mfd: wm8350-i2c: Make sure the i2c regmap functions are compiled
[linux/fpc-iii.git] / drivers / mtd / nand / s3c2410.c
blobd65cbe903d4015e37076f0505db987ee4383e0d5
1 /* linux/drivers/mtd/nand/s3c2410.c
3 * Copyright © 2004-2008 Simtec Electronics
4 * http://armlinux.simtec.co.uk/
5 * Ben Dooks <ben@simtec.co.uk>
7 * Samsung S3C2410/S3C2440/S3C2412 NAND driver
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License as published by
11 * the Free Software Foundation; either version 2 of the License, or
12 * (at your option) any later version.
14 * This program is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 * GNU General Public License for more details.
19 * You should have received a copy of the GNU General Public License
20 * along with this program; if not, write to the Free Software
21 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
24 #define pr_fmt(fmt) "nand-s3c2410: " fmt
26 #ifdef CONFIG_MTD_NAND_S3C2410_DEBUG
27 #define DEBUG
28 #endif
30 #include <linux/module.h>
31 #include <linux/types.h>
32 #include <linux/init.h>
33 #include <linux/kernel.h>
34 #include <linux/string.h>
35 #include <linux/io.h>
36 #include <linux/ioport.h>
37 #include <linux/platform_device.h>
38 #include <linux/delay.h>
39 #include <linux/err.h>
40 #include <linux/slab.h>
41 #include <linux/clk.h>
42 #include <linux/cpufreq.h>
44 #include <linux/mtd/mtd.h>
45 #include <linux/mtd/nand.h>
46 #include <linux/mtd/nand_ecc.h>
47 #include <linux/mtd/partitions.h>
49 #include <plat/regs-nand.h>
50 #include <linux/platform_data/mtd-nand-s3c2410.h>
52 /* new oob placement block for use with hardware ecc generation
55 static struct nand_ecclayout nand_hw_eccoob = {
56 .eccbytes = 3,
57 .eccpos = {0, 1, 2},
58 .oobfree = {{8, 8}}
61 /* controller and mtd information */
63 struct s3c2410_nand_info;
65 /**
66 * struct s3c2410_nand_mtd - driver MTD structure
67 * @mtd: The MTD instance to pass to the MTD layer.
68 * @chip: The NAND chip information.
69 * @set: The platform information supplied for this set of NAND chips.
70 * @info: Link back to the hardware information.
71 * @scan_res: The result from calling nand_scan_ident().
73 struct s3c2410_nand_mtd {
74 struct mtd_info mtd;
75 struct nand_chip chip;
76 struct s3c2410_nand_set *set;
77 struct s3c2410_nand_info *info;
78 int scan_res;
81 enum s3c_cpu_type {
82 TYPE_S3C2410,
83 TYPE_S3C2412,
84 TYPE_S3C2440,
87 enum s3c_nand_clk_state {
88 CLOCK_DISABLE = 0,
89 CLOCK_ENABLE,
90 CLOCK_SUSPEND,
93 /* overview of the s3c2410 nand state */
95 /**
96 * struct s3c2410_nand_info - NAND controller state.
97 * @mtds: An array of MTD instances on this controoler.
98 * @platform: The platform data for this board.
99 * @device: The platform device we bound to.
100 * @clk: The clock resource for this controller.
101 * @regs: The area mapped for the hardware registers.
102 * @sel_reg: Pointer to the register controlling the NAND selection.
103 * @sel_bit: The bit in @sel_reg to select the NAND chip.
104 * @mtd_count: The number of MTDs created from this controller.
105 * @save_sel: The contents of @sel_reg to be saved over suspend.
106 * @clk_rate: The clock rate from @clk.
107 * @clk_state: The current clock state.
108 * @cpu_type: The exact type of this controller.
110 struct s3c2410_nand_info {
111 /* mtd info */
112 struct nand_hw_control controller;
113 struct s3c2410_nand_mtd *mtds;
114 struct s3c2410_platform_nand *platform;
116 /* device info */
117 struct device *device;
118 struct clk *clk;
119 void __iomem *regs;
120 void __iomem *sel_reg;
121 int sel_bit;
122 int mtd_count;
123 unsigned long save_sel;
124 unsigned long clk_rate;
125 enum s3c_nand_clk_state clk_state;
127 enum s3c_cpu_type cpu_type;
129 #ifdef CONFIG_CPU_FREQ
130 struct notifier_block freq_transition;
131 #endif
134 /* conversion functions */
136 static struct s3c2410_nand_mtd *s3c2410_nand_mtd_toours(struct mtd_info *mtd)
138 return container_of(mtd, struct s3c2410_nand_mtd, mtd);
141 static struct s3c2410_nand_info *s3c2410_nand_mtd_toinfo(struct mtd_info *mtd)
143 return s3c2410_nand_mtd_toours(mtd)->info;
146 static struct s3c2410_nand_info *to_nand_info(struct platform_device *dev)
148 return platform_get_drvdata(dev);
151 static struct s3c2410_platform_nand *to_nand_plat(struct platform_device *dev)
153 return dev_get_platdata(&dev->dev);
156 static inline int allow_clk_suspend(struct s3c2410_nand_info *info)
158 #ifdef CONFIG_MTD_NAND_S3C2410_CLKSTOP
159 return 1;
160 #else
161 return 0;
162 #endif
166 * s3c2410_nand_clk_set_state - Enable, disable or suspend NAND clock.
