2 Copyright (C) 2004 - 2009 Ivo van Doorn <IvDoorn@gmail.com>
3 <http://rt2x00.serialmonkey.com>
5 This program is free software; you can redistribute it and/or modify
6 it under the terms of the GNU General Public License as published by
7 the Free Software Foundation; either version 2 of the License, or
8 (at your option) any later version.
10 This program is distributed in the hope that it will be useful,
11 but WITHOUT ANY WARRANTY; without even the implied warranty of
12 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 GNU General Public License for more details.
15 You should have received a copy of the GNU General Public License
16 along with this program; if not, write to the
17 Free Software Foundation, Inc.,
18 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
23 Abstract: rt73usb device specific routines.
24 Supported chipsets: rt2571W & rt2671.
27 #include <linux/crc-itu-t.h>
28 #include <linux/delay.h>
29 #include <linux/etherdevice.h>
30 #include <linux/init.h>
31 #include <linux/kernel.h>
32 #include <linux/module.h>
33 #include <linux/slab.h>
34 #include <linux/usb.h>
37 #include "rt2x00usb.h"
41 * Allow hardware encryption to be disabled.
43 static bool modparam_nohwcrypt
;
44 module_param_named(nohwcrypt
, modparam_nohwcrypt
, bool, S_IRUGO
);
45 MODULE_PARM_DESC(nohwcrypt
, "Disable hardware encryption.");
49 * All access to the CSR registers will go through the methods
50 * rt2x00usb_register_read and rt2x00usb_register_write.
51 * BBP and RF register require indirect register access,
52 * and use the CSR registers BBPCSR and RFCSR to achieve this.
53 * These indirect registers work with busy bits,
54 * and we will try maximal REGISTER_BUSY_COUNT times to access
55 * the register while taking a REGISTER_BUSY_DELAY us delay
56 * between each attampt. When the busy bit is still set at that time,
57 * the access attempt is considered to have failed,
58 * and we will print an error.
59 * The _lock versions must be used if you already hold the csr_mutex
61 #define WAIT_FOR_BBP(__dev, __reg) \
62 rt2x00usb_regbusy_read((__dev), PHY_CSR3, PHY_CSR3_BUSY, (__reg))
63 #define WAIT_FOR_RF(__dev, __reg) \
64 rt2x00usb_regbusy_read((__dev), PHY_CSR4, PHY_CSR4_BUSY, (__reg))
66 static void rt73usb_bbp_write(struct rt2x00_dev
*rt2x00dev
,
67 const unsigned int word
, const u8 value
)
71 mutex_lock(&rt2x00dev
->csr_mutex
);
74 * Wait until the BBP becomes available, afterwards we
75 * can safely write the new data into the register.
77 if (WAIT_FOR_BBP(rt2x00dev
, ®
)) {
79 rt2x00_set_field32(®
, PHY_CSR3_VALUE
, value
);
80 rt2x00_set_field32(®
, PHY_CSR3_REGNUM
, word
);
81 rt2x00_set_field32(®
, PHY_CSR3_BUSY
, 1);
82 rt2x00_set_field32(®
, PHY_CSR3_READ_CONTROL
, 0);
84 rt2x00usb_register_write_lock(rt2x00dev
, PHY_CSR3
, reg
);
87 mutex_unlock(&rt2x00dev
->csr_mutex
);
90 static void rt73usb_bbp_read(struct rt2x00_dev
*rt2x00dev
,
91 const unsigned int word
, u8
*value
)
95 mutex_lock(&rt2x00dev
->csr_mutex
);
98 * Wait until the BBP becomes available, afterwards we
99 * can safely write the read request into the register.
100 * After the data has been written, we wait until hardware
101 * returns the correct value, if at any time the register
102 * doesn't become available in time, reg will be 0xffffffff
103 * which means we return 0xff to the caller.
105 if (WAIT_FOR_BBP(rt2x00dev
, ®
)) {
107 rt2x00_set_field32(®
, PHY_CSR3_REGNUM
, word
);
108 rt2x00_set_field32(®
, PHY_CSR3_BUSY
, 1);
109 rt2x00_set_field32(®
, PHY_CSR3_READ_CONTROL
, 1);
111 rt2x00usb_register_write_lock(rt2x00dev
, PHY_CSR3
, reg
);
113 WAIT_FOR_BBP(rt2x00dev
, ®
);
116 *value
= rt2x00_get_field32(reg
, PHY_CSR3_VALUE
);
118 mutex_unlock(&rt2x00dev
->csr_mutex
);
121 static void rt73usb_rf_write(struct rt2x00_dev
*rt2x00dev
,
122 const unsigned int word
, const u32 value
)
126 mutex_lock(&rt2x00dev
->csr_mutex
);
129 * Wait until the RF becomes available, afterwards we
130 * can safely write the new data into the register.
132 if (WAIT_FOR_RF(rt2x00dev
, ®
)) {
134 rt2x00_set_field32(®
, PHY_CSR4_VALUE
, value
);
136 * RF5225 and RF2527 contain 21 bits per RF register value,
137 * all others contain 20 bits.
139 rt2x00_set_field32(®
, PHY_CSR4_NUMBER_OF_BITS
,
140 20 + (rt2x00_rf(rt2x00dev
, RF5225
) ||
141 rt2x00_rf(rt2x00dev
, RF2527
)));
142 rt2x00_set_field32(®
, PHY_CSR4_IF_SELECT
, 0);
143 rt2x00_set_field32(®
, PHY_CSR4_BUSY
, 1);
145 rt2x00usb_register_write_lock(rt2x00dev
, PHY_CSR4
, reg
);
146 rt2x00_rf_write(rt2x00dev
, word
, value
);
149 mutex_unlock(&rt2x00dev
->csr_mutex
);
152 #ifdef CONFIG_RT2X00_LIB_DEBUGFS
153 static const struct rt2x00debug rt73usb_rt2x00debug
= {
154 .owner
= THIS_MODULE
,
156 .read
= rt2x00usb_register_read
,
157 .write
= rt2x00usb_register_write
,
158 .flags
= RT2X00DEBUGFS_OFFSET
,
159 .word_base
= CSR_REG_BASE
,
160 .word_size
= sizeof(u32
),
161 .word_count
= CSR_REG_SIZE
/ sizeof(u32
),
164 .read
= rt2x00_eeprom_read
,
165 .write
= rt2x00_eeprom_write
,
166 .word_base
= EEPROM_BASE
,
167 .word_size
= sizeof(u16
),
168 .word_count
= EEPROM_SIZE
/ sizeof(u16
),
171 .read
= rt73usb_bbp_read
,
172 .write
= rt73usb_bbp_write
,
173 .word_base
= BBP_BASE
,
174 .word_size
= sizeof(u8
),
175 .word_count
= BBP_SIZE
/ sizeof(u8
),
178 .read
= rt2x00_rf_read
,
179 .write
= rt73usb_rf_write
,
180 .word_base
= RF_BASE
,
181 .word_size
= sizeof(u32
),
182 .word_count
= RF_SIZE
/ sizeof(u32
),
185 #endif /* CONFIG_RT2X00_LIB_DEBUGFS */
187 static int rt73usb_rfkill_poll(struct rt2x00_dev
*rt2x00dev
)
191 rt2x00usb_register_read(rt2x00dev
, MAC_CSR13
, ®
);
192 return rt2x00_get_field32(reg
, MAC_CSR13_VAL7
);
195 #ifdef CONFIG_RT2X00_LIB_LEDS
196 static void rt73usb_brightness_set(struct led_classdev
*led_cdev
,
197 enum led_brightness brightness
)
199 struct rt2x00_led
*led
=
200 container_of(led_cdev
, struct rt2x00_led
, led_dev
);
201 unsigned int enabled
= brightness
!= LED_OFF
;
202 unsigned int a_mode
=
203 (enabled
&& led
->rt2x00dev
->curr_band
== IEEE80211_BAND_5GHZ
);
204 unsigned int bg_mode
=
205 (enabled
&& led
->rt2x00dev
->curr_band
== IEEE80211_BAND_2GHZ
);
207 if (led
->type
== LED_TYPE_RADIO
) {
208 rt2x00_set_field16(&led
->rt2x00dev
->led_mcu_reg
,
209 MCU_LEDCS_RADIO_STATUS
, enabled
);
211 rt2x00usb_vendor_request_sw(led
->rt2x00dev
, USB_LED_CONTROL
,
212 0, led
->rt2x00dev
->led_mcu_reg
,
214 } else if (led
->type
== LED_TYPE_ASSOC
) {
215 rt2x00_set_field16(&led
->rt2x00dev
->led_mcu_reg
,
216 MCU_LEDCS_LINK_BG_STATUS
, bg_mode
);
217 rt2x00_set_field16(&led
->rt2x00dev
->led_mcu_reg
,
218 MCU_LEDCS_LINK_A_STATUS
, a_mode
);
220 rt2x00usb_vendor_request_sw(led
->rt2x00dev
, USB_LED_CONTROL
,
221 0, led
->rt2x00dev
->led_mcu_reg
,
223 } else if (led
->type
== LED_TYPE_QUALITY
) {
225 * The brightness is divided into 6 levels (0 - 5),
226 * this means we need to convert the brightness
227 * argument into the matching level within that range.
