2 * Freescale GPMI NAND Flash Driver
4 * Copyright (C) 2010-2011 Freescale Semiconductor, Inc.
5 * Copyright (C) 2008 Embedded Alley Solutions, Inc.
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation; either version 2 of the License, or
10 * (at your option) any later version.
12 * This program is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 * GNU General Public License for more details.
17 * You should have received a copy of the GNU General Public License along
18 * with this program; if not, write to the Free Software Foundation, Inc.,
19 * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
22 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
24 #include <linux/clk.h>
25 #include <linux/slab.h>
26 #include <linux/interrupt.h>
27 #include <linux/module.h>
28 #include <linux/mtd/partitions.h>
30 #include <linux/of_device.h>
31 #include <linux/of_mtd.h>
32 #include "gpmi-nand.h"
34 /* Resource names for the GPMI NAND driver. */
35 #define GPMI_NAND_GPMI_REGS_ADDR_RES_NAME "gpmi-nand"
36 #define GPMI_NAND_BCH_REGS_ADDR_RES_NAME "bch"
37 #define GPMI_NAND_BCH_INTERRUPT_RES_NAME "bch"
39 /* add our owner bbt descriptor */
40 static uint8_t scan_ff_pattern
[] = { 0xff };
41 static struct nand_bbt_descr gpmi_bbt_descr
= {
45 .pattern
= scan_ff_pattern
48 /* We will use all the (page + OOB). */
49 static struct nand_ecclayout gpmi_hw_ecclayout
= {
52 .oobfree
= { {.offset
= 0, .length
= 0} }
55 static irqreturn_t
bch_irq(int irq
, void *cookie
)
57 struct gpmi_nand_data
*this = cookie
;
60 complete(&this->bch_done
);
65 * Calculate the ECC strength by hand:
66 * E : The ECC strength.
67 * G : the length of Galois Field.
68 * N : The chunk count of per page.
69 * O : the oobsize of the NAND chip.
70 * M : the metasize of per page.
74 * ------------ <= (O - M)
82 static inline int get_ecc_strength(struct gpmi_nand_data
*this)
84 struct bch_geometry
*geo
= &this->bch_geometry
;
85 struct mtd_info
*mtd
= &this->mtd
;
88 ecc_strength
= ((mtd
->oobsize
- geo
->metadata_size
) * 8)
89 / (geo
->gf_len
* geo
->ecc_chunk_count
);
91 /* We need the minor even number. */
92 return round_down(ecc_strength
, 2);
95 static inline bool gpmi_check_ecc(struct gpmi_nand_data
*this)
97 struct bch_geometry
*geo
= &this->bch_geometry
;
99 /* Do the sanity check. */
100 if (GPMI_IS_MX23(this) || GPMI_IS_MX28(this)) {
101 /* The mx23/mx28 only support the GF13. */
102 if (geo
->gf_len
== 14)
105 if (geo
->ecc_strength
> MXS_ECC_STRENGTH_MAX
)
107 } else if (GPMI_IS_MX6Q(this)) {
108 if (geo
->ecc_strength
> MX6_ECC_STRENGTH_MAX
)
115 * If we can get the ECC information from the nand chip, we do not
116 * need to calculate them ourselves.
118 * We may have available oob space in this case.
120 static bool set_geometry_by_ecc_info(struct gpmi_nand_data
*this)
122 struct bch_geometry
*geo
= &this->bch_geometry
;
123 struct mtd_info
*mtd
= &this->mtd
;
124 struct nand_chip
*chip
= mtd
->priv
;
125 struct nand_oobfree
*of
= gpmi_hw_ecclayout
.oobfree
;
126 unsigned int block_mark_bit_offset
;
128 if (!(chip
->ecc_strength_ds
> 0 && chip
->ecc_step_ds
> 0))
131 switch (chip
->ecc_step_ds
) {
140 "unsupported nand chip. ecc bits : %d, ecc size : %d\n",
141 chip
->ecc_strength_ds
, chip
->ecc_step_ds
);
144 geo
->ecc_chunk_size
= chip
->ecc_step_ds
;
145 geo
->ecc_strength
= round_up(chip
->ecc_strength_ds
, 2);
146 if (!gpmi_check_ecc(this))
149 /* Keep the C >= O */
150 if (geo
->ecc_chunk_size
< mtd
->oobsize
) {
152 "unsupported nand chip. ecc size: %d, oob size : %d\n",
153 chip
->ecc_step_ds
, mtd
->oobsize
);
157 /* The default value, see comment in the legacy_set_geometry(). */
158 geo
->metadata_size
= 10;
160 geo
->ecc_chunk_count
= mtd
->writesize
/ geo
->ecc_chunk_size
;
163 * Now, the NAND chip with 2K page(data chunk is 512byte) shows below:
166 * |<----------------------------------------------------->|
170 * |<-------------------------------------------->| D | | O' |
173 * +---+----------+-+----------+-+----------+-+----------+-+-----+
174 * | M | data |E| data |E| data |E| data |E| |
175 * +---+----------+-+----------+-+----------+-+----------+-+-----+
181 * P : the page size for BCH module.
182 * E : The ECC strength.
183 * G : the length of Galois Field.
184 * N : The chunk count of per page.
185 * M : the metasize of per page.
186 * C : the ecc chunk size, aka the "data" above.
187 * P': the nand chip's page size.
188 * O : the nand chip's oob size.
191 * The formula for P is :
194 * P = ------------ + P' + M
197 * The position of block mark moves forward in the ECC-based view
198 * of page, and the delta is:
201 * D = (---------------- + M)
204 * Please see the comment in legacy_set_geometry().
205 * With the condition C >= O , we still can get same result.
206 * So the bit position of the physical block mark within the ECC-based
207 * view of the page is :
210 geo
->page_size
= mtd
->writesize
+ geo
->metadata_size
+
211 (geo
->gf_len
* geo
->ecc_strength
* geo
->ecc_chunk_count
) / 8;
213 /* The available oob size we have. */
214 if (geo
->page_size
< mtd
->writesize
+ mtd
->oobsize
) {
215 of
->offset
= geo
->page_size
- mtd
->writesize
;
216 of
->length
= mtd
->oobsize
- of
->offset
;
219 geo
->payload_size
= mtd
->writesize
;
221 geo
->auxiliary_status_offset
= ALIGN(geo
->metadata_size
, 4);
222 geo
->auxiliary_size
= ALIGN(geo
->metadata_size
, 4)
223 + ALIGN(geo
->ecc_chunk_count
, 4);
225 if (!this->swap_block_mark
)
229 block_mark_bit_offset
= mtd
->writesize
* 8 -
230 (geo
->ecc_strength
* geo
->gf_len
* (geo
->ecc_chunk_count
- 1)
231 + geo
->metadata_size
* 8);
233 geo
->block_mark_byte_offset
= block_mark_bit_offset
/ 8;
234 geo
->block_mark_bit_offset
= block_mark_bit_offset
% 8;
238 static int legacy_set_geometry(struct gpmi_nand_data
*this)
240 struct bch_geometry
*geo
= &this->bch_geometry
;
241 struct mtd_info
*mtd
= &this->mtd
;
242 unsigned int metadata_size
;
243 unsigned int status_size
;
244 unsigned int block_mark_bit_offset
;
247 * The size of the metadata can be changed, though we set it to 10
248 * bytes now. But it can't be too large, because we have to save
249 * enough space for BCH.
