv = 0;
8081 hi = bb->count;
8083 /* Binary search between lo and hi for 'target'
8084 * i.e. for the last range that starts before 'target'
8086 /* INVARIANT: ranges before 'lo' and at-or-after 'hi'
8087 * are known not to be the last range before target.
8088 * VARIANT: hi-lo is the number of possible
8089 * ranges, and decreases until it reaches 1
8091 while (hi - lo > 1) {
8092 int mid = (lo + hi) / 2;
8093 sector_t a = BB_OFFSET(p[mid]);
8094 if (a < target)
8095 /* This could still be the one, earlier ranges
8096 * could not. */
8097 lo = mid;
8098 else
8099 /* This and later ranges are definitely out. */
8100 hi = mid;
8102 /* 'lo' might be the last that started before target, but 'hi' isn't */
8103 if (hi > lo) {
8104 /* need to check all range that end after 's' to see if
8105 * any are unacknowledged.
8107 while (lo >= 0 &&
8108 BB_OFFSET(p[lo]) + BB_LEN(p[lo]) > s) {
8109 if (BB_OFFSET(p[lo]) < target) {
8110 /* starts before the end, and finishes after
8111 * the start, so they must overlap
8113 if (rv != -1 && BB_ACK(p[lo]))
8114 rv = 1;
8115 else
8116 rv = -1;
8117 *first_bad = BB_OFFSET(p[lo]);
8118 *bad_sectors = BB_LEN(p[lo]);
8120 lo--;
8124 if (read_seqretry(&bb->lock, seq))
8125 goto retry;
8127 return rv;
8129 EXPORT_SYMBOL_GPL(md_is_badblock);
8132 * Add a range of bad blocks to the table.
8133 * This might extend the table, or might contract it
8134 * if two adjacent ranges can be merged.
8135 * We binary-search to find the 'insertion' point, then
8136 * decide how best to handle it.
8138 static int md_set_badblocks(struct badblocks *bb, sector_t s, int sectors,
8139 int acknowledged)
8141 u64 *p;
8142 int lo, hi;
8143 int rv = 1;
8144 unsigned long flags;
8146 if (bb->shift < 0)
8147 /* badblocks are disabled */
8148 return 0;
8150 if (bb->shift) {
8151 /* round the start down, and the end up */
8152 sector_t next = s + sectors;
8153 s >>= bb->shift;
8154 next += (1<<bb->shift) - 1;
8155 next >>= bb->shift;
8156 sectors = next - s;
8159 write_seqlock_irqsave(&bb->lock, flags);
8161 p = bb->page;
8162 lo = 0;
8163 hi = bb->count;
8164 /* Find the last range that starts at-or-before 's' */
8165 while (hi - lo > 1) {
8166 int mid = (lo + hi) / 2;
8167 sector_t a = BB_OFFSET(p[mid]);
8168 if (a <= s)
8169 lo = mid;
8170 else
8171 hi = mid;
8173 if (hi > lo && BB_OFFSET(p[lo]) > s)
8174 hi = lo;
8176 if (hi > lo) {
8177 /* we found a range that might merge with the start
8178 * of our new range
8180 sector_t a = BB_OFFSET(p[lo]);
8181 sector_t e = a + BB_LEN(p[lo]);
8182 int ack = BB_ACK(p[lo]);
8183 if (e >= s) {
8184 /* Yes, we can merge with a previous range */
8185 if (s == a && s + sectors >= e)
8186 /* new range covers old */
8187 ack = acknowledged;
8188 else
8189 ack = ack && acknowledged;
8191 if (e < s + sectors)
8192 e = s + sectors;
8193 if (e - a <= BB_MAX_LEN) {
8194 p[lo] = BB_MAKE(a, e-a, ack);
8195 s = e;
8196 } else {
8197 /* does not all fit in one range,
8198 * make p[lo] maximal
8200 if (BB_LEN(p[lo]) != BB_MAX_LEN)
8201 p[lo] = BB_MAKE(a, BB_MAX_LEN, ack);
8202 s = a + BB_MAX_LEN;
8204 sectors = e - s;
8207 if (sectors && hi < bb->count) {
8208 /* 'hi' points to the first range that starts after 's'.
