mfd: wm8350-i2c: Make sure the i2c regmap functions are compiled
[linux/fpc-iii.git] / drivers / mtd / nand / gpmi-nand / gpmi-nand.c
bloba926017882c60a5097b038173946793be5356a8e
1 /*
2 * Freescale GPMI NAND Flash Driver
4 * Copyright (C) 2010-2011 Freescale Semiconductor, Inc.
5 * Copyright (C) 2008 Embedded Alley Solutions, Inc.
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation; either version 2 of the License, or
10 * (at your option) any later version.
12 * This program is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 * GNU General Public License for more details.
17 * You should have received a copy of the GNU General Public License along
18 * with this program; if not, write to the Free Software Foundation, Inc.,
19 * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
22 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
24 #include <linux/clk.h>
25 #include <linux/slab.h>
26 #include <linux/interrupt.h>
27 #include <linux/module.h>
28 #include <linux/mtd/partitions.h>
29 #include <linux/of.h>
30 #include <linux/of_device.h>
31 #include <linux/of_mtd.h>
32 #include "gpmi-nand.h"
34 /* Resource names for the GPMI NAND driver. */
35 #define GPMI_NAND_GPMI_REGS_ADDR_RES_NAME "gpmi-nand"
36 #define GPMI_NAND_BCH_REGS_ADDR_RES_NAME "bch"
37 #define GPMI_NAND_BCH_INTERRUPT_RES_NAME "bch"
39 /* add our owner bbt descriptor */
40 static uint8_t scan_ff_pattern[] = { 0xff };
41 static struct nand_bbt_descr gpmi_bbt_descr = {
42 .options = 0,
43 .offs = 0,
44 .len = 1,
45 .pattern = scan_ff_pattern
48 /* We will use all the (page + OOB). */
49 static struct nand_ecclayout gpmi_hw_ecclayout = {
50 .eccbytes = 0,
51 .eccpos = { 0, },
52 .oobfree = { {.offset = 0, .length = 0} }
55 static irqreturn_t bch_irq(int irq, void *cookie)
57 struct gpmi_nand_data *this = cookie;
59 gpmi_clear_bch(this);
60 complete(&this->bch_done);
61 return IRQ_HANDLED;
65 * Calculate the ECC strength by hand:
66 * E : The ECC strength.
67 * G : the length of Galois Field.
68 * N : The chunk count of per page.
69 * O : the oobsize of the NAND chip.
70 * M : the metasize of per page.
72 * The formula is :
73 * E * G * N
74 * ------------ <= (O - M)
75 * 8
77 * So, we get E by:
78 * (O - M) * 8
79 * E <= -------------
80 * G * N
82 static inline int get_ecc_strength(struct gpmi_nand_data *this)
84 struct bch_geometry *geo = &this->bch_geometry;
85 struct mtd_info *mtd = &this->mtd;
86 int ecc_strength;
88 ecc_strength = ((mtd->oobsize - geo->metadata_size) * 8)
89 / (geo->gf_len * geo->ecc_chunk_count);
91 /* We need the minor even number. */
92 return round_down(ecc_strength, 2);
95 static inline bool gpmi_check_ecc(struct gpmi_nand_data *this)
97 struct bch_geometry *geo = &this->bch_geometry;
99 /* Do the sanity check. */
100 if (GPMI_IS_MX23(this) || GPMI_IS_MX28(this)) {
101 /* The mx23/mx28 only support the GF13. */
102 if (geo->gf_len == 14)
103 return false;
105 if (geo->ecc_strength > MXS_ECC_STRENGTH_MAX)
106 return false;
107 } else if (GPMI_IS_MX6Q(this)) {
108 if (geo->ecc_strength > MX6_ECC_STRENGTH_MAX)
109 return false;
111 return true;
115 * If we can get the ECC information from the nand chip, we do not
116 * need to calculate them ourselves.
118 * We may have available oob space in this case.
120 static bool set_geometry_by_ecc_info(struct gpmi_nand_data *this)
122 struct bch_geometry *geo = &this->bch_geometry;
123 struct mtd_info *mtd = &this->mtd;
124 struct nand_chip *chip = mtd->priv;
125 struct nand_oobfree *of = gpmi_hw_ecclayout.oobfree;
126 unsigned int block_mark_bit_offset;
128 if (!(chip->ecc_strength_ds > 0 && chip->ecc_step_ds > 0))
129 return false;
131 switch (chip->ecc_step_ds) {
132 case SZ_512:
133 geo->gf_len = 13;
134 break;
135 case SZ_1K:
136 geo->gf_len = 14;
137 break;
138 default:
139 dev_err(this->dev,
140 "unsupported nand chip. ecc bits : %d, ecc size : %d\n",
141 chip->ecc_strength_ds, chip->ecc_step_ds);
142 return false;
144 geo->ecc_chunk_size = chip->ecc_step_ds;
145 geo->ecc_strength = round_up(chip->ecc_strength_ds, 2);
146 if (!gpmi_check_ecc(this))
147 return false;
149 /* Keep the C >= O */
150 if (geo->ecc_chunk_size < mtd->oobsize) {
151 dev_err(this->dev,
152 "unsupported nand chip. ecc size: %d, oob size : %d\n",
153 chip->ecc_step_ds, mtd->oobsize);
154 return false;
157 /* The default value, see comment in the legacy_set_geometry(). */
158 geo->metadata_size = 10;
160 geo->ecc_chunk_count = mtd->writesize / geo->ecc_chunk_size;
163 * Now, the NAND chip with 2K page(data chunk is 512byte) shows below:
165 * | P |
166 * |<----------------------------------------------------->|
167 * | |
168 * | (Block Mark) |
169 * | P' | | | |
170 * |<-------------------------------------------->| D | | O' |
171 * | |<---->| |<--->|
172 * V V V V V
173 * +---+----------+-+----------+-+----------+-+----------+-+-----+
174 * | M | data |E| data |E| data |E| data |E| |
175 * +---+----------+-+----------+-+----------+-+----------+-+-----+
176 * ^ ^
177 * | O |
178 * |<------------>|
179 * | |
181 * P : the page size for BCH module.
182 * E : The ECC strength.
183 * G : the length of Galois Field.
184 * N : The chunk count of per page.
185 * M : the metasize of per page.
186 * C : the ecc chunk size, aka the "data" above.
187 * P': the nand chip's page size.
188 * O : the nand chip's oob size.
189 * O': the free oob.
191 * The formula for P is :
193 * E * G * N
194 * P = ------------ + P' + M
197 * The position of block mark moves forward in the ECC-based view
198 * of page, and the delta is:
200 * E * G * (N - 1)
201 * D = (---------------- + M)
204 * Please see the comment in legacy_set_geometry().
205 * With the condition C >= O , we still can get same result.
206 * So the bit position of the physical block mark within the ECC-based
207 * view of the page is :
208 * (P' - D) * 8
210 geo->page_size = mtd->writesize + geo->metadata_size +
211 (geo->gf_len * geo->ecc_strength * geo->ecc_chunk_count) / 8;
213 /* The available oob size we have. */
214 if (geo->page_size < mtd->writesize + mtd->oobsize) {
215 of->offset = geo->page_size - mtd->writesize;
216 of->length = mtd->oobsize - of->offset;
219 geo->payload_size = mtd->writesize;
221 geo->auxiliary_status_offset = ALIGN(geo->metadata_size, 4);
222 geo->auxiliary_size = ALIGN(geo->metadata_size, 4)
223 + ALIGN(geo->ecc_chunk_count, 4);
225 if (!this->swap_block_mark)
226 return true;
228 /* For bit swap. */
229 block_mark_bit_offset = mtd->writesize * 8 -
230 (geo->ecc_strength * geo->gf_len * (geo->ecc_chunk_count - 1)
231 + geo->metadata_size * 8);
233 geo->block_mark_byte_offset = block_mark_bit_offset / 8;
234 geo->block_mark_bit_offset = block_mark_bit_offset % 8;
235 return true;
238 static int legacy_set_geometry(struct gpmi_nand_data *this)
240 struct bch_geometry *geo = &this->bch_geometry;
241 struct mtd_info *mtd = &this->mtd;
242 unsigned int metadata_size;
243 unsigned int status_size;
244 unsigned int block_mark_bit_offset;
247 * The size of the metadata can be changed, though we set it to 10
248 * bytes now. But it can't be too large, because we have to save
249 * enough space for BCH.
