4 * Copyright (C) 2010 Renesas Solutions Corp.
5 * Yusuke Goda <yusuke.goda.sx@renesas.com>
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation; either version 2 of the License.
15 * 3. Handle MMC errors better
20 * The MMCIF driver is now processing MMC requests asynchronously, according
21 * to the Linux MMC API requirement.
23 * The MMCIF driver processes MMC requests in up to 3 stages: command, optional
24 * data, and optional stop. To achieve asynchronous processing each of these
25 * stages is split into two halves: a top and a bottom half. The top half
26 * initialises the hardware, installs a timeout handler to handle completion
27 * timeouts, and returns. In case of the command stage this immediately returns
28 * control to the caller, leaving all further processing to run asynchronously.
29 * All further request processing is performed by the bottom halves.
31 * The bottom half further consists of a "hard" IRQ handler, an IRQ handler
32 * thread, a DMA completion callback, if DMA is used, a timeout work, and
33 * request- and stage-specific handler methods.
35 * Each bottom half run begins with either a hardware interrupt, a DMA callback
36 * invocation, or a timeout work run. In case of an error or a successful
37 * processing completion, the MMC core is informed and the request processing is
38 * finished. In case processing has to continue, i.e., if data has to be read
39 * from or written to the card, or if a stop command has to be sent, the next
40 * top half is called, which performs the necessary hardware handling and
41 * reschedules the timeout work. This returns the driver state machine into the
42 * bottom half waiting state.
45 #include <linux/bitops.h>
46 #include <linux/clk.h>
47 #include <linux/completion.h>
48 #include <linux/delay.h>
49 #include <linux/dma-mapping.h>
50 #include <linux/dmaengine.h>
51 #include <linux/mmc/card.h>
52 #include <linux/mmc/core.h>
53 #include <linux/mmc/host.h>
54 #include <linux/mmc/mmc.h>
55 #include <linux/mmc/sdio.h>
56 #include <linux/mmc/sh_mmcif.h>
57 #include <linux/mmc/slot-gpio.h>
58 #include <linux/mod_devicetable.h>
59 #include <linux/mutex.h>
60 #include <linux/pagemap.h>
61 #include <linux/platform_device.h>
62 #include <linux/pm_qos.h>
63 #include <linux/pm_runtime.h>
64 #include <linux/sh_dma.h>
65 #include <linux/spinlock.h>
66 #include <linux/module.h>
68 #define DRIVER_NAME "sh_mmcif"
69 #define DRIVER_VERSION "2010-04-28"
72 #define CMD_MASK 0x3f000000
73 #define CMD_SET_RTYP_NO ((0 << 23) | (0 << 22))
74 #define CMD_SET_RTYP_6B ((0 << 23) | (1 << 22)) /* R1/R1b/R3/R4/R5 */
75 #define CMD_SET_RTYP_17B ((1 << 23) | (0 << 22)) /* R2 */
76 #define CMD_SET_RBSY (1 << 21) /* R1b */
77 #define CMD_SET_CCSEN (1 << 20)
78 #define CMD_SET_WDAT (1 << 19) /* 1: on data, 0: no data */
79 #define CMD_SET_DWEN (1 << 18) /* 1: write, 0: read */
80 #define CMD_SET_CMLTE (1 << 17) /* 1: multi block trans, 0: single */
81 #define CMD_SET_CMD12EN (1 << 16) /* 1: CMD12 auto issue */
82 #define CMD_SET_RIDXC_INDEX ((0 << 15) | (0 << 14)) /* index check */
83 #define CMD_SET_RIDXC_BITS ((0 << 15) | (1 << 14)) /* check bits check */
84 #define CMD_SET_RIDXC_NO ((1 << 15) | (0 << 14)) /* no check */
85 #define CMD_SET_CRC7C ((0 << 13) | (0 << 12)) /* CRC7 check*/
86 #define CMD_SET_CRC7C_BITS ((0 << 13) | (1 << 12)) /* check bits check*/
87 #define CMD_SET_CRC7C_INTERNAL ((1 << 13) | (0 << 12)) /* internal CRC7 check*/
88 #define CMD_SET_CRC16C (1 << 10) /* 0: CRC16 check*/
89 #define CMD_SET_CRCSTE (1 << 8) /* 1: not receive CRC status */
90 #define CMD_SET_TBIT (1 << 7) /* 1: tran mission bit "Low" */
91 #define CMD_SET_OPDM (1 << 6) /* 1: open/drain */
92 #define CMD_SET_CCSH (1 << 5)
93 #define CMD_SET_DARS (1 << 2) /* Dual Data Rate */
94 #define CMD_SET_DATW_1 ((0 << 1) | (0 << 0)) /* 1bit */
95 #define CMD_SET_DATW_4 ((0 << 1) | (1 << 0)) /* 4bit */
96 #define CMD_SET_DATW_8 ((1 << 1) | (0 << 0)) /* 8bit */
99 #define CMD_CTRL_BREAK (1 << 0)
102 #define BLOCK_SIZE_MASK 0x0000ffff
105 #define INT_CCSDE (1 << 29)
106 #define INT_CMD12DRE (1 << 26)
107 #define INT_CMD12RBE (1 << 25)
108 #define INT_CMD12CRE (1 << 24)
109 #define INT_DTRANE (1 << 23)
110 #define INT_BUFRE (1 << 22)
111 #define INT_BUFWEN (1 << 21)
112 #define INT_BUFREN (1 << 20)
113 #define INT_CCSRCV (1 << 19)
114 #define INT_RBSYE (1 << 17)
115 #define INT_CRSPE (1 << 16)
116 #define INT_CMDVIO (1 << 15)
117 #define INT_BUFVIO (1 << 14)
118 #define INT_WDATERR (1 << 11)
119 #define INT_RDATERR (1 << 10)
120 #define INT_RIDXERR (1 << 9)
121 #define INT_RSPERR (1 << 8)
122 #define INT_CCSTO (1 << 5)
123 #define INT_CRCSTO (1 << 4)
124 #define INT_WDATTO (1 << 3)
125 #define INT_RDATTO (1 << 2)
126 #define INT_RBSYTO (1 << 1)
127 #define INT_RSPTO (1 << 0)
128 #define INT_ERR_STS (INT_CMDVIO | INT_BUFVIO | INT_WDATERR | \
129 INT_RDATERR | INT_RIDXERR | INT_RSPERR | \
130 INT_CCSTO | INT_CRCSTO | INT_WDATTO | \
131 INT_RDATTO | INT_RBSYTO | INT_RSPTO)
133 #define INT_ALL (INT_RBSYE | INT_CRSPE | INT_BUFREN | \
