2 Copyright (C) 2010 Willow Garage <http://www.willowgarage.com>
3 Copyright (C) 2004 - 2010 Ivo van Doorn <IvDoorn@gmail.com>
4 Copyright (C) 2004 - 2009 Gertjan van Wingerde <gwingerde@gmail.com>
5 <http://rt2x00.serialmonkey.com>
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2 of the License, or
10 (at your option) any later version.
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the
19 Free Software Foundation, Inc.,
20 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
25 Abstract: rt2x00 queue specific routines.
28 #include <linux/slab.h>
29 #include <linux/kernel.h>
30 #include <linux/module.h>
31 #include <linux/dma-mapping.h>
34 #include "rt2x00lib.h"
36 struct sk_buff
*rt2x00queue_alloc_rxskb(struct queue_entry
*entry
, gfp_t gfp
)
38 struct data_queue
*queue
= entry
->queue
;
39 struct rt2x00_dev
*rt2x00dev
= queue
->rt2x00dev
;
41 struct skb_frame_desc
*skbdesc
;
42 unsigned int frame_size
;
43 unsigned int head_size
= 0;
44 unsigned int tail_size
= 0;
47 * The frame size includes descriptor size, because the
48 * hardware directly receive the frame into the skbuffer.
50 frame_size
= queue
->data_size
+ queue
->desc_size
+ queue
->winfo_size
;
53 * The payload should be aligned to a 4-byte boundary,
54 * this means we need at least 3 bytes for moving the frame
55 * into the correct offset.
60 * For IV/EIV/ICV assembly we must make sure there is
61 * at least 8 bytes bytes available in headroom for IV/EIV
62 * and 8 bytes for ICV data as tailroon.
64 if (test_bit(CAPABILITY_HW_CRYPTO
, &rt2x00dev
->cap_flags
)) {
72 skb
= __dev_alloc_skb(frame_size
+ head_size
+ tail_size
, gfp
);
77 * Make sure we not have a frame with the requested bytes
78 * available in the head and tail.
80 skb_reserve(skb
, head_size
);
81 skb_put(skb
, frame_size
);
86 skbdesc
= get_skb_frame_desc(skb
);
87 memset(skbdesc
, 0, sizeof(*skbdesc
));
88 skbdesc
->entry
= entry
;
90 if (test_bit(REQUIRE_DMA
, &rt2x00dev
->cap_flags
)) {
93 skb_dma
= dma_map_single(rt2x00dev
->dev
, skb
->data
, skb
->len
,
95 if (unlikely(dma_mapping_error(rt2x00dev
->dev
, skb_dma
))) {
96 dev_kfree_skb_any(skb
);
100 skbdesc
->skb_dma
= skb_dma
;
101 skbdesc
->flags
|= SKBDESC_DMA_MAPPED_RX
;
107 int rt2x00queue_map_txskb(struct queue_entry
*entry
)
109 struct device
*dev
= entry
->queue
->rt2x00dev
->dev
;
110 struct skb_frame_desc
*skbdesc
= get_skb_frame_desc(entry
->skb
);
113 dma_map_single(dev
, entry
->skb
->data
, entry
->skb
->len
, DMA_TO_DEVICE
);
115 if (unlikely(dma_mapping_error(dev
, skbdesc
->skb_dma
)))
118 skbdesc
->flags
|= SKBDESC_DMA_MAPPED_TX
;
121 EXPORT_SYMBOL_GPL(rt2x00queue_map_txskb
);
123 void rt2x00queue_unmap_skb(struct queue_entry
*entry
)
125 struct device
*dev
= entry
->queue
->rt2x00dev
->dev
;
126 struct skb_frame_desc
*skbdesc
= get_skb_frame_desc(entry
->skb
);
128 if (skbdesc
->flags
& SKBDESC_DMA_MAPPED_RX
) {
129 dma_unmap_single(dev
, skbdesc
->skb_dma
, entry
->skb
->len
,
131 skbdesc
->flags
&= ~SKBDESC_DMA_MAPPED_RX
;
132 } else if (skbdesc
->flags
& SKBDESC_DMA_MAPPED_TX
) {
133 dma_unmap_single(dev
, skbdesc
->skb_dma
, entry
->skb
->len
,
135 skbdesc
->flags
&= ~SKBDESC_DMA_MAPPED_TX
;
138 EXPORT_SYMBOL_GPL(rt2x00queue_unmap_skb
);
140 void rt2x00queue_free_skb(struct queue_entry
*entry
)
145 rt2x00queue_unmap_skb(entry
);
146 dev_kfree_skb_any(entry
->skb
);
150 void rt2x00queue_align_frame(struct sk_buff
*skb
)
152 unsigned int frame_length
= skb
->len
;
153 unsigned int align
= ALIGN_SIZE(skb
, 0);
158 skb_push(skb
, align
);
159 memmove(skb
->data
, skb
->data
+ align
, frame_length
);
160 skb_trim(skb
, frame_length
);
164 * H/W needs L2 padding between the header and the paylod if header size
165 * is not 4 bytes aligned.
