mfd: wm8350-i2c: Make sure the i2c regmap functions are compiled
[linux/fpc-iii.git] / drivers / mtd / nand / gpmi-nand / gpmi-lib.c
blob4f8857fa48a7f93f502e7b0d1a2581eebac64234
1 /*
2 * Freescale GPMI NAND Flash Driver
4 * Copyright (C) 2008-2011 Freescale Semiconductor, Inc.
5 * Copyright (C) 2008 Embedded Alley Solutions, Inc.
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation; either version 2 of the License, or
10 * (at your option) any later version.
12 * This program is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 * GNU General Public License for more details.
17 * You should have received a copy of the GNU General Public License along
18 * with this program; if not, write to the Free Software Foundation, Inc.,
19 * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
21 #include <linux/delay.h>
22 #include <linux/clk.h>
24 #include "gpmi-nand.h"
25 #include "gpmi-regs.h"
26 #include "bch-regs.h"
28 static struct timing_threshod timing_default_threshold = {
29 .max_data_setup_cycles = (BM_GPMI_TIMING0_DATA_SETUP >>
30 BP_GPMI_TIMING0_DATA_SETUP),
31 .internal_data_setup_in_ns = 0,
32 .max_sample_delay_factor = (BM_GPMI_CTRL1_RDN_DELAY >>
33 BP_GPMI_CTRL1_RDN_DELAY),
34 .max_dll_clock_period_in_ns = 32,
35 .max_dll_delay_in_ns = 16,
38 #define MXS_SET_ADDR 0x4
39 #define MXS_CLR_ADDR 0x8
41 * Clear the bit and poll it cleared. This is usually called with
42 * a reset address and mask being either SFTRST(bit 31) or CLKGATE
43 * (bit 30).
45 static int clear_poll_bit(void __iomem *addr, u32 mask)
47 int timeout = 0x400;
49 /* clear the bit */
50 writel(mask, addr + MXS_CLR_ADDR);
53 * SFTRST needs 3 GPMI clocks to settle, the reference manual
54 * recommends to wait 1us.
56 udelay(1);
58 /* poll the bit becoming clear */
59 while ((readl(addr) & mask) && --timeout)
60 /* nothing */;
62 return !timeout;
65 #define MODULE_CLKGATE (1 << 30)
66 #define MODULE_SFTRST (1 << 31)
68 * The current mxs_reset_block() will do two things:
69 * [1] enable the module.
70 * [2] reset the module.
72 * In most of the cases, it's ok.
73 * But in MX23, there is a hardware bug in the BCH block (see erratum #2847).
74 * If you try to soft reset the BCH block, it becomes unusable until
75 * the next hard reset. This case occurs in the NAND boot mode. When the board
76 * boots by NAND, the ROM of the chip will initialize the BCH blocks itself.
77 * So If the driver tries to reset the BCH again, the BCH will not work anymore.
78 * You will see a DMA timeout in this case. The bug has been fixed
79 * in the following chips, such as MX28.
81 * To avoid this bug, just add a new parameter `just_enable` for
82 * the mxs_reset_block(), and rewrite it here.
84 static int gpmi_reset_block(void __iomem *reset_addr, bool just_enable)
86 int ret;
87 int timeout = 0x400;
89 /* clear and poll SFTRST */
90 ret = clear_poll_bit(reset_addr, MODULE_SFTRST);
91 if (unlikely(ret))
92 goto error;
94 /* clear CLKGATE */
95 writel(MODULE_CLKGATE, reset_addr + MXS_CLR_ADDR);
97 if (!just_enable) {
98 /* set SFTRST to reset the block */
99 writel(MODULE_SFTRST, reset_addr + MXS_SET_ADDR);
100 udelay(1);
102 /* poll CLKGATE becoming set */
103 while ((!(readl(reset_addr) & MODULE_CLKGATE)) && --timeout)
104 /* nothing */;
105 if (unlikely(!timeout))
106 goto error;
109 /* clear and poll SFTRST */
110 ret = clear_poll_bit(reset_addr, MODULE_SFTRST);
111 if (unlikely(ret))
112 goto error;
114 /* clear and poll CLKGATE */
115 ret = clear_poll_bit(reset_addr, MODULE_CLKGATE);
116 if (unlikely(ret))
117 goto error;
119 return 0;
121 error:
122 pr_err("%s(%p): module reset timeout\n", __func__, reset_addr);
123 return -ETIMEDOUT;
126 static int __gpmi_enable_clk(struct gpmi_nand_data *this, bool v)
128 struct clk *clk;
129 int ret;
130 int i;
132 for (i = 0; i < GPMI_CLK_MAX; i++) {
133 clk = this->resources.clock[i];
134 if (!clk)
135 break;
137 if (v) {
138 ret = clk_prepare_enable(clk);
139 if (ret)
140 goto err_clk;
141 } else {
142 clk_disable_unprepare(clk);
145 return 0;
147 err_clk:
148 for (; i > 0; i--)
149 clk_disable_unprepare(this->resources.clock[i - 1]);
150 return ret;
153 #define gpmi_enable_clk(x) __gpmi_enable_clk(x, true)
154 #define gpmi_disable_clk(x) __gpmi_enable_clk(x, false)
156 int gpmi_init(struct gpmi_nand_data *this)
158 struct resources *r = &this->resources;
159 int ret;
161 ret = gpmi_enable_clk(this);
162 if (ret)
163 goto err_out;
164 ret = gpmi_reset_block(r->gpmi_regs, false);
165 if (ret)
166 goto err_out;
169 * Reset BCH here, too. We got failures otherwise :(
170 * See later BCH reset for explanation of MX23 handling
172 ret = gpmi_reset_block(r->bch_regs, GPMI_IS_MX23(this));
173 if (ret)
174 goto err_out;
177 /* Choose NAND mode. */
178 writel(BM_GPMI_CTRL1_GPMI_MODE, r->gpmi_regs + HW_GPMI_CTRL1_CLR);
180 /* Set the IRQ polarity. */
181 writel(BM_GPMI_CTRL1_ATA_IRQRDY_POLARITY,
182 r->gpmi_regs + HW_GPMI_CTRL1_SET);
184 /* Disable Write-Protection. */
185 writel(BM_GPMI_CTRL1_DEV_RESET, r->gpmi_regs + HW_GPMI_CTRL1_SET);
187 /* Select BCH ECC. */