134 INT_BUFWEN | INT_CMD12DRE | INT_BUFRE | \
135 INT_DTRANE | INT_CMD12RBE | INT_CMD12CRE)
137 #define INT_CCS (INT_CCSTO | INT_CCSRCV | INT_CCSDE)
140 #define MASK_ALL 0x00000000
141 #define MASK_MCCSDE (1 << 29)
142 #define MASK_MCMD12DRE (1 << 26)
143 #define MASK_MCMD12RBE (1 << 25)
144 #define MASK_MCMD12CRE (1 << 24)
145 #define MASK_MDTRANE (1 << 23)
146 #define MASK_MBUFRE (1 << 22)
147 #define MASK_MBUFWEN (1 << 21)
148 #define MASK_MBUFREN (1 << 20)
149 #define MASK_MCCSRCV (1 << 19)
150 #define MASK_MRBSYE (1 << 17)
151 #define MASK_MCRSPE (1 << 16)
152 #define MASK_MCMDVIO (1 << 15)
153 #define MASK_MBUFVIO (1 << 14)
154 #define MASK_MWDATERR (1 << 11)
155 #define MASK_MRDATERR (1 << 10)
156 #define MASK_MRIDXERR (1 << 9)
157 #define MASK_MRSPERR (1 << 8)
158 #define MASK_MCCSTO (1 << 5)
159 #define MASK_MCRCSTO (1 << 4)
160 #define MASK_MWDATTO (1 << 3)
161 #define MASK_MRDATTO (1 << 2)
162 #define MASK_MRBSYTO (1 << 1)
163 #define MASK_MRSPTO (1 << 0)
165 #define MASK_START_CMD (MASK_MCMDVIO | MASK_MBUFVIO | MASK_MWDATERR | \
166 MASK_MRDATERR | MASK_MRIDXERR | MASK_MRSPERR | \
167 MASK_MCRCSTO | MASK_MWDATTO | \
168 MASK_MRDATTO | MASK_MRBSYTO | MASK_MRSPTO)
170 #define MASK_CLEAN (INT_ERR_STS | MASK_MRBSYE | MASK_MCRSPE | \
171 MASK_MBUFREN | MASK_MBUFWEN | \
172 MASK_MCMD12DRE | MASK_MBUFRE | MASK_MDTRANE | \
173 MASK_MCMD12RBE | MASK_MCMD12CRE)
176 #define STS1_CMDSEQ (1 << 31)
179 #define STS2_CRCSTE (1 << 31)
180 #define STS2_CRC16E (1 << 30)
181 #define STS2_AC12CRCE (1 << 29)
182 #define STS2_RSPCRC7E (1 << 28)
183 #define STS2_CRCSTEBE (1 << 27)
184 #define STS2_RDATEBE (1 << 26)
185 #define STS2_AC12REBE (1 << 25)
186 #define STS2_RSPEBE (1 << 24)
187 #define STS2_AC12IDXE (1 << 23)
188 #define STS2_RSPIDXE (1 << 22)
189 #define STS2_CCSTO (1 << 15)
190 #define STS2_RDATTO (1 << 14)
191 #define STS2_DATBSYTO (1 << 13)
192 #define STS2_CRCSTTO (1 << 12)
193 #define STS2_AC12BSYTO (1 << 11)
194 #define STS2_RSPBSYTO (1 << 10)
195 #define STS2_AC12RSPTO (1 << 9)
196 #define STS2_RSPTO (1 << 8)
197 #define STS2_CRC_ERR (STS2_CRCSTE | STS2_CRC16E | \
198 STS2_AC12CRCE | STS2_RSPCRC7E | STS2_CRCSTEBE)
199 #define STS2_TIMEOUT_ERR (STS2_CCSTO | STS2_RDATTO | \
200 STS2_DATBSYTO | STS2_CRCSTTO | \
201 STS2_AC12BSYTO | STS2_RSPBSYTO | \
202 STS2_AC12RSPTO | STS2_RSPTO)
204 #define CLKDEV_EMMC_DATA 52000000 /* 52MHz */
205 #define CLKDEV_MMC_DATA 20000000 /* 20MHz */
206 #define CLKDEV_INIT 400000 /* 400 KHz */
215 enum mmcif_wait_for
{
216 MMCIF_WAIT_FOR_REQUEST
,
218 MMCIF_WAIT_FOR_MREAD
,
219 MMCIF_WAIT_FOR_MWRITE
,
221 MMCIF_WAIT_FOR_WRITE
,
222 MMCIF_WAIT_FOR_READ_END
,
223 MMCIF_WAIT_FOR_WRITE_END
,
227 struct sh_mmcif_host
{
228 struct mmc_host
*mmc
;
229 struct mmc_request
*mrq
;
230 struct platform_device
*pd
;
234 unsigned char timing
;
240 spinlock_t lock
; /* protect sh_mmcif_host::state */
241 enum mmcif_state state
;
242 enum mmcif_wait_for wait_for
;
243 struct delayed_work timeout_work
;
249 bool ccs_enable
; /* Command Completion Signal support */
250 bool clk_ctrl2_enable
;
251 struct mutex thread_lock
;
254 struct dma_chan
*chan_rx
;
255 struct dma_chan
*chan_tx
;
256 struct completion dma_complete
;
260 static inline void sh_mmcif_bitset(struct sh_mmcif_host
*host
,
261 unsigned int reg
, u32 val
)
263 writel(val
| readl(host
->addr
+ reg
), host
->addr
+ reg
);
266 static inline void sh_mmcif_bitclr(struct sh_mmcif_host
*host
,
267 unsigned int reg
, u32 val
)
269 writel(~val
& readl(host
->addr
+ reg
), host
->addr
+ reg
);
272 static void mmcif_dma_complete(void *arg
)
274 struct sh_mmcif_host
*host
= arg
;
275 struct mmc_request
*mrq
= host
->mrq
;
277 dev_dbg(&host
->pd
->dev
, "Command completed\n");
279 if (WARN(!mrq
|| !mrq
->data
, "%s: NULL data in DMA completion!\n",
280 dev_name(&host
->pd
->dev
)))
283 complete(&host
->dma_complete
);
286 static void sh_mmcif_start_dma_rx(struct sh_mmcif_host
*host
)
288 struct mmc_data
*data
= host
->mrq
->data
;
289 struct scatterlist
*sg
= data
->sg
;
290 struct dma_async_tx_descriptor
*desc
= NULL
;
291 struct dma_chan
*chan
= host
->chan_rx
;
292 dma_cookie_t cookie
= -EINVAL
;
295 ret
= dma_map_sg(chan
->device
->dev
, sg
, data
->sg_len
,
298 host
->dma_active
= true;
299 desc
= dmaengine_prep_slave_sg(chan
, sg
, ret
,
300 DMA_DEV_TO_MEM
, DMA_PREP_INTERRUPT
| DMA_CTRL_ACK
);
304 desc
->callback
= mmcif_dma_complete
;
305 desc
->callback_param
= host
;
306 cookie
= dmaengine_submit(desc
);
307 sh_mmcif_bitset(host
, MMCIF_CE_BUF_ACC
, BUF_ACC_DMAREN
);
308 dma_async_issue_pending(chan
);
310 dev_dbg(&host
->pd
->dev
, "%s(): mapped %d -> %d, cookie %d\n",
311 __func__
, data
->sg_len
, ret
, cookie
);
314 /* DMA failed, fall back to PIO */
317 host
->chan_rx
= NULL
;
318 host
->dma_active
= false;
319 dma_release_channel(chan
);
320 /* Free the Tx channel too */
321 chan
= host
->chan_tx
;
323 host
->chan_tx
= NULL
;
324 dma_release_channel(chan
);
326 dev_warn(&host
->pd
->dev
,