167 * @info: The controller instance.
168 * @new_state: State to which clock should be set.
170 static void s3c2410_nand_clk_set_state(struct s3c2410_nand_info *info,
171 enum s3c_nand_clk_state new_state)
173 if (!allow_clk_suspend(info) && new_state == CLOCK_SUSPEND)
174 return;
176 if (info->clk_state == CLOCK_ENABLE) {
177 if (new_state != CLOCK_ENABLE)
178 clk_disable(info->clk);
179 } else {
180 if (new_state == CLOCK_ENABLE)
181 clk_enable(info->clk);
184 info->clk_state = new_state;
187 /* timing calculations */
189 #define NS_IN_KHZ 1000000
192 * s3c_nand_calc_rate - calculate timing data.
193 * @wanted: The cycle time in nanoseconds.
194 * @clk: The clock rate in kHz.
195 * @max: The maximum divider value.
197 * Calculate the timing value from the given parameters.
199 static int s3c_nand_calc_rate(int wanted, unsigned long clk, int max)
201 int result;
203 result = DIV_ROUND_UP((wanted * clk), NS_IN_KHZ);
205 pr_debug("result %d from %ld, %d\n", result, clk, wanted);
207 if (result > max) {
208 pr_err("%d ns is too big for current clock rate %ld\n",
209 wanted, clk);
210 return -1;
213 if (result < 1)
214 result = 1;
216 return result;
219 #define to_ns(ticks, clk) (((ticks) * NS_IN_KHZ) / (unsigned int)(clk))
221 /* controller setup */
224 * s3c2410_nand_setrate - setup controller timing information.
225 * @info: The controller instance.
227 * Given the information supplied by the platform, calculate and set
228 * the necessary timing registers in the hardware to generate the
229 * necessary timing cycles to the hardware.
231 static int s3c2410_nand_setrate(struct s3c2410_nand_info *info)
233 struct s3c2410_platform_nand *plat = info->platform;
234 int tacls_max = (info->cpu_type == TYPE_S3C2412) ? 8 : 4;
235 int tacls, twrph0, twrph1;
236 unsigned long clkrate = clk_get_rate(info->clk);
237 unsigned long uninitialized_var(set), cfg, uninitialized_var(mask);
238 unsigned long flags;
240 /* calculate the timing information for the controller */
242 info->clk_rate = clkrate;
243 clkrate /= 1000; /* turn clock into kHz for ease of use */
245 if (plat != NULL) {
246 tacls = s3c_nand_calc_rate(plat->tacls, clkrate, tacls_max);
247 twrph0 = s3c_nand_calc_rate(plat->twrph0, clkrate, 8);
248 twrph1 = s3c_nand_calc_rate(plat->twrph1, clkrate, 8);
249 } else {
250 /* default timings */
251 tacls = tacls_max;
252 twrph0 = 8;
253 twrph1 = 8;
256 if (tacls < 0 || twrph0 < 0 || twrph1 < 0) {
257 dev_err(info->device, "cannot get suitable timings\n");
258 return -EINVAL;
261 dev_info(info->device, "Tacls=%d, %dns Twrph0=%d %dns, Twrph1=%d %dns\n",
262 tacls, to_ns(tacls, clkrate), twrph0, to_ns(twrph0, clkrate),
263 twrph1, to_ns(twrph1, clkrate));
265 switch (info->cpu_type) {
266 case TYPE_S3C2410:
267 mask = (S3C2410_NFCONF_TACLS(3) |
268 S3C2410_NFCONF_TWRPH0(7) |
269 S3C2410_NFCONF_TWRPH1(7));
270 set = S3C2410_NFCONF_EN;
271 set |= S3C2410_NFCONF_TACLS(tacls - 1);
272 set |= S3C2410_NFCONF_TWRPH0(twrph0 - 1);
273 set |= S3C2410_NFCONF_TWRPH1(twrph1 - 1);
274 break;
276 case TYPE_S3C2440:
277 case TYPE_S3C2412:
278 mask = (S3C2440_NFCONF_TACLS(tacls_max - 1) |
279 S3C2440_NFCONF_TWRPH0(7) |
280 S3C2440_NFCONF_TWRPH1(7));
282 set = S3C2440_NFCONF_TACLS(tacls - 1);
283 set |= S3C2440_NFCONF_TWRPH0(twrph0 - 1);
284 set |= S3C2440_NFCONF_TWRPH1(twrph1 - 1);
285 break;
287 default:
288 BUG();
291 local_irq_save(flags);
293 cfg = readl(info->regs + S3C2410_NFCONF);
294 cfg &= ~mask;
295 cfg |= set;
296 writel(cfg, info->regs + S3C2410_NFCONF);
298 local_irq_restore(flags);
300 dev_dbg(info->device, "NF_CONF is 0x%lx\n", cfg);
302 return 0;
306 * s3c2410_nand_inithw - basic hardware initialisation
307 * @info: The hardware state.