167 void rt2x00queue_insert_l2pad(struct sk_buff
*skb
, unsigned int hdr_len
)
169 unsigned int l2pad
= (skb
->len
> hdr_len
) ? L2PAD_SIZE(hdr_len
) : 0;
174 skb_push(skb
, l2pad
);
175 memmove(skb
->data
, skb
->data
+ l2pad
, hdr_len
);
178 void rt2x00queue_remove_l2pad(struct sk_buff
*skb
, unsigned int hdr_len
)
180 unsigned int l2pad
= (skb
->len
> hdr_len
) ? L2PAD_SIZE(hdr_len
) : 0;
185 memmove(skb
->data
+ l2pad
, skb
->data
, hdr_len
);
186 skb_pull(skb
, l2pad
);
189 static void rt2x00queue_create_tx_descriptor_seq(struct rt2x00_dev
*rt2x00dev
,
191 struct txentry_desc
*txdesc
)
193 struct ieee80211_tx_info
*tx_info
= IEEE80211_SKB_CB(skb
);
194 struct ieee80211_hdr
*hdr
= (struct ieee80211_hdr
*)skb
->data
;
195 struct rt2x00_intf
*intf
= vif_to_intf(tx_info
->control
.vif
);
198 if (!(tx_info
->flags
& IEEE80211_TX_CTL_ASSIGN_SEQ
))
201 __set_bit(ENTRY_TXD_GENERATE_SEQ
, &txdesc
->flags
);
203 if (!test_bit(REQUIRE_SW_SEQNO
, &rt2x00dev
->cap_flags
)) {
205 * rt2800 has a H/W (or F/W) bug, device incorrectly increase
206 * seqno on retransmited data (non-QOS) frames. To workaround
207 * the problem let's generate seqno in software if QOS is
210 if (test_bit(CONFIG_QOS_DISABLED
, &rt2x00dev
->flags
))
211 __clear_bit(ENTRY_TXD_GENERATE_SEQ
, &txdesc
->flags
);
213 /* H/W will generate sequence number */
218 * The hardware is not able to insert a sequence number. Assign a
219 * software generated one here.
221 * This is wrong because beacons are not getting sequence
222 * numbers assigned properly.
224 * A secondary problem exists for drivers that cannot toggle
225 * sequence counting per-frame, since those will override the
226 * sequence counter given by mac80211.
228 if (test_bit(ENTRY_TXD_FIRST_FRAGMENT
, &txdesc
->flags
))
229 seqno
= atomic_add_return(0x10, &intf
->seqno
);
231 seqno
= atomic_read(&intf
->seqno
);
233 hdr
->seq_ctrl
&= cpu_to_le16(IEEE80211_SCTL_FRAG
);
234 hdr
->seq_ctrl
|= cpu_to_le16(seqno
);
237 static void rt2x00queue_create_tx_descriptor_plcp(struct rt2x00_dev
*rt2x00dev
,
239 struct txentry_desc
*txdesc
,
240 const struct rt2x00_rate
*hwrate
)
242 struct ieee80211_tx_info
*tx_info
= IEEE80211_SKB_CB(skb
);
243 struct ieee80211_tx_rate
*txrate
= &tx_info
->control
.rates
[0];
244 unsigned int data_length
;
245 unsigned int duration
;
246 unsigned int residual
;
249 * Determine with what IFS priority this frame should be send.
250 * Set ifs to IFS_SIFS when the this is not the first fragment,
251 * or this fragment came after RTS/CTS.
253 if (test_bit(ENTRY_TXD_FIRST_FRAGMENT
, &txdesc
->flags
))
254 txdesc
->u
.plcp
.ifs
= IFS_BACKOFF
;
256 txdesc
->u
.plcp
.ifs
= IFS_SIFS
;
258 /* Data length + CRC + Crypto overhead (IV/EIV/ICV/MIC) */
259 data_length
= skb
->len
+ 4;
260 data_length
+= rt2x00crypto_tx_overhead(rt2x00dev
, skb
);
264 * Length calculation depends on OFDM/CCK rate.
266 txdesc
->u
.plcp
.signal
= hwrate
->plcp
;
267 txdesc
->u
.plcp
.service
= 0x04;
269 if (hwrate
->flags
& DEV_RATE_OFDM
) {
270 txdesc
->u
.plcp
.length_high
= (data_length
>> 6) & 0x3f;
271 txdesc
->u
.plcp
.length_low
= data_length
& 0x3f;
274 * Convert length to microseconds.
276 residual
= GET_DURATION_RES(data_length
, hwrate
->bitrate
);
277 duration
= GET_DURATION(data_length
, hwrate
->bitrate
);
283 * Check if we need to set the Length Extension
285 if (hwrate
->bitrate
== 110 && residual
<= 30)
286 txdesc
->u
.plcp
.service
|= 0x80;
289 txdesc
->u
.plcp
.length_high
= (duration
>> 8) & 0xff;
290 txdesc
->u
.plcp
.length_low
= duration
& 0xff;
293 * When preamble is enabled we should set the
294 * preamble bit for the signal.
296 if (txrate
->flags
& IEEE80211_TX_RC_USE_SHORT_PREAMBLE
)
297 txdesc
->u
.plcp
.signal
|= 0x08;
301 static void rt2x00queue_create_tx_descriptor_ht(struct rt2x00_dev
*rt2x00dev
,
303 struct txentry_desc
*txdesc
,
304 struct ieee80211_sta
*sta
,
305 const struct rt2x00_rate
*hwrate
)
307 struct ieee80211_tx_info
*tx_info
= IEEE80211_SKB_CB(skb
);
308 struct ieee80211_tx_rate
*txrate
= &tx_info
->control
.rates
[0];
309 struct ieee80211_hdr
*hdr
= (struct ieee80211_hdr
*)skb
->data
;
310 struct rt2x00_sta
*sta_priv
= NULL
;
313 txdesc
->u
.ht
.mpdu_density
=
314 sta
->ht_cap
.ampdu_density
;
316 sta_priv
= sta_to_rt2x00_sta(sta
);
317 txdesc
->u
.ht
.wcid
= sta_priv
->wcid
;
321 * If IEEE80211_TX_RC_MCS is set txrate->idx just contains the
322 * mcs rate to be used
324 if (txrate
->flags
& IEEE80211_TX_RC_MCS
) {
325 txdesc
->u
.ht
.mcs
= txrate
->idx
;
328 * MIMO PS should be set to 1 for STA's using dynamic SM PS
329 * when using more then one tx stream (>MCS7).
