mfd: wm8350-i2c: Make sure the i2c regmap functions are compiled
[linux/fpc-iii.git] / drivers / mtd / mtdpart.c
blob51abd85e8a37d14d9eb455545d6c787e78f89e50
1 /*
2 * Simple MTD partitioning layer
4 * Copyright © 2000 Nicolas Pitre <nico@fluxnic.net>
5 * Copyright © 2002 Thomas Gleixner <gleixner@linutronix.de>
6 * Copyright © 2000-2010 David Woodhouse <dwmw2@infradead.org>
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License as published by
10 * the Free Software Foundation; either version 2 of the License, or
11 * (at your option) any later version.
13 * This program is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 * GNU General Public License for more details.
18 * You should have received a copy of the GNU General Public License
19 * along with this program; if not, write to the Free Software
20 * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
24 #include <linux/module.h>
25 #include <linux/types.h>
26 #include <linux/kernel.h>
27 #include <linux/slab.h>
28 #include <linux/list.h>
29 #include <linux/kmod.h>
30 #include <linux/mtd/mtd.h>
31 #include <linux/mtd/partitions.h>
32 #include <linux/err.h>
34 #include "mtdcore.h"
36 /* Our partition linked list */
37 static LIST_HEAD(mtd_partitions);
38 static DEFINE_MUTEX(mtd_partitions_mutex);
40 /* Our partition node structure */
41 struct mtd_part {
42 struct mtd_info mtd;
43 struct mtd_info *master;
44 uint64_t offset;
45 struct list_head list;
49 * Given a pointer to the MTD object in the mtd_part structure, we can retrieve
50 * the pointer to that structure with this macro.
52 #define PART(x) ((struct mtd_part *)(x))
56 * MTD methods which simply translate the effective address and pass through
57 * to the _real_ device.
60 static int part_read(struct mtd_info *mtd, loff_t from, size_t len,
61 size_t *retlen, u_char *buf)
63 struct mtd_part *part = PART(mtd);
64 struct mtd_ecc_stats stats;
65 int res;
67 stats = part->master->ecc_stats;
68 res = part->master->_read(part->master, from + part->offset, len,
69 retlen, buf);
70 if (unlikely(mtd_is_eccerr(res)))
71 mtd->ecc_stats.failed +=
72 part->master->ecc_stats.failed - stats.failed;
73 else
74 mtd->ecc_stats.corrected +=
75 part->master->ecc_stats.corrected - stats.corrected;
76 return res;
79 static int part_point(struct mtd_info *mtd, loff_t from, size_t len,
80 size_t *retlen, void **virt, resource_size_t *phys)
82 struct mtd_part *part = PART(mtd);
84 return part->master->_point(part->master, from + part->offset, len,
85 retlen, virt, phys);
88 static int part_unpoint(struct mtd_info *mtd, loff_t from, size_t len)
90 struct mtd_part *part = PART(mtd);
92 return part->master->_unpoint(part->master, from + part->offset, len);
95 static unsigned long part_get_unmapped_area(struct mtd_info *mtd,
96 unsigned long len,
97 unsigned long offset,
98 unsigned long flags)
100 struct mtd_part *part = PART(mtd);
102 offset += part->offset;
103 return part->master->_get_unmapped_area(part->master, len, offset,
104 flags);
107 static int part_read_oob(struct mtd_info *mtd, loff_t from,
108 struct mtd_oob_ops *ops)
110 struct mtd_part *part = PART(mtd);
111 int res;
113 if (from >= mtd->size)
114 return -EINVAL;
115 if (ops->datbuf && from + ops->len > mtd->size)
116 return -EINVAL;
119 * If OOB is also requested, make sure that we do not read past the end
120 * of this partition.
