mfd: wm8350-i2c: Make sure the i2c regmap functions are compiled
[linux/fpc-iii.git] / drivers / mtd / nand / davinci_nand.c
blobc56a957e92e1929cd0ecff7dd47c22fc046b71c3
1 /*
2 * davinci_nand.c - NAND Flash Driver for DaVinci family chips
4 * Copyright © 2006 Texas Instruments.
6 * Port to 2.6.23 Copyright © 2008 by:
7 * Sander Huijsen <Shuijsen@optelecom-nkf.com>
8 * Troy Kisky <troy.kisky@boundarydevices.com>
9 * Dirk Behme <Dirk.Behme@gmail.com>
11 * This program is free software; you can redistribute it and/or modify
12 * it under the terms of the GNU General Public License as published by
13 * the Free Software Foundation; either version 2 of the License, or
14 * (at your option) any later version.
16 * This program is distributed in the hope that it will be useful,
17 * but WITHOUT ANY WARRANTY; without even the implied warranty of
18 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19 * GNU General Public License for more details.
21 * You should have received a copy of the GNU General Public License
22 * along with this program; if not, write to the Free Software
23 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
26 #include <linux/kernel.h>
27 #include <linux/init.h>
28 #include <linux/module.h>
29 #include <linux/platform_device.h>
30 #include <linux/err.h>
31 #include <linux/clk.h>
32 #include <linux/io.h>
33 #include <linux/mtd/nand.h>
34 #include <linux/mtd/partitions.h>
35 #include <linux/slab.h>
36 #include <linux/of_device.h>
37 #include <linux/of.h>
39 #include <linux/platform_data/mtd-davinci.h>
40 #include <linux/platform_data/mtd-davinci-aemif.h>
43 * This is a device driver for the NAND flash controller found on the
44 * various DaVinci family chips. It handles up to four SoC chipselects,
45 * and some flavors of secondary chipselect (e.g. based on A12) as used
46 * with multichip packages.
48 * The 1-bit ECC hardware is supported, as well as the newer 4-bit ECC
49 * available on chips like the DM355 and OMAP-L137 and needed with the
50 * more error-prone MLC NAND chips.
52 * This driver assumes EM_WAIT connects all the NAND devices' RDY/nBUSY
53 * outputs in a "wire-AND" configuration, with no per-chip signals.
55 struct davinci_nand_info {
56 struct mtd_info mtd;
57 struct nand_chip chip;
58 struct nand_ecclayout ecclayout;
60 struct device *dev;
61 struct clk *clk;
63 bool is_readmode;
65 void __iomem *base;
66 void __iomem *vaddr;
68 uint32_t ioaddr;
69 uint32_t current_cs;
71 uint32_t mask_chipsel;
72 uint32_t mask_ale;
73 uint32_t mask_cle;
75 uint32_t core_chipsel;
77 struct davinci_aemif_timing *timing;
80 static DEFINE_SPINLOCK(davinci_nand_lock);
81 static bool ecc4_busy;
83 #define to_davinci_nand(m) container_of(m, struct davinci_nand_info, mtd)
86 static inline unsigned int davinci_nand_readl(struct davinci_nand_info *info,
87 int offset)
89 return __raw_readl(info->base + offset);
92 static inline void davinci_nand_writel(struct davinci_nand_info *info,
93 int offset, unsigned long value)
95 __raw_writel(value, info->base + offset);
98 /*----------------------------------------------------------------------*/
101 * Access to hardware control lines: ALE, CLE, secondary chipselect.