229 rt2x00usb_vendor_request_sw(led
->rt2x00dev
, USB_LED_CONTROL
,
230 brightness
/ (LED_FULL
/ 6),
231 led
->rt2x00dev
->led_mcu_reg
,
236 static int rt73usb_blink_set(struct led_classdev
*led_cdev
,
237 unsigned long *delay_on
,
238 unsigned long *delay_off
)
240 struct rt2x00_led
*led
=
241 container_of(led_cdev
, struct rt2x00_led
, led_dev
);
244 rt2x00usb_register_read(led
->rt2x00dev
, MAC_CSR14
, ®
);
245 rt2x00_set_field32(®
, MAC_CSR14_ON_PERIOD
, *delay_on
);
246 rt2x00_set_field32(®
, MAC_CSR14_OFF_PERIOD
, *delay_off
);
247 rt2x00usb_register_write(led
->rt2x00dev
, MAC_CSR14
, reg
);
252 static void rt73usb_init_led(struct rt2x00_dev
*rt2x00dev
,
253 struct rt2x00_led
*led
,
256 led
->rt2x00dev
= rt2x00dev
;
258 led
->led_dev
.brightness_set
= rt73usb_brightness_set
;
259 led
->led_dev
.blink_set
= rt73usb_blink_set
;
260 led
->flags
= LED_INITIALIZED
;
262 #endif /* CONFIG_RT2X00_LIB_LEDS */
265 * Configuration handlers.
267 static int rt73usb_config_shared_key(struct rt2x00_dev
*rt2x00dev
,
268 struct rt2x00lib_crypto
*crypto
,
269 struct ieee80211_key_conf
*key
)
271 struct hw_key_entry key_entry
;
272 struct rt2x00_field32 field
;
276 if (crypto
->cmd
== SET_KEY
) {
278 * rt2x00lib can't determine the correct free
279 * key_idx for shared keys. We have 1 register
280 * with key valid bits. The goal is simple, read
281 * the register, if that is full we have no slots
283 * Note that each BSS is allowed to have up to 4
284 * shared keys, so put a mask over the allowed
287 mask
= (0xf << crypto
->bssidx
);
289 rt2x00usb_register_read(rt2x00dev
, SEC_CSR0
, ®
);
292 if (reg
&& reg
== mask
)
295 key
->hw_key_idx
+= reg
? ffz(reg
) : 0;
298 * Upload key to hardware
300 memcpy(key_entry
.key
, crypto
->key
,
301 sizeof(key_entry
.key
));
302 memcpy(key_entry
.tx_mic
, crypto
->tx_mic
,
303 sizeof(key_entry
.tx_mic
));
304 memcpy(key_entry
.rx_mic
, crypto
->rx_mic
,
305 sizeof(key_entry
.rx_mic
));
307 reg
= SHARED_KEY_ENTRY(key
->hw_key_idx
);
308 rt2x00usb_register_multiwrite(rt2x00dev
, reg
,
309 &key_entry
, sizeof(key_entry
));
312 * The cipher types are stored over 2 registers.
313 * bssidx 0 and 1 keys are stored in SEC_CSR1 and
314 * bssidx 1 and 2 keys are stored in SEC_CSR5.
315 * Using the correct defines correctly will cause overhead,
316 * so just calculate the correct offset.
318 if (key
->hw_key_idx
< 8) {
319 field
.bit_offset
= (3 * key
->hw_key_idx
);
320 field
.bit_mask
= 0x7 << field
.bit_offset
;
322 rt2x00usb_register_read(rt2x00dev
, SEC_CSR1
, ®
);
323 rt2x00_set_field32(®
, field
, crypto
->cipher
);
324 rt2x00usb_register_write(rt2x00dev
, SEC_CSR1
, reg
);
326 field
.bit_offset
= (3 * (key
->hw_key_idx
- 8));
327 field
.bit_mask
= 0x7 << field
.bit_offset
;
329 rt2x00usb_register_read(rt2x00dev
, SEC_CSR5
, ®
);
330 rt2x00_set_field32(®
, field
, crypto
->cipher
);
331 rt2x00usb_register_write(rt2x00dev
, SEC_CSR5
, reg
);
335 * The driver does not support the IV/EIV generation
336 * in hardware. However it doesn't support the IV/EIV
337 * inside the ieee80211 frame either, but requires it
338 * to be provided separately for the descriptor.
339 * rt2x00lib will cut the IV/EIV data out of all frames
340 * given to us by mac80211, but we must tell mac80211
341 * to generate the IV/EIV data.
343 key
->flags
|= IEEE80211_KEY_FLAG_GENERATE_IV
;
347 * SEC_CSR0 contains only single-bit fields to indicate
348 * a particular key is valid. Because using the FIELD32()
349 * defines directly will cause a lot of overhead we use
350 * a calculation to determine the correct bit directly.
352 mask
= 1 << key
->hw_key_idx
;
354 rt2x00usb_register_read(rt2x00dev
, SEC_CSR0
, ®
);
355 if (crypto
->cmd
== SET_KEY
)
357 else if (crypto
->cmd
== DISABLE_KEY
)
359 rt2x00usb_register_write(rt2x00dev
, SEC_CSR0
, reg
);
364 static int rt73usb_config_pairwise_key(struct rt2x00_dev
*rt2x00dev
,
365 struct rt2x00lib_crypto
*crypto
,
366 struct ieee80211_key_conf
*key
)
368 struct hw_pairwise_ta_entry addr_entry
;
369 struct hw_key_entry key_entry
;
373 if (crypto
->cmd
== SET_KEY
) {
375 * rt2x00lib can't determine the correct free
376 * key_idx for pairwise keys. We have 2 registers
377 * with key valid bits. The goal is simple, read
378 * the first register, if that is full move to
380 * When both registers are full, we drop the key,
381 * otherwise we use the first invalid entry.
383 rt2x00usb_register_read(rt2x00dev
, SEC_CSR2
, ®
);
384 if (reg
&& reg
== ~0) {
385 key
->hw_key_idx
= 32;
386 rt2x00usb_register_read(rt2x00dev
, SEC_CSR3
, ®
);
387 if (reg
&& reg
== ~0)
391 key
->hw_key_idx
+= reg
? ffz(reg
) : 0;
394 * Upload key to hardware
396 memcpy(key_entry
.key
, crypto
->key
,
397 sizeof(key_entry
.key
));
398 memcpy(key_entry
.tx_mic
, crypto
->tx_mic
,
399 sizeof(key_entry
.tx_mic
));
400 memcpy(key_entry
.rx_mic
, crypto
->rx_mic
,
401 sizeof(key_entry
.rx_mic
));
403 reg
= PAIRWISE_KEY_ENTRY(key
->hw_key_idx
);
404 rt2x00usb_register_multiwrite(rt2x00dev
, reg
,
405 &key_entry
, sizeof(key_entry
));
408 * Send the address and cipher type to the hardware register.
