2 * Freescale GPMI NAND Flash Driver
4 * Copyright (C) 2008-2011 Freescale Semiconductor, Inc.
5 * Copyright (C) 2008 Embedded Alley Solutions, Inc.
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation; either version 2 of the License, or
10 * (at your option) any later version.
12 * This program is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 * GNU General Public License for more details.
17 * You should have received a copy of the GNU General Public License along
18 * with this program; if not, write to the Free Software Foundation, Inc.,
19 * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
21 #include <linux/delay.h>
22 #include <linux/clk.h>
24 #include "gpmi-nand.h"
25 #include "gpmi-regs.h"
28 static struct timing_threshod timing_default_threshold
= {
29 .max_data_setup_cycles
= (BM_GPMI_TIMING0_DATA_SETUP
>>
30 BP_GPMI_TIMING0_DATA_SETUP
),
31 .internal_data_setup_in_ns
= 0,
32 .max_sample_delay_factor
= (BM_GPMI_CTRL1_RDN_DELAY
>>
33 BP_GPMI_CTRL1_RDN_DELAY
),
34 .max_dll_clock_period_in_ns
= 32,
35 .max_dll_delay_in_ns
= 16,
38 #define MXS_SET_ADDR 0x4
39 #define MXS_CLR_ADDR 0x8
41 * Clear the bit and poll it cleared. This is usually called with
42 * a reset address and mask being either SFTRST(bit 31) or CLKGATE
45 static int clear_poll_bit(void __iomem
*addr
, u32 mask
)
50 writel(mask
, addr
+ MXS_CLR_ADDR
);
53 * SFTRST needs 3 GPMI clocks to settle, the reference manual
54 * recommends to wait 1us.
58 /* poll the bit becoming clear */
59 while ((readl(addr
) & mask
) && --timeout
)
65 #define MODULE_CLKGATE (1 << 30)
66 #define MODULE_SFTRST (1 << 31)
68 * The current mxs_reset_block() will do two things:
69 * [1] enable the module.
70 * [2] reset the module.
72 * In most of the cases, it's ok.
73 * But in MX23, there is a hardware bug in the BCH block (see erratum #2847).
74 * If you try to soft reset the BCH block, it becomes unusable until
75 * the next hard reset. This case occurs in the NAND boot mode. When the board
76 * boots by NAND, the ROM of the chip will initialize the BCH blocks itself.
77 * So If the driver tries to reset the BCH again, the BCH will not work anymore.
78 * You will see a DMA timeout in this case. The bug has been fixed
79 * in the following chips, such as MX28.
81 * To avoid this bug, just add a new parameter `just_enable` for
82 * the mxs_reset_block(), and rewrite it here.
84 static int gpmi_reset_block(void __iomem
*reset_addr
, bool just_enable
)
89 /* clear and poll SFTRST */
90 ret
= clear_poll_bit(reset_addr
, MODULE_SFTRST
);
95 writel(MODULE_CLKGATE
, reset_addr
+ MXS_CLR_ADDR
);
98 /* set SFTRST to reset the block */
99 writel(MODULE_SFTRST
, reset_addr
+ MXS_SET_ADDR
);
102 /* poll CLKGATE becoming set */
103 while ((!(readl(reset_addr
) & MODULE_CLKGATE
)) && --timeout
)
105 if (unlikely(!timeout
))
109 /* clear and poll SFTRST */
110 ret
= clear_poll_bit(reset_addr
, MODULE_SFTRST
);
114 /* clear and poll CLKGATE */
115 ret
= clear_poll_bit(reset_addr
, MODULE_CLKGATE
);
122 pr_err("%s(%p): module reset timeout\n", __func__
, reset_addr
);
126 static int __gpmi_enable_clk(struct gpmi_nand_data
*this, bool v
)
132 for (i
= 0; i
< GPMI_CLK_MAX
; i
++) {
133 clk
= this->resources
.clock
[i
];
138 ret
= clk_prepare_enable(clk
);
142 clk_disable_unprepare(clk
);
149 clk_disable_unprepare(this->resources
.clock
[i
- 1]);
153 #define gpmi_enable_clk(x) __gpmi_enable_clk(x, true)
154 #define gpmi_disable_clk(x) __gpmi_enable_clk(x, false)
156 int gpmi_init(struct gpmi_nand_data
*this)
158 struct resources
*r
= &this->resources
;
161 ret
= gpmi_enable_clk(this);
164 ret
= gpmi_reset_block(r
->gpmi_regs
, false);
169 * Reset BCH here, too. We got failures otherwise :(
170 * See later BCH reset for explanation of MX23 handling
172 ret
= gpmi_reset_block(r
->bch_regs
, GPMI_IS_MX23(this));
177 /* Choose NAND mode. */
178 writel(BM_GPMI_CTRL1_GPMI_MODE
, r
->gpmi_regs
+ HW_GPMI_CTRL1_CLR
);
180 /* Set the IRQ polarity. */
181 writel(BM_GPMI_CTRL1_ATA_IRQRDY_POLARITY
,
182 r
->gpmi_regs
+ HW_GPMI_CTRL1_SET
);
184 /* Disable Write-Protection. */
185 writel(BM_GPMI_CTRL1_DEV_RESET
, r
->gpmi_regs
+ HW_GPMI_CTRL1_SET
);
187 /* Select BCH ECC. */
188 writel(BM_GPMI_CTRL1_BCH_MODE
, r
->gpmi_regs
+ HW_GPMI_CTRL1_SET
);
190 gpmi_disable_clk(this);
196 /* This function is very useful. It is called only when the bug occur. */
197 void gpmi_dump_info(struct gpmi_nand_data
*this)
199 struct resources
*r
= &this->resources
;
200 struct bch_geometry
*geo
= &this->bch_geometry
;
204 pr_err("Show GPMI registers :\n");
205 for (i
= 0; i
<= HW_GPMI_DEBUG
/ 0x10 + 1; i
++) {
206 reg
= readl(r
->gpmi_regs
+ i
* 0x10);
207 pr_err("offset 0x%.3x : 0x%.8x\n", i
* 0x10, reg
);
210 /* start to print out the BCH info */
211 pr_err("Show BCH registers :\n");
212 for (i
= 0; i
<= HW_BCH_VERSION
/ 0x10 + 1; i
++) {
213 reg
= readl(r
->bch_regs
+ i
* 0x10);
214 pr_err("offset 0x%.3x : 0x%.8x\n", i