309 * Do the basic initialisation of the hardware, using s3c2410_nand_setrate()
310 * to setup the hardware access speeds and set the controller to be enabled.
312 static int s3c2410_nand_inithw(struct s3c2410_nand_info *info)
314 int ret;
316 ret = s3c2410_nand_setrate(info);
317 if (ret < 0)
318 return ret;
320 switch (info->cpu_type) {
321 case TYPE_S3C2410:
322 default:
323 break;
325 case TYPE_S3C2440:
326 case TYPE_S3C2412:
327 /* enable the controller and de-assert nFCE */
329 writel(S3C2440_NFCONT_ENABLE, info->regs + S3C2440_NFCONT);
332 return 0;
336 * s3c2410_nand_select_chip - select the given nand chip
337 * @mtd: The MTD instance for this chip.
338 * @chip: The chip number.
340 * This is called by the MTD layer to either select a given chip for the
341 * @mtd instance, or to indicate that the access has finished and the
342 * chip can be de-selected.
344 * The routine ensures that the nFCE line is correctly setup, and any
345 * platform specific selection code is called to route nFCE to the specific
346 * chip.
348 static void s3c2410_nand_select_chip(struct mtd_info *mtd, int chip)
350 struct s3c2410_nand_info *info;
351 struct s3c2410_nand_mtd *nmtd;
352 struct nand_chip *this = mtd->priv;
353 unsigned long cur;
355 nmtd = this->priv;
356 info = nmtd->info;
358 if (chip != -1)
359 s3c2410_nand_clk_set_state(info, CLOCK_ENABLE);
361 cur = readl(info->sel_reg);
363 if (chip == -1) {
364 cur |= info->sel_bit;
365 } else {
366 if (nmtd->set != NULL && chip > nmtd->set->nr_chips) {
367 dev_err(info->device, "invalid chip %d\n", chip);
368 return;
371 if (info->platform != NULL) {
372 if (info->platform->select_chip != NULL)
373 (info->platform->select_chip) (nmtd->set, chip);
376 cur &= ~info->sel_bit;
379 writel(cur, info->sel_reg);
381 if (chip == -1)
382 s3c2410_nand_clk_set_state(info, CLOCK_SUSPEND);
385 /* s3c2410_nand_hwcontrol
387 * Issue command and address cycles to the chip
390 static void s3c2410_nand_hwcontrol(struct mtd_info *mtd, int cmd,
391 unsigned int ctrl)
393 struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd);
395 if (cmd == NAND_CMD_NONE)
396 return;
398 if (ctrl & NAND_CLE)
399 writeb(cmd, info->regs + S3C2410_NFCMD);
400 else
401 writeb(cmd, info->regs + S3C2410_NFADDR);
404 /* command and control functions */
406 static void s3c2440_nand_hwcontrol(struct mtd_info *mtd, int cmd,
407 unsigned int ctrl)
409 struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd);
411 if (cmd == NAND_CMD_NONE)
412 return;
414 if (ctrl & NAND_CLE)
415 writeb(cmd, info->regs + S3C2440_NFCMD);
416 else
417 writeb(cmd, info->regs + S3C2440_NFADDR);
420 /* s3c2410_nand_devready()
422 * returns 0 if the nand is busy, 1 if it is ready
425 static int s3c2410_nand_devready(struct mtd_info *mtd)
427 struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd);
428 return readb(info->regs + S3C2410_NFSTAT) & S3C2410_NFSTAT_BUSY;
431 static int s3c2440_nand_devready(struct mtd_info *mtd)
433 struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd);
434 return readb(info->regs + S3C2440_NFSTAT) & S3C2440_NFSTAT_READY;
437 static int s3c2412_nand_devready(struct mtd_info *mtd)
439 struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd);
440 return readb(info->regs + S3C2412_NFSTAT) & S3C2412_NFSTAT_READY;
443 /* ECC handling functions */
445 #ifdef CONFIG_MTD_NAND_S3C2410_HWECC
446 static int s3c2410_nand_correct_data(struct mtd_info *mtd, u_char *dat,
447 u_char *read_ecc, u_char *calc_ecc)
449 struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd);
450 unsigned int diff0, diff1, diff2;
451 unsigned int bit, byte;
453 pr_debug("%s(%p,%p,%p,%p)\n", __func__, mtd, dat, read_ecc, calc_ecc);
455 diff0 = read_ecc[0] ^ calc_ecc[0];
456 diff1 = read_ecc[1] ^ calc_ecc[1];
