mfd: wm8350-i2c: Make sure the i2c regmap functions are compiled
[linux/fpc-iii.git] / drivers / mtd / nand / sh_flctl.c
bloba3c84ebbe39227dac06bae3d0f9014849cf48b17
1 /*
2 * SuperH FLCTL nand controller
4 * Copyright (c) 2008 Renesas Solutions Corp.
5 * Copyright (c) 2008 Atom Create Engineering Co., Ltd.
7 * Based on fsl_elbc_nand.c, Copyright (c) 2006-2007 Freescale Semiconductor
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License as published by
11 * the Free Software Foundation; version 2 of the License.
13 * This program is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 * GNU General Public License for more details.
18 * You should have received a copy of the GNU General Public License
19 * along with this program; if not, write to the Free Software
20 * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
24 #include <linux/module.h>
25 #include <linux/kernel.h>
26 #include <linux/completion.h>
27 #include <linux/delay.h>
28 #include <linux/dmaengine.h>
29 #include <linux/dma-mapping.h>
30 #include <linux/interrupt.h>
31 #include <linux/io.h>
32 #include <linux/of.h>
33 #include <linux/of_device.h>
34 #include <linux/of_mtd.h>
35 #include <linux/platform_device.h>
36 #include <linux/pm_runtime.h>
37 #include <linux/sh_dma.h>
38 #include <linux/slab.h>
39 #include <linux/string.h>
41 #include <linux/mtd/mtd.h>
42 #include <linux/mtd/nand.h>
43 #include <linux/mtd/partitions.h>
44 #include <linux/mtd/sh_flctl.h>
46 static struct nand_ecclayout flctl_4secc_oob_16 = {
47 .eccbytes = 10,
48 .eccpos = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9},
49 .oobfree = {
50 {.offset = 12,
51 . length = 4} },
54 static struct nand_ecclayout flctl_4secc_oob_64 = {
55 .eccbytes = 4 * 10,
56 .eccpos = {
57 6, 7, 8, 9, 10, 11, 12, 13, 14, 15,
58 22, 23, 24, 25, 26, 27, 28, 29, 30, 31,
59 38, 39, 40, 41, 42, 43, 44, 45, 46, 47,
60 54, 55, 56, 57, 58, 59, 60, 61, 62, 63 },
61 .oobfree = {
62 {.offset = 2, .length = 4},
63 {.offset = 16, .length = 6},
64 {.offset = 32, .length = 6},
65 {.offset = 48, .length = 6} },
68 static uint8_t scan_ff_pattern[] = { 0xff, 0xff };
70 static struct nand_bbt_descr flctl_4secc_smallpage = {
71 .options = NAND_BBT_SCAN2NDPAGE,
72 .offs = 11,
73 .len = 1,
74 .pattern = scan_ff_pattern,
77 static struct nand_bbt_descr flctl_4secc_largepage = {
78 .options = NAND_BBT_SCAN2NDPAGE,
79 .offs = 0,
80 .len = 2,
81 .pattern = scan_ff_pattern,
84 static void empty_fifo(struct sh_flctl *flctl)
86 writel(flctl->flintdmacr_base | AC1CLR | AC0CLR, FLINTDMACR(flctl));
87 writel(flctl->flintdmacr_base, FLINTDMACR(flctl));
90 static void start_translation(struct sh_flctl *flctl)
92 writeb(TRSTRT, FLTRCR(flctl));
95 static void timeout_error(struct sh_flctl *flctl, const char *str)
97 dev_err(&flctl->pdev->dev, "Timeout occurred in %s\n", str);
100 static void wait_completion(struct sh_flctl *flctl)
102 uint32_t timeout = LOOP_TIMEOUT_MAX;
104 while (timeout--) {
105 if (readb(FLTRCR(flctl)) & TREND) {
106 writeb(0x0, FLTRCR(flctl));
107 return;
109 udelay(1);
112 timeout_error(flctl, __func__);
113 writeb(0x0, FLTRCR(flctl));
116 static void flctl_dma_complete(void *param)
118 struct sh_flctl *flctl = param;
120 complete(&flctl->dma_complete);
123 static void flctl_release_dma(struct sh_flctl *flctl)
125 if (flctl->chan_fifo0_rx) {
126 dma_release_channel(flctl->chan_fifo0_rx);
127 flctl->chan_fifo0_rx = NULL;
129 if (flctl->chan_fifo0_tx) {
130 dma_release_channel(flctl->chan_fifo0_tx);
131 flctl->chan_fifo0_tx = NULL;
