mfd: wm8350-i2c: Make sure the i2c regmap functions are compiled
[linux/fpc-iii.git] / drivers / net / wireless / rt2x00 / rt2x00dev.c
blob6ccfa0a671e75e7b7e8eb28e1af08b6ef7d9e1be
1 /*
2 Copyright (C) 2010 Willow Garage <http://www.willowgarage.com>
3 Copyright (C) 2004 - 2010 Ivo van Doorn <IvDoorn@gmail.com>
4 <http://rt2x00.serialmonkey.com>
6 This program is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 2 of the License, or
9 (at your option) any later version.
11 This program is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
16 You should have received a copy of the GNU General Public License
17 along with this program; if not, write to the
18 Free Software Foundation, Inc.,
19 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
23 Module: rt2x00lib
24 Abstract: rt2x00 generic device routines.
27 #include <linux/kernel.h>
28 #include <linux/module.h>
29 #include <linux/slab.h>
30 #include <linux/log2.h>
32 #include "rt2x00.h"
33 #include "rt2x00lib.h"
36 * Utility functions.
38 u32 rt2x00lib_get_bssidx(struct rt2x00_dev *rt2x00dev,
39 struct ieee80211_vif *vif)
42 * When in STA mode, bssidx is always 0 otherwise local_address[5]
43 * contains the bss number, see BSS_ID_MASK comments for details.
45 if (rt2x00dev->intf_sta_count)
46 return 0;
47 return vif->addr[5] & (rt2x00dev->ops->max_ap_intf - 1);
49 EXPORT_SYMBOL_GPL(rt2x00lib_get_bssidx);
52 * Radio control handlers.
54 int rt2x00lib_enable_radio(struct rt2x00_dev *rt2x00dev)
56 int status;
59 * Don't enable the radio twice.
60 * And check if the hardware button has been disabled.
62 if (test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
63 return 0;
66 * Initialize all data queues.
68 rt2x00queue_init_queues(rt2x00dev);
71 * Enable radio.
73 status =
74 rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_RADIO_ON);
75 if (status)
76 return status;
78 rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_RADIO_IRQ_ON);
80 rt2x00leds_led_radio(rt2x00dev, true);
81 rt2x00led_led_activity(rt2x00dev, true);
83 set_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags);
86 * Enable queues.
88 rt2x00queue_start_queues(rt2x00dev);
89 rt2x00link_start_tuner(rt2x00dev);
90 rt2x00link_start_agc(rt2x00dev);
91 if (test_bit(CAPABILITY_VCO_RECALIBRATION, &rt2x00dev->cap_flags))
92 rt2x00link_start_vcocal(rt2x00dev);
95 * Start watchdog monitoring.
97 rt2x00link_start_watchdog(rt2x00dev);
99 return 0;
102 void rt2x00lib_disable_radio(struct rt2x00_dev *rt2x00dev)
104 if (!test_and_clear_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
105 return;
108 * Stop watchdog monitoring.
110 rt2x00link_stop_watchdog(rt2x00dev);
113 * Stop all queues
115 rt2x00link_stop_agc(rt2x00dev);
116 if (test_bit(CAPABILITY_VCO_RECALIBRATION, &rt2x00dev->cap_flags))
117 rt2x00link_stop_vcocal(rt2x00dev);
118 rt2x00link_stop_tuner(rt2x00dev);
119 rt2x00queue_stop_queues(rt2x00dev);
120 rt2x00queue_flush_queues(rt2x00dev, true);
123 * Disable radio.
125 rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_RADIO_OFF);
126 rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_RADIO_IRQ_OFF);
127 rt2x00led_led_activity(rt2x00dev, false);
128 rt2x00leds_led_radio(rt2x00dev, false);
131 static void rt2x00lib_intf_scheduled_iter(void *data, u8 *mac,
132 struct ieee80211_vif *vif)
134 struct rt2x00_dev *rt2x00dev = data;
135 struct rt2x00_intf *intf = vif_to_intf(vif);
138 * It is possible the radio was disabled while the work had been
139 * scheduled. If that happens we should return here immediately,
140 * note that in the spinlock protected area above the delayed_flags
141 * have been cleared correctly.
143 if (!test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
144 return;
146 if (test_and_clear_bit(DELAYED_UPDATE_BEACON, &intf->delayed_flags))
147 rt2x00queue_update_beacon(rt2x00dev, vif);
150 static void rt2x00lib_intf_scheduled(struct work_struct *work)
152 struct rt2x00_dev *rt2x00dev =
153 container_of(work, struct rt2x00_dev, intf_work);
156 * Iterate over each interface and perform the
157 * requested configurations.
159 ieee80211_iterate_active_interfaces(rt2x00dev->hw,
160 IEEE80211_IFACE_ITER_RESUME_ALL,
161 rt2x00lib_intf_scheduled_iter,
162 rt2x00dev);
165 static void rt2x00lib_autowakeup(struct work_struct *work)
167 struct rt2x00_dev *rt2x00dev =
168 container_of(work, struct rt2x00_dev, autowakeup_work.work);
170 if (!test_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags))
171 return;
173 if (rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_AWAKE))
174 rt2x00_err(rt2x00dev, "Device failed to wakeup\n");
175 clear_bit(CONFIG_POWERSAVING, &rt2x00dev->flags);
179 * Interrupt context handlers.
181 static void rt2x00lib_bc_buffer_iter(void *data, u8 *mac,
182 struct ieee80211_vif *vif)
184 struct ieee80211_tx_control control = {};
185 struct rt2x00_dev *rt2x00dev = data;
186 struct sk_buff *skb;
189 * Only AP mode interfaces do broad- and multicast buffering
191 if (vif->type != NL80211_IFTYPE_AP)
192 return;
195 * Send out buffered broad- and multicast frames
197 skb = ieee80211_get_buffered_bc(rt2x00dev->hw, vif);
198 while (skb) {
199 rt2x00mac_tx(rt2x00dev->hw, &control, skb);
200 skb = ieee80211_get_buffered_bc(rt2x00dev->hw, vif);
204 static void rt2x00lib_beaconupdate_iter(void *data, u8 *mac,
205 struct ieee80211_vif *vif)
207 struct rt2x00_dev *rt2x00dev = data;
209 if (vif->type != NL80211_IFTYPE_AP &&
210 vif->type != NL80211_IFTYPE_ADHOC &&
211 vif->type != NL80211_IFTYPE_MESH_POINT &&
212 vif->type != NL80211_IFTYPE_WDS)
213 return;
216 * Update the beacon without locking. This is safe on PCI devices
217 * as they only update the beacon periodically here. This should
218 * never be called for USB devices.