331 if (sta
&& txdesc
->u
.ht
.mcs
> 7 &&
332 sta
->smps_mode
== IEEE80211_SMPS_DYNAMIC
)
333 __set_bit(ENTRY_TXD_HT_MIMO_PS
, &txdesc
->flags
);
335 txdesc
->u
.ht
.mcs
= rt2x00_get_rate_mcs(hwrate
->mcs
);
336 if (txrate
->flags
& IEEE80211_TX_RC_USE_SHORT_PREAMBLE
)
337 txdesc
->u
.ht
.mcs
|= 0x08;
340 if (test_bit(CONFIG_HT_DISABLED
, &rt2x00dev
->flags
)) {
341 if (!(tx_info
->flags
& IEEE80211_TX_CTL_FIRST_FRAGMENT
))
342 txdesc
->u
.ht
.txop
= TXOP_SIFS
;
344 txdesc
->u
.ht
.txop
= TXOP_BACKOFF
;
346 /* Left zero on all other settings. */
350 txdesc
->u
.ht
.ba_size
= 7; /* FIXME: What value is needed? */
353 * Only one STBC stream is supported for now.
355 if (tx_info
->flags
& IEEE80211_TX_CTL_STBC
)
356 txdesc
->u
.ht
.stbc
= 1;
359 * This frame is eligible for an AMPDU, however, don't aggregate
360 * frames that are intended to probe a specific tx rate.
362 if (tx_info
->flags
& IEEE80211_TX_CTL_AMPDU
&&
363 !(tx_info
->flags
& IEEE80211_TX_CTL_RATE_CTRL_PROBE
))
364 __set_bit(ENTRY_TXD_HT_AMPDU
, &txdesc
->flags
);
367 * Set 40Mhz mode if necessary (for legacy rates this will
368 * duplicate the frame to both channels).
370 if (txrate
->flags
& IEEE80211_TX_RC_40_MHZ_WIDTH
||
371 txrate
->flags
& IEEE80211_TX_RC_DUP_DATA
)
372 __set_bit(ENTRY_TXD_HT_BW_40
, &txdesc
->flags
);
373 if (txrate
->flags
& IEEE80211_TX_RC_SHORT_GI
)
374 __set_bit(ENTRY_TXD_HT_SHORT_GI
, &txdesc
->flags
);
377 * Determine IFS values
378 * - Use TXOP_BACKOFF for management frames except beacons
379 * - Use TXOP_SIFS for fragment bursts
380 * - Use TXOP_HTTXOP for everything else
382 * Note: rt2800 devices won't use CTS protection (if used)
383 * for frames not transmitted with TXOP_HTTXOP
385 if (ieee80211_is_mgmt(hdr
->frame_control
) &&
386 !ieee80211_is_beacon(hdr
->frame_control
))
387 txdesc
->u
.ht
.txop
= TXOP_BACKOFF
;
388 else if (!(tx_info
->flags
& IEEE80211_TX_CTL_FIRST_FRAGMENT
))
389 txdesc
->u
.ht
.txop
= TXOP_SIFS
;
391 txdesc
->u
.ht
.txop
= TXOP_HTTXOP
;
394 static void rt2x00queue_create_tx_descriptor(struct rt2x00_dev
*rt2x00dev
,
396 struct txentry_desc
*txdesc
,
397 struct ieee80211_sta
*sta
)
399 struct ieee80211_tx_info
*tx_info
= IEEE80211_SKB_CB(skb
);
400 struct ieee80211_hdr
*hdr
= (struct ieee80211_hdr
*)skb
->data
;
401 struct ieee80211_tx_rate
*txrate
= &tx_info
->control
.rates
[0];
402 struct ieee80211_rate
*rate
;
403 const struct rt2x00_rate
*hwrate
= NULL
;
405 memset(txdesc
, 0, sizeof(*txdesc
));
408 * Header and frame information.
410 txdesc
->length
= skb
->len
;
411 txdesc
->header_length
= ieee80211_get_hdrlen_from_skb(skb
);
414 * Check whether this frame is to be acked.
416 if (!(tx_info
->flags
& IEEE80211_TX_CTL_NO_ACK
))
417 __set_bit(ENTRY_TXD_ACK
, &txdesc
->flags
);
420 * Check if this is a RTS/CTS frame
422 if (ieee80211_is_rts(hdr
->frame_control
) ||
423 ieee80211_is_cts(hdr
->frame_control
)) {
424 __set_bit(ENTRY_TXD_BURST
, &txdesc
->flags
);
425 if (ieee80211_is_rts(hdr
->frame_control
))
426 __set_bit(ENTRY_TXD_RTS_FRAME
, &txdesc
->flags
);
428 __set_bit(ENTRY_TXD_CTS_FRAME
, &txdesc
->flags
);
429 if (tx_info
->control
.rts_cts_rate_idx
>= 0)
431 ieee80211_get_rts_cts_rate(rt2x00dev
->hw
, tx_info
);
435 * Determine retry information.
437 txdesc
->retry_limit
= tx_info
->control
.rates
[0].count
- 1;
438 if (txdesc
->retry_limit
>= rt2x00dev
->long_retry
)
439 __set_bit(ENTRY_TXD_RETRY_MODE
, &txdesc
->flags
);
442 * Check if more fragments are pending
444 if (ieee80211_has_morefrags(hdr
->frame_control
)) {
445 __set_bit(ENTRY_TXD_BURST
, &txdesc
->flags
);
446 __set_bit(ENTRY_TXD_MORE_FRAG
, &txdesc
->flags
);
450 * Check if more frames (!= fragments) are pending
452 if (tx_info
->flags
& IEEE80211_TX_CTL_MORE_FRAMES
)
453 __set_bit(ENTRY_TXD_BURST
, &txdesc
->flags
);
456 * Beacons and probe responses require the tsf timestamp
457 * to be inserted into the frame.