410 memset(&addr_entry
, 0, sizeof(addr_entry
));
411 memcpy(&addr_entry
, crypto
->address
, ETH_ALEN
);
412 addr_entry
.cipher
= crypto
->cipher
;
414 reg
= PAIRWISE_TA_ENTRY(key
->hw_key_idx
);
415 rt2x00usb_register_multiwrite(rt2x00dev
, reg
,
416 &addr_entry
, sizeof(addr_entry
));
419 * Enable pairwise lookup table for given BSS idx,
420 * without this received frames will not be decrypted
423 rt2x00usb_register_read(rt2x00dev
, SEC_CSR4
, ®
);
424 reg
|= (1 << crypto
->bssidx
);
425 rt2x00usb_register_write(rt2x00dev
, SEC_CSR4
, reg
);
428 * The driver does not support the IV/EIV generation
429 * in hardware. However it doesn't support the IV/EIV
430 * inside the ieee80211 frame either, but requires it
431 * to be provided separately for the descriptor.
432 * rt2x00lib will cut the IV/EIV data out of all frames
433 * given to us by mac80211, but we must tell mac80211
434 * to generate the IV/EIV data.
436 key
->flags
|= IEEE80211_KEY_FLAG_GENERATE_IV
;
440 * SEC_CSR2 and SEC_CSR3 contain only single-bit fields to indicate
441 * a particular key is valid. Because using the FIELD32()
442 * defines directly will cause a lot of overhead we use
443 * a calculation to determine the correct bit directly.
445 if (key
->hw_key_idx
< 32) {
446 mask
= 1 << key
->hw_key_idx
;
448 rt2x00usb_register_read(rt2x00dev
, SEC_CSR2
, ®
);
449 if (crypto
->cmd
== SET_KEY
)
451 else if (crypto
->cmd
== DISABLE_KEY
)
453 rt2x00usb_register_write(rt2x00dev
, SEC_CSR2
, reg
);
455 mask
= 1 << (key
->hw_key_idx
- 32);
457 rt2x00usb_register_read(rt2x00dev
, SEC_CSR3
, ®
);
458 if (crypto
->cmd
== SET_KEY
)
460 else if (crypto
->cmd
== DISABLE_KEY
)
462 rt2x00usb_register_write(rt2x00dev
, SEC_CSR3
, reg
);
468 static void rt73usb_config_filter(struct rt2x00_dev
*rt2x00dev
,
469 const unsigned int filter_flags
)
474 * Start configuration steps.
475 * Note that the version error will always be dropped
476 * and broadcast frames will always be accepted since
477 * there is no filter for it at this time.
479 rt2x00usb_register_read(rt2x00dev
, TXRX_CSR0
, ®
);
480 rt2x00_set_field32(®
, TXRX_CSR0_DROP_CRC
,
481 !(filter_flags
& FIF_FCSFAIL
));
482 rt2x00_set_field32(®
, TXRX_CSR0_DROP_PHYSICAL
,
483 !(filter_flags
& FIF_PLCPFAIL
));
484 rt2x00_set_field32(®
, TXRX_CSR0_DROP_CONTROL
,
485 !(filter_flags
& (FIF_CONTROL
| FIF_PSPOLL
)));
486 rt2x00_set_field32(®
, TXRX_CSR0_DROP_NOT_TO_ME
,
487 !(filter_flags
& FIF_PROMISC_IN_BSS
));
488 rt2x00_set_field32(®
, TXRX_CSR0_DROP_TO_DS
,
489 !(filter_flags
& FIF_PROMISC_IN_BSS
) &&
490 !rt2x00dev
->intf_ap_count
);
491 rt2x00_set_field32(®
, TXRX_CSR0_DROP_VERSION_ERROR
, 1);
492 rt2x00_set_field32(®
, TXRX_CSR0_DROP_MULTICAST
,
493 !(filter_flags
& FIF_ALLMULTI
));
494 rt2x00_set_field32(®
, TXRX_CSR0_DROP_BROADCAST
, 0);
495 rt2x00_set_field32(®
, TXRX_CSR0_DROP_ACK_CTS
,
496 !(filter_flags
& FIF_CONTROL
));
497 rt2x00usb_register_write(rt2x00dev
, TXRX_CSR0
, reg
);
500 static void rt73usb_config_intf(struct rt2x00_dev
*rt2x00dev
,
501 struct rt2x00_intf
*intf
,
502 struct rt2x00intf_conf
*conf
,
503 const unsigned int flags
)
507 if (flags
& CONFIG_UPDATE_TYPE
) {
509 * Enable synchronisation.
511 rt2x00usb_register_read(rt2x00dev
, TXRX_CSR9
, ®
);
512 rt2x00_set_field32(®
, TXRX_CSR9_TSF_SYNC
, conf
->sync
);
513 rt2x00usb_register_write(rt2x00dev
, TXRX_CSR9
, reg
);
516 if (flags
& CONFIG_UPDATE_MAC
) {
517 reg
= le32_to_cpu(conf
->mac
[1]);
518 rt2x00_set_field32(®
, MAC_CSR3_UNICAST_TO_ME_MASK
, 0xff);
519 conf
->mac
[1] = cpu_to_le32(reg
);
521 rt2x00usb_register_multiwrite(rt2x00dev
, MAC_CSR2
,
522 conf
->mac
, sizeof(conf
->mac
));
525 if (flags
& CONFIG_UPDATE_BSSID
) {
526 reg
= le32_to_cpu(conf
->bssid
[1]);
527 rt2x00_set_field32(®
, MAC_CSR5_BSS_ID_MASK
, 3);
528 conf
->bssid
[1] = cpu_to_le32(reg
);
530 rt2x00usb_register_multiwrite(rt2x00dev
, MAC_CSR4
,
531 conf
->bssid
, sizeof(conf
->bssid
));
535 static void rt73usb_config_erp(struct rt2x00_dev
*rt2x00dev
,
536 struct rt2x00lib_erp
*erp
,
541 rt2x00usb_register_read(rt2x00dev
, TXRX_CSR0
, ®
);
542 rt2x00_set_field32(®
, TXRX_CSR0_RX_ACK_TIMEOUT
, 0x32);
543 rt2x00_set_field32(®
, TXRX_CSR0_TSF_OFFSET
, IEEE80211_HEADER
);
544 rt2x00usb_register_write(rt2x00dev
, TXRX_CSR0
, reg
);
546 if (changed
& BSS_CHANGED_ERP_PREAMBLE
) {
547 rt2x00usb_register_read(rt2x00dev
, TXRX_CSR4
, ®
);
548 rt2x00_set_field32(®
, TXRX_CSR4_AUTORESPOND_ENABLE
, 1);
549 rt2x00_set_field32(®
, TXRX_CSR4_AUTORESPOND_PREAMBLE
,
550 !!erp
->short_preamble
);
551 rt2x00usb_register_write(rt2x00dev
, TXRX_CSR4
, reg
);
554 if (changed
& BSS_CHANGED_BASIC_RATES
)
555 rt2x00usb_register_write(rt2x00dev
, TXRX_CSR5
,
558 if (changed
& BSS_CHANGED_BEACON_INT
) {
559 rt2x00usb_register_read(rt2x00dev
, TXRX_CSR9
, ®
);
560 rt2x00_set_field32(®
, TXRX_CSR9_BEACON_INTERVAL
,
561 erp
->beacon_int
* 16);
562 rt2x00usb_register_write(rt2x00dev
, TXRX_CSR9
, reg
);
565 if (changed
& BSS_CHANGED_ERP_SLOT
) {
566 rt2x00usb_register_read(rt2x00dev
, MAC_CSR9
, ®
);
567 rt2x00_set_field32(®
, MAC_CSR9_SLOT_TIME
, erp
->slot_time
);
568 rt2x00usb_register_write(rt2x00dev
, MAC_CSR9
, reg
);
570 rt2x00usb_register_read(rt2x00dev
, MAC_CSR8
, ®
);
571 rt2x00_set_field32(®
, MAC_CSR8_SIFS
, erp
->sifs
);
572 rt2x00_set_field32(®
, MAC_CSR8_SIFS_AFTER_RX_OFDM
, 3);
573 rt2x00_set_field32(®
, MAC_CSR8_EIFS
, erp
->eifs
);
574 rt2x00usb_register_write(rt2x00dev
, MAC_CSR8
, reg
);
578 static void rt73usb_config_antenna_5x(struct rt2x00_dev
*rt2x00dev
,
579 struct antenna_setup
*ant
)
586 rt73usb_bbp_read(rt2x00dev
, 3, &r3
);
587 rt73usb_bbp_read(rt2x00dev
, 4, &r4
);
588 rt73usb_bbp_read(rt2x00dev
, 77, &r77
);
590 rt2x00_set_field8(&r3
, BBP_R3_SMART_MODE
, 0);
593 * Configure the RX antenna.