* 0x10, reg
);
216 pr_err("BCH Geometry :\n");
217 pr_err("GF length : %u\n", geo
->gf_len
);
218 pr_err("ECC Strength : %u\n", geo
->ecc_strength
);
219 pr_err("Page Size in Bytes : %u\n", geo
->page_size
);
220 pr_err("Metadata Size in Bytes : %u\n", geo
->metadata_size
);
221 pr_err("ECC Chunk Size in Bytes: %u\n", geo
->ecc_chunk_size
);
222 pr_err("ECC Chunk Count : %u\n", geo
->ecc_chunk_count
);
223 pr_err("Payload Size in Bytes : %u\n", geo
->payload_size
);
224 pr_err("Auxiliary Size in Bytes: %u\n", geo
->auxiliary_size
);
225 pr_err("Auxiliary Status Offset: %u\n", geo
->auxiliary_status_offset
);
226 pr_err("Block Mark Byte Offset : %u\n", geo
->block_mark_byte_offset
);
227 pr_err("Block Mark Bit Offset : %u\n", geo
->block_mark_bit_offset
);
230 /* Configures the geometry for BCH. */
231 int bch_set_geometry(struct gpmi_nand_data
*this)
233 struct resources
*r
= &this->resources
;
234 struct bch_geometry
*bch_geo
= &this->bch_geometry
;
235 unsigned int block_count
;
236 unsigned int block_size
;
237 unsigned int metadata_size
;
238 unsigned int ecc_strength
;
239 unsigned int page_size
;
243 if (common_nfc_set_geometry(this))
246 block_count
= bch_geo
->ecc_chunk_count
- 1;
247 block_size
= bch_geo
->ecc_chunk_size
;
248 metadata_size
= bch_geo
->metadata_size
;
249 ecc_strength
= bch_geo
->ecc_strength
>> 1;
250 page_size
= bch_geo
->page_size
;
251 gf_len
= bch_geo
->gf_len
;
253 ret
= gpmi_enable_clk(this);
258 * Due to erratum #2847 of the MX23, the BCH cannot be soft reset on this
259 * chip, otherwise it will lock up. So we skip resetting BCH on the MX23.
260 * On the other hand, the MX28 needs the reset, because one case has been
261 * seen where the BCH produced ECC errors constantly after 10000
262 * consecutive reboots. The latter case has not been seen on the MX23 yet,
263 * still we don't know if it could happen there as well.
265 ret
= gpmi_reset_block(r
->bch_regs
, GPMI_IS_MX23(this));
269 /* Configure layout 0. */
270 writel(BF_BCH_FLASH0LAYOUT0_NBLOCKS(block_count
)
271 | BF_BCH_FLASH0LAYOUT0_META_SIZE(metadata_size
)
272 | BF_BCH_FLASH0LAYOUT0_ECC0(ecc_strength
, this)
273 | BF_BCH_FLASH0LAYOUT0_GF(gf_len
, this)
274 | BF_BCH_FLASH0LAYOUT0_DATA0_SIZE(block_size
, this),
275 r
->bch_regs
+ HW_BCH_FLASH0LAYOUT0
);
277 writel(BF_BCH_FLASH0LAYOUT1_PAGE_SIZE(page_size
)
278 | BF_BCH_FLASH0LAYOUT1_ECCN(ecc_strength
, this)
279 | BF_BCH_FLASH0LAYOUT1_GF(gf_len
, this)
280 | BF_BCH_FLASH0LAYOUT1_DATAN_SIZE(block_size
, this),
281 r
->bch_regs
+ HW_BCH_FLASH0LAYOUT1
);
283 /* Set *all* chip selects to use layout 0. */
284 writel(0, r
->bch_regs
+ HW_BCH_LAYOUTSELECT
);
286 /* Enable interrupts. */
287 writel(BM_BCH_CTRL_COMPLETE_IRQ_EN
,
288 r
->bch_regs
+ HW_BCH_CTRL_SET
);
290 gpmi_disable_clk(this);
296 /* Converts time in nanoseconds to cycles. */
297 static unsigned int ns_to_cycles(unsigned int time
,
298 unsigned int period
, unsigned int min
)
302 k
= (time
+ period
- 1) / period
;
306 #define DEF_MIN_PROP_DELAY 5
307 #define DEF_MAX_PROP_DELAY 9
308 /* Apply timing to current hardware conditions. */
309 static int gpmi_nfc_compute_hardware_timing(struct gpmi_nand_data
*this,
310 struct gpmi_nfc_hardware_timing
*hw
)
312 struct timing_threshod
*nfc
= &timing_default_threshold
;
313 struct resources
*r
= &this->resources
;
314 struct nand_chip
*nand
= &this->nand
;
315 struct nand_timing target
= this->timing
;
316 bool improved_timing_is_available
;
317 unsigned long clock_frequency_in_hz
;
318 unsigned int clock_period_in_ns
;
319 bool dll_use_half_periods
;
320 unsigned int dll_delay_shift
;
321 unsigned int max_sample_delay_in_ns
;
322 unsigned int address_setup_in_cycles
;
323 unsigned int data_setup_in_ns
;
324 unsigned int data_setup_in_cycles
;
325 unsigned int data_hold_in_cycles
;
326 int ideal_sample_delay_in_ns
;
327 unsigned int sample_delay_factor
;
329 unsigned int min_prop_delay_in_ns
= DEF_MIN_PROP_DELAY
;
330 unsigned int max_prop_delay_in_ns
= DEF_MAX_PROP_DELAY
;
333 * If there are multiple chips, we need to relax the timings to allow
334 * for signal distortion due to higher capacitance.
336 if (nand
->numchips
> 2) {
337 target
.data_setup_in_ns
+= 10;
338 target
.data_hold_in_ns
+= 10;
339 target
.address_setup_in_ns
+= 10;
340 } else if (nand
->numchips
> 1) {
341 target
.data_setup_in_ns
+= 5;
342 target
.data_hold_in_ns
+= 5;
343 target
.address_setup_in_ns
+= 5;
346 /* Check if improved timing information is available. */
347 improved_timing_is_available
=
348 (target
.tREA_in_ns
>= 0) &&
349 (target
.tRLOH_in_ns
>= 0) &&
350 (target
.tRHOH_in_ns
>= 0) ;
352 /* Inspect the clock. */
353 nfc
->clock_frequency_in_hz
= clk_get_rate(r
->clock
[0]);
354 clock_frequency_in_hz
= nfc
->clock_frequency_in_hz
;
355 clock_period_in_ns
= NSEC_PER_SEC
/ clock_frequency_in_hz
;
358 * The NFC quantizes setup and hold parameters in terms of clock cycles.