457 diff2 = read_ecc[2] ^ calc_ecc[2];
459 pr_debug("%s: rd %*phN calc %*phN diff %02x%02x%02x\n",
460 __func__, 3, read_ecc, 3, calc_ecc,
461 diff0, diff1, diff2);
463 if (diff0 == 0 && diff1 == 0 && diff2 == 0)
464 return 0; /* ECC is ok */
466 /* sometimes people do not think about using the ECC, so check
467 * to see if we have an 0xff,0xff,0xff read ECC and then ignore
468 * the error, on the assumption that this is an un-eccd page.
470 if (read_ecc[0] == 0xff && read_ecc[1] == 0xff && read_ecc[2] == 0xff
471 && info->platform->ignore_unset_ecc)
472 return 0;
474 /* Can we correct this ECC (ie, one row and column change).
475 * Note, this is similar to the 256 error code on smartmedia */
477 if (((diff0 ^ (diff0 >> 1)) & 0x55) == 0x55 &&
478 ((diff1 ^ (diff1 >> 1)) & 0x55) == 0x55 &&
479 ((diff2 ^ (diff2 >> 1)) & 0x55) == 0x55) {
480 /* calculate the bit position of the error */
482 bit = ((diff2 >> 3) & 1) |
483 ((diff2 >> 4) & 2) |
484 ((diff2 >> 5) & 4);
486 /* calculate the byte position of the error */
488 byte = ((diff2 << 7) & 0x100) |
489 ((diff1 << 0) & 0x80) |
490 ((diff1 << 1) & 0x40) |
491 ((diff1 << 2) & 0x20) |
492 ((diff1 << 3) & 0x10) |
493 ((diff0 >> 4) & 0x08) |
494 ((diff0 >> 3) & 0x04) |
495 ((diff0 >> 2) & 0x02) |
496 ((diff0 >> 1) & 0x01);
498 dev_dbg(info->device, "correcting error bit %d, byte %d\n",
499 bit, byte);
501 dat[byte] ^= (1 << bit);
502 return 1;
505 /* if there is only one bit difference in the ECC, then
506 * one of only a row or column parity has changed, which
507 * means the error is most probably in the ECC itself */
509 diff0 |= (diff1 << 8);
510 diff0 |= (diff2 << 16);
512 if ((diff0 & ~(1<<fls(diff0))) == 0)
513 return 1;
515 return -1;
518 /* ECC functions
520 * These allow the s3c2410 and s3c2440 to use the controller's ECC
521 * generator block to ECC the data as it passes through]
524 static void s3c2410_nand_enable_hwecc(struct mtd_info *mtd, int mode)
526 struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd);
527 unsigned long ctrl;
529 ctrl = readl(info->regs + S3C2410_NFCONF);
530 ctrl |= S3C2410_NFCONF_INITECC;
531 writel(ctrl, info->regs + S3C2410_NFCONF);
534 static void s3c2412_nand_enable_hwecc(struct mtd_info *mtd, int mode)
536 struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd);
537 unsigned long ctrl;
539 ctrl = readl(info->regs + S3C2440_NFCONT);
540 writel(ctrl | S3C2412_NFCONT_INIT_MAIN_ECC,
541 info->regs + S3C2440_NFCONT);
544 static void s3c2440_nand_enable_hwecc(struct mtd_info *mtd, int mode)
546 struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd);
547 unsigned long ctrl;
549 ctrl = readl(info->regs + S3C2440_NFCONT);
550 writel(ctrl | S3C2440_NFCONT_INITECC, info->regs + S3C2440_NFCONT);
553 static int s3c2410_nand_calculate_ecc(struct mtd_info *mtd, const u_char *dat,
554 u_char *ecc_code)
556 struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd);
558 ecc_code[0] = readb(info->regs + S3C2410_NFECC + 0);
559 ecc_code[1] = readb(info->regs + S3C2410_NFECC + 1);
560 ecc_code[2] = readb(info->regs + S3C2410_NFECC + 2);
562 pr_debug("%s: returning ecc %*phN\n", __func__, 3, ecc_code);
564 return 0;
567 static int s3c2412_nand_calculate_ecc(struct mtd_info *mtd, const u_char *dat,
568 u_char *ecc_code)
570 struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd);
571 unsigned long ecc = readl(info->regs + S3C2412_NFMECC0);
573 ecc_code[0] = ecc;
574 ecc_code[1] = ecc >> 8;
575 ecc_code[2] = ecc >> 16;
577 pr_debug("%s: returning ecc %*phN\n", __func__, 3, ecc_code);
579 return 0;
582 static int s3c2440_nand_calculate_ecc(struct mtd_info *mtd, const u_char *dat,
583 u_char *ecc_code)
585 struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd);