459 if (ieee80211_is_beacon(hdr
->frame_control
) ||
460 ieee80211_is_probe_resp(hdr
->frame_control
))
461 __set_bit(ENTRY_TXD_REQ_TIMESTAMP
, &txdesc
->flags
);
463 if ((tx_info
->flags
& IEEE80211_TX_CTL_FIRST_FRAGMENT
) &&
464 !test_bit(ENTRY_TXD_RTS_FRAME
, &txdesc
->flags
))
465 __set_bit(ENTRY_TXD_FIRST_FRAGMENT
, &txdesc
->flags
);
468 * Determine rate modulation.
470 if (txrate
->flags
& IEEE80211_TX_RC_GREEN_FIELD
)
471 txdesc
->rate_mode
= RATE_MODE_HT_GREENFIELD
;
472 else if (txrate
->flags
& IEEE80211_TX_RC_MCS
)
473 txdesc
->rate_mode
= RATE_MODE_HT_MIX
;
475 rate
= ieee80211_get_tx_rate(rt2x00dev
->hw
, tx_info
);
476 hwrate
= rt2x00_get_rate(rate
->hw_value
);
477 if (hwrate
->flags
& DEV_RATE_OFDM
)
478 txdesc
->rate_mode
= RATE_MODE_OFDM
;
480 txdesc
->rate_mode
= RATE_MODE_CCK
;
484 * Apply TX descriptor handling by components
486 rt2x00crypto_create_tx_descriptor(rt2x00dev
, skb
, txdesc
);
487 rt2x00queue_create_tx_descriptor_seq(rt2x00dev
, skb
, txdesc
);
489 if (test_bit(REQUIRE_HT_TX_DESC
, &rt2x00dev
->cap_flags
))
490 rt2x00queue_create_tx_descriptor_ht(rt2x00dev
, skb
, txdesc
,
493 rt2x00queue_create_tx_descriptor_plcp(rt2x00dev
, skb
, txdesc
,
497 static int rt2x00queue_write_tx_data(struct queue_entry
*entry
,
498 struct txentry_desc
*txdesc
)
500 struct rt2x00_dev
*rt2x00dev
= entry
->queue
->rt2x00dev
;
503 * This should not happen, we already checked the entry
504 * was ours. When the hardware disagrees there has been
505 * a queue corruption!
507 if (unlikely(rt2x00dev
->ops
->lib
->get_entry_state
&&
508 rt2x00dev
->ops
->lib
->get_entry_state(entry
))) {
509 rt2x00_err(rt2x00dev
,
510 "Corrupt queue %d, accessing entry which is not ours\n"
511 "Please file bug report to %s\n",
512 entry
->queue
->qid
, DRV_PROJECT
);
517 * Add the requested extra tx headroom in front of the skb.
519 skb_push(entry
->skb
, rt2x00dev
->extra_tx_headroom
);
520 memset(entry
->skb
->data
, 0, rt2x00dev
->extra_tx_headroom
);
523 * Call the driver's write_tx_data function, if it exists.
525 if (rt2x00dev
->ops
->lib
->write_tx_data
)
526 rt2x00dev
->ops
->lib
->write_tx_data(entry
, txdesc
);
529 * Map the skb to DMA.
531 if (test_bit(REQUIRE_DMA
, &rt2x00dev
->cap_flags
) &&
532 rt2x00queue_map_txskb(entry
))
538 static void rt2x00queue_write_tx_descriptor(struct queue_entry
*entry
,
539 struct txentry_desc
*txdesc
)
541 struct data_queue
*queue
= entry
->queue
;
543 queue
->rt2x00dev
->ops
->lib
->write_tx_desc(entry
, txdesc
);
546 * All processing on the frame has been completed, this means
547 * it is now ready to be dumped to userspace through debugfs.
549 rt2x00debug_dump_frame(queue
->rt2x00dev
, DUMP_FRAME_TX
, entry
->skb
);
552 static void rt2x00queue_kick_tx_queue(struct data_queue
*queue
,
553 struct txentry_desc
*txdesc
)
556 * Check if we need to kick the queue, there are however a few rules
557 * 1) Don't kick unless this is the last in frame in a burst.
558 * When the burst flag is set, this frame is always followed
559 * by another frame which in some way are related to eachother.
560 * This is true for fragments, RTS or CTS-to-self frames.
561 * 2) Rule 1 can be broken when the available entries
562 * in the queue are less then a certain threshold.
564 if (rt2x00queue_threshold(queue
) ||
565 !test_bit(ENTRY_TXD_BURST
, &txdesc
->flags
))
566 queue
->rt2x00dev
->ops
->lib
->kick_queue(queue
);
569 static void rt2x00queue_bar_check(struct queue_entry
*entry
)
571 struct rt2x00_dev
*rt2x00dev
= entry
->queue
->rt2x00dev
;
572 struct ieee80211_bar
*bar
= (void *) (entry
->skb
->data
+
573 rt2x00dev
->extra_tx_headroom
);
574 struct rt2x00_bar_list_entry
*bar_entry
;
576 if (likely(!ieee80211_is_back_req(bar
->frame_control
)))
579 bar_entry
= kmalloc(sizeof(*bar_entry
), GFP_ATOMIC
);
582 * If the alloc fails we still send the BAR out but just don't track
583 * it in our bar list. And as a result we will report it to mac80211
589 bar_entry
->entry
= entry
;
590 bar_entry
->block_acked
= 0;
593 * Copy the relevant parts of the 802.11 BAR into out check list
594 * such that we can use RCU for less-overhead in the RX path since
595 * sending BARs and processing the according BlockAck should be
598 memcpy(bar_entry
->ra
, bar
->ra
, sizeof(bar
->ra
));
599 memcpy(bar_entry
->ta
, bar
->ta
, sizeof(bar
->ta
));
600 bar_entry
->control
= bar
->control
;
601 bar_entry
->start_seq_num
= bar
->start_seq_num
;
604 * Insert BAR into our BAR check list.