8209 * Maybe we can merge with the start of that range */
8210 sector_t a = BB_OFFSET(p[hi]);
8211 sector_t e = a + BB_LEN(p[hi]);
8212 int ack = BB_ACK(p[hi]);
8213 if (a <= s + sectors) {
8214 /* merging is possible */
8215 if (e <= s + sectors) {
8216 /* full overlap */
8217 e = s + sectors;
8218 ack = acknowledged;
8219 } else
8220 ack = ack && acknowledged;
8222 a = s;
8223 if (e - a <= BB_MAX_LEN) {
8224 p[hi] = BB_MAKE(a, e-a, ack);
8225 s = e;
8226 } else {
8227 p[hi] = BB_MAKE(a, BB_MAX_LEN, ack);
8228 s = a + BB_MAX_LEN;
8230 sectors = e - s;
8231 lo = hi;
8232 hi++;
8235 if (sectors == 0 && hi < bb->count) {
8236 /* we might be able to combine lo and hi */
8237 /* Note: 's' is at the end of 'lo' */
8238 sector_t a = BB_OFFSET(p[hi]);
8239 int lolen = BB_LEN(p[lo]);
8240 int hilen = BB_LEN(p[hi]);
8241 int newlen = lolen + hilen - (s - a);
8242 if (s >= a && newlen < BB_MAX_LEN) {
8243 /* yes, we can combine them */
8244 int ack = BB_ACK(p[lo]) && BB_ACK(p[hi]);
8245 p[lo] = BB_MAKE(BB_OFFSET(p[lo]), newlen, ack);
8246 memmove(p + hi, p + hi + 1,
8247 (bb->count - hi - 1) * 8);
8248 bb->count--;
8251 while (sectors) {
8252 /* didn't merge (it all).
8253 * Need to add a range just before 'hi' */
8254 if (bb->count >= MD_MAX_BADBLOCKS) {
8255 /* No room for more */
8256 rv = 0;
8257 break;
8258 } else {
8259 int this_sectors = sectors;
8260 memmove(p + hi + 1, p + hi,
8261 (bb->count - hi) * 8);
8262 bb->count++;
8264 if (this_sectors > BB_MAX_LEN)
8265 this_sectors = BB_MAX_LEN;
8266 p[hi] = BB_MAKE(s, this_sectors, acknowledged);
8267 sectors -= this_sectors;
8268 s += this_sectors;
8272 bb->changed = 1;
8273 if (!acknowledged)
8274 bb->unacked_exist = 1;
8275 write_sequnlock_irqrestore(&bb->lock, flags);
8277 return rv;
8280 int rdev_set_badblocks(struct md_rdev *rdev, sector_t s, int sectors,
8281 int is_new)
8283 int rv;
8284 if (is_new)
8285 s += rdev->new_data_offset;
8286 else
8287 s += rdev->data_offset;
8288 rv = md_set_badblocks(&rdev->badblocks,
8289 s, sectors, 0);
8290 if (rv) {
8291 /* Make sure they get written out promptly */
8292 sysfs_notify_dirent_safe(rdev->sysfs_state);
8293 set_bit(MD_CHANGE_CLEAN, &rdev->mddev->flags);
8294 md_wakeup_thread(rdev->mddev->thread);
8296 return rv;
8298 EXPORT_SYMBOL_GPL(rdev_set_badblocks);
8301 * Remove a range of bad blocks from the table.
8302 * This may involve extending the table if we spilt a region,
8303 * but it must not fail. So if the table becomes full, we just
8304 * drop the remove request.
8306 static int md_clear_badblocks(struct badblocks *bb, sector_t s, int sectors)
8308 u64 *p;
8309 int lo, hi;
8310 sector_t target = s + sectors;
8311 int rv = 0;
8313 if (bb->shift > 0) {
8314 /* When clearing we round the start up and the end down.
8315 * This should not matter as the shift should align with
8316 * the block size and no rounding should ever be needed.
8317 * However it is better the think a block is bad when it
8318 * isn't than to think a block is not bad when it is.
8320 s += (1<<bb->shift) - 1;
8321 s >>= bb->shift;
8322 target >>= bb->shift;
8323 sectors = target - s;
8326 write_seqlock_irq(&bb->lock);
8328 p = bb->page;
8329 lo = 0;
8330 hi = bb->count;
8331 /* Find the last range that starts before 'target' */
8332 while (hi - lo > 1) {
8333 int mid = (lo + hi) / 2;
8334 sector_t a = BB_OFFSET(p[mid]);
8335 if (a < target)
8336 lo = mid;
8337 else
8338 hi = mid;
8340 if (hi > lo) {
8341 /* p[lo] is the last range that could overlap the
8342 * current range. Earlier ranges could also overlap,
8343 * but only this one can overlap the end of the range.
