5 * This is the generic MTD driver for NAND flash devices. It should be
6 * capable of working with almost all NAND chips currently available.
8 * Additional technical information is available on
9 * http://www.linux-mtd.infradead.org/doc/nand.html
11 * Copyright (C) 2000 Steven J. Hill (sjhill@realitydiluted.com)
12 * 2002-2006 Thomas Gleixner (tglx@linutronix.de)
15 * David Woodhouse for adding multichip support
17 * Aleph One Ltd. and Toby Churchill Ltd. for supporting the
18 * rework for 2K page size chips
21 * Enable cached programming for 2k page size chips
22 * Check, if mtd->ecctype should be set to MTD_ECC_HW
23 * if we have HW ECC support.
24 * BBT table is not serialized, has to be fixed
26 * This program is free software; you can redistribute it and/or modify
27 * it under the terms of the GNU General Public License version 2 as
28 * published by the Free Software Foundation.
32 #include <linux/module.h>
33 #include <linux/delay.h>
34 #include <linux/errno.h>
35 #include <linux/err.h>
36 #include <linux/sched.h>
37 #include <linux/slab.h>
38 #include <linux/types.h>
39 #include <linux/mtd/mtd.h>
40 #include <linux/mtd/nand.h>
41 #include <linux/mtd/nand_ecc.h>
42 #include <linux/mtd/nand_bch.h>
43 #include <linux/interrupt.h>
44 #include <linux/bitops.h>
45 #include <linux/leds.h>
47 #include <linux/mtd/partitions.h>
49 /* Define default oob placement schemes for large and small page devices */
50 static struct nand_ecclayout nand_oob_8
= {
60 static struct nand_ecclayout nand_oob_16
= {
62 .eccpos
= {0, 1, 2, 3, 6, 7},
68 static struct nand_ecclayout nand_oob_64
= {
71 40, 41, 42, 43, 44, 45, 46, 47,
72 48, 49, 50, 51, 52, 53, 54, 55,
73 56, 57, 58, 59, 60, 61, 62, 63},
79 static struct nand_ecclayout nand_oob_128
= {
82 80, 81, 82, 83, 84, 85, 86, 87,
83 88, 89, 90, 91, 92, 93, 94, 95,
84 96, 97, 98, 99, 100, 101, 102, 103,
85 104, 105, 106, 107, 108, 109, 110, 111,
86 112, 113, 114, 115, 116, 117, 118, 119,
87 120, 121, 122, 123, 124, 125, 126, 127},
93 static int nand_get_device(struct mtd_info
*mtd
, int new_state
);
95 static int nand_do_write_oob(struct mtd_info
*mtd
, loff_t to
,
96 struct mtd_oob_ops
*ops
);
99 * For devices which display every fart in the system on a separate LED. Is
100 * compiled away when LED support is disabled.
102 DEFINE_LED_TRIGGER(nand_led_trigger
);
104 static int check_offs_len(struct mtd_info
*mtd
,
105 loff_t ofs
, uint64_t len
)
107 struct nand_chip
*chip
= mtd
->priv
;
110 /* Start address must align on block boundary */
111 if (ofs
& ((1ULL << chip
->phys_erase_shift
) - 1)) {
112 pr_debug("%s: unaligned address\n", __func__
);
116 /* Length must align on block boundary */
117 if (len
& ((1ULL << chip
->phys_erase_shift
) - 1)) {
118 pr_debug("%s: length not block aligned\n", __func__
);
126 * nand_release_device - [GENERIC] release chip
127 * @mtd: MTD device structure
129 * Release chip lock and wake up anyone waiting on the device.
131 static void nand_release_device(struct mtd_info
*mtd
)
133 struct nand_chip
*chip
= mtd
->priv
;
135 /* Release the controller and the chip */
136 spin_lock(&chip
->controller
->lock
);
137 chip
->controller
->active
= NULL
;
138 chip
->state
= FL_READY
;
139 wake_up(&chip
->controller
->wq
);
140 spin_unlock(&chip
->controller
->lock
);
144 * nand_read_byte - [DEFAULT] read one byte from the chip
145 * @mtd: MTD device structure
147 * Default read function for 8bit buswidth
149 static uint8_t nand_read_byte(struct mtd_info
*mtd
)
151 struct nand_chip
*chip
= mtd
->priv
;
152 return readb(chip
->IO_ADDR_R
);
156 * nand_read_byte16 - [DEFAULT] read one byte endianness aware from the chip
157 * nand_read_byte16 - [DEFAULT] read one byte endianness aware from the chip
158 * @mtd: MTD device structure
160 * Default read function for 16bit buswidth with endianness conversion.
163 static uint8_t nand_read_byte16(struct mtd_info
*mtd
)
165 struct nand_chip
*chip
= mtd
->priv
;
166 return (uint8_t) cpu_to_le16(readw(chip
->IO_ADDR_R
));
170 * nand_read_word - [DEFAULT] read one word from the chip
171 * @mtd: MTD device structure
173 * Default read function for 16bit buswidth without endianness conversion.
175 static u16
nand_read_word(struct mtd_info
*mtd
)
177 struct nand_chip
*chip
= mtd
->priv
;
178 return readw(chip
->IO_ADDR_R
);
182 * nand_select_chip - [DEFAULT] control CE line
183 * @mtd: MTD device structure
184 * @chipnr: chipnumber to select, -1 for deselect
186 * Default select function for 1 chip devices.
188 static void nand_select_chip(struct mtd_info
*mtd
, int chipnr
)
190 struct nand_chip
*chip
= mtd
->priv
;
194 chip
->cmd_ctrl(mtd
, NAND_CMD_NONE
, 0 | NAND_CTRL_CHANGE
);
205 * nand_write_buf - [DEFAULT] write buffer to chip
206 * @mtd: MTD device structure
208 * @len: number of bytes to write
210 * Default write function for 8bit buswidth.
212 static void nand_write_buf(struct mtd_info
*mtd
, const uint8_t *buf
, int len
)
214 struct nand_chip
*chip
= mtd
->priv
;
216 iowrite8_rep(chip
->IO_ADDR_W
, buf
, len
);
220 * nand_read_buf - [DEFAULT] read chip data into buffer
221 * @mtd: MTD device structure
222 * @buf: buffer to store date
223 * @len: number of bytes to read
225 * Default read function for 8bit buswidth.
227 static void nand_read_buf(struct mtd_info
*mtd
, uint8_t *buf
, int len
)
229 struct nand_chip
*chip
= mtd
->priv
;
231 ioread8_rep(chip
->IO_ADDR_R
, buf
, len
);
235 * nand_write_buf16 - [DEFAULT] write buffer to chip
236 * @mtd: MTD device structure
238 * @len: number of bytes to write
240 * Default write function for 16bit buswidth.
242 static void nand_write_buf16(struct mtd_info
*mtd
, const uint8_t *buf
, int len
)
244 struct nand_chip
*chip
= mtd
->priv
;
245 u16
*p
= (u16
*) buf
;
247 iowrite16_rep(chip
->IO_ADDR_W
, p
, len
>> 1);
251 * nand_read_buf16 - [DEFAULT] read chip data into buffer
252 * @mtd: MTD device structure
253 * @buf: buffer to store date
254 * @len: number of bytes to read
256 * Default read function for 16bit buswidth.
258 static void nand_read_buf16(struct mtd_info
*mtd
, uint8_t *buf
, int len
)
260 struct nand_chip
*chip
= mtd
->priv
;
261 u16
*p
= (u16
*) buf
;
263 ioread16_rep(chip
->IO_ADDR_R
, p
, len
>> 1);
267 * nand_block_bad - [DEFAULT] Read bad block marker from the chip
268 * @mtd: MTD device structure
269 * @ofs: offset from device start
270 * @getchip: 0, if the chip is already selected
272 * Check, if the block is bad.
274 static int nand_block_bad(struct mtd_info
*mtd
, loff_t ofs
, int getchip
)
276 int page
, chipnr
, res
= 0, i
= 0;
277 struct nand_chip
*chip
= mtd
->priv
;
280 if (chip
->bbt_options
& NAND_BBT_SCANLASTPAGE
)
281 ofs
+= mtd
->erasesize
- mtd
->writesize
;
283 page
= (int)(ofs
>> chip
->page_shift
) & chip
->pagemask
;
286 chipnr
= (int)(ofs
>> chip
->chip_shift
);
288 nand_get_device(mtd
, FL_READING
);
290 /* Select the NAND device */
291 chip
->select_chip(mtd
, chipnr
);
295 if (chip
->options
& NAND_BUSWIDTH_16
) {
296 chip
->cmdfunc(mtd
, NAND_CMD_READOOB
,
297 chip
->badblockpos
& 0xFE, page
);
298 bad
= cpu_to_le16(chip
->read_word(mtd
));
299 if (chip
->badblockpos
& 0x1)
304 chip
->cmdfunc(mtd
, NAND_CMD_READOOB
, chip
->badblockpos
,
306 bad
= chip
->read_byte(mtd
);
309 if (likely(chip
->badblockbits
== 8))
312 res
= hweight8(bad
) < chip
->badblockbits
;
313 ofs
+= mtd
->writesize
;
314 page
= (int)(ofs
>> chip
->page_shift
) & chip
->pagemask
;
316 } while (!res
&& i
< 2 && (chip
->bbt_options
& NAND_BBT_SCAN2NDPAGE
));
319 chip
->select_chip(mtd
, -1);
320 nand_release_device(mtd
);
327 * nand_default_block_markbad - [DEFAULT] mark a block bad via bad block marker
328 * @mtd: MTD device structure
329 * @ofs: offset from device start
331 * This is the default implementation, which can be overridden by a hardware
332 * specific driver. It provides the details for writing a bad block marker to a
335 static int nand_default_block_markbad(struct mtd_info
*mtd
, loff_t ofs
)
337 struct nand_chip
*chip
= mtd
->priv
;
338 struct mtd_oob_ops ops
;
339 uint8_t buf
[2] = { 0, 0 };
340 int ret
= 0, res
, i
= 0;
344 ops
.ooboffs
= chip
->badblockpos
;
345 if (chip
->options
& NAND_BUSWIDTH_16
) {
346 ops
.ooboffs
&= ~0x01;
347 ops
.len
= ops
.ooblen
= 2;
349 ops
.len
= ops
.ooblen
= 1;
351 ops
.mode
= MTD_OPS_PLACE_OOB
;
353 /* Write to first/last page(s) if necessary */
354 if (chip
->bbt_options
& NAND_BBT_SCANLASTPAGE
)
355 ofs
+= mtd
->erasesize
- mtd
->writesize
;
357 res
= nand_do_write_oob(mtd
, ofs
, &ops
);
362 ofs
+= mtd
->writesize
;
363 } while ((chip
->bbt_options
& NAND_BBT_SCAN2NDPAGE
) && i
< 2);
369 * nand_block_markbad_lowlevel - mark a block bad
370 * @mtd: MTD device structure
371 * @ofs: offset from device start
373 * This function performs the generic NAND bad block marking steps (i.e., bad
374 * block table(s) and/or marker(s)). We only allow the hardware driver to
375 * specify how to write bad block markers to OOB (chip->block_markbad).
377 * We try operations in the following order:
378 * (1) erase the affected block, to allow OOB marker to be written cleanly
379 * (2) write bad block marker to OOB area of affected block (unless flag
380 * NAND_BBT_NO_OOB_BBM is present)
382 * Note that we retain the first error encountered in (2) or (3), finish the
383 * procedures, and dump the error in the end.
385 static int nand_block_markbad_lowlevel(struct mtd_info
*mtd
, loff_t ofs
)
387 struct nand_chip
*chip
= mtd
->priv
;
390 if (!(chip
->bbt_options
& NAND_BBT_NO_OOB_BBM
)) {
391 struct erase_info einfo
;
393 /* Attempt erase before marking OOB */
394 memset(&einfo
, 0, sizeof(einfo
));
397 einfo
.len
= 1ULL << chip
->phys_erase_shift
;
398 nand_erase_nand(mtd
, &einfo
, 0);
400 /* Write bad block marker to OOB */
401 nand_get_device(mtd
, FL_WRITING
);
402 ret
= chip
->block_markbad(mtd
, ofs
);
403 nand_release_device(mtd
);
406 /* Mark block bad in BBT */
408 res
= nand_markbad_bbt(mtd
, ofs
);
414 mtd
->ecc_stats
.badblocks
++;
420 * nand_check_wp - [GENERIC] check if the chip is write protected
421 * @mtd: MTD device structure
423 * Check, if the device is write protected. The function expects, that the
424 * device is already selected.
426 static int nand_check_wp(struct mtd_info
*mtd
)
428 struct nand_chip
*chip
= mtd
->priv
;
430 /* Broken xD cards report WP despite being writable */
431 if (chip
->options
& NAND_BROKEN_XD
)
434 /* Check the WP bit */
435 chip
->cmdfunc(mtd
, NAND_CMD_STATUS
, -1, -1);
436 return (chip
->read_byte(mtd
) & NAND_STATUS_WP
) ? 0 : 1;
440 * nand_block_checkbad - [GENERIC] Check if a block is marked bad
441 * @mtd: MTD device structure
442 * @ofs: offset from device start
443 * @getchip: 0, if the chip is already selected
444 * @allowbbt: 1, if its allowed to access the bbt area
446 * Check, if the block is bad. Either by reading the bad block table or
447 * calling of the scan function.
449 static int nand_block_checkbad(struct mtd_info
*mtd
, loff_t ofs
, int getchip
,
452 struct nand_chip
*chip
= mtd
->priv
;
455 return chip
->block_bad(mtd
, ofs
, getchip
);
457 /* Return info from the table */
458 return nand_isbad_bbt(mtd
, ofs
, allowbbt
);
462 * panic_nand_wait_ready - [GENERIC] Wait for the ready pin after commands.
463 * @mtd: MTD device structure
466 * Helper function for nand_wait_ready used when needing to wait in interrupt
469 static void panic_nand_wait_ready(struct mtd_info
*mtd
, unsigned long timeo
)
471 struct nand_chip
*chip
= mtd
->priv
;
474 /* Wait for the device to get ready */
475 for (i
= 0; i
< timeo
; i
++) {
476 if (chip
->dev_ready(mtd
))
478 touch_softlockup_watchdog();
483 /* Wait for the ready pin, after a command. The timeout is caught later. */
484 void nand_wait_ready(struct mtd_info
*mtd
)
486 struct nand_chip
*chip
= mtd
->priv
;
487 unsigned long timeo
= jiffies
+ msecs_to_jiffies(20);
490 if (in_interrupt() || oops_in_progress
)
491 return panic_nand_wait_ready(mtd
, 400);
493 led_trigger_event(nand_led_trigger
, LED_FULL
);
494 /* Wait until command is processed or timeout occurs */
496 if (chip
->dev_ready(mtd
))
498 touch_softlockup_watchdog();
499 } while (time_before(jiffies
, timeo
));
500 led_trigger_event(nand_led_trigger
, LED_OFF
);
502 EXPORT_SYMBOL_GPL(nand_wait_ready
);
505 * nand_command - [DEFAULT] Send command to NAND device
506 * @mtd: MTD device structure
507 * @command: the command to be sent
508 * @column: the column address for this command, -1 if none
509 * @page_addr: the page address for this command, -1 if none
511 * Send command to NAND device. This function is used for small page devices
512 * (512 Bytes per page).
514 static void nand_command(struct mtd_info
*mtd
, unsigned int command
,
515 int column
, int page_addr
)
517 register struct nand_chip
*chip
= mtd
->priv
;
518 int ctrl
= NAND_CTRL_CLE
| NAND_CTRL_CHANGE
;
520 /* Write out the command to the device */
521 if (command
== NAND_CMD_SEQIN
) {
524 if (column
>= mtd
->writesize
) {
526 column
-= mtd
->writesize
;
527 readcmd
= NAND_CMD_READOOB
;
528 } else if (column
< 256) {
529 /* First 256 bytes --> READ0 */
530 readcmd
= NAND_CMD_READ0
;
533 readcmd
= NAND_CMD_READ1
;
535 chip
->cmd_ctrl(mtd
, readcmd
, ctrl
);
536 ctrl
&= ~NAND_CTRL_CHANGE
;
538 chip
->cmd_ctrl(mtd
, command
, ctrl
);
540 /* Address cycle, when necessary */
541 ctrl
= NAND_CTRL_ALE
| NAND_CTRL_CHANGE
;
542 /* Serially input address */
544 /* Adjust columns for 16 bit buswidth */
545 if (chip
->options
& NAND_BUSWIDTH_16
)
547 chip
->cmd_ctrl(mtd
, column
, ctrl
);
548 ctrl
&= ~NAND_CTRL_CHANGE
;
550 if (page_addr
!= -1) {
551 chip
->cmd_ctrl(mtd
, page_addr
, ctrl
);
552 ctrl
&= ~NAND_CTRL_CHANGE
;
553 chip
->cmd_ctrl(mtd
, page_addr
>> 8, ctrl
);
554 /* One more address cycle for devices > 32MiB */
555 if (chip
->chipsize
> (32 << 20))
556 chip
->cmd_ctrl(mtd
, page_addr
>> 16, ctrl
);
558 chip
->cmd_ctrl(mtd
, NAND_CMD_NONE
, NAND_NCE
| NAND_CTRL_CHANGE
);
561 * Program and erase have their own busy handlers status and sequential
566 case NAND_CMD_PAGEPROG
:
567 case NAND_CMD_ERASE1
:
568 case NAND_CMD_ERASE2
:
570 case NAND_CMD_STATUS
:
576 udelay(chip
->chip_delay
);
577 chip
->cmd_ctrl(mtd
, NAND_CMD_STATUS
,
578 NAND_CTRL_CLE
| NAND_CTRL_CHANGE
);
580 NAND_CMD_NONE
, NAND_NCE
| NAND_CTRL_CHANGE
);
581 while (!(chip
->read_byte(mtd
) & NAND_STATUS_READY
))
585 /* This applies to read commands */
588 * If we don't have access to the busy pin, we apply the given
591 if (!chip
->dev_ready
) {
592 udelay(chip
->chip_delay
);
597 * Apply this short delay always to ensure that we do wait tWB in
598 * any case on any machine.
