2 * Copyright (c) International Business Machines Corp., 2006
3 * Copyright (c) Nokia Corporation, 2006, 2007
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License as published by
7 * the Free Software Foundation; either version 2 of the License, or
8 * (at your option) any later version.
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See
13 * the GNU General Public License for more details.
15 * You should have received a copy of the GNU General Public License
16 * along with this program; if not, write to the Free Software
17 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
19 * Author: Artem Bityutskiy (Битюцкий Артём)
23 * This file includes volume table manipulation code. The volume table is an
24 * on-flash table containing volume meta-data like name, number of reserved
25 * physical eraseblocks, type, etc. The volume table is stored in the so-called
28 * The layout volume is an internal volume which is organized as follows. It
29 * consists of two logical eraseblocks - LEB 0 and LEB 1. Each logical
30 * eraseblock stores one volume table copy, i.e. LEB 0 and LEB 1 duplicate each
31 * other. This redundancy guarantees robustness to unclean reboots. The volume
32 * table is basically an array of volume table records. Each record contains
33 * full information about the volume and protected by a CRC checksum.
35 * The volume table is changed, it is first changed in RAM. Then LEB 0 is
36 * erased, and the updated volume table is written back to LEB 0. Then same for
37 * LEB 1. This scheme guarantees recoverability from unclean reboots.
39 * In this UBI implementation the on-flash volume table does not contain any
40 * information about how much data static volumes contain.
42 * But it would still be beneficial to store this information in the volume
43 * table. For example, suppose we have a static volume X, and all its physical
44 * eraseblocks became bad for some reasons. Suppose we are attaching the
45 * corresponding MTD device, for some reason we find no logical eraseblocks
46 * corresponding to the volume X. According to the volume table volume X does
47 * exist. So we don't know whether it is just empty or all its physical
48 * eraseblocks went bad. So we cannot alarm the user properly.
50 * The volume table also stores so-called "update marker", which is used for
51 * volume updates. Before updating the volume, the update marker is set, and
52 * after the update operation is finished, the update marker is cleared. So if
53 * the update operation was interrupted (e.g. by an unclean reboot) - the
54 * update marker is still there and we know that the volume's contents is
58 #include <linux/crc32.h>
59 #include <linux/err.h>
60 #include <linux/slab.h>
61 #include <asm/div64.h>
64 static void self_vtbl_check(const struct ubi_device
*ubi
);
66 /* Empty volume table record */
67 static struct ubi_vtbl_record empty_vtbl_record
;
70 * ubi_change_vtbl_record - change volume table record.
71 * @ubi: UBI device description object
72 * @idx: table index to change
73 * @vtbl_rec: new volume table record
75 * This function changes volume table record @idx. If @vtbl_rec is %NULL, empty
76 * volume table record is written. The caller does not have to calculate CRC of
77 * the record as it is done by this function. Returns zero in case of success
78 * and a negative error code in case of failure.
80 int ubi_change_vtbl_record(struct ubi_device
*ubi
, int idx
,
81 struct ubi_vtbl_record
*vtbl_rec
)
85 struct ubi_volume
*layout_vol
;
87 ubi_assert(idx
>= 0 && idx
< ubi
->vtbl_slots
);
88 layout_vol
= ubi
->volumes
[vol_id2idx(ubi
, UBI_LAYOUT_VOLUME_ID
)];
91 vtbl_rec
= &empty_vtbl_record
;
93 crc
= crc32(UBI_CRC32_INIT
, vtbl_rec
, UBI_VTBL_RECORD_SIZE_CRC
);
94 vtbl_rec
->crc
= cpu_to_be32(crc
);
97 memcpy(&ubi
->vtbl
[idx
], vtbl_rec
, sizeof(struct ubi_vtbl_record
));
98 for (i
= 0; i
< UBI_LAYOUT_VOLUME_EBS
; i
++) {
99 err
= ubi_eba_unmap_leb(ubi
, layout_vol
, i
);
103 err
= ubi_eba_write_leb(ubi
, layout_vol
, i
, ubi
->vtbl
, 0,
109 self_vtbl_check(ubi
);
114 * ubi_vtbl_rename_volumes - rename UBI volumes in the volume table.