596 case ANTENNA_HW_DIVERSITY
:
597 rt2x00_set_field8(&r4
, BBP_R4_RX_ANTENNA_CONTROL
, 2);
598 temp
= !test_bit(CAPABILITY_FRAME_TYPE
, &rt2x00dev
->cap_flags
)
599 && (rt2x00dev
->curr_band
!= IEEE80211_BAND_5GHZ
);
600 rt2x00_set_field8(&r4
, BBP_R4_RX_FRAME_END
, temp
);
603 rt2x00_set_field8(&r4
, BBP_R4_RX_ANTENNA_CONTROL
, 1);
604 rt2x00_set_field8(&r4
, BBP_R4_RX_FRAME_END
, 0);
605 if (rt2x00dev
->curr_band
== IEEE80211_BAND_5GHZ
)
606 rt2x00_set_field8(&r77
, BBP_R77_RX_ANTENNA
, 0);
608 rt2x00_set_field8(&r77
, BBP_R77_RX_ANTENNA
, 3);
612 rt2x00_set_field8(&r4
, BBP_R4_RX_ANTENNA_CONTROL
, 1);
613 rt2x00_set_field8(&r4
, BBP_R4_RX_FRAME_END
, 0);
614 if (rt2x00dev
->curr_band
== IEEE80211_BAND_5GHZ
)
615 rt2x00_set_field8(&r77
, BBP_R77_RX_ANTENNA
, 3);
617 rt2x00_set_field8(&r77
, BBP_R77_RX_ANTENNA
, 0);
621 rt73usb_bbp_write(rt2x00dev
, 77, r77
);
622 rt73usb_bbp_write(rt2x00dev
, 3, r3
);
623 rt73usb_bbp_write(rt2x00dev
, 4, r4
);
626 static void rt73usb_config_antenna_2x(struct rt2x00_dev
*rt2x00dev
,
627 struct antenna_setup
*ant
)
633 rt73usb_bbp_read(rt2x00dev
, 3, &r3
);
634 rt73usb_bbp_read(rt2x00dev
, 4, &r4
);
635 rt73usb_bbp_read(rt2x00dev
, 77, &r77
);
637 rt2x00_set_field8(&r3
, BBP_R3_SMART_MODE
, 0);
638 rt2x00_set_field8(&r4
, BBP_R4_RX_FRAME_END
,
639 !test_bit(CAPABILITY_FRAME_TYPE
, &rt2x00dev
->cap_flags
));
642 * Configure the RX antenna.
645 case ANTENNA_HW_DIVERSITY
:
646 rt2x00_set_field8(&r4
, BBP_R4_RX_ANTENNA_CONTROL
, 2);
649 rt2x00_set_field8(&r77
, BBP_R77_RX_ANTENNA
, 3);
650 rt2x00_set_field8(&r4
, BBP_R4_RX_ANTENNA_CONTROL
, 1);
654 rt2x00_set_field8(&r77
, BBP_R77_RX_ANTENNA
, 0);
655 rt2x00_set_field8(&r4
, BBP_R4_RX_ANTENNA_CONTROL
, 1);
659 rt73usb_bbp_write(rt2x00dev
, 77, r77
);
660 rt73usb_bbp_write(rt2x00dev
, 3, r3
);
661 rt73usb_bbp_write(rt2x00dev
, 4, r4
);
667 * value[0] -> non-LNA
673 static const struct antenna_sel antenna_sel_a
[] = {
674 { 96, { 0x58, 0x78 } },
675 { 104, { 0x38, 0x48 } },
676 { 75, { 0xfe, 0x80 } },
677 { 86, { 0xfe, 0x80 } },
678 { 88, { 0xfe, 0x80 } },
679 { 35, { 0x60, 0x60 } },
680 { 97, { 0x58, 0x58 } },
681 { 98, { 0x58, 0x58 } },
684 static const struct antenna_sel antenna_sel_bg
[] = {
685 { 96, { 0x48, 0x68 } },
686 { 104, { 0x2c, 0x3c } },
687 { 75, { 0xfe, 0x80 } },
688 { 86, { 0xfe, 0x80 } },
689 { 88, { 0xfe, 0x80 } },
690 { 35, { 0x50, 0x50 } },
691 { 97, { 0x48, 0x48 } },
692 { 98, { 0x48, 0x48 } },
695 static void rt73usb_config_ant(struct rt2x00_dev
*rt2x00dev
,
696 struct antenna_setup
*ant
)
698 const struct antenna_sel
*sel
;
704 * We should never come here because rt2x00lib is supposed
705 * to catch this and send us the correct antenna explicitely.
707 BUG_ON(ant
->rx
== ANTENNA_SW_DIVERSITY
||
708 ant
->tx
== ANTENNA_SW_DIVERSITY
);
710 if (rt2x00dev
->curr_band
== IEEE80211_BAND_5GHZ
) {
712 lna
= test_bit(CAPABILITY_EXTERNAL_LNA_A
, &rt2x00dev
->cap_flags
);
714 sel
= antenna_sel_bg
;
715 lna
= test_bit(CAPABILITY_EXTERNAL_LNA_BG
, &rt2x00dev
->cap_flags
);
718 for (i
= 0; i
< ARRAY_SIZE(antenna_sel_a
); i
++)
719 rt73usb_bbp_write(rt2x00dev
, sel
[i
].word
, sel
[i
].value
[lna
]);
721 rt2x00usb_register_read(rt2x00dev
, PHY_CSR0
, ®
);
723 rt2x00_set_field32(®
, PHY_CSR0_PA_PE_BG
,
724 (rt2x00dev
->curr_band
== IEEE80211_BAND_2GHZ
));
725 rt2x00_set_field32(®
, PHY_CSR0_PA_PE_A
,
726 (rt2x00dev
->curr_band
== IEEE80211_BAND_5GHZ
));
728 rt2x00usb_register_write(rt2x00dev
, PHY_CSR0
, reg
);
730 if (rt2x00_rf(rt2x00dev
, RF5226
) || rt2x00_rf(rt2x00dev
, RF5225
))
731 rt73usb_config_antenna_5x(rt2x00dev
, ant
);
732 else if (rt2x00_rf(rt2x00dev
, RF2528
) || rt2x00_rf(rt2x00dev
, RF2527
))
733 rt73usb_config_antenna_2x(rt2x00dev
, ant
);
736 static void rt73usb_config_lna_gain(struct rt2x00_dev
*rt2x00dev
,
737 struct rt2x00lib_conf
*libconf
)
742 if (libconf
->conf
->chandef
.chan
->band
== IEEE80211_BAND_2GHZ
) {
743 if (test_bit(CAPABILITY_EXTERNAL_LNA_BG
, &rt2x00dev
->cap_flags
))
746 rt2x00_eeprom_read(rt2x00dev
, EEPROM_RSSI_OFFSET_BG
, &eeprom
);
747 lna_gain
-= rt2x00_get_field16(eeprom
, EEPROM_RSSI_OFFSET_BG_1
);
749 rt2x00_eeprom_read(rt2x00dev
, EEPROM_RSSI_OFFSET_A
, &eeprom
);
750 lna_gain
-= rt2x00_get_field16(eeprom
, EEPROM_RSSI_OFFSET_A_1
);
753 rt2x00dev
->lna_gain
= lna_gain
;
756 static void rt73usb_config_channel(struct rt2x00_dev
*rt2x00dev
,
757 struct rf_channel
*rf
, const int txpower
)
763 rt2x00_set_field32(&rf
->rf3
, RF3_TXPOWER
, TXPOWER_TO_DEV(txpower
));
764 rt2x00_set_field32(&rf
->rf4
, RF4_FREQ_OFFSET
, rt2x00dev
->freq_offset
);
766 smart
= !(rt2x00_rf(rt2x00dev
, RF5225
) || rt2x00_rf(rt2x00dev
, RF2527
));
768 rt73usb_bbp_read(rt2x00dev
, 3, &r3
);
769 rt2x00_set_field8(&r3
, BBP_R3_SMART_MODE
, smart
);
770 rt73usb_bbp_write(rt2x00dev
, 3, r3
);
773 if (txpower
> MAX_TXPOWER
&& txpower
<= (MAX_TXPOWER
+ r94
))
774 r94
+= txpower