122 if (ops->oobbuf) {
123 size_t len, pages;
125 if (ops->mode == MTD_OPS_AUTO_OOB)
126 len = mtd->oobavail;
127 else
128 len = mtd->oobsize;
129 pages = mtd_div_by_ws(mtd->size, mtd);
130 pages -= mtd_div_by_ws(from, mtd);
131 if (ops->ooboffs + ops->ooblen > pages * len)
132 return -EINVAL;
135 res = part->master->_read_oob(part->master, from + part->offset, ops);
136 if (unlikely(res)) {
137 if (mtd_is_bitflip(res))
138 mtd->ecc_stats.corrected++;
139 if (mtd_is_eccerr(res))
140 mtd->ecc_stats.failed++;
142 return res;
145 static int part_read_user_prot_reg(struct mtd_info *mtd, loff_t from,
146 size_t len, size_t *retlen, u_char *buf)
148 struct mtd_part *part = PART(mtd);
149 return part->master->_read_user_prot_reg(part->master, from, len,
150 retlen, buf);
153 static int part_get_user_prot_info(struct mtd_info *mtd,
154 struct otp_info *buf, size_t len)
156 struct mtd_part *part = PART(mtd);
157 return part->master->_get_user_prot_info(part->master, buf, len);
160 static int part_read_fact_prot_reg(struct mtd_info *mtd, loff_t from,
161 size_t len, size_t *retlen, u_char *buf)
163 struct mtd_part *part = PART(mtd);
164 return part->master->_read_fact_prot_reg(part->master, from, len,
165 retlen, buf);
168 static int part_get_fact_prot_info(struct mtd_info *mtd, struct otp_info *buf,
169 size_t len)
171 struct mtd_part *part = PART(mtd);
172 return part->master->_get_fact_prot_info(part->master, buf, len);
175 static int part_write(struct mtd_info *mtd, loff_t to, size_t len,
176 size_t *retlen, const u_char *buf)
178 struct mtd_part *part = PART(mtd);
179 return part->master->_write(part->master, to + part->offset, len,
180 retlen, buf);
183 static int part_panic_write(struct mtd_info *mtd, loff_t to, size_t len,
184 size_t *retlen, const u_char *buf)
186 struct mtd_part *part = PART(mtd);
187 return part->master->_panic_write(part->master, to + part->offset, len,
188 retlen, buf);
191 static int part_write_oob(struct mtd_info *mtd, loff_t to,
192 struct mtd_oob_ops *ops)
194 struct mtd_part *part = PART(mtd);
196 if (to >= mtd->size)
197 return -EINVAL;
198 if (ops->datbuf && to + ops->len > mtd->size)
199 return -EINVAL;
200 return part->master->_write_oob(part->master, to + part->offset, ops);
203 static int part_write_user_prot_reg(struct mtd_info *mtd, loff_t from,
204 size_t len, size_t *retlen, u_char *buf)
206 struct mtd_part *part = PART(mtd);
207 return part->master->_write_user_prot_reg(part->master, from, len,
208 retlen, buf);
211 static int part_lock_user_prot_reg(struct mtd_info *mtd, loff_t from,
212 size_t len)
214 struct mtd_part *part = PART(mtd);
215 return part->master->_lock_user_prot_reg(part->master, from, len);
218 static int part_writev(struct mtd_info *mtd, const struct kvec *vecs,
219 unsigned long count, loff_t to, size_t *retlen)
221 struct mtd_part *part = PART(mtd);
222 return part->master->_writev(part->master, vecs, count,
223 to + part->offset, retlen);
226 static int part_erase(struct mtd_info *mtd, struct erase_info *instr)
228 struct mtd_part *part = PART(mtd);
229 int ret;
231 instr->addr += part->offset;
232 ret = part->master->_erase(part->master, instr);
233 if (ret) {
234 if (instr->fail_addr != MTD_FAIL_ADDR_UNKNOWN)
235 instr->fail_addr -= part->offset;
236 instr->addr -= part->offset;
238 return ret;
241 void mtd_erase_callback(struct erase_info *instr)
243 if (instr->mtd->_erase == part_erase) {
244 struct mtd_part *part = PART(instr->mtd);
246 if (instr->fail_addr != MTD_FAIL_ADDR_UNKNOWN)
247 instr->fail_addr -= part->offset;
248 instr->addr -= part->offset;
250 if (instr->callback)
251 instr->callback(instr);
253 EXPORT_SYMBOL_GPL(mtd_erase_callback);
255 static int part_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
257 struct mtd_part *part = PART(mtd);
258 return part->master->_lock(part->master, ofs + part->offset, len);
261 static int part_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
263 struct mtd_part *part = PART(mtd);
264 return part->master->_unlock(part->master, ofs + part->offset, len);
267 static int part_is_locked(struct mtd_info *mtd, loff_t ofs, uint64_t len)
269 struct mtd_part *part = PART(mtd);
270 return part->master->_is_locked(part->master, ofs + part->offset, len);
273 static void part_sync(struct mtd_info *mtd)
275 struct mtd_part *part = PART(mtd);
276 part->master->_sync(part->master);
279 static int part_suspend(struct mtd_info *mtd)
281 struct mtd_part *part = PART(mtd);
282 return part->master->_suspend(part->master);
285 static void part_resume(struct mtd_info *mtd)
287 struct mtd_part *part = PART(mtd);
288 part->master->_resume(part->master);
291 static int part_block_isbad(struct mtd_info *mtd, loff_t ofs)
293 struct mtd_part *part = PART(mtd);
294 ofs += part->offset;
295 return part->master->_block_isbad(part->master, ofs);
298 static int part_block_markbad(struct mtd_info *mtd, loff_t ofs)
300 struct mtd_part *part = PART(mtd);
301 int res;
303 ofs += part->offset;
304 res = part->master->_block_markbad(part->master, ofs);
305 if (!res)
306 mtd->ecc_stats.badblocks++;
307 return res;
310 static inline void free_partition(struct mtd_part *p)
312 kfree(p->mtd.name);
313 kfree(p);
317 * This function unregisters and destroy all slave MTD objects which are
318 * attached to the given master MTD object.