251 geo->metadata_size = 10;
253 /* The default for the length of Galois Field. */
254 geo->gf_len = 13;
256 /* The default for chunk size. */
257 geo->ecc_chunk_size = 512;
258 while (geo->ecc_chunk_size < mtd->oobsize) {
259 geo->ecc_chunk_size *= 2; /* keep C >= O */
260 geo->gf_len = 14;
263 geo->ecc_chunk_count = mtd->writesize / geo->ecc_chunk_size;
265 /* We use the same ECC strength for all chunks. */
266 geo->ecc_strength = get_ecc_strength(this);
267 if (!gpmi_check_ecc(this)) {
268 dev_err(this->dev,
269 "We can not support this nand chip."
270 " Its required ecc strength(%d) is beyond our"
271 " capability(%d).\n", geo->ecc_strength,
272 (GPMI_IS_MX6Q(this) ? MX6_ECC_STRENGTH_MAX
273 : MXS_ECC_STRENGTH_MAX));
274 return -EINVAL;
277 geo->page_size = mtd->writesize + mtd->oobsize;
278 geo->payload_size = mtd->writesize;
281 * The auxiliary buffer contains the metadata and the ECC status. The
282 * metadata is padded to the nearest 32-bit boundary. The ECC status
283 * contains one byte for every ECC chunk, and is also padded to the
284 * nearest 32-bit boundary.
286 metadata_size = ALIGN(geo->metadata_size, 4);
287 status_size = ALIGN(geo->ecc_chunk_count, 4);
289 geo->auxiliary_size = metadata_size + status_size;
290 geo->auxiliary_status_offset = metadata_size;
292 if (!this->swap_block_mark)
293 return 0;
296 * We need to compute the byte and bit offsets of
297 * the physical block mark within the ECC-based view of the page.
299 * NAND chip with 2K page shows below:
300 * (Block Mark)
301 * | |
302 * | D |
303 * |<---->|
304 * V V
305 * +---+----------+-+----------+-+----------+-+----------+-+
306 * | M | data |E| data |E| data |E| data |E|
307 * +---+----------+-+----------+-+----------+-+----------+-+
309 * The position of block mark moves forward in the ECC-based view
310 * of page, and the delta is:
312 * E * G * (N - 1)
313 * D = (---------------- + M)
316 * With the formula to compute the ECC strength, and the condition
317 * : C >= O (C is the ecc chunk size)
319 * It's easy to deduce to the following result:
321 * E * G (O - M) C - M C - M
322 * ----------- <= ------- <= -------- < ---------
323 * 8 N N (N - 1)
325 * So, we get:
327 * E * G * (N - 1)
328 * D = (---------------- + M) < C
331 * The above inequality means the position of block mark
332 * within the ECC-based view of the page is still in the data chunk,
333 * and it's NOT in the ECC bits of the chunk.
335 * Use the following to compute the bit position of the
336 * physical block mark within the ECC-based view of the page:
337 * (page_size - D) * 8
339 * --Huang Shijie
341 block_mark_bit_offset = mtd->writesize * 8 -
342 (geo->ecc_strength * geo->gf_len * (geo->ecc_chunk_count - 1)
343 + geo->metadata_size * 8);
345 geo->block_mark_byte_offset = block_mark_bit_offset / 8;
346 geo->block_mark_bit_offset = block_mark_bit_offset % 8;
347 return 0;
350 int common_nfc_set_geometry(struct gpmi_nand_data *this)
352 return legacy_set_geometry(this);
355 struct dma_chan *get_dma_chan(struct gpmi_nand_data *this)
357 int chipnr = this->current_chip;
359 return this->dma_chans[chipnr];
362 /* Can we use the upper's buffer directly for DMA? */
363 void prepare_data_dma(struct gpmi_nand_data *this, enum dma_data_direction dr)
365 struct scatterlist *sgl = &this->data_sgl;
366 int ret;
368 this->direct_dma_map_ok = true;
370 /* first try to map the upper buffer directly */
371 sg_init_one(sgl, this->upper_buf, this->upper_len);
372 ret = dma_map_sg(this->dev, sgl, 1, dr);
373 if (ret == 0) {
374 /* We have to use our own DMA buffer. */
375 sg_init_one(sgl, this->data_buffer_dma, PAGE_SIZE);
377 if (dr == DMA_TO_DEVICE)
378 memcpy(this->data_buffer_dma, this->upper_buf,
379 this->upper_len);
381 ret = dma_map_sg(this->dev, sgl, 1, dr);
382 if (ret == 0)
383 pr_err("DMA mapping failed.\n");
385 this->direct_dma_map_ok = false;
389 /* This will be called after the DMA operation is finished. */
390 static void dma_irq_callback(void *param)
392 struct gpmi_nand_data *this = param;
393 struct completion *dma_c = &this->dma_done;
395 switch (this->dma_type) {
396 case DMA_FOR_COMMAND:
397 dma_unmap_sg(this->dev, &this->cmd_sgl, 1, DMA_TO_DEVICE);
398 break;
400 case DMA_FOR_READ_DATA:
401 dma_unmap_sg(this->dev, &this->data_sgl, 1, DMA_FROM_DEVICE);
402 if (this->direct_dma_map_ok == false)
403 memcpy(this->upper_buf, this->data_buffer_dma,
404 this->upper_len);
405 break;
407 case DMA_FOR_WRITE_DATA:
408 dma_unmap_sg(this->dev, &this->data_sgl, 1, DMA_TO_DEVICE);
409 break;
411 case DMA_FOR_READ_ECC_PAGE:
412 case DMA_FOR_WRITE_ECC_PAGE:
413 /* We have to wait the BCH interrupt to finish. */
414 break;
416 default:
417 pr_err("in wrong DMA operation.\n");
420 complete(dma_c);
423 int start_dma_without_bch_irq(struct gpmi_nand_data *this,
424 struct dma_async_tx_descriptor *desc)
426 struct completion *dma_c = &this->dma_done;
427 int err;
429 init_completion(dma_c);
431 desc->callback = dma_irq_callback;
432 desc->callback_param = this;
433 dmaengine_submit(desc);
434 dma_async_issue_pending(get_dma_chan(this));
436 /* Wait for the interrupt from the DMA block. */
437 err = wait_for_completion_timeout(dma_c, msecs_to_jiffies(1000));
438 if (!err) {
439 pr_err("DMA timeout, last DMA :%d\n", this->last_dma_type);
440 gpmi_dump_info(this);
441 return -ETIMEDOUT;
443 return 0;
447 * This function is used in BCH reading or BCH writing pages.
448 * It will wait for the BCH interrupt as long as ONE second.
449 * Actually, we must wait for two interrupts :
450 * [1] firstly the DMA interrupt and
451 * [2] secondly the BCH interrupt.