220 WARN_ON(rt2x00_is_usb(rt2x00dev));
221 rt2x00queue_update_beacon_locked(rt2x00dev, vif);
224 void rt2x00lib_beacondone(struct rt2x00_dev *rt2x00dev)
226 if (!test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
227 return;
229 /* send buffered bc/mc frames out for every bssid */
230 ieee80211_iterate_active_interfaces_atomic(
231 rt2x00dev->hw, IEEE80211_IFACE_ITER_RESUME_ALL,
232 rt2x00lib_bc_buffer_iter, rt2x00dev);
234 * Devices with pre tbtt interrupt don't need to update the beacon
235 * here as they will fetch the next beacon directly prior to
236 * transmission.
238 if (test_bit(CAPABILITY_PRE_TBTT_INTERRUPT, &rt2x00dev->cap_flags))
239 return;
241 /* fetch next beacon */
242 ieee80211_iterate_active_interfaces_atomic(
243 rt2x00dev->hw, IEEE80211_IFACE_ITER_RESUME_ALL,
244 rt2x00lib_beaconupdate_iter, rt2x00dev);
246 EXPORT_SYMBOL_GPL(rt2x00lib_beacondone);
248 void rt2x00lib_pretbtt(struct rt2x00_dev *rt2x00dev)
250 if (!test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
251 return;
253 /* fetch next beacon */
254 ieee80211_iterate_active_interfaces_atomic(
255 rt2x00dev->hw, IEEE80211_IFACE_ITER_RESUME_ALL,
256 rt2x00lib_beaconupdate_iter, rt2x00dev);
258 EXPORT_SYMBOL_GPL(rt2x00lib_pretbtt);
260 void rt2x00lib_dmastart(struct queue_entry *entry)
262 set_bit(ENTRY_OWNER_DEVICE_DATA, &entry->flags);
263 rt2x00queue_index_inc(entry, Q_INDEX);
265 EXPORT_SYMBOL_GPL(rt2x00lib_dmastart);
267 void rt2x00lib_dmadone(struct queue_entry *entry)
269 set_bit(ENTRY_DATA_STATUS_PENDING, &entry->flags);
270 clear_bit(ENTRY_OWNER_DEVICE_DATA, &entry->flags);
271 rt2x00queue_index_inc(entry, Q_INDEX_DMA_DONE);
273 EXPORT_SYMBOL_GPL(rt2x00lib_dmadone);
275 static inline int rt2x00lib_txdone_bar_status(struct queue_entry *entry)
277 struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
278 struct ieee80211_bar *bar = (void *) entry->skb->data;
279 struct rt2x00_bar_list_entry *bar_entry;
280 int ret;
282 if (likely(!ieee80211_is_back_req(bar->frame_control)))
283 return 0;
286 * Unlike all other frames, the status report for BARs does
287 * not directly come from the hardware as it is incapable of
288 * matching a BA to a previously send BAR. The hardware will
289 * report all BARs as if they weren't acked at all.
291 * Instead the RX-path will scan for incoming BAs and set the
292 * block_acked flag if it sees one that was likely caused by
293 * a BAR from us.
295 * Remove remaining BARs here and return their status for
296 * TX done processing.
298 ret = 0;
299 rcu_read_lock();
300 list_for_each_entry_rcu(bar_entry, &rt2x00dev->bar_list, list) {
301 if (bar_entry->entry != entry)
302 continue;
304 spin_lock_bh(&rt2x00dev->bar_list_lock);
305 /* Return whether this BAR was blockacked or not */
306 ret = bar_entry->block_acked;
307 /* Remove the BAR from our checklist */
308 list_del_rcu(&bar_entry->list);
309 spin_unlock_bh(&rt2x00dev->bar_list_lock);
310 kfree_rcu(bar_entry, head);
312 break;
314 rcu_read_unlock();
316 return ret;
319 void rt2x00lib_txdone(struct queue_entry *entry,
320 struct txdone_entry_desc *txdesc)
322 struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
323 struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(entry->skb);
324 struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
325 unsigned int header_length, i;
326 u8 rate_idx, rate_flags, retry_rates;
327 u8 skbdesc_flags = skbdesc->flags;
328 bool success;
331 * Unmap the skb.
333 rt2x00queue_unmap_skb(entry);
336 * Remove the extra tx headroom from the skb.
338 skb_pull(entry->skb, rt2x00dev->extra_tx_headroom);
341 * Signal that the TX descriptor is no longer in the skb.
343 skbdesc->flags &= ~SKBDESC_DESC_IN_SKB;
346 * Determine the length of 802.11 header.
348 header_length = ieee80211_get_hdrlen_from_skb(entry->skb);
351 * Remove L2 padding which was added during
353 if (test_bit(REQUIRE_L2PAD, &rt2x00dev->cap_flags))
354 rt2x00queue_remove_l2pad(entry->skb, header_length);
357 * If the IV/EIV data was stripped from the frame before it was
358 * passed to the hardware, we should now reinsert it again because
359 * mac80211 will expect the same data to be present it the
360 * frame as it was passed to us.
362 if (test_bit(CAPABILITY_HW_CRYPTO, &rt2x00dev->cap_flags))
363 rt2x00crypto_tx_insert_iv(entry->skb, header_length);
366 * Send frame to debugfs immediately, after this call is completed
367 * we are going to overwrite the skb->cb array.
369 rt2x00debug_dump_frame(rt2x00dev, DUMP_FRAME_TXDONE, entry->skb);
372 * Determine if the frame has been successfully transmitted and
373 * remove BARs from our check list while checking for their
374 * TX status.
376 success =
377 rt2x00lib_txdone_bar_status(entry) ||
378 test_bit(TXDONE_SUCCESS, &txdesc->flags) ||
379 test_bit(TXDONE_UNKNOWN, &txdesc->flags);
382 * Update TX statistics.
384 rt2x00dev->link.qual.tx_success += success;
385 rt2x00dev->link.qual.tx_failed += !success;
387 rate_idx = skbdesc->tx_rate_idx;
388 rate_flags = skbdesc->tx_rate_flags;
389 retry_rates = test_bit(TXDONE_FALLBACK, &txdesc->flags) ?
390 (txdesc->retry + 1) : 1;
393 * Initialize TX status
395 memset(&tx_info->status, 0, sizeof(tx_info->status));
396 tx_info->status.ack_signal = 0;
399 * Frame was send with retries, hardware tried
400 * different rates to send out the frame, at each
401 * retry it lowered the rate 1 step except when the
402 * lowest rate was used.
404 for (i = 0; i < retry_rates && i < IEEE80211_TX_MAX_RATES; i++) {
405 tx_info->status.rates[i].idx = rate_idx - i;
406 tx_info->status.rates[i].flags = rate_flags;
408 if (rate_idx - i == 0) {
410 * The lowest rate (index 0) was used until the
411 * number of max retries was reached.