188 writel(BM_GPMI_CTRL1_BCH_MODE, r->gpmi_regs + HW_GPMI_CTRL1_SET);
190 gpmi_disable_clk(this);
191 return 0;
192 err_out:
193 return ret;
196 /* This function is very useful. It is called only when the bug occur. */
197 void gpmi_dump_info(struct gpmi_nand_data *this)
199 struct resources *r = &this->resources;
200 struct bch_geometry *geo = &this->bch_geometry;
201 u32 reg;
202 int i;
204 pr_err("Show GPMI registers :\n");
205 for (i = 0; i <= HW_GPMI_DEBUG / 0x10 + 1; i++) {
206 reg = readl(r->gpmi_regs + i * 0x10);
207 pr_err("offset 0x%.3x : 0x%.8x\n", i * 0x10, reg);
210 /* start to print out the BCH info */
211 pr_err("Show BCH registers :\n");
212 for (i = 0; i <= HW_BCH_VERSION / 0x10 + 1; i++) {
213 reg = readl(r->bch_regs + i * 0x10);
214 pr_err("offset 0x%.3x : 0x%.8x\n", i * 0x10, reg);
216 pr_err("BCH Geometry :\n");
217 pr_err("GF length : %u\n", geo->gf_len);
218 pr_err("ECC Strength : %u\n", geo->ecc_strength);
219 pr_err("Page Size in Bytes : %u\n", geo->page_size);
220 pr_err("Metadata Size in Bytes : %u\n", geo->metadata_size);
221 pr_err("ECC Chunk Size in Bytes: %u\n", geo->ecc_chunk_size);
222 pr_err("ECC Chunk Count : %u\n", geo->ecc_chunk_count);
223 pr_err("Payload Size in Bytes : %u\n", geo->payload_size);
224 pr_err("Auxiliary Size in Bytes: %u\n", geo->auxiliary_size);
225 pr_err("Auxiliary Status Offset: %u\n", geo->auxiliary_status_offset);
226 pr_err("Block Mark Byte Offset : %u\n", geo->block_mark_byte_offset);
227 pr_err("Block Mark Bit Offset : %u\n", geo->block_mark_bit_offset);
230 /* Configures the geometry for BCH. */
231 int bch_set_geometry(struct gpmi_nand_data *this)
233 struct resources *r = &this->resources;
234 struct bch_geometry *bch_geo = &this->bch_geometry;
235 unsigned int block_count;
236 unsigned int block_size;
237 unsigned int metadata_size;
238 unsigned int ecc_strength;
239 unsigned int page_size;
240 unsigned int gf_len;
241 int ret;
243 if (common_nfc_set_geometry(this))
244 return !0;
246 block_count = bch_geo->ecc_chunk_count - 1;
247 block_size = bch_geo->ecc_chunk_size;
248 metadata_size = bch_geo->metadata_size;
249 ecc_strength = bch_geo->ecc_strength >> 1;
250 page_size = bch_geo->page_size;
251 gf_len = bch_geo->gf_len;
253 ret = gpmi_enable_clk(this);
254 if (ret)
255 goto err_out;
258 * Due to erratum #2847 of the MX23, the BCH cannot be soft reset on this
259 * chip, otherwise it will lock up. So we skip resetting BCH on the MX23.
260 * On the other hand, the MX28 needs the reset, because one case has been
261 * seen where the BCH produced ECC errors constantly after 10000
262 * consecutive reboots. The latter case has not been seen on the MX23 yet,
263 * still we don't know if it could happen there as well.
265 ret = gpmi_reset_block(r->bch_regs, GPMI_IS_MX23(this));
266 if (ret)
267 goto err_out;
269 /* Configure layout 0. */
270 writel(BF_BCH_FLASH0LAYOUT0_NBLOCKS(block_count)
271 | BF_BCH_FLASH0LAYOUT0_META_SIZE(metadata_size)
272 | BF_BCH_FLASH0LAYOUT0_ECC0(ecc_strength, this)
273 | BF_BCH_FLASH0LAYOUT0_GF(gf_len, this)
274 | BF_BCH_FLASH0LAYOUT0_DATA0_SIZE(block_size, this),
275 r->bch_regs + HW_BCH_FLASH0LAYOUT0);
277 writel(BF_BCH_FLASH0LAYOUT1_PAGE_SIZE(page_size)
278 | BF_BCH_FLASH0LAYOUT1_ECCN(ecc_strength, this)
279 | BF_BCH_FLASH0LAYOUT1_GF(gf_len, this)
280 | BF_BCH_FLASH0LAYOUT1_DATAN_SIZE(block_size, this),
281 r->bch_regs + HW_BCH_FLASH0LAYOUT1);
283 /* Set *all* chip selects to use layout 0. */
284 writel(0, r->bch_regs + HW_BCH_LAYOUTSELECT);
286 /* Enable interrupts. */
287 writel(BM_BCH_CTRL_COMPLETE_IRQ_EN,
288 r->bch_regs + HW_BCH_CTRL_SET);
290 gpmi_disable_clk(this);
291 return 0;
292 err_out:
293 return ret;
296 /* Converts time in nanoseconds to cycles. */
297 static unsigned int ns_to_cycles(unsigned int time,
298 unsigned int period, unsigned int min)
300 unsigned int k;
302 k = (time + period - 1) / period;
303 return max(k, min);
306 #define DEF_MIN_PROP_DELAY 5
307 #define DEF_MAX_PROP_DELAY 9
308 /* Apply timing to current hardware conditions. */
309 static int gpmi_nfc_compute_hardware_timing(struct gpmi_nand_data *this,
310 struct gpmi_nfc_hardware_timing *hw)
312 struct timing_threshod *nfc = &timing_default_threshold;
313 struct resources *r = &this->resources;
314 struct nand_chip *nand = &this->nand;
315 struct nand_timing target = this->timing;
316 bool improved_timing_is_available;
317 unsigned long clock_frequency_in_hz;
318 unsigned int clock_period_in_ns;
319 bool dll_use_half_periods;
320 unsigned int dll_delay_shift;
321 unsigned int max_sample_delay_in_ns;
322 unsigned int address_setup_in_cycles;
323 unsigned int data_setup_in_ns;
324 unsigned int data_setup_in_cycles;
325 unsigned int data_hold_in_cycles;
326 int ideal_sample_delay_in_ns;
327 unsigned int sample_delay_factor;
328 int tEYE;
329 unsigned int min_prop_delay_in_ns = DEF_MIN_PROP_DELAY;
330 unsigned int max_prop_delay_in_ns = DEF_MAX_PROP_DELAY;
333 * If there are multiple chips, we need to relax the timings to allow
334 * for signal distortion due to higher capacitance.