453 int start_dma_with_bch_irq(struct gpmi_nand_data *this,
454 struct dma_async_tx_descriptor *desc)
456 struct completion *bch_c = &this->bch_done;
457 int err;
459 /* Prepare to receive an interrupt from the BCH block. */
460 init_completion(bch_c);
462 /* start the DMA */
463 start_dma_without_bch_irq(this, desc);
465 /* Wait for the interrupt from the BCH block. */
466 err = wait_for_completion_timeout(bch_c, msecs_to_jiffies(1000));
467 if (!err) {
468 pr_err("BCH timeout, last DMA :%d\n", this->last_dma_type);
469 gpmi_dump_info(this);
470 return -ETIMEDOUT;
472 return 0;
475 static int acquire_register_block(struct gpmi_nand_data *this,
476 const char *res_name)
478 struct platform_device *pdev = this->pdev;
479 struct resources *res = &this->resources;
480 struct resource *r;
481 void __iomem *p;
483 r = platform_get_resource_byname(pdev, IORESOURCE_MEM, res_name);
484 if (!r) {
485 pr_err("Can't get resource for %s\n", res_name);
486 return -ENODEV;
489 p = ioremap(r->start, resource_size(r));
490 if (!p) {
491 pr_err("Can't remap %s\n", res_name);
492 return -ENOMEM;
495 if (!strcmp(res_name, GPMI_NAND_GPMI_REGS_ADDR_RES_NAME))
496 res->gpmi_regs = p;
497 else if (!strcmp(res_name, GPMI_NAND_BCH_REGS_ADDR_RES_NAME))
498 res->bch_regs = p;
499 else
500 pr_err("unknown resource name : %s\n", res_name);
502 return 0;
505 static void release_register_block(struct gpmi_nand_data *this)
507 struct resources *res = &this->resources;
508 if (res->gpmi_regs)
509 iounmap(res->gpmi_regs);
510 if (res->bch_regs)
511 iounmap(res->bch_regs);
512 res->gpmi_regs = NULL;
513 res->bch_regs = NULL;
516 static int acquire_bch_irq(struct gpmi_nand_data *this, irq_handler_t irq_h)
518 struct platform_device *pdev = this->pdev;
519 struct resources *res = &this->resources;
520 const char *res_name = GPMI_NAND_BCH_INTERRUPT_RES_NAME;
521 struct resource *r;
522 int err;
524 r = platform_get_resource_byname(pdev, IORESOURCE_IRQ, res_name);
525 if (!r) {
526 pr_err("Can't get resource for %s\n", res_name);
527 return -ENODEV;
530 err = request_irq(r->start, irq_h, 0, res_name, this);
531 if (err) {
532 pr_err("Can't own %s\n", res_name);
533 return err;
536 res->bch_low_interrupt = r->start;
537 res->bch_high_interrupt = r->end;
538 return 0;
541 static void release_bch_irq(struct gpmi_nand_data *this)
543 struct resources *res = &this->resources;
544 int i = res->bch_low_interrupt;
546 for (; i <= res->bch_high_interrupt; i++)
547 free_irq(i, this);
550 static void release_dma_channels(struct gpmi_nand_data *this)
552 unsigned int i;
553 for (i = 0; i < DMA_CHANS; i++)
554 if (this->dma_chans[i]) {
555 dma_release_channel(this->dma_chans[i]);
556 this->dma_chans[i] = NULL;
560 static int acquire_dma_channels(struct gpmi_nand_data *this)
562 struct platform_device *pdev = this->pdev;
563 struct dma_chan *dma_chan;
565 /* request dma channel */
566 dma_chan = dma_request_slave_channel(&pdev->dev, "rx-tx");
567 if (!dma_chan) {
568 pr_err("Failed to request DMA channel.\n");
569 goto acquire_err;
572 this->dma_chans[0] = dma_chan;
573 return 0;
575 acquire_err:
576 release_dma_channels(this);
577 return -EINVAL;
580 static void gpmi_put_clks(struct gpmi_nand_data *this)
582 struct resources *r = &this->resources;
583 struct clk *clk;
584 int i;
586 for (i = 0; i < GPMI_CLK_MAX; i++) {
587 clk = r->clock[i];
588 if (clk) {
589 clk_put(clk);
590 r->clock[i] = NULL;
595 static char *extra_clks_for_mx6q[GPMI_CLK_MAX] = {
596 "gpmi_apb", "gpmi_bch", "gpmi_bch_apb", "per1_bch",
599 static int gpmi_get_clks(struct gpmi_nand_data *this)
601 struct resources *r = &this->resources;
602 char **extra_clks = NULL;
603 struct clk *clk;
604 int err, i;
606 /* The main clock is stored in the first. */
607 r->clock[0] = clk_get(this->dev, "gpmi_io");
608 if (IS_ERR(r->clock[0])) {
609 err = PTR_ERR(r->clock[0]);
610 goto err_clock;
613 /* Get extra clocks */
614 if (GPMI_IS_MX6Q(this))
615 extra_clks = extra_clks_for_mx6q;
616 if (!extra_clks)
617 return 0;
619 for (i = 1; i < GPMI_CLK_MAX; i++) {
620 if (extra_clks[i - 1] == NULL)
621 break;
623 clk = clk_get(this->dev, extra_clks[i - 1]);
624 if (IS_ERR(clk)) {
625 err = PTR_ERR(clk);
626 goto err_clock;
629 r->clock[i] = clk;
632 if (GPMI_IS_MX6Q(this))
634 * Set the default value for the gpmi clock in mx6q:
636 * If you want to use the ONFI nand which is in the
637 * Synchronous Mode, you should change the clock as you need.
639 clk_set_rate(r->clock[0], 22000000);
641 return 0;
643 err_clock:
644 dev_dbg(this->dev, "failed in finding the clocks.\n");
645 gpmi_put_clks(this);
646 return err;
649 static int acquire_resources(struct gpmi_nand_data *this)
651 int ret;
653 ret = acquire_register_block(this, GPMI_NAND_GPMI_REGS_ADDR_RES_NAME);
654 if (ret)
655 goto exit_regs;
657 ret = acquire_register_block(this, GPMI_NAND_BCH_REGS_ADDR_RES_NAME);
658 if (ret)
659 goto exit_regs;
661 ret = acquire_bch_irq(this, bch_irq);
662 if (ret)
663 goto exit_regs;
665 ret = acquire_dma_channels(this);
666 if (ret)
667 goto exit_dma_channels;
669 ret = gpmi_get_clks(this);
670 if (ret)
671 goto exit_clock;
672 return 0;
674 exit_clock:
675 release_dma_channels(this);
676 exit_dma_channels:
677 release_bch_irq(this);
678 exit_regs:
679 release_register_block(this);
680 return ret;
683 static void release_resources(struct gpmi_nand_data *this)
685 gpmi_put_clks(this);
686 release_register_block(this);
687 release_bch_irq(this);
688 release_dma_channels(this);
691 static int init_hardware(struct gpmi_nand_data *this)
693 int ret;
696 * This structure contains the "safe" GPMI timing that should succeed
697 * with any NAND Flash device
698 * (although, with less-than-optimal performance).
