mfd: wm8350-i2c: Make sure the i2c regmap functions are compiled
[linux/fpc-iii.git] / drivers / md / raid1.c
blob479828ad2021367b0a6335a5a88e8f0a4721c5ce
1 /*
2 * raid1.c : Multiple Devices driver for Linux
4 * Copyright (C) 1999, 2000, 2001 Ingo Molnar, Red Hat
6 * Copyright (C) 1996, 1997, 1998 Ingo Molnar, Miguel de Icaza, Gadi Oxman
8 * RAID-1 management functions.
10 * Better read-balancing code written by Mika Kuoppala <miku@iki.fi>, 2000
12 * Fixes to reconstruction by Jakob Østergaard" <jakob@ostenfeld.dk>
13 * Various fixes by Neil Brown <neilb@cse.unsw.edu.au>
15 * Changes by Peter T. Breuer <ptb@it.uc3m.es> 31/1/2003 to support
16 * bitmapped intelligence in resync:
18 * - bitmap marked during normal i/o
19 * - bitmap used to skip nondirty blocks during sync
21 * Additions to bitmap code, (C) 2003-2004 Paul Clements, SteelEye Technology:
22 * - persistent bitmap code
24 * This program is free software; you can redistribute it and/or modify
25 * it under the terms of the GNU General Public License as published by
26 * the Free Software Foundation; either version 2, or (at your option)
27 * any later version.
29 * You should have received a copy of the GNU General Public License
30 * (for example /usr/src/linux/COPYING); if not, write to the Free
31 * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
34 #include <linux/slab.h>
35 #include <linux/delay.h>
36 #include <linux/blkdev.h>
37 #include <linux/module.h>
38 #include <linux/seq_file.h>
39 #include <linux/ratelimit.h>
40 #include "md.h"
41 #include "raid1.h"
42 #include "bitmap.h"
45 * Number of guaranteed r1bios in case of extreme VM load:
47 #define NR_RAID1_BIOS 256
49 /* when we get a read error on a read-only array, we redirect to another
50 * device without failing the first device, or trying to over-write to
51 * correct the read error. To keep track of bad blocks on a per-bio
52 * level, we store IO_BLOCKED in the appropriate 'bios' pointer
54 #define IO_BLOCKED ((struct bio *)1)
55 /* When we successfully write to a known bad-block, we need to remove the
56 * bad-block marking which must be done from process context. So we record
57 * the success by setting devs[n].bio to IO_MADE_GOOD
59 #define IO_MADE_GOOD ((struct bio *)2)
61 #define BIO_SPECIAL(bio) ((unsigned long)bio <= 2)
63 /* When there are this many requests queue to be written by
64 * the raid1 thread, we become 'congested' to provide back-pressure
65 * for writeback.
67 static int max_queued_requests = 1024;
69 static void allow_barrier(struct r1conf *conf);
70 static void lower_barrier(struct r1conf *conf);
72 static void * r1bio_pool_alloc(gfp_t gfp_flags, void *data)
74 struct pool_info *pi = data;
75 int size = offsetof(struct r1bio, bios[pi->raid_disks]);
77 /* allocate a r1bio with room for raid_disks entries in the bios array */
78 return kzalloc(size, gfp_flags);
81 static void r1bio_pool_free(void *r1_bio, void *data)
83 kfree(r1_bio);
86 #define RESYNC_BLOCK_SIZE (64*1024)
87 //#define RESYNC_BLOCK_SIZE PAGE_SIZE
88 #define RESYNC_SECTORS (RESYNC_BLOCK_SIZE >> 9)
89 #define RESYNC_PAGES ((RESYNC_BLOCK_SIZE + PAGE_SIZE-1) / PAGE_SIZE)
90 #define RESYNC_WINDOW (2048*1024)
92 static void * r1buf_pool_alloc(gfp_t gfp_flags, void *data)
94 struct pool_info *pi = data;
95 struct r1bio *r1_bio;
96 struct bio *bio;
97 int need_pages;
98 int i, j;
100 r1_bio = r1bio_pool_alloc(gfp_flags, pi);
101 if (!r1_bio)
102 return NULL;
105 * Allocate bios : 1 for reading, n-1 for writing
107 for (j = pi->raid_disks ; j-- ; ) {
108 bio = bio_kmalloc(gfp_flags, RESYNC_PAGES);
109 if (!bio)
110 goto out_free_bio;
111 r1_bio->bios[j] = bio;
114 * Allocate RESYNC_PAGES data pages and attach them to
115 * the first bio.
116 * If this is a user-requested check/repair, allocate
117 * RESYNC_PAGES for each bio.
119 if (test_bit(MD_RECOVERY_REQUESTED, &pi->mddev->recovery))
120 need_pages = pi->raid_disks;
121 else
122 need_pages = 1;
123 for (j = 0; j < need_pages; j++) {
124 bio = r1_bio->bios[j];
125 bio->bi_vcnt = RESYNC_PAGES;
127 if (bio_alloc_pages(bio, gfp_flags))
128 goto out_free_pages;
130 /* If not user-requests, copy the page pointers to all bios */
131 if (!test_bit(MD_RECOVERY_REQUESTED, &pi->mddev->recovery)) {
132 for (i=0; i<RESYNC_PAGES ; i++)
133 for (j=1; j<pi->raid_disks; j++)
134 r1_bio->bios[j]->bi_io_vec[i].bv_page =
135 r1_bio->bios[0]->bi_io_vec[i].bv_page;
138 r1_bio->master_bio = NULL;
140 return r1_bio;
142 out_free_pages:
143 while (--j >= 0) {
144 struct bio_vec *bv;
146 bio_for_each_segment_all(bv, r1_bio->bios[j], i)
147 __free_page(bv->bv_page);
150 out_free_bio:
151 while (++j < pi->raid_disks)
152 bio_put(r1_bio->bios[j]);
153 r1bio_pool_free(r1_bio, data);
154 return NULL;
157 static void r1buf_pool_free(void *__r1_bio, void *data)
159 struct pool_info *pi = data;
160 int i,j;
161 struct r1bio *r1bio = __r1_bio;
163 for (i = 0; i < RESYNC_PAGES; i++)
164 for (j = pi->raid_disks; j-- ;) {
165 if (j == 0 ||
166 r1bio->bios[j]->bi_io_vec[i].bv_page !=
167 r1bio->bios[0]->bi_io_vec[i].bv_page)
168 safe_put_page(r1bio->bios[j]->bi_io_vec[i].bv_page);
170 for (i=0 ; i < pi->raid_disks; i++)
171 bio_put(r1bio->bios[i]);
173 r1bio_pool_free(r1bio, data);
176 static void put_all_bios(struct r1conf *conf, struct r1bio *r1_bio)
178 int i;
180 for (i = 0; i < conf->raid_disks * 2; i++) {
181 struct bio **bio = r1_bio->bios + i;
182 if (!BIO_SPECIAL(*bio))
183 bio_put(*bio);
184 *bio = NULL;
188 static void free_r1bio(struct r1bio *r1_bio)
190 struct r1conf *conf = r1_bio->mddev->private;
192 put_all_bios(conf, r1_bio);
193 mempool_free(r1_bio, conf->r1bio_pool);
196 static void put_buf(struct r1bio *r1_bio)
198 struct r1conf *conf = r1_bio->mddev->private;
199 int i;
201 for (i = 0; i < conf->raid_disks * 2; i++) {
202 struct bio *bio = r1_bio->bios[i];
203 if (bio->bi_end_io)
204 rdev_dec_pending(conf->mirrors[i].rdev, r1_bio->mddev);
207 mempool_free(r1_bio, conf->r1buf_pool);
209 lower_barrier(conf);
212 static void reschedule_retry(struct r1bio *r1_bio)
214 unsigned long flags;
215 struct mddev *mddev = r1_bio->mddev;
216 struct r1conf *conf = mddev->private;
218 spin_lock_irqsave(&conf->device_lock, flags);
219 list_add(&r1_bio->retry_list, &conf->retry_list);
220 conf->nr_queued ++;
221 spin_unlock_irqrestore(&conf->device_lock, flags);
223 wake_up(&conf->wait_barrier);
224 md_wakeup_thread(mddev->thread);
228 * raid_end_bio_io() is called when we have finished servicing a mirrored
229 * operation and are ready to return a success/failure code to the buffer
230 * cache layer.
232 static void call_bio_endio(struct r1bio *r1_bio)
234 struct bio *bio = r1_bio->master_bio;
235 int done;
236 struct r1conf *conf = r1_bio->mddev->private;
238 if (bio->bi_phys_segments) {
239 unsigned long flags;
240 spin_lock_irqsave(&conf->device_lock, flags);
241 bio->bi_phys_segments--;
242 done = (bio->bi_phys_segments == 0);
243 spin_unlock_irqrestore(&conf->device_lock, flags);
244 } else
245 done = 1;
247 if (!test_bit(R1BIO_Uptodate, &r1_bio->state))
248 clear_bit(BIO_UPTODATE, &bio->bi_flags);
249 if (done) {
250 bio_endio(bio, 0);
252 * Wake up any possible resync thread that waits for the device
253 * to go idle.
255 allow_barrier(conf);
259 static void raid_end_bio_io(struct r1bio *r1_bio)
261 struct bio *bio = r1_bio->master_bio;
263 /* if nobody has done the final endio yet, do it now */
264 if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) {
265 pr_debug("raid1: sync end %s on sectors %llu-%llu\n",
266 (bio_data_dir(bio) == WRITE) ? "write" : "read",
267 (unsigned long long) bio->bi_sector,
268 (unsigned long long) bio->bi_sector +
269 bio_sectors(bio) - 1);
271 call_bio_endio(r1_bio);
273 free_r1bio(r1_bio);
277 * Update disk head position estimator based on IRQ completion info.
279 static inline void update_head_pos(int disk, struct r1bio *r1_bio)
281 struct r1conf *conf = r1_bio->mddev->private;
283 conf->mirrors[disk].head_position =
284 r1_bio->sector + (r1_bio->sectors);
288 * Find the disk number which triggered given bio
290 static int find_bio_disk(struct r1bio *r1_bio, struct bio *bio)
292 int mirror;
293 struct r1conf *conf = r1_bio->mddev->private;
294 int raid_disks = conf->raid_disks;
296 for (mirror = 0; mirror < raid_disks * 2; mirror++)
297 if (r1_bio->bios[mirror] == bio)
298 break;
300 BUG_ON(mirror == raid_disks * 2);
301 update_head_pos(mirror, r1_bio);
303 return mirror;
306 static void raid1_end_read_request(struct bio *bio, int error)
308 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
309 struct r1bio *r1_bio = bio->bi_private;
310 int mirror;
311 struct r1conf *conf = r1_bio->mddev->private;
313 mirror = r1_bio->read_disk;
315 * this branch is our 'one mirror IO has finished' event handler:
317 update_head_pos(mirror, r1_bio);
319 if (uptodate)
320 set_bit(R1BIO_Uptodate, &r1_bio->state);
321 else {
322 /* If all other devices have failed, we want to return
323 * the error upwards rather than fail the last device.
324 * Here we redefine "uptodate" to mean "Don't want to retry"
326 unsigned long flags;
327 spin_lock_irqsave(&conf->device_lock, flags);
328 if (r1_bio->mddev->degraded == conf->raid_disks ||
329 (r1_bio->mddev->degraded == conf->raid_disks-1 &&
330 test_bit(In_sync, &conf->mirrors[mirror].rdev->flags)))
331 uptodate = 1;
332 spin_unlock_irqrestore(&conf->device_lock, flags);
335 if (uptodate) {
336 raid_end_bio_io(r1_bio);
337 rdev_dec_pending(conf->mirrors[mirror].rdev, conf->mddev);
338 } else {
340 * oops, read error:
342 char b[BDEVNAME_SIZE];
343 printk_ratelimited(
344 KERN_ERR "md/raid1:%s: %s: "
345 "rescheduling sector %llu\n",
346 mdname(conf->mddev),
347 bdevname(conf->mirrors[mirror].rdev->bdev,
349 (unsigned long long)r1_bio->sector);
350 set_bit(R1BIO_ReadError, &r1_bio->state);
351 reschedule_retry(r1_bio);
352 /* don't drop the reference on read_disk yet */
356 static void close_write(struct r1bio *r1_bio)
358 /* it really is the end of this request */
359 if (test_bit(R1BIO_BehindIO, &r1_bio->state)) {
360 /* free extra copy of the data pages */
361 int i = r1_bio->behind_page_count;
362 while (i--)
363 safe_put_page(r1_bio->behind_bvecs[i].bv_page);
364 kfree(r1_bio->behind_bvecs);
365 r1_bio->behind_bvecs = NULL;
367 /* clear the bitmap if all writes complete successfully */
368 bitmap_endwrite(r1_bio->mddev->bitmap, r1_bio->sector,
369 r1_bio->sectors,
370 !test_bit(R1BIO_Degraded, &r1_bio->state),
371 test_bit(R1BIO_BehindIO, &r1_bio->state));
372 md_write_end(r1_bio->mddev);
375 static void r1_bio_write_done(struct r1bio *r1_bio)
377 if (!atomic_dec_and_test(&r1_bio->remaining))
378 return;
380 if (test_bit(R1BIO_WriteError, &r1_bio->state))
381 reschedule_retry(r1_bio);
382 else {
383 close_write(r1_bio);
384 if (test_bit(R1BIO_MadeGood, &r1_bio->state))
385 reschedule_retry(r1_bio);
386 else
387 raid_end_bio_io(r1_bio);
391 static void raid1_end_write_request(struct bio *bio, int error)
393 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
394 struct r1bio *r1_bio = bio->bi_private;
395 int mirror, behind = test_bit(R1BIO_BehindIO, &r1_bio->state);
396 struct r1conf *conf = r1_bio->mddev->private;
397 struct bio *to_put = NULL;
399 mirror = find_bio_disk(r1_bio, bio);
402 * 'one mirror IO has finished' event handler:
404 if (!uptodate) {
405 set_bit(WriteErrorSeen,
406 &conf->mirrors[mirror].rdev->flags);
407 if (!test_and_set_bit(WantReplacement,
408 &conf->mirrors[mirror].rdev->flags))
409 set_bit(MD_RECOVERY_NEEDED, &
410 conf->mddev->recovery);
412 set_bit(R1BIO_WriteError, &r1_bio->state);
413 } else {
415 * Set R1BIO_Uptodate in our master bio, so that we
416 * will return a good error code for to the higher
417 * levels even if IO on some other mirrored buffer
418 * fails.