135 static void flctl_setup_dma(struct sh_flctl *flctl)
137 dma_cap_mask_t mask;
138 struct dma_slave_config cfg;
139 struct platform_device *pdev = flctl->pdev;
140 struct sh_flctl_platform_data *pdata = dev_get_platdata(&pdev->dev);
141 int ret;
143 if (!pdata)
144 return;
146 if (pdata->slave_id_fifo0_tx <= 0 || pdata->slave_id_fifo0_rx <= 0)
147 return;
149 /* We can only either use DMA for both Tx and Rx or not use it at all */
150 dma_cap_zero(mask);
151 dma_cap_set(DMA_SLAVE, mask);
153 flctl->chan_fifo0_tx = dma_request_channel(mask, shdma_chan_filter,
154 (void *)pdata->slave_id_fifo0_tx);
155 dev_dbg(&pdev->dev, "%s: TX: got channel %p\n", __func__,
156 flctl->chan_fifo0_tx);
158 if (!flctl->chan_fifo0_tx)
159 return;
161 memset(&cfg, 0, sizeof(cfg));
162 cfg.slave_id = pdata->slave_id_fifo0_tx;
163 cfg.direction = DMA_MEM_TO_DEV;
164 cfg.dst_addr = (dma_addr_t)FLDTFIFO(flctl);
165 cfg.src_addr = 0;
166 ret = dmaengine_slave_config(flctl->chan_fifo0_tx, &cfg);
167 if (ret < 0)
168 goto err;
170 flctl->chan_fifo0_rx = dma_request_channel(mask, shdma_chan_filter,
171 (void *)pdata->slave_id_fifo0_rx);
172 dev_dbg(&pdev->dev, "%s: RX: got channel %p\n", __func__,
173 flctl->chan_fifo0_rx);
175 if (!flctl->chan_fifo0_rx)
176 goto err;
178 cfg.slave_id = pdata->slave_id_fifo0_rx;
179 cfg.direction = DMA_DEV_TO_MEM;
180 cfg.dst_addr = 0;
181 cfg.src_addr = (dma_addr_t)FLDTFIFO(flctl);
182 ret = dmaengine_slave_config(flctl->chan_fifo0_rx, &cfg);
183 if (ret < 0)
184 goto err;
186 init_completion(&flctl->dma_complete);
188 return;
190 err:
191 flctl_release_dma(flctl);
194 static void set_addr(struct mtd_info *mtd, int column, int page_addr)
196 struct sh_flctl *flctl = mtd_to_flctl(mtd);
197 uint32_t addr = 0;
199 if (column == -1) {
200 addr = page_addr; /* ERASE1 */
201 } else if (page_addr != -1) {
202 /* SEQIN, READ0, etc.. */
203 if (flctl->chip.options & NAND_BUSWIDTH_16)
204 column >>= 1;
205 if (flctl->page_size) {
206 addr = column & 0x0FFF;
207 addr |= (page_addr & 0xff) << 16;
208 addr |= ((page_addr >> 8) & 0xff) << 24;
209 /* big than 128MB */
210 if (flctl->rw_ADRCNT == ADRCNT2_E) {
211 uint32_t addr2;
212 addr2 = (page_addr >> 16) & 0xff;
213 writel(addr2, FLADR2(flctl));
215 } else {
216 addr = column;
217 addr |= (page_addr & 0xff) << 8;
218 addr |= ((page_addr >> 8) & 0xff) << 16;
219 addr |= ((page_addr >> 16) & 0xff) << 24;
222 writel(addr, FLADR(flctl));
225 static void wait_rfifo_ready(struct sh_flctl *flctl)
227 uint32_t timeout = LOOP_TIMEOUT_MAX;
229 while (timeout--) {
230 uint32_t val;
231 /* check FIFO */
232 val = readl(FLDTCNTR(flctl)) >> 16;
233 if (val & 0xFF)
234 return;
235 udelay(1);
237 timeout_error(flctl, __func__);
240 static void wait_wfifo_ready(struct sh_flctl *flctl)
242 uint32_t len, timeout = LOOP_TIMEOUT_MAX;
244 while (timeout--) {
245 /* check FIFO */
246 len = (readl(FLDTCNTR(flctl)) >> 16) & 0xFF;
247 if (len >= 4)
248 return;
249 udelay(1);
251 timeout_error(flctl, __func__);
254 static enum flctl_ecc_res_t wait_recfifo_ready
255 (struct sh_flctl *flctl, int sector_number)
257 uint32_t timeout = LOOP_TIMEOUT_MAX;
258 void __iomem *ecc_reg[4];
259 int i;
260 int state = FL_SUCCESS;
261 uint32_t data, size;
264 * First this loops checks in FLDTCNTR if we are ready to read out the
265 * oob data. This is the case if either all went fine without errors or
266 * if the bottom part of the loop corrected the errors or marked them as
267 * uncorrectable and the controller is given time to push the data into
268 * the FIFO.
