mfd: wm8350-i2c: Make sure the i2c regmap functions are compiled
[linux/fpc-iii.git] / drivers / media / platform / omap / omap_vout_vrfb.c
blobcf1c437a868794362b3dc0d2e121ee28f52a8eb2
1 /*
2 * omap_vout_vrfb.c
4 * Copyright (C) 2010 Texas Instruments.
6 * This file is licensed under the terms of the GNU General Public License
7 * version 2. This program is licensed "as is" without any warranty of any
8 * kind, whether express or implied.
12 #include <linux/sched.h>
13 #include <linux/platform_device.h>
14 #include <linux/videodev2.h>
16 #include <media/videobuf-dma-contig.h>
17 #include <media/v4l2-device.h>
19 #include <linux/omap-dma.h>
20 #include <video/omapvrfb.h>
22 #include "omap_voutdef.h"
23 #include "omap_voutlib.h"
25 #define OMAP_DMA_NO_DEVICE 0
28 * Function for allocating video buffers
30 static int omap_vout_allocate_vrfb_buffers(struct omap_vout_device *vout,
31 unsigned int *count, int startindex)
33 int i, j;
35 for (i = 0; i < *count; i++) {
36 if (!vout->smsshado_virt_addr[i]) {
37 vout->smsshado_virt_addr[i] =
38 omap_vout_alloc_buffer(vout->smsshado_size,
39 &vout->smsshado_phy_addr[i]);
41 if (!vout->smsshado_virt_addr[i] && startindex != -1) {
42 if (V4L2_MEMORY_MMAP == vout->memory && i >= startindex)
43 break;
45 if (!vout->smsshado_virt_addr[i]) {
46 for (j = 0; j < i; j++) {
47 omap_vout_free_buffer(
48 vout->smsshado_virt_addr[j],
49 vout->smsshado_size);
50 vout->smsshado_virt_addr[j] = 0;
51 vout->smsshado_phy_addr[j] = 0;
53 *count = 0;
54 return -ENOMEM;
56 memset((void *) vout->smsshado_virt_addr[i], 0,
57 vout->smsshado_size);
59 return 0;
63 * Wakes up the application once the DMA transfer to VRFB space is completed.
65 static void omap_vout_vrfb_dma_tx_callback(int lch, u16 ch_status, void *data)
67 struct vid_vrfb_dma *t = (struct vid_vrfb_dma *) data;
69 t->tx_status = 1;
70 wake_up_interruptible(&t->wait);
74 * Free VRFB buffers
76 void omap_vout_free_vrfb_buffers(struct omap_vout_device *vout)
78 int j;
80 for (j = 0; j < VRFB_NUM_BUFS; j++) {
81 omap_vout_free_buffer(vout->smsshado_virt_addr[j],
82 vout->smsshado_size);
83 vout->smsshado_virt_addr[j] = 0;
84 vout->smsshado_phy_addr[j] = 0;
88 int omap_vout_setup_vrfb_bufs(struct platform_device *pdev, int vid_num,
89 bool static_vrfb_allocation)
91 int ret = 0, i, j;
92 struct omap_vout_device *vout;
93 struct video_device *vfd;
94 int image_width, image_height;
95 int vrfb_num_bufs = VRFB_NUM_BUFS;
96 struct v4l2_device *v4l2_dev = platform_get_drvdata(pdev);
97 struct omap2video_device *vid_dev =
98 container_of(v4l2_dev, struct omap2video_device, v4l2_dev);
100 vout = vid_dev->vouts[vid_num];
101 vfd = vout->vfd;
103 for (i = 0; i < VRFB_NUM_BUFS; i++) {