606 spin_lock_bh(&rt2x00dev
->bar_list_lock
);
607 list_add_tail_rcu(&bar_entry
->list
, &rt2x00dev
->bar_list
);
608 spin_unlock_bh(&rt2x00dev
->bar_list_lock
);
611 int rt2x00queue_write_tx_frame(struct data_queue
*queue
, struct sk_buff
*skb
,
612 struct ieee80211_sta
*sta
, bool local
)
614 struct ieee80211_tx_info
*tx_info
;
615 struct queue_entry
*entry
;
616 struct txentry_desc txdesc
;
617 struct skb_frame_desc
*skbdesc
;
618 u8 rate_idx
, rate_flags
;
622 * Copy all TX descriptor information into txdesc,
623 * after that we are free to use the skb->cb array
624 * for our information.
626 rt2x00queue_create_tx_descriptor(queue
->rt2x00dev
, skb
, &txdesc
, sta
);
629 * All information is retrieved from the skb->cb array,
630 * now we should claim ownership of the driver part of that
631 * array, preserving the bitrate index and flags.
633 tx_info
= IEEE80211_SKB_CB(skb
);
634 rate_idx
= tx_info
->control
.rates
[0].idx
;
635 rate_flags
= tx_info
->control
.rates
[0].flags
;
636 skbdesc
= get_skb_frame_desc(skb
);
637 memset(skbdesc
, 0, sizeof(*skbdesc
));
638 skbdesc
->tx_rate_idx
= rate_idx
;
639 skbdesc
->tx_rate_flags
= rate_flags
;
642 skbdesc
->flags
|= SKBDESC_NOT_MAC80211
;
645 * When hardware encryption is supported, and this frame
646 * is to be encrypted, we should strip the IV/EIV data from
647 * the frame so we can provide it to the driver separately.
649 if (test_bit(ENTRY_TXD_ENCRYPT
, &txdesc
.flags
) &&
650 !test_bit(ENTRY_TXD_ENCRYPT_IV
, &txdesc
.flags
)) {
651 if (test_bit(REQUIRE_COPY_IV
, &queue
->rt2x00dev
->cap_flags
))
652 rt2x00crypto_tx_copy_iv(skb
, &txdesc
);
654 rt2x00crypto_tx_remove_iv(skb
, &txdesc
);
658 * When DMA allocation is required we should guarantee to the
659 * driver that the DMA is aligned to a 4-byte boundary.
660 * However some drivers require L2 padding to pad the payload
661 * rather then the header. This could be a requirement for
662 * PCI and USB devices, while header alignment only is valid
665 if (test_bit(REQUIRE_L2PAD
, &queue
->rt2x00dev
->cap_flags
))
666 rt2x00queue_insert_l2pad(skb
, txdesc
.header_length
);
667 else if (test_bit(REQUIRE_DMA
, &queue
->rt2x00dev
->cap_flags
))
668 rt2x00queue_align_frame(skb
);
671 * That function must be called with bh disabled.
673 spin_lock(&queue
->tx_lock
);
675 if (unlikely(rt2x00queue_full(queue
))) {
676 rt2x00_err(queue
->rt2x00dev
, "Dropping frame due to full tx queue %d\n",
682 entry
= rt2x00queue_get_entry(queue
, Q_INDEX
);
684 if (unlikely(test_and_set_bit(ENTRY_OWNER_DEVICE_DATA
,
686 rt2x00_err(queue
->rt2x00dev
,
687 "Arrived at non-free entry in the non-full queue %d\n"
688 "Please file bug report to %s\n",
689 queue
->qid
, DRV_PROJECT
);
694 skbdesc
->entry
= entry
;
698 * It could be possible that the queue was corrupted and this
699 * call failed. Since we always return NETDEV_TX_OK to mac80211,
700 * this frame will simply be dropped.
702 if (unlikely(rt2x00queue_write_tx_data(entry
, &txdesc
))) {
703 clear_bit(ENTRY_OWNER_DEVICE_DATA
, &entry
->flags
);
710 * Put BlockAckReqs into our check list for driver BA processing.
712 rt2x00queue_bar_check(entry
);
714 set_bit(ENTRY_DATA_PENDING
, &entry
->flags
);
716 rt2x00queue_index_inc(entry
, Q_INDEX
);
717 rt2x00queue_write_tx_descriptor(entry
, &txdesc
);
718 rt2x00queue_kick_tx_queue(queue
, &txdesc
);
721 spin_unlock(&queue
->tx_lock
);
725 int rt2x00queue_clear_beacon(struct rt2x00_dev
*rt2x00dev
,
726 struct ieee80211_vif
*vif
)
728 struct rt2x00_intf
*intf
= vif_to_intf(vif
);
730 if (unlikely(!intf
->beacon
))
733 mutex_lock(&intf
->beacon_skb_mutex
);
736 * Clean up the beacon skb.
738 rt2x00queue_free_skb(intf
->beacon
);
741 * Clear beacon (single bssid devices don't need to clear the beacon
742 * since the beacon queue will get stopped anyway).
744 if (rt2x00dev
->ops
->lib
->clear_beacon
)
745 rt2x00dev
->ops
->lib
->clear_beacon(intf
->beacon
);
747 mutex_unlock(&intf
->beacon_skb_mutex
);
752 int rt2x00queue_update_beacon_locked(struct rt2x00_dev
*rt2x00dev
,
753 struct ieee80211_vif
*vif
)
755 struct rt2x00_intf
*intf
= vif_to_intf(vif
);
756 struct skb_frame_desc
*skbdesc
;
757 struct txentry_desc txdesc
;
759 if (unlikely(!intf
->beacon
))
763 * Clean up the beacon skb.
765 rt2x00queue_free_skb(intf
->beacon
);
767 intf
->beacon
->skb
= ieee80211_beacon_get(rt2x00dev
->hw
, vif
);
768 if (!intf
->beacon
->skb
)
772 * Copy all TX descriptor information into txdesc,
773 * after that we are free to use the skb->cb array
774 * for our information.