327 "DMA failed: %d, falling back to PIO\n", ret
);
328 sh_mmcif_bitclr(host
, MMCIF_CE_BUF_ACC
, BUF_ACC_DMAREN
| BUF_ACC_DMAWEN
);
331 dev_dbg(&host
->pd
->dev
, "%s(): desc %p, cookie %d, sg[%d]\n", __func__
,
332 desc
, cookie
, data
->sg_len
);
335 static void sh_mmcif_start_dma_tx(struct sh_mmcif_host
*host
)
337 struct mmc_data
*data
= host
->mrq
->data
;
338 struct scatterlist
*sg
= data
->sg
;
339 struct dma_async_tx_descriptor
*desc
= NULL
;
340 struct dma_chan
*chan
= host
->chan_tx
;
341 dma_cookie_t cookie
= -EINVAL
;
344 ret
= dma_map_sg(chan
->device
->dev
, sg
, data
->sg_len
,
347 host
->dma_active
= true;
348 desc
= dmaengine_prep_slave_sg(chan
, sg
, ret
,
349 DMA_MEM_TO_DEV
, DMA_PREP_INTERRUPT
| DMA_CTRL_ACK
);
353 desc
->callback
= mmcif_dma_complete
;
354 desc
->callback_param
= host
;
355 cookie
= dmaengine_submit(desc
);
356 sh_mmcif_bitset(host
, MMCIF_CE_BUF_ACC
, BUF_ACC_DMAWEN
);
357 dma_async_issue_pending(chan
);
359 dev_dbg(&host
->pd
->dev
, "%s(): mapped %d -> %d, cookie %d\n",
360 __func__
, data
->sg_len
, ret
, cookie
);
363 /* DMA failed, fall back to PIO */
366 host
->chan_tx
= NULL
;
367 host
->dma_active
= false;
368 dma_release_channel(chan
);
369 /* Free the Rx channel too */
370 chan
= host
->chan_rx
;
372 host
->chan_rx
= NULL
;
373 dma_release_channel(chan
);
375 dev_warn(&host
->pd
->dev
,
376 "DMA failed: %d, falling back to PIO\n", ret
);
377 sh_mmcif_bitclr(host
, MMCIF_CE_BUF_ACC
, BUF_ACC_DMAREN
| BUF_ACC_DMAWEN
);
380 dev_dbg(&host
->pd
->dev
, "%s(): desc %p, cookie %d\n", __func__
,
384 static void sh_mmcif_request_dma(struct sh_mmcif_host
*host
,
385 struct sh_mmcif_plat_data
*pdata
)
387 struct resource
*res
= platform_get_resource(host
->pd
, IORESOURCE_MEM
, 0);
388 struct dma_slave_config cfg
;
392 host
->dma_active
= false;
395 if (pdata
->slave_id_tx
<= 0 || pdata
->slave_id_rx
<= 0)
397 } else if (!host
->pd
->dev
.of_node
) {
401 /* We can only either use DMA for both Tx and Rx or not use it at all */
403 dma_cap_set(DMA_SLAVE
, mask
);
405 host
->chan_tx
= dma_request_slave_channel_compat(mask
, shdma_chan_filter
,
406 pdata
? (void *)pdata
->slave_id_tx
: NULL
,
407 &host
->pd
->dev
, "tx");
408 dev_dbg(&host
->pd
->dev
, "%s: TX: got channel %p\n", __func__
,
414 /* In the OF case the driver will get the slave ID from the DT */
416 cfg
.slave_id
= pdata
->slave_id_tx
;
417 cfg
.direction
= DMA_MEM_TO_DEV
;
418 cfg
.dst_addr
= res
->start
+ MMCIF_CE_DATA
;
420 ret
= dmaengine_slave_config(host
->chan_tx
, &cfg
);
424 host
->chan_rx
= dma_request_slave_channel_compat(mask
, shdma_chan_filter
,
425 pdata
? (void *)pdata
->slave_id_rx
: NULL
,
426 &host
->pd
->dev
, "rx");
427 dev_dbg(&host
->pd
->dev
, "%s: RX: got channel %p\n", __func__
,
434 cfg
.slave_id
= pdata
->slave_id_rx
;
435 cfg
.direction
= DMA_DEV_TO_MEM
;
437 cfg
.src_addr
= res
->start
+ MMCIF_CE_DATA
;
438 ret
= dmaengine_slave_config(host
->chan_rx
, &cfg
);
445 dma_release_channel(host
->chan_rx
);
446 host
->chan_rx
= NULL
;
449 dma_release_channel(host
->chan_tx
);
450 host
->chan_tx
= NULL
;
453 static void sh_mmcif_release_dma(struct sh_mmcif_host
*host
)
455 sh_mmcif_bitclr(host
, MMCIF_CE_BUF_ACC
, BUF_ACC_DMAREN
| BUF_ACC_DMAWEN
);
456 /* Descriptors are freed automatically */
458 struct dma_chan
*chan
= host
->chan_tx
;
459 host
->chan_tx
= NULL
;
460 dma_release_channel(chan
);
463 struct dma_chan
*chan
= host
->chan_rx
;
464 host
->chan_rx
= NULL
;
465 dma_release_channel(chan
);
468 host
->dma_active
= false;
471 static void sh_mmcif_clock_control(struct sh_mmcif_host
*host
, unsigned int clk
)
473 struct sh_mmcif_plat_data
*p
= host
->pd
->dev
.platform_data
;
474 bool sup_pclk
= p
? p
->sup_pclk
: false;
476 sh_mmcif_bitclr(host
, MMCIF_CE_CLK_CTRL
, CLK_ENABLE
);
477 sh_mmcif_bitclr(host
, MMCIF_CE_CLK_CTRL
, CLK_CLEAR
);
481 if (sup_pclk
&& clk
== host
->clk
)
482 sh_mmcif_bitset(host
, MMCIF_CE_CLK_CTRL
, CLK_SUP_PCLK
);
484 sh_mmcif_bitset(host
, MMCIF_CE_CLK_CTRL
, CLK_CLEAR
&
485 ((fls(DIV_ROUND_UP(host
->clk
,
486 clk
) - 1) - 1) << 16));
488 sh_mmcif_bitset(host
, MMCIF_CE_CLK_CTRL
, CLK_ENABLE
);
491 static void sh_mmcif_sync_reset(struct sh_mmcif_host
*host
)
495 tmp
= 0x010f0000 & sh_mmcif_readl(host
->addr
, MMCIF_CE_CLK_CTRL
);
497 sh_mmcif_writel(host
->addr
, MMCIF_CE_VERSION
, SOFT_RST_ON
);
498 sh_mmcif_writel(host
->addr
, MMCIF_CE_VERSION
, SOFT_RST_OFF
);
499 if (host
->ccs_enable
)
501 if (host
->clk_ctrl2_enable
)
502 sh_mmcif_writel(host
->addr
, MMCIF_CE_CLK_CTRL2
, 0x0F0F0000);
503 sh_mmcif_bitset(host
, MMCIF_CE_CLK_CTRL
, tmp
|
504 SRSPTO_256
| SRBSYTO_29
| SRWDTO_29
);
506 sh_mmcif_bitset(host
, MMCIF_CE_BUF_ACC
, BUF_ACC_ATYP
);
509 static int sh_mmcif_error_manage(struct sh_mmcif_host
*host
)
514 host
->sd_error
= false;
516 state1
= sh_mmcif_readl(host
->addr
, MMCIF_CE_HOST_STS1
);
517 state2
= sh_mmcif_readl(host
->addr
, MMCIF_CE_HOST_STS2
);
518 dev_dbg(&host
->pd
->dev
, "ERR HOST_STS1 = %08x\n", state1
);
519 dev_dbg(&host
->pd
->dev
, "ERR HOST_STS2 = %08x\n", state2