413 tx_info->status.rates[i].count = retry_rates - i;
414 i++;
415 break;
417 tx_info->status.rates[i].count = 1;
419 if (i < (IEEE80211_TX_MAX_RATES - 1))
420 tx_info->status.rates[i].idx = -1; /* terminate */
422 if (!(tx_info->flags & IEEE80211_TX_CTL_NO_ACK)) {
423 if (success)
424 tx_info->flags |= IEEE80211_TX_STAT_ACK;
425 else
426 rt2x00dev->low_level_stats.dot11ACKFailureCount++;
430 * Every single frame has it's own tx status, hence report
431 * every frame as ampdu of size 1.
433 * TODO: if we can find out how many frames were aggregated
434 * by the hw we could provide the real ampdu_len to mac80211
435 * which would allow the rc algorithm to better decide on
436 * which rates are suitable.
438 if (test_bit(TXDONE_AMPDU, &txdesc->flags) ||
439 tx_info->flags & IEEE80211_TX_CTL_AMPDU) {
440 tx_info->flags |= IEEE80211_TX_STAT_AMPDU;
441 tx_info->status.ampdu_len = 1;
442 tx_info->status.ampdu_ack_len = success ? 1 : 0;
444 if (!success)
445 tx_info->flags |= IEEE80211_TX_STAT_AMPDU_NO_BACK;
448 if (rate_flags & IEEE80211_TX_RC_USE_RTS_CTS) {
449 if (success)
450 rt2x00dev->low_level_stats.dot11RTSSuccessCount++;
451 else
452 rt2x00dev->low_level_stats.dot11RTSFailureCount++;
456 * Only send the status report to mac80211 when it's a frame
457 * that originated in mac80211. If this was a extra frame coming
458 * through a mac80211 library call (RTS/CTS) then we should not
459 * send the status report back.
461 if (!(skbdesc_flags & SKBDESC_NOT_MAC80211)) {
462 if (test_bit(REQUIRE_TASKLET_CONTEXT, &rt2x00dev->cap_flags))
463 ieee80211_tx_status(rt2x00dev->hw, entry->skb);
464 else
465 ieee80211_tx_status_ni(rt2x00dev->hw, entry->skb);
466 } else
467 dev_kfree_skb_any(entry->skb);
470 * Make this entry available for reuse.
472 entry->skb = NULL;
473 entry->flags = 0;
475 rt2x00dev->ops->lib->clear_entry(entry);
477 rt2x00queue_index_inc(entry, Q_INDEX_DONE);
480 * If the data queue was below the threshold before the txdone
481 * handler we must make sure the packet queue in the mac80211 stack
482 * is reenabled when the txdone handler has finished. This has to be
483 * serialized with rt2x00mac_tx(), otherwise we can wake up queue
484 * before it was stopped.
486 spin_lock_bh(&entry->queue->tx_lock);
487 if (!rt2x00queue_threshold(entry->queue))
488 rt2x00queue_unpause_queue(entry->queue);
489 spin_unlock_bh(&entry->queue->tx_lock);
491 EXPORT_SYMBOL_GPL(rt2x00lib_txdone);
493 void rt2x00lib_txdone_noinfo(struct queue_entry *entry, u32 status)
495 struct txdone_entry_desc txdesc;
497 txdesc.flags = 0;
498 __set_bit(status, &txdesc.flags);
499 txdesc.retry = 0;
501 rt2x00lib_txdone(entry, &txdesc);
503 EXPORT_SYMBOL_GPL(rt2x00lib_txdone_noinfo);
505 static u8 *rt2x00lib_find_ie(u8 *data, unsigned int len, u8 ie)
507 struct ieee80211_mgmt *mgmt = (void *)data;
508 u8 *pos, *end;
510 pos = (u8 *)mgmt->u.beacon.variable;
511 end = data + len;
512 while (pos < end) {
513 if (pos + 2 + pos[1] > end)
514 return NULL;
516 if (pos[0] == ie)
517 return pos;
519 pos += 2 + pos[1];
522 return NULL;
525 static void rt2x00lib_sleep(struct work_struct *work)
527 struct rt2x00_dev *rt2x00dev =
528 container_of(work, struct rt2x00_dev, sleep_work);
530 if (!test_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags))
531 return;
534 * Check again is powersaving is enabled, to prevent races from delayed
535 * work execution.
537 if (!test_bit(CONFIG_POWERSAVING, &rt2x00dev->flags))
538 rt2x00lib_config(rt2x00dev, &rt2x00dev->hw->conf,
539 IEEE80211_CONF_CHANGE_PS);
542 static void rt2x00lib_rxdone_check_ba(struct rt2x00_dev *rt2x00dev,
543 struct sk_buff *skb,
544 struct rxdone_entry_desc *rxdesc)
546 struct rt2x00_bar_list_entry *entry;
547 struct ieee80211_bar *ba = (void *)skb->data;
549 if (likely(!ieee80211_is_back(ba->frame_control)))
550 return;
552 if (rxdesc->size < sizeof(*ba) + FCS_LEN)
553 return;
555 rcu_read_lock();
556 list_for_each_entry_rcu(entry, &rt2x00dev->bar_list, list) {
558 if (ba->start_seq_num != entry->start_seq_num)
559 continue;
561 #define TID_CHECK(a, b) ( \
562 ((a) & cpu_to_le16(IEEE80211_BAR_CTRL_TID_INFO_MASK)) == \
563 ((b) & cpu_to_le16(IEEE80211_BAR_CTRL_TID_INFO_MASK))) \
565 if (!TID_CHECK(ba->control, entry->control))
566 continue;
568 #undef TID_CHECK
570 if (!ether_addr_equal(ba->ra, entry->ta))
571 continue;
573 if (!ether_addr_equal(ba->ta, entry->ra))
574 continue;
576 /* Mark BAR since we received the according BA */
577 spin_lock_bh(&rt2x00dev->bar_list_lock);
578 entry->block_acked = 1;
579 spin_unlock_bh(&rt2x00dev->bar_list_lock);
580 break;
582 rcu_read_unlock();
586 static void rt2x00lib_rxdone_check_ps(struct rt2x00_dev *rt2x00dev,
587 struct sk_buff *skb,
588 struct rxdone_entry_desc *rxdesc)
590 struct ieee80211_hdr *hdr = (void *) skb->data;
591 struct ieee80211_tim_ie *tim_ie;
592 u8 *tim;
593 u8 tim_len;
594 bool cam;
596 /* If this is not a beacon, or if mac80211 has no powersaving
597 * configured, or if the device is already in powersaving mode
598 * we can exit now. */
599 if (likely(!ieee80211_is_beacon(hdr->frame_control) ||