104 if (omap_vrfb_request_ctx(&vout->vrfb_context[i])) {
105 dev_info(&pdev->dev, ": VRFB allocation failed\n");
106 for (j = 0; j < i; j++)
107 omap_vrfb_release_ctx(&vout->vrfb_context[j]);
108 ret = -ENOMEM;
109 goto free_buffers;
113 /* Calculate VRFB memory size */
114 /* allocate for worst case size */
115 image_width = VID_MAX_WIDTH / TILE_SIZE;
116 if (VID_MAX_WIDTH % TILE_SIZE)
117 image_width++;
119 image_width = image_width * TILE_SIZE;
120 image_height = VID_MAX_HEIGHT / TILE_SIZE;
122 if (VID_MAX_HEIGHT % TILE_SIZE)
123 image_height++;
125 image_height = image_height * TILE_SIZE;
126 vout->smsshado_size = PAGE_ALIGN(image_width * image_height * 2 * 2);
129 * Request and Initialize DMA, for DMA based VRFB transfer
131 vout->vrfb_dma_tx.dev_id = OMAP_DMA_NO_DEVICE;
132 vout->vrfb_dma_tx.dma_ch = -1;
133 vout->vrfb_dma_tx.req_status = DMA_CHAN_ALLOTED;
134 ret = omap_request_dma(vout->vrfb_dma_tx.dev_id, "VRFB DMA TX",
135 omap_vout_vrfb_dma_tx_callback,
136 (void *) &vout->vrfb_dma_tx, &vout->vrfb_dma_tx.dma_ch);
137 if (ret < 0) {
138 vout->vrfb_dma_tx.req_status = DMA_CHAN_NOT_ALLOTED;
139 dev_info(&pdev->dev, ": failed to allocate DMA Channel for"
140 " video%d\n", vfd->minor);
142 init_waitqueue_head(&vout->vrfb_dma_tx.wait);
144 /* statically allocated the VRFB buffer is done through
145 commands line aruments */
146 if (static_vrfb_allocation) {
147 if (omap_vout_allocate_vrfb_buffers(vout, &vrfb_num_bufs, -1)) {
148 ret = -ENOMEM;
149 goto release_vrfb_ctx;
151 vout->vrfb_static_allocation = 1;
153 return 0;
155 release_vrfb_ctx:
156 for (j = 0; j < VRFB_NUM_BUFS; j++)
157 omap_vrfb_release_ctx(&vout->vrfb_context[j]);
158 free_buffers:
159 omap_vout_free_buffers(vout);
161 return ret;
165 * Release the VRFB context once the module exits
167 void omap_vout_release_vrfb(struct omap_vout_device *vout)
169 int i;
171 for (i = 0; i < VRFB_NUM_BUFS; i++)
172 omap_vrfb_release_ctx(&vout->vrfb_context[i]);
174 if (vout->vrfb_dma_tx.req_status == DMA_CHAN_ALLOTED) {
175 vout->vrfb_dma_tx.req_status = DMA_CHAN_NOT_ALLOTED;
176 omap_free_dma(vout->vrfb_dma_tx.dma_ch);
181 * Allocate the buffers for the VRFB space. Data is copied from V4L2
182 * buffers to the VRFB buffers using the DMA engine.
184 int omap_vout_vrfb_buffer_setup(struct omap_vout_device *vout,
185 unsigned int *count, unsigned int startindex)
187 int i;
188 bool yuv_mode;
190 if (!is_rotation_enabled(vout))
191 return 0;
193 /* If rotation is enabled, allocate memory for VRFB space also */
194 *count = *count > VRFB_NUM_BUFS ? VRFB_NUM_BUFS : *count;
196 /* Allocate the VRFB buffers only if the buffers are not
197 * allocated during init time.