- MAX_TXPOWER
;
775 else if (txpower
< MIN_TXPOWER
&& txpower
>= (MIN_TXPOWER
- r94
))
777 rt73usb_bbp_write(rt2x00dev
, 94, r94
);
779 rt73usb_rf_write(rt2x00dev
, 1, rf
->rf1
);
780 rt73usb_rf_write(rt2x00dev
, 2, rf
->rf2
);
781 rt73usb_rf_write(rt2x00dev
, 3, rf
->rf3
& ~0x00000004);
782 rt73usb_rf_write(rt2x00dev
, 4, rf
->rf4
);
784 rt73usb_rf_write(rt2x00dev
, 1, rf
->rf1
);
785 rt73usb_rf_write(rt2x00dev
, 2, rf
->rf2
);
786 rt73usb_rf_write(rt2x00dev
, 3, rf
->rf3
| 0x00000004);
787 rt73usb_rf_write(rt2x00dev
, 4, rf
->rf4
);
789 rt73usb_rf_write(rt2x00dev
, 1, rf
->rf1
);
790 rt73usb_rf_write(rt2x00dev
, 2, rf
->rf2
);
791 rt73usb_rf_write(rt2x00dev
, 3, rf
->rf3
& ~0x00000004);
792 rt73usb_rf_write(rt2x00dev
, 4, rf
->rf4
);
797 static void rt73usb_config_txpower(struct rt2x00_dev
*rt2x00dev
,
800 struct rf_channel rf
;
802 rt2x00_rf_read(rt2x00dev
, 1, &rf
.rf1
);
803 rt2x00_rf_read(rt2x00dev
, 2, &rf
.rf2
);
804 rt2x00_rf_read(rt2x00dev
, 3, &rf
.rf3
);
805 rt2x00_rf_read(rt2x00dev
, 4, &rf
.rf4
);
807 rt73usb_config_channel(rt2x00dev
, &rf
, txpower
);
810 static void rt73usb_config_retry_limit(struct rt2x00_dev
*rt2x00dev
,
811 struct rt2x00lib_conf
*libconf
)
815 rt2x00usb_register_read(rt2x00dev
, TXRX_CSR4
, ®
);
816 rt2x00_set_field32(®
, TXRX_CSR4_OFDM_TX_RATE_DOWN
, 1);
817 rt2x00_set_field32(®
, TXRX_CSR4_OFDM_TX_RATE_STEP
, 0);
818 rt2x00_set_field32(®
, TXRX_CSR4_OFDM_TX_FALLBACK_CCK
, 0);
819 rt2x00_set_field32(®
, TXRX_CSR4_LONG_RETRY_LIMIT
,
820 libconf
->conf
->long_frame_max_tx_count
);
821 rt2x00_set_field32(®
, TXRX_CSR4_SHORT_RETRY_LIMIT
,
822 libconf
->conf
->short_frame_max_tx_count
);
823 rt2x00usb_register_write(rt2x00dev
, TXRX_CSR4
, reg
);
826 static void rt73usb_config_ps(struct rt2x00_dev
*rt2x00dev
,
827 struct rt2x00lib_conf
*libconf
)
829 enum dev_state state
=
830 (libconf
->conf
->flags
& IEEE80211_CONF_PS
) ?
831 STATE_SLEEP
: STATE_AWAKE
;
834 if (state
== STATE_SLEEP
) {
835 rt2x00usb_register_read(rt2x00dev
, MAC_CSR11
, ®
);
836 rt2x00_set_field32(®
, MAC_CSR11_DELAY_AFTER_TBCN
,
837 rt2x00dev
->beacon_int
- 10);
838 rt2x00_set_field32(®
, MAC_CSR11_TBCN_BEFORE_WAKEUP
,
839 libconf
->conf
->listen_interval
- 1);
840 rt2x00_set_field32(®
, MAC_CSR11_WAKEUP_LATENCY
, 5);
842 /* We must first disable autowake before it can be enabled */
843 rt2x00_set_field32(®
, MAC_CSR11_AUTOWAKE
, 0);
844 rt2x00usb_register_write(rt2x00dev
, MAC_CSR11
, reg
);
846 rt2x00_set_field32(®
, MAC_CSR11_AUTOWAKE
, 1);
847 rt2x00usb_register_write(rt2x00dev
, MAC_CSR11
, reg
);
849 rt2x00usb_vendor_request_sw(rt2x00dev
, USB_DEVICE_MODE
, 0,
850 USB_MODE_SLEEP
, REGISTER_TIMEOUT
);
852 rt2x00usb_register_read(rt2x00dev
, MAC_CSR11
, ®
);
853 rt2x00_set_field32(®
, MAC_CSR11_DELAY_AFTER_TBCN
, 0);
854 rt2x00_set_field32(®
, MAC_CSR11_TBCN_BEFORE_WAKEUP
, 0);
855 rt2x00_set_field32(®
, MAC_CSR11_AUTOWAKE
, 0);
856 rt2x00_set_field32(®
, MAC_CSR11_WAKEUP_LATENCY
, 0);
857 rt2x00usb_register_write(rt2x00dev
, MAC_CSR11
, reg
);
859 rt2x00usb_vendor_request_sw(rt2x00dev
, USB_DEVICE_MODE
, 0,
860 USB_MODE_WAKEUP
, REGISTER_TIMEOUT
);
864 static void rt73usb_config(struct rt2x00_dev
*rt2x00dev
,
865 struct rt2x00lib_conf
*libconf
,
866 const unsigned int flags
)
868 /* Always recalculate LNA gain before changing configuration */
869 rt73usb_config_lna_gain(rt2x00dev
, libconf
);
871 if (flags
& IEEE80211_CONF_CHANGE_CHANNEL
)
872 rt73usb_config_channel(rt2x00dev
, &libconf
->rf
,
873 libconf
->conf
->power_level
);
874 if ((flags
& IEEE80211_CONF_CHANGE_POWER
) &&
875 !(flags
& IEEE80211_CONF_CHANGE_CHANNEL
))
876 rt73usb_config_txpower(rt2x00dev
, libconf
->conf
->power_level
);
877 if (flags
& IEEE80211_CONF_CHANGE_RETRY_LIMITS
)
878 rt73usb_config_retry_limit(rt2x00dev
, libconf
);
879 if (flags
& IEEE80211_CONF_CHANGE_PS
)
880 rt73usb_config_ps(rt2x00dev
, libconf
);
886 static void rt73usb_link_stats(struct rt2x00_dev
*rt2x00dev
,
887 struct link_qual
*qual
)
892 * Update FCS error count from register.
894 rt2x00usb_register_read(rt2x00dev
, STA_CSR0
, ®
);
895 qual
->rx_failed
= rt2x00_get_field32(reg
, STA_CSR0_FCS_ERROR
);
898 * Update False CCA count from register.
900 rt2x00usb_register_read(rt2x00dev
, STA_CSR1
, ®
);
901 qual
->false_cca
= rt2x00_get_field32(reg
, STA_CSR1_FALSE_CCA_ERROR
);
904 static inline void rt73usb_set_vgc(struct rt2x00_dev
*rt2x00dev
,
905 struct link_qual
*qual
, u8 vgc_level
)
907 if (qual
->vgc_level
!= vgc_level
) {
908 rt73usb_bbp_write(rt2x00dev
, 17, vgc_level
);
909 qual
->vgc_level
= vgc_level
;
910 qual
->vgc_level_reg
= vgc_level
;
914 static void rt73usb_reset_tuner(struct rt2x00_dev
*rt2x00dev
,
915 struct link_qual
*qual
)
917 rt73usb_set_vgc(rt2x00dev
, qual
, 0x20);
920 static void rt73usb_link_tuner(struct rt2x00_dev
*rt2x00dev
,
921 struct link_qual
*qual
, const u32 count
)
927 * Determine r17 bounds.