420 * The 'master' represents the composite IO operation
421 * to user-side. So if something waits for IO, then it
422 * will wait for the 'master' bio.
424 sector_t first_bad;
425 int bad_sectors;
427 r1_bio->bios[mirror] = NULL;
428 to_put = bio;
430 * Do not set R1BIO_Uptodate if the current device is
431 * rebuilding or Faulty. This is because we cannot use
432 * such device for properly reading the data back (we could
433 * potentially use it, if the current write would have felt
434 * before rdev->recovery_offset, but for simplicity we don't
435 * check this here.
437 if (test_bit(In_sync, &conf->mirrors[mirror].rdev->flags) &&
438 !test_bit(Faulty, &conf->mirrors[mirror].rdev->flags))
439 set_bit(R1BIO_Uptodate, &r1_bio->state);
441 /* Maybe we can clear some bad blocks. */
442 if (is_badblock(conf->mirrors[mirror].rdev,
443 r1_bio->sector, r1_bio->sectors,
444 &first_bad, &bad_sectors)) {
445 r1_bio->bios[mirror] = IO_MADE_GOOD;
446 set_bit(R1BIO_MadeGood, &r1_bio->state);
450 if (behind) {
451 if (test_bit(WriteMostly, &conf->mirrors[mirror].rdev->flags))
452 atomic_dec(&r1_bio->behind_remaining);
455 * In behind mode, we ACK the master bio once the I/O
456 * has safely reached all non-writemostly
457 * disks. Setting the Returned bit ensures that this
458 * gets done only once -- we don't ever want to return
459 * -EIO here, instead we'll wait
461 if (atomic_read(&r1_bio->behind_remaining) >= (atomic_read(&r1_bio->remaining)-1) &&
462 test_bit(R1BIO_Uptodate, &r1_bio->state)) {
463 /* Maybe we can return now */
464 if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) {
465 struct bio *mbio = r1_bio->master_bio;
466 pr_debug("raid1: behind end write sectors"
467 " %llu-%llu\n",
468 (unsigned long long) mbio->bi_sector,
469 (unsigned long long) mbio->bi_sector +
470 bio_sectors(mbio) - 1);
471 call_bio_endio(r1_bio);
475 if (r1_bio->bios[mirror] == NULL)
476 rdev_dec_pending(conf->mirrors[mirror].rdev,
477 conf->mddev);
480 * Let's see if all mirrored write operations have finished
481 * already.
483 r1_bio_write_done(r1_bio);
485 if (to_put)
486 bio_put(to_put);
491 * This routine returns the disk from which the requested read should
492 * be done. There is a per-array 'next expected sequential IO' sector
493 * number - if this matches on the next IO then we use the last disk.
494 * There is also a per-disk 'last know head position' sector that is
495 * maintained from IRQ contexts, both the normal and the resync IO
496 * completion handlers update this position correctly. If there is no
497 * perfect sequential match then we pick the disk whose head is closest.
499 * If there are 2 mirrors in the same 2 devices, performance degrades
500 * because position is mirror, not device based.
502 * The rdev for the device selected will have nr_pending incremented.
504 static int read_balance(struct r1conf *conf, struct r1bio *r1_bio, int *max_sectors)
506 const sector_t this_sector = r1_bio->sector;
507 int sectors;
508 int best_good_sectors;
509 int best_disk, best_dist_disk, best_pending_disk;
510 int has_nonrot_disk;
511 int disk;
512 sector_t best_dist;
513 unsigned int min_pending;
514 struct md_rdev *rdev;
515 int choose_first;
516 int choose_next_idle;
518 rcu_read_lock();
520 * Check if we can balance. We can balance on the whole
521 * device if no resync is going on, or below the resync window.
522 * We take the first readable disk when above the resync window.
524 retry:
525 sectors = r1_bio->sectors;
526 best_disk = -1;
527 best_dist_disk = -1;
528 best_dist = MaxSector;
529 best_pending_disk = -1;
530 min_pending = UINT_MAX;
531 best_good_sectors = 0;
532 has_nonrot_disk = 0;
533 choose_next_idle = 0;
535 if (conf->mddev->recovery_cp < MaxSector &&
536 (this_sector + sectors >= conf->next_resync))
537 choose_first = 1;
538 else
539 choose_first = 0;
541 for (disk = 0 ; disk < conf->raid_disks * 2 ; disk++) {
542 sector_t dist;
543 sector_t first_bad;
544 int bad_sectors;
545 unsigned int pending;
546 bool nonrot;
548 rdev = rcu_dereference(conf->mirrors[disk].rdev);
549 if (r1_bio->bios[disk] == IO_BLOCKED
550 || rdev == NULL
551 || test_bit(Unmerged, &rdev->flags)
552 || test_bit(Faulty, &rdev->flags))
553 continue;
554 if (!test_bit(In_sync, &rdev->flags) &&
555 rdev->recovery_offset < this_sector + sectors)
556 continue;
557 if (test_bit(WriteMostly, &rdev->flags)) {
558 /* Don't balance among write-mostly, just
559 * use the first as a last resort */
560 if (best_dist_disk < 0) {
561 if (is_badblock(rdev, this_sector, sectors,
562 &first_bad, &bad_sectors)) {
563 if (first_bad < this_sector)
564 /* Cannot use this */
565 continue;
566 best_good_sectors = first_bad - this_sector;
567 } else
568 best_good_sectors = sectors;
569 best_dist_disk = disk;
570 best_pending_disk = disk;
572 continue;
574 /* This is a reasonable device to use. It might
575 * even be best.
577 if (is_badblock(rdev, this_sector, sectors,
578 &first_bad, &bad_sectors)) {
579 if (best_dist < MaxSector)
580 /* already have a better device */
581 continue;
582 if (first_bad <= this_sector) {
583 /* cannot read here. If this is the 'primary'
584 * device, then we must not read beyond
585 * bad_sectors from another device..
587 bad_sectors -= (this_sector - first_bad);
588 if (choose_first && sectors > bad_sectors)
589 sectors = bad_sectors;
590 if (best_good_sectors > sectors)
591 best_good_sectors = sectors;
593 } else {
594 sector_t good_sectors = first_bad - this_sector;
595 if (good_sectors > best_good_sectors) {
596 best_good_sectors = good_sectors;
597 best_disk = disk;
599 if (choose_first)
600 break;
602 continue;
603 } else
604 best_good_sectors = sectors;
606 nonrot = blk_queue_nonrot(bdev_get_queue(rdev->bdev));
607 has_nonrot_disk |= nonrot;
608 pending = atomic_read(&rdev->nr_pending);
609 dist = abs(this_sector - conf->mirrors[disk].head_position);
610 if (choose_first) {
611 best_disk = disk;
612 break;
614 /* Don't change to another disk for sequential reads */
615 if (conf->mirrors[disk].next_seq_sect == this_sector
616 || dist == 0) {
617 int opt_iosize = bdev_io_opt(rdev->bdev) >> 9;
618 struct raid1_info *mirror = &conf->mirrors[disk];
620 best_disk = disk;
622 * If buffered sequential IO size exceeds optimal
623 * iosize, check if there is idle disk. If yes, choose
624 * the idle disk. read_balance could already choose an
625 * idle disk before noticing it's a sequential IO in
626 * this disk. This doesn't matter because this disk
627 * will idle, next time it will be utilized after the
628 * first disk has IO size exceeds optimal iosize. In
629 * this way, iosize of the first disk will be optimal
630 * iosize at least. iosize of the second disk might be
631 * small, but not a big deal since when the second disk
632 * starts IO, the first disk is likely still busy.
634 if (nonrot && opt_iosize > 0 &&
635 mirror->seq_start != MaxSector &&
636 mirror->next_seq_sect > opt_iosize &&
637 mirror->next_seq_sect - opt_iosize >=
638 mirror->seq_start) {
639 choose_next_idle = 1;
640 continue;
642 break;
644 /* If device is idle, use it */
645 if (pending == 0) {
646 best_disk = disk;
647 break;
650 if (choose_next_idle)
651 continue;
653 if (min_pending > pending) {
654 min_pending = pending;
655 best_pending_disk = disk;
658 if (dist < best_dist) {
659 best_dist = dist;
660 best_dist_disk = disk;
665 * If all disks are rotational, choose the closest disk. If any disk is
666 * non-rotational, choose the disk with less pending request even the
667 * disk is rotational, which might/might not be optimal for raids with
668 * mixed ratation/non-rotational disks depending on workload.
670 if (best_disk == -1) {
671 if (has_nonrot_disk)
672 best_disk = best_pending_disk;
673 else
674 best_disk = best_dist_disk;
677 if (best_disk >= 0) {
678 rdev = rcu_dereference(conf->mirrors[best_disk].rdev);
679 if (!rdev)
680 goto retry;
681 atomic_inc(&rdev->nr_pending);
682 if (test_bit(Faulty, &rdev->flags)) {
683 /* cannot risk returning a device that failed
684 * before we inc'ed nr_pending
686 rdev_dec_pending(rdev, conf->mddev);
687 goto retry;
689 sectors = best_good_sectors;
691 if (conf->mirrors[best_disk].next_seq_sect != this_sector)
692 conf->mirrors[best_disk].seq_start = this_sector;
694 conf->mirrors[best_disk].next_seq_sect = this_sector + sectors;
696 rcu_read_unlock();
697 *max_sectors = sectors;
699 return best_disk;
702 static int raid1_mergeable_bvec(struct request_queue *q,
703 struct bvec_merge_data *bvm,
704 struct bio_vec *biovec)
706 struct mddev *mddev = q->queuedata;
707 struct r1conf *conf = mddev->private;
708 sector_t sector = bvm->bi_sector + get_start_sect(bvm->bi_bdev);
709 int max = biovec->bv_len;
711 if (mddev->merge_check_needed) {
712 int disk;
713 rcu_read_lock();
714 for (disk = 0; disk < conf->raid_disks * 2; disk++) {
715 struct md_rdev *rdev = rcu_dereference(
716 conf->mirrors[disk].rdev);
717 if (rdev && !test_bit(Faulty, &rdev->flags)) {
718 struct request_queue *q =
719 bdev_get_queue(rdev->bdev);
720 if (q->merge_bvec_fn) {
721 bvm->bi_sector = sector +
722 rdev->data_offset;
723 bvm->bi_bdev = rdev->bdev;
724 max = min(max, q->merge_bvec_fn(
725 q, bvm, biovec));
729 rcu_read_unlock();
731 return max;
735 int md_raid1_congested(struct mddev *mddev, int bits)
737 struct r1conf *conf = mddev->private;
738 int i, ret = 0;
740 if ((bits & (1 << BDI_async_congested)) &&
741 conf->pending_count >= max_queued_requests)
742 return 1;
744 rcu_read_lock();
745 for (i = 0; i < conf->raid_disks * 2; i++) {
746 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
747 if (rdev && !test_bit(Faulty, &rdev->flags)) {
748 struct request_queue *q = bdev_get_queue(rdev->bdev);
750 BUG_ON(!q);
752 /* Note the '|| 1' - when read_balance prefers
753 * non-congested targets, it can be removed
755 if ((bits & (1<<BDI_async_congested)) || 1)
756 ret |= bdi_congested(&q->backing_dev_info, bits);
757 else
758 ret &= bdi_congested(&q->backing_dev_info, bits);
761 rcu_read_unlock();
762 return ret;
764 EXPORT_SYMBOL_GPL(md_raid1_congested);
766 static int raid1_congested(void *data, int bits)
768 struct mddev *mddev = data;
770 return mddev_congested(mddev, bits) ||
771 md_raid1_congested(mddev, bits);
774 static void flush_pending_writes(struct r1conf *conf)
776 /* Any writes that have been queued but are awaiting
777 * bitmap updates get flushed here.
779 spin_lock_irq(&conf->device_lock);
781 if (conf->pending_bio_list.head) {
782 struct bio *bio;
783 bio = bio_list_get(&conf->pending_bio_list);
784 conf->pending_count = 0;
785 spin_unlock_irq(&conf->device_lock);
786 /* flush any pending bitmap writes to
787 * disk before proceeding w/ I/O */
788 bitmap_unplug(conf->mddev->bitmap);
789 wake_up(&conf->wait_barrier);
791 while (bio) { /* submit pending writes */
792 struct bio *next = bio->bi_next;
793 bio->bi_next = NULL;
794 if (unlikely((bio->bi_rw & REQ_DISCARD) &&
795 !blk_queue_discard(bdev_get_queue(bio->bi_bdev))))
796 /* Just ignore it */
797 bio_endio(bio, 0);
798 else
799 generic_make_request(bio);
800 bio = next;
802 } else
803 spin_unlock_irq(&conf->device_lock);
806 /* Barriers....
807 * Sometimes we need to suspend IO while we do something else,
808 * either some resync/recovery, or reconfigure the array.
809 * To do this we raise a 'barrier'.
810 * The 'barrier' is a counter that can be raised multiple times
811 * to count how many activities are happening which preclude
812 * normal IO.
813 * We can only raise the barrier if there is no pending IO.