321 int del_mtd_partitions(struct mtd_info *master)
323 struct mtd_part *slave, *next;
324 int ret, err = 0;
326 mutex_lock(&mtd_partitions_mutex);
327 list_for_each_entry_safe(slave, next, &mtd_partitions, list)
328 if (slave->master == master) {
329 ret = del_mtd_device(&slave->mtd);
330 if (ret < 0) {
331 err = ret;
332 continue;
334 list_del(&slave->list);
335 free_partition(slave);
337 mutex_unlock(&mtd_partitions_mutex);
339 return err;
342 static struct mtd_part *allocate_partition(struct mtd_info *master,
343 const struct mtd_partition *part, int partno,
344 uint64_t cur_offset)
346 struct mtd_part *slave;
347 char *name;
349 /* allocate the partition structure */
350 slave = kzalloc(sizeof(*slave), GFP_KERNEL);
351 name = kstrdup(part->name, GFP_KERNEL);
352 if (!name || !slave) {
353 printk(KERN_ERR"memory allocation error while creating partitions for \"%s\"\n",
354 master->name);
355 kfree(name);
356 kfree(slave);
357 return ERR_PTR(-ENOMEM);
360 /* set up the MTD object for this partition */
361 slave->mtd.type = master->type;
362 slave->mtd.flags = master->flags & ~part->mask_flags;
363 slave->mtd.size = part->size;
364 slave->mtd.writesize = master->writesize;
365 slave->mtd.writebufsize = master->writebufsize;
366 slave->mtd.oobsize = master->oobsize;
367 slave->mtd.oobavail = master->oobavail;
368 slave->mtd.subpage_sft = master->subpage_sft;
370 slave->mtd.name = name;
371 slave->mtd.owner = master->owner;
372 slave->mtd.backing_dev_info = master->backing_dev_info;
374 /* NOTE: we don't arrange MTDs as a tree; it'd be error-prone
375 * to have the same data be in two different partitions.