251 geo
->metadata_size
= 10;
253 /* The default for the length of Galois Field. */
256 /* The default for chunk size. */
257 geo
->ecc_chunk_size
= 512;
258 while (geo
->ecc_chunk_size
< mtd
->oobsize
) {
259 geo
->ecc_chunk_size
*= 2; /* keep C >= O */
263 geo
->ecc_chunk_count
= mtd
->writesize
/ geo
->ecc_chunk_size
;
265 /* We use the same ECC strength for all chunks. */
266 geo
->ecc_strength
= get_ecc_strength(this);
267 if (!gpmi_check_ecc(this)) {
269 "We can not support this nand chip."
270 " Its required ecc strength(%d) is beyond our"
271 " capability(%d).\n", geo
->ecc_strength
,
272 (GPMI_IS_MX6Q(this) ? MX6_ECC_STRENGTH_MAX
273 : MXS_ECC_STRENGTH_MAX
));
277 geo
->page_size
= mtd
->writesize
+ mtd
->oobsize
;
278 geo
->payload_size
= mtd
->writesize
;
281 * The auxiliary buffer contains the metadata and the ECC status. The
282 * metadata is padded to the nearest 32-bit boundary. The ECC status
283 * contains one byte for every ECC chunk, and is also padded to the
284 * nearest 32-bit boundary.
286 metadata_size
= ALIGN(geo
->metadata_size
, 4);
287 status_size
= ALIGN(geo
->ecc_chunk_count
, 4);
289 geo
->auxiliary_size
= metadata_size
+ status_size
;
290 geo
->auxiliary_status_offset
= metadata_size
;
292 if (!this->swap_block_mark
)
296 * We need to compute the byte and bit offsets of
297 * the physical block mark within the ECC-based view of the page.
299 * NAND chip with 2K page shows below:
305 * +---+----------+-+----------+-+----------+-+----------+-+
306 * | M | data |E| data |E| data |E| data |E|
307 * +---+----------+-+----------+-+----------+-+----------+-+
309 * The position of block mark moves forward in the ECC-based view
310 * of page, and the delta is:
313 * D = (---------------- + M)
316 * With the formula to compute the ECC strength, and the condition
317 * : C >= O (C is the ecc chunk size)
319 * It's easy to deduce to the following result:
321 * E * G (O - M) C - M C - M
322 * ----------- <= ------- <= -------- < ---------
328 * D = (---------------- + M) < C
331 * The above inequality means the position of block mark
332 * within the ECC-based view of the page is still in the data chunk,
333 * and it's NOT in the ECC bits of the chunk.
335 * Use the following to compute the bit position of the
336 * physical block mark within the ECC-based view of the page:
337 * (page_size - D) * 8
341 block_mark_bit_offset
= mtd
->writesize
* 8 -
342 (geo
->ecc_strength
* geo
->gf_len
* (geo
->ecc_chunk_count
- 1)
343 + geo
->metadata_size
* 8);
345 geo
->block_mark_byte_offset
= block_mark_bit_offset
/ 8;
346 geo
->block_mark_bit_offset
= block_mark_bit_offset
% 8;
350 int common_nfc_set_geometry(struct gpmi_nand_data
*this)
352 return legacy_set_geometry(this);
355 struct dma_chan
*get_dma_chan(struct gpmi_nand_data
*this)
357 int chipnr
= this->current_chip
;
359 return this->dma_chans
[chipnr
];
362 /* Can we use the upper's buffer directly for DMA? */
363 void prepare_data_dma(struct gpmi_nand_data
*this, enum dma_data_direction dr
)
365 struct scatterlist
*sgl
= &this->data_sgl
;
368 this->direct_dma_map_ok
= true;
370 /* first try to map the upper buffer directly */
371 sg_init_one(sgl
, this->upper_buf
, this->upper_len
);
372 ret
= dma_map_sg(this->dev
, sgl
, 1, dr
);
374 /* We have to use our own DMA buffer. */
375 sg_init_one(sgl
, this->data_buffer_dma
, PAGE_SIZE
);
377 if (dr
== DMA_TO_DEVICE
)
378 memcpy(this->data_buffer_dma
, this->upper_buf
,
381 ret
= dma_map_sg(this->dev
, sgl
, 1, dr
);
383 pr_err("DMA mapping failed.\n");
385 this->direct_dma_map_ok
= false;
389 /* This will be called after the DMA operation is finished. */
390 static void dma_irq_callback(void *param
)
392 struct gpmi_nand_data
*this = param
;
393 struct completion
*dma_c
= &this->dma_done
;
395 switch (this->dma_type
) {
396 case DMA_FOR_COMMAND
:
397 dma_unmap_sg(this->dev
, &this->cmd_sgl
, 1, DMA_TO_DEVICE
);
400 case DMA_FOR_READ_DATA
:
401 dma_unmap_sg(this->dev
, &this->data_sgl
, 1, DMA_FROM_DEVICE
);
402 if (this->direct_dma_map_ok
== false)
403 memcpy(this->upper_buf
, this->data_buffer_dma
,
407 case DMA_FOR_WRITE_DATA
:
408 dma_unmap_sg(this->dev
, &this->data_sgl
, 1, DMA_TO_DEVICE
);
411 case DMA_FOR_READ_ECC_PAGE
:
412 case DMA_FOR_WRITE_ECC_PAGE
:
413 /* We have to wait the BCH interrupt to finish. */
417 pr_err("in wrong DMA operation.\n");
423 int start_dma_without_bch_irq(struct gpmi_nand_data
*this,
424 struct dma_async_tx_descriptor
*desc
)
426 struct completion
*dma_c
= &this->dma_done
;
429 init_completion(dma_c
);
431 desc
->callback
= dma_irq_callback
;
432 desc
->callback_param
= this;
433 dmaengine_submit(desc
);
434 dma_async_issue_pending(get_dma_chan(this));
436 /* Wait for the interrupt from the DMA block. */
437 err
= wait_for_completion_timeout(dma_c
, msecs_to_jiffies(1000));
439 pr_err("DMA timeout, last DMA :%d\n", this->last_dma_type
);
440 gpmi_dump_info(this);
447 * This function is used in BCH reading or BCH writing pages.
448 * It will wait for the BCH interrupt as long as ONE second.
449 * Actually, we must wait for two interrupts :
450 * [1] firstly the DMA interrupt and
451 * [2] secondly the BCH interrupt.