602 nand_wait_ready(mtd
);
606 * nand_command_lp - [DEFAULT] Send command to NAND large page device
607 * @mtd: MTD device structure
608 * @command: the command to be sent
609 * @column: the column address for this command, -1 if none
610 * @page_addr: the page address for this command, -1 if none
612 * Send command to NAND device. This is the version for the new large page
613 * devices. We don't have the separate regions as we have in the small page
614 * devices. We must emulate NAND_CMD_READOOB to keep the code compatible.
616 static void nand_command_lp(struct mtd_info
*mtd
, unsigned int command
,
617 int column
, int page_addr
)
619 register struct nand_chip
*chip
= mtd
->priv
;
621 /* Emulate NAND_CMD_READOOB */
622 if (command
== NAND_CMD_READOOB
) {
623 column
+= mtd
->writesize
;
624 command
= NAND_CMD_READ0
;
627 /* Command latch cycle */
628 chip
->cmd_ctrl(mtd
, command
, NAND_NCE
| NAND_CLE
| NAND_CTRL_CHANGE
);
630 if (column
!= -1 || page_addr
!= -1) {
631 int ctrl
= NAND_CTRL_CHANGE
| NAND_NCE
| NAND_ALE
;
633 /* Serially input address */
635 /* Adjust columns for 16 bit buswidth */
636 if (chip
->options
& NAND_BUSWIDTH_16
)
638 chip
->cmd_ctrl(mtd
, column
, ctrl
);
639 ctrl
&= ~NAND_CTRL_CHANGE
;
640 chip
->cmd_ctrl(mtd
, column
>> 8, ctrl
);
642 if (page_addr
!= -1) {
643 chip
->cmd_ctrl(mtd
, page_addr
, ctrl
);
644 chip
->cmd_ctrl(mtd
, page_addr
>> 8,
645 NAND_NCE
| NAND_ALE
);
646 /* One more address cycle for devices > 128MiB */
647 if (chip
->chipsize
> (128 << 20))
648 chip
->cmd_ctrl(mtd
, page_addr
>> 16,
649 NAND_NCE
| NAND_ALE
);
652 chip
->cmd_ctrl(mtd
, NAND_CMD_NONE
, NAND_NCE
| NAND_CTRL_CHANGE
);
655 * Program and erase have their own busy handlers status, sequential
656 * in, and deplete1 need no delay.
660 case NAND_CMD_CACHEDPROG
:
661 case NAND_CMD_PAGEPROG
:
662 case NAND_CMD_ERASE1
:
663 case NAND_CMD_ERASE2
:
666 case NAND_CMD_STATUS
:
672 udelay(chip
->chip_delay
);
673 chip
->cmd_ctrl(mtd
, NAND_CMD_STATUS
,
674 NAND_NCE
| NAND_CLE
| NAND_CTRL_CHANGE
);
675 chip
->cmd_ctrl(mtd
, NAND_CMD_NONE
,
676 NAND_NCE
| NAND_CTRL_CHANGE
);
677 while (!(chip
->read_byte(mtd
) & NAND_STATUS_READY
))
681 case NAND_CMD_RNDOUT
:
682 /* No ready / busy check necessary */
683 chip
->cmd_ctrl(mtd
, NAND_CMD_RNDOUTSTART
,
684 NAND_NCE
| NAND_CLE
| NAND_CTRL_CHANGE
);
685 chip
->cmd_ctrl(mtd
, NAND_CMD_NONE
,
686 NAND_NCE
| NAND_CTRL_CHANGE
);
690 chip
->cmd_ctrl(mtd
, NAND_CMD_READSTART
,
691 NAND_NCE
| NAND_CLE
| NAND_CTRL_CHANGE
);
692 chip
->cmd_ctrl(mtd
, NAND_CMD_NONE
,
693 NAND_NCE
| NAND_CTRL_CHANGE
);
695 /* This applies to read commands */
698 * If we don't have access to the busy pin, we apply the given
701 if (!chip
->dev_ready
) {
702 udelay(chip
->chip_delay
);
708 * Apply this short delay always to ensure that we do wait tWB in
709 * any case on any machine.
713 nand_wait_ready(mtd
);
717 * panic_nand_get_device - [GENERIC] Get chip for selected access
718 * @chip: the nand chip descriptor
719 * @mtd: MTD device structure
720 * @new_state: the state which is requested
722 * Used when in panic, no locks are taken.
724 static void panic_nand_get_device(struct nand_chip
*chip
,
725 struct mtd_info
*mtd
, int new_state
)
727 /* Hardware controller shared among independent devices */
728 chip
->controller
->active
= chip
;
729 chip
->state
= new_state
;
733 * nand_get_device - [GENERIC] Get chip for selected access
734 * @mtd: MTD device structure
735 * @new_state: the state which is requested
737 * Get the device and lock it for exclusive access
740 nand_get_device(struct mtd_info
*mtd
, int new_state
)
742 struct nand_chip
*chip
= mtd
->priv
;
743 spinlock_t
*lock
= &chip
->controller
->lock
;
744 wait_queue_head_t
*wq
= &chip
->controller
->wq
;
745 DECLARE_WAITQUEUE(wait
, current
);
749 /* Hardware controller shared among independent devices */
750 if (!chip
->controller
->active
)
751 chip
->controller
->active
= chip
;
753 if (chip
->controller
->active
== chip
&& chip
->state
== FL_READY
) {
754 chip
->state
= new_state
;
758 if (new_state
== FL_PM_SUSPENDED
) {
759 if (chip
->controller
->active
->state
== FL_PM_SUSPENDED
) {
760 chip
->state
= FL_PM_SUSPENDED
;
765 set_current_state(TASK_UNINTERRUPTIBLE
);
766 add_wait_queue(wq
, &wait
);
769 remove_wait_queue(wq
, &wait
);
774 * panic_nand_wait - [GENERIC] wait until the command is done
775 * @mtd: MTD device structure
776 * @chip: NAND chip structure
779 * Wait for command done. This is a helper function for nand_wait used when
780 * we are in interrupt context. May happen when in panic and trying to write
781 * an oops through mtdoops.
783 static void panic_nand_wait(struct mtd_info
*mtd
, struct nand_chip
*chip
,
787 for (i
= 0; i
< timeo
; i
++) {
788 if (chip
->dev_ready
) {
789 if (chip
->dev_ready(mtd
))
792 if (chip
->read_byte(mtd
) & NAND_STATUS_READY
)
800 * nand_wait - [DEFAULT] wait until the command is done
801 * @mtd: MTD device structure
802 * @chip: NAND chip structure
804 * Wait for command done. This applies to erase and program only. Erase can
805 * take up to 400ms and program up to 20ms according to general NAND and
808 static int nand_wait(struct mtd_info
*mtd
, struct nand_chip
*chip
)
811 int status
, state
= chip
->state
;
812 unsigned long timeo
= (state
== FL_ERASING
? 400 : 20);
814 led_trigger_event(nand_led_trigger
, LED_FULL
);
817 * Apply this short delay always to ensure that we do wait tWB in any
818 * case on any machine.
822 chip
->cmdfunc(mtd
, NAND_CMD_STATUS
, -1, -1);
824 if (in_interrupt() || oops_in_progress
)
825 panic_nand_wait(mtd
, chip
, timeo
);
827 timeo
= jiffies
+ msecs_to_jiffies(timeo
);
828 while (time_before(jiffies
, timeo
)) {
829 if (chip
->dev_ready
) {
830 if (chip
->dev_ready(mtd
))
833 if (chip
->read_byte(mtd
) & NAND_STATUS_READY
)
839 led_trigger_event(nand_led_trigger
, LED_OFF
);
841 status
= (int)chip
->read_byte(mtd
);
842 /* This can happen if in case of timeout or buggy dev_ready */
843 WARN_ON(!(status
& NAND_STATUS_READY
));
848 * __nand_unlock - [REPLACEABLE] unlocks specified locked blocks
850 * @ofs: offset to start unlock from
851 * @len: length to unlock
852 * @invert: when = 0, unlock the range of blocks within the lower and
853 * upper boundary address
854 * when = 1, unlock the range of blocks outside the boundaries
855 * of the lower and upper boundary address
857 * Returs unlock status.
859 static int __nand_unlock(struct mtd_info
*mtd
, loff_t ofs
,
860 uint64_t len
, int invert
)
864 struct nand_chip
*chip
= mtd
->priv
;
866 /* Submit address of first page to unlock */
867 page
= ofs
>> chip
->page_shift
;
868 chip
->cmdfunc(mtd
, NAND_CMD_UNLOCK1
, -1, page
& chip
->pagemask
);
870 /* Submit address of last page to unlock */
871 page
= (ofs
+ len
) >> chip
->page_shift
;
872 chip
->cmdfunc(mtd
, NAND_CMD_UNLOCK2
, -1,
873 (page
| invert
) & chip
->pagemask
);
875 /* Call wait ready function */
876 status
= chip
->waitfunc(mtd
, chip
);
877 /* See if device thinks it succeeded */
878 if (status
& NAND_STATUS_FAIL
) {
879 pr_debug("%s: error status = 0x%08x\n",
888 * nand_unlock - [REPLACEABLE] unlocks specified locked blocks
890 * @ofs: offset to start unlock from
891 * @len: length to unlock
893 * Returns unlock status.
895 int nand_unlock(struct mtd_info
*mtd
, loff_t ofs
, uint64_t len
)
899 struct nand_chip
*chip
= mtd
->priv
;
901 pr_debug("%s: start = 0x%012llx, len = %llu\n",
902 __func__
, (unsigned long long)ofs
, len
);
904 if (check_offs_len(mtd
, ofs
, len
))
907 /* Align to last block address if size addresses end of the device */
908 if (ofs
+ len
== mtd
->size
)
909 len
-= mtd
->erasesize
;
911 nand_get_device(mtd
, FL_UNLOCKING
);
913 /* Shift to get chip number */
914 chipnr
= ofs
>> chip
->chip_shift
;
916 chip
->select_chip(mtd
, chipnr
);
918 /* Check, if it is write protected */
919 if (nand_check_wp(mtd
)) {
920 pr_debug("%s: device is write protected!\n",
926 ret
= __nand_unlock(mtd
, ofs
, len
, 0);
929 chip
->select_chip(mtd
, -1);
930 nand_release_device(mtd
);
934 EXPORT_SYMBOL(nand_unlock
);
937 * nand_lock - [REPLACEABLE] locks all blocks present in the device
939 * @ofs: offset to start unlock from
940 * @len: length to unlock
942 * This feature is not supported in many NAND parts. 'Micron' NAND parts do
943 * have this feature, but it allows only to lock all blocks, not for specified
944 * range for block. Implementing 'lock' feature by making use of 'unlock', for
947 * Returns lock status.
949 int nand_lock(struct mtd_info
*mtd
, loff_t ofs
, uint64_t len
)
952 int chipnr
, status
, page
;
953 struct nand_chip
*chip
= mtd
->priv
;
955 pr_debug("%s: start = 0x%012llx, len = %llu\n",
956 __func__
, (unsigned long long)ofs
, len
);
958 if (check_offs_len(mtd
, ofs
, len
))
961 nand_get_device(mtd
, FL_LOCKING
);
963 /* Shift to get chip number */
964 chipnr
= ofs
>> chip
->chip_shift
;
966 chip
->select_chip(mtd
, chipnr
);
968 /* Check, if it is write protected */
969 if (nand_check_wp(mtd
)) {
970 pr_debug("%s: device is write protected!\n",
972 status
= MTD_ERASE_FAILED
;
977 /* Submit address of first page to lock */
978 page
= ofs
>> chip
->page_shift
;
979 chip
->cmdfunc(mtd
, NAND_CMD_LOCK
, -1, page
& chip
->pagemask
);
981 /* Call wait ready function */
982 status
= chip
->waitfunc(mtd
, chip
);
983 /* See if device thinks it succeeded */
984 if (status
& NAND_STATUS_FAIL
) {
985 pr_debug("%s: error status = 0x%08x\n",
991 ret
= __nand_unlock(mtd
, ofs
, len
, 0x1);
994 chip
->select_chip(mtd
, -1);
995 nand_release_device(mtd
);
999 EXPORT_SYMBOL(nand_lock
);
1002 * nand_read_page_raw - [INTERN] read raw page data without ecc
1003 * @mtd: mtd info structure
1004 * @chip: nand chip info structure
1005 * @buf: buffer to store read data
1006 * @oob_required: caller requires OOB data read to chip->oob_poi
1007 * @page: page number to read
1009 * Not for syndrome calculating ECC controllers, which use a special oob layout.
1011 static int nand_read_page_raw(struct mtd_info
*mtd
, struct nand_chip
*chip
,
1012 uint8_t *buf
, int oob_required
, int page
)
1014 chip
->read_buf(mtd
, buf
, mtd
->writesize
);
1016 chip
->read_buf(mtd
, chip
->oob_poi
, mtd
->oobsize
);
1021 * nand_read_page_raw_syndrome - [INTERN] read raw page data without ecc
1022 * @mtd: mtd info structure
1023 * @chip: nand chip info structure
1024 * @buf: buffer to store read data
1025 * @oob_required: caller requires OOB data read to chip->oob_poi
1026 * @page: page number to read
1028 * We need a special oob layout and handling even when OOB isn't used.