929 if (rt2x00dev
->curr_band
== IEEE80211_BAND_5GHZ
) {
933 if (test_bit(CAPABILITY_EXTERNAL_LNA_A
, &rt2x00dev
->cap_flags
)) {
938 if (qual
->rssi
> -82) {
941 } else if (qual
->rssi
> -84) {
949 if (test_bit(CAPABILITY_EXTERNAL_LNA_BG
, &rt2x00dev
->cap_flags
)) {
956 * If we are not associated, we should go straight to the
957 * dynamic CCA tuning.
959 if (!rt2x00dev
->intf_associated
)
960 goto dynamic_cca_tune
;
963 * Special big-R17 for very short distance
965 if (qual
->rssi
> -35) {
966 rt73usb_set_vgc(rt2x00dev
, qual
, 0x60);
971 * Special big-R17 for short distance
973 if (qual
->rssi
>= -58) {
974 rt73usb_set_vgc(rt2x00dev
, qual
, up_bound
);
979 * Special big-R17 for middle-short distance
981 if (qual
->rssi
>= -66) {
982 rt73usb_set_vgc(rt2x00dev
, qual
, low_bound
+ 0x10);
987 * Special mid-R17 for middle distance
989 if (qual
->rssi
>= -74) {
990 rt73usb_set_vgc(rt2x00dev
, qual
, low_bound
+ 0x08);
995 * Special case: Change up_bound based on the rssi.
996 * Lower up_bound when rssi is weaker then -74 dBm.
998 up_bound
-= 2 * (-74 - qual
->rssi
);
999 if (low_bound
> up_bound
)
1000 up_bound
= low_bound
;
1002 if (qual
->vgc_level
> up_bound
) {
1003 rt73usb_set_vgc(rt2x00dev
, qual
, up_bound
);
1010 * r17 does not yet exceed upper limit, continue and base
1011 * the r17 tuning on the false CCA count.
1013 if ((qual
->false_cca
> 512) && (qual
->vgc_level
< up_bound
))
1014 rt73usb_set_vgc(rt2x00dev
, qual
,
1015 min_t(u8
, qual
->vgc_level
+ 4, up_bound
));
1016 else if ((qual
->false_cca
< 100) && (qual
->vgc_level
> low_bound
))
1017 rt73usb_set_vgc(rt2x00dev
, qual
,
1018 max_t(u8
, qual
->vgc_level
- 4, low_bound
));
1024 static void rt73usb_start_queue(struct data_queue
*queue
)
1026 struct rt2x00_dev
*rt2x00dev
= queue
->rt2x00dev
;
1029 switch (queue
->qid
) {
1031 rt2x00usb_register_read(rt2x00dev
, TXRX_CSR0
, ®
);
1032 rt2x00_set_field32(®
, TXRX_CSR0_DISABLE_RX
, 0);
1033 rt2x00usb_register_write(rt2x00dev
, TXRX_CSR0
, reg
);
1036 rt2x00usb_register_read(rt2x00dev
, TXRX_CSR9
, ®
);
1037 rt2x00_set_field32(®
, TXRX_CSR9_TSF_TICKING
, 1);
1038 rt2x00_set_field32(®
, TXRX_CSR9_TBTT_ENABLE
, 1);
1039 rt2x00_set_field32(®
, TXRX_CSR9_BEACON_GEN
, 1);
1040 rt2x00usb_register_write(rt2x00dev
, TXRX_CSR9
, reg
);
1047 static void rt73usb_stop_queue(struct data_queue
*queue
)
1049 struct rt2x00_dev
*rt2x00dev
= queue
->rt2x00dev
;
1052 switch (queue
->qid
) {
1054 rt2x00usb_register_read(rt2x00dev
, TXRX_CSR0
, ®
);
1055 rt2x00_set_field32(®
, TXRX_CSR0_DISABLE_RX
, 1);
1056 rt2x00usb_register_write(rt2x00dev
, TXRX_CSR0
, reg
);
1059 rt2x00usb_register_read(rt2x00dev
, TXRX_CSR9
, ®
);
1060 rt2x00_set_field32(®
, TXRX_CSR9_TSF_TICKING
, 0);
1061 rt2x00_set_field32(®
, TXRX_CSR9_TBTT_ENABLE
, 0);
1062 rt2x00_set_field32(®
, TXRX_CSR9_BEACON_GEN
, 0);
1063 rt2x00usb_register_write(rt2x00dev
, TXRX_CSR9
, reg
);
1071 * Firmware functions
1073 static char *rt73usb_get_firmware_name(struct rt2x00_dev
*rt2x00dev
)
1075 return FIRMWARE_RT2571
;
1078 static int rt73usb_check_firmware(struct rt2x00_dev
*rt2x00dev
,
1079 const u8
*data
, const size_t len
)
1085 * Only support 2kb firmware files.
1088 return FW_BAD_LENGTH
;
1091 * The last 2 bytes in the firmware array are the crc checksum itself,
1092 * this means that we should never pass those 2 bytes to the crc
1095 fw_crc
= (data
[len
- 2] << 8 | data
[len
- 1]);
1098 * Use the crc itu-t algorithm.
1100 crc
= crc_itu_t(0, data
, len
- 2);
1101 crc
= crc_itu_t_byte(crc
, 0);
1102 crc
= crc_itu_t_byte(crc
, 0);
1104 return (fw_crc
== crc
) ? FW_OK
: FW_BAD_CRC
;
1107 static int rt73usb_load_firmware(struct rt2x00_dev
*rt2x00dev
,
1108 const u8
*data
, const size_t len
)
1115 * Wait for stable hardware.
1117 for (i
= 0; i
< 100; i
++) {
1118 rt2x00usb_register_read(rt2x00dev
, MAC_CSR0
, ®
);
1125 rt2x00_err(rt2x00dev
, "Unstable hardware\n");
1130 * Write firmware to device.
1132 rt2x00usb_register_multiwrite(rt2x00dev
, FIRMWARE_IMAGE_BASE
, data
, len
);
1135 * Send firmware request to device to load firmware,
1136 * we need to specify a long timeout time.
1138 status
= rt2x00usb_vendor_request_sw(rt2x00dev
, USB_DEVICE_MODE
,
1139 0, USB_MODE_FIRMWARE
,
1140 REGISTER_TIMEOUT_FIRMWARE
);
1142 rt2x00_err(rt2x00dev
, "Failed to write Firmware to device\n");
1150 * Initialization functions.