104 static void nand_davinci_hwcontrol(struct mtd_info *mtd, int cmd,
105 unsigned int ctrl)
107 struct davinci_nand_info *info = to_davinci_nand(mtd);
108 uint32_t addr = info->current_cs;
109 struct nand_chip *nand = mtd->priv;
111 /* Did the control lines change? */
112 if (ctrl & NAND_CTRL_CHANGE) {
113 if ((ctrl & NAND_CTRL_CLE) == NAND_CTRL_CLE)
114 addr |= info->mask_cle;
115 else if ((ctrl & NAND_CTRL_ALE) == NAND_CTRL_ALE)
116 addr |= info->mask_ale;
118 nand->IO_ADDR_W = (void __iomem __force *)addr;
121 if (cmd != NAND_CMD_NONE)
122 iowrite8(cmd, nand->IO_ADDR_W);
125 static void nand_davinci_select_chip(struct mtd_info *mtd, int chip)
127 struct davinci_nand_info *info = to_davinci_nand(mtd);
128 uint32_t addr = info->ioaddr;
130 /* maybe kick in a second chipselect */
131 if (chip > 0)
132 addr |= info->mask_chipsel;
133 info->current_cs = addr;
135 info->chip.IO_ADDR_W = (void __iomem __force *)addr;
136 info->chip.IO_ADDR_R = info->chip.IO_ADDR_W;
139 /*----------------------------------------------------------------------*/
142 * 1-bit hardware ECC ... context maintained for each core chipselect
145 static inline uint32_t nand_davinci_readecc_1bit(struct mtd_info *mtd)
147 struct davinci_nand_info *info = to_davinci_nand(mtd);
149 return davinci_nand_readl(info, NANDF1ECC_OFFSET
150 + 4 * info->core_chipsel);
153 static void nand_davinci_hwctl_1bit(struct mtd_info *mtd, int mode)
155 struct davinci_nand_info *info;
156 uint32_t nandcfr;
157 unsigned long flags;
159 info = to_davinci_nand(mtd);
161 /* Reset ECC hardware */
162 nand_davinci_readecc_1bit(mtd);
164 spin_lock_irqsave(&davinci_nand_lock, flags);
166 /* Restart ECC hardware */
167 nandcfr = davinci_nand_readl(info, NANDFCR_OFFSET);
168 nandcfr |= BIT(8 + info->core_chipsel);
169 davinci_nand_writel(info, NANDFCR_OFFSET, nandcfr);
171 spin_unlock_irqrestore(&davinci_nand_lock, flags);
175 * Read hardware ECC value and pack into three bytes
177 static int nand_davinci_calculate_1bit(struct mtd_info *mtd,
178 const u_char *dat, u_char *ecc_code)
180 unsigned int ecc_val = nand_davinci_readecc_1bit(mtd);
181 unsigned int ecc24 = (ecc_val & 0x0fff) | ((ecc_val & 0x0fff0000) >> 4);
183 /* invert so that erased block ecc is correct */
184 ecc24 = ~ecc24;
185 ecc_code[0] = (u_char)(ecc24);
186 ecc_code[1] = (u_char)(ecc24 >> 8);
187 ecc_code[2] = (u_char)(ecc24 >> 16);
189 return 0;
192 static int nand_davinci_correct_1bit(struct mtd_info *mtd, u_char *dat,
193 u_char *read_ecc, u_char *calc_ecc)
195 struct nand_chip *chip = mtd->priv;
196 uint32_t eccNand = read_ecc[0] | (read_ecc[1] << 8) |
197 (read_ecc[2] << 16);
198 uint32_t eccCalc = calc_ecc[0] | (calc_ecc[1] << 8) |
199 (calc_ecc[2] << 16);
200 uint32_t diff = eccCalc ^ eccNand;
202 if (diff) {
203 if ((((diff >> 12) ^ diff) & 0xfff) == 0xfff) {
204 /* Correctable error */
205 if ((diff >> (12 + 3)) < chip->ecc.size) {
206 dat[diff >> (12 + 3)] ^= BIT((diff >> 12) & 7);
207 return 1;
208 } else {
209 return -1;
211 } else if (!(diff & (diff - 1))) {
212 /* Single bit ECC error in the ECC itself,
213 * nothing to fix */
214 return 1;
215 } else {
216 /* Uncorrectable error */
217 return -1;
221 return 0;
224 /*----------------------------------------------------------------------*/
227 * 4-bit hardware ECC ... context maintained over entire AEMIF
229 * This is a syndrome engine, but we avoid NAND_ECC_HW_SYNDROME
230 * since that forces use of a problematic "infix OOB" layout.
231 * Among other things, it trashes manufacturer bad block markers.
232 * Also, and specific to this hardware, it ECC-protects the "prepad"
233 * in the OOB ... while having ECC protection for parts of OOB would
234 * seem useful, the current MTD stack sometimes wants to update the
235 * OOB without recomputing ECC.