814 * i.e. if nr_pending == 0.
815 * We choose only to raise the barrier if no-one is waiting for the
816 * barrier to go down. This means that as soon as an IO request
817 * is ready, no other operations which require a barrier will start
818 * until the IO request has had a chance.
820 * So: regular IO calls 'wait_barrier'. When that returns there
821 * is no backgroup IO happening, It must arrange to call
822 * allow_barrier when it has finished its IO.
823 * backgroup IO calls must call raise_barrier. Once that returns
824 * there is no normal IO happeing. It must arrange to call
825 * lower_barrier when the particular background IO completes.
827 #define RESYNC_DEPTH 32
829 static void raise_barrier(struct r1conf *conf)
831 spin_lock_irq(&conf->resync_lock);
833 /* Wait until no block IO is waiting */
834 wait_event_lock_irq(conf->wait_barrier, !conf->nr_waiting,
835 conf->resync_lock);
837 /* block any new IO from starting */
838 conf->barrier++;
840 /* Now wait for all pending IO to complete */
841 wait_event_lock_irq(conf->wait_barrier,
842 !conf->nr_pending && conf->barrier < RESYNC_DEPTH,
843 conf->resync_lock);
845 spin_unlock_irq(&conf->resync_lock);
848 static void lower_barrier(struct r1conf *conf)
850 unsigned long flags;
851 BUG_ON(conf->barrier <= 0);
852 spin_lock_irqsave(&conf->resync_lock, flags);
853 conf->barrier--;
854 spin_unlock_irqrestore(&conf->resync_lock, flags);
855 wake_up(&conf->wait_barrier);
858 static void wait_barrier(struct r1conf *conf)
860 spin_lock_irq(&conf->resync_lock);
861 if (conf->barrier) {
862 conf->nr_waiting++;
863 /* Wait for the barrier to drop.
864 * However if there are already pending
865 * requests (preventing the barrier from
866 * rising completely), and the
867 * pre-process bio queue isn't empty,
868 * then don't wait, as we need to empty
869 * that queue to get the nr_pending
870 * count down.
872 wait_event_lock_irq(conf->wait_barrier,
873 !conf->barrier ||
874 (conf->nr_pending &&
875 current->bio_list &&
876 !bio_list_empty(current->bio_list)),
877 conf->resync_lock);
878 conf->nr_waiting--;
880 conf->nr_pending++;
881 spin_unlock_irq(&conf->resync_lock);
884 static void allow_barrier(struct r1conf *conf)
886 unsigned long flags;
887 spin_lock_irqsave(&conf->resync_lock, flags);
888 conf->nr_pending--;
889 spin_unlock_irqrestore(&conf->resync_lock, flags);
890 wake_up(&conf->wait_barrier);
893 static void freeze_array(struct r1conf *conf, int extra)
895 /* stop syncio and normal IO and wait for everything to
896 * go quite.
897 * We increment barrier and nr_waiting, and then
898 * wait until nr_pending match nr_queued+extra
899 * This is called in the context of one normal IO request
900 * that has failed. Thus any sync request that might be pending
901 * will be blocked by nr_pending, and we need to wait for
902 * pending IO requests to complete or be queued for re-try.
903 * Thus the number queued (nr_queued) plus this request (extra)
904 * must match the number of pending IOs (nr_pending) before
905 * we continue.
907 spin_lock_irq(&conf->resync_lock);
908 conf->barrier++;
909 conf->nr_waiting++;
910 wait_event_lock_irq_cmd(conf->wait_barrier,
911 conf->nr_pending == conf->nr_queued+extra,
912 conf->resync_lock,
913 flush_pending_writes(conf));
914 spin_unlock_irq(&conf->resync_lock);
916 static void unfreeze_array(struct r1conf *conf)
918 /* reverse the effect of the freeze */
919 spin_lock_irq(&conf->resync_lock);
920 conf->barrier--;
921 conf->nr_waiting--;
922 wake_up(&conf->wait_barrier);
923 spin_unlock_irq(&conf->resync_lock);
927 /* duplicate the data pages for behind I/O
929 static void alloc_behind_pages(struct bio *bio, struct r1bio *r1_bio)
931 int i;
932 struct bio_vec *bvec;
933 struct bio_vec *bvecs = kzalloc(bio->bi_vcnt * sizeof(struct bio_vec),
934 GFP_NOIO);
935 if (unlikely(!bvecs))
936 return;
938 bio_for_each_segment_all(bvec, bio, i) {
939 bvecs[i] = *bvec;
940 bvecs[i].bv_page = alloc_page(GFP_NOIO);
941 if (unlikely(!bvecs[i].bv_page))
942 goto do_sync_io;
943 memcpy(kmap(bvecs[i].bv_page) + bvec->bv_offset,
944 kmap(bvec->bv_page) + bvec->bv_offset, bvec->bv_len);
945 kunmap(bvecs[i].bv_page);
946 kunmap(bvec->bv_page);
948 r1_bio->behind_bvecs = bvecs;
949 r1_bio->behind_page_count = bio->bi_vcnt;
950 set_bit(R1BIO_BehindIO, &r1_bio->state);
951 return;
953 do_sync_io:
954 for (i = 0; i < bio->bi_vcnt; i++)
955 if (bvecs[i].bv_page)
956 put_page(bvecs[i].bv_page);
957 kfree(bvecs);
958 pr_debug("%dB behind alloc failed, doing sync I/O\n", bio->bi_size);
961 struct raid1_plug_cb {
962 struct blk_plug_cb cb;
963 struct bio_list pending;
964 int pending_cnt;
967 static void raid1_unplug(struct blk_plug_cb *cb, bool from_schedule)
969 struct raid1_plug_cb *plug = container_of(cb, struct raid1_plug_cb,
970 cb);
971 struct mddev *mddev = plug->cb.data;
972 struct r1conf *conf = mddev->private;
973 struct bio *bio;
975 if (from_schedule || current->bio_list) {
976 spin_lock_irq(&conf->device_lock);
977 bio_list_merge(&conf->pending_bio_list, &plug->pending);
978 conf->pending_count += plug->pending_cnt;
979 spin_unlock_irq(&conf->device_lock);
980 wake_up(&conf->wait_barrier);
981 md_wakeup_thread(mddev->thread);
982 kfree(plug);
983 return;
986 /* we aren't scheduling, so we can do the write-out directly. */
987 bio = bio_list_get(&plug->pending);
988 bitmap_unplug(mddev->bitmap);
989 wake_up(&conf->wait_barrier);
991 while (bio) { /* submit pending writes */
992 struct bio *next = bio->bi_next;
993 bio->bi_next = NULL;
994 if (unlikely((bio->bi_rw & REQ_DISCARD) &&
995 !blk_queue_discard(bdev_get_queue(bio->bi_bdev))))
996 /* Just ignore it */
997 bio_endio(bio, 0);
998 else
999 generic_make_request(bio);
1000 bio = next;
1002 kfree(plug);
1005 static void make_request(struct mddev *mddev, struct bio * bio)
1007 struct r1conf *conf = mddev->private;
1008 struct raid1_info *mirror;
1009 struct r1bio *r1_bio;
1010 struct bio *read_bio;
1011 int i, disks;
1012 struct bitmap *bitmap;
1013 unsigned long flags;
1014 const int rw = bio_data_dir(bio);
1015 const unsigned long do_sync = (bio->bi_rw & REQ_SYNC);
1016 const unsigned long do_flush_fua = (bio->bi_rw & (REQ_FLUSH | REQ_FUA));
1017 const unsigned long do_discard = (bio->bi_rw
1018 & (REQ_DISCARD | REQ_SECURE));
1019 const unsigned long do_same = (bio->bi_rw & REQ_WRITE_SAME);
1020 struct md_rdev *blocked_rdev;
1021 struct blk_plug_cb *cb;
1022 struct raid1_plug_cb *plug = NULL;
1023 int first_clone;
1024 int sectors_handled;
1025 int max_sectors;
1028 * Register the new request and wait if the reconstruction
1029 * thread has put up a bar for new requests.
1030 * Continue immediately if no resync is active currently.
1033 md_write_start(mddev, bio); /* wait on superblock update early */
1035 if (bio_data_dir(bio) == WRITE &&
1036 bio_end_sector(bio) > mddev->suspend_lo &&
1037 bio->bi_sector < mddev->suspend_hi) {
1038 /* As the suspend_* range is controlled by
1039 * userspace, we want an interruptible
1040 * wait.
1042 DEFINE_WAIT(w);
1043 for (;;) {
1044 flush_signals(current);
1045 prepare_to_wait(&conf->wait_barrier,
1046 &w, TASK_INTERRUPTIBLE);
1047 if (bio_end_sector(bio) <= mddev->suspend_lo ||
1048 bio->bi_sector >= mddev->suspend_hi)
1049 break;
1050 schedule();
1052 finish_wait(&conf->wait_barrier, &w);
1055 wait_barrier(conf);
1057 bitmap = mddev->bitmap;
1060 * make_request() can abort the operation when READA is being
1061 * used and no empty request is available.
1064 r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO);
1066 r1_bio->master_bio = bio;
1067 r1_bio->sectors = bio_sectors(bio);
1068 r1_bio->state = 0;
1069 r1_bio->mddev = mddev;
1070 r1_bio->sector = bio->bi_sector;
1072 /* We might need to issue multiple reads to different
1073 * devices if there are bad blocks around, so we keep
1074 * track of the number of reads in bio->bi_phys_segments.
1075 * If this is 0, there is only one r1_bio and no locking
1076 * will be needed when requests complete. If it is
1077 * non-zero, then it is the number of not-completed requests.
1079 bio->bi_phys_segments = 0;
1080 clear_bit(BIO_SEG_VALID, &bio->bi_flags);
1082 if (rw == READ) {
1084 * read balancing logic:
1086 int rdisk;
1088 read_again:
1089 rdisk = read_balance(conf, r1_bio, &max_sectors);
1091 if (rdisk < 0) {
1092 /* couldn't find anywhere to read from */
1093 raid_end_bio_io(r1_bio);
1094 return;
1096 mirror = conf->mirrors + rdisk;
1098 if (test_bit(WriteMostly, &mirror->rdev->flags) &&
1099 bitmap) {
1100 /* Reading from a write-mostly device must
1101 * take care not to over-take any writes
1102 * that are 'behind'
1104 wait_event(bitmap->behind_wait,
1105 atomic_read(&bitmap->behind_writes) == 0);
1107 r1_bio->read_disk = rdisk;
1109 read_bio = bio_clone_mddev(bio, GFP_NOIO, mddev);
1110 md_trim_bio(read_bio, r1_bio->sector - bio->bi_sector,
1111 max_sectors);
1113 r1_bio->bios[rdisk] = read_bio;
1115 read_bio->bi_sector = r1_bio->sector + mirror->rdev->data_offset;
1116 read_bio->bi_bdev = mirror->rdev->bdev;
1117 read_bio->bi_end_io = raid1_end_read_request;
1118 read_bio->bi_rw = READ | do_sync;
1119 read_bio->bi_private = r1_bio;
1121 if (max_sectors < r1_bio->sectors) {
1122 /* could not read all from this device, so we will
1123 * need another r1_bio.
1126 sectors_handled = (r1_bio->sector + max_sectors
1127 - bio->bi_sector);
1128 r1_bio->sectors = max_sectors;
1129 spin_lock_irq(&conf->device_lock);
1130 if (bio->bi_phys_segments == 0)
1131 bio->bi_phys_segments = 2;
1132 else
1133 bio->bi_phys_segments++;
1134 spin_unlock_irq(&conf->device_lock);
1135 /* Cannot call generic_make_request directly
1136 * as that will be queued in __make_request
1137 * and subsequent mempool_alloc might block waiting
1138 * for it. So hand bio over to raid1d.
1140 reschedule_retry(r1_bio);
1142 r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO);
1144 r1_bio->master_bio = bio;
1145 r1_bio->sectors = bio_sectors(bio) - sectors_handled;
1146 r1_bio->state = 0;
1147 r1_bio->mddev = mddev;
1148 r1_bio->sector = bio->bi_sector + sectors_handled;
1149 goto read_again;
1150 } else
1151 generic_make_request(read_bio);
1152 return;
1156 * WRITE:
1158 if (conf->pending_count >= max_queued_requests) {
1159 md_wakeup_thread(mddev->thread);
1160 wait_event(conf->wait_barrier,
1161 conf->pending_count < max_queued_requests);
1163 /* first select target devices under rcu_lock and
1164 * inc refcount on their rdev. Record them by setting
1165 * bios[x] to bio
1166 * If there are known/acknowledged bad blocks on any device on
1167 * which we have seen a write error, we want to avoid writing those
1168 * blocks.
1169 * This potentially requires several writes to write around
1170 * the bad blocks. Each set of writes gets it's own r1bio
1171 * with a set of bios attached.
1174 disks = conf->raid_disks * 2;
1175 retry_write:
1176 blocked_rdev = NULL;
1177 rcu_read_lock();
1178 max_sectors = r1_bio->sectors;
1179 for (i = 0; i < disks; i++) {
1180 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
1181 if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
1182 atomic_inc(&rdev->nr_pending);
1183 blocked_rdev = rdev;
1184 break;
1186 r1_bio->bios[i] = NULL;
1187 if (!rdev || test_bit(Faulty, &rdev->flags)
1188 || test_bit(Unmerged, &rdev->flags)) {
1189 if (i < conf->raid_disks)
1190 set_bit(R1BIO_Degraded, &r1_bio->state);
1191 continue;
1194 atomic_inc(&rdev->nr_pending);
1195 if (test_bit(WriteErrorSeen, &rdev->flags)) {
1196 sector_t first_bad;
1197 int bad_sectors;
1198 int is_bad;
1200 is_bad = is_badblock(rdev, r1_bio->sector,
1201 max_sectors,
1202 &first_bad, &bad_sectors);
1203 if (is_bad < 0) {
1204 /* mustn't write here until the bad block is
1205 * acknowledged*/
1206 set_bit(BlockedBadBlocks, &rdev->flags);
1207 blocked_rdev = rdev;
1208 break;
1210 if (is_bad && first_bad <= r1_bio->sector) {
1211 /* Cannot write here at all */
1212 bad_sectors -= (r1_bio->sector - first_bad);
1213 if (bad_sectors < max_sectors)
1214 /* mustn't write more than bad_sectors
1215 * to other devices yet
1217 max_sectors = bad_sectors;
1218 rdev_dec_pending(rdev, mddev);
1219 /* We don't set R1BIO_Degraded as that
1220 * only applies if the disk is
1221 * missing, so it might be re-added,
1222 * and we want to know to recover this
1223 * chunk.