336 if (nand->numchips > 2) {
337 target.data_setup_in_ns += 10;
338 target.data_hold_in_ns += 10;
339 target.address_setup_in_ns += 10;
340 } else if (nand->numchips > 1) {
341 target.data_setup_in_ns += 5;
342 target.data_hold_in_ns += 5;
343 target.address_setup_in_ns += 5;
346 /* Check if improved timing information is available. */
347 improved_timing_is_available =
348 (target.tREA_in_ns >= 0) &&
349 (target.tRLOH_in_ns >= 0) &&
350 (target.tRHOH_in_ns >= 0) ;
352 /* Inspect the clock. */
353 nfc->clock_frequency_in_hz = clk_get_rate(r->clock[0]);
354 clock_frequency_in_hz = nfc->clock_frequency_in_hz;
355 clock_period_in_ns = NSEC_PER_SEC / clock_frequency_in_hz;
358 * The NFC quantizes setup and hold parameters in terms of clock cycles.
359 * Here, we quantize the setup and hold timing parameters to the
360 * next-highest clock period to make sure we apply at least the
361 * specified times.
363 * For data setup and data hold, the hardware interprets a value of zero
364 * as the largest possible delay. This is not what's intended by a zero
365 * in the input parameter, so we impose a minimum of one cycle.
367 data_setup_in_cycles = ns_to_cycles(target.data_setup_in_ns,
368 clock_period_in_ns, 1);
369 data_hold_in_cycles = ns_to_cycles(target.data_hold_in_ns,
370 clock_period_in_ns, 1);
371 address_setup_in_cycles = ns_to_cycles(target.address_setup_in_ns,
372 clock_period_in_ns, 0);
375 * The clock's period affects the sample delay in a number of ways:
377 * (1) The NFC HAL tells us the maximum clock period the sample delay
378 * DLL can tolerate. If the clock period is greater than half that
379 * maximum, we must configure the DLL to be driven by half periods.
381 * (2) We need to convert from an ideal sample delay, in ns, to a
382 * "sample delay factor," which the NFC uses. This factor depends on
383 * whether we're driving the DLL with full or half periods.
384 * Paraphrasing the reference manual:
386 * AD = SDF x 0.125 x RP
388 * where:
390 * AD is the applied delay, in ns.
391 * SDF is the sample delay factor, which is dimensionless.
392 * RP is the reference period, in ns, which is a full clock period
393 * if the DLL is being driven by full periods, or half that if
394 * the DLL is being driven by half periods.
396 * Let's re-arrange this in a way that's more useful to us:
399 * SDF = AD x ----
400 * RP
402 * The reference period is either the clock period or half that, so this
403 * is:
405 * 8 AD x DDF
406 * SDF = AD x ----- = --------
407 * f x P P
409 * where:
411 * f is 1 or 1/2, depending on how we're driving the DLL.
412 * P is the clock period.
413 * DDF is the DLL Delay Factor, a dimensionless value that
414 * incorporates all the constants in the conversion.
416 * DDF will be either 8 or 16, both of which are powers of two. We can
417 * reduce the cost of this conversion by using bit shifts instead of
418 * multiplication or division. Thus:
420 * AD << DDS
421 * SDF = ---------
424 * or
426 * AD = (SDF >> DDS) x P
428 * where:
430 * DDS is the DLL Delay Shift, the logarithm to base 2 of the DDF.
432 if (clock_period_in_ns > (nfc->max_dll_clock_period_in_ns >> 1)) {
433 dll_use_half_periods = true;
434 dll_delay_shift = 3 + 1;
435 } else {
436 dll_use_half_periods = false;
437 dll_delay_shift = 3;
441 * Compute the maximum sample delay the NFC allows, under current
442 * conditions. If the clock is running too slowly, no sample delay is
443 * possible.
445 if (clock_period_in_ns > nfc->max_dll_clock_period_in_ns)
446 max_sample_delay_in_ns = 0;
447 else {
449 * Compute the delay implied by the largest sample delay factor
450 * the NFC allows.
452 max_sample_delay_in_ns =
453 (nfc->max_sample_delay_factor * clock_period_in_ns) >>
454 dll_delay_shift;
457 * Check if the implied sample delay larger than the NFC
458 * actually allows.
460 if (max_sample_delay_in_ns > nfc->max_dll_delay_in_ns)
461 max_sample_delay_in_ns = nfc->max_dll_delay_in_ns;
465 * Check if improved timing information is available. If not, we have to
466 * use a less-sophisticated algorithm.
468 if (!improved_timing_is_available) {
470 * Fold the read setup time required by the NFC into the ideal
471 * sample delay.
473 ideal_sample_delay_in_ns = target.gpmi_sample_delay_in_ns +
474 nfc->internal_data_setup_in_ns;
477 * The ideal sample delay may be greater than the maximum
478 * allowed by the NFC. If so, we can trade off sample delay time
479 * for more data setup time.
481 * In each iteration of the following loop, we add a cycle to
482 * the data setup time and subtract a corresponding amount from
483 * the sample delay until we've satisified the constraints or
484 * can't do any better.
486 while ((ideal_sample_delay_in_ns > max_sample_delay_in_ns) &&
487 (data_setup_in_cycles < nfc->max_data_setup_cycles)) {
489 data_setup_in_cycles++;
490 ideal_sample_delay_in_ns -= clock_period_in_ns;
492 if (ideal_sample_delay_in_ns < 0)
493 ideal_sample_delay_in_ns = 0;
498 * Compute the sample delay factor that corresponds most closely
499 * to the ideal sample delay. If the result is too large for the
500 * NFC, use the maximum value.
502 * Notice that we use the ns_to_cycles function to compute the
503 * sample delay factor. We do this because the form of the
504 * computation is the same as that for calculating cycles.
506 sample_delay_factor =
507 ns_to_cycles(
508 ideal_sample_delay_in_ns << dll_delay_shift,
509 clock_period_in_ns, 0);
511 if (sample_delay_factor > nfc->max_sample_delay_factor)
512 sample_delay_factor = nfc->max_sample_delay_factor;
514 /* Skip to the part where we return our results. */
515 goto return_results;
519 * If control arrives here, we have more detailed timing information,
520 * so we can use a better algorithm.
524 * Fold the read setup time required by the NFC into the maximum
525 * propagation delay.
527 max_prop_delay_in_ns += nfc->internal_data_setup_in_ns;
530 * Earlier, we computed the number of clock cycles required to satisfy
531 * the data setup time. Now, we need to know the actual nanoseconds.
533 data_setup_in_ns = clock_period_in_ns * data_setup_in_cycles;
536 * Compute tEYE, the width of the data eye when reading from the NAND
537 * Flash. The eye width is fundamentally determined by the data setup
538 * time, perturbed by propagation delays and some characteristics of the
539 * NAND Flash device.
541 * start of the eye = max_prop_delay + tREA
542 * end of the eye = min_prop_delay + tRHOH + data_setup
544 tEYE = (int)min_prop_delay_in_ns + (int)target.tRHOH_in_ns +
545 (int)data_setup_in_ns;
547 tEYE -= (int)max_prop_delay_in_ns + (int)target.tREA_in_ns;
550 * The eye must be open. If it's not, we can try to open it by
551 * increasing its main forcer, the data setup time.