115 * @ubi: UBI device description object
116 * @rename_list: list of &struct ubi_rename_entry objects
118 * This function re-names multiple volumes specified in @req in the volume
119 * table. Returns zero in case of success and a negative error code in case of
122 int ubi_vtbl_rename_volumes(struct ubi_device
*ubi
,
123 struct list_head
*rename_list
)
126 struct ubi_rename_entry
*re
;
127 struct ubi_volume
*layout_vol
;
129 list_for_each_entry(re
, rename_list
, list
) {
131 struct ubi_volume
*vol
= re
->desc
->vol
;
132 struct ubi_vtbl_record
*vtbl_rec
= &ubi
->vtbl
[vol
->vol_id
];
135 memcpy(vtbl_rec
, &empty_vtbl_record
,
136 sizeof(struct ubi_vtbl_record
));
140 vtbl_rec
->name_len
= cpu_to_be16(re
->new_name_len
);
141 memcpy(vtbl_rec
->name
, re
->new_name
, re
->new_name_len
);
142 memset(vtbl_rec
->name
+ re
->new_name_len
, 0,
143 UBI_VOL_NAME_MAX
+ 1 - re
->new_name_len
);
144 crc
= crc32(UBI_CRC32_INIT
, vtbl_rec
,
145 UBI_VTBL_RECORD_SIZE_CRC
);
146 vtbl_rec
->crc
= cpu_to_be32(crc
);
149 layout_vol
= ubi
->volumes
[vol_id2idx(ubi
, UBI_LAYOUT_VOLUME_ID
)];
150 for (i
= 0; i
< UBI_LAYOUT_VOLUME_EBS
; i
++) {
151 err
= ubi_eba_unmap_leb(ubi
, layout_vol
, i
);
155 err
= ubi_eba_write_leb(ubi
, layout_vol
, i
, ubi
->vtbl
, 0,
165 * vtbl_check - check if volume table is not corrupted and sensible.
166 * @ubi: UBI device description object
167 * @vtbl: volume table
169 * This function returns zero if @vtbl is all right, %1 if CRC is incorrect,
170 * and %-EINVAL if it contains inconsistent data.
172 static int vtbl_check(const struct ubi_device
*ubi
,
173 const struct ubi_vtbl_record
*vtbl
)
175 int i
, n
, reserved_pebs
, alignment
, data_pad
, vol_type
, name_len
;
180 for (i
= 0; i
< ubi
->vtbl_slots
; i
++) {
183 reserved_pebs
= be32_to_cpu(vtbl
[i
].reserved_pebs
);
184 alignment
= be32_to_cpu(vtbl
[i
].alignment
);
185 data_pad
= be32_to_cpu(vtbl
[i
].data_pad
);
186 upd_marker
= vtbl
[i
].upd_marker
;
187 vol_type
= vtbl
[i
].vol_type
;
188 name_len
= be16_to_cpu(vtbl
[i
].name_len
);
189 name
= &vtbl
[i
].name
[0];
191 crc
= crc32(UBI_CRC32_INIT
, &vtbl
[i
], UBI_VTBL_RECORD_SIZE_CRC
);
192 if (be32_to_cpu(vtbl
[i
].crc
) != crc
) {
193 ubi_err("bad CRC at record %u: %#08x, not %#08x",
194 i
, crc
, be32_to_cpu(vtbl
[i
].crc
));
195 ubi_dump_vtbl_record(&vtbl
[i
], i
);
199 if (reserved_pebs
== 0) {
200 if (memcmp(&vtbl
[i
], &empty_vtbl_record
,
201 UBI_VTBL_RECORD_SIZE
)) {
208 if (reserved_pebs
< 0 || alignment
< 0 || data_pad
< 0 ||
214 if (alignment
> ubi
->leb_size
|| alignment
== 0) {
219 n
= alignment
& (ubi
->min_io_size
- 1);
220 if (alignment
!= 1 && n
) {
225 n
= ubi
->leb_size
% alignment
;
227 ubi_err("bad data_pad, has to be %d", n
);
232 if (vol_type
!= UBI_VID_DYNAMIC
&& vol_type
!= UBI_VID_STATIC
) {