1152 static int rt73usb_init_registers(struct rt2x00_dev
*rt2x00dev
)
1156 rt2x00usb_register_read(rt2x00dev
, TXRX_CSR0
, ®
);
1157 rt2x00_set_field32(®
, TXRX_CSR0_AUTO_TX_SEQ
, 1);
1158 rt2x00_set_field32(®
, TXRX_CSR0_DISABLE_RX
, 0);
1159 rt2x00_set_field32(®
, TXRX_CSR0_TX_WITHOUT_WAITING
, 0);
1160 rt2x00usb_register_write(rt2x00dev
, TXRX_CSR0
, reg
);
1162 rt2x00usb_register_read(rt2x00dev
, TXRX_CSR1
, ®
);
1163 rt2x00_set_field32(®
, TXRX_CSR1_BBP_ID0
, 47); /* CCK Signal */
1164 rt2x00_set_field32(®
, TXRX_CSR1_BBP_ID0_VALID
, 1);
1165 rt2x00_set_field32(®
, TXRX_CSR1_BBP_ID1
, 30); /* Rssi */
1166 rt2x00_set_field32(®
, TXRX_CSR1_BBP_ID1_VALID
, 1);
1167 rt2x00_set_field32(®
, TXRX_CSR1_BBP_ID2
, 42); /* OFDM Rate */
1168 rt2x00_set_field32(®
, TXRX_CSR1_BBP_ID2_VALID
, 1);
1169 rt2x00_set_field32(®
, TXRX_CSR1_BBP_ID3
, 30); /* Rssi */
1170 rt2x00_set_field32(®
, TXRX_CSR1_BBP_ID3_VALID
, 1);
1171 rt2x00usb_register_write(rt2x00dev
, TXRX_CSR1
, reg
);
1174 * CCK TXD BBP registers
1176 rt2x00usb_register_read(rt2x00dev
, TXRX_CSR2
, ®
);
1177 rt2x00_set_field32(®
, TXRX_CSR2_BBP_ID0
, 13);
1178 rt2x00_set_field32(®
, TXRX_CSR2_BBP_ID0_VALID
, 1);
1179 rt2x00_set_field32(®
, TXRX_CSR2_BBP_ID1
, 12);
1180 rt2x00_set_field32(®
, TXRX_CSR2_BBP_ID1_VALID
, 1);
1181 rt2x00_set_field32(®
, TXRX_CSR2_BBP_ID2
, 11);
1182 rt2x00_set_field32(®
, TXRX_CSR2_BBP_ID2_VALID
, 1);
1183 rt2x00_set_field32(®
, TXRX_CSR2_BBP_ID3
, 10);
1184 rt2x00_set_field32(®
, TXRX_CSR2_BBP_ID3_VALID
, 1);
1185 rt2x00usb_register_write(rt2x00dev
, TXRX_CSR2
, reg
);
1188 * OFDM TXD BBP registers
1190 rt2x00usb_register_read(rt2x00dev
, TXRX_CSR3
, ®
);
1191 rt2x00_set_field32(®
, TXRX_CSR3_BBP_ID0
, 7);
1192 rt2x00_set_field32(®
, TXRX_CSR3_BBP_ID0_VALID
, 1);
1193 rt2x00_set_field32(®
, TXRX_CSR3_BBP_ID1
, 6);
1194 rt2x00_set_field32(®
, TXRX_CSR3_BBP_ID1_VALID
, 1);
1195 rt2x00_set_field32(®
, TXRX_CSR3_BBP_ID2
, 5);
1196 rt2x00_set_field32(®
, TXRX_CSR3_BBP_ID2_VALID
, 1);
1197 rt2x00usb_register_write(rt2x00dev
, TXRX_CSR3
, reg
);
1199 rt2x00usb_register_read(rt2x00dev
, TXRX_CSR7
, ®
);
1200 rt2x00_set_field32(®
, TXRX_CSR7_ACK_CTS_6MBS
, 59);
1201 rt2x00_set_field32(®
, TXRX_CSR7_ACK_CTS_9MBS
, 53);
1202 rt2x00_set_field32(®
, TXRX_CSR7_ACK_CTS_12MBS
, 49);
1203 rt2x00_set_field32(®
, TXRX_CSR7_ACK_CTS_18MBS
, 46);
1204 rt2x00usb_register_write(rt2x00dev
, TXRX_CSR7
, reg
);
1206 rt2x00usb_register_read(rt2x00dev
, TXRX_CSR8
, ®
);
1207 rt2x00_set_field32(®
, TXRX_CSR8_ACK_CTS_24MBS
, 44);
1208 rt2x00_set_field32(®
, TXRX_CSR8_ACK_CTS_36MBS
, 42);
1209 rt2x00_set_field32(®
, TXRX_CSR8_ACK_CTS_48MBS
, 42);
1210 rt2x00_set_field32(®
, TXRX_CSR8_ACK_CTS_54MBS
, 42);
1211 rt2x00usb_register_write(rt2x00dev
, TXRX_CSR8
, reg
);
1213 rt2x00usb_register_read(rt2x00dev
, TXRX_CSR9
, ®
);
1214 rt2x00_set_field32(®
, TXRX_CSR9_BEACON_INTERVAL
, 0);
1215 rt2x00_set_field32(®
, TXRX_CSR9_TSF_TICKING
, 0);
1216 rt2x00_set_field32(®
, TXRX_CSR9_TSF_SYNC
, 0);
1217 rt2x00_set_field32(®
, TXRX_CSR9_TBTT_ENABLE
, 0);
1218 rt2x00_set_field32(®
, TXRX_CSR9_BEACON_GEN
, 0);
1219 rt2x00_set_field32(®
, TXRX_CSR9_TIMESTAMP_COMPENSATE
, 0);
1220 rt2x00usb_register_write(rt2x00dev
, TXRX_CSR9
, reg
);
1222 rt2x00usb_register_write(rt2x00dev
, TXRX_CSR15
, 0x0000000f);
1224 rt2x00usb_register_read(rt2x00dev
, MAC_CSR6
, ®
);
1225 rt2x00_set_field32(®
, MAC_CSR6_MAX_FRAME_UNIT
, 0xfff);
1226 rt2x00usb_register_write(rt2x00dev
, MAC_CSR6
, reg
);
1228 rt2x00usb_register_write(rt2x00dev
, MAC_CSR10
, 0x00000718);
1230 if (rt2x00dev
->ops
->lib
->set_device_state(rt2x00dev
, STATE_AWAKE
))
1233 rt2x00usb_register_write(rt2x00dev
, MAC_CSR13
, 0x00007f00);
1236 * Invalidate all Shared Keys (SEC_CSR0),
1237 * and clear the Shared key Cipher algorithms (SEC_CSR1 & SEC_CSR5)
1239 rt2x00usb_register_write(rt2x00dev
, SEC_CSR0
, 0x00000000);
1240 rt2x00usb_register_write(rt2x00dev
, SEC_CSR1
, 0x00000000);
1241 rt2x00usb_register_write(rt2x00dev
, SEC_CSR5
, 0x00000000);
1244 if (rt2x00_rf(rt2x00dev
, RF5225
) || rt2x00_rf(rt2x00dev
, RF2527
))
1245 rt2x00_set_field32(®
, PHY_CSR1_RF_RPI
, 1);
1246 rt2x00usb_register_write(rt2x00dev
, PHY_CSR1
, reg
);
1248 rt2x00usb_register_write(rt2x00dev
, PHY_CSR5
, 0x00040a06);
1249 rt2x00usb_register_write(rt2x00dev
, PHY_CSR6
, 0x00080606);
1250 rt2x00usb_register_write(rt2x00dev
, PHY_CSR7
, 0x00000408);
1252 rt2x00usb_register_read(rt2x00dev
, MAC_CSR9
, ®
);
1253 rt2x00_set_field32(®
, MAC_CSR9_CW_SELECT
, 0);
1254 rt2x00usb_register_write(rt2x00dev
, MAC_CSR9
, reg
);
1258 * For the Beacon base registers we only need to clear
1259 * the first byte since that byte contains the VALID and OWNER
1260 * bits which (when set to 0) will invalidate the entire beacon.
1262 rt2x00usb_register_write(rt2x00dev
, HW_BEACON_BASE0
, 0);
1263 rt2x00usb_register_write(rt2x00dev
, HW_BEACON_BASE1
, 0);
1264 rt2x00usb_register_write(rt2x00dev
, HW_BEACON_BASE2
, 0);
1265 rt2x00usb_register_write(rt2x00dev
, HW_BEACON_BASE3
, 0);
1268 * We must clear the error counters.
1269 * These registers are cleared on read,
1270 * so we may pass a useless variable to store the value.
1272 rt2x00usb_register_read(rt2x00dev
, STA_CSR0
, ®
);
1273 rt2x00usb_register_read(rt2x00dev
, STA_CSR1
, ®
);
1274 rt2x00usb_register_read(rt2x00dev
, STA_CSR2
, ®
);
1277 * Reset MAC and BBP registers.