359 * Here, we quantize the setup and hold timing parameters to the
360 * next-highest clock period to make sure we apply at least the
363 * For data setup and data hold, the hardware interprets a value of zero
364 * as the largest possible delay. This is not what's intended by a zero
365 * in the input parameter, so we impose a minimum of one cycle.
367 data_setup_in_cycles
= ns_to_cycles(target
.data_setup_in_ns
,
368 clock_period_in_ns
, 1);
369 data_hold_in_cycles
= ns_to_cycles(target
.data_hold_in_ns
,
370 clock_period_in_ns
, 1);
371 address_setup_in_cycles
= ns_to_cycles(target
.address_setup_in_ns
,
372 clock_period_in_ns
, 0);
375 * The clock's period affects the sample delay in a number of ways:
377 * (1) The NFC HAL tells us the maximum clock period the sample delay
378 * DLL can tolerate. If the clock period is greater than half that
379 * maximum, we must configure the DLL to be driven by half periods.
381 * (2) We need to convert from an ideal sample delay, in ns, to a
382 * "sample delay factor," which the NFC uses. This factor depends on
383 * whether we're driving the DLL with full or half periods.
384 * Paraphrasing the reference manual:
386 * AD = SDF x 0.125 x RP
390 * AD is the applied delay, in ns.
391 * SDF is the sample delay factor, which is dimensionless.
392 * RP is the reference period, in ns, which is a full clock period
393 * if the DLL is being driven by full periods, or half that if
394 * the DLL is being driven by half periods.
396 * Let's re-arrange this in a way that's more useful to us:
402 * The reference period is either the clock period or half that, so this
406 * SDF = AD x ----- = --------
411 * f is 1 or 1/2, depending on how we're driving the DLL.
412 * P is the clock period.
413 * DDF is the DLL Delay Factor, a dimensionless value that
414 * incorporates all the constants in the conversion.
416 * DDF will be either 8 or 16, both of which are powers of two. We can
417 * reduce the cost of this conversion by using bit shifts instead of
418 * multiplication or division. Thus:
426 * AD = (SDF >> DDS) x P
430 * DDS is the DLL Delay Shift, the logarithm to base 2 of the DDF.
432 if (clock_period_in_ns
> (nfc
->max_dll_clock_period_in_ns
>> 1)) {
433 dll_use_half_periods
= true;
434 dll_delay_shift
= 3 + 1;
436 dll_use_half_periods
= false;
441 * Compute the maximum sample delay the NFC allows, under current
442 * conditions. If the clock is running too slowly, no sample delay is
445 if (clock_period_in_ns
> nfc
->max_dll_clock_period_in_ns
)
446 max_sample_delay_in_ns
= 0;
449 * Compute the delay implied by the largest sample delay factor
452 max_sample_delay_in_ns
=
453 (nfc
->max_sample_delay_factor
* clock_period_in_ns
) >>
457 * Check if the implied sample delay larger than the NFC
460 if (max_sample_delay_in_ns
> nfc
->max_dll_delay_in_ns
)
461 max_sample_delay_in_ns
= nfc
->max_dll_delay_in_ns
;
465 * Check if improved timing information is available. If not, we have to
466 * use a less-sophisticated algorithm.
468 if (!improved_timing_is_available
) {
470 * Fold the read setup time required by the NFC into the ideal
473 ideal_sample_delay_in_ns
= target
.gpmi_sample_delay_in_ns
+
474 nfc
->internal_data_setup_in_ns
;
477 * The ideal sample delay may be greater than the maximum
478 * allowed by the NFC. If so, we can trade off sample delay time
479 * for more data setup time.
481 * In each iteration of the following loop, we add a cycle to
482 * the data setup time and subtract a corresponding amount from
483 * the sample delay until we've satisified the constraints or
484 * can't do any better.
486 while ((ideal_sample_delay_in_ns
> max_sample_delay_in_ns
) &&
487 (data_setup_in_cycles
< nfc
->max_data_setup_cycles
)) {
489 data_setup_in_cycles
++;
490 ideal_sample_delay_in_ns
-= clock_period_in_ns
;
492 if (ideal_sample_delay_in_ns
< 0)
493 ideal_sample_delay_in_ns
= 0;
498 * Compute the sample delay factor that corresponds most closely
499 * to the ideal sample delay. If the result is too large for the
500 * NFC, use the maximum value.
502 * Notice that we use the ns_to_cycles function to compute the
503 * sample delay factor. We do this because the form of the
504 * computation is the same as that for calculating cycles.
506 sample_delay_factor
=
508 ideal_sample_delay_in_ns
<< dll_delay_shift
,
509 clock_period_in_ns
, 0);
511 if (sample_delay_factor
> nfc
->max_sample_delay_factor
)
512 sample_delay_factor
= nfc
->max_sample_delay_factor
;
514 /* Skip to the part where we return our results. */
519 * If control arrives here, we have more detailed timing information,
520 * so we can use a better algorithm.
524 * Fold the read setup time required by the NFC into the maximum
527 max_prop_delay_in_ns
+= nfc
->internal_data_setup_in_ns
;
530 * Earlier, we computed the number of clock cycles required to satisfy
531 * the data setup time. Now, we need to know the actual nanoseconds.
533 data_setup_in_ns
= clock_period_in_ns
* data_setup_in_cycles
;
536 * Compute tEYE, the width of the data eye when reading from the NAND
537 * Flash. The eye width is fundamentally determined by the data setup
538 * time, perturbed by propagation delays and some characteristics of the
541 * start of the eye = max_prop_delay + tREA
542 * end of the eye = min_prop_delay + tRHOH + data_setup
544 tEYE
= (int)min_prop_delay_in_ns
+ (int)target
.tRHOH_in_ns
+
545 (int)data_setup_in_ns
;
547 tEYE
-= (int)max_prop_delay_in_ns
+ (int)target
.tREA_in_ns
;
550 * The eye must be open. If it's not, we can try to open it by
551 * increasing its main forcer, the data setup time.
553 * In each iteration of the following loop, we increase the data setup
554 * time by a single clock cycle. We do this until either the eye is
555 * open or we run into NFC limits.