270 while (timeout--) {
271 /* check if all is ok and we can read out the OOB */
272 size = readl(FLDTCNTR(flctl)) >> 24;
273 if ((size & 0xFF) == 4)
274 return state;
276 /* check if a correction code has been calculated */
277 if (!(readl(FL4ECCCR(flctl)) & _4ECCEND)) {
279 * either we wait for the fifo to be filled or a
280 * correction pattern is being generated
282 udelay(1);
283 continue;
286 /* check for an uncorrectable error */
287 if (readl(FL4ECCCR(flctl)) & _4ECCFA) {
288 /* check if we face a non-empty page */
289 for (i = 0; i < 512; i++) {
290 if (flctl->done_buff[i] != 0xff) {
291 state = FL_ERROR; /* can't correct */
292 break;
296 if (state == FL_SUCCESS)
297 dev_dbg(&flctl->pdev->dev,
298 "reading empty sector %d, ecc error ignored\n",
299 sector_number);
301 writel(0, FL4ECCCR(flctl));
302 continue;
305 /* start error correction */
306 ecc_reg[0] = FL4ECCRESULT0(flctl);
307 ecc_reg[1] = FL4ECCRESULT1(flctl);
308 ecc_reg[2] = FL4ECCRESULT2(flctl);
309 ecc_reg[3] = FL4ECCRESULT3(flctl);
311 for (i = 0; i < 3; i++) {
312 uint8_t org;
313 unsigned int index;
315 data = readl(ecc_reg[i]);
317 if (flctl->page_size)
318 index = (512 * sector_number) +
319 (data >> 16);
320 else
321 index = data >> 16;
323 org = flctl->done_buff[index];
324 flctl->done_buff[index] = org ^ (data & 0xFF);
326 state = FL_REPAIRABLE;
327 writel(0, FL4ECCCR(flctl));
330 timeout_error(flctl, __func__);
331 return FL_TIMEOUT; /* timeout */
334 static void wait_wecfifo_ready(struct sh_flctl *flctl)
336 uint32_t timeout = LOOP_TIMEOUT_MAX;
337 uint32_t len;
339 while (timeout--) {
340 /* check FLECFIFO */
341 len = (readl(FLDTCNTR(flctl)) >> 24) & 0xFF;
342 if (len >= 4)
343 return;
344 udelay(1);
346 timeout_error(flctl, __func__);
349 static int flctl_dma_fifo0_transfer(struct sh_flctl *flctl, unsigned long *buf,
350 int len, enum dma_data_direction dir)
352 struct dma_async_tx_descriptor *desc = NULL;
353 struct dma_chan *chan;
354 enum dma_transfer_direction tr_dir;
355 dma_addr_t dma_addr;
356 dma_cookie_t cookie = -EINVAL;
357 uint32_t reg;
358 int ret;
360 if (dir == DMA_FROM_DEVICE) {
361 chan = flctl->chan_fifo0_rx;
362 tr_dir = DMA_DEV_TO_MEM;
363 } else {
364 chan = flctl->chan_fifo0_tx;
365 tr_dir = DMA_MEM_TO_DEV;
368 dma_addr = dma_map_single(chan->device->dev, buf, len, dir);
370 if (dma_addr)
371 desc = dmaengine_prep_slave_single(chan, dma_addr, len,
372 tr_dir, DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
374 if (desc) {
375 reg = readl(FLINTDMACR(flctl));
376 reg |= DREQ0EN;
377 writel(reg, FLINTDMACR(flctl));
379 desc->callback = flctl_dma_complete;
380 desc->callback_param = flctl;
381 cookie = dmaengine_submit(desc);
383 dma_async_issue_pending(chan);
384 } else {
385 /* DMA failed, fall back to PIO */
386 flctl_release_dma(flctl);
387 dev_warn(&flctl->pdev->dev,
388 "DMA failed, falling back to PIO\n");
389 ret = -EIO;
390 goto out;
393 ret =
394 wait_for_completion_timeout(&flctl->dma_complete,
395 msecs_to_jiffies(3000));
397 if (ret <= 0) {
398 chan->device->device_control(chan, DMA_TERMINATE_ALL, 0);
399 dev_err(&flctl->pdev->dev, "wait_for_completion_timeout\n");
402 out:
403 reg = readl(FLINTDMACR(flctl));
404 reg &= ~DREQ0EN;
405 writel(reg, FLINTDMACR(flctl));
407 dma_unmap_single(chan->device->dev, dma_addr, len, dir);
409 /* ret > 0 is success */
410 return ret;
413 static void read_datareg(struct sh_flctl *flctl, int offset)
415 unsigned long data;
416 unsigned long *buf = (unsigned long *)&flctl->done_buff[offset];
418 wait_completion(flctl);
420 data = readl(FLDATAR(flctl));
421 *buf = le32_to_cpu(data);
424 static void read_fiforeg(struct sh_flctl *flctl, int rlen, int offset)
426 int i, len_4align;
427 unsigned long *buf = (unsigned long *)&flctl->done_buff[offset];
429 len_4align = (rlen + 3) / 4;
431 /* initiate DMA transfer */
432 if (flctl->chan_fifo0_rx && rlen >= 32 &&
433 flctl_dma_fifo0_transfer(flctl, buf, rlen, DMA_DEV_TO_MEM) > 0)
434 goto convert; /* DMA success */
436 /* do polling transfer */
437 for (i = 0; i < len_4align; i++) {