586 unsigned long ecc = readl(info->regs + S3C2440_NFMECC0);
588 ecc_code[0] = ecc;
589 ecc_code[1] = ecc >> 8;
590 ecc_code[2] = ecc >> 16;
592 pr_debug("%s: returning ecc %06lx\n", __func__, ecc & 0xffffff);
594 return 0;
596 #endif
598 /* over-ride the standard functions for a little more speed. We can
599 * use read/write block to move the data buffers to/from the controller
602 static void s3c2410_nand_read_buf(struct mtd_info *mtd, u_char *buf, int len)
604 struct nand_chip *this = mtd->priv;
605 readsb(this->IO_ADDR_R, buf, len);
608 static void s3c2440_nand_read_buf(struct mtd_info *mtd, u_char *buf, int len)
610 struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd);
612 readsl(info->regs + S3C2440_NFDATA, buf, len >> 2);
614 /* cleanup if we've got less than a word to do */
615 if (len & 3) {
616 buf += len & ~3;
618 for (; len & 3; len--)
619 *buf++ = readb(info->regs + S3C2440_NFDATA);
623 static void s3c2410_nand_write_buf(struct mtd_info *mtd, const u_char *buf,
624 int len)
626 struct nand_chip *this = mtd->priv;
627 writesb(this->IO_ADDR_W, buf, len);
630 static void s3c2440_nand_write_buf(struct mtd_info *mtd, const u_char *buf,
631 int len)
633 struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd);
635 writesl(info->regs + S3C2440_NFDATA, buf, len >> 2);
637 /* cleanup any fractional write */
638 if (len & 3) {
639 buf += len & ~3;
641 for (; len & 3; len--, buf++)
642 writeb(*buf, info->regs + S3C2440_NFDATA);
646 /* cpufreq driver support */
648 #ifdef CONFIG_CPU_FREQ
650 static int s3c2410_nand_cpufreq_transition(struct notifier_block *nb,
651 unsigned long val, void *data)
653 struct s3c2410_nand_info *info;
654 unsigned long newclk;
656 info = container_of(nb, struct s3c2410_nand_info, freq_transition);
657 newclk = clk_get_rate(info->clk);
659 if ((val == CPUFREQ_POSTCHANGE && newclk < info->clk_rate) ||
660 (val == CPUFREQ_PRECHANGE && newclk > info->clk_rate)) {
661 s3c2410_nand_setrate(info);
664 return 0;
667 static inline int s3c2410_nand_cpufreq_register(struct s3c2410_nand_info *info)
669 info->freq_transition.notifier_call = s3c2410_nand_cpufreq_transition;
671 return cpufreq_register_notifier(&info->freq_transition,
672 CPUFREQ_TRANSITION_NOTIFIER);
675 static inline void
676 s3c2410_nand_cpufreq_deregister(struct s3c2410_nand_info *info)
678 cpufreq_unregister_notifier(&info->freq_transition,
679 CPUFREQ_TRANSITION_NOTIFIER);
682 #else
683 static inline int s3c2410_nand_cpufreq_register(struct s3c2410_nand_info *info)
685 return 0;
688 static inline void
689 s3c2410_nand_cpufreq_deregister(struct s3c2410_nand_info *info)
692 #endif
694 /* device management functions */
696 static int s3c24xx_nand_remove(struct platform_device *pdev)
698 struct s3c2410_nand_info *info = to_nand_info(pdev);
700 if (info == NULL)
701 return 0;
703 s3c2410_nand_cpufreq_deregister(info);
705 /* Release all our mtds and their partitions, then go through
706 * freeing the resources used
709 if (info->mtds != NULL) {
710 struct s3c2410_nand_mtd *ptr = info->mtds;
711 int mtdno;
713 for (mtdno = 0; mtdno < info->mtd_count; mtdno++, ptr++) {
714 pr_debug("releasing mtd %d (%p)\n", mtdno, ptr);
715 nand_release(&ptr->mtd);
719 /* free the common resources */
721 if (!IS_ERR(info->clk))
722 s3c2410_nand_clk_set_state(info, CLOCK_DISABLE);
724 return 0;
727 static int s3c2410_nand_add_partition(struct s3c2410_nand_info *info,
728 struct s3c2410_nand_mtd *mtd,
729 struct s3c2410_nand_set *set)
731 if (set) {
732 mtd->mtd.name = set->name;
734 return mtd_device_parse_register(&mtd->mtd, NULL, NULL,
735 set->partitions, set->nr_partitions);
738 return -ENODEV;
742 * s3c2410_nand_init_chip - initialise a single instance of an chip
743 * @info: The base NAND controller the chip is on.