8345 if (BB_OFFSET(p[lo]) + BB_LEN(p[lo]) > target) {
8346 /* Partial overlap, leave the tail of this range */
8347 int ack = BB_ACK(p[lo]);
8348 sector_t a = BB_OFFSET(p[lo]);
8349 sector_t end = a + BB_LEN(p[lo]);
8351 if (a < s) {
8352 /* we need to split this range */
8353 if (bb->count >= MD_MAX_BADBLOCKS) {
8354 rv = 0;
8355 goto out;
8357 memmove(p+lo+1, p+lo, (bb->count - lo) * 8);
8358 bb->count++;
8359 p[lo] = BB_MAKE(a, s-a, ack);
8360 lo++;
8362 p[lo] = BB_MAKE(target, end - target, ack);
8363 /* there is no longer an overlap */
8364 hi = lo;
8365 lo--;
8367 while (lo >= 0 &&
8368 BB_OFFSET(p[lo]) + BB_LEN(p[lo]) > s) {
8369 /* This range does overlap */
8370 if (BB_OFFSET(p[lo]) < s) {
8371 /* Keep the early parts of this range. */
8372 int ack = BB_ACK(p[lo]);
8373 sector_t start = BB_OFFSET(p[lo]);
8374 p[lo] = BB_MAKE(start, s - start, ack);
8375 /* now low doesn't overlap, so.. */
8376 break;
8378 lo--;
8380 /* 'lo' is strictly before, 'hi' is strictly after,
8381 * anything between needs to be discarded
8383 if (hi - lo > 1) {
8384 memmove(p+lo+1, p+hi, (bb->count - hi) * 8);
8385 bb->count -= (hi - lo - 1);
8389 bb->changed = 1;
8390 out:
8391 write_sequnlock_irq(&bb->lock);
8392 return rv;
8395 int rdev_clear_badblocks(struct md_rdev *rdev, sector_t s, int sectors,
8396 int is_new)
8398 if (is_new)
8399 s += rdev->new_data_offset;
8400 else
8401 s += rdev->data_offset;
8402 return md_clear_badblocks(&rdev->badblocks,
8403 s, sectors);
8405 EXPORT_SYMBOL_GPL(rdev_clear_badblocks);
8408 * Acknowledge all bad blocks in a list.
8409 * This only succeeds if ->changed is clear. It is used by
8410 * in-kernel metadata updates
8412 void md_ack_all_badblocks(struct badblocks *bb)
8414 if (bb->page == NULL || bb->changed)
8415 /* no point even trying */
8416 return;
8417 write_seqlock_irq(&bb->lock);
8419 if (bb->changed == 0 && bb->unacked_exist) {
8420 u64 *p = bb->page;
8421 int i;
8422 for (i = 0; i < bb->count ; i++) {
8423 if (!BB_ACK(p[i])) {
8424 sector_t start = BB_OFFSET(p[i]);
8425 int len = BB_LEN(p[i]);
8426 p[i] = BB_MAKE(start, len, 1);
8429 bb->unacked_exist = 0;
8431 write_sequnlock_irq(&bb->lock);
8433 EXPORT_SYMBOL_GPL(md_ack_all_badblocks);
8435 /* sysfs access to bad-blocks list.
8436 * We present two files.
8437 * 'bad-blocks' lists sector numbers and lengths of ranges that
8438 * are recorded as bad. The list is truncated to fit within
8439 * the one-page limit of sysfs.
8440 * Writing "sector length" to this file adds an acknowledged
8441 * bad block list.
8442 * 'unacknowledged-bad-blocks' lists bad blocks that have not yet
8443 * been acknowledged. Writing to this file adds bad blocks
8444 * without acknowledging them. This is largely for testing.