438 wait_rfifo_ready(flctl);
439 buf[i] = readl(FLDTFIFO(flctl));
442 convert:
443 for (i = 0; i < len_4align; i++)
444 buf[i] = be32_to_cpu(buf[i]);
447 static enum flctl_ecc_res_t read_ecfiforeg
448 (struct sh_flctl *flctl, uint8_t *buff, int sector)
450 int i;
451 enum flctl_ecc_res_t res;
452 unsigned long *ecc_buf = (unsigned long *)buff;
454 res = wait_recfifo_ready(flctl , sector);
456 if (res != FL_ERROR) {
457 for (i = 0; i < 4; i++) {
458 ecc_buf[i] = readl(FLECFIFO(flctl));
459 ecc_buf[i] = be32_to_cpu(ecc_buf[i]);
463 return res;
466 static void write_fiforeg(struct sh_flctl *flctl, int rlen,
467 unsigned int offset)
469 int i, len_4align;
470 unsigned long *buf = (unsigned long *)&flctl->done_buff[offset];
472 len_4align = (rlen + 3) / 4;
473 for (i = 0; i < len_4align; i++) {
474 wait_wfifo_ready(flctl);
475 writel(cpu_to_be32(buf[i]), FLDTFIFO(flctl));
479 static void write_ec_fiforeg(struct sh_flctl *flctl, int rlen,
480 unsigned int offset)
482 int i, len_4align;
483 unsigned long *buf = (unsigned long *)&flctl->done_buff[offset];
485 len_4align = (rlen + 3) / 4;
487 for (i = 0; i < len_4align; i++)
488 buf[i] = cpu_to_be32(buf[i]);
490 /* initiate DMA transfer */
491 if (flctl->chan_fifo0_tx && rlen >= 32 &&
492 flctl_dma_fifo0_transfer(flctl, buf, rlen, DMA_MEM_TO_DEV) > 0)
493 return; /* DMA success */
495 /* do polling transfer */
496 for (i = 0; i < len_4align; i++) {
497 wait_wecfifo_ready(flctl);
498 writel(buf[i], FLECFIFO(flctl));
502 static void set_cmd_regs(struct mtd_info *mtd, uint32_t cmd, uint32_t flcmcdr_val)
504 struct sh_flctl *flctl = mtd_to_flctl(mtd);
505 uint32_t flcmncr_val = flctl->flcmncr_base & ~SEL_16BIT;
506 uint32_t flcmdcr_val, addr_len_bytes = 0;
508 /* Set SNAND bit if page size is 2048byte */
509 if (flctl->page_size)
510 flcmncr_val |= SNAND_E;
511 else
512 flcmncr_val &= ~SNAND_E;
514 /* default FLCMDCR val */
515 flcmdcr_val = DOCMD1_E | DOADR_E;
517 /* Set for FLCMDCR */
518 switch (cmd) {
519 case NAND_CMD_ERASE1:
520 addr_len_bytes = flctl->erase_ADRCNT;
521 flcmdcr_val |= DOCMD2_E;
522 break;
523 case NAND_CMD_READ0:
524 case NAND_CMD_READOOB:
525 case NAND_CMD_RNDOUT:
526 addr_len_bytes = flctl->rw_ADRCNT;
527 flcmdcr_val |= CDSRC_E;
528 if (flctl->chip.options & NAND_BUSWIDTH_16)
529 flcmncr_val |= SEL_16BIT;
530 break;
531 case NAND_CMD_SEQIN:
532 /* This case is that cmd is READ0 or READ1 or READ00 */
533 flcmdcr_val &= ~DOADR_E; /* ONLY execute 1st cmd */
534 break;
535 case NAND_CMD_PAGEPROG:
536 addr_len_bytes = flctl->rw_ADRCNT;
537 flcmdcr_val |= DOCMD2_E | CDSRC_E | SELRW;
538 if (flctl->chip.options & NAND_BUSWIDTH_16)
539 flcmncr_val |= SEL_16BIT;
540 break;
541 case NAND_CMD_READID:
542 flcmncr_val &= ~SNAND_E;
543 flcmdcr_val |= CDSRC_E;
544 addr_len_bytes = ADRCNT_1;
545 break;
546 case NAND_CMD_STATUS:
547 case NAND_CMD_RESET:
548 flcmncr_val &= ~SNAND_E;
549 flcmdcr_val &= ~(DOADR_E | DOSR_E);
550 break;
551 default:
552 break;
555 /* Set address bytes parameter */
556 flcmdcr_val |= addr_len_bytes;
558 /* Now actually write */
559 writel(flcmncr_val, FLCMNCR(flctl));
560 writel(flcmdcr_val, FLCMDCR(flctl));
561 writel(flcmcdr_val, FLCMCDR(flctl));
564 static int flctl_read_page_hwecc(struct mtd_info *mtd, struct nand_chip *chip,
565 uint8_t *buf, int oob_required, int page)
567 chip->read_buf(mtd, buf, mtd->writesize);
568 if (oob_required)
569 chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
570 return 0;
573 static int flctl_write_page_hwecc(struct mtd_info *mtd, struct nand_chip *chip,
574 const uint8_t *buf, int oob_required)
576 chip->write_buf(mtd, buf, mtd->writesize);
577 chip->write_buf(mtd, chip->oob_poi, mtd->oobsize);
578 return 0;
581 static void execmd_read_page_sector(struct mtd_info *mtd, int page_addr)
583 struct sh_flctl *flctl = mtd_to_flctl(mtd);
584 int sector, page_sectors;
585 enum flctl_ecc_res_t ecc_result;
587 page_sectors = flctl->page_size ? 4 : 1;
589 set_cmd_regs(mtd, NAND_CMD_READ0,
590 (NAND_CMD_READSTART << 8) | NAND_CMD_READ0);
592 writel(readl(FLCMNCR(flctl)) | ACM_SACCES_MODE | _4ECCCORRECT,