453 int start_dma_with_bch_irq(struct gpmi_nand_data
*this,
454 struct dma_async_tx_descriptor
*desc
)
456 struct completion
*bch_c
= &this->bch_done
;
459 /* Prepare to receive an interrupt from the BCH block. */
460 init_completion(bch_c
);
463 start_dma_without_bch_irq(this, desc
);
465 /* Wait for the interrupt from the BCH block. */
466 err
= wait_for_completion_timeout(bch_c
, msecs_to_jiffies(1000));
468 pr_err("BCH timeout, last DMA :%d\n", this->last_dma_type
);
469 gpmi_dump_info(this);
475 static int acquire_register_block(struct gpmi_nand_data
*this,
476 const char *res_name
)
478 struct platform_device
*pdev
= this->pdev
;
479 struct resources
*res
= &this->resources
;
483 r
= platform_get_resource_byname(pdev
, IORESOURCE_MEM
, res_name
);
485 pr_err("Can't get resource for %s\n", res_name
);
489 p
= ioremap(r
->start
, resource_size(r
));
491 pr_err("Can't remap %s\n", res_name
);
495 if (!strcmp(res_name
, GPMI_NAND_GPMI_REGS_ADDR_RES_NAME
))
497 else if (!strcmp(res_name
, GPMI_NAND_BCH_REGS_ADDR_RES_NAME
))
500 pr_err("unknown resource name : %s\n", res_name
);
505 static void release_register_block(struct gpmi_nand_data
*this)
507 struct resources
*res
= &this->resources
;
509 iounmap(res
->gpmi_regs
);
511 iounmap(res
->bch_regs
);
512 res
->gpmi_regs
= NULL
;
513 res
->bch_regs
= NULL
;
516 static int acquire_bch_irq(struct gpmi_nand_data
*this, irq_handler_t irq_h
)
518 struct platform_device
*pdev
= this->pdev
;
519 struct resources
*res
= &this->resources
;
520 const char *res_name
= GPMI_NAND_BCH_INTERRUPT_RES_NAME
;
524 r
= platform_get_resource_byname(pdev
, IORESOURCE_IRQ
, res_name
);
526 pr_err("Can't get resource for %s\n", res_name
);
530 err
= request_irq(r
->start
, irq_h
, 0, res_name
, this);
532 pr_err("Can't own %s\n", res_name
);
536 res
->bch_low_interrupt
= r
->start
;
537 res
->bch_high_interrupt
= r
->end
;
541 static void release_bch_irq(struct gpmi_nand_data
*this)
543 struct resources
*res
= &this->resources
;
544 int i
= res
->bch_low_interrupt
;
546 for (; i
<= res
->bch_high_interrupt
; i
++)
550 static void release_dma_channels(struct gpmi_nand_data
*this)
553 for (i
= 0; i
< DMA_CHANS
; i
++)
554 if (this->dma_chans
[i
]) {
555 dma_release_channel(this->dma_chans
[i
]);
556 this->dma_chans
[i
] = NULL
;
560 static int acquire_dma_channels(struct gpmi_nand_data
*this)
562 struct platform_device
*pdev
= this->pdev
;
563 struct dma_chan
*dma_chan
;
565 /* request dma channel */
566 dma_chan
= dma_request_slave_channel(&pdev
->dev
, "rx-tx");
568 pr_err("Failed to request DMA channel.\n");
572 this->dma_chans
[0] = dma_chan
;
576 release_dma_channels(this);
580 static void gpmi_put_clks(struct gpmi_nand_data
*this)
582 struct resources
*r
= &this->resources
;
586 for (i
= 0; i
< GPMI_CLK_MAX
; i
++) {
595 static char *extra_clks_for_mx6q
[GPMI_CLK_MAX
] = {
596 "gpmi_apb", "gpmi_bch", "gpmi_bch_apb", "per1_bch",
599 static int gpmi_get_clks(struct gpmi_nand_data
*this)
601 struct resources
*r
= &this->resources
;
602 char **extra_clks
= NULL
;
606 /* The main clock is stored in the first. */
607 r
->clock
[0] = clk_get(this->dev
, "gpmi_io");
608 if (IS_ERR(r
->clock
[0])) {
609 err
= PTR_ERR(r
->clock
[0]);
613 /* Get extra clocks */
614 if (GPMI_IS_MX6Q(this))
615 extra_clks
= extra_clks_for_mx6q
;
619 for (i
= 1; i
< GPMI_CLK_MAX
; i
++) {
620 if (extra_clks
[i
- 1] == NULL
)
623 clk
= clk_get(this->dev
, extra_clks
[i
- 1]);
632 if (GPMI_IS_MX6Q(this))
634 * Set the default value for the gpmi clock in mx6q:
636 * If you want to use the ONFI nand which is in the
637 * Synchronous Mode, you should change the clock as you need.
639 clk_set_rate(r
->clock
[0], 22000000);
644 dev_dbg(this->dev
, "failed in finding the clocks.\n");
649 static int acquire_resources(struct gpmi_nand_data
*this)
653 ret
= acquire_register_block(this, GPMI_NAND_GPMI_REGS_ADDR_RES_NAME
);
657 ret
= acquire_register_block(this, GPMI_NAND_BCH_REGS_ADDR_RES_NAME
);
661 ret
= acquire_bch_irq(this, bch_irq
);
665 ret
= acquire_dma_channels(this);
667 goto exit_dma_channels
;
669 ret
= gpmi_get_clks(this);
675 release_dma_channels(this);
677 release_bch_irq(this);
679 release_register_block(this);
683 static void release_resources(struct gpmi_nand_data
*this)
686 release_register_block(this);
687 release_bch_irq(this);
688 release_dma_channels(this);
691 static int init_hardware(struct gpmi_nand_data
*this)
696 * This structure contains the "safe" GPMI timing that should succeed
697 * with any NAND Flash device
698 * (although, with less-than-optimal performance).
700 struct nand_timing safe_timing
= {
701 .data_setup_in_ns
= 80,
702 .data_hold_in_ns
= 60,
703 .address_setup_in_ns
= 25,
704 .gpmi_sample_delay_in_ns
= 6,
710 /* Initialize the hardwares. */
711 ret
= gpmi_init(this);
715 this->timing
= safe_timing
;
719 static int read_page_prepare(struct gpmi_nand_data
*this,
720 void *destination
, unsigned length
,
721 void *alt_virt
, dma_addr_t alt_phys
, unsigned alt_size
,
722 void **use_virt
, dma_addr_t
*use_phys
)
724 struct device
*dev
= this->dev
;
726 if (virt_addr_valid(destination
)) {
727 dma_addr_t dest_phys
;
729 dest_phys
= dma_map_single(dev
, destination
,
730 length
, DMA_FROM_DEVICE
);
731 if (dma_mapping_error(dev
, dest_phys
)) {
732 if (alt_size
< length
) {
733 pr_err("%s, Alternate buffer is too small\n",
739 *use_virt
= destination
;
740 *use_phys
= dest_phys
;
741 this->direct_dma_map_ok
= true;
746 *use_virt
= alt_virt
;
747 *use_phys
= alt_phys
;
748 this->direct_dma_map_ok
= false;
752 static inline void read_page_end(struct gpmi_nand_data
*this,
753 void *destination
, unsigned length
,
754 void *alt_virt
, dma_addr_t alt_phys
, unsigned alt_size
,
755 void *used_virt
, dma_addr_t used_phys
)
757 if (this->direct_dma_map_ok
)
758 dma_unmap_single(this->dev
, used_phys
, length
, DMA_FROM_DEVICE
);
761 static inline void read_page_swap_end(struct gpmi_nand_data
*this,
762 void *destination
, unsigned length
,
763 void *alt_virt
, dma_addr_t alt_phys
, unsigned alt_size
,
764 void *used_virt
, dma_addr_t used_phys
)
766 if (!this->direct_dma_map_ok
)
767 memcpy(destination
, alt_virt
, length
);
770 static int send_page_prepare(struct gpmi_nand_data
*this,
771 const void *source
, unsigned length
,
772 void *alt_virt
, dma_addr_t alt_phys
, unsigned alt_size
,
773 const void **use_virt
, dma_addr_t
*use_phys
)
775 struct device
*dev
= this->dev
;
777 if (virt_addr_valid(source
)) {
778 dma_addr_t source_phys
;
780 source_phys
= dma_map_single(dev
, (void *)source
, length
,
782 if (dma_mapping_error(dev
, source_phys
)) {
783 if (alt_size
< length
) {
784 pr_err("%s, Alternate buffer is too small\n",
791 *use_phys
= source_phys
;
796 * Copy the content of the source buffer into the alternate
797 * buffer and set up the return values accordingly.