1030 static int nand_read_page_raw_syndrome(struct mtd_info
*mtd
,
1031 struct nand_chip
*chip
, uint8_t *buf
,
1032 int oob_required
, int page
)
1034 int eccsize
= chip
->ecc
.size
;
1035 int eccbytes
= chip
->ecc
.bytes
;
1036 uint8_t *oob
= chip
->oob_poi
;
1039 for (steps
= chip
->ecc
.steps
; steps
> 0; steps
--) {
1040 chip
->read_buf(mtd
, buf
, eccsize
);
1043 if (chip
->ecc
.prepad
) {
1044 chip
->read_buf(mtd
, oob
, chip
->ecc
.prepad
);
1045 oob
+= chip
->ecc
.prepad
;
1048 chip
->read_buf(mtd
, oob
, eccbytes
);
1051 if (chip
->ecc
.postpad
) {
1052 chip
->read_buf(mtd
, oob
, chip
->ecc
.postpad
);
1053 oob
+= chip
->ecc
.postpad
;
1057 size
= mtd
->oobsize
- (oob
- chip
->oob_poi
);
1059 chip
->read_buf(mtd
, oob
, size
);
1065 * nand_read_page_swecc - [REPLACEABLE] software ECC based page read function
1066 * @mtd: mtd info structure
1067 * @chip: nand chip info structure
1068 * @buf: buffer to store read data
1069 * @oob_required: caller requires OOB data read to chip->oob_poi
1070 * @page: page number to read
1072 static int nand_read_page_swecc(struct mtd_info
*mtd
, struct nand_chip
*chip
,
1073 uint8_t *buf
, int oob_required
, int page
)
1075 int i
, eccsize
= chip
->ecc
.size
;
1076 int eccbytes
= chip
->ecc
.bytes
;
1077 int eccsteps
= chip
->ecc
.steps
;
1079 uint8_t *ecc_calc
= chip
->buffers
->ecccalc
;
1080 uint8_t *ecc_code
= chip
->buffers
->ecccode
;
1081 uint32_t *eccpos
= chip
->ecc
.layout
->eccpos
;
1082 unsigned int max_bitflips
= 0;
1084 chip
->ecc
.read_page_raw(mtd
, chip
, buf
, 1, page
);
1086 for (i
= 0; eccsteps
; eccsteps
--, i
+= eccbytes
, p
+= eccsize
)
1087 chip
->ecc
.calculate(mtd
, p
, &ecc_calc
[i
]);
1089 for (i
= 0; i
< chip
->ecc
.total
; i
++)
1090 ecc_code
[i
] = chip
->oob_poi
[eccpos
[i
]];
1092 eccsteps
= chip
->ecc
.steps
;
1095 for (i
= 0 ; eccsteps
; eccsteps
--, i
+= eccbytes
, p
+= eccsize
) {
1098 stat
= chip
->ecc
.correct(mtd
, p
, &ecc_code
[i
], &ecc_calc
[i
]);
1100 mtd
->ecc_stats
.failed
++;
1102 mtd
->ecc_stats
.corrected
+= stat
;
1103 max_bitflips
= max_t(unsigned int, max_bitflips
, stat
);
1106 return max_bitflips
;
1110 * nand_read_subpage - [REPLACEABLE] ECC based sub-page read function
1111 * @mtd: mtd info structure
1112 * @chip: nand chip info structure
1113 * @data_offs: offset of requested data within the page
1114 * @readlen: data length
1115 * @bufpoi: buffer to store read data
1117 static int nand_read_subpage(struct mtd_info
*mtd
, struct nand_chip
*chip
,
1118 uint32_t data_offs
, uint32_t readlen
, uint8_t *bufpoi
)
1120 int start_step
, end_step
, num_steps
;
1121 uint32_t *eccpos
= chip
->ecc
.layout
->eccpos
;
1123 int data_col_addr
, i
, gaps
= 0;
1124 int datafrag_len
, eccfrag_len
, aligned_len
, aligned_pos
;
1125 int busw
= (chip
->options
& NAND_BUSWIDTH_16
) ? 2 : 1;
1127 unsigned int max_bitflips
= 0;
1129 /* Column address within the page aligned to ECC size (256bytes) */
1130 start_step
= data_offs
/ chip
->ecc
.size
;
1131 end_step
= (data_offs
+ readlen
- 1) / chip
->ecc
.size
;
1132 num_steps
= end_step
- start_step
+ 1;
1134 /* Data size aligned to ECC ecc.size */
1135 datafrag_len
= num_steps
* chip
->ecc
.size
;
1136 eccfrag_len
= num_steps
* chip
->ecc
.bytes
;
1138 data_col_addr
= start_step
* chip
->ecc
.size
;
1139 /* If we read not a page aligned data */
1140 if (data_col_addr
!= 0)
1141 chip
->cmdfunc(mtd
, NAND_CMD_RNDOUT
, data_col_addr
, -1);
1143 p
= bufpoi
+ data_col_addr
;
1144 chip
->read_buf(mtd
, p
, datafrag_len
);
1147 for (i
= 0; i
< eccfrag_len
; i
+= chip
->ecc
.bytes
, p
+= chip
->ecc
.size
)
1148 chip
->ecc
.calculate(mtd
, p
, &chip
->buffers
->ecccalc
[i
]);
1151 * The performance is faster if we position offsets according to
1152 * ecc.pos. Let's make sure that there are no gaps in ECC positions.
1154 for (i
= 0; i
< eccfrag_len
- 1; i
++) {
1155 if (eccpos
[i
+ start_step
* chip
->ecc
.bytes
] + 1 !=
1156 eccpos
[i
+ start_step
* chip
->ecc
.bytes
+ 1]) {
1162 chip
->cmdfunc(mtd
, NAND_CMD_RNDOUT
, mtd
->writesize
, -1);
1163 chip
->read_buf(mtd
, chip
->oob_poi
, mtd
->oobsize
);
1166 * Send the command to read the particular ECC bytes take care
1167 * about buswidth alignment in read_buf.
1169 index
= start_step
* chip
->ecc
.bytes
;
1171 aligned_pos
= eccpos
[index
] & ~(busw
- 1);
1172 aligned_len
= eccfrag_len
;
1173 if (eccpos
[index
] & (busw
- 1))
1175 if (eccpos
[index
+ (num_steps
* chip
->ecc
.bytes
)] & (busw
- 1))
1178 chip
->cmdfunc(mtd
, NAND_CMD_RNDOUT
,
1179 mtd
->writesize
+ aligned_pos
, -1);
1180 chip
->read_buf(mtd
, &chip
->oob_poi
[aligned_pos
], aligned_len
);
1183 for (i
= 0; i
< eccfrag_len
; i
++)
1184 chip
->buffers
->ecccode
[i
] = chip
->oob_poi
[eccpos
[i
+ index
]];
1186 p
= bufpoi
+ data_col_addr
;
1187 for (i
= 0; i
< eccfrag_len
; i
+= chip
->ecc
.bytes
, p
+= chip
->ecc
.size
) {
1190 stat
= chip
->ecc
.correct(mtd
, p
,
1191 &chip
->buffers
->ecccode
[i
], &chip
->buffers
->ecccalc
[i
]);
1193 mtd
->ecc_stats
.failed
++;
1195 mtd
->ecc_stats
.corrected
+= stat
;
1196 max_bitflips
= max_t(unsigned int, max_bitflips
, stat
);
1199 return max_bitflips
;
1203 * nand_read_page_hwecc - [REPLACEABLE] hardware ECC based page read function
1204 * @mtd: mtd info structure
1205 * @chip: nand chip info structure
1206 * @buf: buffer to store read data
1207 * @oob_required: caller requires OOB data read to chip->oob_poi
1208 * @page: page number to read
1210 * Not for syndrome calculating ECC controllers which need a special oob layout.
1212 static int nand_read_page_hwecc(struct mtd_info
*mtd
, struct nand_chip
*chip
,
1213 uint8_t *buf
, int oob_required
, int page
)
1215 int i
, eccsize
= chip
->ecc
.size
;
1216 int eccbytes
= chip
->ecc
.bytes
;
1217 int eccsteps
= chip
->ecc
.steps
;
1219 uint8_t *ecc_calc
= chip
->buffers
->ecccalc
;
1220 uint8_t *ecc_code
= chip
->buffers
->ecccode
;
1221 uint32_t *eccpos
= chip
->ecc
.layout
->eccpos
;
1222 unsigned int max_bitflips
= 0;
1224 for (i
= 0; eccsteps
; eccsteps
--, i
+= eccbytes
, p
+= eccsize
) {
1225 chip
->ecc
.hwctl(mtd
, NAND_ECC_READ
);
1226 chip
->read_buf(mtd
, p
, eccsize
);
1227 chip
->ecc
.calculate(mtd
, p
, &ecc_calc
[i
]);
1229 chip
->read_buf(mtd
, chip
->oob_poi
, mtd
->oobsize
);
1231 for (i
= 0; i
< chip
->ecc
.total
; i
++)
1232 ecc_code
[i
] = chip
->oob_poi
[eccpos
[i
]];
1234 eccsteps
= chip
->ecc
.steps
;
1237 for (i
= 0 ; eccsteps
; eccsteps
--, i
+= eccbytes
, p
+= eccsize
) {
1240 stat
= chip
->ecc
.correct(mtd
, p
, &ecc_code
[i
], &ecc_calc
[i
]);
1242 mtd
->ecc_stats
.failed
++;
1244 mtd
->ecc_stats
.corrected
+= stat
;
1245 max_bitflips
= max_t(unsigned int, max_bitflips
, stat
);
1248 return max_bitflips
;
1252 * nand_read_page_hwecc_oob_first - [REPLACEABLE] hw ecc, read oob first
1253 * @mtd: mtd info structure
1254 * @chip: nand chip info structure
1255 * @buf: buffer to store read data
1256 * @oob_required: caller requires OOB data read to chip->oob_poi
1257 * @page: page number to read
1259 * Hardware ECC for large page chips, require OOB to be read first. For this
1260 * ECC mode, the write_page method is re-used from ECC_HW. These methods
1261 * read/write ECC from the OOB area, unlike the ECC_HW_SYNDROME support with
1262 * multiple ECC steps, follows the "infix ECC" scheme and reads/writes ECC from
1263 * the data area, by overwriting the NAND manufacturer bad block markings.
1265 static int nand_read_page_hwecc_oob_first(struct mtd_info
*mtd
,
1266 struct nand_chip
*chip
, uint8_t *buf
, int oob_required
, int page
)
1268 int i
, eccsize
= chip
->ecc
.size
;
1269 int eccbytes
= chip
->ecc
.bytes
;
1270 int eccsteps
= chip
->ecc
.steps
;
1272 uint8_t *ecc_code
= chip
->buffers
->ecccode
;
1273 uint32_t *eccpos
= chip
->ecc
.layout
->eccpos
;
1274 uint8_t *ecc_calc
= chip
->buffers
->ecccalc
;
1275 unsigned int max_bitflips
= 0;
1277 /* Read the OOB area first */
1278 chip
->cmdfunc(mtd
, NAND_CMD_READOOB
, 0, page
);
1279 chip
->read_buf(mtd
, chip
->oob_poi
, mtd
->oobsize
);
1280 chip
->cmdfunc(mtd
, NAND_CMD_READ0
, 0, page
);
1282 for (i
= 0; i
< chip
->ecc
.total
; i
++)
1283 ecc_code
[i
] = chip
->oob_poi
[eccpos
[i
]];
1285 for (i
= 0; eccsteps
; eccsteps
--, i
+= eccbytes
, p
+= eccsize
) {
1288 chip
->ecc
.hwctl(mtd
, NAND_ECC_READ
);
1289 chip
->read_buf(mtd
, p
, eccsize
);
1290 chip
->ecc
.calculate(mtd
, p
, &ecc_calc
[i
]);
1292 stat
= chip
->ecc
.correct(mtd
, p
, &ecc_code
[i
], NULL
);
1294 mtd
->ecc_stats
.failed
++;
1296 mtd
->ecc_stats
.corrected
+= stat
;
1297 max_bitflips
= max_t(unsigned int, max_bitflips
, stat
);
1300 return max_bitflips
;
1304 * nand_read_page_syndrome - [REPLACEABLE] hardware ECC syndrome based page read
1305 * @mtd: mtd info structure
1306 * @chip: nand chip info structure
1307 * @buf: buffer to store read data
1308 * @oob_required: caller requires OOB data read to chip->oob_poi
1309 * @page: page number to read
1311 * The hw generator calculates the error syndrome automatically. Therefore we
1312 * need a special oob layout and handling.
1314 static int nand_read_page_syndrome(struct mtd_info
*mtd
, struct nand_chip
*chip
,
1315 uint8_t *buf
, int oob_required
, int page
)
1317 int i
, eccsize
= chip
->ecc
.size
;
1318 int eccbytes
= chip
->ecc
.bytes
;
1319 int eccsteps
= chip
->ecc
.steps
;
1321 uint8_t *oob
= chip
->oob_poi
;
1322 unsigned int max_bitflips
= 0;
1324 for (i
= 0; eccsteps
; eccsteps
--, i
+= eccbytes
, p
+= eccsize
) {
1327 chip
->ecc
.hwctl(mtd
, NAND_ECC_READ
);
1328 chip
->read_buf(mtd
, p
, eccsize
);
1330 if (chip
->ecc
.prepad
) {
1331 chip
->read_buf(mtd
, oob
, chip
->ecc
.prepad
);
1332 oob
+= chip
->ecc
.prepad
;
1335 chip
->ecc
.hwctl(mtd
, NAND_ECC_READSYN
);
1336 chip
->read_buf(mtd
, oob
, eccbytes
);
1337 stat
= chip
->ecc
.correct(mtd
, p
, oob
, NULL
);
1340 mtd
->ecc_stats
.failed
++;
1342 mtd
->ecc_stats
.corrected
+= stat
;
1343 max_bitflips
= max_t(unsigned int, max_bitflips
, stat
);
1348 if (chip
->ecc
.postpad
) {
1349 chip
->read_buf(mtd
, oob
, chip
->ecc
.postpad
);
1350 oob
+= chip
->ecc
.postpad
;
1354 /* Calculate remaining oob bytes */
1355 i
= mtd
->oobsize
- (oob
- chip
->oob_poi
);
1357 chip
->read_buf(mtd
, oob
, i
);
1359 return max_bitflips
;
1363 * nand_transfer_oob - [INTERN] Transfer oob to client buffer
1364 * @chip: nand chip structure
1365 * @oob: oob destination address
1366 * @ops: oob ops structure
1367 * @len: size of oob to transfer
1369 static uint8_t *nand_transfer_oob(struct nand_chip
*chip
, uint8_t *oob
,
1370 struct mtd_oob_ops
*ops
, size_t len
)
1372 switch (ops
->mode
) {
1374 case MTD_OPS_PLACE_OOB
:
1376 memcpy(oob
, chip
->oob_poi
+ ops
->ooboffs
, len
);
1379 case MTD_OPS_AUTO_OOB
: {
1380 struct nand_oobfree
*free
= chip
->ecc
.layout
->oobfree
;
1381 uint32_t boffs
= 0, roffs
= ops
->ooboffs
;
1384 for (; free
->length
&& len
; free
++, len
-= bytes
) {
1385 /* Read request not from offset 0? */
1386 if (unlikely(roffs
)) {
1387 if (roffs
>= free
->length
) {
1388 roffs
-= free
->length
;
1391 boffs
= free
->offset
+ roffs
;
1392 bytes
= min_t(size_t, len
,
1393 (free
->length
- roffs
));
1396 bytes
= min_t(size_t, len
, free
->length
);
1397 boffs
= free
->offset
;
1399 memcpy(oob
, chip
->oob_poi
+ boffs
, bytes
);
1411 * nand_do_read_ops - [INTERN] Read data with ECC
1412 * @mtd: MTD device structure
1413 * @from: offset to read from
1414 * @ops: oob ops structure
1416 * Internal function. Called with chip held.
1418 static int nand_do_read_ops(struct mtd_info
*mtd
, loff_t from
,
1419 struct mtd_oob_ops
*ops
)
1421 int chipnr
, page
, realpage
, col
, bytes
, aligned
, oob_required
;
1422 struct nand_chip
*chip
= mtd
->priv
;
1423 struct mtd_ecc_stats stats
;
1425 uint32_t readlen
= ops
->len
;
1426 uint32_t oobreadlen
= ops
->ooblen
;
1427 uint32_t max_oobsize
= ops
->mode
== MTD_OPS_AUTO_OOB
?
1428 mtd
->oobavail
: mtd
->oobsize
;
1430 uint8_t *bufpoi
, *oob
, *buf
;
1431 unsigned int max_bitflips
= 0;
1433 stats
= mtd
->ecc_stats
;
1435 chipnr
= (int)(from
>> chip
->chip_shift
);
1436 chip
->select_chip(mtd
, chipnr
);
1438 realpage
= (int)(from
>> chip
->page_shift
);
1439 page
= realpage
& chip
->pagemask
;
1441 col
= (int)(from
& (mtd
->writesize
- 1));
1445 oob_required
= oob
? 1 : 0;
1448 bytes
= min(mtd
->writesize
- col
, readlen
);
1449 aligned
= (bytes
== mtd
->writesize
);
1451 /* Is the current page in the buffer? */
1452 if (realpage
!= chip
->pagebuf
|| oob
) {
1453 bufpoi
= aligned
? buf
: chip
->buffers
->databuf
;
1455 chip
->cmdfunc(mtd
, NAND_CMD_READ0
, 0x00, page
);
1458 * Now read the page into the buffer. Absent an error,
1459 * the read methods return max bitflips per ecc step.
1461 if (unlikely(ops
->mode
== MTD_OPS_RAW
))
1462 ret
= chip
->ecc
.read_page_raw(mtd
, chip
, bufpoi
,
1465 else if (!aligned
&& NAND_HAS_SUBPAGE_READ(chip
) &&
1467 ret
= chip
->ecc
.read_subpage(mtd
, chip
,
1468 col
, bytes
, bufpoi
);
1470 ret
= chip
->ecc
.read_page(mtd
, chip
, bufpoi
,
1471 oob_required
, page
);
1474 /* Invalidate page cache */
1479 max_bitflips
= max_t(unsigned int, max_bitflips
, ret
);
1481 /* Transfer not aligned data */
1483 if (!NAND_HAS_SUBPAGE_READ(chip
) && !oob
&&
1484 !(mtd
->ecc_stats
.failed
- stats
.failed
) &&
1485 (ops
->mode
!= MTD_OPS_RAW
)) {
1486 chip
->pagebuf
= realpage
;
1487 chip
->pagebuf_bitflips
= ret
;
1489 /* Invalidate page cache */
1492 memcpy(buf
, chip
->buffers
->databuf
+ col
, bytes
);
1497 if (unlikely(oob
)) {
1498 int toread
= min(oobreadlen
, max_oobsize
);
1501 oob
= nand_transfer_oob(chip
,
1503 oobreadlen
-= toread
;
1507 if (chip
->options
& NAND_NEED_READRDY
) {
1508 /* Apply delay or wait for ready/busy pin */
1509 if (!chip
->dev_ready
)
1510 udelay(chip
->chip_delay
);
1512 nand_wait_ready(mtd
);
1515 memcpy(buf
, chip
->buffers
->databuf
+ col
, bytes
);
1517 max_bitflips
= max_t(unsigned int, max_bitflips
,
1518 chip
->pagebuf_bitflips
);
1526 /* For subsequent reads align to page boundary */
1528 /* Increment page address */
1531 page
= realpage
& chip
->pagemask
;
1532 /* Check, if we cross a chip boundary */
1535 chip
->select_chip(mtd
, -1);
1536 chip
->select_chip(mtd
, chipnr
);
1539 chip
->select_chip(mtd
, -1);
1541 ops
->retlen
= ops
->len
- (size_t) readlen
;
1543 ops
->oobretlen
= ops
->ooblen
- oobreadlen
;
1548 if (mtd
->ecc_stats
.failed
- stats
.failed
)
1551 return max_bitflips
;
1555 * nand_read - [MTD Interface] MTD compatibility function for nand_do_read_ecc
1556 * @mtd: MTD device structure
1557 * @from: offset to read from
1558 * @len: number of bytes to read
1559 * @retlen: pointer to variable to store the number of read bytes
1560 * @buf: the databuffer to put data
1562 * Get hold of the chip and call nand_do_read.