557 while ((tEYE
<= 0) &&
558 (data_setup_in_cycles
< nfc
->max_data_setup_cycles
)) {
559 /* Give a cycle to data setup. */
560 data_setup_in_cycles
++;
561 /* Synchronize the data setup time with the cycles. */
562 data_setup_in_ns
+= clock_period_in_ns
;
563 /* Adjust tEYE accordingly. */
564 tEYE
+= clock_period_in_ns
;
568 * When control arrives here, the eye is open. The ideal time to sample
569 * the data is in the center of the eye:
571 * end of the eye + start of the eye
572 * --------------------------------- - data_setup
575 * After some algebra, this simplifies to the code immediately below.
577 ideal_sample_delay_in_ns
=
578 ((int)max_prop_delay_in_ns
+
579 (int)target
.tREA_in_ns
+
580 (int)min_prop_delay_in_ns
+
581 (int)target
.tRHOH_in_ns
-
582 (int)data_setup_in_ns
) >> 1;
585 * The following figure illustrates some aspects of a NAND Flash read:
588 * __ _____________________________________
589 * RDN \_________________/
592 * /-----------------\
593 * Read Data ----------------------------< >---------
594 * \-----------------/
597 * |<--Data Setup -->|<--Delay Time -->| |
600 * | |<-- Quantized Delay Time -->|
604 * We have some issues we must now address:
606 * (1) The *ideal* sample delay time must not be negative. If it is, we
609 * (2) The *ideal* sample delay time must not be greater than that
610 * allowed by the NFC. If it is, we can increase the data setup
611 * time, which will reduce the delay between the end of the data
612 * setup and the center of the eye. It will also make the eye
613 * larger, which might help with the next issue...
615 * (3) The *quantized* sample delay time must not fall either before the
616 * eye opens or after it closes (the latter is the problem
617 * illustrated in the above figure).
620 /* Jam a negative ideal sample delay to zero. */
621 if (ideal_sample_delay_in_ns
< 0)
622 ideal_sample_delay_in_ns
= 0;
625 * Extend the data setup as needed to reduce the ideal sample delay
626 * below the maximum permitted by the NFC.
628 while ((ideal_sample_delay_in_ns
> max_sample_delay_in_ns
) &&
629 (data_setup_in_cycles
< nfc
->max_data_setup_cycles
)) {
631 /* Give a cycle to data setup. */
632 data_setup_in_cycles
++;
633 /* Synchronize the data setup time with the cycles. */
634 data_setup_in_ns
+= clock_period_in_ns
;
635 /* Adjust tEYE accordingly. */
636 tEYE
+= clock_period_in_ns
;
639 * Decrease the ideal sample delay by one half cycle, to keep it
640 * in the middle of the eye.
642 ideal_sample_delay_in_ns
-= (clock_period_in_ns
>> 1);
644 /* Jam a negative ideal sample delay to zero. */
645 if (ideal_sample_delay_in_ns
< 0)
646 ideal_sample_delay_in_ns
= 0;
650 * Compute the sample delay factor that corresponds to the ideal sample
651 * delay. If the result is too large, then use the maximum allowed
654 * Notice that we use the ns_to_cycles function to compute the sample
655 * delay factor. We do this because the form of the computation is the
656 * same as that for calculating cycles.
658 sample_delay_factor
=
659 ns_to_cycles(ideal_sample_delay_in_ns
<< dll_delay_shift
,
660 clock_period_in_ns
, 0);
662 if (sample_delay_factor
> nfc
->max_sample_delay_factor
)
663 sample_delay_factor
= nfc
->max_sample_delay_factor
;
666 * These macros conveniently encapsulate a computation we'll use to
667 * continuously evaluate whether or not the data sample delay is inside
670 #define IDEAL_DELAY ((int) ideal_sample_delay_in_ns)
672 #define QUANTIZED_DELAY \
673 ((int) ((sample_delay_factor * clock_period_in_ns) >> \
676 #define DELAY_ERROR (abs(QUANTIZED_DELAY - IDEAL_DELAY))
678 #define SAMPLE_IS_NOT_WITHIN_THE_EYE (DELAY_ERROR > (tEYE >> 1))
681 * While the quantized sample time falls outside the eye, reduce the
682 * sample delay or extend the data setup to move the sampling point back
683 * toward the eye. Do not allow the number of data setup cycles to
684 * exceed the maximum allowed by the NFC.
686 while (SAMPLE_IS_NOT_WITHIN_THE_EYE
&&
687 (data_setup_in_cycles
< nfc
->max_data_setup_cycles
)) {
689 * If control arrives here, the quantized sample delay falls
690 * outside the eye. Check if it's before the eye opens, or after
693 if (QUANTIZED_DELAY
> IDEAL_DELAY
) {
695 * If control arrives here, the quantized sample delay
696 * falls after the eye closes. Decrease the quantized
697 * delay time and then go back to re-evaluate.
699 if (sample_delay_factor
!= 0)
700 sample_delay_factor
--;
705 * If control arrives here, the quantized sample delay falls
706 * before the eye opens. Shift the sample point by increasing
707 * data setup time. This will also make the eye larger.
710 /* Give a cycle to data setup. */
711 data_setup_in_cycles
++;
712 /* Synchronize the data setup time with the cycles. */
713 data_setup_in_ns
+= clock_period_in_ns
;
714 /* Adjust tEYE accordingly. */
715 tEYE
+= clock_period_in_ns
;
718 * Decrease the ideal sample delay by one half cycle, to keep it
719 * in the middle of the eye.
721 ideal_sample_delay_in_ns
-= (clock_period_in_ns
>> 1);
723 /* ...and one less period for the delay time. */
724 ideal_sample_delay_in_ns
-= clock_period_in_ns
;
726 /* Jam a negative ideal sample delay to zero. */
727 if (ideal_sample_delay_in_ns
< 0)
728 ideal_sample_delay_in_ns
= 0;
731 * We have a new ideal sample delay, so re-compute the quantized
734 sample_delay_factor
=
736 ideal_sample_delay_in_ns
<< dll_delay_shift
,
737 clock_period_in_ns
, 0);
739 if (sample_delay_factor
> nfc
->max_sample_delay_factor
)
740 sample_delay_factor
= nfc
->max_sample_delay_factor
;
743 /* Control arrives here when we're ready to return our results. */
745 hw
->data_setup_in_cycles
= data_setup_in_cycles
;
746 hw
->data_hold_in_cycles
= data_hold_in_cycles
;
747 hw
->address_setup_in_cycles
= address_setup_in_cycles
;
748 hw
->use_half_periods
= dll_use_half_periods
;
749 hw
->sample_delay_factor
= sample_delay_factor
;
750 hw
->device_busy_timeout
= GPMI_DEFAULT_BUSY_TIMEOUT
;
751 hw
->wrn_dly_sel
= BV_GPMI_CTRL1_WRN_DLY_SEL_4_TO_8NS
;
753 /* Return success. */
758 * <1> Firstly, we should know what's the GPMI-clock means.