377 slave->mtd.dev.parent = master->dev.parent;
379 slave->mtd._read = part_read;
380 slave->mtd._write = part_write;
382 if (master->_panic_write)
383 slave->mtd._panic_write = part_panic_write;
385 if (master->_point && master->_unpoint) {
386 slave->mtd._point = part_point;
387 slave->mtd._unpoint = part_unpoint;
390 if (master->_get_unmapped_area)
391 slave->mtd._get_unmapped_area = part_get_unmapped_area;
392 if (master->_read_oob)
393 slave->mtd._read_oob = part_read_oob;
394 if (master->_write_oob)
395 slave->mtd._write_oob = part_write_oob;
396 if (master->_read_user_prot_reg)
397 slave->mtd._read_user_prot_reg = part_read_user_prot_reg;
398 if (master->_read_fact_prot_reg)
399 slave->mtd._read_fact_prot_reg = part_read_fact_prot_reg;
400 if (master->_write_user_prot_reg)
401 slave->mtd._write_user_prot_reg = part_write_user_prot_reg;
402 if (master->_lock_user_prot_reg)
403 slave->mtd._lock_user_prot_reg = part_lock_user_prot_reg;
404 if (master->_get_user_prot_info)
405 slave->mtd._get_user_prot_info = part_get_user_prot_info;
406 if (master->_get_fact_prot_info)
407 slave->mtd._get_fact_prot_info = part_get_fact_prot_info;
408 if (master->_sync)
409 slave->mtd._sync = part_sync;
410 if (!partno && !master->dev.class && master->_suspend &&
411 master->_resume) {
412 slave->mtd._suspend = part_suspend;
413 slave->mtd._resume = part_resume;
415 if (master->_writev)
416 slave->mtd._writev = part_writev;
417 if (master->_lock)
418 slave->mtd._lock = part_lock;
419 if (master->_unlock)
420 slave->mtd._unlock = part_unlock;
421 if (master->_is_locked)
422 slave->mtd._is_locked = part_is_locked;
423 if (master->_block_isbad)
424 slave->mtd._block_isbad = part_block_isbad;
425 if (master->_block_markbad)
426 slave->mtd._block_markbad = part_block_markbad;
427 slave->mtd._erase = part_erase;
428 slave->master = master;
429 slave->offset = part->offset;
431 if (slave->offset == MTDPART_OFS_APPEND)
432 slave->offset = cur_offset;
433 if (slave->offset == MTDPART_OFS_NXTBLK) {
434 slave->offset = cur_offset;
435 if (mtd_mod_by_eb(cur_offset, master) != 0) {
436 /* Round up to next erasesize */
437 slave->offset = (mtd_div_by_eb(cur_offset, master) + 1) * master->erasesize;
438 printk(KERN_NOTICE "Moving partition %d: "
439 "0x%012llx -> 0x%012llx\n", partno,
440 (unsigned long long)cur_offset, (unsigned long long)slave->offset);
443 if (slave->offset == MTDPART_OFS_RETAIN) {
444 slave->offset = cur_offset;
445 if (master->size - slave->offset >= slave->mtd.size) {
446 slave->mtd.size = master->size - slave->offset
447 - slave->mtd.size;
448 } else {
449 printk(KERN_ERR "mtd partition \"%s\" doesn't have enough space: %#llx < %#llx, disabled\n",
450 part->name, master->size - slave->offset,
451 slave->mtd.size);
452 /* register to preserve ordering */
453 goto out_register;
456 if (slave->mtd.size == MTDPART_SIZ_FULL)
457 slave->mtd.size = master->size - slave->offset;
459 printk(KERN_NOTICE "0x%012llx-0x%012llx : \"%s\"\n", (unsigned long long)slave->offset,
460 (unsigned long long)(slave->offset + slave->mtd.size), slave->mtd.name);
462 /* let's do some sanity checks */
463 if (slave->offset >= master->size) {
464 /* let's register it anyway to preserve ordering */
465 slave->offset = 0;
466 slave->mtd.size = 0;
467 printk(KERN_ERR"mtd: partition \"%s\" is out of reach -- disabled\n",
468 part->name);
469 goto out_register;
471 if (slave->offset + slave->mtd.size > master->size) {
472 slave->mtd.size = master->size - slave->offset;
473 printk(KERN_WARNING"mtd: partition \"%s\" extends beyond the end of device \"%s\" -- size truncated to %#llx\n",
474 part->name, master->name, (unsigned long long)slave->mtd.size);
476 if (master->numeraseregions > 1) {
477 /* Deal with variable erase size stuff */
478 int i, max = master->numeraseregions;
479 u64 end = slave->offset + slave->mtd.size;