8447 static ssize_t
8448 badblocks_show(struct badblocks *bb, char *page, int unack)
8450 size_t len;
8451 int i;
8452 u64 *p = bb->page;
8453 unsigned seq;
8455 if (bb->shift < 0)
8456 return 0;
8458 retry:
8459 seq = read_seqbegin(&bb->lock);
8461 len = 0;
8462 i = 0;
8464 while (len < PAGE_SIZE && i < bb->count) {
8465 sector_t s = BB_OFFSET(p[i]);
8466 unsigned int length = BB_LEN(p[i]);
8467 int ack = BB_ACK(p[i]);
8468 i++;
8470 if (unack && ack)
8471 continue;
8473 len += snprintf(page+len, PAGE_SIZE-len, "%llu %u\n",
8474 (unsigned long long)s << bb->shift,
8475 length << bb->shift);
8477 if (unack && len == 0)
8478 bb->unacked_exist = 0;
8480 if (read_seqretry(&bb->lock, seq))
8481 goto retry;
8483 return len;
8486 #define DO_DEBUG 1
8488 static ssize_t
8489 badblocks_store(struct badblocks *bb, const char *page, size_t len, int unack)
8491 unsigned long long sector;
8492 int length;
8493 char newline;
8494 #ifdef DO_DEBUG
8495 /* Allow clearing via sysfs *only* for testing/debugging.
8496 * Normally only a successful write may clear a badblock
8498 int clear = 0;
8499 if (page[0] == '-') {
8500 clear = 1;
8501 page++;
8503 #endif /* DO_DEBUG */
8505 switch (sscanf(page, "%llu %d%c", &sector, &length, &newline)) {
8506 case 3:
8507 if (newline != '\n')
8508 return -EINVAL;
8509 case 2:
8510 if (length <= 0)
8511 return -EINVAL;
8512 break;
8513 default:
8514 return -EINVAL;
8517 #ifdef DO_DEBUG
8518 if (clear) {
8519 md_clear_badblocks(bb, sector, length);
8520 return len;
8522 #endif /* DO_DEBUG */
8523 if (md_set_badblocks(bb, sector, length, !unack))
8524 return len;
8525 else
8526 return -ENOSPC;
8529 static int md_notify_reboot(struct notifier_block *this,
8530 unsigned long code, void *x)
8532 struct list_head *tmp;
8533 struct mddev *mddev;
8534 int need_delay = 0;
8536 for_each_mddev(mddev, tmp) {
8537 if (mddev_trylock(mddev)) {
8538 if (mddev->pers)
8539 __md_stop_writes(mddev);
8540 if (mddev->persistent)
8541 mddev->safemode = 2;
8542 mddev_unlock(mddev);
8544 need_delay = 1;
8547 * certain more exotic SCSI devices are known to be
8548 * volatile wrt too early system reboots. While the
8549 * right place to handle this issue is the given
8550 * driver, we do want to have a safe RAID driver ...
8552 if (need_delay)
8553 mdelay(1000*1);
8555 return NOTIFY_DONE;
8558 static struct notifier_block md_notifier = {
8559 .notifier_call = md_notify_reboot,
8560 .next = NULL,
8561 .priority = INT_MAX, /* before any real devices */
8564 static void md_geninit(void)
8566 pr_debug("md: sizeof(mdp_super_t) = %d\n", (int)sizeof(mdp_super_t));
8568 proc_create("mdstat", S_IRUGO, NULL, &md_seq_fops);
8571 static int __init md_init(void)
8573 int ret = -ENOMEM;
8575 md_wq = alloc_workqueue("md", WQ_MEM_RECLAIM, 0);
8576 if (!md_wq)
8577 goto err_wq;
8579 md_misc_wq = alloc_workqueue("md_misc", 0, 0);
8580 if (!md_misc_wq)
8581 goto err_misc_wq;
8583 if ((ret = register_blkdev(MD_MAJOR, "md")) < 0)
8584 goto err_md;
8586 if ((ret = register_blkdev(0, "mdp")) < 0)
8587 goto err_mdp;
8588 mdp_major = ret;
8590 blk_register_region(MKDEV(MD_MAJOR, 0), 1UL<<MINORBITS, THIS_MODULE,
8591 md_probe, NULL, NULL);
8592 blk_register_region(MKDEV(mdp_major, 0), 1UL<<MINORBITS, THIS_MODULE,
8593 md_probe, NULL, NULL);
8595 register_reboot_notifier(&md_notifier);
8596 raid_table_header = register_sysctl_table(raid_root_table);
8598 md_geninit();
8599 return 0;
8601 err_mdp:
8602 unregister_blkdev(MD_MAJOR, "md");
8603 err_md:
8604 destroy_workqueue(md_misc_wq);
8605 err_misc_wq:
8606 destroy_workqueue(md_wq);
8607 err_wq:
8608 return ret;
8611 #ifndef MODULE
8614 * Searches all registered partitions for autorun RAID arrays
8615 * at boot time.