238 static void nand_davinci_hwctl_4bit(struct mtd_info *mtd, int mode)
240 struct davinci_nand_info *info = to_davinci_nand(mtd);
241 unsigned long flags;
242 u32 val;
244 /* Reset ECC hardware */
245 davinci_nand_readl(info, NAND_4BIT_ECC1_OFFSET);
247 spin_lock_irqsave(&davinci_nand_lock, flags);
249 /* Start 4-bit ECC calculation for read/write */
250 val = davinci_nand_readl(info, NANDFCR_OFFSET);
251 val &= ~(0x03 << 4);
252 val |= (info->core_chipsel << 4) | BIT(12);
253 davinci_nand_writel(info, NANDFCR_OFFSET, val);
255 info->is_readmode = (mode == NAND_ECC_READ);
257 spin_unlock_irqrestore(&davinci_nand_lock, flags);
260 /* Read raw ECC code after writing to NAND. */
261 static void
262 nand_davinci_readecc_4bit(struct davinci_nand_info *info, u32 code[4])
264 const u32 mask = 0x03ff03ff;
266 code[0] = davinci_nand_readl(info, NAND_4BIT_ECC1_OFFSET) & mask;
267 code[1] = davinci_nand_readl(info, NAND_4BIT_ECC2_OFFSET) & mask;
268 code[2] = davinci_nand_readl(info, NAND_4BIT_ECC3_OFFSET) & mask;
269 code[3] = davinci_nand_readl(info, NAND_4BIT_ECC4_OFFSET) & mask;
272 /* Terminate read ECC; or return ECC (as bytes) of data written to NAND. */
273 static int nand_davinci_calculate_4bit(struct mtd_info *mtd,
274 const u_char *dat, u_char *ecc_code)
276 struct davinci_nand_info *info = to_davinci_nand(mtd);
277 u32 raw_ecc[4], *p;
278 unsigned i;
280 /* After a read, terminate ECC calculation by a dummy read
281 * of some 4-bit ECC register. ECC covers everything that
282 * was read; correct() just uses the hardware state, so
283 * ecc_code is not needed.
285 if (info->is_readmode) {
286 davinci_nand_readl(info, NAND_4BIT_ECC1_OFFSET);
287 return 0;
290 /* Pack eight raw 10-bit ecc values into ten bytes, making
291 * two passes which each convert four values (in upper and
292 * lower halves of two 32-bit words) into five bytes. The
293 * ROM boot loader uses this same packing scheme.
295 nand_davinci_readecc_4bit(info, raw_ecc);
296 for (i = 0, p = raw_ecc; i < 2; i++, p += 2) {
297 *ecc_code++ = p[0] & 0xff;
298 *ecc_code++ = ((p[0] >> 8) & 0x03) | ((p[0] >> 14) & 0xfc);
299 *ecc_code++ = ((p[0] >> 22) & 0x0f) | ((p[1] << 4) & 0xf0);
300 *ecc_code++ = ((p[1] >> 4) & 0x3f) | ((p[1] >> 10) & 0xc0);
301 *ecc_code++ = (p[1] >> 18) & 0xff;
304 return 0;
307 /* Correct up to 4 bits in data we just read, using state left in the
308 * hardware plus the ecc_code computed when it was first written.
310 static int nand_davinci_correct_4bit(struct mtd_info *mtd,
311 u_char *data, u_char *ecc_code, u_char *null)
313 int i;
314 struct davinci_nand_info *info = to_davinci_nand(mtd);
315 unsigned short ecc10[8];
316 unsigned short *ecc16;
317 u32 syndrome[4];
318 u32 ecc_state;
319 unsigned num_errors, corrected;
320 unsigned long timeo;
322 /* All bytes 0xff? It's an erased page; ignore its ECC. */
323 for (i = 0; i < 10; i++) {
324 if (ecc_code[i] != 0xff)
325 goto compare;
327 return 0;
329 compare:
330 /* Unpack ten bytes into eight 10 bit values. We know we're
331 * little-endian, and use type punning for less shifting/masking.