1224 * In this case the device is here,
1225 * and the fact that this chunk is not
1226 * in-sync is recorded in the bad
1227 * block log
1229 continue;
1231 if (is_bad) {
1232 int good_sectors = first_bad - r1_bio->sector;
1233 if (good_sectors < max_sectors)
1234 max_sectors = good_sectors;
1237 r1_bio->bios[i] = bio;
1239 rcu_read_unlock();
1241 if (unlikely(blocked_rdev)) {
1242 /* Wait for this device to become unblocked */
1243 int j;
1245 for (j = 0; j < i; j++)
1246 if (r1_bio->bios[j])
1247 rdev_dec_pending(conf->mirrors[j].rdev, mddev);
1248 r1_bio->state = 0;
1249 allow_barrier(conf);
1250 md_wait_for_blocked_rdev(blocked_rdev, mddev);
1251 wait_barrier(conf);
1252 goto retry_write;
1255 if (max_sectors < r1_bio->sectors) {
1256 /* We are splitting this write into multiple parts, so
1257 * we need to prepare for allocating another r1_bio.
1259 r1_bio->sectors = max_sectors;
1260 spin_lock_irq(&conf->device_lock);
1261 if (bio->bi_phys_segments == 0)
1262 bio->bi_phys_segments = 2;
1263 else
1264 bio->bi_phys_segments++;
1265 spin_unlock_irq(&conf->device_lock);
1267 sectors_handled = r1_bio->sector + max_sectors - bio->bi_sector;
1269 atomic_set(&r1_bio->remaining, 1);
1270 atomic_set(&r1_bio->behind_remaining, 0);
1272 first_clone = 1;
1273 for (i = 0; i < disks; i++) {
1274 struct bio *mbio;
1275 if (!r1_bio->bios[i])
1276 continue;
1278 mbio = bio_clone_mddev(bio, GFP_NOIO, mddev);
1279 md_trim_bio(mbio, r1_bio->sector - bio->bi_sector, max_sectors);
1281 if (first_clone) {
1282 /* do behind I/O ?
1283 * Not if there are too many, or cannot
1284 * allocate memory, or a reader on WriteMostly
1285 * is waiting for behind writes to flush */
1286 if (bitmap &&
1287 (atomic_read(&bitmap->behind_writes)
1288 < mddev->bitmap_info.max_write_behind) &&
1289 !waitqueue_active(&bitmap->behind_wait))
1290 alloc_behind_pages(mbio, r1_bio);
1292 bitmap_startwrite(bitmap, r1_bio->sector,
1293 r1_bio->sectors,
1294 test_bit(R1BIO_BehindIO,
1295 &r1_bio->state));
1296 first_clone = 0;
1298 if (r1_bio->behind_bvecs) {
1299 struct bio_vec *bvec;
1300 int j;
1303 * We trimmed the bio, so _all is legit
1305 bio_for_each_segment_all(bvec, mbio, j)
1306 bvec->bv_page = r1_bio->behind_bvecs[j].bv_page;
1307 if (test_bit(WriteMostly, &conf->mirrors[i].rdev->flags))
1308 atomic_inc(&r1_bio->behind_remaining);
1311 r1_bio->bios[i] = mbio;
1313 mbio->bi_sector = (r1_bio->sector +
1314 conf->mirrors[i].rdev->data_offset);
1315 mbio->bi_bdev = conf->mirrors[i].rdev->bdev;
1316 mbio->bi_end_io = raid1_end_write_request;
1317 mbio->bi_rw =
1318 WRITE | do_flush_fua | do_sync | do_discard | do_same;
1319 mbio->bi_private = r1_bio;
1321 atomic_inc(&r1_bio->remaining);
1323 cb = blk_check_plugged(raid1_unplug, mddev, sizeof(*plug));
1324 if (cb)
1325 plug = container_of(cb, struct raid1_plug_cb, cb);
1326 else
1327 plug = NULL;
1328 spin_lock_irqsave(&conf->device_lock, flags);
1329 if (plug) {
1330 bio_list_add(&plug->pending, mbio);
1331 plug->pending_cnt++;
1332 } else {
1333 bio_list_add(&conf->pending_bio_list, mbio);
1334 conf->pending_count++;
1336 spin_unlock_irqrestore(&conf->device_lock, flags);
1337 if (!plug)
1338 md_wakeup_thread(mddev->thread);
1340 /* Mustn't call r1_bio_write_done before this next test,
1341 * as it could result in the bio being freed.
1343 if (sectors_handled < bio_sectors(bio)) {
1344 r1_bio_write_done(r1_bio);
1345 /* We need another r1_bio. It has already been counted
1346 * in bio->bi_phys_segments
1348 r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO);
1349 r1_bio->master_bio = bio;
1350 r1_bio->sectors = bio_sectors(bio) - sectors_handled;
1351 r1_bio->state = 0;
1352 r1_bio->mddev = mddev;
1353 r1_bio->sector = bio->bi_sector + sectors_handled;
1354 goto retry_write;
1357 r1_bio_write_done(r1_bio);
1359 /* In case raid1d snuck in to freeze_array */
1360 wake_up(&conf->wait_barrier);
1363 static void status(struct seq_file *seq, struct mddev *mddev)
1365 struct r1conf *conf = mddev->private;
1366 int i;
1368 seq_printf(seq, " [%d/%d] [", conf->raid_disks,
1369 conf->raid_disks - mddev->degraded);
1370 rcu_read_lock();
1371 for (i = 0; i < conf->raid_disks; i++) {
1372 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
1373 seq_printf(seq, "%s",
1374 rdev && test_bit(In_sync, &rdev->flags) ? "U" : "_");
1376 rcu_read_unlock();
1377 seq_printf(seq, "]");
1381 static void error(struct mddev *mddev, struct md_rdev *rdev)
1383 char b[BDEVNAME_SIZE];
1384 struct r1conf *conf = mddev->private;
1385 unsigned long flags;
1388 * If it is not operational, then we have already marked it as dead
1389 * else if it is the last working disks, ignore the error, let the
1390 * next level up know.
1391 * else mark the drive as failed
1393 if (test_bit(In_sync, &rdev->flags)
1394 && (conf->raid_disks - mddev->degraded) == 1) {
1396 * Don't fail the drive, act as though we were just a
1397 * normal single drive.
1398 * However don't try a recovery from this drive as
1399 * it is very likely to fail.
1401 conf->recovery_disabled = mddev->recovery_disabled;
1402 return;
1404 set_bit(Blocked, &rdev->flags);
1405 spin_lock_irqsave(&conf->device_lock, flags);
1406 if (test_and_clear_bit(In_sync, &rdev->flags)) {
1407 mddev->degraded++;
1408 set_bit(Faulty, &rdev->flags);
1409 } else
1410 set_bit(Faulty, &rdev->flags);
1411 spin_unlock_irqrestore(&conf->device_lock, flags);
1413 * if recovery is running, make sure it aborts.
1415 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1416 set_bit(MD_CHANGE_DEVS, &mddev->flags);
1417 printk(KERN_ALERT
1418 "md/raid1:%s: Disk failure on %s, disabling device.\n"
1419 "md/raid1:%s: Operation continuing on %d devices.\n",
1420 mdname(mddev), bdevname(rdev->bdev, b),
1421 mdname(mddev), conf->raid_disks - mddev->degraded);
1424 static void print_conf(struct r1conf *conf)
1426 int i;
1428 printk(KERN_DEBUG "RAID1 conf printout:\n");
1429 if (!conf) {
1430 printk(KERN_DEBUG "(!conf)\n");
1431 return;
1433 printk(KERN_DEBUG " --- wd:%d rd:%d\n", conf->raid_disks - conf->mddev->degraded,
1434 conf->raid_disks);
1436 rcu_read_lock();
1437 for (i = 0; i < conf->raid_disks; i++) {
1438 char b[BDEVNAME_SIZE];
1439 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
1440 if (rdev)
1441 printk(KERN_DEBUG " disk %d, wo:%d, o:%d, dev:%s\n",
1442 i, !test_bit(In_sync, &rdev->flags),
1443 !test_bit(Faulty, &rdev->flags),
1444 bdevname(rdev->bdev,b));
1446 rcu_read_unlock();
1449 static void close_sync(struct r1conf *conf)
1451 wait_barrier(conf);
1452 allow_barrier(conf);
1454 mempool_destroy(conf->r1buf_pool);
1455 conf->r1buf_pool = NULL;
1458 static int raid1_spare_active(struct mddev *mddev)
1460 int i;
1461 struct r1conf *conf = mddev->private;
1462 int count = 0;
1463 unsigned long flags;
1466 * Find all failed disks within the RAID1 configuration
1467 * and mark them readable.
1468 * Called under mddev lock, so rcu protection not needed.
1469 * device_lock used to avoid races with raid1_end_read_request
1470 * which expects 'In_sync' flags and ->degraded to be consistent.
1472 spin_lock_irqsave(&conf->device_lock, flags);
1473 for (i = 0; i < conf->raid_disks; i++) {
1474 struct md_rdev *rdev = conf->mirrors[i].rdev;
1475 struct md_rdev *repl = conf->mirrors[conf->raid_disks + i].rdev;
1476 if (repl
1477 && repl->recovery_offset == MaxSector
1478 && !test_bit(Faulty, &repl->flags)
1479 && !test_and_set_bit(In_sync, &repl->flags)) {
1480 /* replacement has just become active */
1481 if (!rdev ||
1482 !test_and_clear_bit(In_sync, &rdev->flags))
1483 count++;
1484 if (rdev) {
1485 /* Replaced device not technically
1486 * faulty, but we need to be sure
1487 * it gets removed and never re-added
1489 set_bit(Faulty, &rdev->flags);
1490 sysfs_notify_dirent_safe(
1491 rdev->sysfs_state);
1494 if (rdev
1495 && rdev->recovery_offset == MaxSector
1496 && !test_bit(Faulty, &rdev->flags)
1497 && !test_and_set_bit(In_sync, &rdev->flags)) {
1498 count++;
1499 sysfs_notify_dirent_safe(rdev->sysfs_state);
1502 mddev->degraded -= count;
1503 spin_unlock_irqrestore(&conf->device_lock, flags);
1505 print_conf(conf);
1506 return count;
1510 static int raid1_add_disk(struct mddev *mddev, struct md_rdev *rdev)
1512 struct r1conf *conf = mddev->private;
1513 int err = -EEXIST;
1514 int mirror = 0;
1515 struct raid1_info *p;
1516 int first = 0;
1517 int last = conf->raid_disks - 1;
1518 struct request_queue *q = bdev_get_queue(rdev->bdev);
1520 if (mddev->recovery_disabled == conf->recovery_disabled)
1521 return -EBUSY;
1523 if (rdev->raid_disk >= 0)
1524 first = last = rdev->raid_disk;
1526 if (q->merge_bvec_fn) {
1527 set_bit(Unmerged, &rdev->flags);
1528 mddev->merge_check_needed = 1;
1531 for (mirror = first; mirror <= last; mirror++) {
1532 p = conf->mirrors+mirror;
1533 if (!p->rdev) {
1535 if (mddev->gendisk)
1536 disk_stack_limits(mddev->gendisk, rdev->bdev,
1537 rdev->data_offset << 9);
1539 p->head_position = 0;
1540 rdev->raid_disk = mirror;
1541 err = 0;
1542 /* As all devices are equivalent, we don't need a full recovery
1543 * if this was recently any drive of the array
1545 if (rdev->saved_raid_disk < 0)
1546 conf->fullsync = 1;
1547 rcu_assign_pointer(p->rdev, rdev);
1548 break;
1550 if (test_bit(WantReplacement, &p->rdev->flags) &&
1551 p[conf->raid_disks].rdev == NULL) {
1552 /* Add this device as a replacement */
1553 clear_bit(In_sync, &rdev->flags);
1554 set_bit(Replacement, &rdev->flags);
1555 rdev->raid_disk = mirror;
1556 err = 0;
1557 conf->fullsync = 1;
1558 rcu_assign_pointer(p[conf->raid_disks].rdev, rdev);
1559 break;
1562 if (err == 0 && test_bit(Unmerged, &rdev->flags)) {
1563 /* Some requests might not have seen this new
1564 * merge_bvec_fn. We must wait for them to complete
1565 * before merging the device fully.
1566 * First we make sure any code which has tested
1567 * our function has submitted the request, then
1568 * we wait for all outstanding requests to complete.