593 FLCMNCR(flctl));
594 writel(readl(FLCMDCR(flctl)) | page_sectors, FLCMDCR(flctl));
595 writel(page_addr << 2, FLADR(flctl));
597 empty_fifo(flctl);
598 start_translation(flctl);
600 for (sector = 0; sector < page_sectors; sector++) {
601 read_fiforeg(flctl, 512, 512 * sector);
603 ecc_result = read_ecfiforeg(flctl,
604 &flctl->done_buff[mtd->writesize + 16 * sector],
605 sector);
607 switch (ecc_result) {
608 case FL_REPAIRABLE:
609 dev_info(&flctl->pdev->dev,
610 "applied ecc on page 0x%x", page_addr);
611 flctl->mtd.ecc_stats.corrected++;
612 break;
613 case FL_ERROR:
614 dev_warn(&flctl->pdev->dev,
615 "page 0x%x contains corrupted data\n",
616 page_addr);
617 flctl->mtd.ecc_stats.failed++;
618 break;
619 default:
624 wait_completion(flctl);
626 writel(readl(FLCMNCR(flctl)) & ~(ACM_SACCES_MODE | _4ECCCORRECT),
627 FLCMNCR(flctl));
630 static void execmd_read_oob(struct mtd_info *mtd, int page_addr)
632 struct sh_flctl *flctl = mtd_to_flctl(mtd);
633 int page_sectors = flctl->page_size ? 4 : 1;
634 int i;
636 set_cmd_regs(mtd, NAND_CMD_READ0,
637 (NAND_CMD_READSTART << 8) | NAND_CMD_READ0);
639 empty_fifo(flctl);
641 for (i = 0; i < page_sectors; i++) {
642 set_addr(mtd, (512 + 16) * i + 512 , page_addr);
643 writel(16, FLDTCNTR(flctl));
645 start_translation(flctl);
646 read_fiforeg(flctl, 16, 16 * i);
647 wait_completion(flctl);
651 static void execmd_write_page_sector(struct mtd_info *mtd)
653 struct sh_flctl *flctl = mtd_to_flctl(mtd);
654 int page_addr = flctl->seqin_page_addr;
655 int sector, page_sectors;
657 page_sectors = flctl->page_size ? 4 : 1;
659 set_cmd_regs(mtd, NAND_CMD_PAGEPROG,
660 (NAND_CMD_PAGEPROG << 8) | NAND_CMD_SEQIN);
662 empty_fifo(flctl);
663 writel(readl(FLCMNCR(flctl)) | ACM_SACCES_MODE, FLCMNCR(flctl));
664 writel(readl(FLCMDCR(flctl)) | page_sectors, FLCMDCR(flctl));
665 writel(page_addr << 2, FLADR(flctl));
666 start_translation(flctl);
668 for (sector = 0; sector < page_sectors; sector++) {
669 write_fiforeg(flctl, 512, 512 * sector);
670 write_ec_fiforeg(flctl, 16, mtd->writesize + 16 * sector);
673 wait_completion(flctl);
674 writel(readl(FLCMNCR(flctl)) & ~ACM_SACCES_MODE, FLCMNCR(flctl));
677 static void execmd_write_oob(struct mtd_info *mtd)
679 struct sh_flctl *flctl = mtd_to_flctl(mtd);
680 int page_addr = flctl->seqin_page_addr;
681 int sector, page_sectors;
683 page_sectors = flctl->page_size ? 4 : 1;
685 set_cmd_regs(mtd, NAND_CMD_PAGEPROG,
686 (NAND_CMD_PAGEPROG << 8) | NAND_CMD_SEQIN);
688 for (sector = 0; sector < page_sectors; sector++) {
689 empty_fifo(flctl);
690 set_addr(mtd, sector * 528 + 512, page_addr);
691 writel(16, FLDTCNTR(flctl)); /* set read size */
693 start_translation(flctl);
694 write_fiforeg(flctl, 16, 16 * sector);
695 wait_completion(flctl);
699 static void flctl_cmdfunc(struct mtd_info *mtd, unsigned int command,
700 int column, int page_addr)
702 struct sh_flctl *flctl = mtd_to_flctl(mtd);
703 uint32_t read_cmd = 0;
705 pm_runtime_get_sync(&flctl->pdev->dev);
707 flctl->read_bytes = 0;
708 if (command != NAND_CMD_PAGEPROG)
709 flctl->index = 0;
711 switch (command) {
712 case NAND_CMD_READ1:
713 case NAND_CMD_READ0:
714 if (flctl->hwecc) {
715 /* read page with hwecc */
716 execmd_read_page_sector(mtd, page_addr);
717 break;
719 if (flctl->page_size)
720 set_cmd_regs(mtd, command, (NAND_CMD_READSTART << 8)
721 | command);
722 else
723 set_cmd_regs(mtd, command, command);
725 set_addr(mtd, 0, page_addr);
727 flctl->read_bytes = mtd->writesize + mtd->oobsize;
728 if (flctl->chip.options & NAND_BUSWIDTH_16)
729 column >>= 1;
730 flctl->index += column;
731 goto read_normal_exit;
733 case NAND_CMD_READOOB:
734 if (flctl->hwecc) {
735 /* read page with hwecc */
736 execmd_read_oob(mtd, page_addr);
737 break;
740 if (flctl->page_size) {
741 set_cmd_regs(mtd, command, (NAND_CMD_READSTART << 8)
742 | NAND_CMD_READ0);
743 set_addr(mtd, mtd->writesize, page_addr);
744 } else {
745 set_cmd_regs(mtd, command, command);
746 set_addr(mtd, 0, page_addr);
748 flctl->read_bytes = mtd->oobsize;