799 memcpy(alt_virt
, source
, length
);
801 *use_virt
= alt_virt
;
802 *use_phys
= alt_phys
;
806 static void send_page_end(struct gpmi_nand_data
*this,
807 const void *source
, unsigned length
,
808 void *alt_virt
, dma_addr_t alt_phys
, unsigned alt_size
,
809 const void *used_virt
, dma_addr_t used_phys
)
811 struct device
*dev
= this->dev
;
812 if (used_virt
== source
)
813 dma_unmap_single(dev
, used_phys
, length
, DMA_TO_DEVICE
);
816 static void gpmi_free_dma_buffer(struct gpmi_nand_data
*this)
818 struct device
*dev
= this->dev
;
820 if (this->page_buffer_virt
&& virt_addr_valid(this->page_buffer_virt
))
821 dma_free_coherent(dev
, this->page_buffer_size
,
822 this->page_buffer_virt
,
823 this->page_buffer_phys
);
824 kfree(this->cmd_buffer
);
825 kfree(this->data_buffer_dma
);
827 this->cmd_buffer
= NULL
;
828 this->data_buffer_dma
= NULL
;
829 this->page_buffer_virt
= NULL
;
830 this->page_buffer_size
= 0;
833 /* Allocate the DMA buffers */
834 static int gpmi_alloc_dma_buffer(struct gpmi_nand_data
*this)
836 struct bch_geometry
*geo
= &this->bch_geometry
;
837 struct device
*dev
= this->dev
;
839 /* [1] Allocate a command buffer. PAGE_SIZE is enough. */
840 this->cmd_buffer
= kzalloc(PAGE_SIZE
, GFP_DMA
| GFP_KERNEL
);
841 if (this->cmd_buffer
== NULL
)
844 /* [2] Allocate a read/write data buffer. PAGE_SIZE is enough. */
845 this->data_buffer_dma
= kzalloc(PAGE_SIZE
, GFP_DMA
| GFP_KERNEL
);
846 if (this->data_buffer_dma
== NULL
)
850 * [3] Allocate the page buffer.
852 * Both the payload buffer and the auxiliary buffer must appear on
853 * 32-bit boundaries. We presume the size of the payload buffer is a
854 * power of two and is much larger than four, which guarantees the
855 * auxiliary buffer will appear on a 32-bit boundary.
857 this->page_buffer_size
= geo
->payload_size
+ geo
->auxiliary_size
;
858 this->page_buffer_virt
= dma_alloc_coherent(dev
, this->page_buffer_size
,
859 &this->page_buffer_phys
, GFP_DMA
);
860 if (!this->page_buffer_virt
)
864 /* Slice up the page buffer. */
865 this->payload_virt
= this->page_buffer_virt
;
866 this->payload_phys
= this->page_buffer_phys
;
867 this->auxiliary_virt
= this->payload_virt
+ geo
->payload_size
;
868 this->auxiliary_phys
= this->payload_phys
+ geo
->payload_size
;
872 gpmi_free_dma_buffer(this);
873 pr_err("Error allocating DMA buffers!\n");
877 static void gpmi_cmd_ctrl(struct mtd_info
*mtd
, int data
, unsigned int ctrl
)
879 struct nand_chip
*chip
= mtd
->priv
;
880 struct gpmi_nand_data
*this = chip
->priv
;
884 * Every operation begins with a command byte and a series of zero or
885 * more address bytes. These are distinguished by either the Address
886 * Latch Enable (ALE) or Command Latch Enable (CLE) signals being
887 * asserted. When MTD is ready to execute the command, it will deassert
888 * both latch enables.
890 * Rather than run a separate DMA operation for every single byte, we
891 * queue them up and run a single DMA operation for the entire series
892 * of command and data bytes. NAND_CMD_NONE means the END of the queue.
894 if ((ctrl
& (NAND_ALE
| NAND_CLE
))) {
895 if (data
!= NAND_CMD_NONE
)
896 this->cmd_buffer
[this->command_length
++] = data
;
900 if (!this->command_length
)
903 ret
= gpmi_send_command(this);
905 pr_err("Chip: %u, Error %d\n", this->current_chip
, ret
);
907 this->command_length
= 0;
910 static int gpmi_dev_ready(struct mtd_info
*mtd
)
912 struct nand_chip
*chip
= mtd
->priv
;
913 struct gpmi_nand_data
*this = chip
->priv
;
915 return gpmi_is_ready(this, this->current_chip
);
918 static void gpmi_select_chip(struct mtd_info
*mtd
, int chipnr
)
920 struct nand_chip
*chip
= mtd
->priv
;
921 struct gpmi_nand_data
*this = chip
->priv
;
923 if ((this->current_chip
< 0) && (chipnr
>= 0))
925 else if ((this->current_chip
>= 0) && (chipnr
< 0))
928 this->current_chip
= chipnr
;
931 static void gpmi_read_buf(struct mtd_info
*mtd
, uint8_t *buf
, int len
)
933 struct nand_chip
*chip
= mtd
->priv
;
934 struct gpmi_nand_data
*this = chip
->priv
;
936 pr_debug("len is %d\n", len
);
937 this->upper_buf
= buf
;
938 this->upper_len
= len
;
940 gpmi_read_data(this);
943 static void gpmi_write_buf(struct mtd_info
*mtd
, const uint8_t *buf
, int len
)
945 struct nand_chip
*chip
= mtd
->priv
;
946 struct gpmi_nand_data
*this = chip
->priv
;
948 pr_debug("len is %d\n", len
);
949 this->upper_buf
= (uint8_t *)buf
;
950 this->upper_len
= len
;
952 gpmi_send_data(this);
955 static uint8_t gpmi_read_byte(struct mtd_info
*mtd
)
957 struct nand_chip
*chip
= mtd
->priv
;
958 struct gpmi_nand_data
*this = chip
->priv
;
959 uint8_t *buf
= this->data_buffer_dma
;
961 gpmi_read_buf(mtd
, buf
, 1);
966 * Handles block mark swapping.
967 * It can be called in swapping the block mark, or swapping it back,
968 * because the the operations are the same.