759 * The GPMI-clock is the internal clock in the gpmi nand controller.
760 * If you set 100MHz to gpmi nand controller, the GPMI-clock's period
761 * is 10ns. Mark the GPMI-clock's period as GPMI-clock-period.
763 * <2> Secondly, we should know what's the frequency on the nand chip pins.
764 * The frequency on the nand chip pins is derived from the GPMI-clock.
765 * We can get it from the following equation:
769 * F : the frequency on the nand chip pins.
770 * G : the GPMI clock, such as 100MHz.
771 * DS : GPMI_HW_GPMI_TIMING0:DATA_SETUP
772 * DH : GPMI_HW_GPMI_TIMING0:DATA_HOLD
774 * <3> Thirdly, when the frequency on the nand chip pins is above 33MHz,
775 * the nand EDO(extended Data Out) timing could be applied.
776 * The GPMI implements a feedback read strobe to sample the read data.
777 * The feedback read strobe can be delayed to support the nand EDO timing
778 * where the read strobe may deasserts before the read data is valid, and
779 * read data is valid for some time after read strobe.
781 * The following figure illustrates some aspects of a NAND Flash read:
788 * __ ___|__________________________________
792 * Read Data --------------< >---------
796 * FeedbackRDN ________ ____________
799 * D stands for delay, set in the HW_GPMI_CTRL1:RDN_DELAY.
802 * <4> Now, we begin to describe how to compute the right RDN_DELAY.
804 * 4.1) From the aspect of the nand chip pins:
805 * Delay = (tREA + C - tRP) {1}
807 * tREA : the maximum read access time. From the ONFI nand standards,
808 * we know that tREA is 16ns in mode 5, tREA is 20ns is mode 4.
809 * Please check it in : www.onfi.org
810 * C : a constant for adjust the delay. default is 4.
811 * tRP : the read pulse width.
812 * Specified by the HW_GPMI_TIMING0:DATA_SETUP:
813 * tRP = (GPMI-clock-period) * DATA_SETUP
815 * 4.2) From the aspect of the GPMI nand controller:
816 * Delay = RDN_DELAY * 0.125 * RP {2}
818 * RP : the DLL reference period.
819 * if (GPMI-clock-period > DLL_THRETHOLD)
820 * RP = GPMI-clock-period / 2;
822 * RP = GPMI-clock-period;
824 * Set the HW_GPMI_CTRL1:HALF_PERIOD if GPMI-clock-period
825 * is greater DLL_THRETHOLD. In other SOCs, the DLL_THRETHOLD
826 * is 16ns, but in mx6q, we use 12ns.
828 * 4.3) since {1} equals {2}, we get:
830 * (tREA + 4 - tRP) * 8
831 * RDN_DELAY = --------------------- {3}
834 * 4.4) We only support the fastest asynchronous mode of ONFI nand.
835 * For some ONFI nand, the mode 4 is the fastest mode;
836 * while for some ONFI nand, the mode 5 is the fastest mode.
837 * So we only support the mode 4 and mode 5. It is no need to
838 * support other modes.
840 static void gpmi_compute_edo_timing(struct gpmi_nand_data
*this,
841 struct gpmi_nfc_hardware_timing
*hw
)
843 struct resources
*r
= &this->resources
;
844 unsigned long rate
= clk_get_rate(r
->clock
[0]);
845 int mode
= this->timing_mode
;
846 int dll_threshold
= 16; /* in ns */
848 unsigned long clk_period
;
855 * [1] for GPMI_HW_GPMI_TIMING0:
856 * The async mode requires 40MHz for mode 4, 50MHz for mode 5.
857 * The GPMI can support 100MHz at most. So if we want to
858 * get the 40MHz or 50MHz, we have to set DS=1, DH=1.
859 * Set the ADDRESS_SETUP to 0 in mode 4.
861 hw
->data_setup_in_cycles
= 1;
862 hw
->data_hold_in_cycles
= 1;
863 hw
->address_setup_in_cycles
= ((mode
== 5) ? 1 : 0);
865 /* [2] for GPMI_HW_GPMI_TIMING1 */
866 hw
->device_busy_timeout
= 0x9000;
868 /* [3] for GPMI_HW_GPMI_CTRL1 */
869 hw
->wrn_dly_sel
= BV_GPMI_CTRL1_WRN_DLY_SEL_NO_DELAY
;
871 if (GPMI_IS_MX6Q(this))
875 * Enlarge 10 times for the numerator and denominator in {3}.
876 * This make us to get more accurate result.
878 clk_period
= NSEC_PER_SEC
/ (rate
/ 10);
880 t_rea
= ((mode
== 5) ? 16 : 20) * 10;
883 t_rp
= clk_period
* 1; /* DATA_SETUP is 1 */
885 if (clk_period
> dll_threshold
) {
886 hw
->use_half_periods
= 1;
889 hw
->use_half_periods
= 0;
894 * Multiply the numerator with 10, we could do a round off:
895 * 7.8 round up to 8; 7.4 round down to 7.