1570 synchronize_sched();
1571 freeze_array(conf, 0);
1572 unfreeze_array(conf);
1573 clear_bit(Unmerged, &rdev->flags);
1575 md_integrity_add_rdev(rdev, mddev);
1576 if (mddev->queue && blk_queue_discard(bdev_get_queue(rdev->bdev)))
1577 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, mddev->queue);
1578 print_conf(conf);
1579 return err;
1582 static int raid1_remove_disk(struct mddev *mddev, struct md_rdev *rdev)
1584 struct r1conf *conf = mddev->private;
1585 int err = 0;
1586 int number = rdev->raid_disk;
1587 struct raid1_info *p = conf->mirrors + number;
1589 if (rdev != p->rdev)
1590 p = conf->mirrors + conf->raid_disks + number;
1592 print_conf(conf);
1593 if (rdev == p->rdev) {
1594 if (test_bit(In_sync, &rdev->flags) ||
1595 atomic_read(&rdev->nr_pending)) {
1596 err = -EBUSY;
1597 goto abort;
1599 /* Only remove non-faulty devices if recovery
1600 * is not possible.
1602 if (!test_bit(Faulty, &rdev->flags) &&
1603 mddev->recovery_disabled != conf->recovery_disabled &&
1604 mddev->degraded < conf->raid_disks) {
1605 err = -EBUSY;
1606 goto abort;
1608 p->rdev = NULL;
1609 synchronize_rcu();
1610 if (atomic_read(&rdev->nr_pending)) {
1611 /* lost the race, try later */
1612 err = -EBUSY;
1613 p->rdev = rdev;
1614 goto abort;
1615 } else if (conf->mirrors[conf->raid_disks + number].rdev) {
1616 /* We just removed a device that is being replaced.
1617 * Move down the replacement. We drain all IO before
1618 * doing this to avoid confusion.
1620 struct md_rdev *repl =
1621 conf->mirrors[conf->raid_disks + number].rdev;
1622 freeze_array(conf, 0);
1623 clear_bit(Replacement, &repl->flags);
1624 p->rdev = repl;
1625 conf->mirrors[conf->raid_disks + number].rdev = NULL;
1626 unfreeze_array(conf);
1627 clear_bit(WantReplacement, &rdev->flags);
1628 } else
1629 clear_bit(WantReplacement, &rdev->flags);
1630 err = md_integrity_register(mddev);
1632 abort:
1634 print_conf(conf);
1635 return err;
1639 static void end_sync_read(struct bio *bio, int error)
1641 struct r1bio *r1_bio = bio->bi_private;
1643 update_head_pos(r1_bio->read_disk, r1_bio);
1646 * we have read a block, now it needs to be re-written,
1647 * or re-read if the read failed.
1648 * We don't do much here, just schedule handling by raid1d
1650 if (test_bit(BIO_UPTODATE, &bio->bi_flags))
1651 set_bit(R1BIO_Uptodate, &r1_bio->state);
1653 if (atomic_dec_and_test(&r1_bio->remaining))
1654 reschedule_retry(r1_bio);
1657 static void end_sync_write(struct bio *bio, int error)
1659 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
1660 struct r1bio *r1_bio = bio->bi_private;
1661 struct mddev *mddev = r1_bio->mddev;
1662 struct r1conf *conf = mddev->private;
1663 int mirror=0;
1664 sector_t first_bad;
1665 int bad_sectors;
1667 mirror = find_bio_disk(r1_bio, bio);
1669 if (!uptodate) {
1670 sector_t sync_blocks = 0;
1671 sector_t s = r1_bio->sector;
1672 long sectors_to_go = r1_bio->sectors;
1673 /* make sure these bits doesn't get cleared. */
1674 do {
1675 bitmap_end_sync(mddev->bitmap, s,
1676 &sync_blocks, 1);
1677 s += sync_blocks;
1678 sectors_to_go -= sync_blocks;
1679 } while (sectors_to_go > 0);
1680 set_bit(WriteErrorSeen,
1681 &conf->mirrors[mirror].rdev->flags);
1682 if (!test_and_set_bit(WantReplacement,
1683 &conf->mirrors[mirror].rdev->flags))
1684 set_bit(MD_RECOVERY_NEEDED, &
1685 mddev->recovery);
1686 set_bit(R1BIO_WriteError, &r1_bio->state);
1687 } else if (is_badblock(conf->mirrors[mirror].rdev,
1688 r1_bio->sector,
1689 r1_bio->sectors,
1690 &first_bad, &bad_sectors) &&
1691 !is_badblock(conf->mirrors[r1_bio->read_disk].rdev,
1692 r1_bio->sector,
1693 r1_bio->sectors,
1694 &first_bad, &bad_sectors)
1696 set_bit(R1BIO_MadeGood, &r1_bio->state);
1698 if (atomic_dec_and_test(&r1_bio->remaining)) {
1699 int s = r1_bio->sectors;
1700 if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
1701 test_bit(R1BIO_WriteError, &r1_bio->state))
1702 reschedule_retry(r1_bio);
1703 else {
1704 put_buf(r1_bio);
1705 md_done_sync(mddev, s, uptodate);
1710 static int r1_sync_page_io(struct md_rdev *rdev, sector_t sector,
1711 int sectors, struct page *page, int rw)
1713 if (sync_page_io(rdev, sector, sectors << 9, page, rw, false))
1714 /* success */
1715 return 1;
1716 if (rw == WRITE) {
1717 set_bit(WriteErrorSeen, &rdev->flags);
1718 if (!test_and_set_bit(WantReplacement,
1719 &rdev->flags))
1720 set_bit(MD_RECOVERY_NEEDED, &
1721 rdev->mddev->recovery);
1723 /* need to record an error - either for the block or the device */
1724 if (!rdev_set_badblocks(rdev, sector, sectors, 0))
1725 md_error(rdev->mddev, rdev);
1726 return 0;
1729 static int fix_sync_read_error(struct r1bio *r1_bio)
1731 /* Try some synchronous reads of other devices to get
1732 * good data, much like with normal read errors. Only
1733 * read into the pages we already have so we don't
1734 * need to re-issue the read request.
1735 * We don't need to freeze the array, because being in an
1736 * active sync request, there is no normal IO, and
1737 * no overlapping syncs.
1738 * We don't need to check is_badblock() again as we
1739 * made sure that anything with a bad block in range
1740 * will have bi_end_io clear.
1742 struct mddev *mddev = r1_bio->mddev;
1743 struct r1conf *conf = mddev->private;
1744 struct bio *bio = r1_bio->bios[r1_bio->read_disk];
1745 sector_t sect = r1_bio->sector;
1746 int sectors = r1_bio->sectors;
1747 int idx = 0;
1749 while(sectors) {
1750 int s = sectors;
1751 int d = r1_bio->read_disk;
1752 int success = 0;
1753 struct md_rdev *rdev;
1754 int start;
1756 if (s > (PAGE_SIZE>>9))
1757 s = PAGE_SIZE >> 9;
1758 do {
1759 if (r1_bio->bios[d]->bi_end_io == end_sync_read) {
1760 /* No rcu protection needed here devices
1761 * can only be removed when no resync is
1762 * active, and resync is currently active
1764 rdev = conf->mirrors[d].rdev;
1765 if (sync_page_io(rdev, sect, s<<9,
1766 bio->bi_io_vec[idx].bv_page,
1767 READ, false)) {
1768 success = 1;
1769 break;
1772 d++;
1773 if (d == conf->raid_disks * 2)
1774 d = 0;
1775 } while (!success && d != r1_bio->read_disk);
1777 if (!success) {
1778 char b[BDEVNAME_SIZE];
1779 int abort = 0;
1780 /* Cannot read from anywhere, this block is lost.
1781 * Record a bad block on each device. If that doesn't
1782 * work just disable and interrupt the recovery.
1783 * Don't fail devices as that won't really help.
1785 printk(KERN_ALERT "md/raid1:%s: %s: unrecoverable I/O read error"
1786 " for block %llu\n",
1787 mdname(mddev),
1788 bdevname(bio->bi_bdev, b),
1789 (unsigned long long)r1_bio->sector);
1790 for (d = 0; d < conf->raid_disks * 2; d++) {
1791 rdev = conf->mirrors[d].rdev;
1792 if (!rdev || test_bit(Faulty, &rdev->flags))
1793 continue;
1794 if (!rdev_set_badblocks(rdev, sect, s, 0))
1795 abort = 1;
1797 if (abort) {
1798 conf->recovery_disabled =
1799 mddev->recovery_disabled;
1800 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1801 md_done_sync(mddev, r1_bio->sectors, 0);
1802 put_buf(r1_bio);
1803 return 0;
1805 /* Try next page */
1806 sectors -= s;
1807 sect += s;
1808 idx++;
1809 continue;
1812 start = d;
1813 /* write it back and re-read */
1814 while (d != r1_bio->read_disk) {
1815 if (d == 0)
1816 d = conf->raid_disks * 2;
1817 d--;
1818 if (r1_bio->bios[d]->bi_end_io != end_sync_read)
1819 continue;
1820 rdev = conf->mirrors[d].rdev;
1821 if (r1_sync_page_io(rdev, sect, s,
1822 bio->bi_io_vec[idx].bv_page,
1823 WRITE) == 0) {
1824 r1_bio->bios[d]->bi_end_io = NULL;
1825 rdev_dec_pending(rdev, mddev);
1828 d = start;
1829 while (d != r1_bio->read_disk) {
1830 if (d == 0)
1831 d = conf->raid_disks * 2;
1832 d--;
1833 if (r1_bio->bios[d]->bi_end_io != end_sync_read)
1834 continue;
1835 rdev = conf->mirrors[d].rdev;
1836 if (r1_sync_page_io(rdev, sect, s,
1837 bio->bi_io_vec[idx].bv_page,
1838 READ) != 0)
1839 atomic_add(s, &rdev->corrected_errors);
1841 sectors -= s;
1842 sect += s;
1843 idx ++;
1845 set_bit(R1BIO_Uptodate, &r1_bio->state);
1846 set_bit(BIO_UPTODATE, &bio->bi_flags);
1847 return 1;
1850 static int process_checks(struct r1bio *r1_bio)
1852 /* We have read all readable devices. If we haven't
1853 * got the block, then there is no hope left.
1854 * If we have, then we want to do a comparison
1855 * and skip the write if everything is the same.
1856 * If any blocks failed to read, then we need to
1857 * attempt an over-write
1859 struct mddev *mddev = r1_bio->mddev;
1860 struct r1conf *conf = mddev->private;
1861 int primary;
1862 int i;
1863 int vcnt;
1865 /* Fix variable parts of all bios */
1866 vcnt = (r1_bio->sectors + PAGE_SIZE / 512 - 1) >> (PAGE_SHIFT - 9);
1867 for (i = 0; i < conf->raid_disks * 2; i++) {
1868 int j;
1869 int size;
1870 int uptodate;
1871 struct bio *b = r1_bio->bios[i];
1872 if (b->bi_end_io != end_sync_read)
1873 continue;
1874 /* fixup the bio for reuse, but preserve BIO_UPTODATE */
1875 uptodate = test_bit(BIO_UPTODATE, &b->bi_flags);
1876 bio_reset(b);
1877 if (!uptodate)
1878 clear_bit(BIO_UPTODATE, &b->bi_flags);
1879 b->bi_vcnt = vcnt;
1880 b->bi_size = r1_bio->sectors << 9;
1881 b->bi_sector = r1_bio->sector +
1882 conf->mirrors[i].rdev->data_offset;
1883 b->bi_bdev = conf->mirrors[i].rdev->bdev;
1884 b->bi_end_io = end_sync_read;
1885 b->bi_private = r1_bio;
1887 size = b->bi_size;
1888 for (j = 0; j < vcnt ; j++) {
1889 struct bio_vec *bi;
1890 bi = &b->bi_io_vec[j];
1891 bi->bv_offset = 0;
1892 if (size > PAGE_SIZE)
1893 bi->bv_len = PAGE_SIZE;
1894 else
1895 bi->bv_len = size;
1896 size -= PAGE_SIZE;
1899 for (primary = 0; primary < conf->raid_disks * 2; primary++)
1900 if (r1_bio->bios[primary]->bi_end_io == end_sync_read &&
1901 test_bit(BIO_UPTODATE, &r1_bio->bios[primary]->bi_flags)) {
1902 r1_bio->bios[primary]->bi_end_io = NULL;
1903 rdev_dec_pending(conf->mirrors[primary].rdev, mddev);
1904 break;
1906 r1_bio->read_disk = primary;
1907 for (i = 0; i < conf->raid_disks * 2; i++) {
1908 int j;
1909 struct bio *pbio = r1_bio->bios[primary];
1910 struct bio *sbio = r1_bio->bios[i];
1911 int uptodate = test_bit(BIO_UPTODATE, &sbio->bi_flags);
1913 if (sbio->bi_end_io != end_sync_read)
1914 continue;
1915 /* Now we can 'fixup' the BIO_UPTODATE flag */
1916 set_bit(BIO_UPTODATE, &sbio->bi_flags);
1918 if (uptodate) {
1919 for (j = vcnt; j-- ; ) {
1920 struct page *p, *s;
1921 p = pbio->bi_io_vec[j].bv_page;
1922 s = sbio->bi_io_vec[j].bv_page;
1923 if (memcmp(page_address(p),
1924 page_address(s),
1925 sbio->bi_io_vec[j].bv_len))
1926 break;
1928 } else
1929 j = 0;
1930 if (j >= 0)
1931 atomic64_add(r1_bio->sectors, &mddev->resync_mismatches);
1932 if (j < 0 || (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)
1933 && uptodate)) {
1934 /* No need to write to this device. */
1935 sbio->bi_end_io = NULL;
1936 rdev_dec_pending(conf->mirrors[i].rdev, mddev);
1937 continue;
1940 bio_copy_data(sbio, pbio);
1942 return 0;
1945 static void sync_request_write(struct mddev *mddev, struct r1bio *r1_bio)
1947 struct r1conf *conf = mddev->private;
1948 int i;
1949 int disks = conf->raid_disks * 2;
1950 struct bio *bio, *wbio;
1952 bio = r1_bio->bios[r1_bio->read_disk];
1954 if (!test_bit(R1BIO_Uptodate, &r1_bio->state))
1955 /* ouch - failed to read all of that. */
1956 if (!fix_sync_read_error(r1_bio))
1957 return;
1959 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
1960 if (process_checks(r1_bio) < 0)
1961 return;
1963 * schedule writes
1965 atomic_set(&r1_bio->remaining, 1);
1966 for (i = 0; i < disks ; i++) {
1967 wbio = r1_bio->bios[i];
1968 if (wbio->bi_end_io == NULL ||
1969 (wbio->bi_end_io == end_sync_read &&
1970 (i == r1_bio->read_disk ||
1971 !test_bit(MD_RECOVERY_SYNC, &mddev->recovery))))
1972 continue;
1974 wbio->bi_rw = WRITE;
1975 wbio->bi_end_io = end_sync_write;
1976 atomic_inc(&r1_bio->remaining);
1977 md_sync_acct(conf->mirrors[i].rdev->bdev, bio_sectors(wbio));
1979 generic_make_request(wbio);
1982 if (atomic_dec_and_test(&r1_bio->remaining)) {
1983 /* if we're here, all write(s) have completed, so clean up */
1984 int s = r1_bio->sectors;
1985 if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
1986 test_bit(R1BIO_WriteError, &r1_bio->state))
1987 reschedule_retry(r1_bio);
1988 else {
1989 put_buf(r1_bio);
1990 md_done_sync(mddev, s, 1);
1996 * This is a kernel thread which:
1998 * 1. Retries failed read operations on working mirrors.