);
521 if (state1
& STS1_CMDSEQ
) {
522 sh_mmcif_bitset(host
, MMCIF_CE_CMD_CTRL
, CMD_CTRL_BREAK
);
523 sh_mmcif_bitset(host
, MMCIF_CE_CMD_CTRL
, ~CMD_CTRL_BREAK
);
524 for (timeout
= 10000000; timeout
; timeout
--) {
525 if (!(sh_mmcif_readl(host
->addr
, MMCIF_CE_HOST_STS1
)
531 dev_err(&host
->pd
->dev
,
532 "Forced end of command sequence timeout err\n");
535 sh_mmcif_sync_reset(host
);
536 dev_dbg(&host
->pd
->dev
, "Forced end of command sequence\n");
540 if (state2
& STS2_CRC_ERR
) {
541 dev_err(&host
->pd
->dev
, " CRC error: state %u, wait %u\n",
542 host
->state
, host
->wait_for
);
544 } else if (state2
& STS2_TIMEOUT_ERR
) {
545 dev_err(&host
->pd
->dev
, " Timeout: state %u, wait %u\n",
546 host
->state
, host
->wait_for
);
549 dev_dbg(&host
->pd
->dev
, " End/Index error: state %u, wait %u\n",
550 host
->state
, host
->wait_for
);
556 static bool sh_mmcif_next_block(struct sh_mmcif_host
*host
, u32
*p
)
558 struct mmc_data
*data
= host
->mrq
->data
;
560 host
->sg_blkidx
+= host
->blocksize
;
562 /* data->sg->length must be a multiple of host->blocksize? */
563 BUG_ON(host
->sg_blkidx
> data
->sg
->length
);
565 if (host
->sg_blkidx
== data
->sg
->length
) {
567 if (++host
->sg_idx
< data
->sg_len
)
568 host
->pio_ptr
= sg_virt(++data
->sg
);
573 return host
->sg_idx
!= data
->sg_len
;
576 static void sh_mmcif_single_read(struct sh_mmcif_host
*host
,
577 struct mmc_request
*mrq
)
579 host
->blocksize
= (sh_mmcif_readl(host
->addr
, MMCIF_CE_BLOCK_SET
) &
580 BLOCK_SIZE_MASK
) + 3;
582 host
->wait_for
= MMCIF_WAIT_FOR_READ
;
584 /* buf read enable */
585 sh_mmcif_bitset(host
, MMCIF_CE_INT_MASK
, MASK_MBUFREN
);
588 static bool sh_mmcif_read_block(struct sh_mmcif_host
*host
)
590 struct mmc_data
*data
= host
->mrq
->data
;
591 u32
*p
= sg_virt(data
->sg
);
594 if (host
->sd_error
) {
595 data
->error
= sh_mmcif_error_manage(host
);
596 dev_dbg(&host
->pd
->dev
, "%s(): %d\n", __func__
, data
->error
);
600 for (i
= 0; i
< host
->blocksize
/ 4; i
++)
601 *p
++ = sh_mmcif_readl(host
->addr
, MMCIF_CE_DATA
);
603 /* buffer read end */
604 sh_mmcif_bitset(host
, MMCIF_CE_INT_MASK
, MASK_MBUFRE
);
605 host
->wait_for
= MMCIF_WAIT_FOR_READ_END
;
610 static void sh_mmcif_multi_read(struct sh_mmcif_host
*host
,
611 struct mmc_request
*mrq
)
613 struct mmc_data
*data
= mrq
->data
;
615 if (!data
->sg_len
|| !data
->sg
->length
)
618 host
->blocksize
= sh_mmcif_readl(host
->addr
, MMCIF_CE_BLOCK_SET
) &
621 host
->wait_for
= MMCIF_WAIT_FOR_MREAD
;
624 host
->pio_ptr
= sg_virt(data
->sg
);
626 sh_mmcif_bitset(host
, MMCIF_CE_INT_MASK
, MASK_MBUFREN
);
629 static bool sh_mmcif_mread_block(struct sh_mmcif_host
*host
)
631 struct mmc_data
*data
= host
->mrq
->data
;
632 u32
*p
= host
->pio_ptr
;
635 if (host
->sd_error
) {
636 data
->error
= sh_mmcif_error_manage(host
);
637 dev_dbg(&host
->pd
->dev
, "%s(): %d\n", __func__
, data
->error
);
641 BUG_ON(!data
->sg
->length
);
643 for (i
= 0; i
< host
->blocksize
/ 4; i
++)
644 *p
++ = sh_mmcif_readl(host
->addr
, MMCIF_CE_DATA
);
646 if (!sh_mmcif_next_block(host
, p
))
649 sh_mmcif_bitset(host
, MMCIF_CE_INT_MASK
, MASK_MBUFREN
);
654 static void sh_mmcif_single_write(struct sh_mmcif_host
*host
,
655 struct mmc_request
*mrq
)
657 host
->blocksize
= (sh_mmcif_readl(host
->addr
, MMCIF_CE_BLOCK_SET
) &
658 BLOCK_SIZE_MASK
) + 3;
660 host
->wait_for
= MMCIF_WAIT_FOR_WRITE
;
662 /* buf write enable */
663 sh_mmcif_bitset(host
, MMCIF_CE_INT_MASK
, MASK_MBUFWEN
);
666 static bool sh_mmcif_write_block(struct sh_mmcif_host
*host
)
668 struct mmc_data
*data
= host
->mrq
->data
;
669 u32
*p
= sg_virt(data
->sg
);
672 if (host
->sd_error
) {
673 data
->error
= sh_mmcif_error_manage(host
);
674 dev_dbg(&host
->pd
->dev
, "%s(): %d\n", __func__
, data
->error
);
678 for (i
= 0; i
< host
->blocksize
/ 4; i
++)
679 sh_mmcif_writel(host
->addr
, MMCIF_CE_DATA
, *p
++);
681 /* buffer write end */
682 sh_mmcif_bitset(host
, MMCIF_CE_INT_MASK
, MASK_MDTRANE
);
683 host
->wait_for
= MMCIF_WAIT_FOR_WRITE_END
;
688 static void sh_mmcif_multi_write(struct sh_mmcif_host
*host
,
689 struct mmc_request
*mrq
)
691 struct mmc_data
*data
= mrq
->data
;
693 if (!data
->sg_len
|| !data
->sg
->length
)
696 host
->blocksize
= sh_mmcif_readl(host
->addr
, MMCIF_CE_BLOCK_SET
) &
699 host
->wait_for
= MMCIF_WAIT_FOR_MWRITE
;
702 host
->pio_ptr
= sg_virt(data
->sg
);
704 sh_mmcif_bitset(host
, MMCIF_CE_INT_MASK
, MASK_MBUFWEN
);
707 static bool sh_mmcif_mwrite_block(struct sh_mmcif_host
*host
)
709 struct mmc_data
*data
= host
->mrq
->data
;
710 u32
*p
= host
->pio_ptr
;
713 if (host
->sd_error
) {
714 data
->error
= sh_mmcif_error_manage(host
);
715 dev_dbg(&host
->pd
->dev
, "%s(): %d\n", __func__
, data
->error
);
719 BUG_ON(!data
->sg
->length
);
721 for (i
= 0; i
< host
->blocksize
/ 4; i
++)
722 sh_mmcif_writel(host
->addr
, MMCIF_CE_DATA
, *p
++);
724 if (!sh_mmcif_next_block(host
, p
))
727 sh_mmcif_bitset(host
, MMCIF_CE_INT_MASK
, MASK_MBUFWEN
);
732 static void sh_mmcif_get_response(struct sh_mmcif_host