749 goto read_normal_exit;
751 case NAND_CMD_RNDOUT:
752 if (flctl->hwecc)
753 break;
755 if (flctl->page_size)
756 set_cmd_regs(mtd, command, (NAND_CMD_RNDOUTSTART << 8)
757 | command);
758 else
759 set_cmd_regs(mtd, command, command);
761 set_addr(mtd, column, 0);
763 flctl->read_bytes = mtd->writesize + mtd->oobsize - column;
764 goto read_normal_exit;
766 case NAND_CMD_READID:
767 set_cmd_regs(mtd, command, command);
769 /* READID is always performed using an 8-bit bus */
770 if (flctl->chip.options & NAND_BUSWIDTH_16)
771 column <<= 1;
772 set_addr(mtd, column, 0);
774 flctl->read_bytes = 8;
775 writel(flctl->read_bytes, FLDTCNTR(flctl)); /* set read size */
776 empty_fifo(flctl);
777 start_translation(flctl);
778 read_fiforeg(flctl, flctl->read_bytes, 0);
779 wait_completion(flctl);
780 break;
782 case NAND_CMD_ERASE1:
783 flctl->erase1_page_addr = page_addr;
784 break;
786 case NAND_CMD_ERASE2:
787 set_cmd_regs(mtd, NAND_CMD_ERASE1,
788 (command << 8) | NAND_CMD_ERASE1);
789 set_addr(mtd, -1, flctl->erase1_page_addr);
790 start_translation(flctl);
791 wait_completion(flctl);
792 break;
794 case NAND_CMD_SEQIN:
795 if (!flctl->page_size) {
796 /* output read command */
797 if (column >= mtd->writesize) {
798 column -= mtd->writesize;
799 read_cmd = NAND_CMD_READOOB;
800 } else if (column < 256) {
801 read_cmd = NAND_CMD_READ0;
802 } else {
803 column -= 256;
804 read_cmd = NAND_CMD_READ1;
807 flctl->seqin_column = column;
808 flctl->seqin_page_addr = page_addr;
809 flctl->seqin_read_cmd = read_cmd;
810 break;
812 case NAND_CMD_PAGEPROG:
813 empty_fifo(flctl);
814 if (!flctl->page_size) {
815 set_cmd_regs(mtd, NAND_CMD_SEQIN,
816 flctl->seqin_read_cmd);
817 set_addr(mtd, -1, -1);
818 writel(0, FLDTCNTR(flctl)); /* set 0 size */
819 start_translation(flctl);
820 wait_completion(flctl);
822 if (flctl->hwecc) {
823 /* write page with hwecc */
824 if (flctl->seqin_column == mtd->writesize)
825 execmd_write_oob(mtd);
826 else if (!flctl->seqin_column)
827 execmd_write_page_sector(mtd);
828 else
829 printk(KERN_ERR "Invalid address !?\n");
830 break;
832 set_cmd_regs(mtd, command, (command << 8) | NAND_CMD_SEQIN);
833 set_addr(mtd, flctl->seqin_column, flctl->seqin_page_addr);
834 writel(flctl->index, FLDTCNTR(flctl)); /* set write size */
835 start_translation(flctl);
836 write_fiforeg(flctl, flctl->index, 0);
837 wait_completion(flctl);
838 break;
840 case NAND_CMD_STATUS:
841 set_cmd_regs(mtd, command, command);
842 set_addr(mtd, -1, -1);
844 flctl->read_bytes = 1;
845 writel(flctl->read_bytes, FLDTCNTR(flctl)); /* set read size */
846 start_translation(flctl);
847 read_datareg(flctl, 0); /* read and end */
848 break;
850 case NAND_CMD_RESET:
851 set_cmd_regs(mtd, command, command);
852 set_addr(mtd, -1, -1);
854 writel(0, FLDTCNTR(flctl)); /* set 0 size */
855 start_translation(flctl);
856 wait_completion(flctl);
857 break;
859 default:
860 break;
862 goto runtime_exit;
864 read_normal_exit:
865 writel(flctl->read_bytes, FLDTCNTR(flctl)); /* set read size */
866 empty_fifo(flctl);
867 start_translation(flctl);
868 read_fiforeg(flctl, flctl->read_bytes, 0);
869 wait_completion(flctl);
870 runtime_exit:
871 pm_runtime_put_sync(&flctl->pdev->dev);
872 return;
875 static void flctl_select_chip(struct mtd_info *mtd, int chipnr)
877 struct sh_flctl *flctl = mtd_to_flctl(mtd);
878 int ret;
880 switch (chipnr) {
881 case -1:
882 flctl->flcmncr_base &= ~CE0_ENABLE;
884 pm_runtime_get_sync(&flctl->pdev->dev);
885 writel(flctl->flcmncr_base, FLCMNCR(flctl));
887 if (flctl->qos_request) {
888 dev_pm_qos_remove_request(&flctl->pm_qos);
889 flctl->qos_request = 0;
892 pm_runtime_put_sync(&flctl->pdev->dev);
893 break;
894 case 0:
895 flctl->flcmncr_base |= CE0_ENABLE;
897 if (!flctl->qos_request) {
898 ret = dev_pm_qos_add_request(&flctl->pdev->dev,
899 &flctl->pm_qos,
900 DEV_PM_QOS_LATENCY,
901 100);
902 if (ret < 0)
903 dev_err(&flctl->pdev->dev,
904 "PM QoS request failed: %d\n", ret);
905 flctl->qos_request = 1;
908 if (flctl->holden) {
909 pm_runtime_get_sync(&flctl->pdev->dev);