1999 * 2. Updates the raid superblock when problems encounter.
2000 * 3. Performs writes following reads for array synchronising.
2003 static void fix_read_error(struct r1conf *conf, int read_disk,
2004 sector_t sect, int sectors)
2006 struct mddev *mddev = conf->mddev;
2007 while(sectors) {
2008 int s = sectors;
2009 int d = read_disk;
2010 int success = 0;
2011 int start;
2012 struct md_rdev *rdev;
2014 if (s > (PAGE_SIZE>>9))
2015 s = PAGE_SIZE >> 9;
2017 do {
2018 /* Note: no rcu protection needed here
2019 * as this is synchronous in the raid1d thread
2020 * which is the thread that might remove
2021 * a device. If raid1d ever becomes multi-threaded....
2023 sector_t first_bad;
2024 int bad_sectors;
2026 rdev = conf->mirrors[d].rdev;
2027 if (rdev &&
2028 (test_bit(In_sync, &rdev->flags) ||
2029 (!test_bit(Faulty, &rdev->flags) &&
2030 rdev->recovery_offset >= sect + s)) &&
2031 is_badblock(rdev, sect, s,
2032 &first_bad, &bad_sectors) == 0 &&
2033 sync_page_io(rdev, sect, s<<9,
2034 conf->tmppage, READ, false))
2035 success = 1;
2036 else {
2037 d++;
2038 if (d == conf->raid_disks * 2)
2039 d = 0;
2041 } while (!success && d != read_disk);
2043 if (!success) {
2044 /* Cannot read from anywhere - mark it bad */
2045 struct md_rdev *rdev = conf->mirrors[read_disk].rdev;
2046 if (!rdev_set_badblocks(rdev, sect, s, 0))
2047 md_error(mddev, rdev);
2048 break;
2050 /* write it back and re-read */
2051 start = d;
2052 while (d != read_disk) {
2053 if (d==0)
2054 d = conf->raid_disks * 2;
2055 d--;
2056 rdev = conf->mirrors[d].rdev;
2057 if (rdev &&
2058 !test_bit(Faulty, &rdev->flags))
2059 r1_sync_page_io(rdev, sect, s,
2060 conf->tmppage, WRITE);
2062 d = start;
2063 while (d != read_disk) {
2064 char b[BDEVNAME_SIZE];
2065 if (d==0)
2066 d = conf->raid_disks * 2;
2067 d--;
2068 rdev = conf->mirrors[d].rdev;
2069 if (rdev &&
2070 !test_bit(Faulty, &rdev->flags)) {
2071 if (r1_sync_page_io(rdev, sect, s,
2072 conf->tmppage, READ)) {
2073 atomic_add(s, &rdev->corrected_errors);
2074 printk(KERN_INFO
2075 "md/raid1:%s: read error corrected "
2076 "(%d sectors at %llu on %s)\n",
2077 mdname(mddev), s,
2078 (unsigned long long)(sect +
2079 rdev->data_offset),
2080 bdevname(rdev->bdev, b));
2084 sectors -= s;
2085 sect += s;
2089 static int narrow_write_error(struct r1bio *r1_bio, int i)
2091 struct mddev *mddev = r1_bio->mddev;
2092 struct r1conf *conf = mddev->private;
2093 struct md_rdev *rdev = conf->mirrors[i].rdev;
2095 /* bio has the data to be written to device 'i' where
2096 * we just recently had a write error.
2097 * We repeatedly clone the bio and trim down to one block,
2098 * then try the write. Where the write fails we record
2099 * a bad block.
2100 * It is conceivable that the bio doesn't exactly align with
2101 * blocks. We must handle this somehow.
2103 * We currently own a reference on the rdev.
2106 int block_sectors;
2107 sector_t sector;
2108 int sectors;
2109 int sect_to_write = r1_bio->sectors;
2110 int ok = 1;
2112 if (rdev->badblocks.shift < 0)
2113 return 0;
2115 block_sectors = 1 << rdev->badblocks.shift;
2116 sector = r1_bio->sector;
2117 sectors = ((sector + block_sectors)
2118 & ~(sector_t)(block_sectors - 1))
2119 - sector;
2121 while (sect_to_write) {
2122 struct bio *wbio;
2123 if (sectors > sect_to_write)
2124 sectors = sect_to_write;
2125 /* Write at 'sector' for 'sectors'*/
2127 if (test_bit(R1BIO_BehindIO, &r1_bio->state)) {
2128 unsigned vcnt = r1_bio->behind_page_count;
2129 struct bio_vec *vec = r1_bio->behind_bvecs;
2131 while (!vec->bv_page) {
2132 vec++;
2133 vcnt--;
2136 wbio = bio_alloc_mddev(GFP_NOIO, vcnt, mddev);
2137 memcpy(wbio->bi_io_vec, vec, vcnt * sizeof(struct bio_vec));
2139 wbio->bi_vcnt = vcnt;
2140 } else {
2141 wbio = bio_clone_mddev(r1_bio->master_bio, GFP_NOIO, mddev);
2144 wbio->bi_rw = WRITE;
2145 wbio->bi_sector = r1_bio->sector;
2146 wbio->bi_size = r1_bio->sectors << 9;
2148 md_trim_bio(wbio, sector - r1_bio->sector, sectors);
2149 wbio->bi_sector += rdev->data_offset;
2150 wbio->bi_bdev = rdev->bdev;
2151 if (submit_bio_wait(WRITE, wbio) < 0)
2152 /* failure! */
2153 ok = rdev_set_badblocks(rdev, sector,
2154 sectors, 0)
2155 && ok;
2157 bio_put(wbio);
2158 sect_to_write -= sectors;
2159 sector += sectors;
2160 sectors = block_sectors;
2162 return ok;
2165 static void handle_sync_write_finished(struct r1conf *conf, struct r1bio *r1_bio)
2167 int m;
2168 int s = r1_bio->sectors;
2169 for (m = 0; m < conf->raid_disks * 2 ; m++) {
2170 struct md_rdev *rdev = conf->mirrors[m].rdev;
2171 struct bio *bio = r1_bio->bios[m];
2172 if (bio->bi_end_io == NULL)
2173 continue;
2174 if (test_bit(BIO_UPTODATE, &bio->bi_flags) &&
2175 test_bit(R1BIO_MadeGood, &r1_bio->state)) {
2176 rdev_clear_badblocks(rdev, r1_bio->sector, s, 0);
2178 if (!test_bit(BIO_UPTODATE, &bio->bi_flags) &&
2179 test_bit(R1BIO_WriteError, &r1_bio->state)) {
2180 if (!rdev_set_badblocks(rdev, r1_bio->sector, s, 0))
2181 md_error(conf->mddev, rdev);
2184 put_buf(r1_bio);
2185 md_done_sync(conf->mddev, s, 1);
2188 static void handle_write_finished(struct r1conf *conf, struct r1bio *r1_bio)
2190 int m;
2191 for (m = 0; m < conf->raid_disks * 2 ; m++)
2192 if (r1_bio->bios[m] == IO_MADE_GOOD) {
2193 struct md_rdev *rdev = conf->mirrors[m].rdev;
2194 rdev_clear_badblocks(rdev,
2195 r1_bio->sector,
2196 r1_bio->sectors, 0);
2197 rdev_dec_pending(rdev, conf->mddev);
2198 } else if (r1_bio->bios[m] != NULL) {
2199 /* This drive got a write error. We need to
2200 * narrow down and record precise write
2201 * errors.
2203 if (!narrow_write_error(r1_bio, m)) {
2204 md_error(conf->mddev,
2205 conf->mirrors[m].rdev);
2206 /* an I/O failed, we can't clear the bitmap */
2207 set_bit(R1BIO_Degraded, &r1_bio->state);
2209 rdev_dec_pending(conf->mirrors[m].rdev,
2210 conf->mddev);
2212 if (test_bit(R1BIO_WriteError, &r1_bio->state))
2213 close_write(r1_bio);
2214 raid_end_bio_io(r1_bio);
2217 static void handle_read_error(struct r1conf *conf, struct r1bio *r1_bio)
2219 int disk;
2220 int max_sectors;
2221 struct mddev *mddev = conf->mddev;
2222 struct bio *bio;
2223 char b[BDEVNAME_SIZE];
2224 struct md_rdev *rdev;
2226 clear_bit(R1BIO_ReadError, &r1_bio->state);
2227 /* we got a read error. Maybe the drive is bad. Maybe just
2228 * the block and we can fix it.
2229 * We freeze all other IO, and try reading the block from
2230 * other devices. When we find one, we re-write
2231 * and check it that fixes the read error.
2232 * This is all done synchronously while the array is
2233 * frozen
2235 if (mddev->ro == 0) {
2236 freeze_array(conf, 1);
2237 fix_read_error(conf, r1_bio->read_disk,
2238 r1_bio->sector, r1_bio->sectors);
2239 unfreeze_array(conf);
2240 } else
2241 md_error(mddev, conf->mirrors[r1_bio->read_disk].rdev);
2242 rdev_dec_pending(conf->mirrors[r1_bio->read_disk].rdev, conf->mddev);
2244 bio = r1_bio->bios[r1_bio->read_disk];
2245 bdevname(bio->bi_bdev, b);
2246 read_more:
2247 disk = read_balance(conf, r1_bio, &max_sectors);
2248 if (disk == -1) {
2249 printk(KERN_ALERT "md/raid1:%s: %s: unrecoverable I/O"
2250 " read error for block %llu\n",
2251 mdname(mddev), b, (unsigned long long)r1_bio->sector);
2252 raid_end_bio_io(r1_bio);
2253 } else {
2254 const unsigned long do_sync
2255 = r1_bio->master_bio->bi_rw & REQ_SYNC;
2256 if (bio) {
2257 r1_bio->bios[r1_bio->read_disk] =
2258 mddev->ro ? IO_BLOCKED : NULL;
2259 bio_put(bio);
2261 r1_bio->read_disk = disk;
2262 bio = bio_clone_mddev(r1_bio->master_bio, GFP_NOIO, mddev);
2263 md_trim_bio(bio, r1_bio->sector - bio->bi_sector, max_sectors);
2264 r1_bio->bios[r1_bio->read_disk] = bio;
2265 rdev = conf->mirrors[disk].rdev;
2266 printk_ratelimited(KERN_ERR
2267 "md/raid1:%s: redirecting sector %llu"
2268 " to other mirror: %s\n",
2269 mdname(mddev),
2270 (unsigned long long)r1_bio->sector,
2271 bdevname(rdev->bdev, b));
2272 bio->bi_sector = r1_bio->sector + rdev->data_offset;
2273 bio->bi_bdev = rdev->bdev;
2274 bio->bi_end_io = raid1_end_read_request;
2275 bio->bi_rw = READ | do_sync;
2276 bio->bi_private = r1_bio;
2277 if (max_sectors < r1_bio->sectors) {
2278 /* Drat - have to split this up more */
2279 struct bio *mbio = r1_bio->master_bio;
2280 int sectors_handled = (r1_bio->sector + max_sectors
2281 - mbio->bi_sector);
2282 r1_bio->sectors = max_sectors;
2283 spin_lock_irq(&conf->device_lock);
2284 if (mbio->bi_phys_segments == 0)
2285 mbio->bi_phys_segments = 2;
2286 else
2287 mbio->bi_phys_segments++;
2288 spin_unlock_irq(&conf->device_lock);
2289 generic_make_request(bio);
2290 bio = NULL;
2292 r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO);
2294 r1_bio->master_bio = mbio;
2295 r1_bio->sectors = bio_sectors(mbio) - sectors_handled;
2296 r1_bio->state = 0;
2297 set_bit(R1BIO_ReadError, &r1_bio->state);
2298 r1_bio->mddev = mddev;
2299 r1_bio->sector = mbio->bi_sector + sectors_handled;
2301 goto read_more;
2302 } else
2303 generic_make_request(bio);
2307 static void raid1d(struct md_thread *thread)
2309 struct mddev *mddev = thread->mddev;
2310 struct r1bio *r1_bio;
2311 unsigned long flags;
2312 struct r1conf *conf = mddev->private;
2313 struct list_head *head = &conf->retry_list;
2314 struct blk_plug plug;
2316 md_check_recovery(mddev);
2318 blk_start_plug(&plug);
2319 for (;;) {
2321 flush_pending_writes(conf);
2323 spin_lock_irqsave(&conf->device_lock, flags);
2324 if (list_empty(head)) {
2325 spin_unlock_irqrestore(&conf->device_lock, flags);
2326 break;
2328 r1_bio = list_entry(head->prev, struct r1bio, retry_list);
2329 list_del(head->prev);
2330 conf->nr_queued--;
2331 spin_unlock_irqrestore(&conf->device_lock, flags);
2333 mddev = r1_bio->mddev;
2334 conf = mddev->private;
2335 if (test_bit(R1BIO_IsSync, &r1_bio->state)) {
2336 if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
2337 test_bit(R1BIO_WriteError, &r1_bio->state))
2338 handle_sync_write_finished(conf, r1_bio);
2339 else
2340 sync_request_write(mddev, r1_bio);
2341 } else if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
2342 test_bit(R1BIO_WriteError, &r1_bio->state))
2343 handle_write_finished(conf, r1_bio);
2344 else if (test_bit(R1BIO_ReadError, &r1_bio->state))
2345 handle_read_error(conf, r1_bio);
2346 else
2347 /* just a partial read to be scheduled from separate
2348 * context
2350 generic_make_request(r1_bio->bios[r1_bio->read_disk]);
2352 cond_resched();
2353 if (mddev->flags & ~(1<<MD_CHANGE_PENDING))
2354 md_check_recovery(mddev);
2356 blk_finish_plug(&plug);
2360 static int init_resync(struct r1conf *conf)
2362 int buffs;
2364 buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE;
2365 BUG_ON(conf->r1buf_pool);
2366 conf->r1buf_pool = mempool_create(buffs, r1buf_pool_alloc, r1buf_pool_free,
2367 conf->poolinfo);
2368 if (!conf->r1buf_pool)
2369 return -ENOMEM;
2370 conf->next_resync = 0;
2371 return 0;
2375 * perform a "sync" on one "block"
2377 * We need to make sure that no normal I/O request - particularly write
2378 * requests - conflict with active sync requests.