333 if (WARN_ON(0x01 & (unsigned) ecc_code))
334 return -EINVAL;
335 ecc16 = (unsigned short *)ecc_code;
337 ecc10[0] = (ecc16[0] >> 0) & 0x3ff;
338 ecc10[1] = ((ecc16[0] >> 10) & 0x3f) | ((ecc16[1] << 6) & 0x3c0);
339 ecc10[2] = (ecc16[1] >> 4) & 0x3ff;
340 ecc10[3] = ((ecc16[1] >> 14) & 0x3) | ((ecc16[2] << 2) & 0x3fc);
341 ecc10[4] = (ecc16[2] >> 8) | ((ecc16[3] << 8) & 0x300);
342 ecc10[5] = (ecc16[3] >> 2) & 0x3ff;
343 ecc10[6] = ((ecc16[3] >> 12) & 0xf) | ((ecc16[4] << 4) & 0x3f0);
344 ecc10[7] = (ecc16[4] >> 6) & 0x3ff;
346 /* Tell ECC controller about the expected ECC codes. */
347 for (i = 7; i >= 0; i--)
348 davinci_nand_writel(info, NAND_4BIT_ECC_LOAD_OFFSET, ecc10[i]);
350 /* Allow time for syndrome calculation ... then read it.
351 * A syndrome of all zeroes 0 means no detected errors.
353 davinci_nand_readl(info, NANDFSR_OFFSET);
354 nand_davinci_readecc_4bit(info, syndrome);
355 if (!(syndrome[0] | syndrome[1] | syndrome[2] | syndrome[3]))
356 return 0;
359 * Clear any previous address calculation by doing a dummy read of an
360 * error address register.
362 davinci_nand_readl(info, NAND_ERR_ADD1_OFFSET);
364 /* Start address calculation, and wait for it to complete.
365 * We _could_ start reading more data while this is working,
366 * to speed up the overall page read.
368 davinci_nand_writel(info, NANDFCR_OFFSET,
369 davinci_nand_readl(info, NANDFCR_OFFSET) | BIT(13));
372 * ECC_STATE field reads 0x3 (Error correction complete) immediately
373 * after setting the 4BITECC_ADD_CALC_START bit. So if you immediately
374 * begin trying to poll for the state, you may fall right out of your
375 * loop without any of the correction calculations having taken place.
376 * The recommendation from the hardware team is to initially delay as
377 * long as ECC_STATE reads less than 4. After that, ECC HW has entered
378 * correction state.
380 timeo = jiffies + usecs_to_jiffies(100);
381 do {
382 ecc_state = (davinci_nand_readl(info,
383 NANDFSR_OFFSET) >> 8) & 0x0f;
384 cpu_relax();
385 } while ((ecc_state < 4) && time_before(jiffies, timeo));
387 for (;;) {
388 u32 fsr = davinci_nand_readl(info, NANDFSR_OFFSET);
390 switch ((fsr >> 8) & 0x0f) {
391 case 0: /* no error, should not happen */
392 davinci_nand_readl(info, NAND_ERR_ERRVAL1_OFFSET);
393 return 0;
394 case 1: /* five or more errors detected */
395 davinci_nand_readl(info, NAND_ERR_ERRVAL1_OFFSET);
396 return -EIO;
397 case 2: /* error addresses computed */
398 case 3:
399 num_errors = 1 + ((fsr >> 16) & 0x03);
400 goto correct;
401 default: /* still working on it */
402 cpu_relax();
403 continue;
407 correct:
408 /* correct each error */
409 for (i = 0, corrected = 0; i < num_errors; i++) {
410 int error_address, error_value;
412 if (i > 1) {
413 error_address = davinci_nand_readl(info,
414 NAND_ERR_ADD2_OFFSET);
415 error_value = davinci_nand_readl(info,
416 NAND_ERR_ERRVAL2_OFFSET);
417 } else {
418 error_address = davinci_nand_readl(info,
419 NAND_ERR_ADD1_OFFSET);
420 error_value = davinci_nand_readl(info,
421 NAND_ERR_ERRVAL1_OFFSET);
424 if (i & 1) {
425 error_address >>= 16;
426 error_value >>= 16;
428 error_address &= 0x3ff;
429 error_address = (512 + 7) - error_address;
431 if (error_address < 512) {
432 data[error_address] ^= error_value;
433 corrected++;
437 return corrected;
440 /*----------------------------------------------------------------------*/
443 * NOTE: NAND boot requires ALE == EM_A[1], CLE == EM_A[2], so that's
444 * how these chips are normally wired. This translates to both 8 and 16
445 * bit busses using ALE == BIT(3) in byte addresses, and CLE == BIT(4).