744 * @nmtd: The new controller MTD instance to fill in.
745 * @set: The information passed from the board specific platform data.
747 * Initialise the given @nmtd from the information in @info and @set. This
748 * readies the structure for use with the MTD layer functions by ensuring
749 * all pointers are setup and the necessary control routines selected.
751 static void s3c2410_nand_init_chip(struct s3c2410_nand_info *info,
752 struct s3c2410_nand_mtd *nmtd,
753 struct s3c2410_nand_set *set)
755 struct nand_chip *chip = &nmtd->chip;
756 void __iomem *regs = info->regs;
758 chip->write_buf = s3c2410_nand_write_buf;
759 chip->read_buf = s3c2410_nand_read_buf;
760 chip->select_chip = s3c2410_nand_select_chip;
761 chip->chip_delay = 50;
762 chip->priv = nmtd;
763 chip->options = set->options;
764 chip->controller = &info->controller;
766 switch (info->cpu_type) {
767 case TYPE_S3C2410:
768 chip->IO_ADDR_W = regs + S3C2410_NFDATA;
769 info->sel_reg = regs + S3C2410_NFCONF;
770 info->sel_bit = S3C2410_NFCONF_nFCE;
771 chip->cmd_ctrl = s3c2410_nand_hwcontrol;
772 chip->dev_ready = s3c2410_nand_devready;
773 break;
775 case TYPE_S3C2440:
776 chip->IO_ADDR_W = regs + S3C2440_NFDATA;
777 info->sel_reg = regs + S3C2440_NFCONT;
778 info->sel_bit = S3C2440_NFCONT_nFCE;
779 chip->cmd_ctrl = s3c2440_nand_hwcontrol;
780 chip->dev_ready = s3c2440_nand_devready;
781 chip->read_buf = s3c2440_nand_read_buf;
782 chip->write_buf = s3c2440_nand_write_buf;
783 break;
785 case TYPE_S3C2412:
786 chip->IO_ADDR_W = regs + S3C2440_NFDATA;
787 info->sel_reg = regs + S3C2440_NFCONT;
788 info->sel_bit = S3C2412_NFCONT_nFCE0;
789 chip->cmd_ctrl = s3c2440_nand_hwcontrol;
790 chip->dev_ready = s3c2412_nand_devready;
792 if (readl(regs + S3C2410_NFCONF) & S3C2412_NFCONF_NANDBOOT)
793 dev_info(info->device, "System booted from NAND\n");
795 break;
798 chip->IO_ADDR_R = chip->IO_ADDR_W;
800 nmtd->info = info;
801 nmtd->mtd.priv = chip;
802 nmtd->mtd.owner = THIS_MODULE;
803 nmtd->set = set;
805 #ifdef CONFIG_MTD_NAND_S3C2410_HWECC
806 chip->ecc.calculate = s3c2410_nand_calculate_ecc;
807 chip->ecc.correct = s3c2410_nand_correct_data;
808 chip->ecc.mode = NAND_ECC_HW;
809 chip->ecc.strength = 1;
811 switch (info->cpu_type) {
812 case TYPE_S3C2410:
813 chip->ecc.hwctl = s3c2410_nand_enable_hwecc;
814 chip->ecc.calculate = s3c2410_nand_calculate_ecc;
815 break;
817 case TYPE_S3C2412:
818 chip->ecc.hwctl = s3c2412_nand_enable_hwecc;
819 chip->ecc.calculate = s3c2412_nand_calculate_ecc;
820 break;
822 case TYPE_S3C2440:
823 chip->ecc.hwctl = s3c2440_nand_enable_hwecc;
824 chip->ecc.calculate = s3c2440_nand_calculate_ecc;
825 break;
827 #else
828 chip->ecc.mode = NAND_ECC_SOFT;
829 #endif
831 if (set->ecc_layout != NULL)
832 chip->ecc.layout = set->ecc_layout;
834 if (set->disable_ecc)
835 chip->ecc.mode = NAND_ECC_NONE;
837 switch (chip->ecc.mode) {
838 case NAND_ECC_NONE:
839 dev_info(info->device, "NAND ECC disabled\n");
840 break;
841 case NAND_ECC_SOFT:
842 dev_info(info->device, "NAND soft ECC\n");
843 break;
844 case NAND_ECC_HW:
845 dev_info(info->device, "NAND hardware ECC\n");
846 break;
847 default:
848 dev_info(info->device, "NAND ECC UNKNOWN\n");
849 break;
852 /* If you use u-boot BBT creation code, specifying this flag will
853 * let the kernel fish out the BBT from the NAND, and also skip the
854 * full NAND scan that can take 1/2s or so. Little things... */
855 if (set->flash_bbt) {
856 chip->bbt_options |= NAND_BBT_USE_FLASH;
857 chip->options |= NAND_SKIP_BBTSCAN;
862 * s3c2410_nand_update_chip - post probe update
863 * @info: The controller instance.