*host
,
733 struct mmc_command
*cmd
)
735 if (cmd
->flags
& MMC_RSP_136
) {
736 cmd
->resp
[0] = sh_mmcif_readl(host
->addr
, MMCIF_CE_RESP3
);
737 cmd
->resp
[1] = sh_mmcif_readl(host
->addr
, MMCIF_CE_RESP2
);
738 cmd
->resp
[2] = sh_mmcif_readl(host
->addr
, MMCIF_CE_RESP1
);
739 cmd
->resp
[3] = sh_mmcif_readl(host
->addr
, MMCIF_CE_RESP0
);
741 cmd
->resp
[0] = sh_mmcif_readl(host
->addr
, MMCIF_CE_RESP0
);
744 static void sh_mmcif_get_cmd12response(struct sh_mmcif_host
*host
,
745 struct mmc_command
*cmd
)
747 cmd
->resp
[0] = sh_mmcif_readl(host
->addr
, MMCIF_CE_RESP_CMD12
);
750 static u32
sh_mmcif_set_cmd(struct sh_mmcif_host
*host
,
751 struct mmc_request
*mrq
)
753 struct mmc_data
*data
= mrq
->data
;
754 struct mmc_command
*cmd
= mrq
->cmd
;
755 u32 opc
= cmd
->opcode
;
758 /* Response Type check */
759 switch (mmc_resp_type(cmd
)) {
761 tmp
|= CMD_SET_RTYP_NO
;
766 tmp
|= CMD_SET_RTYP_6B
;
769 tmp
|= CMD_SET_RTYP_17B
;
772 dev_err(&host
->pd
->dev
, "Unsupported response type.\n");
777 case MMC_SLEEP_AWAKE
:
779 case MMC_STOP_TRANSMISSION
:
780 case MMC_SET_WRITE_PROT
:
781 case MMC_CLR_WRITE_PROT
:
789 switch (host
->bus_width
) {
790 case MMC_BUS_WIDTH_1
:
791 tmp
|= CMD_SET_DATW_1
;
793 case MMC_BUS_WIDTH_4
:
794 tmp
|= CMD_SET_DATW_4
;
796 case MMC_BUS_WIDTH_8
:
797 tmp
|= CMD_SET_DATW_8
;
800 dev_err(&host
->pd
->dev
, "Unsupported bus width.\n");
803 switch (host
->timing
) {
804 case MMC_TIMING_UHS_DDR50
:
806 * MMC core will only set this timing, if the host
807 * advertises the MMC_CAP_UHS_DDR50 capability. MMCIF
808 * implementations with this capability, e.g. sh73a0,
809 * will have to set it in their platform data.
816 if (opc
== MMC_WRITE_BLOCK
|| opc
== MMC_WRITE_MULTIPLE_BLOCK
)
819 if (opc
== MMC_READ_MULTIPLE_BLOCK
|| opc
== MMC_WRITE_MULTIPLE_BLOCK
) {
820 tmp
|= CMD_SET_CMLTE
| CMD_SET_CMD12EN
;
821 sh_mmcif_bitset(host
, MMCIF_CE_BLOCK_SET
,
824 /* RIDXC[1:0] check bits */
825 if (opc
== MMC_SEND_OP_COND
|| opc
== MMC_ALL_SEND_CID
||
826 opc
== MMC_SEND_CSD
|| opc
== MMC_SEND_CID
)
827 tmp
|= CMD_SET_RIDXC_BITS
;
828 /* RCRC7C[1:0] check bits */
829 if (opc
== MMC_SEND_OP_COND
)
830 tmp
|= CMD_SET_CRC7C_BITS
;
831 /* RCRC7C[1:0] internal CRC7 */
832 if (opc
== MMC_ALL_SEND_CID
||
833 opc
== MMC_SEND_CSD
|| opc
== MMC_SEND_CID
)
834 tmp
|= CMD_SET_CRC7C_INTERNAL
;
836 return (opc
<< 24) | tmp
;
839 static int sh_mmcif_data_trans(struct sh_mmcif_host
*host
,
840 struct mmc_request
*mrq
, u32 opc
)
843 case MMC_READ_MULTIPLE_BLOCK
:
844 sh_mmcif_multi_read(host
, mrq
);
846 case MMC_WRITE_MULTIPLE_BLOCK
:
847 sh_mmcif_multi_write(host
, mrq
);
849 case MMC_WRITE_BLOCK
:
850 sh_mmcif_single_write(host
, mrq
);
852 case MMC_READ_SINGLE_BLOCK
:
853 case MMC_SEND_EXT_CSD
:
854 sh_mmcif_single_read(host
, mrq
);
857 dev_err(&host
->pd
->dev
, "Unsupported CMD%d\n", opc
);
862 static void sh_mmcif_start_cmd(struct sh_mmcif_host
*host
,
863 struct mmc_request
*mrq
)
865 struct mmc_command
*cmd
= mrq
->cmd
;
866 u32 opc
= cmd
->opcode
;
870 /* response busy check */
871 case MMC_SLEEP_AWAKE
:
873 case MMC_STOP_TRANSMISSION
:
874 case MMC_SET_WRITE_PROT
:
875 case MMC_CLR_WRITE_PROT
:
877 mask
= MASK_START_CMD
| MASK_MRBSYE
;
880 mask
= MASK_START_CMD
| MASK_MCRSPE
;
884 if (host
->ccs_enable
)
888 sh_mmcif_writel(host
->addr
, MMCIF_CE_BLOCK_SET
, 0);
889 sh_mmcif_writel(host
->addr
, MMCIF_CE_BLOCK_SET
,
892 opc
= sh_mmcif_set_cmd(host
, mrq
);
894 if (host
->ccs_enable
)
895 sh_mmcif_writel(host
->addr
, MMCIF_CE_INT
, 0xD80430C0);
897 sh_mmcif_writel(host
->addr
, MMCIF_CE_INT
, 0xD80430C0 | INT_CCS
);
898 sh_mmcif_writel(host
->addr
, MMCIF_CE_INT_MASK
, mask
);
900 sh_mmcif_writel(host
->addr
, MMCIF_CE_ARG
, cmd
->arg
);
902 sh_mmcif_writel(host
->addr
, MMCIF_CE_CMD_SET
, opc
);
904 host
->wait_for
= MMCIF_WAIT_FOR_CMD
;
905 schedule_delayed_work(&host
->timeout_work
, host
->timeout
);
908 static void sh_mmcif_stop_cmd(struct sh_mmcif_host
*host
,
909 struct mmc_request
*mrq
)
911 switch (mrq
->cmd
->opcode
) {
912 case MMC_READ_MULTIPLE_BLOCK
:
913 sh_mmcif_bitset(host
, MMCIF_CE_INT_MASK
, MASK_MCMD12DRE
);
915 case MMC_WRITE_MULTIPLE_BLOCK
:
916 sh_mmcif_bitset(host
, MMCIF_CE_INT_MASK
, MASK_MCMD12RBE
);
919 dev_err(&host
->pd
->dev
, "unsupported stop cmd\n");
920 mrq
->stop
->error
= sh_mmcif_error_manage(host
);
924 host
->wait_for
= MMCIF_WAIT_FOR_STOP
;
927 static void sh_mmcif_request(struct mmc_host
*mmc
, struct mmc_request
*mrq
)
929 struct sh_mmcif_host
*host
= mmc_priv(mmc
);
932 spin_lock_irqsave(&host
->lock
, flags
);
933 if (host
->state
!= STATE_IDLE
) {
934 dev_dbg(&host
->pd
->dev
, "%s() rejected, state %u\n", __func__
, host
->state
);
935 spin_unlock_irqrestore(&host
->lock
, flags
);
936 mrq
->cmd
->error
= -EAGAIN
;
937 mmc_request_done(mmc
, mrq
);
941 host
->state
= STATE_REQUEST
;
942 spin_unlock_irqrestore(&host
->lock
, flags
);
944 switch (mrq
->cmd
->opcode
) {
945 /* MMCIF does not support SD/SDIO command */
946 case MMC_SLEEP_AWAKE