600 !(rt2x00dev->hw->conf.flags & IEEE80211_CONF_PS)))
601 return;
603 /* min. beacon length + FCS_LEN */
604 if (skb->len <= 40 + FCS_LEN)
605 return;
607 /* and only beacons from the associated BSSID, please */
608 if (!(rxdesc->dev_flags & RXDONE_MY_BSS) ||
609 !rt2x00dev->aid)
610 return;
612 rt2x00dev->last_beacon = jiffies;
614 tim = rt2x00lib_find_ie(skb->data, skb->len - FCS_LEN, WLAN_EID_TIM);
615 if (!tim)
616 return;
618 if (tim[1] < sizeof(*tim_ie))
619 return;
621 tim_len = tim[1];
622 tim_ie = (struct ieee80211_tim_ie *) &tim[2];
624 /* Check whenever the PHY can be turned off again. */
626 /* 1. What about buffered unicast traffic for our AID? */
627 cam = ieee80211_check_tim(tim_ie, tim_len, rt2x00dev->aid);
629 /* 2. Maybe the AP wants to send multicast/broadcast data? */
630 cam |= (tim_ie->bitmap_ctrl & 0x01);
632 if (!cam && !test_bit(CONFIG_POWERSAVING, &rt2x00dev->flags))
633 queue_work(rt2x00dev->workqueue, &rt2x00dev->sleep_work);
636 static int rt2x00lib_rxdone_read_signal(struct rt2x00_dev *rt2x00dev,
637 struct rxdone_entry_desc *rxdesc)
639 struct ieee80211_supported_band *sband;
640 const struct rt2x00_rate *rate;
641 unsigned int i;
642 int signal = rxdesc->signal;
643 int type = (rxdesc->dev_flags & RXDONE_SIGNAL_MASK);
645 switch (rxdesc->rate_mode) {
646 case RATE_MODE_CCK:
647 case RATE_MODE_OFDM:
649 * For non-HT rates the MCS value needs to contain the
650 * actually used rate modulation (CCK or OFDM).
652 if (rxdesc->dev_flags & RXDONE_SIGNAL_MCS)
653 signal = RATE_MCS(rxdesc->rate_mode, signal);
655 sband = &rt2x00dev->bands[rt2x00dev->curr_band];
656 for (i = 0; i < sband->n_bitrates; i++) {
657 rate = rt2x00_get_rate(sband->bitrates[i].hw_value);
658 if (((type == RXDONE_SIGNAL_PLCP) &&
659 (rate->plcp == signal)) ||
660 ((type == RXDONE_SIGNAL_BITRATE) &&
661 (rate->bitrate == signal)) ||
662 ((type == RXDONE_SIGNAL_MCS) &&
663 (rate->mcs == signal))) {
664 return i;
667 break;
668 case RATE_MODE_HT_MIX:
669 case RATE_MODE_HT_GREENFIELD:
670 if (signal >= 0 && signal <= 76)
671 return signal;
672 break;
673 default:
674 break;
677 rt2x00_warn(rt2x00dev, "Frame received with unrecognized signal, mode=0x%.4x, signal=0x%.4x, type=%d\n",
678 rxdesc->rate_mode, signal, type);
679 return 0;
682 void rt2x00lib_rxdone(struct queue_entry *entry, gfp_t gfp)
684 struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
685 struct rxdone_entry_desc rxdesc;
686 struct sk_buff *skb;
687 struct ieee80211_rx_status *rx_status;
688 unsigned int header_length;
689 int rate_idx;
691 if (!test_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags) ||
692 !test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
693 goto submit_entry;
695 if (test_bit(ENTRY_DATA_IO_FAILED, &entry->flags))
696 goto submit_entry;
699 * Allocate a new sk_buffer. If no new buffer available, drop the
700 * received frame and reuse the existing buffer.
702 skb = rt2x00queue_alloc_rxskb(entry, gfp);
703 if (!skb)
704 goto submit_entry;
707 * Unmap the skb.
709 rt2x00queue_unmap_skb(entry);
712 * Extract the RXD details.
714 memset(&rxdesc, 0, sizeof(rxdesc));
715 rt2x00dev->ops->lib->fill_rxdone(entry, &rxdesc);
718 * Check for valid size in case we get corrupted descriptor from
719 * hardware.
721 if (unlikely(rxdesc.size == 0 ||
722 rxdesc.size > entry->queue->data_size)) {
723 rt2x00_err(rt2x00dev, "Wrong frame size %d max %d\n",
724 rxdesc.size, entry->queue->data_size);
725 dev_kfree_skb(entry->skb);
726 goto renew_skb;
730 * The data behind the ieee80211 header must be
731 * aligned on a 4 byte boundary.
733 header_length = ieee80211_get_hdrlen_from_skb(entry->skb);
736 * Hardware might have stripped the IV/EIV/ICV data,
737 * in that case it is possible that the data was
738 * provided separately (through hardware descriptor)
739 * in which case we should reinsert the data into the frame.
741 if ((rxdesc.dev_flags & RXDONE_CRYPTO_IV) &&
742 (rxdesc.flags & RX_FLAG_IV_STRIPPED))
743 rt2x00crypto_rx_insert_iv(entry->skb, header_length,
744 &rxdesc);
745 else if (header_length &&
746 (rxdesc.size > header_length) &&
747 (rxdesc.dev_flags & RXDONE_L2PAD))
748 rt2x00queue_remove_l2pad(entry->skb, header_length);
750 /* Trim buffer to correct size */
751 skb_trim(entry->skb, rxdesc.size);
754 * Translate the signal to the correct bitrate index.
756 rate_idx = rt2x00lib_rxdone_read_signal(rt2x00dev, &rxdesc);
757 if (rxdesc.rate_mode == RATE_MODE_HT_MIX ||
758 rxdesc.rate_mode == RATE_MODE_HT_GREENFIELD)
759 rxdesc.flags |= RX_FLAG_HT;
762 * Check if this is a beacon, and more frames have been
763 * buffered while we were in powersaving mode.
765 rt2x00lib_rxdone_check_ps(rt2x00dev, entry->skb, &rxdesc);
768 * Check for incoming BlockAcks to match to the BlockAckReqs
769 * we've send out.
771 rt2x00lib_rxdone_check_ba(rt2x00dev, entry->skb, &rxdesc);
774 * Update extra components
776 rt2x00link_update_stats(rt2x00dev, entry->skb, &rxdesc);
777 rt2x00debug_update_crypto(rt2x00dev, &rxdesc);
778 rt2x00debug_dump_frame(rt2x00dev, DUMP_FRAME_RXDONE, entry->skb);
781 * Initialize RX status information, and send frame
782 * to mac80211.