2380 * This is achieved by tracking pending requests and a 'barrier' concept
2381 * that can be installed to exclude normal IO requests.
2384 static sector_t sync_request(struct mddev *mddev, sector_t sector_nr, int *skipped, int go_faster)
2386 struct r1conf *conf = mddev->private;
2387 struct r1bio *r1_bio;
2388 struct bio *bio;
2389 sector_t max_sector, nr_sectors;
2390 int disk = -1;
2391 int i;
2392 int wonly = -1;
2393 int write_targets = 0, read_targets = 0;
2394 sector_t sync_blocks;
2395 int still_degraded = 0;
2396 int good_sectors = RESYNC_SECTORS;
2397 int min_bad = 0; /* number of sectors that are bad in all devices */
2399 if (!conf->r1buf_pool)
2400 if (init_resync(conf))
2401 return 0;
2403 max_sector = mddev->dev_sectors;
2404 if (sector_nr >= max_sector) {
2405 /* If we aborted, we need to abort the
2406 * sync on the 'current' bitmap chunk (there will
2407 * only be one in raid1 resync.
2408 * We can find the current addess in mddev->curr_resync
2410 if (mddev->curr_resync < max_sector) /* aborted */
2411 bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
2412 &sync_blocks, 1);
2413 else /* completed sync */
2414 conf->fullsync = 0;
2416 bitmap_close_sync(mddev->bitmap);
2417 close_sync(conf);
2418 return 0;
2421 if (mddev->bitmap == NULL &&
2422 mddev->recovery_cp == MaxSector &&
2423 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
2424 conf->fullsync == 0) {
2425 *skipped = 1;
2426 return max_sector - sector_nr;
2428 /* before building a request, check if we can skip these blocks..
2429 * This call the bitmap_start_sync doesn't actually record anything
2431 if (!bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
2432 !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
2433 /* We can skip this block, and probably several more */
2434 *skipped = 1;
2435 return sync_blocks;
2438 * If there is non-resync activity waiting for a turn,
2439 * and resync is going fast enough,
2440 * then let it though before starting on this new sync request.
2442 if (!go_faster && conf->nr_waiting)
2443 msleep_interruptible(1000);
2445 bitmap_cond_end_sync(mddev->bitmap, sector_nr);
2446 r1_bio = mempool_alloc(conf->r1buf_pool, GFP_NOIO);
2447 raise_barrier(conf);
2449 conf->next_resync = sector_nr;
2451 rcu_read_lock();
2453 * If we get a correctably read error during resync or recovery,
2454 * we might want to read from a different device. So we
2455 * flag all drives that could conceivably be read from for READ,
2456 * and any others (which will be non-In_sync devices) for WRITE.
2457 * If a read fails, we try reading from something else for which READ
2458 * is OK.
2461 r1_bio->mddev = mddev;
2462 r1_bio->sector = sector_nr;
2463 r1_bio->state = 0;
2464 set_bit(R1BIO_IsSync, &r1_bio->state);
2466 for (i = 0; i < conf->raid_disks * 2; i++) {
2467 struct md_rdev *rdev;
2468 bio = r1_bio->bios[i];
2469 bio_reset(bio);
2471 rdev = rcu_dereference(conf->mirrors[i].rdev);
2472 if (rdev == NULL ||
2473 test_bit(Faulty, &rdev->flags)) {
2474 if (i < conf->raid_disks)
2475 still_degraded = 1;
2476 } else if (!test_bit(In_sync, &rdev->flags)) {
2477 bio->bi_rw = WRITE;
2478 bio->bi_end_io = end_sync_write;
2479 write_targets ++;
2480 } else {
2481 /* may need to read from here */
2482 sector_t first_bad = MaxSector;
2483 int bad_sectors;
2485 if (is_badblock(rdev, sector_nr, good_sectors,
2486 &first_bad, &bad_sectors)) {
2487 if (first_bad > sector_nr)
2488 good_sectors = first_bad - sector_nr;
2489 else {
2490 bad_sectors -= (sector_nr - first_bad);
2491 if (min_bad == 0 ||
2492 min_bad > bad_sectors)
2493 min_bad = bad_sectors;
2496 if (sector_nr < first_bad) {
2497 if (test_bit(WriteMostly, &rdev->flags)) {
2498 if (wonly < 0)
2499 wonly = i;
2500 } else {
2501 if (disk < 0)
2502 disk = i;
2504 bio->bi_rw = READ;
2505 bio->bi_end_io = end_sync_read;
2506 read_targets++;
2507 } else if (!test_bit(WriteErrorSeen, &rdev->flags) &&
2508 test_bit(MD_RECOVERY_SYNC, &mddev->recovery) &&
2509 !test_bit(MD_RECOVERY_CHECK, &mddev->recovery)) {
2511 * The device is suitable for reading (InSync),
2512 * but has bad block(s) here. Let's try to correct them,
2513 * if we are doing resync or repair. Otherwise, leave
2514 * this device alone for this sync request.
2516 bio->bi_rw = WRITE;
2517 bio->bi_end_io = end_sync_write;
2518 write_targets++;
2521 if (bio->bi_end_io) {
2522 atomic_inc(&rdev->nr_pending);
2523 bio->bi_sector = sector_nr + rdev->data_offset;
2524 bio->bi_bdev = rdev->bdev;
2525 bio->bi_private = r1_bio;
2528 rcu_read_unlock();
2529 if (disk < 0)
2530 disk = wonly;
2531 r1_bio->read_disk = disk;
2533 if (read_targets == 0 && min_bad > 0) {
2534 /* These sectors are bad on all InSync devices, so we
2535 * need to mark them bad on all write targets
2537 int ok = 1;
2538 for (i = 0 ; i < conf->raid_disks * 2 ; i++)
2539 if (r1_bio->bios[i]->bi_end_io == end_sync_write) {
2540 struct md_rdev *rdev = conf->mirrors[i].rdev;
2541 ok = rdev_set_badblocks(rdev, sector_nr,
2542 min_bad, 0
2543 ) && ok;
2545 set_bit(MD_CHANGE_DEVS, &mddev->flags);
2546 *skipped = 1;
2547 put_buf(r1_bio);
2549 if (!ok) {
2550 /* Cannot record the badblocks, so need to
2551 * abort the resync.
2552 * If there are multiple read targets, could just
2553 * fail the really bad ones ???
2555 conf->recovery_disabled = mddev->recovery_disabled;
2556 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
2557 return 0;
2558 } else
2559 return min_bad;
2562 if (min_bad > 0 && min_bad < good_sectors) {
2563 /* only resync enough to reach the next bad->good
2564 * transition */
2565 good_sectors = min_bad;
2568 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) && read_targets > 0)
2569 /* extra read targets are also write targets */
2570 write_targets += read_targets-1;
2572 if (write_targets == 0 || read_targets == 0) {
2573 /* There is nowhere to write, so all non-sync
2574 * drives must be failed - so we are finished
2576 sector_t rv;
2577 if (min_bad > 0)
2578 max_sector = sector_nr + min_bad;
2579 rv = max_sector - sector_nr;
2580 *skipped = 1;
2581 put_buf(r1_bio);
2582 return rv;
2585 if (max_sector > mddev->resync_max)
2586 max_sector = mddev->resync_max; /* Don't do IO beyond here */
2587 if (max_sector > sector_nr + good_sectors)
2588 max_sector = sector_nr + good_sectors;
2589 nr_sectors = 0;
2590 sync_blocks = 0;
2591 do {
2592 struct page *page;
2593 int len = PAGE_SIZE;
2594 if (sector_nr + (len>>9) > max_sector)
2595 len = (max_sector - sector_nr) << 9;
2596 if (len == 0)
2597 break;
2598 if (sync_blocks == 0) {
2599 if (!bitmap_start_sync(mddev->bitmap, sector_nr,
2600 &sync_blocks, still_degraded) &&
2601 !conf->fullsync &&
2602 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
2603 break;
2604 BUG_ON(sync_blocks < (PAGE_SIZE>>9));
2605 if ((len >> 9) > sync_blocks)
2606 len = sync_blocks<<9;
2609 for (i = 0 ; i < conf->raid_disks * 2; i++) {
2610 bio = r1_bio->bios[i];
2611 if (bio->bi_end_io) {
2612 page = bio->bi_io_vec[bio->bi_vcnt].bv_page;
2613 if (bio_add_page(bio, page, len, 0) == 0) {
2614 /* stop here */
2615 bio->bi_io_vec[bio->bi_vcnt].bv_page = page;
2616 while (i > 0) {
2617 i--;
2618 bio = r1_bio->bios[i];
2619 if (bio->bi_end_io==NULL)
2620 continue;
2621 /* remove last page from this bio */
2622 bio->bi_vcnt--;
2623 bio->bi_size -= len;
2624 bio->bi_flags &= ~(1<< BIO_SEG_VALID);
2626 goto bio_full;
2630 nr_sectors += len>>9;
2631 sector_nr += len>>9;
2632 sync_blocks -= (len>>9);
2633 } while (r1_bio->bios[disk]->bi_vcnt < RESYNC_PAGES);
2634 bio_full:
2635 r1_bio->sectors = nr_sectors;
2637 /* For a user-requested sync, we read all readable devices and do a
2638 * compare
2640 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
2641 atomic_set(&r1_bio->remaining, read_targets);
2642 for (i = 0; i < conf->raid_disks * 2 && read_targets; i++) {
2643 bio = r1_bio->bios[i];
2644 if (bio->bi_end_io == end_sync_read) {
2645 read_targets--;
2646 md_sync_acct(bio->bi_bdev, nr_sectors);
2647 generic_make_request(bio);
2650 } else {
2651 atomic_set(&r1_bio->remaining, 1);
2652 bio = r1_bio->bios[r1_bio->read_disk];
2653 md_sync_acct(bio->bi_bdev, nr_sectors);
2654 generic_make_request(bio);
2657 return nr_sectors;
2660 static sector_t raid1_size(struct mddev *mddev, sector_t sectors, int raid_disks)
2662 if (sectors)
2663 return sectors;
2665 return mddev->dev_sectors;
2668 static struct r1conf *setup_conf(struct mddev *mddev)
2670 struct r1conf *conf;
2671 int i;
2672 struct raid1_info *disk;
2673 struct md_rdev *rdev;
2674 int err = -ENOMEM;
2676 conf = kzalloc(sizeof(struct r1conf), GFP_KERNEL);
2677 if (!conf)
2678 goto abort;
2680 conf->mirrors = kzalloc(sizeof(struct raid1_info)
2681 * mddev->raid_disks * 2,
2682 GFP_KERNEL);
2683 if (!conf->mirrors)
2684 goto abort;
2686 conf->tmppage = alloc_page(GFP_KERNEL);
2687 if (!conf->tmppage)
2688 goto abort;
2690 conf->poolinfo = kzalloc(sizeof(*conf->poolinfo), GFP_KERNEL);
2691 if (!conf->poolinfo)
2692 goto abort;
2693 conf->poolinfo->raid_disks = mddev->raid_disks * 2;
2694 conf->r1bio_pool = mempool_create(NR_RAID1_BIOS, r1bio_pool_alloc,
2695 r1bio_pool_free,
2696 conf->poolinfo);
2697 if (!conf->r1bio_pool)
2698 goto abort;
2700 conf->poolinfo->mddev = mddev;
2702 err = -EINVAL;
2703 spin_lock_init(&conf->device_lock);
2704 rdev_for_each(rdev, mddev) {
2705 struct request_queue *q;
2706 int disk_idx = rdev->raid_disk;
2707 if (disk_idx >= mddev->raid_disks
2708 || disk_idx < 0)
2709 continue;
2710 if (test_bit(Replacement, &rdev->flags))
2711 disk = conf->mirrors + mddev->raid_disks + disk_idx;
2712 else
2713 disk = conf->mirrors + disk_idx;
2715 if (disk->rdev)
2716 goto abort;
2717 disk->rdev = rdev;
2718 q = bdev_get_queue(rdev->bdev);
2719 if (q->merge_bvec_fn)
2720 mddev->merge_check_needed = 1;
2722 disk->head_position = 0;
2723 disk->seq_start = MaxSector;
2725 conf->raid_disks = mddev->raid_disks;
2726 conf->mddev = mddev;
2727 INIT_LIST_HEAD(&conf->retry_list);
2729 spin_lock_init(&conf->resync_lock);
2730 init_waitqueue_head(&conf->wait_barrier);
2732 bio_list_init(&conf->pending_bio_list);
2733 conf->pending_count = 0;
2734 conf->recovery_disabled = mddev->recovery_disabled - 1;
2736 err = -EIO;
2737 for (i = 0; i < conf->raid_disks * 2; i++) {