447 * For now we assume that configuration, or any other one which ignores
448 * the two LSBs for NAND access ... so we can issue 32-bit reads/writes
449 * and have that transparently morphed into multiple NAND operations.
451 static void nand_davinci_read_buf(struct mtd_info *mtd, uint8_t *buf, int len)
453 struct nand_chip *chip = mtd->priv;
455 if ((0x03 & ((unsigned)buf)) == 0 && (0x03 & len) == 0)
456 ioread32_rep(chip->IO_ADDR_R, buf, len >> 2);
457 else if ((0x01 & ((unsigned)buf)) == 0 && (0x01 & len) == 0)
458 ioread16_rep(chip->IO_ADDR_R, buf, len >> 1);
459 else
460 ioread8_rep(chip->IO_ADDR_R, buf, len);
463 static void nand_davinci_write_buf(struct mtd_info *mtd,
464 const uint8_t *buf, int len)
466 struct nand_chip *chip = mtd->priv;
468 if ((0x03 & ((unsigned)buf)) == 0 && (0x03 & len) == 0)
469 iowrite32_rep(chip->IO_ADDR_R, buf, len >> 2);
470 else if ((0x01 & ((unsigned)buf)) == 0 && (0x01 & len) == 0)
471 iowrite16_rep(chip->IO_ADDR_R, buf, len >> 1);
472 else
473 iowrite8_rep(chip->IO_ADDR_R, buf, len);
477 * Check hardware register for wait status. Returns 1 if device is ready,
478 * 0 if it is still busy.
480 static int nand_davinci_dev_ready(struct mtd_info *mtd)
482 struct davinci_nand_info *info = to_davinci_nand(mtd);
484 return davinci_nand_readl(info, NANDFSR_OFFSET) & BIT(0);
487 /*----------------------------------------------------------------------*/
489 /* An ECC layout for using 4-bit ECC with small-page flash, storing
490 * ten ECC bytes plus the manufacturer's bad block marker byte, and
491 * and not overlapping the default BBT markers.
493 static struct nand_ecclayout hwecc4_small __initconst = {
494 .eccbytes = 10,
495 .eccpos = { 0, 1, 2, 3, 4,
496 /* offset 5 holds the badblock marker */
497 6, 7,
498 13, 14, 15, },
499 .oobfree = {
500 {.offset = 8, .length = 5, },
501 {.offset = 16, },
505 /* An ECC layout for using 4-bit ECC with large-page (2048bytes) flash,
506 * storing ten ECC bytes plus the manufacturer's bad block marker byte,
507 * and not overlapping the default BBT markers.
509 static struct nand_ecclayout hwecc4_2048 __initconst = {
510 .eccbytes = 40,
511 .eccpos = {
512 /* at the end of spare sector */
513 24, 25, 26, 27, 28, 29, 30, 31, 32, 33,
514 34, 35, 36, 37, 38, 39, 40, 41, 42, 43,
515 44, 45, 46, 47, 48, 49, 50, 51, 52, 53,
516 54, 55, 56, 57, 58, 59, 60, 61, 62, 63,
518 .oobfree = {
519 /* 2 bytes at offset 0 hold manufacturer badblock markers */
520 {.offset = 2, .length = 22, },
521 /* 5 bytes at offset 8 hold BBT markers */
522 /* 8 bytes at offset 16 hold JFFS2 clean markers */
526 #if defined(CONFIG_OF)
527 static const struct of_device_id davinci_nand_of_match[] = {
528 {.compatible = "ti,davinci-nand", },
531 MODULE_DEVICE_TABLE(of, davinci_nand_of_match);
533 static struct davinci_nand_pdata
534 *nand_davinci_get_pdata(struct platform_device *pdev)
536 if (!dev_get_platdata(&pdev->dev) && pdev->dev.of_node) {
537 struct davinci_nand_pdata *pdata;
538 const char *mode;
539 u32 prop;
540 int len;
542 pdata = devm_kzalloc(&pdev->dev,
543 sizeof(struct davinci_nand_pdata),
544 GFP_KERNEL);
545 pdev->dev.platform_data = pdata;
546 if (!pdata)
547 return NULL;
548 if (!of_property_read_u32(pdev->dev.of_node,
549 "ti,davinci-chipselect", &prop))
550 pdev->id = prop;
551 if (!of_property_read_u32(pdev->dev.of_node,
552 "ti,davinci-mask-ale", &prop))
553 pdata->mask_ale = prop;
554 if (!of_property_read_u32(pdev->dev.of_node,
555 "ti,davinci-mask-cle", &prop))
556 pdata->mask_cle = prop;
557 if (!of_property_read_u32(pdev->dev.of_node,
558 "ti,davinci-mask-chipsel", &prop))
559 pdata->mask_chipsel = prop;
560 if (!of_property_read_string(pdev->dev.of_node,