480 struct mtd_erase_region_info *regions = master->eraseregions;
482 /* Find the first erase regions which is part of this
483 * partition. */
484 for (i = 0; i < max && regions[i].offset <= slave->offset; i++)
486 /* The loop searched for the region _behind_ the first one */
487 if (i > 0)
488 i--;
490 /* Pick biggest erasesize */
491 for (; i < max && regions[i].offset < end; i++) {
492 if (slave->mtd.erasesize < regions[i].erasesize) {
493 slave->mtd.erasesize = regions[i].erasesize;
496 BUG_ON(slave->mtd.erasesize == 0);
497 } else {
498 /* Single erase size */
499 slave->mtd.erasesize = master->erasesize;
502 if ((slave->mtd.flags & MTD_WRITEABLE) &&
503 mtd_mod_by_eb(slave->offset, &slave->mtd)) {
504 /* Doesn't start on a boundary of major erase size */
505 /* FIXME: Let it be writable if it is on a boundary of
506 * _minor_ erase size though */
507 slave->mtd.flags &= ~MTD_WRITEABLE;
508 printk(KERN_WARNING"mtd: partition \"%s\" doesn't start on an erase block boundary -- force read-only\n",
509 part->name);
511 if ((slave->mtd.flags & MTD_WRITEABLE) &&
512 mtd_mod_by_eb(slave->mtd.size, &slave->mtd)) {
513 slave->mtd.flags &= ~MTD_WRITEABLE;
514 printk(KERN_WARNING"mtd: partition \"%s\" doesn't end on an erase block -- force read-only\n",
515 part->name);
518 slave->mtd.ecclayout = master->ecclayout;
519 slave->mtd.ecc_step_size = master->ecc_step_size;
520 slave->mtd.ecc_strength = master->ecc_strength;
521 slave->mtd.bitflip_threshold = master->bitflip_threshold;
523 if (master->_block_isbad) {
524 uint64_t offs = 0;
526 while (offs < slave->mtd.size) {
527 if (mtd_block_isbad(master, offs + slave->offset))
528 slave->mtd.ecc_stats.badblocks++;
529 offs += slave->mtd.erasesize;
533 out_register:
534 return slave;
537 int mtd_add_partition(struct mtd_info *master, char *name,
538 long long offset, long long length)
540 struct mtd_partition part;
541 struct mtd_part *p, *new;
542 uint64_t start, end;
543 int ret = 0;
545 /* the direct offset is expected */
546 if (offset == MTDPART_OFS_APPEND ||
547 offset == MTDPART_OFS_NXTBLK)
548 return -EINVAL;
550 if (length == MTDPART_SIZ_FULL)
551 length = master->size - offset;
553 if (length <= 0)
554 return -EINVAL;
556 part.name = name;
557 part.size = length;
558 part.offset = offset;
559 part.mask_flags = 0;
560 part.ecclayout = NULL;
562 new = allocate_partition(master, &part, -1, offset);
563 if (IS_ERR(new))
564 return PTR_ERR(new);
566 start = offset;
567 end = offset + length;
569 mutex_lock(&mtd_partitions_mutex);
570 list_for_each_entry(p, &mtd_partitions, list)
571 if (p->master == master) {
572 if ((start >= p->offset) &&
573 (start < (p->offset + p->mtd.size)))
574 goto err_inv;
576 if ((end >= p->offset) &&
577 (end < (p->offset + p->mtd.size)))
578 goto err_inv;
581 list_add(&new->list, &mtd_partitions);
582 mutex_unlock(&mtd_partitions_mutex);
584 add_mtd_device(&new->mtd);
586 return ret;
587 err_inv:
588 mutex_unlock(&mtd_partitions_mutex);
589 free_partition(new);
590 return -EINVAL;
592 EXPORT_SYMBOL_GPL(mtd_add_partition);
594 int mtd_del_partition(struct mtd_info *master, int partno)
596 struct mtd_part *slave, *next;
597 int ret = -EINVAL;
599 mutex_lock(&mtd_partitions_mutex);
600 list_for_each_entry_safe(slave, next, &mtd_partitions, list)
601 if ((slave->master == master) &&
602 (slave->mtd.index == partno)) {
603 ret = del_mtd_device(&slave->mtd);
604 if (ret < 0)
605 break;
607 list_del(&slave->list);
608 free_partition(slave);
609 break;
611 mutex_unlock(&mtd_partitions_mutex);
613 return ret;
615 EXPORT_SYMBOL_GPL(mtd_del_partition);
618 * This function, given a master MTD object and a partition table, creates
619 * and registers slave MTD objects which are bound to the master according to
620 * the partition definitions.
622 * We don't register the master, or expect the caller to have done so,
623 * for reasons of data integrity.