2739 disk = conf->mirrors + i;
2741 if (i < conf->raid_disks &&
2742 disk[conf->raid_disks].rdev) {
2743 /* This slot has a replacement. */
2744 if (!disk->rdev) {
2745 /* No original, just make the replacement
2746 * a recovering spare
2748 disk->rdev =
2749 disk[conf->raid_disks].rdev;
2750 disk[conf->raid_disks].rdev = NULL;
2751 } else if (!test_bit(In_sync, &disk->rdev->flags))
2752 /* Original is not in_sync - bad */
2753 goto abort;
2756 if (!disk->rdev ||
2757 !test_bit(In_sync, &disk->rdev->flags)) {
2758 disk->head_position = 0;
2759 if (disk->rdev &&
2760 (disk->rdev->saved_raid_disk < 0))
2761 conf->fullsync = 1;
2765 err = -ENOMEM;
2766 conf->thread = md_register_thread(raid1d, mddev, "raid1");
2767 if (!conf->thread) {
2768 printk(KERN_ERR
2769 "md/raid1:%s: couldn't allocate thread\n",
2770 mdname(mddev));
2771 goto abort;
2774 return conf;
2776 abort:
2777 if (conf) {
2778 if (conf->r1bio_pool)
2779 mempool_destroy(conf->r1bio_pool);
2780 kfree(conf->mirrors);
2781 safe_put_page(conf->tmppage);
2782 kfree(conf->poolinfo);
2783 kfree(conf);
2785 return ERR_PTR(err);
2788 static int stop(struct mddev *mddev);
2789 static int run(struct mddev *mddev)
2791 struct r1conf *conf;
2792 int i;
2793 struct md_rdev *rdev;
2794 int ret;
2795 bool discard_supported = false;
2797 if (mddev->level != 1) {
2798 printk(KERN_ERR "md/raid1:%s: raid level not set to mirroring (%d)\n",
2799 mdname(mddev), mddev->level);
2800 return -EIO;
2802 if (mddev->reshape_position != MaxSector) {
2803 printk(KERN_ERR "md/raid1:%s: reshape_position set but not supported\n",
2804 mdname(mddev));
2805 return -EIO;
2808 * copy the already verified devices into our private RAID1
2809 * bookkeeping area. [whatever we allocate in run(),
2810 * should be freed in stop()]
2812 if (mddev->private == NULL)
2813 conf = setup_conf(mddev);
2814 else
2815 conf = mddev->private;
2817 if (IS_ERR(conf))
2818 return PTR_ERR(conf);
2820 if (mddev->queue)
2821 blk_queue_max_write_same_sectors(mddev->queue, 0);
2823 rdev_for_each(rdev, mddev) {
2824 if (!mddev->gendisk)
2825 continue;
2826 disk_stack_limits(mddev->gendisk, rdev->bdev,
2827 rdev->data_offset << 9);
2828 if (blk_queue_discard(bdev_get_queue(rdev->bdev)))
2829 discard_supported = true;
2832 mddev->degraded = 0;
2833 for (i=0; i < conf->raid_disks; i++)
2834 if (conf->mirrors[i].rdev == NULL ||
2835 !test_bit(In_sync, &conf->mirrors[i].rdev->flags) ||
2836 test_bit(Faulty, &conf->mirrors[i].rdev->flags))
2837 mddev->degraded++;
2839 if (conf->raid_disks - mddev->degraded == 1)
2840 mddev->recovery_cp = MaxSector;
2842 if (mddev->recovery_cp != MaxSector)
2843 printk(KERN_NOTICE "md/raid1:%s: not clean"
2844 " -- starting background reconstruction\n",
2845 mdname(mddev));
2846 printk(KERN_INFO
2847 "md/raid1:%s: active with %d out of %d mirrors\n",
2848 mdname(mddev), mddev->raid_disks - mddev->degraded,
2849 mddev->raid_disks);
2852 * Ok, everything is just fine now
2854 mddev->thread = conf->thread;
2855 conf->thread = NULL;
2856 mddev->private = conf;
2858 md_set_array_sectors(mddev, raid1_size(mddev, 0, 0));
2860 if (mddev->queue) {
2861 mddev->queue->backing_dev_info.congested_fn = raid1_congested;
2862 mddev->queue->backing_dev_info.congested_data = mddev;
2863 blk_queue_merge_bvec(mddev->queue, raid1_mergeable_bvec);
2865 if (discard_supported)
2866 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD,
2867 mddev->queue);
2868 else
2869 queue_flag_clear_unlocked(QUEUE_FLAG_DISCARD,
2870 mddev->queue);
2873 ret = md_integrity_register(mddev);
2874 if (ret)
2875 stop(mddev);
2876 return ret;
2879 static int stop(struct mddev *mddev)
2881 struct r1conf *conf = mddev->private;
2882 struct bitmap *bitmap = mddev->bitmap;
2884 /* wait for behind writes to complete */
2885 if (bitmap && atomic_read(&bitmap->behind_writes) > 0) {
2886 printk(KERN_INFO "md/raid1:%s: behind writes in progress - waiting to stop.\n",
2887 mdname(mddev));
2888 /* need to kick something here to make sure I/O goes? */
2889 wait_event(bitmap->behind_wait,
2890 atomic_read(&bitmap->behind_writes) == 0);
2893 raise_barrier(conf);
2894 lower_barrier(conf);
2896 md_unregister_thread(&mddev->thread);
2897 if (conf->r1bio_pool)
2898 mempool_destroy(conf->r1bio_pool);
2899 kfree(conf->mirrors);
2900 safe_put_page(conf->tmppage);
2901 kfree(conf->poolinfo);
2902 kfree(conf);
2903 mddev->private = NULL;
2904 return 0;
2907 static int raid1_resize(struct mddev *mddev, sector_t sectors)
2909 /* no resync is happening, and there is enough space
2910 * on all devices, so we can resize.
2911 * We need to make sure resync covers any new space.
2912 * If the array is shrinking we should possibly wait until
2913 * any io in the removed space completes, but it hardly seems
2914 * worth it.
2916 sector_t newsize = raid1_size(mddev, sectors, 0);
2917 if (mddev->external_size &&
2918 mddev->array_sectors > newsize)
2919 return -EINVAL;
2920 if (mddev->bitmap) {
2921 int ret = bitmap_resize(mddev->bitmap, newsize, 0, 0);
2922 if (ret)
2923 return ret;
2925 md_set_array_sectors(mddev, newsize);
2926 set_capacity(mddev->gendisk, mddev->array_sectors);
2927 revalidate_disk(mddev->gendisk);
2928 if (sectors > mddev->dev_sectors &&
2929 mddev->recovery_cp > mddev->dev_sectors) {
2930 mddev->recovery_cp = mddev->dev_sectors;
2931 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
2933 mddev->dev_sectors = sectors;
2934 mddev->resync_max_sectors = sectors;
2935 return 0;
2938 static int raid1_reshape(struct mddev *mddev)
2940 /* We need to:
2941 * 1/ resize the r1bio_pool
2942 * 2/ resize conf->mirrors
2944 * We allocate a new r1bio_pool if we can.
2945 * Then raise a device barrier and wait until all IO stops.
2946 * Then resize conf->mirrors and swap in the new r1bio pool.
2948 * At the same time, we "pack" the devices so that all the missing
2949 * devices have the higher raid_disk numbers.
2951 mempool_t *newpool, *oldpool;
2952 struct pool_info *newpoolinfo;
2953 struct raid1_info *newmirrors;
2954 struct r1conf *conf = mddev->private;
2955 int cnt, raid_disks;
2956 unsigned long flags;
2957 int d, d2, err;
2959 /* Cannot change chunk_size, layout, or level */
2960 if (mddev->chunk_sectors != mddev->new_chunk_sectors ||
2961 mddev->layout != mddev->new_layout ||
2962 mddev->level != mddev->new_level) {
2963 mddev->new_chunk_sectors = mddev->chunk_sectors;
2964 mddev->new_layout = mddev->layout;
2965 mddev->new_level = mddev->level;
2966 return -EINVAL;
2969 err = md_allow_write(mddev);
2970 if (err)
2971 return err;
2973 raid_disks = mddev->raid_disks + mddev->delta_disks;
2975 if (raid_disks < conf->raid_disks) {
2976 cnt=0;
2977 for (d= 0; d < conf->raid_disks; d++)
2978 if (conf->mirrors[d].rdev)
2979 cnt++;
2980 if (cnt > raid_disks)
2981 return -EBUSY;
2984 newpoolinfo = kmalloc(sizeof(*newpoolinfo), GFP_KERNEL);
2985 if (!newpoolinfo)
2986 return -ENOMEM;
2987 newpoolinfo->mddev = mddev;
2988 newpoolinfo->raid_disks = raid_disks * 2;
2990 newpool = mempool_create(NR_RAID1_BIOS, r1bio_pool_alloc,
2991 r1bio_pool_free, newpoolinfo);
2992 if (!newpool) {
2993 kfree(newpoolinfo);
2994 return -ENOMEM;
2996 newmirrors = kzalloc(sizeof(struct raid1_info) * raid_disks * 2,
2997 GFP_KERNEL);
2998 if (!newmirrors) {
2999 kfree(newpoolinfo);
3000 mempool_destroy(newpool);
3001 return -ENOMEM;
3004 freeze_array(conf, 0);
3006 /* ok, everything is stopped */
3007 oldpool = conf->r1bio_pool;
3008 conf->r1bio_pool = newpool;
3010 for (d = d2 = 0; d < conf->raid_disks; d++) {
3011 struct md_rdev *rdev = conf->mirrors[d].rdev;
3012 if (rdev && rdev->raid_disk != d2) {
3013 sysfs_unlink_rdev(mddev, rdev);
3014 rdev->raid_disk = d2;
3015 sysfs_unlink_rdev(mddev, rdev);
3016 if (sysfs_link_rdev(mddev, rdev))
3017 printk(KERN_WARNING
3018 "md/raid1:%s: cannot register rd%d\n",
3019 mdname(mddev), rdev->raid_disk);
3021 if (rdev)
3022 newmirrors[d2++].rdev = rdev;
3024 kfree(conf->mirrors);
3025 conf->mirrors = newmirrors;
3026 kfree(conf->poolinfo);
3027 conf->poolinfo = newpoolinfo;
3029 spin_lock_irqsave(&conf->device_lock, flags);
3030 mddev->degraded += (raid_disks - conf->raid_disks);
3031 spin_unlock_irqrestore(&conf->device_lock, flags);
3032 conf->raid_disks = mddev->raid_disks = raid_disks;
3033 mddev->delta_disks = 0;
3035 unfreeze_array(conf);
3037 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3038 md_wakeup_thread(mddev->thread);
3040 mempool_destroy(oldpool);
3041 return 0;
3044 static void raid1_quiesce(struct mddev *mddev, int state)
3046 struct r1conf *conf = mddev->private;
3048 switch(state) {
3049 case 2: /* wake for suspend */
3050 wake_up(&conf->wait_barrier);
3051 break;
3052 case 1:
3053 raise_barrier(conf);
3054 break;
3055 case 0:
3056 lower_barrier(conf);
3057 break;
3061 static void *raid1_takeover(struct mddev *mddev)
3063 /* raid1 can take over:
3064 * raid5 with 2 devices, any layout or chunk size
3066 if (mddev->level == 5 && mddev->raid_disks == 2) {
3067 struct r1conf *conf;
3068 mddev->new_level = 1;
3069 mddev->new_layout = 0;
3070 mddev->new_chunk_sectors = 0;
3071 conf = setup_conf(mddev);
3072 if (!IS_ERR(conf))
3073 conf->barrier = 1;
3074 return conf;
3076 return ERR_PTR(-EINVAL);
3079 static struct md_personality raid1_personality =
3081 .name = "raid1",
3082 .level = 1,
3083 .owner = THIS_MODULE,
3084 .make_request = make_request,
3085 .run = run,
3086 .stop = stop,
3087 .status = status,
3088 .error_handler = error,
3089 .hot_add_disk = raid1_add_disk,
3090 .hot_remove_disk= raid1_remove_disk,
3091 .spare_active = raid1_spare_active,
3092 .sync_request = sync_request,
3093 .resize = raid1_resize,
3094 .size = raid1_size,
3095 .check_reshape = raid1_reshape,
3096 .quiesce = raid1_quiesce,
3097 .takeover = raid1_takeover,
3100 static int __init raid_init(void)
3102 return register_md_personality(&raid1_personality);
3105 static void raid_exit(void)
3107 unregister_md_personality(&raid1_personality);
3110 module_init(raid_init);
3111 module_exit(raid_exit);
3112 MODULE_LICENSE("GPL");
3113 MODULE_DESCRIPTION("RAID1 (mirroring) personality for MD");
3114 MODULE_ALIAS("md-personality-3"); /* RAID1 */
3115 MODULE_ALIAS("md-raid1");
3116 MODULE_ALIAS("md-level-1");
3118 module_param(max_queued_requests, int, S_IRUGO|S_IWUSR);