553 * In each iteration of the following loop, we increase the data setup
554 * time by a single clock cycle. We do this until either the eye is
555 * open or we run into NFC limits.
557 while ((tEYE <= 0) &&
558 (data_setup_in_cycles < nfc->max_data_setup_cycles)) {
559 /* Give a cycle to data setup. */
560 data_setup_in_cycles++;
561 /* Synchronize the data setup time with the cycles. */
562 data_setup_in_ns += clock_period_in_ns;
563 /* Adjust tEYE accordingly. */
564 tEYE += clock_period_in_ns;
568 * When control arrives here, the eye is open. The ideal time to sample
569 * the data is in the center of the eye:
571 * end of the eye + start of the eye
572 * --------------------------------- - data_setup
575 * After some algebra, this simplifies to the code immediately below.
577 ideal_sample_delay_in_ns =
578 ((int)max_prop_delay_in_ns +
579 (int)target.tREA_in_ns +
580 (int)min_prop_delay_in_ns +
581 (int)target.tRHOH_in_ns -
582 (int)data_setup_in_ns) >> 1;
585 * The following figure illustrates some aspects of a NAND Flash read:
588 * __ _____________________________________
589 * RDN \_________________/
591 * <---- tEYE ----->
592 * /-----------------\
593 * Read Data ----------------------------< >---------
594 * \-----------------/
595 * ^ ^ ^ ^
596 * | | | |
597 * |<--Data Setup -->|<--Delay Time -->| |
598 * | | | |
599 * | | |
600 * | |<-- Quantized Delay Time -->|
601 * | | |
604 * We have some issues we must now address:
606 * (1) The *ideal* sample delay time must not be negative. If it is, we
607 * jam it to zero.
609 * (2) The *ideal* sample delay time must not be greater than that
610 * allowed by the NFC. If it is, we can increase the data setup
611 * time, which will reduce the delay between the end of the data
612 * setup and the center of the eye. It will also make the eye
613 * larger, which might help with the next issue...
615 * (3) The *quantized* sample delay time must not fall either before the
616 * eye opens or after it closes (the latter is the problem
617 * illustrated in the above figure).
620 /* Jam a negative ideal sample delay to zero. */
621 if (ideal_sample_delay_in_ns < 0)
622 ideal_sample_delay_in_ns = 0;
625 * Extend the data setup as needed to reduce the ideal sample delay
626 * below the maximum permitted by the NFC.
628 while ((ideal_sample_delay_in_ns > max_sample_delay_in_ns) &&
629 (data_setup_in_cycles < nfc->max_data_setup_cycles)) {
631 /* Give a cycle to data setup. */
632 data_setup_in_cycles++;
633 /* Synchronize the data setup time with the cycles. */
634 data_setup_in_ns += clock_period_in_ns;
635 /* Adjust tEYE accordingly. */
636 tEYE += clock_period_in_ns;
639 * Decrease the ideal sample delay by one half cycle, to keep it
640 * in the middle of the eye.
642 ideal_sample_delay_in_ns -= (clock_period_in_ns >> 1);
644 /* Jam a negative ideal sample delay to zero. */
645 if (ideal_sample_delay_in_ns < 0)
646 ideal_sample_delay_in_ns = 0;
650 * Compute the sample delay factor that corresponds to the ideal sample
651 * delay. If the result is too large, then use the maximum allowed
652 * value.
654 * Notice that we use the ns_to_cycles function to compute the sample
655 * delay factor. We do this because the form of the computation is the
656 * same as that for calculating cycles.
658 sample_delay_factor =
659 ns_to_cycles(ideal_sample_delay_in_ns << dll_delay_shift,
660 clock_period_in_ns, 0);
662 if (sample_delay_factor > nfc->max_sample_delay_factor)
663 sample_delay_factor = nfc->max_sample_delay_factor;
666 * These macros conveniently encapsulate a computation we'll use to
667 * continuously evaluate whether or not the data sample delay is inside
668 * the eye.
670 #define IDEAL_DELAY ((int) ideal_sample_delay_in_ns)
672 #define QUANTIZED_DELAY \
673 ((int) ((sample_delay_factor * clock_period_in_ns) >> \
674 dll_delay_shift))
676 #define DELAY_ERROR (abs(QUANTIZED_DELAY - IDEAL_DELAY))
678 #define SAMPLE_IS_NOT_WITHIN_THE_EYE (DELAY_ERROR > (tEYE >> 1))
681 * While the quantized sample time falls outside the eye, reduce the
682 * sample delay or extend the data setup to move the sampling point back
683 * toward the eye. Do not allow the number of data setup cycles to
684 * exceed the maximum allowed by the NFC.
686 while (SAMPLE_IS_NOT_WITHIN_THE_EYE &&
687 (data_setup_in_cycles < nfc->max_data_setup_cycles)) {
689 * If control arrives here, the quantized sample delay falls
690 * outside the eye. Check if it's before the eye opens, or after
691 * the eye closes.
693 if (QUANTIZED_DELAY > IDEAL_DELAY) {
695 * If control arrives here, the quantized sample delay
696 * falls after the eye closes. Decrease the quantized
697 * delay time and then go back to re-evaluate.
699 if (sample_delay_factor != 0)
700 sample_delay_factor--;
701 continue;
705 * If control arrives here, the quantized sample delay falls
706 * before the eye opens. Shift the sample point by increasing
707 * data setup time. This will also make the eye larger.
710 /* Give a cycle to data setup. */
711 data_setup_in_cycles++;
712 /* Synchronize the data setup time with the cycles. */
713 data_setup_in_ns += clock_period_in_ns;
714 /* Adjust tEYE accordingly. */
715 tEYE += clock_period_in_ns;
718 * Decrease the ideal sample delay by one half cycle, to keep it
719 * in the middle of the eye.
721 ideal_sample_delay_in_ns -= (clock_period_in_ns >> 1);
723 /* ...and one less period for the delay time. */
724 ideal_sample_delay_in_ns -= clock_period_in_ns;
726 /* Jam a negative ideal sample delay to zero. */
727 if (ideal_sample_delay_in_ns < 0)
728 ideal_sample_delay_in_ns = 0;
731 * We have a new ideal sample delay, so re-compute the quantized
732 * delay.