784 rx_status = IEEE80211_SKB_RXCB(entry->skb);
786 /* Ensure that all fields of rx_status are initialized
787 * properly. The skb->cb array was used for driver
788 * specific informations, so rx_status might contain
789 * garbage.
791 memset(rx_status, 0, sizeof(*rx_status));
793 rx_status->mactime = rxdesc.timestamp;
794 rx_status->band = rt2x00dev->curr_band;
795 rx_status->freq = rt2x00dev->curr_freq;
796 rx_status->rate_idx = rate_idx;
797 rx_status->signal = rxdesc.rssi;
798 rx_status->flag = rxdesc.flags;
799 rx_status->antenna = rt2x00dev->link.ant.active.rx;
801 ieee80211_rx_ni(rt2x00dev->hw, entry->skb);
803 renew_skb:
805 * Replace the skb with the freshly allocated one.
807 entry->skb = skb;
809 submit_entry:
810 entry->flags = 0;
811 rt2x00queue_index_inc(entry, Q_INDEX_DONE);
812 if (test_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags) &&
813 test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
814 rt2x00dev->ops->lib->clear_entry(entry);
816 EXPORT_SYMBOL_GPL(rt2x00lib_rxdone);
819 * Driver initialization handlers.
821 const struct rt2x00_rate rt2x00_supported_rates[12] = {
823 .flags = DEV_RATE_CCK,
824 .bitrate = 10,
825 .ratemask = BIT(0),
826 .plcp = 0x00,
827 .mcs = RATE_MCS(RATE_MODE_CCK, 0),
830 .flags = DEV_RATE_CCK | DEV_RATE_SHORT_PREAMBLE,
831 .bitrate = 20,
832 .ratemask = BIT(1),
833 .plcp = 0x01,
834 .mcs = RATE_MCS(RATE_MODE_CCK, 1),
837 .flags = DEV_RATE_CCK | DEV_RATE_SHORT_PREAMBLE,
838 .bitrate = 55,
839 .ratemask = BIT(2),
840 .plcp = 0x02,
841 .mcs = RATE_MCS(RATE_MODE_CCK, 2),
844 .flags = DEV_RATE_CCK | DEV_RATE_SHORT_PREAMBLE,
845 .bitrate = 110,
846 .ratemask = BIT(3),
847 .plcp = 0x03,
848 .mcs = RATE_MCS(RATE_MODE_CCK, 3),
851 .flags = DEV_RATE_OFDM,
852 .bitrate = 60,
853 .ratemask = BIT(4),
854 .plcp = 0x0b,
855 .mcs = RATE_MCS(RATE_MODE_OFDM, 0),
858 .flags = DEV_RATE_OFDM,
859 .bitrate = 90,
860 .ratemask = BIT(5),
861 .plcp = 0x0f,
862 .mcs = RATE_MCS(RATE_MODE_OFDM, 1),
865 .flags = DEV_RATE_OFDM,
866 .bitrate = 120,
867 .ratemask = BIT(6),
868 .plcp = 0x0a,
869 .mcs = RATE_MCS(RATE_MODE_OFDM, 2),
872 .flags = DEV_RATE_OFDM,
873 .bitrate = 180,
874 .ratemask = BIT(7),
875 .plcp = 0x0e,
876 .mcs = RATE_MCS(RATE_MODE_OFDM, 3),
879 .flags = DEV_RATE_OFDM,
880 .bitrate = 240,
881 .ratemask = BIT(8),
882 .plcp = 0x09,
883 .mcs = RATE_MCS(RATE_MODE_OFDM, 4),
886 .flags = DEV_RATE_OFDM,
887 .bitrate = 360,
888 .ratemask = BIT(9),
889 .plcp = 0x0d,
890 .mcs = RATE_MCS(RATE_MODE_OFDM, 5),
893 .flags = DEV_RATE_OFDM,
894 .bitrate = 480,
895 .ratemask = BIT(10),
896 .plcp = 0x08,
897 .mcs = RATE_MCS(RATE_MODE_OFDM, 6),
900 .flags = DEV_RATE_OFDM,
901 .bitrate = 540,
902 .ratemask = BIT(11),
903 .plcp = 0x0c,
904 .mcs = RATE_MCS(RATE_MODE_OFDM, 7),
908 static void rt2x00lib_channel(struct ieee80211_channel *entry,
909 const int channel, const int tx_power,
910 const int value)
912 /* XXX: this assumption about the band is wrong for 802.11j */
913 entry->band = channel <= 14 ? IEEE80211_BAND_2GHZ : IEEE80211_BAND_5GHZ;
914 entry->center_freq = ieee80211_channel_to_frequency(channel,
915 entry->band);
916 entry->hw_value = value;
917 entry->max_power = tx_power;
918 entry->max_antenna_gain = 0xff;
921 static void rt2x00lib_rate(struct ieee80211_rate *entry,
922 const u16 index, const struct rt2x00_rate *rate)
924 entry->flags = 0;
925 entry->bitrate = rate->bitrate;
926 entry->hw_value = index;
927 entry->hw_value_short = index;
929 if (rate->flags & DEV_RATE_SHORT_PREAMBLE)
930 entry->flags |= IEEE80211_RATE_SHORT_PREAMBLE;
933 static int rt2x00lib_probe_hw_modes(struct rt2x00_dev *rt2x00dev,
934 struct hw_mode_spec *spec)
936 struct ieee80211_hw *hw = rt2x00dev->hw;
937 struct ieee80211_channel *channels;
938 struct ieee80211_rate *rates;
939 unsigned int num_rates;
940 unsigned int i;
942 num_rates = 0;
943 if (spec->supported_rates & SUPPORT_RATE_CCK)
944 num_rates += 4;
945 if (spec->supported_rates & SUPPORT_RATE_OFDM)
946 num_rates += 8;
948 channels = kcalloc(spec->num_channels, sizeof(*channels), GFP_KERNEL);
949 if (!channels)
950 return -ENOMEM;
952 rates = kcalloc(num_rates, sizeof(*rates), GFP_KERNEL);
953 if (!rates)
954 goto exit_free_channels;
957 * Initialize Rate list.
959 for (i = 0; i < num_rates; i++)
960 rt2x00lib_rate(&rates[i], i, rt2x00_get_rate(i));
963 * Initialize Channel list.
965 for (i = 0; i < spec->num_channels; i++) {
966 rt2x00lib_channel(&channels[i],
967 spec->channels[i].channel,
968 spec->channels_info[i].max_power, i);
972 * Intitialize 802.11b, 802.11g
973 * Rates: CCK, OFDM.