910 writel(HOLDEN, FLHOLDCR(flctl));
911 pm_runtime_put_sync(&flctl->pdev->dev);
913 break;
914 default:
915 BUG();
919 static void flctl_write_buf(struct mtd_info *mtd, const uint8_t *buf, int len)
921 struct sh_flctl *flctl = mtd_to_flctl(mtd);
923 memcpy(&flctl->done_buff[flctl->index], buf, len);
924 flctl->index += len;
927 static uint8_t flctl_read_byte(struct mtd_info *mtd)
929 struct sh_flctl *flctl = mtd_to_flctl(mtd);
930 uint8_t data;
932 data = flctl->done_buff[flctl->index];
933 flctl->index++;
934 return data;
937 static uint16_t flctl_read_word(struct mtd_info *mtd)
939 struct sh_flctl *flctl = mtd_to_flctl(mtd);
940 uint16_t *buf = (uint16_t *)&flctl->done_buff[flctl->index];
942 flctl->index += 2;
943 return *buf;
946 static void flctl_read_buf(struct mtd_info *mtd, uint8_t *buf, int len)
948 struct sh_flctl *flctl = mtd_to_flctl(mtd);
950 memcpy(buf, &flctl->done_buff[flctl->index], len);
951 flctl->index += len;
954 static int flctl_chip_init_tail(struct mtd_info *mtd)
956 struct sh_flctl *flctl = mtd_to_flctl(mtd);
957 struct nand_chip *chip = &flctl->chip;
959 if (mtd->writesize == 512) {
960 flctl->page_size = 0;
961 if (chip->chipsize > (32 << 20)) {
962 /* big than 32MB */
963 flctl->rw_ADRCNT = ADRCNT_4;
964 flctl->erase_ADRCNT = ADRCNT_3;
965 } else if (chip->chipsize > (2 << 16)) {
966 /* big than 128KB */
967 flctl->rw_ADRCNT = ADRCNT_3;
968 flctl->erase_ADRCNT = ADRCNT_2;
969 } else {
970 flctl->rw_ADRCNT = ADRCNT_2;
971 flctl->erase_ADRCNT = ADRCNT_1;
973 } else {
974 flctl->page_size = 1;
975 if (chip->chipsize > (128 << 20)) {
976 /* big than 128MB */
977 flctl->rw_ADRCNT = ADRCNT2_E;
978 flctl->erase_ADRCNT = ADRCNT_3;
979 } else if (chip->chipsize > (8 << 16)) {
980 /* big than 512KB */
981 flctl->rw_ADRCNT = ADRCNT_4;
982 flctl->erase_ADRCNT = ADRCNT_2;
983 } else {
984 flctl->rw_ADRCNT = ADRCNT_3;
985 flctl->erase_ADRCNT = ADRCNT_1;
989 if (flctl->hwecc) {
990 if (mtd->writesize == 512) {
991 chip->ecc.layout = &flctl_4secc_oob_16;
992 chip->badblock_pattern = &flctl_4secc_smallpage;
993 } else {
994 chip->ecc.layout = &flctl_4secc_oob_64;
995 chip->badblock_pattern = &flctl_4secc_largepage;
998 chip->ecc.size = 512;
999 chip->ecc.bytes = 10;
1000 chip->ecc.strength = 4;
1001 chip->ecc.read_page = flctl_read_page_hwecc;
1002 chip->ecc.write_page = flctl_write_page_hwecc;
1003 chip->ecc.mode = NAND_ECC_HW;
1005 /* 4 symbols ECC enabled */
1006 flctl->flcmncr_base |= _4ECCEN;
1007 } else {
1008 chip->ecc.mode = NAND_ECC_SOFT;
1011 return 0;
1014 static irqreturn_t flctl_handle_flste(int irq, void *dev_id)
1016 struct sh_flctl *flctl = dev_id;
1018 dev_err(&flctl->pdev->dev, "flste irq: %x\n", readl(FLINTDMACR(flctl)));
1019 writel(flctl->flintdmacr_base, FLINTDMACR(flctl));
1021 return IRQ_HANDLED;
1024 #ifdef CONFIG_OF
1025 struct flctl_soc_config {
1026 unsigned long flcmncr_val;
1027 unsigned has_hwecc:1;
1028 unsigned use_holden:1;
1031 static struct flctl_soc_config flctl_sh7372_config = {
1032 .flcmncr_val = CLK_16B_12L_4H | TYPESEL_SET | SHBUSSEL,
1033 .has_hwecc = 1,
1034 .use_holden = 1,
1037 static const struct of_device_id of_flctl_match[] = {
1038 { .compatible = "renesas,shmobile-flctl-sh7372",
1039 .data = &flctl_sh7372_config },
1042 MODULE_DEVICE_TABLE(of, of_flctl_match);
1044 static struct sh_flctl_platform_data *flctl_parse_dt(struct device *dev)
1046 const struct of_device_id *match;
1047 struct flctl_soc_config *config;
1048 struct sh_flctl_platform_data *pdata;
1049 struct device_node *dn = dev->of_node;
1050 int ret;
1052 match = of_match_device(of_flctl_match, dev);
1053 if (match)
1054 config = (struct flctl_soc_config *)match->data;
1055 else {
1056 dev_err(dev, "%s: no OF configuration attached\n", __func__);
1057 return NULL;
1060 pdata = devm_kzalloc(dev, sizeof(struct sh_flctl_platform_data),
1061 GFP_KERNEL);
1062 if (!pdata) {
1063 dev_err(dev, "%s: failed to allocate config data\n", __func__);
1064 return NULL;
1067 /* set SoC specific options */
1068 pdata->flcmncr_val = config->flcmncr_val;