970 static void block_mark_swapping(struct gpmi_nand_data
*this,
971 void *payload
, void *auxiliary
)
973 struct bch_geometry
*nfc_geo
= &this->bch_geometry
;
978 unsigned char from_data
;
979 unsigned char from_oob
;
981 if (!this->swap_block_mark
)
985 * If control arrives here, we're swapping. Make some convenience
988 bit
= nfc_geo
->block_mark_bit_offset
;
989 p
= payload
+ nfc_geo
->block_mark_byte_offset
;
993 * Get the byte from the data area that overlays the block mark. Since
994 * the ECC engine applies its own view to the bits in the page, the
995 * physical block mark won't (in general) appear on a byte boundary in
998 from_data
= (p
[0] >> bit
) | (p
[1] << (8 - bit
));
1000 /* Get the byte from the OOB. */
1006 mask
= (0x1 << bit
) - 1;
1007 p
[0] = (p
[0] & mask
) | (from_oob
<< bit
);
1010 p
[1] = (p
[1] & mask
) | (from_oob
>> (8 - bit
));
1013 static int gpmi_ecc_read_page(struct mtd_info
*mtd
, struct nand_chip
*chip
,
1014 uint8_t *buf
, int oob_required
, int page
)
1016 struct gpmi_nand_data
*this = chip
->priv
;
1017 struct bch_geometry
*nfc_geo
= &this->bch_geometry
;
1019 dma_addr_t payload_phys
;
1020 void *auxiliary_virt
;
1021 dma_addr_t auxiliary_phys
;
1023 unsigned char *status
;
1024 unsigned int max_bitflips
= 0;
1027 pr_debug("page number is : %d\n", page
);
1028 ret
= read_page_prepare(this, buf
, mtd
->writesize
,
1029 this->payload_virt
, this->payload_phys
,
1030 nfc_geo
->payload_size
,
1031 &payload_virt
, &payload_phys
);
1033 pr_err("Inadequate DMA buffer\n");
1037 auxiliary_virt
= this->auxiliary_virt
;
1038 auxiliary_phys
= this->auxiliary_phys
;
1041 ret
= gpmi_read_page(this, payload_phys
, auxiliary_phys
);
1042 read_page_end(this, buf
, mtd
->writesize
,
1043 this->payload_virt
, this->payload_phys
,
1044 nfc_geo
->payload_size
,
1045 payload_virt
, payload_phys
);
1047 pr_err("Error in ECC-based read: %d\n", ret
);
1051 /* handle the block mark swapping */
1052 block_mark_swapping(this, payload_virt
, auxiliary_virt
);
1054 /* Loop over status bytes, accumulating ECC status. */
1055 status
= auxiliary_virt
+ nfc_geo
->auxiliary_status_offset
;
1057 for (i
= 0; i
< nfc_geo
->ecc_chunk_count
; i
++, status
++) {
1058 if ((*status
== STATUS_GOOD
) || (*status
== STATUS_ERASED
))
1061 if (*status
== STATUS_UNCORRECTABLE
) {
1062 mtd
->ecc_stats
.failed
++;
1065 mtd
->ecc_stats
.corrected
+= *status
;
1066 max_bitflips
= max_t(unsigned int, max_bitflips
, *status
);
1071 * It's time to deliver the OOB bytes. See gpmi_ecc_read_oob()
1072 * for details about our policy for delivering the OOB.
1074 * We fill the caller's buffer with set bits, and then copy the
1075 * block mark to th caller's buffer. Note that, if block mark
1076 * swapping was necessary, it has already been done, so we can
1077 * rely on the first byte of the auxiliary buffer to contain
1080 memset(chip
->oob_poi
, ~0, mtd
->oobsize
);
1081 chip
->oob_poi
[0] = ((uint8_t *) auxiliary_virt
)[0];
1084 read_page_swap_end(this, buf
, mtd
->writesize
,
1085 this->payload_virt
, this->payload_phys
,
1086 nfc_geo
->payload_size
,
1087 payload_virt
, payload_phys
);
1089 return max_bitflips
;
1092 static int gpmi_ecc_write_page(struct mtd_info
*mtd
, struct nand_chip
*chip
,
1093 const uint8_t *buf
, int oob_required
)
1095 struct gpmi_nand_data
*this = chip
->priv
;
1096 struct bch_geometry
*nfc_geo
= &this->bch_geometry
;
1097 const void *payload_virt
;
1098 dma_addr_t payload_phys
;
1099 const void *auxiliary_virt
;
1100 dma_addr_t auxiliary_phys
;
1103 pr_debug("ecc write page.\n");
1104 if (this->swap_block_mark
) {
1106 * If control arrives here, we're doing block mark swapping.
1107 * Since we can't modify the caller's buffers, we must copy them
1110 memcpy(this->payload_virt
, buf
, mtd
->writesize
);
1111 payload_virt
= this->payload_virt
;
1112 payload_phys
= this->payload_phys
;
1114 memcpy(this->auxiliary_virt
, chip
->oob_poi
,
1115 nfc_geo
->auxiliary_size
);
1116 auxiliary_virt
= this->auxiliary_virt
;
1117 auxiliary_phys
= this->auxiliary_phys
;
1119 /* Handle block mark swapping. */
1120 block_mark_swapping(this,
1121 (void *) payload_virt
, (void *) auxiliary_virt
);
1124 * If control arrives here, we're not doing block mark swapping,
1125 * so we can to try and use the caller's buffers.
1127 ret
= send_page_prepare(this,
1128 buf
, mtd
->writesize
,
1129 this->payload_virt
, this->payload_phys
,
1130 nfc_geo
->payload_size
,
1131 &payload_virt
, &payload_phys
);
1133 pr_err("Inadequate payload DMA buffer\n");
1137 ret
= send_page_prepare(this,
1138 chip
->oob_poi
, mtd
->oobsize
,
1139 this->auxiliary_virt
, this->auxiliary_phys
,
1140 nfc_geo
->auxiliary_size
,
1141 &auxiliary_virt
, &auxiliary_phys
);
1143 pr_err("Inadequate auxiliary DMA buffer\n");
1144 goto exit_auxiliary
;
1149 ret
= gpmi_send_page(this, payload_phys
, auxiliary_phys
);
1151 pr_err("Error in ECC-based write: %d\n", ret
);
1153 if (!this->swap_block_mark
) {
1154 send_page_end(this, chip
->oob_poi
, mtd
->oobsize
,
1155 this->auxiliary_virt
, this->auxiliary_phys
,
1156 nfc_geo
->auxiliary_size
,
1157 auxiliary_virt
, auxiliary_phys
);
1159 send_page_end(this, buf
, mtd
->writesize
,
1160 this->payload_virt
, this->payload_phys
,
1161 nfc_geo
->payload_size
,
1162 payload_virt
, payload_phys
);
1169 * There are several places in this driver where we have to handle the OOB and
1170 * block marks. This is the function where things are the most complicated, so
1171 * this is where we try to explain it all. All the other places refer back to
1174 * These are the rules, in order of decreasing importance:
1176 * 1) Nothing the caller does can be allowed to imperil the block mark.
1178 * 2) In read operations, the first byte of the OOB we return must reflect the
1179 * true state of the block mark, no matter where that block mark appears in
1180 * the physical page.
1182 * 3) ECC-based read operations return an OOB full of set bits (since we never
1183 * allow ECC-based writes to the OOB, it doesn't matter what ECC-based reads
1186 * 4) "Raw" read operations return a direct view of the physical bytes in the
1187 * page, using the conventional definition of which bytes are data and which
1188 * are OOB. This gives the caller a way to see the actual, physical bytes
1189 * in the page, without the distortions applied by our ECC engine.