237 if (upd_marker
!= 0 && upd_marker
!= 1) {
242 if (reserved_pebs
> ubi
->good_peb_count
) {
243 ubi_err("too large reserved_pebs %d, good PEBs %d",
244 reserved_pebs
, ubi
->good_peb_count
);
249 if (name_len
> UBI_VOL_NAME_MAX
) {
254 if (name
[0] == '\0') {
259 if (name_len
!= strnlen(name
, name_len
+ 1)) {
265 /* Checks that all names are unique */
266 for (i
= 0; i
< ubi
->vtbl_slots
- 1; i
++) {
267 for (n
= i
+ 1; n
< ubi
->vtbl_slots
; n
++) {
268 int len1
= be16_to_cpu(vtbl
[i
].name_len
);
269 int len2
= be16_to_cpu(vtbl
[n
].name_len
);
271 if (len1
> 0 && len1
== len2
&&
272 !strncmp(vtbl
[i
].name
, vtbl
[n
].name
, len1
)) {
273 ubi_err("volumes %d and %d have the same name \"%s\"",
275 ubi_dump_vtbl_record(&vtbl
[i
], i
);
276 ubi_dump_vtbl_record(&vtbl
[n
], n
);
285 ubi_err("volume table check failed: record %d, error %d", i
, err
);
286 ubi_dump_vtbl_record(&vtbl
[i
], i
);
291 * create_vtbl - create a copy of volume table.
292 * @ubi: UBI device description object
293 * @ai: attaching information
294 * @copy: number of the volume table copy
295 * @vtbl: contents of the volume table
297 * This function returns zero in case of success and a negative error code in
300 static int create_vtbl(struct ubi_device
*ubi
, struct ubi_attach_info
*ai
,
301 int copy
, void *vtbl
)
304 struct ubi_vid_hdr
*vid_hdr
;
305 struct ubi_ainf_peb
*new_aeb
;
307 dbg_gen("create volume table (copy #%d)", copy
+ 1);
309 vid_hdr
= ubi_zalloc_vid_hdr(ubi
, GFP_KERNEL
);
314 new_aeb
= ubi_early_get_peb(ubi
, ai
);
315 if (IS_ERR(new_aeb
)) {
316 err
= PTR_ERR(new_aeb
);
320 vid_hdr
->vol_type
= UBI_LAYOUT_VOLUME_TYPE
;
321 vid_hdr
->vol_id
= cpu_to_be32(UBI_LAYOUT_VOLUME_ID
);
322 vid_hdr
->compat
= UBI_LAYOUT_VOLUME_COMPAT
;
323 vid_hdr
->data_size
= vid_hdr
->used_ebs
=
324 vid_hdr
->data_pad
= cpu_to_be32(0);
325 vid_hdr
->lnum
= cpu_to_be32(copy
);
326 vid_hdr
->sqnum
= cpu_to_be64(++ai
->max_sqnum
);
328 /* The EC header is already there, write the VID header */
329 err
= ubi_io_write_vid_hdr(ubi
, new_aeb
->pnum
, vid_hdr
);
333 /* Write the layout volume contents */
334 err
= ubi_io_write_data(ubi
, vtbl
, new_aeb
->pnum
, 0, ubi
->vtbl_size
);
339 * And add it to the attaching information. Don't delete the old version
340 * of this LEB as it will be deleted and freed in 'ubi_add_to_av()'.
342 err
= ubi_add_to_av(ubi
, ai
, new_aeb
->pnum
, new_aeb
->ec
, vid_hdr
, 0);
343 kmem_cache_free(ai
->aeb_slab_cache
, new_aeb
);
344 ubi_free_vid_hdr(ubi
, vid_hdr
);
348 if (err
== -EIO
&& ++tries
<= 5) {
350 * Probably this physical eraseblock went bad, try to pick
353 list_add(&new_aeb
->u
.list
, &ai
->erase
);
356 kmem_cache_free(ai
->aeb_slab_cache
, new_aeb
);
358 ubi_free_vid_hdr(ubi
, vid_hdr
);
364 * process_lvol - process the layout volume.