864 * @nmtd: The driver version of the MTD instance.
866 * This routine is called after the chip probe has successfully completed
867 * and the relevant per-chip information updated. This call ensure that
868 * we update the internal state accordingly.
870 * The internal state is currently limited to the ECC state information.
872 static void s3c2410_nand_update_chip(struct s3c2410_nand_info *info,
873 struct s3c2410_nand_mtd *nmtd)
875 struct nand_chip *chip = &nmtd->chip;
877 dev_dbg(info->device, "chip %p => page shift %d\n",
878 chip, chip->page_shift);
880 if (chip->ecc.mode != NAND_ECC_HW)
881 return;
883 /* change the behaviour depending on whether we are using
884 * the large or small page nand device */
886 if (chip->page_shift > 10) {
887 chip->ecc.size = 256;
888 chip->ecc.bytes = 3;
889 } else {
890 chip->ecc.size = 512;
891 chip->ecc.bytes = 3;
892 chip->ecc.layout = &nand_hw_eccoob;
896 /* s3c24xx_nand_probe
898 * called by device layer when it finds a device matching
899 * one our driver can handled. This code checks to see if
900 * it can allocate all necessary resources then calls the
901 * nand layer to look for devices
903 static int s3c24xx_nand_probe(struct platform_device *pdev)
905 struct s3c2410_platform_nand *plat = to_nand_plat(pdev);
906 enum s3c_cpu_type cpu_type;
907 struct s3c2410_nand_info *info;
908 struct s3c2410_nand_mtd *nmtd;
909 struct s3c2410_nand_set *sets;
910 struct resource *res;
911 int err = 0;
912 int size;
913 int nr_sets;
914 int setno;
916 cpu_type = platform_get_device_id(pdev)->driver_data;
918 pr_debug("s3c2410_nand_probe(%p)\n", pdev);
920 info = devm_kzalloc(&pdev->dev, sizeof(*info), GFP_KERNEL);
921 if (info == NULL) {
922 dev_err(&pdev->dev, "no memory for flash info\n");
923 err = -ENOMEM;
924 goto exit_error;
927 platform_set_drvdata(pdev, info);
929 spin_lock_init(&info->controller.lock);
930 init_waitqueue_head(&info->controller.wq);
932 /* get the clock source and enable it */
934 info->clk = devm_clk_get(&pdev->dev, "nand");
935 if (IS_ERR(info->clk)) {
936 dev_err(&pdev->dev, "failed to get clock\n");
937 err = -ENOENT;
938 goto exit_error;
941 s3c2410_nand_clk_set_state(info, CLOCK_ENABLE);
943 /* allocate and map the resource */
945 /* currently we assume we have the one resource */
946 res = pdev->resource;
947 size = resource_size(res);
949 info->device = &pdev->dev;
950 info->platform = plat;
951 info->cpu_type = cpu_type;
953 info->regs = devm_ioremap_resource(&pdev->dev, res);
954 if (IS_ERR(info->regs)) {
955 err = PTR_ERR(info->regs);
956 goto exit_error;
959 dev_dbg(&pdev->dev, "mapped registers at %p\n", info->regs);
961 /* initialise the hardware */
963 err = s3c2410_nand_inithw(info);
964 if (err != 0)
965 goto exit_error;
967 sets = (plat != NULL) ? plat->sets : NULL;
968 nr_sets = (plat != NULL) ? plat->nr_sets : 1;
970 info->mtd_count = nr_sets;
972 /* allocate our information */
974 size = nr_sets * sizeof(*info->mtds);
975 info->mtds = devm_kzalloc(&pdev->dev, size, GFP_KERNEL);
976 if (info->mtds == NULL) {
977 dev_err(&pdev->dev, "failed to allocate mtd storage\n");
978 err = -ENOMEM;
979 goto exit_error;