1192 * What we do for this specific read operation depends on two questions:
1194 * 1) Are we doing a "raw" read, or an ECC-based read?
1196 * 2) Are we using block mark swapping or transcription?
1198 * There are four cases, illustrated by the following Karnaugh map:
1200 * | Raw | ECC-based |
1201 * -------------+-------------------------+-------------------------+
1202 * | Read the conventional | |
1203 * | OOB at the end of the | |
1204 * Swapping | page and return it. It | |
1205 * | contains exactly what | |
1206 * | we want. | Read the block mark and |
1207 * -------------+-------------------------+ return it in a buffer |
1208 * | Read the conventional | full of set bits. |
1209 * | OOB at the end of the | |
1210 * | page and also the block | |
1211 * Transcribing | mark in the metadata. | |
1212 * | Copy the block mark | |
1213 * | into the first byte of | |
1215 * -------------+-------------------------+-------------------------+
1217 * Note that we break rule #4 in the Transcribing/Raw case because we're not
1218 * giving an accurate view of the actual, physical bytes in the page (we're
1219 * overwriting the block mark). That's OK because it's more important to follow
1222 * It turns out that knowing whether we want an "ECC-based" or "raw" read is not
1223 * easy. When reading a page, for example, the NAND Flash MTD code calls our
1224 * ecc.read_page or ecc.read_page_raw function. Thus, the fact that MTD wants an
1225 * ECC-based or raw view of the page is implicit in which function it calls
1226 * (there is a similar pair of ECC-based/raw functions for writing).
1228 * FIXME: The following paragraph is incorrect, now that there exist
1229 * ecc.read_oob_raw and ecc.write_oob_raw functions.
1231 * Since MTD assumes the OOB is not covered by ECC, there is no pair of
1232 * ECC-based/raw functions for reading or or writing the OOB. The fact that the
1233 * caller wants an ECC-based or raw view of the page is not propagated down to
1236 static int gpmi_ecc_read_oob(struct mtd_info
*mtd
, struct nand_chip
*chip
,
1239 struct gpmi_nand_data
*this = chip
->priv
;
1241 pr_debug("page number is %d\n", page
);
1242 /* clear the OOB buffer */
1243 memset(chip
->oob_poi
, ~0, mtd
->oobsize
);
1245 /* Read out the conventional OOB. */
1246 chip
->cmdfunc(mtd
, NAND_CMD_READ0
, mtd
->writesize
, page
);
1247 chip
->read_buf(mtd
, chip
->oob_poi
, mtd
->oobsize
);
1250 * Now, we want to make sure the block mark is correct. In the
1251 * Swapping/Raw case, we already have it. Otherwise, we need to
1252 * explicitly read it.
1254 if (!this->swap_block_mark
) {
1255 /* Read the block mark into the first byte of the OOB buffer. */
1256 chip
->cmdfunc(mtd
, NAND_CMD_READ0
, 0, page
);
1257 chip
->oob_poi
[0] = chip
->read_byte(mtd
);
1264 gpmi_ecc_write_oob(struct mtd_info
*mtd
, struct nand_chip
*chip
, int page
)
1267 * The BCH will use all the (page + oob).
1268 * Our gpmi_hw_ecclayout can only prohibit the JFFS2 to write the oob.
1269 * But it can not stop some ioctls such MEMWRITEOOB which uses
1270 * MTD_OPS_PLACE_OOB. So We have to implement this function to prohibit
1276 static int gpmi_block_markbad(struct mtd_info
*mtd
, loff_t ofs
)
1278 struct nand_chip
*chip
= mtd
->priv
;
1279 struct gpmi_nand_data
*this = chip
->priv
;
1281 uint8_t *block_mark
;
1282 int column
, page
, status
, chipnr
;
1284 chipnr
= (int)(ofs
>> chip
->chip_shift
);
1285 chip
->select_chip(mtd
, chipnr
);
1287 column
= this->swap_block_mark
? mtd
->writesize
: 0;
1289 /* Write the block mark. */
1290 block_mark
= this->data_buffer_dma
;
1291 block_mark
[0] = 0; /* bad block marker */
1293 /* Shift to get page */
1294 page
= (int)(ofs
>> chip
->page_shift
);
1296 chip
->cmdfunc(mtd
, NAND_CMD_SEQIN
, column
, page
);
1297 chip
->write_buf(mtd
, block_mark
, 1);
1298 chip
->cmdfunc(mtd
, NAND_CMD_PAGEPROG
, -1, -1);
1300 status
= chip
->waitfunc(mtd
, chip
);
1301 if (status
& NAND_STATUS_FAIL
)
1304 chip
->select_chip(mtd
, -1);
1309 static int nand_boot_set_geometry(struct gpmi_nand_data
*this)
1311 struct boot_rom_geometry
*geometry
= &this->rom_geometry
;
1314 * Set the boot block stride size.
1316 * In principle, we should be reading this from the OTP bits, since
1317 * that's where the ROM is going to get it. In fact, we don't have any
1318 * way to read the OTP bits, so we go with the default and hope for the
1321 geometry
->stride_size_in_pages
= 64;
1324 * Set the search area stride exponent.
1326 * In principle, we should be reading this from the OTP bits, since
1327 * that's where the ROM is going to get it. In fact, we don't have any
1328 * way to read the OTP bits, so we go with the default and hope for the
1331 geometry
->search_area_stride_exponent
= 2;
1335 static const char *fingerprint
= "STMP";
1336 static int mx23_check_transcription_stamp(struct gpmi_nand_data
*this)
1338 struct boot_rom_geometry
*rom_geo
= &this->rom_geometry
;
1339 struct device
*dev
= this->dev
;
1340 struct mtd_info
*mtd
= &this->mtd
;
1341 struct nand_chip
*chip
= &this->nand
;
1342 unsigned int search_area_size_in_strides
;
1343 unsigned int stride
;
1345 uint8_t *buffer
= chip
->buffers
->databuf
;
1346 int saved_chip_number
;
1347 int found_an_ncb_fingerprint
= false;
1349 /* Compute the number of strides in a search area. */
1350 search_area_size_in_strides
= 1 << rom_geo
->search_area_stride_exponent
;
1352 saved_chip_number
= this->current_chip
;
1353 chip
->select_chip(mtd
, 0);
1356 * Loop through the first search area, looking for the NCB fingerprint.
1358 dev_dbg(dev
, "Scanning for an NCB fingerprint...\n");
1360 for (stride
= 0; stride
< search_area_size_in_strides
; stride
++) {
1361 /* Compute the page addresses. */
1362 page
= stride
* rom_geo
->stride_size_in_pages
;
1364 dev_dbg(dev
, "Looking for a fingerprint in page 0x%x\n", page
);
1367 * Read the NCB fingerprint. The fingerprint is four bytes long
1368 * and starts in the 12th byte of the page.