1564 static int nand_read(struct mtd_info
*mtd
, loff_t from
, size_t len
,
1565 size_t *retlen
, uint8_t *buf
)
1567 struct mtd_oob_ops ops
;
1570 nand_get_device(mtd
, FL_READING
);
1574 ops
.mode
= MTD_OPS_PLACE_OOB
;
1575 ret
= nand_do_read_ops(mtd
, from
, &ops
);
1576 *retlen
= ops
.retlen
;
1577 nand_release_device(mtd
);
1582 * nand_read_oob_std - [REPLACEABLE] the most common OOB data read function
1583 * @mtd: mtd info structure
1584 * @chip: nand chip info structure
1585 * @page: page number to read
1587 static int nand_read_oob_std(struct mtd_info
*mtd
, struct nand_chip
*chip
,
1590 chip
->cmdfunc(mtd
, NAND_CMD_READOOB
, 0, page
);
1591 chip
->read_buf(mtd
, chip
->oob_poi
, mtd
->oobsize
);
1596 * nand_read_oob_syndrome - [REPLACEABLE] OOB data read function for HW ECC
1598 * @mtd: mtd info structure
1599 * @chip: nand chip info structure
1600 * @page: page number to read
1602 static int nand_read_oob_syndrome(struct mtd_info
*mtd
, struct nand_chip
*chip
,
1605 uint8_t *buf
= chip
->oob_poi
;
1606 int length
= mtd
->oobsize
;
1607 int chunk
= chip
->ecc
.bytes
+ chip
->ecc
.prepad
+ chip
->ecc
.postpad
;
1608 int eccsize
= chip
->ecc
.size
;
1609 uint8_t *bufpoi
= buf
;
1610 int i
, toread
, sndrnd
= 0, pos
;
1612 chip
->cmdfunc(mtd
, NAND_CMD_READ0
, chip
->ecc
.size
, page
);
1613 for (i
= 0; i
< chip
->ecc
.steps
; i
++) {
1615 pos
= eccsize
+ i
* (eccsize
+ chunk
);
1616 if (mtd
->writesize
> 512)
1617 chip
->cmdfunc(mtd
, NAND_CMD_RNDOUT
, pos
, -1);
1619 chip
->cmdfunc(mtd
, NAND_CMD_READ0
, pos
, page
);
1622 toread
= min_t(int, length
, chunk
);
1623 chip
->read_buf(mtd
, bufpoi
, toread
);
1628 chip
->read_buf(mtd
, bufpoi
, length
);
1634 * nand_write_oob_std - [REPLACEABLE] the most common OOB data write function
1635 * @mtd: mtd info structure
1636 * @chip: nand chip info structure
1637 * @page: page number to write
1639 static int nand_write_oob_std(struct mtd_info
*mtd
, struct nand_chip
*chip
,
1643 const uint8_t *buf
= chip
->oob_poi
;
1644 int length
= mtd
->oobsize
;
1646 chip
->cmdfunc(mtd
, NAND_CMD_SEQIN
, mtd
->writesize
, page
);
1647 chip
->write_buf(mtd
, buf
, length
);
1648 /* Send command to program the OOB data */
1649 chip
->cmdfunc(mtd
, NAND_CMD_PAGEPROG
, -1, -1);
1651 status
= chip
->waitfunc(mtd
, chip
);
1653 return status
& NAND_STATUS_FAIL
? -EIO
: 0;
1657 * nand_write_oob_syndrome - [REPLACEABLE] OOB data write function for HW ECC
1658 * with syndrome - only for large page flash
1659 * @mtd: mtd info structure
1660 * @chip: nand chip info structure
1661 * @page: page number to write
1663 static int nand_write_oob_syndrome(struct mtd_info
*mtd
,
1664 struct nand_chip
*chip
, int page
)
1666 int chunk
= chip
->ecc
.bytes
+ chip
->ecc
.prepad
+ chip
->ecc
.postpad
;
1667 int eccsize
= chip
->ecc
.size
, length
= mtd
->oobsize
;
1668 int i
, len
, pos
, status
= 0, sndcmd
= 0, steps
= chip
->ecc
.steps
;
1669 const uint8_t *bufpoi
= chip
->oob_poi
;
1672 * data-ecc-data-ecc ... ecc-oob
1674 * data-pad-ecc-pad-data-pad .... ecc-pad-oob
1676 if (!chip
->ecc
.prepad
&& !chip
->ecc
.postpad
) {
1677 pos
= steps
* (eccsize
+ chunk
);
1682 chip
->cmdfunc(mtd
, NAND_CMD_SEQIN
, pos
, page
);
1683 for (i
= 0; i
< steps
; i
++) {
1685 if (mtd
->writesize
<= 512) {
1686 uint32_t fill
= 0xFFFFFFFF;
1690 int num
= min_t(int, len
, 4);
1691 chip
->write_buf(mtd
, (uint8_t *)&fill
,
1696 pos
= eccsize
+ i
* (eccsize
+ chunk
);
1697 chip
->cmdfunc(mtd
, NAND_CMD_RNDIN
, pos
, -1);
1701 len
= min_t(int, length
, chunk
);
1702 chip
->write_buf(mtd
, bufpoi
, len
);
1707 chip
->write_buf(mtd
, bufpoi
, length
);
1709 chip
->cmdfunc(mtd
, NAND_CMD_PAGEPROG
, -1, -1);
1710 status
= chip
->waitfunc(mtd
, chip
);
1712 return status
& NAND_STATUS_FAIL
? -EIO
: 0;
1716 * nand_do_read_oob - [INTERN] NAND read out-of-band
1717 * @mtd: MTD device structure
1718 * @from: offset to read from
1719 * @ops: oob operations description structure
1721 * NAND read out-of-band data from the spare area.
1723 static int nand_do_read_oob(struct mtd_info
*mtd
, loff_t from
,
1724 struct mtd_oob_ops
*ops
)
1726 int page
, realpage
, chipnr
;
1727 struct nand_chip
*chip
= mtd
->priv
;
1728 struct mtd_ecc_stats stats
;
1729 int readlen
= ops
->ooblen
;
1731 uint8_t *buf
= ops
->oobbuf
;
1734 pr_debug("%s: from = 0x%08Lx, len = %i\n",
1735 __func__
, (unsigned long long)from
, readlen
);
1737 stats
= mtd
->ecc_stats
;
1739 if (ops
->mode
== MTD_OPS_AUTO_OOB
)
1740 len
= chip
->ecc
.layout
->oobavail
;
1744 if (unlikely(ops
->ooboffs
>= len
)) {
1745 pr_debug("%s: attempt to start read outside oob\n",
1750 /* Do not allow reads past end of device */
1751 if (unlikely(from
>= mtd
->size
||
1752 ops
->ooboffs
+ readlen
> ((mtd
->size
>> chip
->page_shift
) -
1753 (from
>> chip
->page_shift
)) * len
)) {
1754 pr_debug("%s: attempt to read beyond end of device\n",
1759 chipnr
= (int)(from
>> chip
->chip_shift
);
1760 chip
->select_chip(mtd
, chipnr
);
1762 /* Shift to get page */
1763 realpage
= (int)(from
>> chip
->page_shift
);
1764 page
= realpage
& chip
->pagemask
;
1767 if (ops
->mode
== MTD_OPS_RAW
)
1768 ret
= chip
->ecc
.read_oob_raw(mtd
, chip
, page
);
1770 ret
= chip
->ecc
.read_oob(mtd
, chip
, page
);
1775 len
= min(len
, readlen
);
1776 buf
= nand_transfer_oob(chip
, buf
, ops
, len
);
1778 if (chip
->options
& NAND_NEED_READRDY
) {
1779 /* Apply delay or wait for ready/busy pin */
1780 if (!chip
->dev_ready
)
1781 udelay(chip
->chip_delay
);
1783 nand_wait_ready(mtd
);
1790 /* Increment page address */
1793 page
= realpage
& chip
->pagemask
;
1794 /* Check, if we cross a chip boundary */
1797 chip
->select_chip(mtd
, -1);
1798 chip
->select_chip(mtd
, chipnr
);
1801 chip
->select_chip(mtd
, -1);
1803 ops
->oobretlen
= ops
->ooblen
- readlen
;
1808 if (mtd
->ecc_stats
.failed
- stats
.failed
)
1811 return mtd
->ecc_stats
.corrected
- stats
.corrected
? -EUCLEAN
: 0;
1815 * nand_read_oob - [MTD Interface] NAND read data and/or out-of-band
1816 * @mtd: MTD device structure
1817 * @from: offset to read from
1818 * @ops: oob operation description structure
1820 * NAND read data and/or out-of-band data.
1822 static int nand_read_oob(struct mtd_info
*mtd
, loff_t from
,
1823 struct mtd_oob_ops
*ops
)
1825 int ret
= -ENOTSUPP
;
1829 /* Do not allow reads past end of device */
1830 if (ops
->datbuf
&& (from
+ ops
->len
) > mtd
->size
) {
1831 pr_debug("%s: attempt to read beyond end of device\n",
1836 nand_get_device(mtd
, FL_READING
);
1838 switch (ops
->mode
) {
1839 case MTD_OPS_PLACE_OOB
:
1840 case MTD_OPS_AUTO_OOB
:
1849 ret
= nand_do_read_oob(mtd
, from
, ops
);
1851 ret
= nand_do_read_ops(mtd
, from
, ops
);
1854 nand_release_device(mtd
);
1860 * nand_write_page_raw - [INTERN] raw page write function
1861 * @mtd: mtd info structure
1862 * @chip: nand chip info structure
1864 * @oob_required: must write chip->oob_poi to OOB
1866 * Not for syndrome calculating ECC controllers, which use a special oob layout.
1868 static int nand_write_page_raw(struct mtd_info
*mtd
, struct nand_chip
*chip
,
1869 const uint8_t *buf
, int oob_required
)
1871 chip
->write_buf(mtd
, buf
, mtd
->writesize
);
1873 chip
->write_buf(mtd
, chip
->oob_poi
, mtd
->oobsize
);
1879 * nand_write_page_raw_syndrome - [INTERN] raw page write function
1880 * @mtd: mtd info structure
1881 * @chip: nand chip info structure
1883 * @oob_required: must write chip->oob_poi to OOB
1885 * We need a special oob layout and handling even when ECC isn't checked.
1887 static int nand_write_page_raw_syndrome(struct mtd_info
*mtd
,
1888 struct nand_chip
*chip
,
1889 const uint8_t *buf
, int oob_required
)
1891 int eccsize
= chip
->ecc
.size
;
1892 int eccbytes
= chip
->ecc
.bytes
;
1893 uint8_t *oob
= chip
->oob_poi
;
1896 for (steps
= chip
->ecc
.steps
; steps
> 0; steps
--) {
1897 chip
->write_buf(mtd
, buf
, eccsize
);
1900 if (chip
->ecc
.prepad
) {
1901 chip
->write_buf(mtd
, oob
, chip
->ecc
.prepad
);
1902 oob
+= chip
->ecc
.prepad
;
1905 chip
->write_buf(mtd
, oob
, eccbytes
);
1908 if (chip
->ecc
.postpad
) {
1909 chip
->write_buf(mtd
, oob
, chip
->ecc
.postpad
);
1910 oob
+= chip
->ecc
.postpad
;
1914 size
= mtd
->oobsize
- (oob
- chip
->oob_poi
);
1916 chip
->write_buf(mtd
, oob
, size
);
1921 * nand_write_page_swecc - [REPLACEABLE] software ECC based page write function
1922 * @mtd: mtd info structure
1923 * @chip: nand chip info structure
1925 * @oob_required: must write chip->oob_poi to OOB
1927 static int nand_write_page_swecc(struct mtd_info
*mtd
, struct nand_chip
*chip
,
1928 const uint8_t *buf
, int oob_required
)
1930 int i
, eccsize
= chip
->ecc
.size
;
1931 int eccbytes
= chip
->ecc
.bytes
;
1932 int eccsteps
= chip
->ecc
.steps
;
1933 uint8_t *ecc_calc
= chip
->buffers
->ecccalc
;
1934 const uint8_t *p
= buf
;
1935 uint32_t *eccpos
= chip
->ecc
.layout
->eccpos
;
1937 /* Software ECC calculation */
1938 for (i
= 0; eccsteps
; eccsteps
--, i
+= eccbytes
, p
+= eccsize
)
1939 chip
->ecc
.calculate(mtd
, p
, &ecc_calc
[i
]);
1941 for (i
= 0; i
< chip
->ecc
.total
; i
++)
1942 chip
->oob_poi
[eccpos
[i
]] = ecc_calc
[i
];
1944 return chip
->ecc
.write_page_raw(mtd
, chip
, buf
, 1);
1948 * nand_write_page_hwecc - [REPLACEABLE] hardware ECC based page write function
1949 * @mtd: mtd info structure
1950 * @chip: nand chip info structure
1952 * @oob_required: must write chip->oob_poi to OOB
1954 static int nand_write_page_hwecc(struct mtd_info
*mtd
, struct nand_chip
*chip
,
1955 const uint8_t *buf
, int oob_required
)
1957 int i
, eccsize
= chip
->ecc
.size
;
1958 int eccbytes
= chip
->ecc
.bytes
;
1959 int eccsteps
= chip
->ecc
.steps
;
1960 uint8_t *ecc_calc
= chip
->buffers
->ecccalc
;
1961 const uint8_t *p
= buf
;
1962 uint32_t *eccpos
= chip
->ecc
.layout
->eccpos
;
1964 for (i
= 0; eccsteps
; eccsteps
--, i
+= eccbytes
, p
+= eccsize
) {
1965 chip
->ecc
.hwctl(mtd
, NAND_ECC_WRITE
);
1966 chip
->write_buf(mtd
, p
, eccsize
);
1967 chip
->ecc
.calculate(mtd
, p
, &ecc_calc
[i
]);
1970 for (i
= 0; i
< chip
->ecc
.total
; i
++)
1971 chip
->oob_poi
[eccpos
[i
]] = ecc_calc
[i
];
1973 chip
->write_buf(mtd
, chip
->oob_poi
, mtd
->oobsize
);
1980 * nand_write_subpage_hwecc - [REPLACABLE] hardware ECC based subpage write
1981 * @mtd: mtd info structure
1982 * @chip: nand chip info structure
1983 * @offset: column address of subpage within the page
1984 * @data_len: data length
1986 * @oob_required: must write chip->oob_poi to OOB
1988 static int nand_write_subpage_hwecc(struct mtd_info
*mtd
,
1989 struct nand_chip
*chip
, uint32_t offset
,
1990 uint32_t data_len
, const uint8_t *buf
,
1993 uint8_t *oob_buf
= chip
->oob_poi
;
1994 uint8_t *ecc_calc
= chip
->buffers
->ecccalc
;
1995 int ecc_size
= chip
->ecc
.size
;
1996 int ecc_bytes
= chip
->ecc
.bytes
;
1997 int ecc_steps
= chip
->ecc
.steps
;
1998 uint32_t *eccpos
= chip
->ecc
.layout
->eccpos
;
1999 uint32_t start_step
= offset
/ ecc_size
;
2000 uint32_t end_step
= (offset
+ data_len
- 1) / ecc_size
;
2001 int oob_bytes
= mtd
->oobsize
/ ecc_steps
;
2004 for (step
= 0; step
< ecc_steps
; step
++) {
2005 /* configure controller for WRITE access */
2006 chip
->ecc
.hwctl(mtd
, NAND_ECC_WRITE
);
2008 /* write data (untouched subpages already masked by 0xFF) */
2009 chip
->write_buf(mtd
, buf
, ecc_size
);
2011 /* mask ECC of un-touched subpages by padding 0xFF */
2012 if ((step
< start_step
) || (step
> end_step
))
2013 memset(ecc_calc
, 0xff, ecc_bytes
);
2015 chip
->ecc
.calculate(mtd
, buf
, ecc_calc
);
2017 /* mask OOB of un-touched subpages by padding 0xFF */
2018 /* if oob_required, preserve OOB metadata of written subpage */
2019 if (!oob_required
|| (step
< start_step
) || (step
> end_step
))
2020 memset(oob_buf
, 0xff, oob_bytes
);
2023 ecc_calc
+= ecc_bytes
;
2024 oob_buf
+= oob_bytes
;
2027 /* copy calculated ECC for whole page to chip->buffer->oob */
2028 /* this include masked-value(0xFF) for unwritten subpages */
2029 ecc_calc
= chip
->buffers
->ecccalc
;
2030 for (i
= 0; i
< chip
->ecc
.total
; i
++)
2031 chip
->oob_poi
[eccpos
[i
]] = ecc_calc
[i
];
2033 /* write OOB buffer to NAND device */
2034 chip
->write_buf(mtd
, chip
->oob_poi
, mtd
->oobsize
);
2041 * nand_write_page_syndrome - [REPLACEABLE] hardware ECC syndrome based page write
2042 * @mtd: mtd info structure
2043 * @chip: nand chip info structure
2045 * @oob_required: must write chip->oob_poi to OOB
2047 * The hw generator calculates the error syndrome automatically. Therefore we
2048 * need a special oob layout and handling.