700 struct nand_timing safe_timing = {
701 .data_setup_in_ns = 80,
702 .data_hold_in_ns = 60,
703 .address_setup_in_ns = 25,
704 .gpmi_sample_delay_in_ns = 6,
705 .tREA_in_ns = -1,
706 .tRLOH_in_ns = -1,
707 .tRHOH_in_ns = -1,
710 /* Initialize the hardwares. */
711 ret = gpmi_init(this);
712 if (ret)
713 return ret;
715 this->timing = safe_timing;
716 return 0;
719 static int read_page_prepare(struct gpmi_nand_data *this,
720 void *destination, unsigned length,
721 void *alt_virt, dma_addr_t alt_phys, unsigned alt_size,
722 void **use_virt, dma_addr_t *use_phys)
724 struct device *dev = this->dev;
726 if (virt_addr_valid(destination)) {
727 dma_addr_t dest_phys;
729 dest_phys = dma_map_single(dev, destination,
730 length, DMA_FROM_DEVICE);
731 if (dma_mapping_error(dev, dest_phys)) {
732 if (alt_size < length) {
733 pr_err("%s, Alternate buffer is too small\n",
734 __func__);
735 return -ENOMEM;
737 goto map_failed;
739 *use_virt = destination;
740 *use_phys = dest_phys;
741 this->direct_dma_map_ok = true;
742 return 0;
745 map_failed:
746 *use_virt = alt_virt;
747 *use_phys = alt_phys;
748 this->direct_dma_map_ok = false;
749 return 0;
752 static inline void read_page_end(struct gpmi_nand_data *this,
753 void *destination, unsigned length,
754 void *alt_virt, dma_addr_t alt_phys, unsigned alt_size,
755 void *used_virt, dma_addr_t used_phys)
757 if (this->direct_dma_map_ok)
758 dma_unmap_single(this->dev, used_phys, length, DMA_FROM_DEVICE);
761 static inline void read_page_swap_end(struct gpmi_nand_data *this,
762 void *destination, unsigned length,
763 void *alt_virt, dma_addr_t alt_phys, unsigned alt_size,
764 void *used_virt, dma_addr_t used_phys)
766 if (!this->direct_dma_map_ok)
767 memcpy(destination, alt_virt, length);
770 static int send_page_prepare(struct gpmi_nand_data *this,
771 const void *source, unsigned length,
772 void *alt_virt, dma_addr_t alt_phys, unsigned alt_size,
773 const void **use_virt, dma_addr_t *use_phys)
775 struct device *dev = this->dev;
777 if (virt_addr_valid(source)) {
778 dma_addr_t source_phys;
780 source_phys = dma_map_single(dev, (void *)source, length,
781 DMA_TO_DEVICE);
782 if (dma_mapping_error(dev, source_phys)) {
783 if (alt_size < length) {
784 pr_err("%s, Alternate buffer is too small\n",
785 __func__);
786 return -ENOMEM;
788 goto map_failed;
790 *use_virt = source;
791 *use_phys = source_phys;
792 return 0;
794 map_failed:
796 * Copy the content of the source buffer into the alternate
797 * buffer and set up the return values accordingly.
799 memcpy(alt_virt, source, length);
801 *use_virt = alt_virt;
802 *use_phys = alt_phys;
803 return 0;
806 static void send_page_end(struct gpmi_nand_data *this,
807 const void *source, unsigned length,
808 void *alt_virt, dma_addr_t alt_phys, unsigned alt_size,
809 const void *used_virt, dma_addr_t used_phys)
811 struct device *dev = this->dev;
812 if (used_virt == source)
813 dma_unmap_single(dev, used_phys, length, DMA_TO_DEVICE);
816 static void gpmi_free_dma_buffer(struct gpmi_nand_data *this)
818 struct device *dev = this->dev;
820 if (this->page_buffer_virt && virt_addr_valid(this->page_buffer_virt))
821 dma_free_coherent(dev, this->page_buffer_size,
822 this->page_buffer_virt,
823 this->page_buffer_phys);
824 kfree(this->cmd_buffer);
825 kfree(this->data_buffer_dma);
827 this->cmd_buffer = NULL;
828 this->data_buffer_dma = NULL;
829 this->page_buffer_virt = NULL;
830 this->page_buffer_size = 0;
833 /* Allocate the DMA buffers */
834 static int gpmi_alloc_dma_buffer(struct gpmi_nand_data *this)
836 struct bch_geometry *geo = &this->bch_geometry;
837 struct device *dev = this->dev;
839 /* [1] Allocate a command buffer. PAGE_SIZE is enough. */
840 this->cmd_buffer = kzalloc(PAGE_SIZE, GFP_DMA | GFP_KERNEL);
841 if (this->cmd_buffer == NULL)
842 goto error_alloc;
844 /* [2] Allocate a read/write data buffer. PAGE_SIZE is enough. */
845 this->data_buffer_dma = kzalloc(PAGE_SIZE, GFP_DMA | GFP_KERNEL);
846 if (this->data_buffer_dma == NULL)
847 goto error_alloc;
850 * [3] Allocate the page buffer.
852 * Both the payload buffer and the auxiliary buffer must appear on
853 * 32-bit boundaries. We presume the size of the payload buffer is a
854 * power of two and is much larger than four, which guarantees the
855 * auxiliary buffer will appear on a 32-bit boundary.
857 this->page_buffer_size = geo->payload_size + geo->auxiliary_size;
858 this->page_buffer_virt = dma_alloc_coherent(dev, this->page_buffer_size,
859 &this->page_buffer_phys, GFP_DMA);
860 if (!this->page_buffer_virt)
861 goto error_alloc;
864 /* Slice up the page buffer. */
865 this->payload_virt = this->page_buffer_virt;
866 this->payload_phys = this->page_buffer_phys;
867 this->auxiliary_virt = this->payload_virt + geo->payload_size;
868 this->auxiliary_phys = this->payload_phys + geo->payload_size;
869 return 0;
871 error_alloc:
872 gpmi_free_dma_buffer(this);
873 pr_err("Error allocating DMA buffers!\n");
874 return -ENOMEM;
877 static void gpmi_cmd_ctrl(struct mtd_info *mtd, int data, unsigned int ctrl)
879 struct nand_chip *chip = mtd->priv;
880 struct gpmi_nand_data *this = chip->priv;
881 int ret;
884 * Every operation begins with a command byte and a series of zero or
885 * more address bytes. These are distinguished by either the Address
886 * Latch Enable (ALE) or Command Latch Enable (CLE) signals being
887 * asserted. When MTD is ready to execute the command, it will deassert
888 * both latch enables.
890 * Rather than run a separate DMA operation for every single byte, we
891 * queue them up and run a single DMA operation for the entire series
892 * of command and data bytes. NAND_CMD_NONE means the END of the queue.
894 if ((ctrl & (NAND_ALE | NAND_CLE))) {
895 if (data != NAND_CMD_NONE)
896 this->cmd_buffer[this->command_length++] = data;
897 return;
900 if (!this->command_length)
901 return;
903 ret = gpmi_send_command(this);
904 if (ret)
905 pr_err("Chip: %u, Error %d\n", this->current_chip, ret);
907 this->command_length = 0;
910 static int gpmi_dev_ready(struct mtd_info *mtd)
912 struct nand_chip *chip = mtd->priv;
913 struct gpmi_nand_data *this = chip->priv;
915 return gpmi_is_ready(this, this->current_chip);
918 static void gpmi_select_chip(struct mtd_info *mtd, int chipnr)
920 struct nand_chip *chip = mtd->priv;
921 struct gpmi_nand_data *this = chip->priv;
923 if ((this->current_chip < 0) && (chipnr >= 0))
924 gpmi_begin(this);
925 else if ((this->current_chip >= 0) && (chipnr < 0))
926 gpmi_end(this);
928 this->current_chip = chipnr;
931 static void gpmi_read_buf(struct mtd_info *mtd, uint8_t *buf, int len)
933 struct nand_chip *chip = mtd->priv;
934 struct gpmi_nand_data *this = chip->priv;
936 pr_debug("len is %d\n", len);
937 this->upper_buf = buf;
938 this->upper_len = len;
940 gpmi_read_data(this);
943 static void gpmi_write_buf(struct mtd_info *mtd, const uint8_t *buf, int len)
945 struct nand_chip *chip = mtd->priv;
946 struct gpmi_nand_data *this = chip->priv;
948 pr_debug("len is %d\n", len);
949 this->upper_buf = (uint8_t *)buf;
950 this->upper_len = len;
952 gpmi_send_data(this);
955 static uint8_t gpmi_read_byte(struct mtd_info *mtd)
957 struct nand_chip *chip = mtd->priv;
958 struct gpmi_nand_data *this = chip->priv;
959 uint8_t *buf = this->data_buffer_dma;
961 gpmi_read_buf(mtd, buf, 1);
962 return buf[0];
966 * Handles block mark swapping.