1370 chip
->cmdfunc(mtd
, NAND_CMD_READ0
, 12, page
);
1371 chip
->read_buf(mtd
, buffer
, strlen(fingerprint
));
1373 /* Look for the fingerprint. */
1374 if (!memcmp(buffer
, fingerprint
, strlen(fingerprint
))) {
1375 found_an_ncb_fingerprint
= true;
1381 chip
->select_chip(mtd
, saved_chip_number
);
1383 if (found_an_ncb_fingerprint
)
1384 dev_dbg(dev
, "\tFound a fingerprint\n");
1386 dev_dbg(dev
, "\tNo fingerprint found\n");
1387 return found_an_ncb_fingerprint
;
1390 /* Writes a transcription stamp. */
1391 static int mx23_write_transcription_stamp(struct gpmi_nand_data
*this)
1393 struct device
*dev
= this->dev
;
1394 struct boot_rom_geometry
*rom_geo
= &this->rom_geometry
;
1395 struct mtd_info
*mtd
= &this->mtd
;
1396 struct nand_chip
*chip
= &this->nand
;
1397 unsigned int block_size_in_pages
;
1398 unsigned int search_area_size_in_strides
;
1399 unsigned int search_area_size_in_pages
;
1400 unsigned int search_area_size_in_blocks
;
1402 unsigned int stride
;
1404 uint8_t *buffer
= chip
->buffers
->databuf
;
1405 int saved_chip_number
;
1408 /* Compute the search area geometry. */
1409 block_size_in_pages
= mtd
->erasesize
/ mtd
->writesize
;
1410 search_area_size_in_strides
= 1 << rom_geo
->search_area_stride_exponent
;
1411 search_area_size_in_pages
= search_area_size_in_strides
*
1412 rom_geo
->stride_size_in_pages
;
1413 search_area_size_in_blocks
=
1414 (search_area_size_in_pages
+ (block_size_in_pages
- 1)) /
1415 block_size_in_pages
;
1417 dev_dbg(dev
, "Search Area Geometry :\n");
1418 dev_dbg(dev
, "\tin Blocks : %u\n", search_area_size_in_blocks
);
1419 dev_dbg(dev
, "\tin Strides: %u\n", search_area_size_in_strides
);
1420 dev_dbg(dev
, "\tin Pages : %u\n", search_area_size_in_pages
);
1422 /* Select chip 0. */
1423 saved_chip_number
= this->current_chip
;
1424 chip
->select_chip(mtd
, 0);
1426 /* Loop over blocks in the first search area, erasing them. */
1427 dev_dbg(dev
, "Erasing the search area...\n");
1429 for (block
= 0; block
< search_area_size_in_blocks
; block
++) {
1430 /* Compute the page address. */
1431 page
= block
* block_size_in_pages
;
1433 /* Erase this block. */
1434 dev_dbg(dev
, "\tErasing block 0x%x\n", block
);
1435 chip
->cmdfunc(mtd
, NAND_CMD_ERASE1
, -1, page
);
1436 chip
->cmdfunc(mtd
, NAND_CMD_ERASE2
, -1, -1);
1438 /* Wait for the erase to finish. */
1439 status
= chip
->waitfunc(mtd
, chip
);
1440 if (status
& NAND_STATUS_FAIL
)
1441 dev_err(dev
, "[%s] Erase failed.\n", __func__
);
1444 /* Write the NCB fingerprint into the page buffer. */
1445 memset(buffer
, ~0, mtd
->writesize
);
1446 memset(chip
->oob_poi
, ~0, mtd
->oobsize
);
1447 memcpy(buffer
+ 12, fingerprint
, strlen(fingerprint
));
1449 /* Loop through the first search area, writing NCB fingerprints. */
1450 dev_dbg(dev
, "Writing NCB fingerprints...\n");
1451 for (stride
= 0; stride
< search_area_size_in_strides
; stride
++) {
1452 /* Compute the page addresses. */
1453 page
= stride
* rom_geo
->stride_size_in_pages
;
1455 /* Write the first page of the current stride. */
1456 dev_dbg(dev
, "Writing an NCB fingerprint in page 0x%x\n", page
);
1457 chip
->cmdfunc(mtd
, NAND_CMD_SEQIN
, 0x00, page
);
1458 chip
->ecc
.write_page_raw(mtd
, chip
, buffer
, 0);
1459 chip
->cmdfunc(mtd
, NAND_CMD_PAGEPROG
, -1, -1);
1461 /* Wait for the write to finish. */
1462 status
= chip
->waitfunc(mtd
, chip
);
1463 if (status
& NAND_STATUS_FAIL
)
1464 dev_err(dev
, "[%s] Write failed.\n", __func__
);
1467 /* Deselect chip 0. */
1468 chip
->select_chip(mtd
, saved_chip_number
);
1472 static int mx23_boot_init(struct gpmi_nand_data
*this)
1474 struct device
*dev
= this->dev
;
1475 struct nand_chip
*chip
= &this->nand
;
1476 struct mtd_info
*mtd
= &this->mtd
;
1477 unsigned int block_count
;
1486 * If control arrives here, we can't use block mark swapping, which
1487 * means we're forced to use transcription. First, scan for the
1488 * transcription stamp. If we find it, then we don't have to do
1489 * anything -- the block marks are already transcribed.
1491 if (mx23_check_transcription_stamp(this))
1495 * If control arrives here, we couldn't find a transcription stamp, so
1496 * so we presume the block marks are in the conventional location.
1498 dev_dbg(dev
, "Transcribing bad block marks...\n");
1500 /* Compute the number of blocks in the entire medium. */
1501 block_count
= chip
->chipsize
>> chip
->phys_erase_shift
;
1504 * Loop over all the blocks in the medium, transcribing block marks as
1507 for (block
= 0; block
< block_count
; block
++) {
1509 * Compute the chip, page and byte addresses for this block's
1510 * conventional mark.
1512 chipnr
= block
>> (chip
->chip_shift
- chip
->phys_erase_shift
);
1513 page
= block
<< (chip
->phys_erase_shift
- chip
->page_shift
);
1514 byte
= block
<< chip
->phys_erase_shift
;
1516 /* Send the command to read the conventional block mark. */
1517 chip
->select_chip(mtd
, chipnr
);
1518 chip
->cmdfunc(mtd
, NAND_CMD_READ0
, mtd
->writesize
, page
);
1519 block_mark
= chip
->read_byte(mtd
);
1520 chip
->select_chip(mtd
, -1);
1523 * Check if the block is marked bad. If so, we need to mark it
1524 * again, but this time the result will be a mark in the
1525 * location where we transcribe block marks.