974 * Channels: 2.4 GHz
976 if (spec->supported_bands & SUPPORT_BAND_2GHZ) {
977 rt2x00dev->bands[IEEE80211_BAND_2GHZ].n_channels = 14;
978 rt2x00dev->bands[IEEE80211_BAND_2GHZ].n_bitrates = num_rates;
979 rt2x00dev->bands[IEEE80211_BAND_2GHZ].channels = channels;
980 rt2x00dev->bands[IEEE80211_BAND_2GHZ].bitrates = rates;
981 hw->wiphy->bands[IEEE80211_BAND_2GHZ] =
982 &rt2x00dev->bands[IEEE80211_BAND_2GHZ];
983 memcpy(&rt2x00dev->bands[IEEE80211_BAND_2GHZ].ht_cap,
984 &spec->ht, sizeof(spec->ht));
988 * Intitialize 802.11a
989 * Rates: OFDM.
990 * Channels: OFDM, UNII, HiperLAN2.
992 if (spec->supported_bands & SUPPORT_BAND_5GHZ) {
993 rt2x00dev->bands[IEEE80211_BAND_5GHZ].n_channels =
994 spec->num_channels - 14;
995 rt2x00dev->bands[IEEE80211_BAND_5GHZ].n_bitrates =
996 num_rates - 4;
997 rt2x00dev->bands[IEEE80211_BAND_5GHZ].channels = &channels[14];
998 rt2x00dev->bands[IEEE80211_BAND_5GHZ].bitrates = &rates[4];
999 hw->wiphy->bands[IEEE80211_BAND_5GHZ] =
1000 &rt2x00dev->bands[IEEE80211_BAND_5GHZ];
1001 memcpy(&rt2x00dev->bands[IEEE80211_BAND_5GHZ].ht_cap,
1002 &spec->ht, sizeof(spec->ht));
1005 return 0;
1007 exit_free_channels:
1008 kfree(channels);
1009 rt2x00_err(rt2x00dev, "Allocation ieee80211 modes failed\n");
1010 return -ENOMEM;
1013 static void rt2x00lib_remove_hw(struct rt2x00_dev *rt2x00dev)
1015 if (test_bit(DEVICE_STATE_REGISTERED_HW, &rt2x00dev->flags))
1016 ieee80211_unregister_hw(rt2x00dev->hw);
1018 if (likely(rt2x00dev->hw->wiphy->bands[IEEE80211_BAND_2GHZ])) {
1019 kfree(rt2x00dev->hw->wiphy->bands[IEEE80211_BAND_2GHZ]->channels);
1020 kfree(rt2x00dev->hw->wiphy->bands[IEEE80211_BAND_2GHZ]->bitrates);
1021 rt2x00dev->hw->wiphy->bands[IEEE80211_BAND_2GHZ] = NULL;
1022 rt2x00dev->hw->wiphy->bands[IEEE80211_BAND_5GHZ] = NULL;
1025 kfree(rt2x00dev->spec.channels_info);
1028 static int rt2x00lib_probe_hw(struct rt2x00_dev *rt2x00dev)
1030 struct hw_mode_spec *spec = &rt2x00dev->spec;
1031 int status;
1033 if (test_bit(DEVICE_STATE_REGISTERED_HW, &rt2x00dev->flags))
1034 return 0;
1037 * Initialize HW modes.
1039 status = rt2x00lib_probe_hw_modes(rt2x00dev, spec);
1040 if (status)
1041 return status;
1044 * Initialize HW fields.
1046 rt2x00dev->hw->queues = rt2x00dev->ops->tx_queues;
1049 * Initialize extra TX headroom required.
1051 rt2x00dev->hw->extra_tx_headroom =
1052 max_t(unsigned int, IEEE80211_TX_STATUS_HEADROOM,
1053 rt2x00dev->extra_tx_headroom);
1056 * Take TX headroom required for alignment into account.
1058 if (test_bit(REQUIRE_L2PAD, &rt2x00dev->cap_flags))
1059 rt2x00dev->hw->extra_tx_headroom += RT2X00_L2PAD_SIZE;
1060 else if (test_bit(REQUIRE_DMA, &rt2x00dev->cap_flags))
1061 rt2x00dev->hw->extra_tx_headroom += RT2X00_ALIGN_SIZE;
1064 * Tell mac80211 about the size of our private STA structure.
1066 rt2x00dev->hw->sta_data_size = sizeof(struct rt2x00_sta);
1069 * Allocate tx status FIFO for driver use.
1071 if (test_bit(REQUIRE_TXSTATUS_FIFO, &rt2x00dev->cap_flags)) {
1073 * Allocate the txstatus fifo. In the worst case the tx
1074 * status fifo has to hold the tx status of all entries
1075 * in all tx queues. Hence, calculate the kfifo size as
1076 * tx_queues * entry_num and round up to the nearest
1077 * power of 2.
1079 int kfifo_size =
1080 roundup_pow_of_two(rt2x00dev->ops->tx_queues *
1081 rt2x00dev->tx->limit *
1082 sizeof(u32));
1084 status = kfifo_alloc(&rt2x00dev->txstatus_fifo, kfifo_size,
1085 GFP_KERNEL);
1086 if (status)
1087 return status;
1091 * Initialize tasklets if used by the driver. Tasklets are
1092 * disabled until the interrupts are turned on. The driver
1093 * has to handle that.
1095 #define RT2X00_TASKLET_INIT(taskletname) \
1096 if (rt2x00dev->ops->lib->taskletname) { \
1097 tasklet_init(&rt2x00dev->taskletname, \
1098 rt2x00dev->ops->lib->taskletname, \
1099 (unsigned long)rt2x00dev); \
1102 RT2X00_TASKLET_INIT(txstatus_tasklet);
1103 RT2X00_TASKLET_INIT(pretbtt_tasklet);
1104 RT2X00_TASKLET_INIT(tbtt_tasklet);
1105 RT2X00_TASKLET_INIT(rxdone_tasklet);
1106 RT2X00_TASKLET_INIT(autowake_tasklet);
1108 #undef RT2X00_TASKLET_INIT
1111 * Register HW.
1113 status = ieee80211_register_hw(rt2x00dev->hw);
1114 if (status)
1115 return status;
1117 set_bit(DEVICE_STATE_REGISTERED_HW, &rt2x00dev->flags);
1119 return 0;
1123 * Initialization/uninitialization handlers.
1125 static void rt2x00lib_uninitialize(struct rt2x00_dev *rt2x00dev)
1127 if (!test_and_clear_bit(DEVICE_STATE_INITIALIZED, &rt2x00dev->flags))
1128 return;
1131 * Stop rfkill polling.