365 * @ubi: UBI device description object
366 * @ai: attaching information
367 * @av: layout volume attaching information
369 * This function is responsible for reading the layout volume, ensuring it is
370 * not corrupted, and recovering from corruptions if needed. Returns volume
371 * table in case of success and a negative error code in case of failure.
373 static struct ubi_vtbl_record
*process_lvol(struct ubi_device
*ubi
,
374 struct ubi_attach_info
*ai
,
375 struct ubi_ainf_volume
*av
)
379 struct ubi_ainf_peb
*aeb
;
380 struct ubi_vtbl_record
*leb
[UBI_LAYOUT_VOLUME_EBS
] = { NULL
, NULL
};
381 int leb_corrupted
[UBI_LAYOUT_VOLUME_EBS
] = {1, 1};
384 * UBI goes through the following steps when it changes the layout
387 * b. write new data to LEB 0;
389 * d. write new data to LEB 1.
391 * Before the change, both LEBs contain the same data.
393 * Due to unclean reboots, the contents of LEB 0 may be lost, but there
394 * should LEB 1. So it is OK if LEB 0 is corrupted while LEB 1 is not.
395 * Similarly, LEB 1 may be lost, but there should be LEB 0. And
396 * finally, unclean reboots may result in a situation when neither LEB
397 * 0 nor LEB 1 are corrupted, but they are different. In this case, LEB
398 * 0 contains more recent information.
400 * So the plan is to first check LEB 0. Then
401 * a. if LEB 0 is OK, it must be containing the most recent data; then
402 * we compare it with LEB 1, and if they are different, we copy LEB
404 * b. if LEB 0 is corrupted, but LEB 1 has to be OK, and we copy LEB 1
408 dbg_gen("check layout volume");
410 /* Read both LEB 0 and LEB 1 into memory */
411 ubi_rb_for_each_entry(rb
, aeb
, &av
->root
, u
.rb
) {
412 leb
[aeb
->lnum
] = vzalloc(ubi
->vtbl_size
);
413 if (!leb
[aeb
->lnum
]) {
418 err
= ubi_io_read_data(ubi
, leb
[aeb
->lnum
], aeb
->pnum
, 0,
420 if (err
== UBI_IO_BITFLIPS
|| mtd_is_eccerr(err
))
422 * Scrub the PEB later. Note, -EBADMSG indicates an
423 * uncorrectable ECC error, but we have our own CRC and
424 * the data will be checked later. If the data is OK,
425 * the PEB will be scrubbed (because we set
426 * aeb->scrub). If the data is not OK, the contents of
427 * the PEB will be recovered from the second copy, and
428 * aeb->scrub will be cleared in
438 leb_corrupted
[0] = vtbl_check(ubi
, leb
[0]);
439 if (leb_corrupted
[0] < 0)
443 if (!leb_corrupted
[0]) {
446 leb_corrupted
[1] = memcmp(leb
[0], leb
[1],
448 if (leb_corrupted
[1]) {
449 ubi_warn("volume table copy #2 is corrupted");
450 err
= create_vtbl(ubi
, ai
, 1, leb
[0]);
453 ubi_msg("volume table was restored");
456 /* Both LEB 1 and LEB 2 are OK and consistent */
460 /* LEB 0 is corrupted or does not exist */
462 leb_corrupted
[1] = vtbl_check(ubi
, leb
[1]);
463 if (leb_corrupted
[1] < 0)
466 if (leb_corrupted
[1]) {
467 /* Both LEB 0 and LEB 1 are corrupted */
468 ubi_err("both volume tables are corrupted");
472 ubi_warn("volume table copy #1 is corrupted");
473 err
= create_vtbl(ubi
, ai
, 0, leb
[1]);
476 ubi_msg("volume table was restored");
489 * create_empty_lvol - create empty layout volume.