626 int add_mtd_partitions(struct mtd_info *master,
627 const struct mtd_partition *parts,
628 int nbparts)
630 struct mtd_part *slave;
631 uint64_t cur_offset = 0;
632 int i;
634 printk(KERN_NOTICE "Creating %d MTD partitions on \"%s\":\n", nbparts, master->name);
636 for (i = 0; i < nbparts; i++) {
637 slave = allocate_partition(master, parts + i, i, cur_offset);
638 if (IS_ERR(slave)) {
639 del_mtd_partitions(master);
640 return PTR_ERR(slave);
643 mutex_lock(&mtd_partitions_mutex);
644 list_add(&slave->list, &mtd_partitions);
645 mutex_unlock(&mtd_partitions_mutex);
647 add_mtd_device(&slave->mtd);
649 cur_offset = slave->offset + slave->mtd.size;
652 return 0;
655 static DEFINE_SPINLOCK(part_parser_lock);
656 static LIST_HEAD(part_parsers);
658 static struct mtd_part_parser *get_partition_parser(const char *name)
660 struct mtd_part_parser *p, *ret = NULL;
662 spin_lock(&part_parser_lock);
664 list_for_each_entry(p, &part_parsers, list)
665 if (!strcmp(p->name, name) && try_module_get(p->owner)) {
666 ret = p;
667 break;
670 spin_unlock(&part_parser_lock);
672 return ret;
675 #define put_partition_parser(p) do { module_put((p)->owner); } while (0)
677 int register_mtd_parser(struct mtd_part_parser *p)
679 spin_lock(&part_parser_lock);
680 list_add(&p->list, &part_parsers);
681 spin_unlock(&part_parser_lock);
683 return 0;
685 EXPORT_SYMBOL_GPL(register_mtd_parser);
687 int deregister_mtd_parser(struct mtd_part_parser *p)
689 spin_lock(&part_parser_lock);
690 list_del(&p->list);
691 spin_unlock(&part_parser_lock);
692 return 0;
694 EXPORT_SYMBOL_GPL(deregister_mtd_parser);
697 * Do not forget to update 'parse_mtd_partitions()' kerneldoc comment if you
698 * are changing this array!
700 static const char * const default_mtd_part_types[] = {
701 "cmdlinepart",
702 "ofpart",
703 NULL
707 * parse_mtd_partitions - parse MTD partitions
708 * @master: the master partition (describes whole MTD device)
709 * @types: names of partition parsers to try or %NULL
710 * @pparts: array of partitions found is returned here
711 * @data: MTD partition parser-specific data
713 * This function tries to find partition on MTD device @master. It uses MTD
714 * partition parsers, specified in @types. However, if @types is %NULL, then
715 * the default list of parsers is used. The default list contains only the
716 * "cmdlinepart" and "ofpart" parsers ATM.
717 * Note: If there are more then one parser in @types, the kernel only takes the
718 * partitions parsed out by the first parser.
720 * This function may return:
721 * o a negative error code in case of failure
722 * o zero if no partitions were found
723 * o a positive number of found partitions, in which case on exit @pparts will
724 * point to an array containing this number of &struct mtd_info objects.
726 int parse_mtd_partitions(struct mtd_info *master, const char *const *types,
727 struct mtd_partition **pparts,
728 struct mtd_part_parser_data *data)
730 struct mtd_part_parser *parser;
731 int ret = 0;
733 if (!types)
734 types = default_mtd_part_types;
736 for ( ; ret <= 0 && *types; types++) {
737 parser = get_partition_parser(*types);
738 if (!parser && !request_module("%s", *types))
739 parser = get_partition_parser(*types);
740 if (!parser)
741 continue;
742 ret = (*parser->parse_fn)(master, pparts, data);
743 put_partition_parser(parser);
744 if (ret > 0) {
745 printk(KERN_NOTICE "%d %s partitions found on MTD device %s\n",
746 ret, parser->name, master->name);
747 break;
750 return ret;
753 int mtd_is_partition(const struct mtd_info *mtd)
755 struct mtd_part *part;
756 int ispart = 0;
758 mutex_lock(&mtd_partitions_mutex);
759 list_for_each_entry(part, &mtd_partitions, list)
760 if (&part->mtd == mtd) {
761 ispart = 1;
762 break;
764 mutex_unlock(&mtd_partitions_mutex);
766 return ispart;
768 EXPORT_SYMBOL_GPL(mtd_is_partition);
770 /* Returns the size of the entire flash chip */
771 uint64_t mtd_get_device_size(const struct mtd_info *mtd)
773 if (!mtd_is_partition(mtd))
774 return mtd->size;
776 return PART(mtd)->master->size;
778 EXPORT_SYMBOL_GPL(mtd_get_device_size);