1133 if (test_bit(REQUIRE_DELAYED_RFKILL, &rt2x00dev->cap_flags))
1134 rt2x00rfkill_unregister(rt2x00dev);
1137 * Allow the HW to uninitialize.
1139 rt2x00dev->ops->lib->uninitialize(rt2x00dev);
1142 * Free allocated queue entries.
1144 rt2x00queue_uninitialize(rt2x00dev);
1147 static int rt2x00lib_initialize(struct rt2x00_dev *rt2x00dev)
1149 int status;
1151 if (test_bit(DEVICE_STATE_INITIALIZED, &rt2x00dev->flags))
1152 return 0;
1155 * Allocate all queue entries.
1157 status = rt2x00queue_initialize(rt2x00dev);
1158 if (status)
1159 return status;
1162 * Initialize the device.
1164 status = rt2x00dev->ops->lib->initialize(rt2x00dev);
1165 if (status) {
1166 rt2x00queue_uninitialize(rt2x00dev);
1167 return status;
1170 set_bit(DEVICE_STATE_INITIALIZED, &rt2x00dev->flags);
1173 * Start rfkill polling.
1175 if (test_bit(REQUIRE_DELAYED_RFKILL, &rt2x00dev->cap_flags))
1176 rt2x00rfkill_register(rt2x00dev);
1178 return 0;
1181 int rt2x00lib_start(struct rt2x00_dev *rt2x00dev)
1183 int retval;
1185 if (test_bit(DEVICE_STATE_STARTED, &rt2x00dev->flags))
1186 return 0;
1189 * If this is the first interface which is added,
1190 * we should load the firmware now.
1192 retval = rt2x00lib_load_firmware(rt2x00dev);
1193 if (retval)
1194 return retval;
1197 * Initialize the device.
1199 retval = rt2x00lib_initialize(rt2x00dev);
1200 if (retval)
1201 return retval;
1203 rt2x00dev->intf_ap_count = 0;
1204 rt2x00dev->intf_sta_count = 0;
1205 rt2x00dev->intf_associated = 0;
1207 /* Enable the radio */
1208 retval = rt2x00lib_enable_radio(rt2x00dev);
1209 if (retval)
1210 return retval;
1212 set_bit(DEVICE_STATE_STARTED, &rt2x00dev->flags);
1214 return 0;
1217 void rt2x00lib_stop(struct rt2x00_dev *rt2x00dev)
1219 if (!test_and_clear_bit(DEVICE_STATE_STARTED, &rt2x00dev->flags))
1220 return;
1223 * Perhaps we can add something smarter here,
1224 * but for now just disabling the radio should do.
1226 rt2x00lib_disable_radio(rt2x00dev);
1228 rt2x00dev->intf_ap_count = 0;
1229 rt2x00dev->intf_sta_count = 0;
1230 rt2x00dev->intf_associated = 0;
1233 static inline void rt2x00lib_set_if_combinations(struct rt2x00_dev *rt2x00dev)
1235 struct ieee80211_iface_limit *if_limit;
1236 struct ieee80211_iface_combination *if_combination;
1238 if (rt2x00dev->ops->max_ap_intf < 2)
1239 return;
1242 * Build up AP interface limits structure.
1244 if_limit = &rt2x00dev->if_limits_ap;
1245 if_limit->max = rt2x00dev->ops->max_ap_intf;
1246 if_limit->types = BIT(NL80211_IFTYPE_AP);
1247 #ifdef CONFIG_MAC80211_MESH
1248 if_limit->types |= BIT(NL80211_IFTYPE_MESH_POINT);
1249 #endif
1252 * Build up AP interface combinations structure.
1254 if_combination = &rt2x00dev->if_combinations[IF_COMB_AP];
1255 if_combination->limits = if_limit;
1256 if_combination->n_limits = 1;
1257 if_combination->max_interfaces = if_limit->max;
1258 if_combination->num_different_channels = 1;
1261 * Finally, specify the possible combinations to mac80211.
1263 rt2x00dev->hw->wiphy->iface_combinations = rt2x00dev->if_combinations;
1264 rt2x00dev->hw->wiphy->n_iface_combinations = 1;
1267 static unsigned int rt2x00dev_extra_tx_headroom(struct rt2x00_dev *rt2x00dev)
1269 if (WARN_ON(!rt2x00dev->tx))
1270 return 0;
1272 if (rt2x00_is_usb(rt2x00dev))
1273 return rt2x00dev->tx[0].winfo_size + rt2x00dev->tx[0].desc_size;
1275 return rt2x00dev->tx[0].winfo_size;
1279 * driver allocation handlers.
1281 int rt2x00lib_probe_dev(struct rt2x00_dev *rt2x00dev)
1283 int retval = -ENOMEM;
1286 * Set possible interface combinations.
1288 rt2x00lib_set_if_combinations(rt2x00dev);
1291 * Allocate the driver data memory, if necessary.
1293 if (rt2x00dev->ops->drv_data_size > 0) {
1294 rt2x00dev->drv_data = kzalloc(rt2x00dev->ops->drv_data_size,
1295 GFP_KERNEL);
1296 if (!rt2x00dev->drv_data) {
1297 retval = -ENOMEM;
1298 goto exit;
1302 spin_lock_init(&rt2x00dev->irqmask_lock);
1303 mutex_init(&rt2x00dev->csr_mutex);
1304 INIT_LIST_HEAD(&rt2x00dev->bar_list);
1305 spin_lock_init(&rt2x00dev->bar_list_lock);
1307 set_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags);
1310 * Make room for rt2x00_intf inside the per-interface
1311 * structure ieee80211_vif.
1313 rt2x00dev->hw->vif_data_size = sizeof(struct rt2x00_intf);
1316 * rt2x00 devices can only use the last n bits of the MAC address
1317 * for virtual interfaces.
1319 rt2x00dev->hw->wiphy->addr_mask[ETH_ALEN - 1] =
1320 (rt2x00dev->ops->max_ap_intf - 1);
1323 * Initialize work.
1325 rt2x00dev->workqueue =
1326 alloc_ordered_workqueue("%s", 0, wiphy_name(rt2x00dev->hw->wiphy));
1327 if (!rt2x00dev->workqueue) {
1328 retval = -ENOMEM;
1329 goto exit;
1332 INIT_WORK(&rt2x00dev->intf_work, rt2x00lib_intf_scheduled);
1333 INIT_DELAYED_WORK(&rt2x00dev->autowakeup_work, rt2x00lib_autowakeup);
1334 INIT_WORK(&rt2x00dev->sleep_work, rt2x00lib_sleep);
1337 * Let the driver probe the device to detect the capabilities.