734 sample_delay_factor =
735 ns_to_cycles(
736 ideal_sample_delay_in_ns << dll_delay_shift,
737 clock_period_in_ns, 0);
739 if (sample_delay_factor > nfc->max_sample_delay_factor)
740 sample_delay_factor = nfc->max_sample_delay_factor;
743 /* Control arrives here when we're ready to return our results. */
744 return_results:
745 hw->data_setup_in_cycles = data_setup_in_cycles;
746 hw->data_hold_in_cycles = data_hold_in_cycles;
747 hw->address_setup_in_cycles = address_setup_in_cycles;
748 hw->use_half_periods = dll_use_half_periods;
749 hw->sample_delay_factor = sample_delay_factor;
750 hw->device_busy_timeout = GPMI_DEFAULT_BUSY_TIMEOUT;
751 hw->wrn_dly_sel = BV_GPMI_CTRL1_WRN_DLY_SEL_4_TO_8NS;
753 /* Return success. */
754 return 0;
758 * <1> Firstly, we should know what's the GPMI-clock means.
759 * The GPMI-clock is the internal clock in the gpmi nand controller.
760 * If you set 100MHz to gpmi nand controller, the GPMI-clock's period
761 * is 10ns. Mark the GPMI-clock's period as GPMI-clock-period.
763 * <2> Secondly, we should know what's the frequency on the nand chip pins.
764 * The frequency on the nand chip pins is derived from the GPMI-clock.
765 * We can get it from the following equation:
767 * F = G / (DS + DH)
769 * F : the frequency on the nand chip pins.
770 * G : the GPMI clock, such as 100MHz.
771 * DS : GPMI_HW_GPMI_TIMING0:DATA_SETUP
772 * DH : GPMI_HW_GPMI_TIMING0:DATA_HOLD
774 * <3> Thirdly, when the frequency on the nand chip pins is above 33MHz,
775 * the nand EDO(extended Data Out) timing could be applied.
776 * The GPMI implements a feedback read strobe to sample the read data.
777 * The feedback read strobe can be delayed to support the nand EDO timing
778 * where the read strobe may deasserts before the read data is valid, and
779 * read data is valid for some time after read strobe.
781 * The following figure illustrates some aspects of a NAND Flash read:
783 * |<---tREA---->|
784 * | |
785 * | | |
786 * |<--tRP-->| |
787 * | | |
788 * __ ___|__________________________________
789 * RDN \________/ |
791 * /---------\
792 * Read Data --------------< >---------
793 * \---------/
794 * | |
795 * |<-D->|
796 * FeedbackRDN ________ ____________
797 * \___________/
799 * D stands for delay, set in the HW_GPMI_CTRL1:RDN_DELAY.
802 * <4> Now, we begin to describe how to compute the right RDN_DELAY.
804 * 4.1) From the aspect of the nand chip pins:
805 * Delay = (tREA + C - tRP) {1}
807 * tREA : the maximum read access time. From the ONFI nand standards,
808 * we know that tREA is 16ns in mode 5, tREA is 20ns is mode 4.
809 * Please check it in : www.onfi.org
810 * C : a constant for adjust the delay. default is 4.
811 * tRP : the read pulse width.
812 * Specified by the HW_GPMI_TIMING0:DATA_SETUP:
813 * tRP = (GPMI-clock-period) * DATA_SETUP
815 * 4.2) From the aspect of the GPMI nand controller:
816 * Delay = RDN_DELAY * 0.125 * RP {2}
818 * RP : the DLL reference period.
819 * if (GPMI-clock-period > DLL_THRETHOLD)
820 * RP = GPMI-clock-period / 2;
821 * else
822 * RP = GPMI-clock-period;
824 * Set the HW_GPMI_CTRL1:HALF_PERIOD if GPMI-clock-period
825 * is greater DLL_THRETHOLD. In other SOCs, the DLL_THRETHOLD
826 * is 16ns, but in mx6q, we use 12ns.
828 * 4.3) since {1} equals {2}, we get:
830 * (tREA + 4 - tRP) * 8
831 * RDN_DELAY = --------------------- {3}
832 * RP
834 * 4.4) We only support the fastest asynchronous mode of ONFI nand.
835 * For some ONFI nand, the mode 4 is the fastest mode;
836 * while for some ONFI nand, the mode 5 is the fastest mode.
837 * So we only support the mode 4 and mode 5. It is no need to
838 * support other modes.
840 static void gpmi_compute_edo_timing(struct gpmi_nand_data *this,
841 struct gpmi_nfc_hardware_timing *hw)
843 struct resources *r = &this->resources;
844 unsigned long rate = clk_get_rate(r->clock[0]);
845 int mode = this->timing_mode;
846 int dll_threshold = 16; /* in ns */
847 unsigned long delay;
848 unsigned long clk_period;
849 int t_rea;
850 int c = 4;
851 int t_rp;
852 int rp;
855 * [1] for GPMI_HW_GPMI_TIMING0:
856 * The async mode requires 40MHz for mode 4, 50MHz for mode 5.
857 * The GPMI can support 100MHz at most. So if we want to
858 * get the 40MHz or 50MHz, we have to set DS=1, DH=1.
859 * Set the ADDRESS_SETUP to 0 in mode 4.
861 hw->data_setup_in_cycles = 1;
862 hw->data_hold_in_cycles = 1;
863 hw->address_setup_in_cycles = ((mode == 5) ? 1 : 0);
865 /* [2] for GPMI_HW_GPMI_TIMING1 */
866 hw->device_busy_timeout = 0x9000;
868 /* [3] for GPMI_HW_GPMI_CTRL1 */
869 hw->wrn_dly_sel = BV_GPMI_CTRL1_WRN_DLY_SEL_NO_DELAY;
871 if (GPMI_IS_MX6Q(this))
872 dll_threshold = 12;
875 * Enlarge 10 times for the numerator and denominator in {3}.
876 * This make us to get more accurate result.
878 clk_period = NSEC_PER_SEC / (rate / 10);
879 dll_threshold *= 10;
880 t_rea = ((mode == 5) ? 16 : 20) * 10;
881 c *= 10;
883 t_rp = clk_period * 1; /* DATA_SETUP is 1 */
885 if (clk_period > dll_threshold) {
886 hw->use_half_periods = 1;
887 rp = clk_period / 2;
888 } else {
889 hw->use_half_periods = 0;
890 rp = clk_period;
894 * Multiply the numerator with 10, we could do a round off:
895 * 7.8 round up to 8; 7.4 round down to 7.