897 delay
= (((t_rea
+ c
- t_rp
) * 8) * 10) / rp
;
898 delay
= (delay
+ 5) / 10;
900 hw
->sample_delay_factor
= delay
;
903 static int enable_edo_mode(struct gpmi_nand_data
*this, int mode
)
905 struct resources
*r
= &this->resources
;
906 struct nand_chip
*nand
= &this->nand
;
907 struct mtd_info
*mtd
= &this->mtd
;
908 uint8_t feature
[ONFI_SUBFEATURE_PARAM_LEN
] = {};
912 nand
->select_chip(mtd
, 0);
914 /* [1] send SET FEATURE commond to NAND */
916 ret
= nand
->onfi_set_features(mtd
, nand
,
917 ONFI_FEATURE_ADDR_TIMING_MODE
, feature
);
921 /* [2] send GET FEATURE command to double-check the timing mode */
922 memset(feature
, 0, ONFI_SUBFEATURE_PARAM_LEN
);
923 ret
= nand
->onfi_get_features(mtd
, nand
,
924 ONFI_FEATURE_ADDR_TIMING_MODE
, feature
);
925 if (ret
|| feature
[0] != mode
)
928 nand
->select_chip(mtd
, -1);
930 /* [3] set the main IO clock, 100MHz for mode 5, 80MHz for mode 4. */
931 rate
= (mode
== 5) ? 100000000 : 80000000;
932 clk_set_rate(r
->clock
[0], rate
);
934 /* Let the gpmi_begin() re-compute the timing again. */
935 this->flags
&= ~GPMI_TIMING_INIT_OK
;
937 this->flags
|= GPMI_ASYNC_EDO_ENABLED
;
938 this->timing_mode
= mode
;
939 dev_info(this->dev
, "enable the asynchronous EDO mode %d\n", mode
);
943 nand
->select_chip(mtd
, -1);
944 dev_err(this->dev
, "mode:%d ,failed in set feature.\n", mode
);
948 int gpmi_extra_init(struct gpmi_nand_data
*this)
950 struct nand_chip
*chip
= &this->nand
;
952 /* Enable the asynchronous EDO feature. */
953 if (GPMI_IS_MX6Q(this) && chip
->onfi_version
) {
954 int mode
= onfi_get_async_timing_mode(chip
);
956 /* We only support the timing mode 4 and mode 5. */
957 if (mode
& ONFI_TIMING_MODE_5
)
959 else if (mode
& ONFI_TIMING_MODE_4
)
964 return enable_edo_mode(this, mode
);
970 void gpmi_begin(struct gpmi_nand_data
*this)
972 struct resources
*r
= &this->resources
;
973 void __iomem
*gpmi_regs
= r
->gpmi_regs
;
974 unsigned int clock_period_in_ns
;
976 unsigned int dll_wait_time_in_us
;
977 struct gpmi_nfc_hardware_timing hw
;
980 /* Enable the clock. */
981 ret
= gpmi_enable_clk(this);
983 pr_err("We failed in enable the clk\n");
987 /* Only initialize the timing once */
988 if (this->flags
& GPMI_TIMING_INIT_OK
)
990 this->flags
|= GPMI_TIMING_INIT_OK
;
992 if (this->flags
& GPMI_ASYNC_EDO_ENABLED
)
993 gpmi_compute_edo_timing(this, &hw
);
995 gpmi_nfc_compute_hardware_timing(this, &hw
);
997 /* [1] Set HW_GPMI_TIMING0 */
998 reg
= BF_GPMI_TIMING0_ADDRESS_SETUP(hw
.address_setup_in_cycles
) |
999 BF_GPMI_TIMING0_DATA_HOLD(hw
.data_hold_in_cycles
) |
1000 BF_GPMI_TIMING0_DATA_SETUP(hw
.data_setup_in_cycles
) ;
1002 writel(reg
, gpmi_regs
+ HW_GPMI_TIMING0
);
1004 /* [2] Set HW_GPMI_TIMING1 */
1005 writel(BF_GPMI_TIMING1_BUSY_TIMEOUT(hw
.device_busy_timeout
),
1006 gpmi_regs
+ HW_GPMI_TIMING1
);
1008 /* [3] The following code is to set the HW_GPMI_CTRL1. */
1010 /* Set the WRN_DLY_SEL */
1011 writel(BM_GPMI_CTRL1_WRN_DLY_SEL
, gpmi_regs
+ HW_GPMI_CTRL1_CLR
);
1012 writel(BF_GPMI_CTRL1_WRN_DLY_SEL(hw
.wrn_dly_sel
),
1013 gpmi_regs
+ HW_GPMI_CTRL1_SET
);
1015 /* DLL_ENABLE must be set to 0 when setting RDN_DELAY or HALF_PERIOD. */
1016 writel(BM_GPMI_CTRL1_DLL_ENABLE
, gpmi_regs
+ HW_GPMI_CTRL1_CLR
);
1018 /* Clear out the DLL control fields. */
1019 reg
= BM_GPMI_CTRL1_RDN_DELAY
| BM_GPMI_CTRL1_HALF_PERIOD
;
1020 writel(reg
, gpmi_regs
+ HW_GPMI_CTRL1_CLR
);
1022 /* If no sample delay is called for, return immediately. */
1023 if (!hw
.sample_delay_factor
)
1026 /* Set RDN_DELAY or HALF_PERIOD. */
1027 reg
= ((hw
.use_half_periods
) ? BM_GPMI_CTRL1_HALF_PERIOD
: 0)
1028 | BF_GPMI_CTRL1_RDN_DELAY(hw
.sample_delay_factor
);
1030 writel(reg
, gpmi_regs
+ HW_GPMI_CTRL1_SET
);
1032 /* At last, we enable the DLL. */
1033 writel(BM_GPMI_CTRL1_DLL_ENABLE
, gpmi_regs
+ HW_GPMI_CTRL1_SET
);
1036 * After we enable the GPMI DLL, we have to wait 64 clock cycles before
1037 * we can use the GPMI. Calculate the amount of time we need to wait,
1040 clock_period_in_ns
= NSEC_PER_SEC
/ clk_get_rate(r
->clock
[0]);
1041 dll_wait_time_in_us
= (clock_period_in_ns
* 64) / 1000;
1043 if (!dll_wait_time_in_us
)
1044 dll_wait_time_in_us
= 1;
1046 /* Wait for the DLL to settle. */