1339 retval = rt2x00dev->ops->lib->probe_hw(rt2x00dev);
1340 if (retval) {
1341 rt2x00_err(rt2x00dev, "Failed to allocate device\n");
1342 goto exit;
1346 * Allocate queue array.
1348 retval = rt2x00queue_allocate(rt2x00dev);
1349 if (retval)
1350 goto exit;
1352 /* Cache TX headroom value */
1353 rt2x00dev->extra_tx_headroom = rt2x00dev_extra_tx_headroom(rt2x00dev);
1356 * Determine which operating modes are supported, all modes
1357 * which require beaconing, depend on the availability of
1358 * beacon entries.
1360 rt2x00dev->hw->wiphy->interface_modes = BIT(NL80211_IFTYPE_STATION);
1361 if (rt2x00dev->bcn->limit > 0)
1362 rt2x00dev->hw->wiphy->interface_modes |=
1363 BIT(NL80211_IFTYPE_ADHOC) |
1364 BIT(NL80211_IFTYPE_AP) |
1365 #ifdef CONFIG_MAC80211_MESH
1366 BIT(NL80211_IFTYPE_MESH_POINT) |
1367 #endif
1368 BIT(NL80211_IFTYPE_WDS);
1370 rt2x00dev->hw->wiphy->flags |= WIPHY_FLAG_IBSS_RSN;
1373 * Initialize ieee80211 structure.
1375 retval = rt2x00lib_probe_hw(rt2x00dev);
1376 if (retval) {
1377 rt2x00_err(rt2x00dev, "Failed to initialize hw\n");
1378 goto exit;
1382 * Register extra components.
1384 rt2x00link_register(rt2x00dev);
1385 rt2x00leds_register(rt2x00dev);
1386 rt2x00debug_register(rt2x00dev);
1389 * Start rfkill polling.
1391 if (!test_bit(REQUIRE_DELAYED_RFKILL, &rt2x00dev->cap_flags))
1392 rt2x00rfkill_register(rt2x00dev);
1394 return 0;
1396 exit:
1397 rt2x00lib_remove_dev(rt2x00dev);
1399 return retval;
1401 EXPORT_SYMBOL_GPL(rt2x00lib_probe_dev);
1403 void rt2x00lib_remove_dev(struct rt2x00_dev *rt2x00dev)
1405 clear_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags);
1408 * Stop rfkill polling.
1410 if (!test_bit(REQUIRE_DELAYED_RFKILL, &rt2x00dev->cap_flags))
1411 rt2x00rfkill_unregister(rt2x00dev);
1414 * Disable radio.
1416 rt2x00lib_disable_radio(rt2x00dev);
1419 * Stop all work.
1421 cancel_work_sync(&rt2x00dev->intf_work);
1422 cancel_delayed_work_sync(&rt2x00dev->autowakeup_work);
1423 cancel_work_sync(&rt2x00dev->sleep_work);
1424 if (rt2x00_is_usb(rt2x00dev)) {
1425 hrtimer_cancel(&rt2x00dev->txstatus_timer);
1426 cancel_work_sync(&rt2x00dev->rxdone_work);
1427 cancel_work_sync(&rt2x00dev->txdone_work);
1429 if (rt2x00dev->workqueue)
1430 destroy_workqueue(rt2x00dev->workqueue);
1433 * Free the tx status fifo.
1435 kfifo_free(&rt2x00dev->txstatus_fifo);
1438 * Kill the tx status tasklet.
1440 tasklet_kill(&rt2x00dev->txstatus_tasklet);
1441 tasklet_kill(&rt2x00dev->pretbtt_tasklet);
1442 tasklet_kill(&rt2x00dev->tbtt_tasklet);
1443 tasklet_kill(&rt2x00dev->rxdone_tasklet);
1444 tasklet_kill(&rt2x00dev->autowake_tasklet);
1447 * Uninitialize device.
1449 rt2x00lib_uninitialize(rt2x00dev);
1452 * Free extra components
1454 rt2x00debug_deregister(rt2x00dev);
1455 rt2x00leds_unregister(rt2x00dev);
1458 * Free ieee80211_hw memory.
1460 rt2x00lib_remove_hw(rt2x00dev);
1463 * Free firmware image.
1465 rt2x00lib_free_firmware(rt2x00dev);
1468 * Free queue structures.
1470 rt2x00queue_free(rt2x00dev);
1473 * Free the driver data.
1475 if (rt2x00dev->drv_data)
1476 kfree(rt2x00dev->drv_data);
1478 EXPORT_SYMBOL_GPL(rt2x00lib_remove_dev);
1481 * Device state handlers
1483 #ifdef CONFIG_PM
1484 int rt2x00lib_suspend(struct rt2x00_dev *rt2x00dev, pm_message_t state)
1486 rt2x00_dbg(rt2x00dev, "Going to sleep\n");
1489 * Prevent mac80211 from accessing driver while suspended.
1491 if (!test_and_clear_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags))
1492 return 0;
1495 * Cleanup as much as possible.
1497 rt2x00lib_uninitialize(rt2x00dev);
1500 * Suspend/disable extra components.
1502 rt2x00leds_suspend(rt2x00dev);
1503 rt2x00debug_deregister(rt2x00dev);
1506 * Set device mode to sleep for power management,
1507 * on some hardware this call seems to consistently fail.
1508 * From the specifications it is hard to tell why it fails,
1509 * and if this is a "bad thing".
1510 * Overall it is safe to just ignore the failure and
1511 * continue suspending. The only downside is that the
1512 * device will not be in optimal power save mode, but with
1513 * the radio and the other components already disabled the
1514 * device is as good as disabled.
1516 if (rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_SLEEP))
1517 rt2x00_warn(rt2x00dev, "Device failed to enter sleep state, continue suspending\n");
1519 return 0;
1521 EXPORT_SYMBOL_GPL(rt2x00lib_suspend);
1523 int rt2x00lib_resume(struct rt2x00_dev *rt2x00dev)
1525 rt2x00_dbg(rt2x00dev, "Waking up\n");
1528 * Restore/enable extra components.
1530 rt2x00debug_register(rt2x00dev);
1531 rt2x00leds_resume(rt2x00dev);
1534 * We are ready again to receive requests from mac80211.
1536 set_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags);
1538 return 0;
1540 EXPORT_SYMBOL_GPL(rt2x00lib_resume);
1541 #endif /* CONFIG_PM */
1544 * rt2x00lib module information.
1546 MODULE_AUTHOR(DRV_PROJECT);
1547 MODULE_VERSION(DRV_VERSION);
1548 MODULE_DESCRIPTION("rt2x00 library");
1549 MODULE_LICENSE("GPL");