561 "ti,davinci-ecc-mode", &mode)) {
562 if (!strncmp("none", mode, 4))
563 pdata->ecc_mode = NAND_ECC_NONE;
564 if (!strncmp("soft", mode, 4))
565 pdata->ecc_mode = NAND_ECC_SOFT;
566 if (!strncmp("hw", mode, 2))
567 pdata->ecc_mode = NAND_ECC_HW;
569 if (!of_property_read_u32(pdev->dev.of_node,
570 "ti,davinci-ecc-bits", &prop))
571 pdata->ecc_bits = prop;
572 if (!of_property_read_u32(pdev->dev.of_node,
573 "ti,davinci-nand-buswidth", &prop))
574 if (prop == 16)
575 pdata->options |= NAND_BUSWIDTH_16;
576 if (of_find_property(pdev->dev.of_node,
577 "ti,davinci-nand-use-bbt", &len))
578 pdata->bbt_options = NAND_BBT_USE_FLASH;
581 return dev_get_platdata(&pdev->dev);
583 #else
584 static struct davinci_nand_pdata
585 *nand_davinci_get_pdata(struct platform_device *pdev)
587 return dev_get_platdata(&pdev->dev);
589 #endif
591 static int __init nand_davinci_probe(struct platform_device *pdev)
593 struct davinci_nand_pdata *pdata;
594 struct davinci_nand_info *info;
595 struct resource *res1;
596 struct resource *res2;
597 void __iomem *vaddr;
598 void __iomem *base;
599 int ret;
600 uint32_t val;
601 nand_ecc_modes_t ecc_mode;
603 pdata = nand_davinci_get_pdata(pdev);
604 /* insist on board-specific configuration */
605 if (!pdata)
606 return -ENODEV;
608 /* which external chipselect will we be managing? */
609 if (pdev->id < 0 || pdev->id > 3)
610 return -ENODEV;
612 info = devm_kzalloc(&pdev->dev, sizeof(*info), GFP_KERNEL);
613 if (!info) {
614 dev_err(&pdev->dev, "unable to allocate memory\n");
615 ret = -ENOMEM;
616 goto err_nomem;
619 platform_set_drvdata(pdev, info);
621 res1 = platform_get_resource(pdev, IORESOURCE_MEM, 0);
622 res2 = platform_get_resource(pdev, IORESOURCE_MEM, 1);
623 if (!res1 || !res2) {
624 dev_err(&pdev->dev, "resource missing\n");
625 ret = -EINVAL;
626 goto err_nomem;
629 vaddr = devm_ioremap_resource(&pdev->dev, res1);
630 if (IS_ERR(vaddr)) {
631 ret = PTR_ERR(vaddr);
632 goto err_ioremap;
634 base = devm_ioremap_resource(&pdev->dev, res2);
635 if (IS_ERR(base)) {
636 ret = PTR_ERR(base);
637 goto err_ioremap;
640 info->dev = &pdev->dev;
641 info->base = base;
642 info->vaddr = vaddr;
644 info->mtd.priv = &info->chip;
645 info->mtd.name = dev_name(&pdev->dev);
646 info->mtd.owner = THIS_MODULE;
648 info->mtd.dev.parent = &pdev->dev;
650 info->chip.IO_ADDR_R = vaddr;
651 info->chip.IO_ADDR_W = vaddr;
652 info->chip.chip_delay = 0;
653 info->chip.select_chip = nand_davinci_select_chip;
655 /* options such as NAND_BBT_USE_FLASH */
656 info->chip.bbt_options = pdata->bbt_options;
657 /* options such as 16-bit widths */
658 info->chip.options = pdata->options;
659 info->chip.bbt_td = pdata->bbt_td;
660 info->chip.bbt_md = pdata->bbt_md;
661 info->timing = pdata->timing;
663 info->ioaddr = (uint32_t __force) vaddr;
665 info->current_cs = info->ioaddr;
666 info->core_chipsel = pdev->id;
667 info->mask_chipsel = pdata->mask_chipsel;
669 /* use nandboot-capable ALE/CLE masks by default */
670 info->mask_ale = pdata->mask_ale ? : MASK_ALE;
671 info->mask_cle = pdata->mask_cle ? : MASK_CLE;
673 /* Set address of hardware control function */
674 info->chip.cmd_ctrl = nand_davinci_hwcontrol;
675 info->chip.dev_ready = nand_davinci_dev_ready;
677 /* Speed up buffer I/O */
678 info->chip.read_buf = nand_davinci_read_buf;
679 info->chip.write_buf = nand_davinci_write_buf;
681 /* Use board-specific ECC config */
682 ecc_mode = pdata->ecc_mode;
684 ret = -EINVAL;
685 switch (ecc_mode) {
686 case NAND_ECC_NONE:
687 case NAND_ECC_SOFT:
688 pdata->ecc_bits = 0;
689 break;
690 case NAND_ECC_HW:
691 if (pdata->ecc_bits == 4) {
692 /* No sanity checks: CPUs must support this,
693 * and the chips may not use NAND_BUSWIDTH_16.