897 delay = (((t_rea + c - t_rp) * 8) * 10) / rp;
898 delay = (delay + 5) / 10;
900 hw->sample_delay_factor = delay;
903 static int enable_edo_mode(struct gpmi_nand_data *this, int mode)
905 struct resources *r = &this->resources;
906 struct nand_chip *nand = &this->nand;
907 struct mtd_info *mtd = &this->mtd;
908 uint8_t feature[ONFI_SUBFEATURE_PARAM_LEN] = {};
909 unsigned long rate;
910 int ret;
912 nand->select_chip(mtd, 0);
914 /* [1] send SET FEATURE commond to NAND */
915 feature[0] = mode;
916 ret = nand->onfi_set_features(mtd, nand,
917 ONFI_FEATURE_ADDR_TIMING_MODE, feature);
918 if (ret)
919 goto err_out;
921 /* [2] send GET FEATURE command to double-check the timing mode */
922 memset(feature, 0, ONFI_SUBFEATURE_PARAM_LEN);
923 ret = nand->onfi_get_features(mtd, nand,
924 ONFI_FEATURE_ADDR_TIMING_MODE, feature);
925 if (ret || feature[0] != mode)
926 goto err_out;
928 nand->select_chip(mtd, -1);
930 /* [3] set the main IO clock, 100MHz for mode 5, 80MHz for mode 4. */
931 rate = (mode == 5) ? 100000000 : 80000000;
932 clk_set_rate(r->clock[0], rate);
934 /* Let the gpmi_begin() re-compute the timing again. */
935 this->flags &= ~GPMI_TIMING_INIT_OK;
937 this->flags |= GPMI_ASYNC_EDO_ENABLED;
938 this->timing_mode = mode;
939 dev_info(this->dev, "enable the asynchronous EDO mode %d\n", mode);
940 return 0;
942 err_out:
943 nand->select_chip(mtd, -1);
944 dev_err(this->dev, "mode:%d ,failed in set feature.\n", mode);
945 return -EINVAL;
948 int gpmi_extra_init(struct gpmi_nand_data *this)
950 struct nand_chip *chip = &this->nand;
952 /* Enable the asynchronous EDO feature. */
953 if (GPMI_IS_MX6Q(this) && chip->onfi_version) {
954 int mode = onfi_get_async_timing_mode(chip);
956 /* We only support the timing mode 4 and mode 5. */
957 if (mode & ONFI_TIMING_MODE_5)
958 mode = 5;
959 else if (mode & ONFI_TIMING_MODE_4)
960 mode = 4;
961 else
962 return 0;
964 return enable_edo_mode(this, mode);
966 return 0;
969 /* Begin the I/O */
970 void gpmi_begin(struct gpmi_nand_data *this)
972 struct resources *r = &this->resources;
973 void __iomem *gpmi_regs = r->gpmi_regs;
974 unsigned int clock_period_in_ns;
975 uint32_t reg;
976 unsigned int dll_wait_time_in_us;
977 struct gpmi_nfc_hardware_timing hw;
978 int ret;
980 /* Enable the clock. */
981 ret = gpmi_enable_clk(this);
982 if (ret) {
983 pr_err("We failed in enable the clk\n");
984 goto err_out;
987 /* Only initialize the timing once */
988 if (this->flags & GPMI_TIMING_INIT_OK)
989 return;
990 this->flags |= GPMI_TIMING_INIT_OK;
992 if (this->flags & GPMI_ASYNC_EDO_ENABLED)
993 gpmi_compute_edo_timing(this, &hw);
994 else
995 gpmi_nfc_compute_hardware_timing(this, &hw);
997 /* [1] Set HW_GPMI_TIMING0 */
998 reg = BF_GPMI_TIMING0_ADDRESS_SETUP(hw.address_setup_in_cycles) |
999 BF_GPMI_TIMING0_DATA_HOLD(hw.data_hold_in_cycles) |
1000 BF_GPMI_TIMING0_DATA_SETUP(hw.data_setup_in_cycles) ;
1002 writel(reg, gpmi_regs + HW_GPMI_TIMING0);
1004 /* [2] Set HW_GPMI_TIMING1 */
1005 writel(BF_GPMI_TIMING1_BUSY_TIMEOUT(hw.device_busy_timeout),
1006 gpmi_regs + HW_GPMI_TIMING1);
1008 /* [3] The following code is to set the HW_GPMI_CTRL1. */
1010 /* Set the WRN_DLY_SEL */
1011 writel(BM_GPMI_CTRL1_WRN_DLY_SEL, gpmi_regs + HW_GPMI_CTRL1_CLR);
1012 writel(BF_GPMI_CTRL1_WRN_DLY_SEL(hw.wrn_dly_sel),
1013 gpmi_regs + HW_GPMI_CTRL1_SET);
1015 /* DLL_ENABLE must be set to 0 when setting RDN_DELAY or HALF_PERIOD. */
1016 writel(BM_GPMI_CTRL1_DLL_ENABLE, gpmi_regs + HW_GPMI_CTRL1_CLR);
1018 /* Clear out the DLL control fields. */
1019 reg = BM_GPMI_CTRL1_RDN_DELAY | BM_GPMI_CTRL1_HALF_PERIOD;
1020 writel(reg, gpmi_regs + HW_GPMI_CTRL1_CLR);
1022 /* If no sample delay is called for, return immediately. */
1023 if (!hw.sample_delay_factor)
1024 return;
1026 /* Set RDN_DELAY or HALF_PERIOD. */
1027 reg = ((hw.use_half_periods) ? BM_GPMI_CTRL1_HALF_PERIOD : 0)
1028 | BF_GPMI_CTRL1_RDN_DELAY(hw.sample_delay_factor);
1030 writel(reg, gpmi_regs + HW_GPMI_CTRL1_SET);
1032 /* At last, we enable the DLL. */
1033 writel(BM_GPMI_CTRL1_DLL_ENABLE, gpmi_regs + HW_GPMI_CTRL1_SET);
1036 * After we enable the GPMI DLL, we have to wait 64 clock cycles before
1037 * we can use the GPMI. Calculate the amount of time we need to wait,
1038 * in microseconds.