776 rt2x00queue_create_tx_descriptor(rt2x00dev
, intf
->beacon
->skb
, &txdesc
, NULL
);
779 * Fill in skb descriptor
781 skbdesc
= get_skb_frame_desc(intf
->beacon
->skb
);
782 memset(skbdesc
, 0, sizeof(*skbdesc
));
783 skbdesc
->entry
= intf
->beacon
;
786 * Send beacon to hardware.
788 rt2x00dev
->ops
->lib
->write_beacon(intf
->beacon
, &txdesc
);
794 int rt2x00queue_update_beacon(struct rt2x00_dev
*rt2x00dev
,
795 struct ieee80211_vif
*vif
)
797 struct rt2x00_intf
*intf
= vif_to_intf(vif
);
800 mutex_lock(&intf
->beacon_skb_mutex
);
801 ret
= rt2x00queue_update_beacon_locked(rt2x00dev
, vif
);
802 mutex_unlock(&intf
->beacon_skb_mutex
);
807 bool rt2x00queue_for_each_entry(struct data_queue
*queue
,
808 enum queue_index start
,
809 enum queue_index end
,
811 bool (*fn
)(struct queue_entry
*entry
,
814 unsigned long irqflags
;
815 unsigned int index_start
;
816 unsigned int index_end
;
819 if (unlikely(start
>= Q_INDEX_MAX
|| end
>= Q_INDEX_MAX
)) {
820 rt2x00_err(queue
->rt2x00dev
,
821 "Entry requested from invalid index range (%d - %d)\n",
827 * Only protect the range we are going to loop over,
828 * if during our loop a extra entry is set to pending
829 * it should not be kicked during this run, since it
830 * is part of another TX operation.
832 spin_lock_irqsave(&queue
->index_lock
, irqflags
);
833 index_start
= queue
->index
[start
];
834 index_end
= queue
->index
[end
];
835 spin_unlock_irqrestore(&queue
->index_lock
, irqflags
);
838 * Start from the TX done pointer, this guarantees that we will
839 * send out all frames in the correct order.
841 if (index_start
< index_end
) {
842 for (i
= index_start
; i
< index_end
; i
++) {
843 if (fn(&queue
->entries
[i
], data
))
847 for (i
= index_start
; i
< queue
->limit
; i
++) {
848 if (fn(&queue
->entries
[i
], data
))
852 for (i
= 0; i
< index_end
; i
++) {
853 if (fn(&queue
->entries
[i
], data
))
860 EXPORT_SYMBOL_GPL(rt2x00queue_for_each_entry
);
862 struct queue_entry
*rt2x00queue_get_entry(struct data_queue
*queue
,
863 enum queue_index index
)
865 struct queue_entry
*entry
;
866 unsigned long irqflags
;
868 if (unlikely(index
>= Q_INDEX_MAX
)) {
869 rt2x00_err(queue
->rt2x00dev
, "Entry requested from invalid index type (%d)\n",
874 spin_lock_irqsave(&queue
->index_lock
, irqflags
);
876 entry
= &queue
->entries
[queue
->index
[index
]];
878 spin_unlock_irqrestore(&queue
->index_lock
, irqflags
);
882 EXPORT_SYMBOL_GPL(rt2x00queue_get_entry
);
884 void rt2x00queue_index_inc(struct queue_entry
*entry
, enum queue_index index
)
886 struct data_queue
*queue
= entry
->queue
;
887 unsigned long irqflags
;
889 if (unlikely(index
>= Q_INDEX_MAX
)) {
890 rt2x00_err(queue
->rt2x00dev
,
891 "Index change on invalid index type (%d)\n", index
);
895 spin_lock_irqsave(&queue
->index_lock
, irqflags
);
897 queue
->index
[index
]++;
898 if (queue
->index
[index
] >= queue
->limit
)
899 queue
->index
[index
] = 0;
901 entry
->last_action
= jiffies
;
903 if (index
== Q_INDEX
) {
905 } else if (index
== Q_INDEX_DONE
) {
910 spin_unlock_irqrestore(&queue
->index_lock
, irqflags
);
913 static void rt2x00queue_pause_queue_nocheck(struct data_queue
*queue
)
915 switch (queue
->qid
) {
921 * For TX queues, we have to disable the queue
924 ieee80211_stop_queue(queue
->rt2x00dev
->hw
, queue
->qid
);
930 void rt2x00queue_pause_queue(struct data_queue
*queue
)
932 if (!test_bit(DEVICE_STATE_PRESENT
, &queue
->rt2x00dev
->flags
) ||
933 !test_bit(QUEUE_STARTED
, &queue
->flags
) ||
934 test_and_set_bit(QUEUE_PAUSED
, &queue
->flags
))
937 rt2x00queue_pause_queue_nocheck(queue
);
939 EXPORT_SYMBOL_GPL(rt2x00queue_pause_queue
);
941 void rt2x00queue_unpause_queue(struct data_queue
*queue
)
943 if (!test_bit(DEVICE_STATE_PRESENT
, &queue
->rt2x00dev
->flags
) ||
944 !test_bit(QUEUE_STARTED
, &queue
->flags
) ||
945 !test_and_clear_bit(QUEUE_PAUSED
, &queue
->flags
))
948 switch (queue
->qid
) {
954 * For TX queues, we have to enable the queue
957 ieee80211_wake_queue(queue
->rt2x00dev
->hw
, queue
->qid
);
961 * For RX we need to kick the queue now in order to
964 queue
->rt2x00dev
->ops
->lib
->kick_queue(queue
);
969 EXPORT_SYMBOL_GPL(rt2x00queue_unpause_queue
);
971 void rt2x00queue_start_queue(struct data_queue
*queue
)
973 mutex_lock(&queue
->status_lock
);
975 if (!test_bit(DEVICE_STATE_PRESENT
, &queue
->rt2x00dev
->flags
) ||