982 /* initialise all possible chips */
984 nmtd = info->mtds;
986 for (setno = 0; setno < nr_sets; setno++, nmtd++) {
987 pr_debug("initialising set %d (%p, info %p)\n",
988 setno, nmtd, info);
990 s3c2410_nand_init_chip(info, nmtd, sets);
992 nmtd->scan_res = nand_scan_ident(&nmtd->mtd,
993 (sets) ? sets->nr_chips : 1,
994 NULL);
996 if (nmtd->scan_res == 0) {
997 s3c2410_nand_update_chip(info, nmtd);
998 nand_scan_tail(&nmtd->mtd);
999 s3c2410_nand_add_partition(info, nmtd, sets);
1002 if (sets != NULL)
1003 sets++;
1006 err = s3c2410_nand_cpufreq_register(info);
1007 if (err < 0) {
1008 dev_err(&pdev->dev, "failed to init cpufreq support\n");
1009 goto exit_error;
1012 if (allow_clk_suspend(info)) {
1013 dev_info(&pdev->dev, "clock idle support enabled\n");
1014 s3c2410_nand_clk_set_state(info, CLOCK_SUSPEND);
1017 pr_debug("initialised ok\n");
1018 return 0;
1020 exit_error:
1021 s3c24xx_nand_remove(pdev);
1023 if (err == 0)
1024 err = -EINVAL;
1025 return err;
1028 /* PM Support */
1029 #ifdef CONFIG_PM
1031 static int s3c24xx_nand_suspend(struct platform_device *dev, pm_message_t pm)
1033 struct s3c2410_nand_info *info = platform_get_drvdata(dev);
1035 if (info) {
1036 info->save_sel = readl(info->sel_reg);
1038 /* For the moment, we must ensure nFCE is high during
1039 * the time we are suspended. This really should be
1040 * handled by suspending the MTDs we are using, but
1041 * that is currently not the case. */
1043 writel(info->save_sel | info->sel_bit, info->sel_reg);
1045 s3c2410_nand_clk_set_state(info, CLOCK_DISABLE);
1048 return 0;
1051 static int s3c24xx_nand_resume(struct platform_device *dev)
1053 struct s3c2410_nand_info *info = platform_get_drvdata(dev);
1054 unsigned long sel;
1056 if (info) {
1057 s3c2410_nand_clk_set_state(info, CLOCK_ENABLE);
1058 s3c2410_nand_inithw(info);
1060 /* Restore the state of the nFCE line. */
1062 sel = readl(info->sel_reg);
1063 sel &= ~info->sel_bit;
1064 sel |= info->save_sel & info->sel_bit;
1065 writel(sel, info->sel_reg);
1067 s3c2410_nand_clk_set_state(info, CLOCK_SUSPEND);
1070 return 0;
1073 #else
1074 #define s3c24xx_nand_suspend NULL
1075 #define s3c24xx_nand_resume NULL
1076 #endif
1078 /* driver device registration */
1080 static struct platform_device_id s3c24xx_driver_ids[] = {
1082 .name = "s3c2410-nand",
1083 .driver_data = TYPE_S3C2410,
1084 }, {
1085 .name = "s3c2440-nand",
1086 .driver_data = TYPE_S3C2440,
1087 }, {
1088 .name = "s3c2412-nand",
1089 .driver_data = TYPE_S3C2412,
1090 }, {
1091 .name = "s3c6400-nand",
1092 .driver_data = TYPE_S3C2412, /* compatible with 2412 */
1097 MODULE_DEVICE_TABLE(platform, s3c24xx_driver_ids);
1099 static struct platform_driver s3c24xx_nand_driver = {
1100 .probe = s3c24xx_nand_probe,
1101 .remove = s3c24xx_nand_remove,
1102 .suspend = s3c24xx_nand_suspend,
1103 .resume = s3c24xx_nand_resume,
1104 .id_table = s3c24xx_driver_ids,
1105 .driver = {
1106 .name = "s3c24xx-nand",
1107 .owner = THIS_MODULE,
1111 module_platform_driver(s3c24xx_nand_driver);
1113 MODULE_LICENSE("GPL");
1114 MODULE_AUTHOR("Ben Dooks <ben@simtec.co.uk>");
1115 MODULE_DESCRIPTION("S3C24XX MTD NAND driver");