1040 clock_period_in_ns = NSEC_PER_SEC / clk_get_rate(r->clock[0]);
1041 dll_wait_time_in_us = (clock_period_in_ns * 64) / 1000;
1043 if (!dll_wait_time_in_us)
1044 dll_wait_time_in_us = 1;
1046 /* Wait for the DLL to settle. */
1047 udelay(dll_wait_time_in_us);
1049 err_out:
1050 return;
1053 void gpmi_end(struct gpmi_nand_data *this)
1055 gpmi_disable_clk(this);
1058 /* Clears a BCH interrupt. */
1059 void gpmi_clear_bch(struct gpmi_nand_data *this)
1061 struct resources *r = &this->resources;
1062 writel(BM_BCH_CTRL_COMPLETE_IRQ, r->bch_regs + HW_BCH_CTRL_CLR);
1065 /* Returns the Ready/Busy status of the given chip. */
1066 int gpmi_is_ready(struct gpmi_nand_data *this, unsigned chip)
1068 struct resources *r = &this->resources;
1069 uint32_t mask = 0;
1070 uint32_t reg = 0;
1072 if (GPMI_IS_MX23(this)) {
1073 mask = MX23_BM_GPMI_DEBUG_READY0 << chip;
1074 reg = readl(r->gpmi_regs + HW_GPMI_DEBUG);
1075 } else if (GPMI_IS_MX28(this) || GPMI_IS_MX6Q(this)) {
1076 /* MX28 shares the same R/B register as MX6Q. */
1077 mask = MX28_BF_GPMI_STAT_READY_BUSY(1 << chip);
1078 reg = readl(r->gpmi_regs + HW_GPMI_STAT);
1079 } else
1080 pr_err("unknow arch.\n");
1081 return reg & mask;
1084 static inline void set_dma_type(struct gpmi_nand_data *this,
1085 enum dma_ops_type type)
1087 this->last_dma_type = this->dma_type;
1088 this->dma_type = type;
1091 int gpmi_send_command(struct gpmi_nand_data *this)
1093 struct dma_chan *channel = get_dma_chan(this);
1094 struct dma_async_tx_descriptor *desc;
1095 struct scatterlist *sgl;
1096 int chip = this->current_chip;
1097 u32 pio[3];
1099 /* [1] send out the PIO words */
1100 pio[0] = BF_GPMI_CTRL0_COMMAND_MODE(BV_GPMI_CTRL0_COMMAND_MODE__WRITE)
1101 | BM_GPMI_CTRL0_WORD_LENGTH
1102 | BF_GPMI_CTRL0_CS(chip, this)
1103 | BF_GPMI_CTRL0_LOCK_CS(LOCK_CS_ENABLE, this)
1104 | BF_GPMI_CTRL0_ADDRESS(BV_GPMI_CTRL0_ADDRESS__NAND_CLE)
1105 | BM_GPMI_CTRL0_ADDRESS_INCREMENT
1106 | BF_GPMI_CTRL0_XFER_COUNT(this->command_length);
1107 pio[1] = pio[2] = 0;
1108 desc = dmaengine_prep_slave_sg(channel,
1109 (struct scatterlist *)pio,
1110 ARRAY_SIZE(pio), DMA_TRANS_NONE, 0);
1111 if (!desc) {
1112 pr_err("step 1 error\n");
1113 return -1;
1116 /* [2] send out the COMMAND + ADDRESS string stored in @buffer */
1117 sgl = &this->cmd_sgl;
1119 sg_init_one(sgl, this->cmd_buffer, this->command_length);
1120 dma_map_sg(this->dev, sgl, 1, DMA_TO_DEVICE);
1121 desc = dmaengine_prep_slave_sg(channel,
1122 sgl, 1, DMA_MEM_TO_DEV,
1123 DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
1125 if (!desc) {
1126 pr_err("step 2 error\n");
1127 return -1;
1130 /* [3] submit the DMA */
1131 set_dma_type(this, DMA_FOR_COMMAND);
1132 return start_dma_without_bch_irq(this, desc);
1135 int gpmi_send_data(struct gpmi_nand_data *this)
1137 struct dma_async_tx_descriptor *desc;
1138 struct dma_chan *channel = get_dma_chan(this);
1139 int chip = this->current_chip;
1140 uint32_t command_mode;
1141 uint32_t address;
1142 u32 pio[2];
1144 /* [1] PIO */
1145 command_mode = BV_GPMI_CTRL0_COMMAND_MODE__WRITE;
1146 address = BV_GPMI_CTRL0_ADDRESS__NAND_DATA;
1148 pio[0] = BF_GPMI_CTRL0_COMMAND_MODE(command_mode)
1149 | BM_GPMI_CTRL0_WORD_LENGTH
1150 | BF_GPMI_CTRL0_CS(chip, this)
1151 | BF_GPMI_CTRL0_LOCK_CS(LOCK_CS_ENABLE, this)
1152 | BF_GPMI_CTRL0_ADDRESS(address)
1153 | BF_GPMI_CTRL0_XFER_COUNT(this->upper_len);
1154 pio[1] = 0;
1155 desc = dmaengine_prep_slave_sg(channel, (struct scatterlist *)pio,
1156 ARRAY_SIZE(pio), DMA_TRANS_NONE, 0);
1157 if (!desc) {
1158 pr_err("step 1 error\n");
1159 return -1;
1162 /* [2] send DMA request */
1163 prepare_data_dma(this, DMA_TO_DEVICE);
1164 desc = dmaengine_prep_slave_sg(channel, &this->data_sgl,
1165 1, DMA_MEM_TO_DEV,
1166 DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
1167 if (!desc) {
1168 pr_err("step 2 error\n");
1169 return -1;
1171 /* [3] submit the DMA */
1172 set_dma_type(this, DMA_FOR_WRITE_DATA);
1173 return start_dma_without_bch_irq(this, desc);
1176 int gpmi_read_data(struct gpmi_nand_data *this)
1178 struct dma_async_tx_descriptor *desc;
1179 struct dma_chan *channel = get_dma_chan(this);
1180 int chip = this->current_chip;
1181 u32 pio[2];
1183 /* [1] : send PIO */
1184 pio[0] = BF_GPMI_CTRL0_COMMAND_MODE(BV_GPMI_CTRL0_COMMAND_MODE__READ)
1185 | BM_GPMI_CTRL0_WORD_LENGTH
1186 | BF_GPMI_CTRL0_CS(chip, this)
1187 | BF_GPMI_CTRL0_LOCK_CS(LOCK_CS_ENABLE, this)
1188 | BF_GPMI_CTRL0_ADDRESS(BV_GPMI_CTRL0_ADDRESS__NAND_DATA)
1189 | BF_GPMI_CTRL0_XFER_COUNT(this->upper_len);
1190 pio[1] = 0;
1191 desc = dmaengine_prep_slave_sg(channel,
1192 (struct scatterlist *)pio,
1193 ARRAY_SIZE(pio), DMA_TRANS_NONE, 0);
1194 if (!desc) {
1195 pr_err("step 1 error\n");
1196 return -1;
1199 /* [2] : send DMA request */