199 if (!vout->vrfb_static_allocation)
200 if (omap_vout_allocate_vrfb_buffers(vout, count, startindex))
201 return -ENOMEM;
203 if (vout->dss_mode == OMAP_DSS_COLOR_YUV2 ||
204 vout->dss_mode == OMAP_DSS_COLOR_UYVY)
205 yuv_mode = true;
206 else
207 yuv_mode = false;
209 for (i = 0; i < *count; i++)
210 omap_vrfb_setup(&vout->vrfb_context[i],
211 vout->smsshado_phy_addr[i], vout->pix.width,
212 vout->pix.height, vout->bpp, yuv_mode);
214 return 0;
217 int omap_vout_prepare_vrfb(struct omap_vout_device *vout,
218 struct videobuf_buffer *vb)
220 dma_addr_t dmabuf;
221 struct vid_vrfb_dma *tx;
222 enum dss_rotation rotation;
223 u32 dest_frame_index = 0, src_element_index = 0;
224 u32 dest_element_index = 0, src_frame_index = 0;
225 u32 elem_count = 0, frame_count = 0, pixsize = 2;
227 if (!is_rotation_enabled(vout))
228 return 0;
230 dmabuf = vout->buf_phy_addr[vb->i];
231 /* If rotation is enabled, copy input buffer into VRFB
232 * memory space using DMA. We are copying input buffer
233 * into VRFB memory space of desired angle and DSS will
234 * read image VRFB memory for 0 degree angle
236 pixsize = vout->bpp * vout->vrfb_bpp;
238 * DMA transfer in double index mode
241 /* Frame index */
242 dest_frame_index = ((MAX_PIXELS_PER_LINE * pixsize) -
243 (vout->pix.width * vout->bpp)) + 1;
245 /* Source and destination parameters */
246 src_element_index = 0;
247 src_frame_index = 0;
248 dest_element_index = 1;
249 /* Number of elements per frame */
250 elem_count = vout->pix.width * vout->bpp;
251 frame_count = vout->pix.height;
252 tx = &vout->vrfb_dma_tx;
253 tx->tx_status = 0;
254 omap_set_dma_transfer_params(tx->dma_ch, OMAP_DMA_DATA_TYPE_S32,
255 (elem_count / 4), frame_count, OMAP_DMA_SYNC_ELEMENT,
256 tx->dev_id, 0x0);
257 /* src_port required only for OMAP1 */
258 omap_set_dma_src_params(tx->dma_ch, 0, OMAP_DMA_AMODE_POST_INC,
259 dmabuf, src_element_index, src_frame_index);
260 /*set dma source burst mode for VRFB */
261 omap_set_dma_src_burst_mode(tx->dma_ch, OMAP_DMA_DATA_BURST_16);
262 rotation = calc_rotation(vout);
264 /* dest_port required only for OMAP1 */
265 omap_set_dma_dest_params(tx->dma_ch, 0, OMAP_DMA_AMODE_DOUBLE_IDX,
266 vout->vrfb_context[vb->i].paddr[0], dest_element_index,
267 dest_frame_index);
268 /*set dma dest burst mode for VRFB */
269 omap_set_dma_dest_burst_mode(tx->dma_ch, OMAP_DMA_DATA_BURST_16);
270 omap_dma_set_global_params(DMA_DEFAULT_ARB_RATE, 0x20, 0);
272 omap_start_dma(tx->dma_ch);
273 interruptible_sleep_on_timeout(&tx->wait, VRFB_TX_TIMEOUT);
275 if (tx->tx_status == 0) {
276 omap_stop_dma(tx->dma_ch);
277 return -EINVAL;
279 /* Store buffers physical address into an array. Addresses
280 * from this array will be used to configure DSS */
281 vout->queued_buf_addr[vb->i] = (u8 *)
282 vout->vrfb_context[vb->i].paddr[rotation];
283 return 0;
287 * Calculate the buffer offsets from which the streaming should
288 * start. This offset calculation is mainly required because of
289 * the VRFB 32 pixels alignment with rotation.