967 * It can be called in swapping the block mark, or swapping it back,
968 * because the the operations are the same.
970 static void block_mark_swapping(struct gpmi_nand_data *this,
971 void *payload, void *auxiliary)
973 struct bch_geometry *nfc_geo = &this->bch_geometry;
974 unsigned char *p;
975 unsigned char *a;
976 unsigned int bit;
977 unsigned char mask;
978 unsigned char from_data;
979 unsigned char from_oob;
981 if (!this->swap_block_mark)
982 return;
985 * If control arrives here, we're swapping. Make some convenience
986 * variables.
988 bit = nfc_geo->block_mark_bit_offset;
989 p = payload + nfc_geo->block_mark_byte_offset;
990 a = auxiliary;
993 * Get the byte from the data area that overlays the block mark. Since
994 * the ECC engine applies its own view to the bits in the page, the
995 * physical block mark won't (in general) appear on a byte boundary in
996 * the data.
998 from_data = (p[0] >> bit) | (p[1] << (8 - bit));
1000 /* Get the byte from the OOB. */
1001 from_oob = a[0];
1003 /* Swap them. */
1004 a[0] = from_data;
1006 mask = (0x1 << bit) - 1;
1007 p[0] = (p[0] & mask) | (from_oob << bit);
1009 mask = ~0 << bit;
1010 p[1] = (p[1] & mask) | (from_oob >> (8 - bit));
1013 static int gpmi_ecc_read_page(struct mtd_info *mtd, struct nand_chip *chip,
1014 uint8_t *buf, int oob_required, int page)
1016 struct gpmi_nand_data *this = chip->priv;
1017 struct bch_geometry *nfc_geo = &this->bch_geometry;
1018 void *payload_virt;
1019 dma_addr_t payload_phys;
1020 void *auxiliary_virt;
1021 dma_addr_t auxiliary_phys;
1022 unsigned int i;
1023 unsigned char *status;
1024 unsigned int max_bitflips = 0;
1025 int ret;
1027 pr_debug("page number is : %d\n", page);
1028 ret = read_page_prepare(this, buf, mtd->writesize,
1029 this->payload_virt, this->payload_phys,
1030 nfc_geo->payload_size,
1031 &payload_virt, &payload_phys);
1032 if (ret) {
1033 pr_err("Inadequate DMA buffer\n");
1034 ret = -ENOMEM;
1035 return ret;
1037 auxiliary_virt = this->auxiliary_virt;
1038 auxiliary_phys = this->auxiliary_phys;
1040 /* go! */
1041 ret = gpmi_read_page(this, payload_phys, auxiliary_phys);
1042 read_page_end(this, buf, mtd->writesize,
1043 this->payload_virt, this->payload_phys,
1044 nfc_geo->payload_size,
1045 payload_virt, payload_phys);
1046 if (ret) {
1047 pr_err("Error in ECC-based read: %d\n", ret);
1048 return ret;
1051 /* handle the block mark swapping */
1052 block_mark_swapping(this, payload_virt, auxiliary_virt);
1054 /* Loop over status bytes, accumulating ECC status. */
1055 status = auxiliary_virt + nfc_geo->auxiliary_status_offset;
1057 for (i = 0; i < nfc_geo->ecc_chunk_count; i++, status++) {
1058 if ((*status == STATUS_GOOD) || (*status == STATUS_ERASED))
1059 continue;
1061 if (*status == STATUS_UNCORRECTABLE) {
1062 mtd->ecc_stats.failed++;
1063 continue;
1065 mtd->ecc_stats.corrected += *status;
1066 max_bitflips = max_t(unsigned int, max_bitflips, *status);
1069 if (oob_required) {
1071 * It's time to deliver the OOB bytes. See gpmi_ecc_read_oob()
1072 * for details about our policy for delivering the OOB.
1074 * We fill the caller's buffer with set bits, and then copy the
1075 * block mark to th caller's buffer. Note that, if block mark
1076 * swapping was necessary, it has already been done, so we can
1077 * rely on the first byte of the auxiliary buffer to contain
1078 * the block mark.
1080 memset(chip->oob_poi, ~0, mtd->oobsize);
1081 chip->oob_poi[0] = ((uint8_t *) auxiliary_virt)[0];
1084 read_page_swap_end(this, buf, mtd->writesize,
1085 this->payload_virt, this->payload_phys,
1086 nfc_geo->payload_size,
1087 payload_virt, payload_phys);
1089 return max_bitflips;
1092 static int gpmi_ecc_write_page(struct mtd_info *mtd, struct nand_chip *chip,
1093 const uint8_t *buf, int oob_required)
1095 struct gpmi_nand_data *this = chip->priv;
1096 struct bch_geometry *nfc_geo = &this->bch_geometry;
1097 const void *payload_virt;
1098 dma_addr_t payload_phys;
1099 const void *auxiliary_virt;
1100 dma_addr_t auxiliary_phys;
1101 int ret;
1103 pr_debug("ecc write page.\n");
1104 if (this->swap_block_mark) {
1106 * If control arrives here, we're doing block mark swapping.
1107 * Since we can't modify the caller's buffers, we must copy them
1108 * into our own.
1110 memcpy(this->payload_virt, buf, mtd->writesize);
1111 payload_virt = this->payload_virt;
1112 payload_phys = this->payload_phys;
1114 memcpy(this->auxiliary_virt, chip->oob_poi,
1115 nfc_geo->auxiliary_size);
1116 auxiliary_virt = this->auxiliary_virt;
1117 auxiliary_phys = this->auxiliary_phys;
1119 /* Handle block mark swapping. */
1120 block_mark_swapping(this,
1121 (void *) payload_virt, (void *) auxiliary_virt);
1122 } else {
1124 * If control arrives here, we're not doing block mark swapping,
1125 * so we can to try and use the caller's buffers.
1127 ret = send_page_prepare(this,
1128 buf, mtd->writesize,
1129 this->payload_virt, this->payload_phys,
1130 nfc_geo->payload_size,
1131 &payload_virt, &payload_phys);
1132 if (ret) {
1133 pr_err("Inadequate payload DMA buffer\n");
1134 return 0;
1137 ret = send_page_prepare(this,
1138 chip->oob_poi, mtd->oobsize,
1139 this->auxiliary_virt, this->auxiliary_phys,
1140 nfc_geo->auxiliary_size,
1141 &auxiliary_virt, &auxiliary_phys);
1142 if (ret) {
1143 pr_err("Inadequate auxiliary DMA buffer\n");
1144 goto exit_auxiliary;
1148 /* Ask the NFC. */
1149 ret = gpmi_send_page(this, payload_phys, auxiliary_phys);
1150 if (ret)
1151 pr_err("Error in ECC-based write: %d\n", ret);
1153 if (!this->swap_block_mark) {
1154 send_page_end(this, chip->oob_poi, mtd->oobsize,
1155 this->auxiliary_virt, this->auxiliary_phys,
1156 nfc_geo->auxiliary_size,
1157 auxiliary_virt, auxiliary_phys);
1158 exit_auxiliary:
1159 send_page_end(this, buf, mtd->writesize,
1160 this->payload_virt, this->payload_phys,
1161 nfc_geo->payload_size,
1162 payload_virt, payload_phys);
1165 return 0;
1169 * There are several places in this driver where we have to handle the OOB and
1170 * block marks. This is the function where things are the most complicated, so
1171 * this is where we try to explain it all. All the other places refer back to
1172 * here.