: /* = SD_IO_SEND_OP_COND (5) */
947 case MMC_SEND_EXT_CSD
: /* = SD_SEND_IF_COND (8) */
948 if ((mrq
->cmd
->flags
& MMC_CMD_MASK
) != MMC_CMD_BCR
)
951 case SD_IO_RW_DIRECT
:
952 host
->state
= STATE_IDLE
;
953 mrq
->cmd
->error
= -ETIMEDOUT
;
954 mmc_request_done(mmc
, mrq
);
962 sh_mmcif_start_cmd(host
, mrq
);
965 static int sh_mmcif_clk_update(struct sh_mmcif_host
*host
)
967 int ret
= clk_enable(host
->hclk
);
970 host
->clk
= clk_get_rate(host
->hclk
);
971 host
->mmc
->f_max
= host
->clk
/ 2;
972 host
->mmc
->f_min
= host
->clk
/ 512;
978 static void sh_mmcif_set_power(struct sh_mmcif_host
*host
, struct mmc_ios
*ios
)
980 struct mmc_host
*mmc
= host
->mmc
;
982 if (!IS_ERR(mmc
->supply
.vmmc
))
983 /* Errors ignored... */
984 mmc_regulator_set_ocr(mmc
, mmc
->supply
.vmmc
,
985 ios
->power_mode
? ios
->vdd
: 0);
988 static void sh_mmcif_set_ios(struct mmc_host
*mmc
, struct mmc_ios
*ios
)
990 struct sh_mmcif_host
*host
= mmc_priv(mmc
);
993 spin_lock_irqsave(&host
->lock
, flags
);
994 if (host
->state
!= STATE_IDLE
) {
995 dev_dbg(&host
->pd
->dev
, "%s() rejected, state %u\n", __func__
, host
->state
);
996 spin_unlock_irqrestore(&host
->lock
, flags
);
1000 host
->state
= STATE_IOS
;
1001 spin_unlock_irqrestore(&host
->lock
, flags
);
1003 if (ios
->power_mode
== MMC_POWER_UP
) {
1004 if (!host
->card_present
) {
1005 /* See if we also get DMA */
1006 sh_mmcif_request_dma(host
, host
->pd
->dev
.platform_data
);
1007 host
->card_present
= true;
1009 sh_mmcif_set_power(host
, ios
);
1010 } else if (ios
->power_mode
== MMC_POWER_OFF
|| !ios
->clock
) {
1012 sh_mmcif_clock_control(host
, 0);
1013 if (ios
->power_mode
== MMC_POWER_OFF
) {
1014 if (host
->card_present
) {
1015 sh_mmcif_release_dma(host
);
1016 host
->card_present
= false;
1020 pm_runtime_put_sync(&host
->pd
->dev
);
1021 clk_disable(host
->hclk
);
1022 host
->power
= false;
1023 if (ios
->power_mode
== MMC_POWER_OFF
)
1024 sh_mmcif_set_power(host
, ios
);
1026 host
->state
= STATE_IDLE
;
1032 sh_mmcif_clk_update(host
);
1033 pm_runtime_get_sync(&host
->pd
->dev
);
1035 sh_mmcif_sync_reset(host
);
1037 sh_mmcif_clock_control(host
, ios
->clock
);
1040 host
->timing
= ios
->timing
;
1041 host
->bus_width
= ios
->bus_width
;
1042 host
->state
= STATE_IDLE
;
1045 static int sh_mmcif_get_cd(struct mmc_host
*mmc
)
1047 struct sh_mmcif_host
*host
= mmc_priv(mmc
);
1048 struct sh_mmcif_plat_data
*p
= host
->pd
->dev
.platform_data
;
1049 int ret
= mmc_gpio_get_cd(mmc
);
1054 if (!p
|| !p
->get_cd
)
1057 return p
->get_cd(host
->pd
);
1060 static struct mmc_host_ops sh_mmcif_ops
= {
1061 .request
= sh_mmcif_request
,
1062 .set_ios
= sh_mmcif_set_ios
,
1063 .get_cd
= sh_mmcif_get_cd
,
1066 static bool sh_mmcif_end_cmd(struct sh_mmcif_host
*host
)
1068 struct mmc_command
*cmd
= host
->mrq
->cmd
;
1069 struct mmc_data
*data
= host
->mrq
->data
;
1072 if (host
->sd_error
) {
1073 switch (cmd
->opcode
) {
1074 case MMC_ALL_SEND_CID
:
1075 case MMC_SELECT_CARD
:
1077 cmd
->error
= -ETIMEDOUT
;
1080 cmd
->error
= sh_mmcif_error_manage(host
);
1083 dev_dbg(&host
->pd
->dev
, "CMD%d error %d\n",
1084 cmd
->opcode
, cmd
->error
);
1085 host
->sd_error
= false;
1088 if (!(cmd
->flags
& MMC_RSP_PRESENT
)) {
1093 sh_mmcif_get_response(host
, cmd
);
1099 * Completion can be signalled from DMA callback and error, so, have to
1100 * reset here, before setting .dma_active
1102 init_completion(&host
->dma_complete
);
1104 if (data
->flags
& MMC_DATA_READ
) {
1106 sh_mmcif_start_dma_rx(host
);
1109 sh_mmcif_start_dma_tx(host
);
1112 if (!host
->dma_active
) {
1113 data
->error
= sh_mmcif_data_trans(host
, host
->mrq
, cmd
->opcode
);
1114 return !data
->error
;
1117 /* Running in the IRQ thread, can sleep */
1118 time
= wait_for_completion_interruptible_timeout(&host
->dma_complete
,
1121 if (data
->flags
& MMC_DATA_READ
)
1122 dma_unmap_sg(host
->chan_rx
->device
->dev
,
1123 data
->sg
, data
->sg_len
,
1126 dma_unmap_sg(host
->chan_tx
->device
->dev
,
1127 data
->sg
, data
->sg_len
,
1130 if (host
->sd_error
) {
1131 dev_err(host
->mmc
->parent
,
1132 "Error IRQ while waiting for DMA completion!\n");
1133 /* Woken up by an error IRQ: abort DMA */
1134 data
->error
= sh_mmcif_error_manage(host
);
1136 dev_err(host
->mmc
->parent
, "DMA timeout!\n");
1137 data
->error
= -ETIMEDOUT
;
1138 } else if (time
< 0) {
1139 dev_err(host
->mmc
->parent
,
1140 "wait_for_completion_...() error %ld!\n", time
);
1143 sh_mmcif_bitclr(host
, MMCIF_CE_BUF_ACC
,
1144 BUF_ACC_DMAREN
| BUF_ACC_DMAWEN
);
1145 host
->dma_active
= false;
1148 data
->bytes_xfered
= 0;
1150 if (data
->flags
& MMC_DATA_READ
)
1151 dmaengine_terminate_all(host
->chan_rx
);
1153 dmaengine_terminate_all(host
->chan_tx
);
1159 static irqreturn_t
sh_mmcif_irqt(int irq
, void *dev_id
)
1161 struct sh_mmcif_host
*host
= dev_id
;
1162 struct mmc_request
*mrq
;
1165 cancel_delayed_work_sync(&host
->timeout_work
);
1167 mutex_lock(&host
->thread_lock
);
1171 dev_dbg(&host
->pd
->dev
, "IRQ thread state %u, wait %u: NULL mrq!\n",