2050 static int nand_write_page_syndrome(struct mtd_info
*mtd
,
2051 struct nand_chip
*chip
,
2052 const uint8_t *buf
, int oob_required
)
2054 int i
, eccsize
= chip
->ecc
.size
;
2055 int eccbytes
= chip
->ecc
.bytes
;
2056 int eccsteps
= chip
->ecc
.steps
;
2057 const uint8_t *p
= buf
;
2058 uint8_t *oob
= chip
->oob_poi
;
2060 for (i
= 0; eccsteps
; eccsteps
--, i
+= eccbytes
, p
+= eccsize
) {
2062 chip
->ecc
.hwctl(mtd
, NAND_ECC_WRITE
);
2063 chip
->write_buf(mtd
, p
, eccsize
);
2065 if (chip
->ecc
.prepad
) {
2066 chip
->write_buf(mtd
, oob
, chip
->ecc
.prepad
);
2067 oob
+= chip
->ecc
.prepad
;
2070 chip
->ecc
.calculate(mtd
, p
, oob
);
2071 chip
->write_buf(mtd
, oob
, eccbytes
);
2074 if (chip
->ecc
.postpad
) {
2075 chip
->write_buf(mtd
, oob
, chip
->ecc
.postpad
);
2076 oob
+= chip
->ecc
.postpad
;
2080 /* Calculate remaining oob bytes */
2081 i
= mtd
->oobsize
- (oob
- chip
->oob_poi
);
2083 chip
->write_buf(mtd
, oob
, i
);
2089 * nand_write_page - [REPLACEABLE] write one page
2090 * @mtd: MTD device structure
2091 * @chip: NAND chip descriptor
2092 * @offset: address offset within the page
2093 * @data_len: length of actual data to be written
2094 * @buf: the data to write
2095 * @oob_required: must write chip->oob_poi to OOB
2096 * @page: page number to write
2097 * @cached: cached programming
2098 * @raw: use _raw version of write_page
2100 static int nand_write_page(struct mtd_info
*mtd
, struct nand_chip
*chip
,
2101 uint32_t offset
, int data_len
, const uint8_t *buf
,
2102 int oob_required
, int page
, int cached
, int raw
)
2104 int status
, subpage
;
2106 if (!(chip
->options
& NAND_NO_SUBPAGE_WRITE
) &&
2107 chip
->ecc
.write_subpage
)
2108 subpage
= offset
|| (data_len
< mtd
->writesize
);
2112 chip
->cmdfunc(mtd
, NAND_CMD_SEQIN
, 0x00, page
);
2115 status
= chip
->ecc
.write_page_raw(mtd
, chip
, buf
,
2118 status
= chip
->ecc
.write_subpage(mtd
, chip
, offset
, data_len
,
2121 status
= chip
->ecc
.write_page(mtd
, chip
, buf
, oob_required
);
2127 * Cached progamming disabled for now. Not sure if it's worth the
2128 * trouble. The speed gain is not very impressive. (2.3->2.6Mib/s).
2132 if (!cached
|| !NAND_HAS_CACHEPROG(chip
)) {
2134 chip
->cmdfunc(mtd
, NAND_CMD_PAGEPROG
, -1, -1);
2135 status
= chip
->waitfunc(mtd
, chip
);
2137 * See if operation failed and additional status checks are
2140 if ((status
& NAND_STATUS_FAIL
) && (chip
->errstat
))
2141 status
= chip
->errstat(mtd
, chip
, FL_WRITING
, status
,
2144 if (status
& NAND_STATUS_FAIL
)
2147 chip
->cmdfunc(mtd
, NAND_CMD_CACHEDPROG
, -1, -1);
2148 status
= chip
->waitfunc(mtd
, chip
);
2155 * nand_fill_oob - [INTERN] Transfer client buffer to oob
2156 * @mtd: MTD device structure
2157 * @oob: oob data buffer
2158 * @len: oob data write length
2159 * @ops: oob ops structure
2161 static uint8_t *nand_fill_oob(struct mtd_info
*mtd
, uint8_t *oob
, size_t len
,
2162 struct mtd_oob_ops
*ops
)
2164 struct nand_chip
*chip
= mtd
->priv
;
2167 * Initialise to all 0xFF, to avoid the possibility of left over OOB
2168 * data from a previous OOB read.
2170 memset(chip
->oob_poi
, 0xff, mtd
->oobsize
);
2172 switch (ops
->mode
) {
2174 case MTD_OPS_PLACE_OOB
:
2176 memcpy(chip
->oob_poi
+ ops
->ooboffs
, oob
, len
);
2179 case MTD_OPS_AUTO_OOB
: {
2180 struct nand_oobfree
*free
= chip
->ecc
.layout
->oobfree
;
2181 uint32_t boffs
= 0, woffs
= ops
->ooboffs
;
2184 for (; free
->length
&& len
; free
++, len
-= bytes
) {
2185 /* Write request not from offset 0? */
2186 if (unlikely(woffs
)) {
2187 if (woffs
>= free
->length
) {
2188 woffs
-= free
->length
;
2191 boffs
= free
->offset
+ woffs
;
2192 bytes
= min_t(size_t, len
,
2193 (free
->length
- woffs
));
2196 bytes
= min_t(size_t, len
, free
->length
);
2197 boffs
= free
->offset
;
2199 memcpy(chip
->oob_poi
+ boffs
, oob
, bytes
);
2210 #define NOTALIGNED(x) ((x & (chip->subpagesize - 1)) != 0)
2213 * nand_do_write_ops - [INTERN] NAND write with ECC
2214 * @mtd: MTD device structure
2215 * @to: offset to write to
2216 * @ops: oob operations description structure
2218 * NAND write with ECC.
2220 static int nand_do_write_ops(struct mtd_info
*mtd
, loff_t to
,
2221 struct mtd_oob_ops
*ops
)
2223 int chipnr
, realpage
, page
, blockmask
, column
;
2224 struct nand_chip
*chip
= mtd
->priv
;
2225 uint32_t writelen
= ops
->len
;
2227 uint32_t oobwritelen
= ops
->ooblen
;
2228 uint32_t oobmaxlen
= ops
->mode
== MTD_OPS_AUTO_OOB
?
2229 mtd
->oobavail
: mtd
->oobsize
;
2231 uint8_t *oob
= ops
->oobbuf
;
2232 uint8_t *buf
= ops
->datbuf
;
2234 int oob_required
= oob
? 1 : 0;
2240 /* Reject writes, which are not page aligned */
2241 if (NOTALIGNED(to
) || NOTALIGNED(ops
->len
)) {
2242 pr_notice("%s: attempt to write non page aligned data\n",
2247 column
= to
& (mtd
->writesize
- 1);
2249 chipnr
= (int)(to
>> chip
->chip_shift
);
2250 chip
->select_chip(mtd
, chipnr
);
2252 /* Check, if it is write protected */
2253 if (nand_check_wp(mtd
)) {
2258 realpage
= (int)(to
>> chip
->page_shift
);
2259 page
= realpage
& chip
->pagemask
;
2260 blockmask
= (1 << (chip
->phys_erase_shift
- chip
->page_shift
)) - 1;
2262 /* Invalidate the page cache, when we write to the cached page */
2263 if (to
<= (chip
->pagebuf
<< chip
->page_shift
) &&
2264 (chip
->pagebuf
<< chip
->page_shift
) < (to
+ ops
->len
))
2267 /* Don't allow multipage oob writes with offset */
2268 if (oob
&& ops
->ooboffs
&& (ops
->ooboffs
+ ops
->ooblen
> oobmaxlen
)) {
2274 int bytes
= mtd
->writesize
;
2275 int cached
= writelen
> bytes
&& page
!= blockmask
;
2276 uint8_t *wbuf
= buf
;
2278 /* Partial page write? */
2279 if (unlikely(column
|| writelen
< (mtd
->writesize
- 1))) {
2281 bytes
= min_t(int, bytes
- column
, (int) writelen
);
2283 memset(chip
->buffers
->databuf
, 0xff, mtd
->writesize
);
2284 memcpy(&chip
->buffers
->databuf
[column
], buf
, bytes
);
2285 wbuf
= chip
->buffers
->databuf
;
2288 if (unlikely(oob
)) {
2289 size_t len
= min(oobwritelen
, oobmaxlen
);
2290 oob
= nand_fill_oob(mtd
, oob
, len
, ops
);
2293 /* We still need to erase leftover OOB data */
2294 memset(chip
->oob_poi
, 0xff, mtd
->oobsize
);
2296 ret
= chip
->write_page(mtd
, chip
, column
, bytes
, wbuf
,
2297 oob_required
, page
, cached
,
2298 (ops
->mode
== MTD_OPS_RAW
));
2310 page
= realpage
& chip
->pagemask
;
2311 /* Check, if we cross a chip boundary */
2314 chip
->select_chip(mtd
, -1);
2315 chip
->select_chip(mtd
, chipnr
);
2319 ops
->retlen
= ops
->len
- writelen
;
2321 ops
->oobretlen
= ops
->ooblen
;
2324 chip
->select_chip(mtd
, -1);
2329 * panic_nand_write - [MTD Interface] NAND write with ECC
2330 * @mtd: MTD device structure
2331 * @to: offset to write to
2332 * @len: number of bytes to write
2333 * @retlen: pointer to variable to store the number of written bytes
2334 * @buf: the data to write
2336 * NAND write with ECC. Used when performing writes in interrupt context, this
2337 * may for example be called by mtdoops when writing an oops while in panic.
2339 static int panic_nand_write(struct mtd_info
*mtd
, loff_t to
, size_t len
,
2340 size_t *retlen
, const uint8_t *buf
)
2342 struct nand_chip
*chip
= mtd
->priv
;
2343 struct mtd_oob_ops ops
;
2346 /* Wait for the device to get ready */
2347 panic_nand_wait(mtd
, chip
, 400);
2349 /* Grab the device */
2350 panic_nand_get_device(chip
, mtd
, FL_WRITING
);
2353 ops
.datbuf
= (uint8_t *)buf
;
2355 ops
.mode
= MTD_OPS_PLACE_OOB
;
2357 ret
= nand_do_write_ops(mtd
, to
, &ops
);
2359 *retlen
= ops
.retlen
;
2364 * nand_write - [MTD Interface] NAND write with ECC
2365 * @mtd: MTD device structure
2366 * @to: offset to write to
2367 * @len: number of bytes to write
2368 * @retlen: pointer to variable to store the number of written bytes
2369 * @buf: the data to write
2371 * NAND write with ECC.
2373 static int nand_write(struct mtd_info
*mtd
, loff_t to
, size_t len
,
2374 size_t *retlen
, const uint8_t *buf
)
2376 struct mtd_oob_ops ops
;
2379 nand_get_device(mtd
, FL_WRITING
);
2381 ops
.datbuf
= (uint8_t *)buf
;
2383 ops
.mode
= MTD_OPS_PLACE_OOB
;
2384 ret
= nand_do_write_ops(mtd
, to
, &ops
);
2385 *retlen
= ops
.retlen
;
2386 nand_release_device(mtd
);
2391 * nand_do_write_oob - [MTD Interface] NAND write out-of-band
2392 * @mtd: MTD device structure
2393 * @to: offset to write to
2394 * @ops: oob operation description structure
2396 * NAND write out-of-band.
2398 static int nand_do_write_oob(struct mtd_info
*mtd
, loff_t to
,
2399 struct mtd_oob_ops
*ops
)
2401 int chipnr
, page
, status
, len
;
2402 struct nand_chip
*chip
= mtd
->priv
;
2404 pr_debug("%s: to = 0x%08x, len = %i\n",
2405 __func__
, (unsigned int)to
, (int)ops
->ooblen
);
2407 if (ops
->mode
== MTD_OPS_AUTO_OOB
)
2408 len
= chip
->ecc
.layout
->oobavail
;
2412 /* Do not allow write past end of page */
2413 if ((ops
->ooboffs
+ ops
->ooblen
) > len
) {
2414 pr_debug("%s: attempt to write past end of page\n",
2419 if (unlikely(ops
->ooboffs
>= len
)) {
2420 pr_debug("%s: attempt to start write outside oob\n",
2425 /* Do not allow write past end of device */
2426 if (unlikely(to
>= mtd
->size
||
2427 ops
->ooboffs
+ ops
->ooblen
>
2428 ((mtd
->size
>> chip
->page_shift
) -
2429 (to
>> chip
->page_shift
)) * len
)) {
2430 pr_debug("%s: attempt to write beyond end of device\n",
2435 chipnr
= (int)(to
>> chip
->chip_shift
);
2436 chip
->select_chip(mtd
, chipnr
);
2438 /* Shift to get page */
2439 page
= (int)(to
>> chip
->page_shift
);
2442 * Reset the chip. Some chips (like the Toshiba TC5832DC found in one
2443 * of my DiskOnChip 2000 test units) will clear the whole data page too
2444 * if we don't do this. I have no clue why, but I seem to have 'fixed'
2445 * it in the doc2000 driver in August 1999. dwmw2.
2447 chip
->cmdfunc(mtd
, NAND_CMD_RESET
, -1, -1);
2449 /* Check, if it is write protected */
2450 if (nand_check_wp(mtd
)) {
2451 chip
->select_chip(mtd
, -1);
2455 /* Invalidate the page cache, if we write to the cached page */
2456 if (page
== chip
->pagebuf
)
2459 nand_fill_oob(mtd
, ops
->oobbuf
, ops
->ooblen
, ops
);
2461 if (ops
->mode
== MTD_OPS_RAW
)
2462 status
= chip
->ecc
.write_oob_raw(mtd
, chip
, page
& chip
->pagemask
);
2464 status
= chip
->ecc
.write_oob(mtd
, chip
, page
& chip
->pagemask
);
2466 chip
->select_chip(mtd
, -1);
2471 ops
->oobretlen
= ops
->ooblen
;
2477 * nand_write_oob - [MTD Interface] NAND write data and/or out-of-band
2478 * @mtd: MTD device structure
2479 * @to: offset to write to
2480 * @ops: oob operation description structure
2482 static int nand_write_oob(struct mtd_info
*mtd
, loff_t to
,
2483 struct mtd_oob_ops
*ops
)
2485 int ret
= -ENOTSUPP
;
2489 /* Do not allow writes past end of device */
2490 if (ops
->datbuf
&& (to
+ ops
->len
) > mtd
->size
) {
2491 pr_debug("%s: attempt to write beyond end of device\n",
2496 nand_get_device(mtd
, FL_WRITING
);
2498 switch (ops
->mode
) {
2499 case MTD_OPS_PLACE_OOB
:
2500 case MTD_OPS_AUTO_OOB
:
2509 ret
= nand_do_write_oob(mtd
, to
, ops
);
2511 ret
= nand_do_write_ops(mtd
, to
, ops
);
2514 nand_release_device(mtd
);
2519 * single_erase_cmd - [GENERIC] NAND standard block erase command function
2520 * @mtd: MTD device structure
2521 * @page: the page address of the block which will be erased
2523 * Standard erase command for NAND chips.