696 /* No sharing 4-bit hardware between chipselects yet */
697 spin_lock_irq(&davinci_nand_lock);
698 if (ecc4_busy)
699 ret = -EBUSY;
700 else
701 ecc4_busy = true;
702 spin_unlock_irq(&davinci_nand_lock);
704 if (ret == -EBUSY)
705 goto err_ecc;
707 info->chip.ecc.calculate = nand_davinci_calculate_4bit;
708 info->chip.ecc.correct = nand_davinci_correct_4bit;
709 info->chip.ecc.hwctl = nand_davinci_hwctl_4bit;
710 info->chip.ecc.bytes = 10;
711 } else {
712 info->chip.ecc.calculate = nand_davinci_calculate_1bit;
713 info->chip.ecc.correct = nand_davinci_correct_1bit;
714 info->chip.ecc.hwctl = nand_davinci_hwctl_1bit;
715 info->chip.ecc.bytes = 3;
717 info->chip.ecc.size = 512;
718 info->chip.ecc.strength = pdata->ecc_bits;
719 break;
720 default:
721 ret = -EINVAL;
722 goto err_ecc;
724 info->chip.ecc.mode = ecc_mode;
726 info->clk = devm_clk_get(&pdev->dev, "aemif");
727 if (IS_ERR(info->clk)) {
728 ret = PTR_ERR(info->clk);
729 dev_dbg(&pdev->dev, "unable to get AEMIF clock, err %d\n", ret);
730 goto err_clk;
733 ret = clk_prepare_enable(info->clk);
734 if (ret < 0) {
735 dev_dbg(&pdev->dev, "unable to enable AEMIF clock, err %d\n",
736 ret);
737 goto err_clk_enable;
741 * Setup Async configuration register in case we did not boot from
742 * NAND and so bootloader did not bother to set it up.
744 val = davinci_nand_readl(info, A1CR_OFFSET + info->core_chipsel * 4);
746 /* Extended Wait is not valid and Select Strobe mode is not used */
747 val &= ~(ACR_ASIZE_MASK | ACR_EW_MASK | ACR_SS_MASK);
748 if (info->chip.options & NAND_BUSWIDTH_16)
749 val |= 0x1;
751 davinci_nand_writel(info, A1CR_OFFSET + info->core_chipsel * 4, val);
753 ret = 0;
754 if (info->timing)
755 ret = davinci_aemif_setup_timing(info->timing, info->base,
756 info->core_chipsel);
757 if (ret < 0) {
758 dev_dbg(&pdev->dev, "NAND timing values setup fail\n");
759 goto err_timing;
762 spin_lock_irq(&davinci_nand_lock);
764 /* put CSxNAND into NAND mode */
765 val = davinci_nand_readl(info, NANDFCR_OFFSET);
766 val |= BIT(info->core_chipsel);
767 davinci_nand_writel(info, NANDFCR_OFFSET, val);
769 spin_unlock_irq(&davinci_nand_lock);
771 /* Scan to find existence of the device(s) */
772 ret = nand_scan_ident(&info->mtd, pdata->mask_chipsel ? 2 : 1, NULL);
773 if (ret < 0) {
774 dev_dbg(&pdev->dev, "no NAND chip(s) found\n");
775 goto err_scan;
778 /* Update ECC layout if needed ... for 1-bit HW ECC, the default
779 * is OK, but it allocates 6 bytes when only 3 are needed (for
780 * each 512 bytes). For the 4-bit HW ECC, that default is not
781 * usable: 10 bytes are needed, not 6.