1172 host
->state
, host
->wait_for
);
1173 mutex_unlock(&host
->thread_lock
);
1178 * All handlers return true, if processing continues, and false, if the
1179 * request has to be completed - successfully or not
1181 switch (host
->wait_for
) {
1182 case MMCIF_WAIT_FOR_REQUEST
:
1183 /* We're too late, the timeout has already kicked in */
1184 mutex_unlock(&host
->thread_lock
);
1186 case MMCIF_WAIT_FOR_CMD
:
1187 /* Wait for data? */
1188 wait
= sh_mmcif_end_cmd(host
);
1190 case MMCIF_WAIT_FOR_MREAD
:
1191 /* Wait for more data? */
1192 wait
= sh_mmcif_mread_block(host
);
1194 case MMCIF_WAIT_FOR_READ
:
1195 /* Wait for data end? */
1196 wait
= sh_mmcif_read_block(host
);
1198 case MMCIF_WAIT_FOR_MWRITE
:
1199 /* Wait data to write? */
1200 wait
= sh_mmcif_mwrite_block(host
);
1202 case MMCIF_WAIT_FOR_WRITE
:
1203 /* Wait for data end? */
1204 wait
= sh_mmcif_write_block(host
);
1206 case MMCIF_WAIT_FOR_STOP
:
1207 if (host
->sd_error
) {
1208 mrq
->stop
->error
= sh_mmcif_error_manage(host
);
1209 dev_dbg(&host
->pd
->dev
, "%s(): %d\n", __func__
, mrq
->stop
->error
);
1212 sh_mmcif_get_cmd12response(host
, mrq
->stop
);
1213 mrq
->stop
->error
= 0;
1215 case MMCIF_WAIT_FOR_READ_END
:
1216 case MMCIF_WAIT_FOR_WRITE_END
:
1217 if (host
->sd_error
) {
1218 mrq
->data
->error
= sh_mmcif_error_manage(host
);
1219 dev_dbg(&host
->pd
->dev
, "%s(): %d\n", __func__
, mrq
->data
->error
);
1227 schedule_delayed_work(&host
->timeout_work
, host
->timeout
);
1228 /* Wait for more data */
1229 mutex_unlock(&host
->thread_lock
);
1233 if (host
->wait_for
!= MMCIF_WAIT_FOR_STOP
) {
1234 struct mmc_data
*data
= mrq
->data
;
1235 if (!mrq
->cmd
->error
&& data
&& !data
->error
)
1236 data
->bytes_xfered
=
1237 data
->blocks
* data
->blksz
;
1239 if (mrq
->stop
&& !mrq
->cmd
->error
&& (!data
|| !data
->error
)) {
1240 sh_mmcif_stop_cmd(host
, mrq
);
1241 if (!mrq
->stop
->error
) {
1242 schedule_delayed_work(&host
->timeout_work
, host
->timeout
);
1243 mutex_unlock(&host
->thread_lock
);
1249 host
->wait_for
= MMCIF_WAIT_FOR_REQUEST
;
1250 host
->state
= STATE_IDLE
;
1252 mmc_request_done(host
->mmc
, mrq
);
1254 mutex_unlock(&host
->thread_lock
);
1259 static irqreturn_t
sh_mmcif_intr(int irq
, void *dev_id
)
1261 struct sh_mmcif_host
*host
= dev_id
;
1264 state
= sh_mmcif_readl(host
->addr
, MMCIF_CE_INT
);
1265 mask
= sh_mmcif_readl(host
->addr
, MMCIF_CE_INT_MASK
);
1266 if (host
->ccs_enable
)
1267 sh_mmcif_writel(host
->addr
, MMCIF_CE_INT
, ~(state
& mask
));
1269 sh_mmcif_writel(host
->addr
, MMCIF_CE_INT
, INT_CCS
| ~(state
& mask
));
1270 sh_mmcif_bitclr(host
, MMCIF_CE_INT_MASK
, state
& MASK_CLEAN
);
1272 if (state
& ~MASK_CLEAN
)
1273 dev_dbg(&host
->pd
->dev
, "IRQ state = 0x%08x incompletely cleared\n",
1276 if (state
& INT_ERR_STS
|| state
& ~INT_ALL
) {
1277 host
->sd_error
= true;
1278 dev_dbg(&host
->pd
->dev
, "int err state = 0x%08x\n", state
);
1280 if (state
& ~(INT_CMD12RBE
| INT_CMD12CRE
)) {
1282 dev_dbg(&host
->pd
->dev
, "NULL IRQ state = 0x%08x\n", state
);
1283 if (!host
->dma_active
)
1284 return IRQ_WAKE_THREAD
;
1285 else if (host
->sd_error
)
1286 mmcif_dma_complete(host
);
1288 dev_dbg(&host
->pd
->dev
, "Unexpected IRQ 0x%x\n", state
);
1294 static void mmcif_timeout_work(struct work_struct
*work
)
1296 struct delayed_work
*d
= container_of(work
, struct delayed_work
, work
);
1297 struct sh_mmcif_host
*host
= container_of(d
, struct sh_mmcif_host
, timeout_work
);
1298 struct mmc_request
*mrq
= host
->mrq
;
1299 unsigned long flags
;
1302 /* Don't run after mmc_remove_host() */
1305 dev_err(&host
->pd
->dev
, "Timeout waiting for %u on CMD%u\n",
1306 host
->wait_for
, mrq
->cmd
->opcode
);
1308 spin_lock_irqsave(&host
->lock
, flags
);
1309 if (host
->state
== STATE_IDLE
) {
1310 spin_unlock_irqrestore(&host
->lock
, flags
);
1314 host
->state
= STATE_TIMEOUT
;
1315 spin_unlock_irqrestore(&host
->lock
, flags
);
1318 * Handle races with cancel_delayed_work(), unless
1319 * cancel_delayed_work_sync() is used
1321 switch (host
->wait_for
) {
1322 case MMCIF_WAIT_FOR_CMD
:
1323 mrq
->cmd
->error
= sh_mmcif_error_manage(host
);
1325 case MMCIF_WAIT_FOR_STOP
:
1326 mrq
->stop
->error
= sh_mmcif_error_manage(host
);
1328 case MMCIF_WAIT_FOR_MREAD
:
1329 case MMCIF_WAIT_FOR_MWRITE
:
1330 case MMCIF_WAIT_FOR_READ
:
1331 case MMCIF_WAIT_FOR_WRITE
:
1332 case MMCIF_WAIT_FOR_READ_END
:
1333 case MMCIF_WAIT_FOR_WRITE_END
:
1334 mrq
->data
->error
= sh_mmcif_error_manage(host
);
1340 host
->state
= STATE_IDLE
;
1341 host
->wait_for
= MMCIF_WAIT_FOR_REQUEST
;
1343 mmc_request_done(host
->mmc
, mrq
);
1346 static void sh_mmcif_init_ocr(struct sh_mmcif_host
*host
)
1348 struct sh_mmcif_plat_data
*pd
= host
->pd
->dev
.platform_data
;
1349 struct mmc_host
*mmc
= host
->mmc
;
1351 mmc_regulator_get_supply(mmc
);
1356 if (!mmc
->ocr_avail
)
1357 mmc
->ocr_avail
= pd
->ocr
;
1359 dev_warn(mmc_dev(mmc
), "Platform OCR mask is ignored\n");
1362 static int sh_mmcif_probe(struct platform_device