1527 if (block_mark
!= 0xff) {
1528 dev_dbg(dev
, "Transcribing mark in block %u\n", block
);
1529 ret
= chip
->block_markbad(mtd
, byte
);
1531 dev_err(dev
, "Failed to mark block bad with "
1536 /* Write the stamp that indicates we've transcribed the block marks. */
1537 mx23_write_transcription_stamp(this);
1541 static int nand_boot_init(struct gpmi_nand_data
*this)
1543 nand_boot_set_geometry(this);
1545 /* This is ROM arch-specific initilization before the BBT scanning. */
1546 if (GPMI_IS_MX23(this))
1547 return mx23_boot_init(this);
1551 static int gpmi_set_geometry(struct gpmi_nand_data
*this)
1555 /* Free the temporary DMA memory for reading ID. */
1556 gpmi_free_dma_buffer(this);
1558 /* Set up the NFC geometry which is used by BCH. */
1559 ret
= bch_set_geometry(this);
1561 pr_err("Error setting BCH geometry : %d\n", ret
);
1565 /* Alloc the new DMA buffers according to the pagesize and oobsize */
1566 return gpmi_alloc_dma_buffer(this);
1569 static int gpmi_pre_bbt_scan(struct gpmi_nand_data
*this)
1571 /* Set up swap_block_mark, must be set before the gpmi_set_geometry() */
1572 if (GPMI_IS_MX23(this))
1573 this->swap_block_mark
= false;
1575 this->swap_block_mark
= true;
1577 /* Set up the medium geometry */
1578 return gpmi_set_geometry(this);
1582 static void gpmi_nfc_exit(struct gpmi_nand_data
*this)
1584 nand_release(&this->mtd
);
1585 gpmi_free_dma_buffer(this);
1588 static int gpmi_init_last(struct gpmi_nand_data
*this)
1590 struct mtd_info
*mtd
= &this->mtd
;
1591 struct nand_chip
*chip
= mtd
->priv
;
1592 struct nand_ecc_ctrl
*ecc
= &chip
->ecc
;
1593 struct bch_geometry
*bch_geo
= &this->bch_geometry
;
1596 /* Prepare for the BBT scan. */
1597 ret
= gpmi_pre_bbt_scan(this);
1601 /* Init the nand_ecc_ctrl{} */
1602 ecc
->read_page
= gpmi_ecc_read_page
;
1603 ecc
->write_page
= gpmi_ecc_write_page
;
1604 ecc
->read_oob
= gpmi_ecc_read_oob
;
1605 ecc
->write_oob
= gpmi_ecc_write_oob
;
1606 ecc
->mode
= NAND_ECC_HW
;
1607 ecc
->size
= bch_geo
->ecc_chunk_size
;
1608 ecc
->strength
= bch_geo
->ecc_strength
;
1609 ecc
->layout
= &gpmi_hw_ecclayout
;
1612 * Can we enable the extra features? such as EDO or Sync mode.
1614 * We do not check the return value now. That's means if we fail in
1615 * enable the extra features, we still can run in the normal way.
1617 gpmi_extra_init(this);
1622 static int gpmi_nfc_init(struct gpmi_nand_data
*this)
1624 struct mtd_info
*mtd
= &this->mtd
;
1625 struct nand_chip
*chip
= &this->nand
;
1626 struct mtd_part_parser_data ppdata
= {};
1629 /* init current chip */
1630 this->current_chip
= -1;
1632 /* init the MTD data structures */
1634 mtd
->name
= "gpmi-nand";
1635 mtd
->owner
= THIS_MODULE
;
1637 /* init the nand_chip{}, we don't support a 16-bit NAND Flash bus. */
1639 chip
->select_chip
= gpmi_select_chip
;
1640 chip
->cmd_ctrl
= gpmi_cmd_ctrl
;
1641 chip
->dev_ready
= gpmi_dev_ready
;
1642 chip
->read_byte
= gpmi_read_byte
;
1643 chip
->read_buf
= gpmi_read_buf
;
1644 chip
->write_buf
= gpmi_write_buf
;
1645 chip
->badblock_pattern
= &gpmi_bbt_descr
;
1646 chip
->block_markbad
= gpmi_block_markbad
;
1647 chip
->options
|= NAND_NO_SUBPAGE_WRITE
;
1648 if (of_get_nand_on_flash_bbt(this->dev
->of_node
))
1649 chip
->bbt_options
|= NAND_BBT_USE_FLASH
| NAND_BBT_NO_OOB
;
1652 * Allocate a temporary DMA buffer for reading ID in the
1653 * nand_scan_ident().
1655 this->bch_geometry
.payload_size
= 1024;
1656 this->bch_geometry
.auxiliary_size
= 128;
1657 ret
= gpmi_alloc_dma_buffer(this);
1661 ret
= nand_scan_ident(mtd
, 1, NULL
);
1665 ret
= gpmi_init_last(this);
1669 chip
->options
|= NAND_SKIP_BBTSCAN
;
1670 ret
= nand_scan_tail(mtd
);
1674 ret
= nand_boot_init(this);
1677 chip
->scan_bbt(mtd
);
1679 ppdata
.of_node
= this->pdev
->dev
.of_node
;
1680 ret
= mtd_device_parse_register(mtd
, NULL
, &ppdata
, NULL
, 0);
1686 gpmi_nfc_exit(this);
1690 static const struct platform_device_id gpmi_ids
[] = {
1691 { .name
= "imx23-gpmi-nand", .driver_data
= IS_MX23
, },
1692 { .name
= "imx28-gpmi-nand", .driver_data
= IS_MX28
, },
1693 { .name
= "imx6q-gpmi-nand", .driver_data
= IS_MX6Q
, },
1697 static const struct of_device_id gpmi_nand_id_table
[] = {
1699 .compatible
= "fsl,imx23-gpmi-nand",
1700 .data
= (void *)&gpmi_ids
[IS_MX23
]
1702 .compatible
= "fsl,imx28-gpmi-nand",
1703 .data
= (void *)&gpmi_ids
[IS_MX28
]
1705 .compatible
= "fsl,imx6q-gpmi-nand",
1706 .data
= (void *)&gpmi_ids
[IS_MX6Q
]
1709 MODULE_DEVICE_TABLE(of
, gpmi_nand_id_table
);
1711 static int gpmi_nand_probe(struct platform_device
*pdev
)
1713 struct gpmi_nand_data
*this;
1714 const struct of_device_id
*of_id
;
1717 of_id
= of_match_device(gpmi_nand_id_table
, &pdev
->dev
);
1719 pdev
->id_entry
= of_id
->data
;
1721 pr_err("Failed to find the right device id.\n");
1725 this = kzalloc(sizeof(*this), GFP_KERNEL
);
1727 pr_err("Failed to allocate per-device memory\n");
1731 platform_set_drvdata(pdev
, this);
1733 this->dev
= &pdev
->dev
;
1735 ret
= acquire_resources(this);
1737 goto exit_acquire_resources
;
1739 ret
= init_hardware(this);
1743 ret
= gpmi_nfc_init(this);
1747 dev_info(this->dev
, "driver registered.\n");
1752 release_resources(this);
1753 exit_acquire_resources
:
1754 dev_err(this->dev
, "driver registration failed: %d\n", ret
);
1760 static int gpmi_nand_remove(struct platform_device
*pdev
)
1762 struct gpmi_nand_data
*this = platform_get_drvdata(pdev
);
1764 gpmi_nfc_exit(this);
1765 release_resources(this);
1770 static struct platform_driver gpmi_nand_driver
= {
1772 .name
= "gpmi-nand",
1773 .of_match_table
= gpmi_nand_id_table
,
1775 .probe
= gpmi_nand_probe
,
1776 .remove
= gpmi_nand_remove
,
1777 .id_table
= gpmi_ids
,
1779 module_platform_driver(gpmi_nand_driver
);
1781 MODULE_AUTHOR("Freescale Semiconductor, Inc.");
1782 MODULE_DESCRIPTION("i.MX GPMI NAND Flash Controller Driver");
1783 MODULE_LICENSE("GPL");