976 test_and_set_bit(QUEUE_STARTED
, &queue
->flags
)) {
977 mutex_unlock(&queue
->status_lock
);
981 set_bit(QUEUE_PAUSED
, &queue
->flags
);
983 queue
->rt2x00dev
->ops
->lib
->start_queue(queue
);
985 rt2x00queue_unpause_queue(queue
);
987 mutex_unlock(&queue
->status_lock
);
989 EXPORT_SYMBOL_GPL(rt2x00queue_start_queue
);
991 void rt2x00queue_stop_queue(struct data_queue
*queue
)
993 mutex_lock(&queue
->status_lock
);
995 if (!test_and_clear_bit(QUEUE_STARTED
, &queue
->flags
)) {
996 mutex_unlock(&queue
->status_lock
);
1000 rt2x00queue_pause_queue_nocheck(queue
);
1002 queue
->rt2x00dev
->ops
->lib
->stop_queue(queue
);
1004 mutex_unlock(&queue
->status_lock
);
1006 EXPORT_SYMBOL_GPL(rt2x00queue_stop_queue
);
1008 void rt2x00queue_flush_queue(struct data_queue
*queue
, bool drop
)
1012 (queue
->qid
== QID_AC_VO
) ||
1013 (queue
->qid
== QID_AC_VI
) ||
1014 (queue
->qid
== QID_AC_BE
) ||
1015 (queue
->qid
== QID_AC_BK
);
1017 mutex_lock(&queue
->status_lock
);
1020 * If the queue has been started, we must stop it temporarily
1021 * to prevent any new frames to be queued on the device. If
1022 * we are not dropping the pending frames, the queue must
1023 * only be stopped in the software and not the hardware,
1024 * otherwise the queue will never become empty on its own.
1026 started
= test_bit(QUEUE_STARTED
, &queue
->flags
);
1031 rt2x00queue_pause_queue(queue
);
1034 * If we are not supposed to drop any pending
1035 * frames, this means we must force a start (=kick)
1036 * to the queue to make sure the hardware will
1037 * start transmitting.
1039 if (!drop
&& tx_queue
)
1040 queue
->rt2x00dev
->ops
->lib
->kick_queue(queue
);
1044 * Check if driver supports flushing, if that is the case we can
1045 * defer the flushing to the driver. Otherwise we must use the
1046 * alternative which just waits for the queue to become empty.
1048 if (likely(queue
->rt2x00dev
->ops
->lib
->flush_queue
))
1049 queue
->rt2x00dev
->ops
->lib
->flush_queue(queue
, drop
);
1052 * The queue flush has failed...
1054 if (unlikely(!rt2x00queue_empty(queue
)))
1055 rt2x00_warn(queue
->rt2x00dev
, "Queue %d failed to flush\n",
1059 * Restore the queue to the previous status
1062 rt2x00queue_unpause_queue(queue
);
1064 mutex_unlock(&queue
->status_lock
);
1066 EXPORT_SYMBOL_GPL(rt2x00queue_flush_queue
);
1068 void rt2x00queue_start_queues(struct rt2x00_dev
*rt2x00dev
)
1070 struct data_queue
*queue
;
1073 * rt2x00queue_start_queue will call ieee80211_wake_queue
1074 * for each queue after is has been properly initialized.
1076 tx_queue_for_each(rt2x00dev
, queue
)
1077 rt2x00queue_start_queue(queue
);
1079 rt2x00queue_start_queue(rt2x00dev
->rx
);
1081 EXPORT_SYMBOL_GPL(rt2x00queue_start_queues
);
1083 void rt2x00queue_stop_queues(struct rt2x00_dev
*rt2x00dev
)
1085 struct data_queue
*queue
;
1088 * rt2x00queue_stop_queue will call ieee80211_stop_queue
1089 * as well, but we are completely shutting doing everything
1090 * now, so it is much safer to stop all TX queues at once,
1091 * and use rt2x00queue_stop_queue for cleaning up.
1093 ieee80211_stop_queues(rt2x00dev
->hw
);
1095 tx_queue_for_each(rt2x00dev
, queue
)
1096 rt2x00queue_stop_queue(queue
);
1098 rt2x00queue_stop_queue(rt2x00dev
->rx
);
1100 EXPORT_SYMBOL_GPL(rt2x00queue_stop_queues
);
1102 void rt2x00queue_flush_queues(struct rt2x00_dev
*rt2x00dev
, bool drop
)
1104 struct data_queue
*queue
;
1106 tx_queue_for_each(rt2x00dev
, queue
)
1107 rt2x00queue_flush_queue(queue
, drop
);
1109 rt2x00queue_flush_queue(rt2x00dev
->rx
, drop
);
1111 EXPORT_SYMBOL_GPL(rt2x00queue_flush_queues
);
1113 static void rt2x00queue_reset(struct data_queue
*queue
)
1115 unsigned long irqflags
;
1118 spin_lock_irqsave(&queue
->index_lock
, irqflags
);
1123 for (i
= 0; i
< Q_INDEX_MAX
; i
++)
1124 queue
->index
[i
] = 0;
1126 spin_unlock_irqrestore(&queue
->index_lock
, irqflags
);
1129 void rt2x00queue_init_queues(struct rt2x00_dev
*rt2x00dev
)
1131 struct data_queue
*queue
;
1134 queue_for_each(rt2x00dev
, queue
) {
1135 rt2x00queue_reset(queue
);
1137 for (i
= 0; i
< queue
->limit
; i
++)
1138 rt2x00dev
->ops
->lib
->clear_entry(&queue
->entries
[i
]);
1142 static int rt2x00queue_alloc_entries(struct data_queue
*queue
)
1144 struct queue_entry
*entries
;
1145 unsigned int entry_size
;
1148 rt2x00queue_reset(queue
);
1151 * Allocate all queue entries.