2525 static void single_erase_cmd(struct mtd_info
*mtd
, int page
)
2527 struct nand_chip
*chip
= mtd
->priv
;
2528 /* Send commands to erase a block */
2529 chip
->cmdfunc(mtd
, NAND_CMD_ERASE1
, -1, page
);
2530 chip
->cmdfunc(mtd
, NAND_CMD_ERASE2
, -1, -1);
2534 * nand_erase - [MTD Interface] erase block(s)
2535 * @mtd: MTD device structure
2536 * @instr: erase instruction
2538 * Erase one ore more blocks.
2540 static int nand_erase(struct mtd_info
*mtd
, struct erase_info
*instr
)
2542 return nand_erase_nand(mtd
, instr
, 0);
2546 * nand_erase_nand - [INTERN] erase block(s)
2547 * @mtd: MTD device structure
2548 * @instr: erase instruction
2549 * @allowbbt: allow erasing the bbt area
2551 * Erase one ore more blocks.
2553 int nand_erase_nand(struct mtd_info
*mtd
, struct erase_info
*instr
,
2556 int page
, status
, pages_per_block
, ret
, chipnr
;
2557 struct nand_chip
*chip
= mtd
->priv
;
2560 pr_debug("%s: start = 0x%012llx, len = %llu\n",
2561 __func__
, (unsigned long long)instr
->addr
,
2562 (unsigned long long)instr
->len
);
2564 if (check_offs_len(mtd
, instr
->addr
, instr
->len
))
2567 /* Grab the lock and see if the device is available */
2568 nand_get_device(mtd
, FL_ERASING
);
2570 /* Shift to get first page */
2571 page
= (int)(instr
->addr
>> chip
->page_shift
);
2572 chipnr
= (int)(instr
->addr
>> chip
->chip_shift
);
2574 /* Calculate pages in each block */
2575 pages_per_block
= 1 << (chip
->phys_erase_shift
- chip
->page_shift
);
2577 /* Select the NAND device */
2578 chip
->select_chip(mtd
, chipnr
);
2580 /* Check, if it is write protected */
2581 if (nand_check_wp(mtd
)) {
2582 pr_debug("%s: device is write protected!\n",
2584 instr
->state
= MTD_ERASE_FAILED
;
2588 /* Loop through the pages */
2591 instr
->state
= MTD_ERASING
;
2594 /* Check if we have a bad block, we do not erase bad blocks! */
2595 if (nand_block_checkbad(mtd
, ((loff_t
) page
) <<
2596 chip
->page_shift
, 0, allowbbt
)) {
2597 pr_warn("%s: attempt to erase a bad block at page 0x%08x\n",
2599 instr
->state
= MTD_ERASE_FAILED
;
2604 * Invalidate the page cache, if we erase the block which
2605 * contains the current cached page.
2607 if (page
<= chip
->pagebuf
&& chip
->pagebuf
<
2608 (page
+ pages_per_block
))
2611 chip
->erase_cmd(mtd
, page
& chip
->pagemask
);
2613 status
= chip
->waitfunc(mtd
, chip
);
2616 * See if operation failed and additional status checks are
2619 if ((status
& NAND_STATUS_FAIL
) && (chip
->errstat
))
2620 status
= chip
->errstat(mtd
, chip
, FL_ERASING
,
2623 /* See if block erase succeeded */
2624 if (status
& NAND_STATUS_FAIL
) {
2625 pr_debug("%s: failed erase, page 0x%08x\n",
2627 instr
->state
= MTD_ERASE_FAILED
;
2629 ((loff_t
)page
<< chip
->page_shift
);
2633 /* Increment page address and decrement length */
2634 len
-= (1ULL << chip
->phys_erase_shift
);
2635 page
+= pages_per_block
;
2637 /* Check, if we cross a chip boundary */
2638 if (len
&& !(page
& chip
->pagemask
)) {
2640 chip
->select_chip(mtd
, -1);
2641 chip
->select_chip(mtd
, chipnr
);
2644 instr
->state
= MTD_ERASE_DONE
;
2648 ret
= instr
->state
== MTD_ERASE_DONE
? 0 : -EIO
;
2650 /* Deselect and wake up anyone waiting on the device */
2651 chip
->select_chip(mtd
, -1);
2652 nand_release_device(mtd
);
2654 /* Do call back function */
2656 mtd_erase_callback(instr
);
2658 /* Return more or less happy */
2663 * nand_sync - [MTD Interface] sync
2664 * @mtd: MTD device structure
2666 * Sync is actually a wait for chip ready function.
2668 static void nand_sync(struct mtd_info
*mtd
)
2670 pr_debug("%s: called\n", __func__
);
2672 /* Grab the lock and see if the device is available */
2673 nand_get_device(mtd
, FL_SYNCING
);
2674 /* Release it and go back */
2675 nand_release_device(mtd
);
2679 * nand_block_isbad - [MTD Interface] Check if block at offset is bad
2680 * @mtd: MTD device structure
2681 * @offs: offset relative to mtd start
2683 static int nand_block_isbad(struct mtd_info
*mtd
, loff_t offs
)
2685 return nand_block_checkbad(mtd
, offs
, 1, 0);
2689 * nand_block_markbad - [MTD Interface] Mark block at the given offset as bad
2690 * @mtd: MTD device structure
2691 * @ofs: offset relative to mtd start
2693 static int nand_block_markbad(struct mtd_info
*mtd
, loff_t ofs
)
2697 ret
= nand_block_isbad(mtd
, ofs
);
2699 /* If it was bad already, return success and do nothing */
2705 return nand_block_markbad_lowlevel(mtd
, ofs
);
2709 * nand_onfi_set_features- [REPLACEABLE] set features for ONFI nand
2710 * @mtd: MTD device structure
2711 * @chip: nand chip info structure
2712 * @addr: feature address.
2713 * @subfeature_param: the subfeature parameters, a four bytes array.
2715 static int nand_onfi_set_features(struct mtd_info
*mtd
, struct nand_chip
*chip
,
2716 int addr
, uint8_t *subfeature_param
)
2720 if (!chip
->onfi_version
||
2721 !(le16_to_cpu(chip
->onfi_params
.opt_cmd
)
2722 & ONFI_OPT_CMD_SET_GET_FEATURES
))
2725 chip
->cmdfunc(mtd
, NAND_CMD_SET_FEATURES
, addr
, -1);
2726 chip
->write_buf(mtd
, subfeature_param
, ONFI_SUBFEATURE_PARAM_LEN
);
2727 status
= chip
->waitfunc(mtd
, chip
);
2728 if (status
& NAND_STATUS_FAIL
)
2734 * nand_onfi_get_features- [REPLACEABLE] get features for ONFI nand
2735 * @mtd: MTD device structure
2736 * @chip: nand chip info structure
2737 * @addr: feature address.
2738 * @subfeature_param: the subfeature parameters, a four bytes array.
2740 static int nand_onfi_get_features(struct mtd_info
*mtd
, struct nand_chip
*chip
,
2741 int addr
, uint8_t *subfeature_param
)
2743 if (!chip
->onfi_version
||
2744 !(le16_to_cpu(chip
->onfi_params
.opt_cmd
)
2745 & ONFI_OPT_CMD_SET_GET_FEATURES
))
2748 /* clear the sub feature parameters */
2749 memset(subfeature_param
, 0, ONFI_SUBFEATURE_PARAM_LEN
);
2751 chip
->cmdfunc(mtd
, NAND_CMD_GET_FEATURES
, addr
, -1);
2752 chip
->read_buf(mtd
, subfeature_param
, ONFI_SUBFEATURE_PARAM_LEN
);
2757 * nand_suspend - [MTD Interface] Suspend the NAND flash
2758 * @mtd: MTD device structure
2760 static int nand_suspend(struct mtd_info
*mtd
)
2762 return nand_get_device(mtd
, FL_PM_SUSPENDED
);
2766 * nand_resume - [MTD Interface] Resume the NAND flash
2767 * @mtd: MTD device structure
2769 static void nand_resume(struct mtd_info
*mtd
)
2771 struct nand_chip
*chip
= mtd
->priv
;
2773 if (chip
->state
== FL_PM_SUSPENDED
)
2774 nand_release_device(mtd
);
2776 pr_err("%s called for a chip which is not in suspended state\n",
2780 /* Set default functions */
2781 static void nand_set_defaults(struct nand_chip
*chip
, int busw
)
2783 /* check for proper chip_delay setup, set 20us if not */
2784 if (!chip
->chip_delay
)
2785 chip
->chip_delay
= 20;
2787 /* check, if a user supplied command function given */
2788 if (chip
->cmdfunc
== NULL
)
2789 chip
->cmdfunc
= nand_command
;
2791 /* check, if a user supplied wait function given */
2792 if (chip
->waitfunc
== NULL
)
2793 chip
->waitfunc
= nand_wait
;
2795 if (!chip
->select_chip
)
2796 chip
->select_chip
= nand_select_chip
;
2798 /* set for ONFI nand */
2799 if (!chip
->onfi_set_features
)
2800 chip
->onfi_set_features
= nand_onfi_set_features
;
2801 if (!chip
->onfi_get_features
)
2802 chip
->onfi_get_features
= nand_onfi_get_features
;
2804 /* If called twice, pointers that depend on busw may need to be reset */
2805 if (!chip
->read_byte
|| chip
->read_byte
== nand_read_byte
)
2806 chip
->read_byte
= busw
? nand_read_byte16
: nand_read_byte
;
2807 if (!chip
->read_word
)
2808 chip
->read_word
= nand_read_word
;
2809 if (!chip
->block_bad
)
2810 chip
->block_bad
= nand_block_bad
;
2811 if (!chip
->block_markbad
)
2812 chip
->block_markbad
= nand_default_block_markbad
;
2813 if (!chip
->write_buf
|| chip
->write_buf
== nand_write_buf
)
2814 chip
->write_buf
= busw
? nand_write_buf16
: nand_write_buf
;
2815 if (!chip
->read_buf
|| chip
->read_buf
== nand_read_buf
)
2816 chip
->read_buf
= busw
? nand_read_buf16
: nand_read_buf
;
2817 if (!chip
->scan_bbt
)
2818 chip
->scan_bbt
= nand_default_bbt
;
2820 if (!chip
->controller
) {
2821 chip
->controller
= &chip
->hwcontrol
;
2822 spin_lock_init(&chip
->controller
->lock
);
2823 init_waitqueue_head(&chip
->controller
->wq
);
2828 /* Sanitize ONFI strings so we can safely print them */
2829 static void sanitize_string(uint8_t *s
, size_t len
)
2833 /* Null terminate */
2836 /* Remove non printable chars */
2837 for (i
= 0; i
< len
- 1; i
++) {
2838 if (s
[i
] < ' ' || s
[i
] > 127)
2842 /* Remove trailing spaces */
2846 static u16
onfi_crc16(u16 crc
, u8
const *p
, size_t len
)
2851 for (i
= 0; i
< 8; i
++)
2852 crc
= (crc
<< 1) ^ ((crc
& 0x8000) ? 0x8005 : 0);
2858 /* Parse the Extended Parameter Page. */
2859 static int nand_flash_detect_ext_param_page(struct mtd_info
*mtd
,
2860 struct nand_chip
*chip
, struct nand_onfi_params
*p
)
2862 struct onfi_ext_param_page
*ep
;
2863 struct onfi_ext_section
*s
;
2864 struct onfi_ext_ecc_info
*ecc
;
2870 len
= le16_to_cpu(p
->ext_param_page_length
) * 16;
2871 ep
= kmalloc(len
, GFP_KERNEL
);
2875 /* Send our own NAND_CMD_PARAM. */
2876 chip
->cmdfunc(mtd
, NAND_CMD_PARAM
, 0, -1);
2878 /* Use the Change Read Column command to skip the ONFI param pages. */
2879 chip
->cmdfunc(mtd
, NAND_CMD_RNDOUT
,
2880 sizeof(*p
) * p
->num_of_param_pages
, -1);
2882 /* Read out the Extended Parameter Page. */
2883 chip
->read_buf(mtd
, (uint8_t *)ep
, len
);
2884 if ((onfi_crc16(ONFI_CRC_BASE
, ((uint8_t *)ep
) + 2, len
- 2)
2885 != le16_to_cpu(ep
->crc
))) {
2886 pr_debug("fail in the CRC.\n");
2891 * Check the signature.
2892 * Do not strictly follow the ONFI spec, maybe changed in future.
2894 if (strncmp(ep
->sig
, "EPPS", 4)) {
2895 pr_debug("The signature is invalid.\n");
2899 /* find the ECC section. */
2900 cursor
= (uint8_t *)(ep
+ 1);
2901 for (i
= 0; i
< ONFI_EXT_SECTION_MAX
; i
++) {
2902 s
= ep
->sections
+ i
;
2903 if (s
->type
== ONFI_SECTION_TYPE_2
)
2905 cursor
+= s
->length
* 16;
2907 if (i
== ONFI_EXT_SECTION_MAX
) {
2908 pr_debug("We can not find the ECC section.\n");
2912 /* get the info we want. */
2913 ecc
= (struct onfi_ext_ecc_info
*)cursor
;
2915 if (ecc
->codeword_size
) {
2916 chip
->ecc_strength_ds
= ecc
->ecc_bits
;
2917 chip
->ecc_step_ds
= 1 << ecc
->codeword_size
;
2920 pr_info("ONFI extended param page detected.\n");
2929 * Check if the NAND chip is ONFI compliant, returns 1 if it is, 0 otherwise.
2931 static int nand_flash_detect_onfi(struct mtd_info
*mtd
, struct nand_chip
*chip
,
2934 struct nand_onfi_params
*p
= &chip
->onfi_params
;
2938 /* ONFI need to be probed in 8 bits mode, and 16 bits should be selected with NAND_BUSWIDTH_AUTO */
2939 if (chip
->options
& NAND_BUSWIDTH_16
) {
2940 pr_err("Trying ONFI probe in 16 bits mode, aborting !\n");
2943 /* Try ONFI for unknown chip or LP */
2944 chip
->cmdfunc(mtd
, NAND_CMD_READID
, 0x20, -1);
2945 if (chip
->read_byte(mtd
) != 'O' || chip
->read_byte(mtd
) != 'N' ||
2946 chip
->read_byte(mtd
) != 'F' || chip
->read_byte(mtd
) != 'I')
2949 chip
->cmdfunc(mtd
, NAND_CMD_PARAM
, 0, -1);
2950 for (i
= 0; i
< 3; i
++) {
2951 chip
->read_buf(mtd
, (uint8_t *)p
, sizeof(*p
));
2952 if (onfi_crc16(ONFI_CRC_BASE
, (uint8_t *)p
, 254) ==
2953 le16_to_cpu(p
->crc
)) {
2954 pr_info("ONFI param page %d valid\n", i
);
2963 val
= le16_to_cpu(p
->revision
);
2965 chip
->onfi_version
= 23;
2966 else if (val
& (1 << 4))
2967 chip
->onfi_version
= 22;
2968 else if (val
& (1 << 3))
2969 chip
->onfi_version
= 21;
2970 else if (val
& (1 << 2))
2971 chip
->onfi_version
= 20;
2972 else if (val
& (1 << 1))
2973 chip
->onfi_version
= 10;
2975 if (!chip
->onfi_version
) {
2976 pr_info("%s: unsupported ONFI version: %d\n", __func__
, val
);
2980 sanitize_string(p
->manufacturer
, sizeof(p
->manufacturer
));
2981 sanitize_string(p
->model
, sizeof(p
->model
));
2983 mtd
->name
= p
->model
;
2985 mtd
->writesize
= le32_to_cpu(p
->byte_per_page
);
2988 * pages_per_block and blocks_per_lun may not be a power-of-2 size
2989 * (don't ask me who thought of this...). MTD assumes that these
2990 * dimensions will be power-of-2, so just truncate the remaining area.
2992 mtd
->erasesize
= 1 << (fls(le32_to_cpu(p
->pages_per_block
)) - 1);
2993 mtd
->erasesize
*= mtd
->writesize
;
2995 mtd
->oobsize
= le16_to_cpu(p
->spare_bytes_per_page
);
2997 /* See erasesize comment */
2998 chip
->chipsize
= 1 << (fls(le32_to_cpu(p
->blocks_per_lun
)) - 1);
2999 chip
->chipsize
*= (uint64_t)mtd
->erasesize
* p
->lun_count
;
3001 if (onfi_feature(chip
) & ONFI_FEATURE_16_BIT_BUS
)
3002 *busw
= NAND_BUSWIDTH_16
;
3006 if (p
->ecc_bits
!= 0xff) {
3007 chip
->ecc_strength_ds
= p
->ecc_bits
;
3008 chip
->ecc_step_ds
= 512;
3009 } else if (chip
->onfi_version
>= 21 &&
3010 (onfi_feature(chip
) & ONFI_FEATURE_EXT_PARAM_PAGE
)) {
3013 * The nand_flash_detect_ext_param_page() uses the
3014 * Change Read Column command which maybe not supported
3015 * by the chip->cmdfunc. So try to update the chip->cmdfunc
3016 * now. We do not replace user supplied command function.