291 void omap_vout_calculate_vrfb_offset(struct omap_vout_device *vout)
293 enum dss_rotation rotation;
294 bool mirroring = vout->mirror;
295 struct v4l2_rect *crop = &vout->crop;
296 struct v4l2_pix_format *pix = &vout->pix;
297 int *cropped_offset = &vout->cropped_offset;
298 int vr_ps = 1, ps = 2, temp_ps = 2;
299 int offset = 0, ctop = 0, cleft = 0, line_length = 0;
301 rotation = calc_rotation(vout);
303 if (V4L2_PIX_FMT_YUYV == pix->pixelformat ||
304 V4L2_PIX_FMT_UYVY == pix->pixelformat) {
305 if (is_rotation_enabled(vout)) {
307 * ps - Actual pixel size for YUYV/UYVY for
308 * VRFB/Mirroring is 4 bytes
309 * vr_ps - Virtually pixel size for YUYV/UYVY is
310 * 2 bytes
312 ps = 4;
313 vr_ps = 2;
314 } else {
315 ps = 2; /* otherwise the pixel size is 2 byte */
317 } else if (V4L2_PIX_FMT_RGB32 == pix->pixelformat) {
318 ps = 4;
319 } else if (V4L2_PIX_FMT_RGB24 == pix->pixelformat) {
320 ps = 3;
322 vout->ps = ps;
323 vout->vr_ps = vr_ps;
325 if (is_rotation_enabled(vout)) {
326 line_length = MAX_PIXELS_PER_LINE;
327 ctop = (pix->height - crop->height) - crop->top;
328 cleft = (pix->width - crop->width) - crop->left;
329 } else {
330 line_length = pix->width;
332 vout->line_length = line_length;
333 switch (rotation) {
334 case dss_rotation_90_degree:
335 offset = vout->vrfb_context[0].yoffset *
336 vout->vrfb_context[0].bytespp;
337 temp_ps = ps / vr_ps;
338 if (mirroring == 0) {
339 *cropped_offset = offset + line_length *
340 temp_ps * cleft + crop->top * temp_ps;
341 } else {
342 *cropped_offset = offset + line_length * temp_ps *
343 cleft + crop->top * temp_ps + (line_length *
344 ((crop->width / (vr_ps)) - 1) * ps);
346 break;
347 case dss_rotation_180_degree:
348 offset = ((MAX_PIXELS_PER_LINE * vout->vrfb_context[0].yoffset *
349 vout->vrfb_context[0].bytespp) +
350 (vout->vrfb_context[0].xoffset *
351 vout->vrfb_context[0].bytespp));
352 if (mirroring == 0) {
353 *cropped_offset = offset + (line_length * ps * ctop) +
354 (cleft / vr_ps) * ps;
356 } else {
357 *cropped_offset = offset + (line_length * ps * ctop) +
358 (cleft / vr_ps) * ps + (line_length *
359 (crop->height - 1) * ps);
361 break;
362 case dss_rotation_270_degree:
363 offset = MAX_PIXELS_PER_LINE * vout->vrfb_context[0].xoffset *
364 vout->vrfb_context[0].bytespp;
365 temp_ps = ps / vr_ps;
366 if (mirroring == 0) {
367 *cropped_offset = offset + line_length *
368 temp_ps * crop->left + ctop * ps;
369 } else {
370 *cropped_offset = offset + line_length *
371 temp_ps * crop->left + ctop * ps +
372 (line_length * ((crop->width / vr_ps) - 1) *
373 ps);
375 break;
376 case dss_rotation_0_degree:
377 if (mirroring == 0) {
378 *cropped_offset = (line_length * ps) *
379 crop->top + (crop->left / vr_ps) * ps;
380 } else {
381 *cropped_offset = (line_length * ps) *
382 crop->top + (crop->left / vr_ps) * ps +
383 (line_length * (crop->height - 1) * ps);
385 break;
386 default:
387 *cropped_offset = (line_length * ps * crop->top) /
388 vr_ps + (crop->left * ps) / vr_ps +
389 ((crop->width / vr_ps) - 1) * ps;
390 break;