1153 entry_size
= sizeof(*entries
) + queue
->priv_size
;
1154 entries
= kcalloc(queue
->limit
, entry_size
, GFP_KERNEL
);
1158 #define QUEUE_ENTRY_PRIV_OFFSET(__base, __index, __limit, __esize, __psize) \
1159 (((char *)(__base)) + ((__limit) * (__esize)) + \
1160 ((__index) * (__psize)))
1162 for (i
= 0; i
< queue
->limit
; i
++) {
1163 entries
[i
].flags
= 0;
1164 entries
[i
].queue
= queue
;
1165 entries
[i
].skb
= NULL
;
1166 entries
[i
].entry_idx
= i
;
1167 entries
[i
].priv_data
=
1168 QUEUE_ENTRY_PRIV_OFFSET(entries
, i
, queue
->limit
,
1169 sizeof(*entries
), queue
->priv_size
);
1172 #undef QUEUE_ENTRY_PRIV_OFFSET
1174 queue
->entries
= entries
;
1179 static void rt2x00queue_free_skbs(struct data_queue
*queue
)
1183 if (!queue
->entries
)
1186 for (i
= 0; i
< queue
->limit
; i
++) {
1187 rt2x00queue_free_skb(&queue
->entries
[i
]);
1191 static int rt2x00queue_alloc_rxskbs(struct data_queue
*queue
)
1194 struct sk_buff
*skb
;
1196 for (i
= 0; i
< queue
->limit
; i
++) {
1197 skb
= rt2x00queue_alloc_rxskb(&queue
->entries
[i
], GFP_KERNEL
);
1200 queue
->entries
[i
].skb
= skb
;
1206 int rt2x00queue_initialize(struct rt2x00_dev
*rt2x00dev
)
1208 struct data_queue
*queue
;
1211 status
= rt2x00queue_alloc_entries(rt2x00dev
->rx
);
1215 tx_queue_for_each(rt2x00dev
, queue
) {
1216 status
= rt2x00queue_alloc_entries(queue
);
1221 status
= rt2x00queue_alloc_entries(rt2x00dev
->bcn
);
1225 if (test_bit(REQUIRE_ATIM_QUEUE
, &rt2x00dev
->cap_flags
)) {
1226 status
= rt2x00queue_alloc_entries(rt2x00dev
->atim
);
1231 status
= rt2x00queue_alloc_rxskbs(rt2x00dev
->rx
);
1238 rt2x00_err(rt2x00dev
, "Queue entries allocation failed\n");
1240 rt2x00queue_uninitialize(rt2x00dev
);
1245 void rt2x00queue_uninitialize(struct rt2x00_dev
*rt2x00dev
)
1247 struct data_queue
*queue
;
1249 rt2x00queue_free_skbs(rt2x00dev
->rx
);
1251 queue_for_each(rt2x00dev
, queue
) {
1252 kfree(queue
->entries
);
1253 queue
->entries
= NULL
;
1257 static void rt2x00queue_init(struct rt2x00_dev
*rt2x00dev
,
1258 struct data_queue
*queue
, enum data_queue_qid qid
)
1260 mutex_init(&queue
->status_lock
);
1261 spin_lock_init(&queue
->tx_lock
);
1262 spin_lock_init(&queue
->index_lock
);
1264 queue
->rt2x00dev
= rt2x00dev
;
1271 rt2x00dev
->ops
->queue_init(queue
);
1273 queue
->threshold
= DIV_ROUND_UP(queue
->limit
, 10);
1276 int rt2x00queue_allocate(struct rt2x00_dev
*rt2x00dev
)
1278 struct data_queue
*queue
;
1279 enum data_queue_qid qid
;
1280 unsigned int req_atim
=
1281 !!test_bit(REQUIRE_ATIM_QUEUE
, &rt2x00dev
->cap_flags
);
1284 * We need the following queues:
1286 * TX: ops->tx_queues
1288 * Atim: 1 (if required)
1290 rt2x00dev
->data_queues
= 2 + rt2x00dev
->ops
->tx_queues
+ req_atim
;
1292 queue
= kcalloc(rt2x00dev
->data_queues
, sizeof(*queue
), GFP_KERNEL
);
1294 rt2x00_err(rt2x00dev
, "Queue allocation failed\n");
1299 * Initialize pointers
1301 rt2x00dev
->rx
= queue
;
1302 rt2x00dev
->tx
= &queue
[1];
1303 rt2x00dev
->bcn
= &queue
[1 + rt2x00dev
->ops
->tx_queues
];
1304 rt2x00dev
->atim
= req_atim
? &queue
[2 + rt2x00dev
->ops
->tx_queues
] : NULL
;
1307 * Initialize queue parameters.
1309 * TX: qid = QID_AC_VO + index
1310 * TX: cw_min: 2^5 = 32.
1311 * TX: cw_max: 2^10 = 1024.
1312 * BCN: qid = QID_BEACON
1313 * ATIM: qid = QID_ATIM
1315 rt2x00queue_init(rt2x00dev
, rt2x00dev
->rx
, QID_RX
);
1318 tx_queue_for_each(rt2x00dev
, queue
)
1319 rt2x00queue_init(rt2x00dev
, queue
, qid
++);
1321 rt2x00queue_init(rt2x00dev
, rt2x00dev
->bcn
, QID_BEACON
);
1323 rt2x00queue_init(rt2x00dev
, rt2x00dev
->atim
, QID_ATIM
);
1328 void rt2x00queue_free(struct rt2x00_dev
*rt2x00dev
)
1330 kfree(rt2x00dev
->rx
);
1331 rt2x00dev
->rx
= NULL
;
1332 rt2x00dev
->tx
= NULL
;
1333 rt2x00dev
->bcn
= NULL
;