490 * @ubi: UBI device description object
491 * @ai: attaching information
493 * This function returns volume table contents in case of success and a
494 * negative error code in case of failure.
496 static struct ubi_vtbl_record
*create_empty_lvol(struct ubi_device
*ubi
,
497 struct ubi_attach_info
*ai
)
500 struct ubi_vtbl_record
*vtbl
;
502 vtbl
= vzalloc(ubi
->vtbl_size
);
504 return ERR_PTR(-ENOMEM
);
506 for (i
= 0; i
< ubi
->vtbl_slots
; i
++)
507 memcpy(&vtbl
[i
], &empty_vtbl_record
, UBI_VTBL_RECORD_SIZE
);
509 for (i
= 0; i
< UBI_LAYOUT_VOLUME_EBS
; i
++) {
512 err
= create_vtbl(ubi
, ai
, i
, vtbl
);
523 * init_volumes - initialize volume information for existing volumes.
524 * @ubi: UBI device description object
525 * @ai: scanning information
526 * @vtbl: volume table
528 * This function allocates volume description objects for existing volumes.
529 * Returns zero in case of success and a negative error code in case of
532 static int init_volumes(struct ubi_device
*ubi
,
533 const struct ubi_attach_info
*ai
,
534 const struct ubi_vtbl_record
*vtbl
)
536 int i
, reserved_pebs
= 0;
537 struct ubi_ainf_volume
*av
;
538 struct ubi_volume
*vol
;
540 for (i
= 0; i
< ubi
->vtbl_slots
; i
++) {
543 if (be32_to_cpu(vtbl
[i
].reserved_pebs
) == 0)
544 continue; /* Empty record */
546 vol
= kzalloc(sizeof(struct ubi_volume
), GFP_KERNEL
);
550 vol
->reserved_pebs
= be32_to_cpu(vtbl
[i
].reserved_pebs
);
551 vol
->alignment
= be32_to_cpu(vtbl
[i
].alignment
);
552 vol
->data_pad
= be32_to_cpu(vtbl
[i
].data_pad
);
553 vol
->upd_marker
= vtbl
[i
].upd_marker
;
554 vol
->vol_type
= vtbl
[i
].vol_type
== UBI_VID_DYNAMIC
?
555 UBI_DYNAMIC_VOLUME
: UBI_STATIC_VOLUME
;
556 vol
->name_len
= be16_to_cpu(vtbl
[i
].name_len
);
557 vol
->usable_leb_size
= ubi
->leb_size
- vol
->data_pad
;
558 memcpy(vol
->name
, vtbl
[i
].name
, vol
->name_len
);
559 vol
->name
[vol
->name_len
] = '\0';
562 if (vtbl
[i
].flags
& UBI_VTBL_AUTORESIZE_FLG
) {
563 /* Auto re-size flag may be set only for one volume */
564 if (ubi
->autoresize_vol_id
!= -1) {
565 ubi_err("more than one auto-resize volume (%d and %d)",
566 ubi
->autoresize_vol_id
, i
);
571 ubi
->autoresize_vol_id
= i
;
574 ubi_assert(!ubi
->volumes
[i
]);
575 ubi
->volumes
[i
] = vol
;
578 reserved_pebs
+= vol
->reserved_pebs
;
581 * In case of dynamic volume UBI knows nothing about how many
582 * data is stored there. So assume the whole volume is used.
584 if (vol
->vol_type
== UBI_DYNAMIC_VOLUME
) {
585 vol
->used_ebs
= vol
->reserved_pebs
;
586 vol
->last_eb_bytes
= vol
->usable_leb_size
;
588 (long long)vol
->used_ebs
* vol
->usable_leb_size
;
592 /* Static volumes only */
593 av
= ubi_find_av(ai
, i
);
596 * No eraseblocks belonging to this volume found. We
597 * don't actually know whether this static volume is
598 * completely corrupted or just contains no data. And
599 * we cannot know this as long as data size is not
600 * stored on flash. So we just assume the volume is
601 * empty. FIXME: this should be handled.