1200 prepare_data_dma(this, DMA_FROM_DEVICE);
1201 desc = dmaengine_prep_slave_sg(channel, &this->data_sgl,
1202 1, DMA_DEV_TO_MEM,
1203 DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
1204 if (!desc) {
1205 pr_err("step 2 error\n");
1206 return -1;
1209 /* [3] : submit the DMA */
1210 set_dma_type(this, DMA_FOR_READ_DATA);
1211 return start_dma_without_bch_irq(this, desc);
1214 int gpmi_send_page(struct gpmi_nand_data *this,
1215 dma_addr_t payload, dma_addr_t auxiliary)
1217 struct bch_geometry *geo = &this->bch_geometry;
1218 uint32_t command_mode;
1219 uint32_t address;
1220 uint32_t ecc_command;
1221 uint32_t buffer_mask;
1222 struct dma_async_tx_descriptor *desc;
1223 struct dma_chan *channel = get_dma_chan(this);
1224 int chip = this->current_chip;
1225 u32 pio[6];
1227 /* A DMA descriptor that does an ECC page read. */
1228 command_mode = BV_GPMI_CTRL0_COMMAND_MODE__WRITE;
1229 address = BV_GPMI_CTRL0_ADDRESS__NAND_DATA;
1230 ecc_command = BV_GPMI_ECCCTRL_ECC_CMD__BCH_ENCODE;
1231 buffer_mask = BV_GPMI_ECCCTRL_BUFFER_MASK__BCH_PAGE |
1232 BV_GPMI_ECCCTRL_BUFFER_MASK__BCH_AUXONLY;
1234 pio[0] = BF_GPMI_CTRL0_COMMAND_MODE(command_mode)
1235 | BM_GPMI_CTRL0_WORD_LENGTH
1236 | BF_GPMI_CTRL0_CS(chip, this)
1237 | BF_GPMI_CTRL0_LOCK_CS(LOCK_CS_ENABLE, this)
1238 | BF_GPMI_CTRL0_ADDRESS(address)
1239 | BF_GPMI_CTRL0_XFER_COUNT(0);
1240 pio[1] = 0;
1241 pio[2] = BM_GPMI_ECCCTRL_ENABLE_ECC
1242 | BF_GPMI_ECCCTRL_ECC_CMD(ecc_command)
1243 | BF_GPMI_ECCCTRL_BUFFER_MASK(buffer_mask);
1244 pio[3] = geo->page_size;
1245 pio[4] = payload;
1246 pio[5] = auxiliary;
1248 desc = dmaengine_prep_slave_sg(channel,
1249 (struct scatterlist *)pio,
1250 ARRAY_SIZE(pio), DMA_TRANS_NONE,
1251 DMA_CTRL_ACK);
1252 if (!desc) {
1253 pr_err("step 2 error\n");
1254 return -1;
1256 set_dma_type(this, DMA_FOR_WRITE_ECC_PAGE);
1257 return start_dma_with_bch_irq(this, desc);
1260 int gpmi_read_page(struct gpmi_nand_data *this,
1261 dma_addr_t payload, dma_addr_t auxiliary)
1263 struct bch_geometry *geo = &this->bch_geometry;
1264 uint32_t command_mode;
1265 uint32_t address;
1266 uint32_t ecc_command;
1267 uint32_t buffer_mask;
1268 struct dma_async_tx_descriptor *desc;
1269 struct dma_chan *channel = get_dma_chan(this);
1270 int chip = this->current_chip;
1271 u32 pio[6];
1273 /* [1] Wait for the chip to report ready. */
1274 command_mode = BV_GPMI_CTRL0_COMMAND_MODE__WAIT_FOR_READY;
1275 address = BV_GPMI_CTRL0_ADDRESS__NAND_DATA;
1277 pio[0] = BF_GPMI_CTRL0_COMMAND_MODE(command_mode)
1278 | BM_GPMI_CTRL0_WORD_LENGTH
1279 | BF_GPMI_CTRL0_CS(chip, this)
1280 | BF_GPMI_CTRL0_LOCK_CS(LOCK_CS_ENABLE, this)
1281 | BF_GPMI_CTRL0_ADDRESS(address)
1282 | BF_GPMI_CTRL0_XFER_COUNT(0);
1283 pio[1] = 0;
1284 desc = dmaengine_prep_slave_sg(channel,
1285 (struct scatterlist *)pio, 2,
1286 DMA_TRANS_NONE, 0);
1287 if (!desc) {
1288 pr_err("step 1 error\n");
1289 return -1;
1292 /* [2] Enable the BCH block and read. */
1293 command_mode = BV_GPMI_CTRL0_COMMAND_MODE__READ;
1294 address = BV_GPMI_CTRL0_ADDRESS__NAND_DATA;
1295 ecc_command = BV_GPMI_ECCCTRL_ECC_CMD__BCH_DECODE;
1296 buffer_mask = BV_GPMI_ECCCTRL_BUFFER_MASK__BCH_PAGE
1297 | BV_GPMI_ECCCTRL_BUFFER_MASK__BCH_AUXONLY;
1299 pio[0] = BF_GPMI_CTRL0_COMMAND_MODE(command_mode)
1300 | BM_GPMI_CTRL0_WORD_LENGTH
1301 | BF_GPMI_CTRL0_CS(chip, this)
1302 | BF_GPMI_CTRL0_LOCK_CS(LOCK_CS_ENABLE, this)
1303 | BF_GPMI_CTRL0_ADDRESS(address)
1304 | BF_GPMI_CTRL0_XFER_COUNT(geo->page_size);
1306 pio[1] = 0;
1307 pio[2] = BM_GPMI_ECCCTRL_ENABLE_ECC
1308 | BF_GPMI_ECCCTRL_ECC_CMD(ecc_command)
1309 | BF_GPMI_ECCCTRL_BUFFER_MASK(buffer_mask);
1310 pio[3] = geo->page_size;
1311 pio[4] = payload;
1312 pio[5] = auxiliary;
1313 desc = dmaengine_prep_slave_sg(channel,
1314 (struct scatterlist *)pio,
1315 ARRAY_SIZE(pio), DMA_TRANS_NONE,
1316 DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
1317 if (!desc) {
1318 pr_err("step 2 error\n");
1319 return -1;
1322 /* [3] Disable the BCH block */
1323 command_mode = BV_GPMI_CTRL0_COMMAND_MODE__WAIT_FOR_READY;
1324 address = BV_GPMI_CTRL0_ADDRESS__NAND_DATA;
1326 pio[0] = BF_GPMI_CTRL0_COMMAND_MODE(command_mode)
1327 | BM_GPMI_CTRL0_WORD_LENGTH
1328 | BF_GPMI_CTRL0_CS(chip, this)
1329 | BF_GPMI_CTRL0_LOCK_CS(LOCK_CS_ENABLE, this)
1330 | BF_GPMI_CTRL0_ADDRESS(address)
1331 | BF_GPMI_CTRL0_XFER_COUNT(geo->page_size);
1332 pio[1] = 0;
1333 pio[2] = 0; /* clear GPMI_HW_GPMI_ECCCTRL, disable the BCH. */
1334 desc = dmaengine_prep_slave_sg(channel,
1335 (struct scatterlist *)pio, 3,
1336 DMA_TRANS_NONE,
1337 DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
1338 if (!desc) {
1339 pr_err("step 3 error\n");
1340 return -1;
1343 /* [4] submit the DMA */
1344 set_dma_type(this, DMA_FOR_READ_ECC_PAGE);
1345 return start_dma_with_bch_irq(this, desc);