1047 udelay(dll_wait_time_in_us
);
1053 void gpmi_end(struct gpmi_nand_data
*this)
1055 gpmi_disable_clk(this);
1058 /* Clears a BCH interrupt. */
1059 void gpmi_clear_bch(struct gpmi_nand_data
*this)
1061 struct resources
*r
= &this->resources
;
1062 writel(BM_BCH_CTRL_COMPLETE_IRQ
, r
->bch_regs
+ HW_BCH_CTRL_CLR
);
1065 /* Returns the Ready/Busy status of the given chip. */
1066 int gpmi_is_ready(struct gpmi_nand_data
*this, unsigned chip
)
1068 struct resources
*r
= &this->resources
;
1072 if (GPMI_IS_MX23(this)) {
1073 mask
= MX23_BM_GPMI_DEBUG_READY0
<< chip
;
1074 reg
= readl(r
->gpmi_regs
+ HW_GPMI_DEBUG
);
1075 } else if (GPMI_IS_MX28(this) || GPMI_IS_MX6Q(this)) {
1076 /* MX28 shares the same R/B register as MX6Q. */
1077 mask
= MX28_BF_GPMI_STAT_READY_BUSY(1 << chip
);
1078 reg
= readl(r
->gpmi_regs
+ HW_GPMI_STAT
);
1080 pr_err("unknow arch.\n");
1084 static inline void set_dma_type(struct gpmi_nand_data
*this,
1085 enum dma_ops_type type
)
1087 this->last_dma_type
= this->dma_type
;
1088 this->dma_type
= type
;
1091 int gpmi_send_command(struct gpmi_nand_data
*this)
1093 struct dma_chan
*channel
= get_dma_chan(this);
1094 struct dma_async_tx_descriptor
*desc
;
1095 struct scatterlist
*sgl
;
1096 int chip
= this->current_chip
;
1099 /* [1] send out the PIO words */
1100 pio
[0] = BF_GPMI_CTRL0_COMMAND_MODE(BV_GPMI_CTRL0_COMMAND_MODE__WRITE
)
1101 | BM_GPMI_CTRL0_WORD_LENGTH
1102 | BF_GPMI_CTRL0_CS(chip
, this)
1103 | BF_GPMI_CTRL0_LOCK_CS(LOCK_CS_ENABLE
, this)
1104 | BF_GPMI_CTRL0_ADDRESS(BV_GPMI_CTRL0_ADDRESS__NAND_CLE
)
1105 | BM_GPMI_CTRL0_ADDRESS_INCREMENT
1106 | BF_GPMI_CTRL0_XFER_COUNT(this->command_length
);
1107 pio
[1] = pio
[2] = 0;
1108 desc
= dmaengine_prep_slave_sg(channel
,
1109 (struct scatterlist
*)pio
,
1110 ARRAY_SIZE(pio
), DMA_TRANS_NONE
, 0);
1112 pr_err("step 1 error\n");
1116 /* [2] send out the COMMAND + ADDRESS string stored in @buffer */
1117 sgl
= &this->cmd_sgl
;
1119 sg_init_one(sgl
, this->cmd_buffer
, this->command_length
);
1120 dma_map_sg(this->dev
, sgl
, 1, DMA_TO_DEVICE
);
1121 desc
= dmaengine_prep_slave_sg(channel
,
1122 sgl
, 1, DMA_MEM_TO_DEV
,
1123 DMA_PREP_INTERRUPT
| DMA_CTRL_ACK
);
1126 pr_err("step 2 error\n");
1130 /* [3] submit the DMA */
1131 set_dma_type(this, DMA_FOR_COMMAND
);
1132 return start_dma_without_bch_irq(this, desc
);
1135 int gpmi_send_data(struct gpmi_nand_data
*this)
1137 struct dma_async_tx_descriptor
*desc
;
1138 struct dma_chan
*channel
= get_dma_chan(this);
1139 int chip
= this->current_chip
;
1140 uint32_t command_mode
;
1145 command_mode
= BV_GPMI_CTRL0_COMMAND_MODE__WRITE
;
1146 address
= BV_GPMI_CTRL0_ADDRESS__NAND_DATA
;
1148 pio
[0] = BF_GPMI_CTRL0_COMMAND_MODE(command_mode
)
1149 | BM_GPMI_CTRL0_WORD_LENGTH
1150 | BF_GPMI_CTRL0_CS(chip
, this)
1151 | BF_GPMI_CTRL0_LOCK_CS(LOCK_CS_ENABLE
, this)
1152 | BF_GPMI_CTRL0_ADDRESS(address
)
1153 | BF_GPMI_CTRL0_XFER_COUNT(this->upper_len
);
1155 desc
= dmaengine_prep_slave_sg(channel
, (struct scatterlist
*)pio
,
1156 ARRAY_SIZE(pio
), DMA_TRANS_NONE
, 0);
1158 pr_err("step 1 error\n");
1162 /* [2] send DMA request */
1163 prepare_data_dma(this, DMA_TO_DEVICE
);
1164 desc
= dmaengine_prep_slave_sg(channel
, &this->data_sgl
,
1166 DMA_PREP_INTERRUPT
| DMA_CTRL_ACK
);
1168 pr_err("step 2 error\n");
1171 /* [3] submit the DMA */
1172 set_dma_type(this, DMA_FOR_WRITE_DATA
);
1173 return start_dma_without_bch_irq(this, desc
);
1176 int gpmi_read_data(struct gpmi_nand_data
*this)
1178 struct dma_async_tx_descriptor
*desc
;
1179 struct dma_chan
*channel
= get_dma_chan(this);
1180 int chip
= this->current_chip
;
1183 /* [1] : send PIO */
1184 pio
[0] = BF_GPMI_CTRL0_COMMAND_MODE(BV_GPMI_CTRL0_COMMAND_MODE__READ
)
1185 | BM_GPMI_CTRL0_WORD_LENGTH
1186 | BF_GPMI_CTRL0_CS(chip
, this)
1187 | BF_GPMI_CTRL0_LOCK_CS(LOCK_CS_ENABLE
, this)
1188 | BF_GPMI_CTRL0_ADDRESS(BV_GPMI_CTRL0_ADDRESS__NAND_DATA
)
1189 | BF_GPMI_CTRL0_XFER_COUNT(this->upper_len
);
1191 desc
= dmaengine_prep_slave_sg(channel
,
1192 (struct scatterlist
*)pio
,
1193 ARRAY_SIZE(pio
), DMA_TRANS_NONE
, 0);
1195 pr_err("step 1 error\n");
1199 /* [2] : send DMA request */
1200 prepare_data_dma(this, DMA_FROM_DEVICE
);
1201 desc
= dmaengine_prep_slave_sg(channel