783 if (pdata->ecc_bits == 4) {
784 int chunks = info->mtd.writesize / 512;
786 if (!chunks || info->mtd.oobsize < 16) {
787 dev_dbg(&pdev->dev, "too small\n");
788 ret = -EINVAL;
789 goto err_scan;
792 /* For small page chips, preserve the manufacturer's
793 * badblock marking data ... and make sure a flash BBT
794 * table marker fits in the free bytes.
796 if (chunks == 1) {
797 info->ecclayout = hwecc4_small;
798 info->ecclayout.oobfree[1].length =
799 info->mtd.oobsize - 16;
800 goto syndrome_done;
802 if (chunks == 4) {
803 info->ecclayout = hwecc4_2048;
804 info->chip.ecc.mode = NAND_ECC_HW_OOB_FIRST;
805 goto syndrome_done;
808 /* 4KiB page chips are not yet supported. The eccpos from
809 * nand_ecclayout cannot hold 80 bytes and change to eccpos[]
810 * breaks userspace ioctl interface with mtd-utils. Once we
811 * resolve this issue, NAND_ECC_HW_OOB_FIRST mode can be used
812 * for the 4KiB page chips.
814 * TODO: Note that nand_ecclayout has now been expanded and can
815 * hold plenty of OOB entries.
817 dev_warn(&pdev->dev, "no 4-bit ECC support yet "
818 "for 4KiB-page NAND\n");
819 ret = -EIO;
820 goto err_scan;
822 syndrome_done:
823 info->chip.ecc.layout = &info->ecclayout;
826 ret = nand_scan_tail(&info->mtd);
827 if (ret < 0)
828 goto err_scan;
830 if (pdata->parts)
831 ret = mtd_device_parse_register(&info->mtd, NULL, NULL,
832 pdata->parts, pdata->nr_parts);
833 else {
834 struct mtd_part_parser_data ppdata;
836 ppdata.of_node = pdev->dev.of_node;
837 ret = mtd_device_parse_register(&info->mtd, NULL, &ppdata,
838 NULL, 0);
840 if (ret < 0)
841 goto err_scan;
843 val = davinci_nand_readl(info, NRCSR_OFFSET);
844 dev_info(&pdev->dev, "controller rev. %d.%d\n",
845 (val >> 8) & 0xff, val & 0xff);
847 return 0;
849 err_scan:
850 err_timing:
851 clk_disable_unprepare(info->clk);
853 err_clk_enable:
854 spin_lock_irq(&davinci_nand_lock);
855 if (ecc_mode == NAND_ECC_HW_SYNDROME)
856 ecc4_busy = false;
857 spin_unlock_irq(&davinci_nand_lock);
859 err_ecc:
860 err_clk:
861 err_ioremap:
862 err_nomem:
863 return ret;
866 static int __exit nand_davinci_remove(struct platform_device *pdev)
868 struct davinci_nand_info *info = platform_get_drvdata(pdev);
870 spin_lock_irq(&davinci_nand_lock);
871 if (info->chip.ecc.mode == NAND_ECC_HW_SYNDROME)
872 ecc4_busy = false;
873 spin_unlock_irq(&davinci_nand_lock);
875 nand_release(&info->mtd);
877 clk_disable_unprepare(info->clk);
879 return 0;
882 static struct platform_driver nand_davinci_driver = {
883 .remove = __exit_p(nand_davinci_remove),
884 .driver = {
885 .name = "davinci_nand",
886 .owner = THIS_MODULE,
887 .of_match_table = of_match_ptr(davinci_nand_of_match),
890 MODULE_ALIAS("platform:davinci_nand");
892 module_platform_driver_probe(nand_davinci_driver, nand_davinci_probe);
894 MODULE_LICENSE("GPL");
895 MODULE_AUTHOR("Texas Instruments");
896 MODULE_DESCRIPTION("Davinci NAND flash driver");