1174 * These are the rules, in order of decreasing importance:
1176 * 1) Nothing the caller does can be allowed to imperil the block mark.
1178 * 2) In read operations, the first byte of the OOB we return must reflect the
1179 * true state of the block mark, no matter where that block mark appears in
1180 * the physical page.
1182 * 3) ECC-based read operations return an OOB full of set bits (since we never
1183 * allow ECC-based writes to the OOB, it doesn't matter what ECC-based reads
1184 * return).
1186 * 4) "Raw" read operations return a direct view of the physical bytes in the
1187 * page, using the conventional definition of which bytes are data and which
1188 * are OOB. This gives the caller a way to see the actual, physical bytes
1189 * in the page, without the distortions applied by our ECC engine.
1192 * What we do for this specific read operation depends on two questions:
1194 * 1) Are we doing a "raw" read, or an ECC-based read?
1196 * 2) Are we using block mark swapping or transcription?
1198 * There are four cases, illustrated by the following Karnaugh map:
1200 * | Raw | ECC-based |
1201 * -------------+-------------------------+-------------------------+
1202 * | Read the conventional | |
1203 * | OOB at the end of the | |
1204 * Swapping | page and return it. It | |
1205 * | contains exactly what | |
1206 * | we want. | Read the block mark and |
1207 * -------------+-------------------------+ return it in a buffer |
1208 * | Read the conventional | full of set bits. |
1209 * | OOB at the end of the | |
1210 * | page and also the block | |
1211 * Transcribing | mark in the metadata. | |
1212 * | Copy the block mark | |
1213 * | into the first byte of | |
1214 * | the OOB. | |
1215 * -------------+-------------------------+-------------------------+
1217 * Note that we break rule #4 in the Transcribing/Raw case because we're not
1218 * giving an accurate view of the actual, physical bytes in the page (we're
1219 * overwriting the block mark). That's OK because it's more important to follow
1220 * rule #2.
1222 * It turns out that knowing whether we want an "ECC-based" or "raw" read is not
1223 * easy. When reading a page, for example, the NAND Flash MTD code calls our
1224 * ecc.read_page or ecc.read_page_raw function. Thus, the fact that MTD wants an
1225 * ECC-based or raw view of the page is implicit in which function it calls
1226 * (there is a similar pair of ECC-based/raw functions for writing).
1228 * FIXME: The following paragraph is incorrect, now that there exist
1229 * ecc.read_oob_raw and ecc.write_oob_raw functions.
1231 * Since MTD assumes the OOB is not covered by ECC, there is no pair of
1232 * ECC-based/raw functions for reading or or writing the OOB. The fact that the
1233 * caller wants an ECC-based or raw view of the page is not propagated down to
1234 * this driver.
1236 static int gpmi_ecc_read_oob(struct mtd_info *mtd, struct nand_chip *chip,
1237 int page)
1239 struct gpmi_nand_data *this = chip->priv;
1241 pr_debug("page number is %d\n", page);
1242 /* clear the OOB buffer */
1243 memset(chip->oob_poi, ~0, mtd->oobsize);
1245 /* Read out the conventional OOB. */
1246 chip->cmdfunc(mtd, NAND_CMD_READ0, mtd->writesize, page);
1247 chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
1250 * Now, we want to make sure the block mark is correct. In the
1251 * Swapping/Raw case, we already have it. Otherwise, we need to
1252 * explicitly read it.
1254 if (!this->swap_block_mark) {
1255 /* Read the block mark into the first byte of the OOB buffer. */
1256 chip->cmdfunc(mtd, NAND_CMD_READ0, 0, page);
1257 chip->oob_poi[0] = chip->read_byte(mtd);
1260 return 0;
1263 static int
1264 gpmi_ecc_write_oob(struct mtd_info *mtd, struct nand_chip *chip, int page)
1267 * The BCH will use all the (page + oob).
1268 * Our gpmi_hw_ecclayout can only prohibit the JFFS2 to write the oob.
1269 * But it can not stop some ioctls such MEMWRITEOOB which uses
1270 * MTD_OPS_PLACE_OOB. So We have to implement this function to prohibit
1271 * these ioctls too.
1273 return -EPERM;
1276 static int gpmi_block_markbad(struct mtd_info *mtd, loff_t ofs)
1278 struct nand_chip *chip = mtd->priv;
1279 struct gpmi_nand_data *this = chip->priv;
1280 int ret = 0;
1281 uint8_t *block_mark;
1282 int column, page, status, chipnr;
1284 chipnr = (int)(ofs >> chip->chip_shift);
1285 chip->select_chip(mtd, chipnr);
1287 column = this->swap_block_mark ? mtd->writesize : 0;
1289 /* Write the block mark. */
1290 block_mark = this->data_buffer_dma;
1291 block_mark[0] = 0; /* bad block marker */
1293 /* Shift to get page */
1294 page = (int)(ofs >> chip->page_shift);
1296 chip->cmdfunc(mtd, NAND_CMD_SEQIN, column, page);
1297 chip->write_buf(mtd, block_mark, 1);
1298 chip->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1);
1300 status = chip->waitfunc(mtd, chip);
1301 if (status & NAND_STATUS_FAIL)
1302 ret = -EIO;
1304 chip->select_chip(mtd, -1);
1306 return ret;
1309 static int nand_boot_set_geometry(struct gpmi_nand_data *this)
1311 struct boot_rom_geometry *geometry = &this->rom_geometry;
1314 * Set the boot block stride size.
1316 * In principle, we should be reading this from the OTP bits, since
1317 * that's where the ROM is going to get it. In fact, we don't have any
1318 * way to read the OTP bits, so we go with the default and hope for the
1319 * best.
1321 geometry->stride_size_in_pages = 64;
1324 * Set the search area stride exponent.
1326 * In principle, we should be reading this from the OTP bits, since
1327 * that's where the ROM is going to get it. In fact, we don't have any
1328 * way to read the OTP bits, so we go with the default and hope for the
1329 * best.
1331 geometry->search_area_stride_exponent = 2;
1332 return 0;
1335 static const char *fingerprint = "STMP";
1336 static int mx23_check_transcription_stamp(struct gpmi_nand_data *this)
1338 struct boot_rom_geometry *rom_geo = &this->rom_geometry;
1339 struct device *dev = this->dev;
1340 struct mtd_info *mtd = &this->mtd;
1341 struct nand_chip *chip = &this->nand;
1342 unsigned int search_area_size_in_strides;
1343 unsigned int stride;
1344 unsigned int page;
1345 uint8_t *buffer = chip->buffers->databuf;
1346 int saved_chip_number;
1347 int found_an_ncb_fingerprint = false;
1349 /* Compute the number of strides in a search area. */
1350 search_area_size_in_strides = 1 << rom_geo->search_area_stride_exponent;
1352 saved_chip_number = this->current_chip;
1353 chip->select_chip(mtd, 0);
1356 * Loop through the first search area, looking for the NCB fingerprint.
1358 dev_dbg(dev, "Scanning for an NCB fingerprint...\n");
1360 for (stride = 0; stride < search_area_size_in_strides; stride++) {
1361 /* Compute the page addresses. */
1362 page = stride * rom_geo->stride_size_in_pages;
1364 dev_dbg(dev, "Looking for a fingerprint in page 0x%x\n", page);
1367 * Read the NCB fingerprint. The fingerprint is four bytes long
1368 * and starts in the 12th byte of the page.