606 if (av
->leb_count
!= av
->used_ebs
) {
608 * We found a static volume which misses several
609 * eraseblocks. Treat it as corrupted.
611 ubi_warn("static volume %d misses %d LEBs - corrupted",
612 av
->vol_id
, av
->used_ebs
- av
->leb_count
);
617 vol
->used_ebs
= av
->used_ebs
;
619 (long long)(vol
->used_ebs
- 1) * vol
->usable_leb_size
;
620 vol
->used_bytes
+= av
->last_data_size
;
621 vol
->last_eb_bytes
= av
->last_data_size
;
624 /* And add the layout volume */
625 vol
= kzalloc(sizeof(struct ubi_volume
), GFP_KERNEL
);
629 vol
->reserved_pebs
= UBI_LAYOUT_VOLUME_EBS
;
630 vol
->alignment
= UBI_LAYOUT_VOLUME_ALIGN
;
631 vol
->vol_type
= UBI_DYNAMIC_VOLUME
;
632 vol
->name_len
= sizeof(UBI_LAYOUT_VOLUME_NAME
) - 1;
633 memcpy(vol
->name
, UBI_LAYOUT_VOLUME_NAME
, vol
->name_len
+ 1);
634 vol
->usable_leb_size
= ubi
->leb_size
;
635 vol
->used_ebs
= vol
->reserved_pebs
;
636 vol
->last_eb_bytes
= vol
->reserved_pebs
;
638 (long long)vol
->used_ebs
* (ubi
->leb_size
- vol
->data_pad
);
639 vol
->vol_id
= UBI_LAYOUT_VOLUME_ID
;
642 ubi_assert(!ubi
->volumes
[i
]);
643 ubi
->volumes
[vol_id2idx(ubi
, vol
->vol_id
)] = vol
;
644 reserved_pebs
+= vol
->reserved_pebs
;
648 if (reserved_pebs
> ubi
->avail_pebs
) {
649 ubi_err("not enough PEBs, required %d, available %d",
650 reserved_pebs
, ubi
->avail_pebs
);
651 if (ubi
->corr_peb_count
)
652 ubi_err("%d PEBs are corrupted and not used",
653 ubi
->corr_peb_count
);
656 ubi
->rsvd_pebs
+= reserved_pebs
;
657 ubi
->avail_pebs
-= reserved_pebs
;
663 * check_av - check volume attaching information.
664 * @vol: UBI volume description object
665 * @av: volume attaching information
667 * This function returns zero if the volume attaching information is consistent
668 * to the data read from the volume tabla, and %-EINVAL if not.
670 static int check_av(const struct ubi_volume
*vol
,
671 const struct ubi_ainf_volume
*av
)
675 if (av
->highest_lnum
>= vol
->reserved_pebs
) {
679 if (av
->leb_count
> vol
->reserved_pebs
) {
683 if (av
->vol_type
!= vol
->vol_type
) {
687 if (av
->used_ebs
> vol
->reserved_pebs
) {
691 if (av
->data_pad
!= vol
->data_pad
) {
698 ubi_err("bad attaching information, error %d", err
);
700 ubi_dump_vol_info(vol
);
705 * check_attaching_info - check that attaching information.
706 * @ubi: UBI device description object
707 * @ai: attaching information
709 * Even though we protect on-flash data by CRC checksums, we still don't trust
710 * the media. This function ensures that attaching information is consistent to
711 * the information read from the volume table. Returns zero if the attaching
712 * information is OK and %-EINVAL if it is not.