*pdev
)
1364 int ret
= 0, irq
[2];
1365 struct mmc_host
*mmc
;
1366 struct sh_mmcif_host
*host
;
1367 struct sh_mmcif_plat_data
*pd
= pdev
->dev
.platform_data
;
1368 struct resource
*res
;
1372 irq
[0] = platform_get_irq(pdev
, 0);
1373 irq
[1] = platform_get_irq(pdev
, 1);
1375 dev_err(&pdev
->dev
, "Get irq error\n");
1378 res
= platform_get_resource(pdev
, IORESOURCE_MEM
, 0);
1380 dev_err(&pdev
->dev
, "platform_get_resource error.\n");
1383 reg
= ioremap(res
->start
, resource_size(res
));
1385 dev_err(&pdev
->dev
, "ioremap error.\n");
1389 mmc
= mmc_alloc_host(sizeof(struct sh_mmcif_host
), &pdev
->dev
);
1395 ret
= mmc_of_parse(mmc
);
1399 host
= mmc_priv(mmc
);
1402 host
->timeout
= msecs_to_jiffies(10000);
1403 host
->ccs_enable
= !pd
|| !pd
->ccs_unsupported
;
1404 host
->clk_ctrl2_enable
= pd
&& pd
->clk_ctrl2_present
;
1408 spin_lock_init(&host
->lock
);
1410 mmc
->ops
= &sh_mmcif_ops
;
1411 sh_mmcif_init_ocr(host
);
1413 mmc
->caps
|= MMC_CAP_MMC_HIGHSPEED
| MMC_CAP_WAIT_WHILE_BUSY
;
1415 mmc
->caps
|= pd
->caps
;
1417 mmc
->max_blk_size
= 512;
1418 mmc
->max_req_size
= PAGE_CACHE_SIZE
* mmc
->max_segs
;
1419 mmc
->max_blk_count
= mmc
->max_req_size
/ mmc
->max_blk_size
;
1420 mmc
->max_seg_size
= mmc
->max_req_size
;
1422 platform_set_drvdata(pdev
, host
);
1424 pm_runtime_enable(&pdev
->dev
);
1425 host
->power
= false;
1427 host
->hclk
= clk_get(&pdev
->dev
, NULL
);
1428 if (IS_ERR(host
->hclk
)) {
1429 ret
= PTR_ERR(host
->hclk
);
1430 dev_err(&pdev
->dev
, "cannot get clock: %d\n", ret
);
1433 ret
= sh_mmcif_clk_update(host
);
1437 ret
= pm_runtime_resume(&pdev
->dev
);
1441 INIT_DELAYED_WORK(&host
->timeout_work
, mmcif_timeout_work
);
1443 sh_mmcif_sync_reset(host
);
1444 sh_mmcif_writel(host
->addr
, MMCIF_CE_INT_MASK
, MASK_ALL
);
1446 name
= irq
[1] < 0 ? dev_name(&pdev
->dev
) : "sh_mmc:error";
1447 ret
= request_threaded_irq(irq
[0], sh_mmcif_intr
, sh_mmcif_irqt
, 0, name
, host
);
1449 dev_err(&pdev
->dev
, "request_irq error (%s)\n", name
);
1453 ret
= request_threaded_irq(irq
[1], sh_mmcif_intr
, sh_mmcif_irqt
,
1454 0, "sh_mmc:int", host
);
1456 dev_err(&pdev
->dev
, "request_irq error (sh_mmc:int)\n");
1461 if (pd
&& pd
->use_cd_gpio
) {
1462 ret
= mmc_gpio_request_cd(mmc
, pd
->cd_gpio
, 0);
1467 mutex_init(&host
->thread_lock
);
1469 clk_disable(host
->hclk
);
1470 ret
= mmc_add_host(mmc
);
1474 dev_pm_qos_expose_latency_limit(&pdev
->dev
, 100);
1476 dev_info(&pdev
->dev
, "driver version %s\n", DRIVER_VERSION
);
1477 dev_dbg(&pdev
->dev
, "chip ver H'%04x\n",
1478 sh_mmcif_readl(host
->addr
, MMCIF_CE_VERSION
) & 0x0000ffff);
1484 free_irq(irq
[1], host
);
1486 free_irq(irq
[0], host
);
1488 pm_runtime_suspend(&pdev
->dev
);
1490 clk_disable(host
->hclk
);
1492 clk_put(host
->hclk
);
1494 pm_runtime_disable(&pdev
->dev
);
1502 static int sh_mmcif_remove(struct platform_device
*pdev
)
1504 struct sh_mmcif_host
*host
= platform_get_drvdata(pdev
);
1508 clk_enable(host
->hclk
);
1509 pm_runtime_get_sync(&pdev
->dev
);
1511 dev_pm_qos_hide_latency_limit(&pdev
->dev
);
1513 mmc_remove_host(host
->mmc
);
1514 sh_mmcif_writel(host
->addr
, MMCIF_CE_INT_MASK
, MASK_ALL
);
1517 * FIXME: cancel_delayed_work(_sync)() and free_irq() race with the
1518 * mmc_remove_host() call above. But swapping order doesn't help either
1519 * (a query on the linux-mmc mailing list didn't bring any replies).
1521 cancel_delayed_work_sync(&host
->timeout_work
);
1524 iounmap(host
->addr
);
1526 irq
[0] = platform_get_irq(pdev
, 0);
1527 irq
[1] = platform_get_irq(pdev
, 1);
1529 free_irq(irq
[0], host
);
1531 free_irq(irq
[1], host
);
1533 clk_disable(host
->hclk
);
1534 mmc_free_host(host
->mmc
);
1535 pm_runtime_put_sync(&pdev
->dev
);
1536 pm_runtime_disable(&pdev
->dev
);
1542 static int sh_mmcif_suspend(struct device
*dev
)
1544 struct sh_mmcif_host
*host
= dev_get_drvdata(dev
);
1545 int ret
= mmc_suspend_host(host
->mmc
);
1548 sh_mmcif_writel(host
->addr
, MMCIF_CE_INT_MASK
, MASK_ALL
);
1553 static int sh_mmcif_resume(struct device
*dev
)
1555 struct sh_mmcif_host
*host
= dev_get_drvdata(dev
);
1557 return mmc_resume_host(host
->mmc
);
1560 #define sh_mmcif_suspend NULL
1561 #define sh_mmcif_resume NULL
1562 #endif /* CONFIG_PM */
1564 static const struct of_device_id mmcif_of_match
[] = {
1565 { .compatible
= "renesas,sh-mmcif" },
1568 MODULE_DEVICE_TABLE(of
, mmcif_of_match
);
1570 static const struct dev_pm_ops sh_mmcif_dev_pm_ops
= {
1571 .suspend
= sh_mmcif_suspend
,
1572 .resume
= sh_mmcif_resume
,
1575 static struct platform_driver sh_mmcif_driver
= {
1576 .probe
= sh_mmcif_probe
,
1577 .remove
= sh_mmcif_remove
,
1579 .name
= DRIVER_NAME
,
1580 .pm
= &sh_mmcif_dev_pm_ops
,
1581 .owner
= THIS_MODULE
,
1582 .of_match_table
= mmcif_of_match
,
1586 module_platform_driver(sh_mmcif_driver
);
1588 MODULE_DESCRIPTION("SuperH on-chip MMC/eMMC interface driver");
1589 MODULE_LICENSE("GPL");
1590 MODULE_ALIAS("platform:" DRIVER_NAME
);
1591 MODULE_AUTHOR("Yusuke Goda <yusuke.goda.sx@renesas.com>");