3018 if (mtd
->writesize
> 512 && chip
->cmdfunc
== nand_command
)
3019 chip
->cmdfunc
= nand_command_lp
;
3021 /* The Extended Parameter Page is supported since ONFI 2.1. */
3022 if (nand_flash_detect_ext_param_page(mtd
, chip
, p
))
3023 pr_info("Failed to detect the extended param page.\n");
3026 pr_info("ONFI flash detected\n");
3031 * nand_id_has_period - Check if an ID string has a given wraparound period
3032 * @id_data: the ID string
3033 * @arrlen: the length of the @id_data array
3034 * @period: the period of repitition
3036 * Check if an ID string is repeated within a given sequence of bytes at
3037 * specific repetition interval period (e.g., {0x20,0x01,0x7F,0x20} has a
3038 * period of 3). This is a helper function for nand_id_len(). Returns non-zero
3039 * if the repetition has a period of @period; otherwise, returns zero.
3041 static int nand_id_has_period(u8
*id_data
, int arrlen
, int period
)
3044 for (i
= 0; i
< period
; i
++)
3045 for (j
= i
+ period
; j
< arrlen
; j
+= period
)
3046 if (id_data
[i
] != id_data
[j
])
3052 * nand_id_len - Get the length of an ID string returned by CMD_READID
3053 * @id_data: the ID string
3054 * @arrlen: the length of the @id_data array
3056 * Returns the length of the ID string, according to known wraparound/trailing
3057 * zero patterns. If no pattern exists, returns the length of the array.
3059 static int nand_id_len(u8
*id_data
, int arrlen
)
3061 int last_nonzero
, period
;
3063 /* Find last non-zero byte */
3064 for (last_nonzero
= arrlen
- 1; last_nonzero
>= 0; last_nonzero
--)
3065 if (id_data
[last_nonzero
])
3069 if (last_nonzero
< 0)
3072 /* Calculate wraparound period */
3073 for (period
= 1; period
< arrlen
; period
++)
3074 if (nand_id_has_period(id_data
, arrlen
, period
))
3077 /* There's a repeated pattern */
3078 if (period
< arrlen
)
3081 /* There are trailing zeros */
3082 if (last_nonzero
< arrlen
- 1)
3083 return last_nonzero
+ 1;
3085 /* No pattern detected */
3090 * Many new NAND share similar device ID codes, which represent the size of the
3091 * chip. The rest of the parameters must be decoded according to generic or
3092 * manufacturer-specific "extended ID" decoding patterns.
3094 static void nand_decode_ext_id(struct mtd_info
*mtd
, struct nand_chip
*chip
,
3095 u8 id_data
[8], int *busw
)
3098 /* The 3rd id byte holds MLC / multichip data */
3099 chip
->cellinfo
= id_data
[2];
3100 /* The 4th id byte is the important one */
3103 id_len
= nand_id_len(id_data
, 8);
3106 * Field definitions are in the following datasheets:
3107 * Old style (4,5 byte ID): Samsung K9GAG08U0M (p.32)
3108 * New Samsung (6 byte ID): Samsung K9GAG08U0F (p.44)
3109 * Hynix MLC (6 byte ID): Hynix H27UBG8T2B (p.22)
3111 * Check for ID length, non-zero 6th byte, cell type, and Hynix/Samsung
3112 * ID to decide what to do.
3114 if (id_len
== 6 && id_data
[0] == NAND_MFR_SAMSUNG
&&
3115 (chip
->cellinfo
& NAND_CI_CELLTYPE_MSK
) &&
3116 id_data
[5] != 0x00) {
3118 mtd
->writesize
= 2048 << (extid
& 0x03);
3121 switch (((extid
>> 2) & 0x04) | (extid
& 0x03)) {
3138 default: /* Other cases are "reserved" (unknown) */
3143 /* Calc blocksize */
3144 mtd
->erasesize
= (128 * 1024) <<
3145 (((extid
>> 1) & 0x04) | (extid
& 0x03));
3147 } else if (id_len
== 6 && id_data
[0] == NAND_MFR_HYNIX
&&
3148 (chip
->cellinfo
& NAND_CI_CELLTYPE_MSK
)) {
3152 mtd
->writesize
= 2048 << (extid
& 0x03);
3155 switch (((extid
>> 2) & 0x04) | (extid
& 0x03)) {
3179 /* Calc blocksize */
3180 tmp
= ((extid
>> 1) & 0x04) | (extid
& 0x03);
3182 mtd
->erasesize
= (128 * 1024) << tmp
;
3183 else if (tmp
== 0x03)
3184 mtd
->erasesize
= 768 * 1024;
3186 mtd
->erasesize
= (64 * 1024) << tmp
;
3190 mtd
->writesize
= 1024 << (extid
& 0x03);
3193 mtd
->oobsize
= (8 << (extid
& 0x01)) *
3194 (mtd
->writesize
>> 9);
3196 /* Calc blocksize. Blocksize is multiples of 64KiB */
3197 mtd
->erasesize
= (64 * 1024) << (extid
& 0x03);
3199 /* Get buswidth information */
3200 *busw
= (extid
& 0x01) ? NAND_BUSWIDTH_16
: 0;
3203 * Toshiba 24nm raw SLC (i.e., not BENAND) have 32B OOB per
3204 * 512B page. For Toshiba SLC, we decode the 5th/6th byte as
3206 * - ID byte 6, bits[2:0]: 100b -> 43nm, 101b -> 32nm,
3208 * - ID byte 5, bit[7]: 1 -> BENAND, 0 -> raw SLC
3210 if (id_len
>= 6 && id_data
[0] == NAND_MFR_TOSHIBA
&&
3211 !(chip
->cellinfo
& NAND_CI_CELLTYPE_MSK
) &&
3212 (id_data
[5] & 0x7) == 0x6 /* 24nm */ &&
3213 !(id_data
[4] & 0x80) /* !BENAND */) {
3214 mtd
->oobsize
= 32 * mtd
->writesize
>> 9;
3221 * Old devices have chip data hardcoded in the device ID table. nand_decode_id
3222 * decodes a matching ID table entry and assigns the MTD size parameters for
3225 static void nand_decode_id(struct mtd_info
*mtd
, struct nand_chip
*chip
,
3226 struct nand_flash_dev
*type
, u8 id_data
[8],
3229 int maf_id
= id_data
[0];
3231 mtd
->erasesize
= type
->erasesize
;
3232 mtd
->writesize
= type
->pagesize
;
3233 mtd
->oobsize
= mtd
->writesize
/ 32;
3234 *busw
= type
->options
& NAND_BUSWIDTH_16
;
3237 * Check for Spansion/AMD ID + repeating 5th, 6th byte since
3238 * some Spansion chips have erasesize that conflicts with size
3239 * listed in nand_ids table.
3240 * Data sheet (5 byte ID): Spansion S30ML-P ORNAND (p.39)
3242 if (maf_id
== NAND_MFR_AMD
&& id_data
[4] != 0x00 && id_data
[5] == 0x00
3243 && id_data
[6] == 0x00 && id_data
[7] == 0x00
3244 && mtd
->writesize
== 512) {
3245 mtd
->erasesize
= 128 * 1024;
3246 mtd
->erasesize
<<= ((id_data
[3] & 0x03) << 1);
3251 * Set the bad block marker/indicator (BBM/BBI) patterns according to some
3252 * heuristic patterns using various detected parameters (e.g., manufacturer,
3253 * page size, cell-type information).
3255 static void nand_decode_bbm_options(struct mtd_info
*mtd
,
3256 struct nand_chip
*chip
, u8 id_data
[8])
3258 int maf_id
= id_data
[0];
3260 /* Set the bad block position */
3261 if (mtd
->writesize
> 512 || (chip
->options
& NAND_BUSWIDTH_16
))
3262 chip
->badblockpos
= NAND_LARGE_BADBLOCK_POS
;
3264 chip
->badblockpos
= NAND_SMALL_BADBLOCK_POS
;
3267 * Bad block marker is stored in the last page of each block on Samsung
3268 * and Hynix MLC devices; stored in first two pages of each block on
3269 * Micron devices with 2KiB pages and on SLC Samsung, Hynix, Toshiba,
3270 * AMD/Spansion, and Macronix. All others scan only the first page.
3272 if ((chip
->cellinfo
& NAND_CI_CELLTYPE_MSK
) &&
3273 (maf_id
== NAND_MFR_SAMSUNG
||
3274 maf_id
== NAND_MFR_HYNIX
))
3275 chip
->bbt_options
|= NAND_BBT_SCANLASTPAGE
;
3276 else if ((!(chip
->cellinfo
& NAND_CI_CELLTYPE_MSK
) &&
3277 (maf_id
== NAND_MFR_SAMSUNG
||
3278 maf_id
== NAND_MFR_HYNIX
||
3279 maf_id
== NAND_MFR_TOSHIBA
||
3280 maf_id
== NAND_MFR_AMD
||
3281 maf_id
== NAND_MFR_MACRONIX
)) ||
3282 (mtd
->writesize
== 2048 &&
3283 maf_id
== NAND_MFR_MICRON
))
3284 chip
->bbt_options
|= NAND_BBT_SCAN2NDPAGE
;
3287 static inline bool is_full_id_nand(struct nand_flash_dev
*type
)
3289 return type
->id_len
;
3292 static bool find_full_id_nand(struct mtd_info
*mtd
, struct nand_chip
*chip
,
3293 struct nand_flash_dev
*type
, u8
*id_data
, int *busw
)
3295 if (!strncmp(type
->id
, id_data
, type
->id_len
)) {
3296 mtd
->writesize
= type
->pagesize
;
3297 mtd
->erasesize
= type
->erasesize
;
3298 mtd
->oobsize
= type
->oobsize
;
3300 chip
->cellinfo
= id_data
[2];
3301 chip
->chipsize
= (uint64_t)type
->chipsize
<< 20;
3302 chip
->options
|= type
->options
;
3303 chip
->ecc_strength_ds
= NAND_ECC_STRENGTH(type
);
3304 chip
->ecc_step_ds
= NAND_ECC_STEP(type
);
3306 *busw
= type
->options
& NAND_BUSWIDTH_16
;
3314 * Get the flash and manufacturer id and lookup if the type is supported.
3316 static struct nand_flash_dev
*nand_get_flash_type(struct mtd_info
*mtd
,
3317 struct nand_chip
*chip
,
3319 int *maf_id
, int *dev_id
,
3320 struct nand_flash_dev
*type
)
3325 /* Select the device */
3326 chip
->select_chip(mtd
, 0);
3329 * Reset the chip, required by some chips (e.g. Micron MT29FxGxxxxx)
3332 chip
->cmdfunc(mtd
, NAND_CMD_RESET
, -1, -1);
3334 /* Send the command for reading device ID */
3335 chip
->cmdfunc(mtd
, NAND_CMD_READID
, 0x00, -1);
3337 /* Read manufacturer and device IDs */
3338 *maf_id
= chip
->read_byte(mtd
);
3339 *dev_id
= chip
->read_byte(mtd
);
3342 * Try again to make sure, as some systems the bus-hold or other
3343 * interface concerns can cause random data which looks like a
3344 * possibly credible NAND flash to appear. If the two results do
3345 * not match, ignore the device completely.
3348 chip
->cmdfunc(mtd
, NAND_CMD_READID
, 0x00, -1);
3350 /* Read entire ID string */
3351 for (i
= 0; i
< 8; i
++)
3352 id_data
[i
] = chip
->read_byte(mtd
);
3354 if (id_data
[0] != *maf_id
|| id_data
[1] != *dev_id
) {
3355 pr_info("%s: second ID read did not match "
3356 "%02x,%02x against %02x,%02x\n", __func__
,
3357 *maf_id
, *dev_id
, id_data
[0], id_data
[1]);
3358 return ERR_PTR(-ENODEV
);
3362 type
= nand_flash_ids
;
3364 for (; type
->name
!= NULL
; type
++) {
3365 if (is_full_id_nand(type
)) {
3366 if (find_full_id_nand(mtd
, chip
, type
, id_data
, &busw
))
3368 } else if (*dev_id
== type
->dev_id
) {
3373 chip
->onfi_version
= 0;
3374 if (!type
->name
|| !type
->pagesize
) {
3375 /* Check is chip is ONFI compliant */
3376 if (nand_flash_detect_onfi(mtd
, chip
, &busw
))
3381 return ERR_PTR(-ENODEV
);
3384 mtd
->name
= type
->name
;
3386 chip
->chipsize
= (uint64_t)type
->chipsize
<< 20;
3388 if (!type
->pagesize
&& chip
->init_size
) {
3389 /* Set the pagesize, oobsize, erasesize by the driver */
3390 busw
= chip
->init_size(mtd
, chip
, id_data
);
3391 } else if (!type
->pagesize
) {
3392 /* Decode parameters from extended ID */
3393 nand_decode_ext_id(mtd
, chip
, id_data
, &busw
);
3395 nand_decode_id(mtd
, chip
, type
, id_data
, &busw
);
3397 /* Get chip options */
3398 chip
->options
|= type
->options
;
3401 * Check if chip is not a Samsung device. Do not clear the
3402 * options for chips which do not have an extended id.
3404 if (*maf_id
!= NAND_MFR_SAMSUNG
&& !type
->pagesize
)
3405 chip
->options
&= ~NAND_SAMSUNG_LP_OPTIONS
;
3408 /* Try to identify manufacturer */
3409 for (maf_idx
= 0; nand_manuf_ids
[maf_idx
].id
!= 0x0; maf_idx
++) {
3410 if (nand_manuf_ids
[maf_idx
].id
== *maf_id
)
3414 if (chip
->options
& NAND_BUSWIDTH_AUTO
) {
3415 WARN_ON(chip
->options
& NAND_BUSWIDTH_16
);
3416 chip
->options
|= busw
;
3417 nand_set_defaults(chip
, busw
);
3418 } else if (busw
!= (chip
->options
& NAND_BUSWIDTH_16
)) {
3420 * Check, if buswidth is correct. Hardware drivers should set
3423 pr_info("NAND device: Manufacturer ID:"
3424 " 0x%02x, Chip ID: 0x%02x (%s %s)\n", *maf_id
,
3425 *dev_id
, nand_manuf_ids
[maf_idx
].name
, mtd
->name
);
3426 pr_warn("NAND bus width %d instead %d bit\n",
3427 (chip
->options
& NAND_BUSWIDTH_16
) ? 16 : 8,
3429 return ERR_PTR(-EINVAL
);
3432 nand_decode_bbm_options(mtd
, chip
, id_data
);
3434 /* Calculate the address shift from the page size */
3435 chip
->page_shift
= ffs(mtd
->writesize
) - 1;
3436 /* Convert chipsize to number of pages per chip -1 */
3437 chip
->pagemask
= (chip
->chipsize
>> chip
->page_shift
) - 1;
3439 chip
->bbt_erase_shift
= chip
->phys_erase_shift
=
3440 ffs(mtd
->erasesize
) - 1;
3441 if (chip
->chipsize
& 0xffffffff)
3442 chip
->chip_shift
= ffs((unsigned)chip
->chipsize
) - 1;
3444 chip
->chip_shift
= ffs((unsigned)(chip
->chipsize
>> 32));
3445 chip
->chip_shift
+= 32 - 1;
3448 chip
->badblockbits
= 8;
3449 chip
->erase_cmd
= single_erase_cmd
;
3451 /* Do not replace user supplied command function! */
3452 if (mtd
->writesize
> 512 && chip
->cmdfunc
== nand_command
)
3453 chip
->cmdfunc
= nand_command_lp
;
3455 pr_info("NAND device: Manufacturer ID: 0x%02x, Chip ID: 0x%02x (%s %s),"
3456 " %dMiB, page size: %d, OOB size: %d\n",
3457 *maf_id
, *dev_id
, nand_manuf_ids
[maf_idx
].name
,
3458 chip
->onfi_version
? chip
->onfi_params
.model
: type
->name
,
3459 (int)(chip
->chipsize
>> 20), mtd
->writesize
, mtd
->oobsize
);
3465 * nand_scan_ident - [NAND Interface] Scan for the NAND device
3466 * @mtd: MTD device structure
3467 * @maxchips: number of chips to scan for
3468 * @table: alternative NAND ID table
3470 * This is the first phase of the normal nand_scan() function. It reads the
3471 * flash ID and sets up MTD fields accordingly.
3473 * The mtd->owner field must be set to the module of the caller.