8618 static LIST_HEAD(all_detected_devices);
8619 struct detected_devices_node {
8620 struct list_head list;
8621 dev_t dev;
8624 void md_autodetect_dev(dev_t dev)
8626 struct detected_devices_node *node_detected_dev;
8628 node_detected_dev = kzalloc(sizeof(*node_detected_dev), GFP_KERNEL);
8629 if (node_detected_dev) {
8630 node_detected_dev->dev = dev;
8631 list_add_tail(&node_detected_dev->list, &all_detected_devices);
8632 } else {
8633 printk(KERN_CRIT "md: md_autodetect_dev: kzalloc failed"
8634 ", skipping dev(%d,%d)\n", MAJOR(dev), MINOR(dev));
8639 static void autostart_arrays(int part)
8641 struct md_rdev *rdev;
8642 struct detected_devices_node *node_detected_dev;
8643 dev_t dev;
8644 int i_scanned, i_passed;
8646 i_scanned = 0;
8647 i_passed = 0;
8649 printk(KERN_INFO "md: Autodetecting RAID arrays.\n");
8651 while (!list_empty(&all_detected_devices) && i_scanned < INT_MAX) {
8652 i_scanned++;
8653 node_detected_dev = list_entry(all_detected_devices.next,
8654 struct detected_devices_node, list);
8655 list_del(&node_detected_dev->list);
8656 dev = node_detected_dev->dev;
8657 kfree(node_detected_dev);
8658 rdev = md_import_device(dev,0, 90);
8659 if (IS_ERR(rdev))
8660 continue;
8662 if (test_bit(Faulty, &rdev->flags)) {
8663 MD_BUG();
8664 continue;
8666 set_bit(AutoDetected, &rdev->flags);
8667 list_add(&rdev->same_set, &pending_raid_disks);
8668 i_passed++;
8671 printk(KERN_INFO "md: Scanned %d and added %d devices.\n",
8672 i_scanned, i_passed);
8674 autorun_devices(part);
8677 #endif /* !MODULE */
8679 static __exit void md_exit(void)
8681 struct mddev *mddev;
8682 struct list_head *tmp;
8684 blk_unregister_region(MKDEV(MD_MAJOR,0), 1U << MINORBITS);
8685 blk_unregister_region(MKDEV(mdp_major,0), 1U << MINORBITS);
8687 unregister_blkdev(MD_MAJOR,"md");
8688 unregister_blkdev(mdp_major, "mdp");
8689 unregister_reboot_notifier(&md_notifier);
8690 unregister_sysctl_table(raid_table_header);
8691 remove_proc_entry("mdstat", NULL);
8692 for_each_mddev(mddev, tmp) {
8693 export_array(mddev);
8694 mddev->hold_active = 0;
8696 destroy_workqueue(md_misc_wq);
8697 destroy_workqueue(md_wq);
8700 subsys_initcall(md_init);
8701 module_exit(md_exit)
8703 static int get_ro(char *buffer, struct kernel_param *kp)
8705 return sprintf(buffer, "%d", start_readonly);
8707 static int set_ro(const char *val, struct kernel_param *kp)
8709 char *e;
8710 int num = simple_strtoul(val, &e, 10);
8711 if (*val && (*e == '\0' || *e == '\n')) {
8712 start_readonly = num;
8713 return 0;
8715 return -EINVAL;
8718 module_param_call(start_ro, set_ro, get_ro, NULL, S_IRUSR|S_IWUSR);
8719 module_param(start_dirty_degraded, int, S_IRUGO|S_IWUSR);
8721 module_param_call(new_array, add_named_array, NULL, NULL, S_IWUSR);
8723 EXPORT_SYMBOL(register_md_personality);
8724 EXPORT_SYMBOL(unregister_md_personality);
8725 EXPORT_SYMBOL(md_error);
8726 EXPORT_SYMBOL(md_done_sync);
8727 EXPORT_SYMBOL(md_write_start);
8728 EXPORT_SYMBOL(md_write_end);
8729 EXPORT_SYMBOL(md_register_thread);
8730 EXPORT_SYMBOL(md_unregister_thread);
8731 EXPORT_SYMBOL(md_wakeup_thread);
8732 EXPORT_SYMBOL(md_check_recovery);
8733 EXPORT_SYMBOL(md_reap_sync_thread);
8734 MODULE_LICENSE("GPL");
8735 MODULE_DESCRIPTION("MD RAID framework");
8736 MODULE_ALIAS("md");
8737 MODULE_ALIAS_BLOCKDEV_MAJOR(MD_MAJOR);