1370 chip->cmdfunc(mtd, NAND_CMD_READ0, 12, page);
1371 chip->read_buf(mtd, buffer, strlen(fingerprint));
1373 /* Look for the fingerprint. */
1374 if (!memcmp(buffer, fingerprint, strlen(fingerprint))) {
1375 found_an_ncb_fingerprint = true;
1376 break;
1381 chip->select_chip(mtd, saved_chip_number);
1383 if (found_an_ncb_fingerprint)
1384 dev_dbg(dev, "\tFound a fingerprint\n");
1385 else
1386 dev_dbg(dev, "\tNo fingerprint found\n");
1387 return found_an_ncb_fingerprint;
1390 /* Writes a transcription stamp. */
1391 static int mx23_write_transcription_stamp(struct gpmi_nand_data *this)
1393 struct device *dev = this->dev;
1394 struct boot_rom_geometry *rom_geo = &this->rom_geometry;
1395 struct mtd_info *mtd = &this->mtd;
1396 struct nand_chip *chip = &this->nand;
1397 unsigned int block_size_in_pages;
1398 unsigned int search_area_size_in_strides;
1399 unsigned int search_area_size_in_pages;
1400 unsigned int search_area_size_in_blocks;
1401 unsigned int block;
1402 unsigned int stride;
1403 unsigned int page;
1404 uint8_t *buffer = chip->buffers->databuf;
1405 int saved_chip_number;
1406 int status;
1408 /* Compute the search area geometry. */
1409 block_size_in_pages = mtd->erasesize / mtd->writesize;
1410 search_area_size_in_strides = 1 << rom_geo->search_area_stride_exponent;
1411 search_area_size_in_pages = search_area_size_in_strides *
1412 rom_geo->stride_size_in_pages;
1413 search_area_size_in_blocks =
1414 (search_area_size_in_pages + (block_size_in_pages - 1)) /
1415 block_size_in_pages;
1417 dev_dbg(dev, "Search Area Geometry :\n");
1418 dev_dbg(dev, "\tin Blocks : %u\n", search_area_size_in_blocks);
1419 dev_dbg(dev, "\tin Strides: %u\n", search_area_size_in_strides);
1420 dev_dbg(dev, "\tin Pages : %u\n", search_area_size_in_pages);
1422 /* Select chip 0. */
1423 saved_chip_number = this->current_chip;
1424 chip->select_chip(mtd, 0);
1426 /* Loop over blocks in the first search area, erasing them. */
1427 dev_dbg(dev, "Erasing the search area...\n");
1429 for (block = 0; block < search_area_size_in_blocks; block++) {
1430 /* Compute the page address. */
1431 page = block * block_size_in_pages;
1433 /* Erase this block. */
1434 dev_dbg(dev, "\tErasing block 0x%x\n", block);
1435 chip->cmdfunc(mtd, NAND_CMD_ERASE1, -1, page);
1436 chip->cmdfunc(mtd, NAND_CMD_ERASE2, -1, -1);
1438 /* Wait for the erase to finish. */
1439 status = chip->waitfunc(mtd, chip);
1440 if (status & NAND_STATUS_FAIL)
1441 dev_err(dev, "[%s] Erase failed.\n", __func__);
1444 /* Write the NCB fingerprint into the page buffer. */
1445 memset(buffer, ~0, mtd->writesize);
1446 memset(chip->oob_poi, ~0, mtd->oobsize);
1447 memcpy(buffer + 12, fingerprint, strlen(fingerprint));
1449 /* Loop through the first search area, writing NCB fingerprints. */
1450 dev_dbg(dev, "Writing NCB fingerprints...\n");
1451 for (stride = 0; stride < search_area_size_in_strides; stride++) {
1452 /* Compute the page addresses. */
1453 page = stride * rom_geo->stride_size_in_pages;
1455 /* Write the first page of the current stride. */
1456 dev_dbg(dev, "Writing an NCB fingerprint in page 0x%x\n", page);
1457 chip->cmdfunc(mtd, NAND_CMD_SEQIN, 0x00, page);
1458 chip->ecc.write_page_raw(mtd, chip, buffer, 0);
1459 chip->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1);
1461 /* Wait for the write to finish. */
1462 status = chip->waitfunc(mtd, chip);
1463 if (status & NAND_STATUS_FAIL)
1464 dev_err(dev, "[%s] Write failed.\n", __func__);
1467 /* Deselect chip 0. */
1468 chip->select_chip(mtd, saved_chip_number);
1469 return 0;
1472 static int mx23_boot_init(struct gpmi_nand_data *this)
1474 struct device *dev = this->dev;
1475 struct nand_chip *chip = &this->nand;
1476 struct mtd_info *mtd = &this->mtd;
1477 unsigned int block_count;
1478 unsigned int block;
1479 int chipnr;
1480 int page;
1481 loff_t byte;
1482 uint8_t block_mark;
1483 int ret = 0;
1486 * If control arrives here, we can't use block mark swapping, which
1487 * means we're forced to use transcription. First, scan for the
1488 * transcription stamp. If we find it, then we don't have to do
1489 * anything -- the block marks are already transcribed.
1491 if (mx23_check_transcription_stamp(this))
1492 return 0;
1495 * If control arrives here, we couldn't find a transcription stamp, so
1496 * so we presume the block marks are in the conventional location.
1498 dev_dbg(dev, "Transcribing bad block marks...\n");
1500 /* Compute the number of blocks in the entire medium. */
1501 block_count = chip->chipsize >> chip->phys_erase_shift;
1504 * Loop over all the blocks in the medium, transcribing block marks as
1505 * we go.
1507 for (block = 0; block < block_count; block++) {
1509 * Compute the chip, page and byte addresses for this block's
1510 * conventional mark.
1512 chipnr = block >> (chip->chip_shift - chip->phys_erase_shift);
1513 page = block << (chip->phys_erase_shift - chip->page_shift);
1514 byte = block << chip->phys_erase_shift;
1516 /* Send the command to read the conventional block mark. */
1517 chip->select_chip(mtd, chipnr);
1518 chip->cmdfunc(mtd, NAND_CMD_READ0, mtd->writesize, page);
1519 block_mark = chip->read_byte(mtd);
1520 chip->select_chip(mtd, -1);
1523 * Check if the block is marked bad. If so, we need to mark it
1524 * again, but this time the result will be a mark in the
1525 * location where we transcribe block marks.