3475 int nand_scan_ident(struct mtd_info
*mtd
, int maxchips
,
3476 struct nand_flash_dev
*table
)
3478 int i
, busw
, nand_maf_id
, nand_dev_id
;
3479 struct nand_chip
*chip
= mtd
->priv
;
3480 struct nand_flash_dev
*type
;
3482 /* Get buswidth to select the correct functions */
3483 busw
= chip
->options
& NAND_BUSWIDTH_16
;
3484 /* Set the default functions */
3485 nand_set_defaults(chip
, busw
);
3487 /* Read the flash type */
3488 type
= nand_get_flash_type(mtd
, chip
, busw
,
3489 &nand_maf_id
, &nand_dev_id
, table
);
3492 if (!(chip
->options
& NAND_SCAN_SILENT_NODEV
))
3493 pr_warn("No NAND device found\n");
3494 chip
->select_chip(mtd
, -1);
3495 return PTR_ERR(type
);
3498 chip
->select_chip(mtd
, -1);
3500 /* Check for a chip array */
3501 for (i
= 1; i
< maxchips
; i
++) {
3502 chip
->select_chip(mtd
, i
);
3503 /* See comment in nand_get_flash_type for reset */
3504 chip
->cmdfunc(mtd
, NAND_CMD_RESET
, -1, -1);
3505 /* Send the command for reading device ID */
3506 chip
->cmdfunc(mtd
, NAND_CMD_READID
, 0x00, -1);
3507 /* Read manufacturer and device IDs */
3508 if (nand_maf_id
!= chip
->read_byte(mtd
) ||
3509 nand_dev_id
!= chip
->read_byte(mtd
)) {
3510 chip
->select_chip(mtd
, -1);
3513 chip
->select_chip(mtd
, -1);
3516 pr_info("%d NAND chips detected\n", i
);
3518 /* Store the number of chips and calc total size for mtd */
3520 mtd
->size
= i
* chip
->chipsize
;
3524 EXPORT_SYMBOL(nand_scan_ident
);
3528 * nand_scan_tail - [NAND Interface] Scan for the NAND device
3529 * @mtd: MTD device structure
3531 * This is the second phase of the normal nand_scan() function. It fills out
3532 * all the uninitialized function pointers with the defaults and scans for a
3533 * bad block table if appropriate.
3535 int nand_scan_tail(struct mtd_info
*mtd
)
3538 struct nand_chip
*chip
= mtd
->priv
;
3540 /* New bad blocks should be marked in OOB, flash-based BBT, or both */
3541 BUG_ON((chip
->bbt_options
& NAND_BBT_NO_OOB_BBM
) &&
3542 !(chip
->bbt_options
& NAND_BBT_USE_FLASH
));
3544 if (!(chip
->options
& NAND_OWN_BUFFERS
))
3545 chip
->buffers
= kmalloc(sizeof(*chip
->buffers
), GFP_KERNEL
);
3549 /* Set the internal oob buffer location, just after the page data */
3550 chip
->oob_poi
= chip
->buffers
->databuf
+ mtd
->writesize
;
3553 * If no default placement scheme is given, select an appropriate one.
3555 if (!chip
->ecc
.layout
&& (chip
->ecc
.mode
!= NAND_ECC_SOFT_BCH
)) {
3556 switch (mtd
->oobsize
) {
3558 chip
->ecc
.layout
= &nand_oob_8
;
3561 chip
->ecc
.layout
= &nand_oob_16
;
3564 chip
->ecc
.layout
= &nand_oob_64
;
3567 chip
->ecc
.layout
= &nand_oob_128
;
3570 pr_warn("No oob scheme defined for oobsize %d\n",
3576 if (!chip
->write_page
)
3577 chip
->write_page
= nand_write_page
;
3580 * Check ECC mode, default to software if 3byte/512byte hardware ECC is
3581 * selected and we have 256 byte pagesize fallback to software ECC
3584 switch (chip
->ecc
.mode
) {
3585 case NAND_ECC_HW_OOB_FIRST
:
3586 /* Similar to NAND_ECC_HW, but a separate read_page handle */
3587 if (!chip
->ecc
.calculate
|| !chip
->ecc
.correct
||
3589 pr_warn("No ECC functions supplied; "
3590 "hardware ECC not possible\n");
3593 if (!chip
->ecc
.read_page
)
3594 chip
->ecc
.read_page
= nand_read_page_hwecc_oob_first
;
3597 /* Use standard hwecc read page function? */
3598 if (!chip
->ecc
.read_page
)
3599 chip
->ecc
.read_page
= nand_read_page_hwecc
;
3600 if (!chip
->ecc
.write_page
)
3601 chip
->ecc
.write_page
= nand_write_page_hwecc
;
3602 if (!chip
->ecc
.read_page_raw
)
3603 chip
->ecc
.read_page_raw
= nand_read_page_raw
;
3604 if (!chip
->ecc
.write_page_raw
)
3605 chip
->ecc
.write_page_raw
= nand_write_page_raw
;
3606 if (!chip
->ecc
.read_oob
)
3607 chip
->ecc
.read_oob
= nand_read_oob_std
;
3608 if (!chip
->ecc
.write_oob
)
3609 chip
->ecc
.write_oob
= nand_write_oob_std
;
3610 if (!chip
->ecc
.read_subpage
)
3611 chip
->ecc
.read_subpage
= nand_read_subpage
;
3612 if (!chip
->ecc
.write_subpage
)
3613 chip
->ecc
.write_subpage
= nand_write_subpage_hwecc
;
3615 case NAND_ECC_HW_SYNDROME
:
3616 if ((!chip
->ecc
.calculate
|| !chip
->ecc
.correct
||
3617 !chip
->ecc
.hwctl
) &&
3618 (!chip
->ecc
.read_page
||
3619 chip
->ecc
.read_page
== nand_read_page_hwecc
||
3620 !chip
->ecc
.write_page
||
3621 chip
->ecc
.write_page
== nand_write_page_hwecc
)) {
3622 pr_warn("No ECC functions supplied; "
3623 "hardware ECC not possible\n");
3626 /* Use standard syndrome read/write page function? */
3627 if (!chip
->ecc
.read_page
)
3628 chip
->ecc
.read_page
= nand_read_page_syndrome
;
3629 if (!chip
->ecc
.write_page
)
3630 chip
->ecc
.write_page
= nand_write_page_syndrome
;
3631 if (!chip
->ecc
.read_page_raw
)
3632 chip
->ecc
.read_page_raw
= nand_read_page_raw_syndrome
;
3633 if (!chip
->ecc
.write_page_raw
)
3634 chip
->ecc
.write_page_raw
= nand_write_page_raw_syndrome
;
3635 if (!chip
->ecc
.read_oob
)
3636 chip
->ecc
.read_oob
= nand_read_oob_syndrome
;
3637 if (!chip
->ecc
.write_oob
)
3638 chip
->ecc
.write_oob
= nand_write_oob_syndrome
;
3640 if (mtd
->writesize
>= chip
->ecc
.size
) {
3641 if (!chip
->ecc
.strength
) {
3642 pr_warn("Driver must set ecc.strength when using hardware ECC\n");
3647 pr_warn("%d byte HW ECC not possible on "
3648 "%d byte page size, fallback to SW ECC\n",
3649 chip
->ecc
.size
, mtd
->writesize
);
3650 chip
->ecc
.mode
= NAND_ECC_SOFT
;
3653 chip
->ecc
.calculate
= nand_calculate_ecc
;
3654 chip
->ecc
.correct
= nand_correct_data
;
3655 chip
->ecc
.read_page
= nand_read_page_swecc
;
3656 chip
->ecc
.read_subpage
= nand_read_subpage
;
3657 chip
->ecc
.write_page
= nand_write_page_swecc
;
3658 chip
->ecc
.read_page_raw
= nand_read_page_raw
;
3659 chip
->ecc
.write_page_raw
= nand_write_page_raw
;
3660 chip
->ecc
.read_oob
= nand_read_oob_std
;
3661 chip
->ecc
.write_oob
= nand_write_oob_std
;
3662 if (!chip
->ecc
.size
)
3663 chip
->ecc
.size
= 256;
3664 chip
->ecc
.bytes
= 3;
3665 chip
->ecc
.strength
= 1;
3668 case NAND_ECC_SOFT_BCH
:
3669 if (!mtd_nand_has_bch()) {
3670 pr_warn("CONFIG_MTD_ECC_BCH not enabled\n");
3673 chip
->ecc
.calculate
= nand_bch_calculate_ecc
;
3674 chip
->ecc
.correct
= nand_bch_correct_data
;
3675 chip
->ecc
.read_page
= nand_read_page_swecc
;
3676 chip
->ecc
.read_subpage
= nand_read_subpage
;
3677 chip
->ecc
.write_page
= nand_write_page_swecc
;
3678 chip
->ecc
.read_page_raw
= nand_read_page_raw
;
3679 chip
->ecc
.write_page_raw
= nand_write_page_raw
;
3680 chip
->ecc
.read_oob
= nand_read_oob_std
;
3681 chip
->ecc
.write_oob
= nand_write_oob_std
;
3683 * Board driver should supply ecc.size and ecc.bytes values to
3684 * select how many bits are correctable; see nand_bch_init()
3685 * for details. Otherwise, default to 4 bits for large page
3688 if (!chip
->ecc
.size
&& (mtd
->oobsize
>= 64)) {
3689 chip
->ecc
.size
= 512;
3690 chip
->ecc
.bytes
= 7;
3692 chip
->ecc
.priv
= nand_bch_init(mtd
,
3696 if (!chip
->ecc
.priv
) {
3697 pr_warn("BCH ECC initialization failed!\n");
3700 chip
->ecc
.strength
=
3701 chip
->ecc
.bytes
* 8 / fls(8 * chip
->ecc
.size
);
3705 pr_warn("NAND_ECC_NONE selected by board driver. "
3706 "This is not recommended!\n");
3707 chip
->ecc
.read_page
= nand_read_page_raw
;
3708 chip
->ecc
.write_page
= nand_write_page_raw
;
3709 chip
->ecc
.read_oob
= nand_read_oob_std
;
3710 chip
->ecc
.read_page_raw
= nand_read_page_raw
;
3711 chip
->ecc
.write_page_raw
= nand_write_page_raw
;
3712 chip
->ecc
.write_oob
= nand_write_oob_std
;
3713 chip
->ecc
.size
= mtd
->writesize
;
3714 chip
->ecc
.bytes
= 0;
3715 chip
->ecc
.strength
= 0;
3719 pr_warn("Invalid NAND_ECC_MODE %d\n", chip
->ecc
.mode
);
3723 /* For many systems, the standard OOB write also works for raw */
3724 if (!chip
->ecc
.read_oob_raw
)
3725 chip
->ecc
.read_oob_raw
= chip
->ecc
.read_oob
;
3726 if (!chip
->ecc
.write_oob_raw
)
3727 chip
->ecc
.write_oob_raw
= chip
->ecc
.write_oob
;
3730 * The number of bytes available for a client to place data into
3731 * the out of band area.
3733 chip
->ecc
.layout
->oobavail
= 0;
3734 for (i
= 0; chip
->ecc
.layout
->oobfree
[i
].length
3735 && i
< ARRAY_SIZE(chip
->ecc
.layout
->oobfree
); i
++)
3736 chip
->ecc
.layout
->oobavail
+=
3737 chip
->ecc
.layout
->oobfree
[i
].length
;
3738 mtd
->oobavail
= chip
->ecc
.layout
->oobavail
;
3741 * Set the number of read / write steps for one page depending on ECC
3744 chip
->ecc
.steps
= mtd
->writesize
/ chip
->ecc
.size
;
3745 if (chip
->ecc
.steps
* chip
->ecc
.size
!= mtd
->writesize
) {
3746 pr_warn("Invalid ECC parameters\n");
3749 chip
->ecc
.total
= chip
->ecc
.steps
* chip
->ecc
.bytes
;
3751 /* Allow subpage writes up to ecc.steps. Not possible for MLC flash */
3752 if (!(chip
->options
& NAND_NO_SUBPAGE_WRITE
) &&
3753 !(chip
->cellinfo
& NAND_CI_CELLTYPE_MSK
)) {
3754 switch (chip
->ecc
.steps
) {
3756 mtd
->subpage_sft
= 1;
3761 mtd
->subpage_sft
= 2;
3765 chip
->subpagesize
= mtd
->writesize
>> mtd
->subpage_sft
;
3767 /* Initialize state */
3768 chip
->state
= FL_READY
;
3770 /* Invalidate the pagebuffer reference */
3773 /* Large page NAND with SOFT_ECC should support subpage reads */
3774 if ((chip
->ecc
.mode
== NAND_ECC_SOFT
) && (chip
->page_shift
> 9))
3775 chip
->options
|= NAND_SUBPAGE_READ
;
3777 /* Fill in remaining MTD driver data */
3778 mtd
->type
= MTD_NANDFLASH
;
3779 mtd
->flags
= (chip
->options
& NAND_ROM
) ? MTD_CAP_ROM
:
3781 mtd
->_erase
= nand_erase
;
3783 mtd
->_unpoint
= NULL
;
3784 mtd
->_read
= nand_read
;
3785 mtd
->_write
= nand_write
;
3786 mtd
->_panic_write
= panic_nand_write
;
3787 mtd
->_read_oob
= nand_read_oob
;
3788 mtd
->_write_oob
= nand_write_oob
;
3789 mtd
->_sync
= nand_sync
;
3791 mtd
->_unlock
= NULL
;
3792 mtd
->_suspend
= nand_suspend
;
3793 mtd
->_resume
= nand_resume
;
3794 mtd
->_block_isbad
= nand_block_isbad
;
3795 mtd
->_block_markbad
= nand_block_markbad
;
3796 mtd
->writebufsize
= mtd
->writesize
;
3798 /* propagate ecc info to mtd_info */
3799 mtd
->ecclayout
= chip
->ecc
.layout
;
3800 mtd
->ecc_strength
= chip
->ecc
.strength
;
3801 mtd
->ecc_step_size
= chip
->ecc
.size
;
3803 * Initialize bitflip_threshold to its default prior scan_bbt() call.
3804 * scan_bbt() might invoke mtd_read(), thus bitflip_threshold must be
3807 if (!mtd
->bitflip_threshold
)
3808 mtd
->bitflip_threshold
= mtd
->ecc_strength
;
3810 /* Check, if we should skip the bad block table scan */
3811 if (chip
->options
& NAND_SKIP_BBTSCAN
)
3814 /* Build bad block table */
3815 return chip
->scan_bbt(mtd
);
3817 EXPORT_SYMBOL(nand_scan_tail
);
3820 * is_module_text_address() isn't exported, and it's mostly a pointless
3821 * test if this is a module _anyway_ -- they'd have to try _really_ hard
3822 * to call us from in-kernel code if the core NAND support is modular.
3825 #define caller_is_module() (1)
3827 #define caller_is_module() \
3828 is_module_text_address((unsigned long)__builtin_return_address(0))
3832 * nand_scan - [NAND Interface] Scan for the NAND device
3833 * @mtd: MTD device structure
3834 * @maxchips: number of chips to scan for
3836 * This fills out all the uninitialized function pointers with the defaults.
3837 * The flash ID is read and the mtd/chip structures are filled with the
3838 * appropriate values. The mtd->owner field must be set to the module of the
3841 int nand_scan(struct mtd_info
*mtd
, int maxchips
)
3845 /* Many callers got this wrong, so check for it for a while... */
3846 if (!mtd
->owner
&& caller_is_module()) {
3847 pr_crit("%s called with NULL mtd->owner!\n", __func__
);
3851 ret
= nand_scan_ident(mtd
, maxchips
, NULL
);
3853 ret
= nand_scan_tail(mtd
);
3856 EXPORT_SYMBOL(nand_scan
);
3859 * nand_release - [NAND Interface] Free resources held by the NAND device
3860 * @mtd: MTD device structure
3862 void nand_release(struct mtd_info
*mtd
)
3864 struct nand_chip
*chip
= mtd
->priv
;
3866 if (chip
->ecc
.mode
== NAND_ECC_SOFT_BCH
)
3867 nand_bch_free((struct nand_bch_control
*)chip
->ecc
.priv
);
3869 mtd_device_unregister(mtd
);
3871 /* Free bad block table memory */
3873 if (!(chip
->options
& NAND_OWN_BUFFERS
))
3874 kfree(chip
->buffers
);
3876 /* Free bad block descriptor memory */
3877 if (chip
->badblock_pattern
&& chip
->badblock_pattern
->options
3878 & NAND_BBT_DYNAMICSTRUCT
)
3879 kfree(chip
->badblock_pattern
);
3881 EXPORT_SYMBOL_GPL(nand_release
);
3883 static int __init
nand_base_init(void)
3885 led_trigger_register_simple("nand-disk", &nand_led_trigger
);
3889 static void __exit
nand_base_exit(void)
3891 led_trigger_unregister_simple(nand_led_trigger
);
3894 module_init(nand_base_init
);
3895 module_exit(nand_base_exit
);
3897 MODULE_LICENSE("GPL");
3898 MODULE_AUTHOR("Steven J. Hill <sjhill@realitydiluted.com>");
3899 MODULE_AUTHOR("Thomas Gleixner <tglx@linutronix.de>");
3900 MODULE_DESCRIPTION("Generic NAND flash driver code");