1069 pdata->has_hwecc = config->has_hwecc;
1070 pdata->use_holden = config->use_holden;
1072 /* parse user defined options */
1073 ret = of_get_nand_bus_width(dn);
1074 if (ret == 16)
1075 pdata->flcmncr_val |= SEL_16BIT;
1076 else if (ret != 8) {
1077 dev_err(dev, "%s: invalid bus width\n", __func__);
1078 return NULL;
1081 return pdata;
1083 #else /* CONFIG_OF */
1084 static struct sh_flctl_platform_data *flctl_parse_dt(struct device *dev)
1086 return NULL;
1088 #endif /* CONFIG_OF */
1090 static int flctl_probe(struct platform_device *pdev)
1092 struct resource *res;
1093 struct sh_flctl *flctl;
1094 struct mtd_info *flctl_mtd;
1095 struct nand_chip *nand;
1096 struct sh_flctl_platform_data *pdata;
1097 int ret = -ENXIO;
1098 int irq;
1099 struct mtd_part_parser_data ppdata = {};
1101 flctl = kzalloc(sizeof(struct sh_flctl), GFP_KERNEL);
1102 if (!flctl) {
1103 dev_err(&pdev->dev, "failed to allocate driver data\n");
1104 return -ENOMEM;
1107 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1108 if (!res) {
1109 dev_err(&pdev->dev, "failed to get I/O memory\n");
1110 goto err_iomap;
1113 flctl->reg = ioremap(res->start, resource_size(res));
1114 if (flctl->reg == NULL) {
1115 dev_err(&pdev->dev, "failed to remap I/O memory\n");
1116 goto err_iomap;
1119 irq = platform_get_irq(pdev, 0);
1120 if (irq < 0) {
1121 dev_err(&pdev->dev, "failed to get flste irq data\n");
1122 goto err_flste;
1125 ret = request_irq(irq, flctl_handle_flste, IRQF_SHARED, "flste", flctl);
1126 if (ret) {
1127 dev_err(&pdev->dev, "request interrupt failed.\n");
1128 goto err_flste;
1131 if (pdev->dev.of_node)
1132 pdata = flctl_parse_dt(&pdev->dev);
1133 else
1134 pdata = dev_get_platdata(&pdev->dev);
1136 if (!pdata) {
1137 dev_err(&pdev->dev, "no setup data defined\n");
1138 ret = -EINVAL;
1139 goto err_pdata;
1142 platform_set_drvdata(pdev, flctl);
1143 flctl_mtd = &flctl->mtd;
1144 nand = &flctl->chip;
1145 flctl_mtd->priv = nand;
1146 flctl->pdev = pdev;
1147 flctl->hwecc = pdata->has_hwecc;
1148 flctl->holden = pdata->use_holden;
1149 flctl->flcmncr_base = pdata->flcmncr_val;
1150 flctl->flintdmacr_base = flctl->hwecc ? (STERINTE | ECERB) : STERINTE;
1152 /* Set address of hardware control function */
1153 /* 20 us command delay time */
1154 nand->chip_delay = 20;
1156 nand->read_byte = flctl_read_byte;
1157 nand->write_buf = flctl_write_buf;
1158 nand->read_buf = flctl_read_buf;
1159 nand->select_chip = flctl_select_chip;
1160 nand->cmdfunc = flctl_cmdfunc;
1162 if (pdata->flcmncr_val & SEL_16BIT) {
1163 nand->options |= NAND_BUSWIDTH_16;
1164 nand->read_word = flctl_read_word;
1167 pm_runtime_enable(&pdev->dev);
1168 pm_runtime_resume(&pdev->dev);
1170 flctl_setup_dma(flctl);
1172 ret = nand_scan_ident(flctl_mtd, 1, NULL);
1173 if (ret)
1174 goto err_chip;
1176 ret = flctl_chip_init_tail(flctl_mtd);
1177 if (ret)
1178 goto err_chip;
1180 ret = nand_scan_tail(flctl_mtd);
1181 if (ret)
1182 goto err_chip;
1184 ppdata.of_node = pdev->dev.of_node;
1185 ret = mtd_device_parse_register(flctl_mtd, NULL, &ppdata, pdata->parts,
1186 pdata->nr_parts);
1188 return 0;
1190 err_chip:
1191 flctl_release_dma(flctl);
1192 pm_runtime_disable(&pdev->dev);
1193 err_pdata:
1194 free_irq(irq, flctl);
1195 err_flste:
1196 iounmap(flctl->reg);
1197 err_iomap:
1198 kfree(flctl);
1199 return ret;
1202 static int flctl_remove(struct platform_device *pdev)
1204 struct sh_flctl *flctl = platform_get_drvdata(pdev);
1206 flctl_release_dma(flctl);
1207 nand_release(&flctl->mtd);
1208 pm_runtime_disable(&pdev->dev);
1209 free_irq(platform_get_irq(pdev, 0), flctl);
1210 iounmap(flctl->reg);
1211 kfree(flctl);
1213 return 0;
1216 static struct platform_driver flctl_driver = {
1217 .remove = flctl_remove,
1218 .driver = {
1219 .name = "sh_flctl",
1220 .owner = THIS_MODULE,
1221 .of_match_table = of_match_ptr(of_flctl_match),
1225 module_platform_driver_probe(flctl_driver, flctl_probe);
1227 MODULE_LICENSE("GPL");
1228 MODULE_AUTHOR("Yoshihiro Shimoda");
1229 MODULE_DESCRIPTION("SuperH FLCTL driver");
1230 MODULE_ALIAS("platform:sh_flctl");