714 static int check_attaching_info(const struct ubi_device
*ubi
,
715 struct ubi_attach_info
*ai
)
718 struct ubi_ainf_volume
*av
;
719 struct ubi_volume
*vol
;
721 if (ai
->vols_found
> UBI_INT_VOL_COUNT
+ ubi
->vtbl_slots
) {
722 ubi_err("found %d volumes while attaching, maximum is %d + %d",
723 ai
->vols_found
, UBI_INT_VOL_COUNT
, ubi
->vtbl_slots
);
727 if (ai
->highest_vol_id
>= ubi
->vtbl_slots
+ UBI_INT_VOL_COUNT
&&
728 ai
->highest_vol_id
< UBI_INTERNAL_VOL_START
) {
729 ubi_err("too large volume ID %d found", ai
->highest_vol_id
);
733 for (i
= 0; i
< ubi
->vtbl_slots
+ UBI_INT_VOL_COUNT
; i
++) {
736 av
= ubi_find_av(ai
, i
);
737 vol
= ubi
->volumes
[i
];
740 ubi_remove_av(ai
, av
);
744 if (vol
->reserved_pebs
== 0) {
745 ubi_assert(i
< ubi
->vtbl_slots
);
751 * During attaching we found a volume which does not
752 * exist according to the information in the volume
753 * table. This must have happened due to an unclean
754 * reboot while the volume was being removed. Discard
757 ubi_msg("finish volume %d removal", av
->vol_id
);
758 ubi_remove_av(ai
, av
);
760 err
= check_av(vol
, av
);
770 * ubi_read_volume_table - read the volume table.
771 * @ubi: UBI device description object
772 * @ai: attaching information
774 * This function reads volume table, checks it, recover from errors if needed,
775 * or creates it if needed. Returns zero in case of success and a negative
776 * error code in case of failure.
778 int ubi_read_volume_table(struct ubi_device
*ubi
, struct ubi_attach_info
*ai
)
781 struct ubi_ainf_volume
*av
;
783 empty_vtbl_record
.crc
= cpu_to_be32(0xf116c36b);
786 * The number of supported volumes is limited by the eraseblock size
787 * and by the UBI_MAX_VOLUMES constant.
789 ubi
->vtbl_slots
= ubi
->leb_size
/ UBI_VTBL_RECORD_SIZE
;
790 if (ubi
->vtbl_slots
> UBI_MAX_VOLUMES
)
791 ubi
->vtbl_slots
= UBI_MAX_VOLUMES
;
793 ubi
->vtbl_size
= ubi
->vtbl_slots
* UBI_VTBL_RECORD_SIZE
;
794 ubi
->vtbl_size
= ALIGN(ubi
->vtbl_size
, ubi
->min_io_size
);
796 av
= ubi_find_av(ai
, UBI_LAYOUT_VOLUME_ID
);
799 * No logical eraseblocks belonging to the layout volume were
800 * found. This could mean that the flash is just empty. In
801 * this case we create empty layout volume.
803 * But if flash is not empty this must be a corruption or the
804 * MTD device just contains garbage.
807 ubi
->vtbl
= create_empty_lvol(ubi
, ai
);
808 if (IS_ERR(ubi
->vtbl
))
809 return PTR_ERR(ubi
->vtbl
);
811 ubi_err("the layout volume was not found");
815 if (av
->leb_count
> UBI_LAYOUT_VOLUME_EBS
) {
816 /* This must not happen with proper UBI images */
817 ubi_err("too many LEBs (%d) in layout volume",
822 ubi
->vtbl
= process_lvol(ubi
, ai
, av
);
823 if (IS_ERR(ubi
->vtbl
))
824 return PTR_ERR(ubi
->vtbl
);
827 ubi
->avail_pebs
= ubi
->good_peb_count
- ubi
->corr_peb_count
;
830 * The layout volume is OK, initialize the corresponding in-RAM data
833 err
= init_volumes(ubi
, ai
, ubi
->vtbl
);
838 * Make sure that the attaching information is consistent to the
839 * information stored in the volume table.
841 err
= check_attaching_info(ubi
, ai
);
849 for (i
= 0; i
< ubi
->vtbl_slots
+ UBI_INT_VOL_COUNT
; i
++) {
850 kfree(ubi
->volumes
[i
]);
851 ubi
->volumes
[i
] = NULL
;
857 * self_vtbl_check - check volume table.
858 * @ubi: UBI device description object
860 static void self_vtbl_check(const struct ubi_device
*ubi
)
862 if (!ubi_dbg_chk_gen(ubi
))
865 if (vtbl_check(ubi
, ubi
->vtbl
)) {
866 ubi_err("self-check failed");