, &this->data_sgl
,
1203 DMA_PREP_INTERRUPT
| DMA_CTRL_ACK
);
1205 pr_err("step 2 error\n");
1209 /* [3] : submit the DMA */
1210 set_dma_type(this, DMA_FOR_READ_DATA
);
1211 return start_dma_without_bch_irq(this, desc
);
1214 int gpmi_send_page(struct gpmi_nand_data
*this,
1215 dma_addr_t payload
, dma_addr_t auxiliary
)
1217 struct bch_geometry
*geo
= &this->bch_geometry
;
1218 uint32_t command_mode
;
1220 uint32_t ecc_command
;
1221 uint32_t buffer_mask
;
1222 struct dma_async_tx_descriptor
*desc
;
1223 struct dma_chan
*channel
= get_dma_chan(this);
1224 int chip
= this->current_chip
;
1227 /* A DMA descriptor that does an ECC page read. */
1228 command_mode
= BV_GPMI_CTRL0_COMMAND_MODE__WRITE
;
1229 address
= BV_GPMI_CTRL0_ADDRESS__NAND_DATA
;
1230 ecc_command
= BV_GPMI_ECCCTRL_ECC_CMD__BCH_ENCODE
;
1231 buffer_mask
= BV_GPMI_ECCCTRL_BUFFER_MASK__BCH_PAGE
|
1232 BV_GPMI_ECCCTRL_BUFFER_MASK__BCH_AUXONLY
;
1234 pio
[0] = BF_GPMI_CTRL0_COMMAND_MODE(command_mode
)
1235 | BM_GPMI_CTRL0_WORD_LENGTH
1236 | BF_GPMI_CTRL0_CS(chip
, this)
1237 | BF_GPMI_CTRL0_LOCK_CS(LOCK_CS_ENABLE
, this)
1238 | BF_GPMI_CTRL0_ADDRESS(address
)
1239 | BF_GPMI_CTRL0_XFER_COUNT(0);
1241 pio
[2] = BM_GPMI_ECCCTRL_ENABLE_ECC
1242 | BF_GPMI_ECCCTRL_ECC_CMD(ecc_command
)
1243 | BF_GPMI_ECCCTRL_BUFFER_MASK(buffer_mask
);
1244 pio
[3] = geo
->page_size
;
1248 desc
= dmaengine_prep_slave_sg(channel
,
1249 (struct scatterlist
*)pio
,
1250 ARRAY_SIZE(pio
), DMA_TRANS_NONE
,
1253 pr_err("step 2 error\n");
1256 set_dma_type(this, DMA_FOR_WRITE_ECC_PAGE
);
1257 return start_dma_with_bch_irq(this, desc
);
1260 int gpmi_read_page(struct gpmi_nand_data
*this,
1261 dma_addr_t payload
, dma_addr_t auxiliary
)
1263 struct bch_geometry
*geo
= &this->bch_geometry
;
1264 uint32_t command_mode
;
1266 uint32_t ecc_command
;
1267 uint32_t buffer_mask
;
1268 struct dma_async_tx_descriptor
*desc
;
1269 struct dma_chan
*channel
= get_dma_chan(this);
1270 int chip
= this->current_chip
;
1273 /* [1] Wait for the chip to report ready. */
1274 command_mode
= BV_GPMI_CTRL0_COMMAND_MODE__WAIT_FOR_READY
;
1275 address
= BV_GPMI_CTRL0_ADDRESS__NAND_DATA
;
1277 pio
[0] = BF_GPMI_CTRL0_COMMAND_MODE(command_mode
)
1278 | BM_GPMI_CTRL0_WORD_LENGTH
1279 | BF_GPMI_CTRL0_CS(chip
, this)
1280 | BF_GPMI_CTRL0_LOCK_CS(LOCK_CS_ENABLE
, this)
1281 | BF_GPMI_CTRL0_ADDRESS(address
)
1282 | BF_GPMI_CTRL0_XFER_COUNT(0);
1284 desc
= dmaengine_prep_slave_sg(channel
,
1285 (struct scatterlist
*)pio
, 2,
1288 pr_err("step 1 error\n");
1292 /* [2] Enable the BCH block and read. */
1293 command_mode
= BV_GPMI_CTRL0_COMMAND_MODE__READ
;
1294 address
= BV_GPMI_CTRL0_ADDRESS__NAND_DATA
;
1295 ecc_command
= BV_GPMI_ECCCTRL_ECC_CMD__BCH_DECODE
;
1296 buffer_mask
= BV_GPMI_ECCCTRL_BUFFER_MASK__BCH_PAGE
1297 | BV_GPMI_ECCCTRL_BUFFER_MASK__BCH_AUXONLY
;
1299 pio
[0] = BF_GPMI_CTRL0_COMMAND_MODE(command_mode
)
1300 | BM_GPMI_CTRL0_WORD_LENGTH
1301 | BF_GPMI_CTRL0_CS(chip
, this)
1302 | BF_GPMI_CTRL0_LOCK_CS(LOCK_CS_ENABLE
, this)
1303 | BF_GPMI_CTRL0_ADDRESS(address
)
1304 | BF_GPMI_CTRL0_XFER_COUNT(geo
->page_size
);
1307 pio
[2] = BM_GPMI_ECCCTRL_ENABLE_ECC
1308 | BF_GPMI_ECCCTRL_ECC_CMD(ecc_command
)
1309 | BF_GPMI_ECCCTRL_BUFFER_MASK(buffer_mask
);
1310 pio
[3] = geo
->page_size
;
1313 desc
= dmaengine_prep_slave_sg(channel
,
1314 (struct scatterlist
*)pio
,
1315 ARRAY_SIZE(pio
), DMA_TRANS_NONE
,
1316 DMA_PREP_INTERRUPT
| DMA_CTRL_ACK
);
1318 pr_err("step 2 error\n");
1322 /* [3] Disable the BCH block */
1323 command_mode
= BV_GPMI_CTRL0_COMMAND_MODE__WAIT_FOR_READY
;
1324 address
= BV_GPMI_CTRL0_ADDRESS__NAND_DATA
;
1326 pio
[0] = BF_GPMI_CTRL0_COMMAND_MODE(command_mode
)
1327 | BM_GPMI_CTRL0_WORD_LENGTH
1328 | BF_GPMI_CTRL0_CS(chip
, this)
1329 | BF_GPMI_CTRL0_LOCK_CS(LOCK_CS_ENABLE
, this)
1330 | BF_GPMI_CTRL0_ADDRESS(address
)
1331 | BF_GPMI_CTRL0_XFER_COUNT(geo
->page_size
);
1333 pio
[2] = 0; /* clear GPMI_HW_GPMI_ECCCTRL, disable the BCH. */
1334 desc
= dmaengine_prep_slave_sg(channel
,
1335 (struct scatterlist
*)pio
, 3,
1337 DMA_PREP_INTERRUPT
| DMA_CTRL_ACK
);
1339 pr_err("step 3 error\n");
1343 /* [4] submit the DMA */
1344 set_dma_type(this, DMA_FOR_READ_ECC_PAGE
);
1345 return start_dma_with_bch_irq(this, desc
);