1527 if (block_mark != 0xff) {
1528 dev_dbg(dev, "Transcribing mark in block %u\n", block);
1529 ret = chip->block_markbad(mtd, byte);
1530 if (ret)
1531 dev_err(dev, "Failed to mark block bad with "
1532 "ret %d\n", ret);
1536 /* Write the stamp that indicates we've transcribed the block marks. */
1537 mx23_write_transcription_stamp(this);
1538 return 0;
1541 static int nand_boot_init(struct gpmi_nand_data *this)
1543 nand_boot_set_geometry(this);
1545 /* This is ROM arch-specific initilization before the BBT scanning. */
1546 if (GPMI_IS_MX23(this))
1547 return mx23_boot_init(this);
1548 return 0;
1551 static int gpmi_set_geometry(struct gpmi_nand_data *this)
1553 int ret;
1555 /* Free the temporary DMA memory for reading ID. */
1556 gpmi_free_dma_buffer(this);
1558 /* Set up the NFC geometry which is used by BCH. */
1559 ret = bch_set_geometry(this);
1560 if (ret) {
1561 pr_err("Error setting BCH geometry : %d\n", ret);
1562 return ret;
1565 /* Alloc the new DMA buffers according to the pagesize and oobsize */
1566 return gpmi_alloc_dma_buffer(this);
1569 static int gpmi_pre_bbt_scan(struct gpmi_nand_data *this)
1571 /* Set up swap_block_mark, must be set before the gpmi_set_geometry() */
1572 if (GPMI_IS_MX23(this))
1573 this->swap_block_mark = false;
1574 else
1575 this->swap_block_mark = true;
1577 /* Set up the medium geometry */
1578 return gpmi_set_geometry(this);
1582 static void gpmi_nfc_exit(struct gpmi_nand_data *this)
1584 nand_release(&this->mtd);
1585 gpmi_free_dma_buffer(this);
1588 static int gpmi_init_last(struct gpmi_nand_data *this)
1590 struct mtd_info *mtd = &this->mtd;
1591 struct nand_chip *chip = mtd->priv;
1592 struct nand_ecc_ctrl *ecc = &chip->ecc;
1593 struct bch_geometry *bch_geo = &this->bch_geometry;
1594 int ret;
1596 /* Prepare for the BBT scan. */
1597 ret = gpmi_pre_bbt_scan(this);
1598 if (ret)
1599 return ret;
1601 /* Init the nand_ecc_ctrl{} */
1602 ecc->read_page = gpmi_ecc_read_page;
1603 ecc->write_page = gpmi_ecc_write_page;
1604 ecc->read_oob = gpmi_ecc_read_oob;
1605 ecc->write_oob = gpmi_ecc_write_oob;
1606 ecc->mode = NAND_ECC_HW;
1607 ecc->size = bch_geo->ecc_chunk_size;
1608 ecc->strength = bch_geo->ecc_strength;
1609 ecc->layout = &gpmi_hw_ecclayout;
1612 * Can we enable the extra features? such as EDO or Sync mode.
1614 * We do not check the return value now. That's means if we fail in
1615 * enable the extra features, we still can run in the normal way.
1617 gpmi_extra_init(this);
1619 return 0;
1622 static int gpmi_nfc_init(struct gpmi_nand_data *this)
1624 struct mtd_info *mtd = &this->mtd;
1625 struct nand_chip *chip = &this->nand;
1626 struct mtd_part_parser_data ppdata = {};
1627 int ret;
1629 /* init current chip */
1630 this->current_chip = -1;
1632 /* init the MTD data structures */
1633 mtd->priv = chip;
1634 mtd->name = "gpmi-nand";
1635 mtd->owner = THIS_MODULE;
1637 /* init the nand_chip{}, we don't support a 16-bit NAND Flash bus. */
1638 chip->priv = this;
1639 chip->select_chip = gpmi_select_chip;
1640 chip->cmd_ctrl = gpmi_cmd_ctrl;
1641 chip->dev_ready = gpmi_dev_ready;
1642 chip->read_byte = gpmi_read_byte;
1643 chip->read_buf = gpmi_read_buf;
1644 chip->write_buf = gpmi_write_buf;
1645 chip->badblock_pattern = &gpmi_bbt_descr;
1646 chip->block_markbad = gpmi_block_markbad;
1647 chip->options |= NAND_NO_SUBPAGE_WRITE;
1648 if (of_get_nand_on_flash_bbt(this->dev->of_node))
1649 chip->bbt_options |= NAND_BBT_USE_FLASH | NAND_BBT_NO_OOB;
1652 * Allocate a temporary DMA buffer for reading ID in the
1653 * nand_scan_ident().
1655 this->bch_geometry.payload_size = 1024;
1656 this->bch_geometry.auxiliary_size = 128;
1657 ret = gpmi_alloc_dma_buffer(this);
1658 if (ret)
1659 goto err_out;
1661 ret = nand_scan_ident(mtd, 1, NULL);
1662 if (ret)
1663 goto err_out;
1665 ret = gpmi_init_last(this);
1666 if (ret)
1667 goto err_out;
1669 chip->options |= NAND_SKIP_BBTSCAN;
1670 ret = nand_scan_tail(mtd);
1671 if (ret)
1672 goto err_out;
1674 ret = nand_boot_init(this);
1675 if (ret)
1676 goto err_out;
1677 chip->scan_bbt(mtd);
1679 ppdata.of_node = this->pdev->dev.of_node;
1680 ret = mtd_device_parse_register(mtd, NULL, &ppdata, NULL, 0);
1681 if (ret)
1682 goto err_out;
1683 return 0;
1685 err_out:
1686 gpmi_nfc_exit(this);
1687 return ret;
1690 static const struct platform_device_id gpmi_ids[] = {
1691 { .name = "imx23-gpmi-nand", .driver_data = IS_MX23, },
1692 { .name = "imx28-gpmi-nand", .driver_data = IS_MX28, },
1693 { .name = "imx6q-gpmi-nand", .driver_data = IS_MX6Q, },
1697 static const struct of_device_id gpmi_nand_id_table[] = {
1699 .compatible = "fsl,imx23-gpmi-nand",
1700 .data = (void *)&gpmi_ids[IS_MX23]
1701 }, {
1702 .compatible = "fsl,imx28-gpmi-nand",
1703 .data = (void *)&gpmi_ids[IS_MX28]
1704 }, {
1705 .compatible = "fsl,imx6q-gpmi-nand",
1706 .data = (void *)&gpmi_ids[IS_MX6Q]
1707 }, {}
1709 MODULE_DEVICE_TABLE(of, gpmi_nand_id_table);
1711 static int gpmi_nand_probe(struct platform_device *pdev)
1713 struct gpmi_nand_data *this;
1714 const struct of_device_id *of_id;
1715 int ret;
1717 of_id = of_match_device(gpmi_nand_id_table, &pdev->dev);
1718 if (of_id) {
1719 pdev->id_entry = of_id->data;
1720 } else {
1721 pr_err("Failed to find the right device id.\n");
1722 return -ENODEV;
1725 this = kzalloc(sizeof(*this), GFP_KERNEL);
1726 if (!this) {
1727 pr_err("Failed to allocate per-device memory\n");
1728 return -ENOMEM;
1731 platform_set_drvdata(pdev, this);
1732 this->pdev = pdev;
1733 this->dev = &pdev->dev;
1735 ret = acquire_resources(this);
1736 if (ret)
1737 goto exit_acquire_resources;
1739 ret = init_hardware(this);
1740 if (ret)
1741 goto exit_nfc_init;
1743 ret = gpmi_nfc_init(this);
1744 if (ret)
1745 goto exit_nfc_init;
1747 dev_info(this->dev, "driver registered.\n");
1749 return 0;
1751 exit_nfc_init:
1752 release_resources(this);
1753 exit_acquire_resources:
1754 dev_err(this->dev, "driver registration failed: %d\n", ret);
1755 kfree(this);
1757 return ret;
1760 static int gpmi_nand_remove(struct platform_device *pdev)
1762 struct gpmi_nand_data *this = platform_get_drvdata(pdev);
1764 gpmi_nfc_exit(this);
1765 release_resources(this);
1766 kfree(this);
1767 return 0;
1770 static struct platform_driver gpmi_nand_driver = {
1771 .driver = {
1772 .name = "gpmi-nand",
1773 .of_match_table = gpmi_nand_id_table,
1775 .probe = gpmi_nand_probe,
1776 .remove = gpmi_nand_remove,
1777 .id_table = gpmi_ids,
1779 module_platform_driver(gpmi_nand_driver);
1781 MODULE_AUTHOR("Freescale Semiconductor, Inc.");
1782 MODULE_DESCRIPTION("i.MX GPMI NAND Flash Controller Driver");
1783 MODULE_LICENSE("GPL");