1279 rt2x00usb_register_read(rt2x00dev
, MAC_CSR1
, ®
);
1280 rt2x00_set_field32(®
, MAC_CSR1_SOFT_RESET
, 1);
1281 rt2x00_set_field32(®
, MAC_CSR1_BBP_RESET
, 1);
1282 rt2x00usb_register_write(rt2x00dev
, MAC_CSR1
, reg
);
1284 rt2x00usb_register_read(rt2x00dev
, MAC_CSR1
, ®
);
1285 rt2x00_set_field32(®
, MAC_CSR1_SOFT_RESET
, 0);
1286 rt2x00_set_field32(®
, MAC_CSR1_BBP_RESET
, 0);
1287 rt2x00usb_register_write(rt2x00dev
, MAC_CSR1
, reg
);
1289 rt2x00usb_register_read(rt2x00dev
, MAC_CSR1
, ®
);
1290 rt2x00_set_field32(®
, MAC_CSR1_HOST_READY
, 1);
1291 rt2x00usb_register_write(rt2x00dev
, MAC_CSR1
, reg
);
1296 static int rt73usb_wait_bbp_ready(struct rt2x00_dev
*rt2x00dev
)
1301 for (i
= 0; i
< REGISTER_BUSY_COUNT
; i
++) {
1302 rt73usb_bbp_read(rt2x00dev
, 0, &value
);
1303 if ((value
!= 0xff) && (value
!= 0x00))
1305 udelay(REGISTER_BUSY_DELAY
);
1308 rt2x00_err(rt2x00dev
, "BBP register access failed, aborting\n");
1312 static int rt73usb_init_bbp(struct rt2x00_dev
*rt2x00dev
)
1319 if (unlikely(rt73usb_wait_bbp_ready(rt2x00dev
)))
1322 rt73usb_bbp_write(rt2x00dev
, 3, 0x80);
1323 rt73usb_bbp_write(rt2x00dev
, 15, 0x30);
1324 rt73usb_bbp_write(rt2x00dev
, 21, 0xc8);
1325 rt73usb_bbp_write(rt2x00dev
, 22, 0x38);
1326 rt73usb_bbp_write(rt2x00dev
, 23, 0x06);
1327 rt73usb_bbp_write(rt2x00dev
, 24, 0xfe);
1328 rt73usb_bbp_write(rt2x00dev
, 25, 0x0a);
1329 rt73usb_bbp_write(rt2x00dev
, 26, 0x0d);
1330 rt73usb_bbp_write(rt2x00dev
, 32, 0x0b);
1331 rt73usb_bbp_write(rt2x00dev
, 34, 0x12);
1332 rt73usb_bbp_write(rt2x00dev
, 37, 0x07);
1333 rt73usb_bbp_write(rt2x00dev
, 39, 0xf8);
1334 rt73usb_bbp_write(rt2x00dev
, 41, 0x60);
1335 rt73usb_bbp_write(rt2x00dev
, 53, 0x10);
1336 rt73usb_bbp_write(rt2x00dev
, 54, 0x18);
1337 rt73usb_bbp_write(rt2x00dev
, 60, 0x10);
1338 rt73usb_bbp_write(rt2x00dev
, 61, 0x04);
1339 rt73usb_bbp_write(rt2x00dev
, 62, 0x04);
1340 rt73usb_bbp_write(rt2x00dev
, 75, 0xfe);
1341 rt73usb_bbp_write(rt2x00dev
, 86, 0xfe);
1342 rt73usb_bbp_write(rt2x00dev
, 88, 0xfe);
1343 rt73usb_bbp_write(rt2x00dev
, 90, 0x0f);
1344 rt73usb_bbp_write(rt2x00dev
, 99, 0x00);
1345 rt73usb_bbp_write(rt2x00dev
, 102, 0x16);
1346 rt73usb_bbp_write(rt2x00dev
, 107, 0x04);
1348 for (i
= 0; i
< EEPROM_BBP_SIZE
; i
++) {
1349 rt2x00_eeprom_read(rt2x00dev
, EEPROM_BBP_START
+ i
, &eeprom
);
1351 if (eeprom
!= 0xffff && eeprom
!= 0x0000) {
1352 reg_id
= rt2x00_get_field16(eeprom
, EEPROM_BBP_REG_ID
);
1353 value
= rt2x00_get_field16(eeprom
, EEPROM_BBP_VALUE
);
1354 rt73usb_bbp_write(rt2x00dev
, reg_id
, value
);
1362 * Device state switch handlers.
1364 static int rt73usb_enable_radio(struct rt2x00_dev
*rt2x00dev
)
1367 * Initialize all registers.
1369 if (unlikely(rt73usb_init_registers(rt2x00dev
) ||
1370 rt73usb_init_bbp(rt2x00dev
)))
1376 static void rt73usb_disable_radio(struct rt2x00_dev
*rt2x00dev
)
1378 rt2x00usb_register_write(rt2x00dev
, MAC_CSR10
, 0x00001818);
1381 * Disable synchronisation.
1383 rt2x00usb_register_write(rt2x00dev
, TXRX_CSR9
, 0);
1385 rt2x00usb_disable_radio(rt2x00dev
);
1388 static int rt73usb_set_state(struct rt2x00_dev
*rt2x00dev
, enum dev_state state
)
1394 put_to_sleep
= (state
!= STATE_AWAKE
);
1396 rt2x00usb_register_read(rt2x00dev
, MAC_CSR12
, ®
);
1397 rt2x00_set_field32(®
, MAC_CSR12_FORCE_WAKEUP
, !put_to_sleep
);
1398 rt2x00_set_field32(®
, MAC_CSR12_PUT_TO_SLEEP
, put_to_sleep
);
1399 rt2x00usb_register_write(rt2x00dev
, MAC_CSR12
, reg
);
1402 * Device is not guaranteed to be in the requested state yet.
1403 * We must wait until the register indicates that the
1404 * device has entered the correct state.
1406 for (i
= 0; i
< REGISTER_BUSY_COUNT
; i
++) {
1407 rt2x00usb_register_read(rt2x00dev
, MAC_CSR12
, ®2
);
1408 state
= rt2x00_get_field32(reg2
, MAC_CSR12_BBP_CURRENT_STATE
);
1409 if (state
== !put_to_sleep
)
1411 rt2x00usb_register_write(rt2x00dev
, MAC_CSR12
, reg
);
1418 static int rt73usb_set_device_state(struct rt2x00_dev
*rt2x00dev
,
1419 enum dev_state state
)
1424 case STATE_RADIO_ON
:
1425 retval
= rt73usb_enable_radio(rt2x00dev
);
1427 case STATE_RADIO_OFF
:
1428 rt73usb_disable_radio(rt2x00dev
);
1430 case STATE_RADIO_IRQ_ON
:
1431 case STATE_RADIO_IRQ_OFF
:
1432 /* No support, but no error either */
1434 case STATE_DEEP_SLEEP
:
1438 retval
= rt73usb_set_state(rt2x00dev
, state
);
1445 if (unlikely(retval
))
1446 rt2x00_err(rt2x00dev
, "Device failed to enter state %d (%d)\n",
1453 * TX descriptor initialization
1455 static void rt73usb_write_tx_desc(struct queue_entry
*entry
,
1456 struct txentry_desc
*txdesc
)
1458 struct skb_frame_desc
*skbdesc
= get_skb_frame_desc(entry
->skb
);
1459 __le32
*txd
= (__le32
*) entry
->skb
->data
;
1463 * Start writing the descriptor words.
1465 rt2x00_desc_read(txd
, 0, &word
);
1466 rt2x00_set_field32(&word
, TXD_W0_BURST
,
1467 test_bit(ENTRY_TXD_BURST
, &txdesc
->flags
));
1468 rt2x00_set_field32(&word
, TXD_W0_VALID
, 1);
1469 rt2x00_set_field32(&word
, TXD_W0_MORE_FRAG
,
1470 test_bit(ENTRY_TXD_MORE_FRAG
, &txdesc
->flags
));
1471 rt2x00_set_field32(&word
, TXD_W0_ACK
,
1472 test_bit(ENTRY_TXD_ACK
, &txdesc
->flags
));
1473 rt2x00_set_field32(&word
, TXD_W0_TIMESTAMP
,
1474 test_bit(ENTRY_TXD_REQ_TIMESTAMP
, &txdesc
->flags
));
1475 rt2x00_set_field32(&word
, TXD_W0_OFDM
,
1476 (txdesc
->rate_mode
== RATE_MODE_OFDM
));
1477 rt2x00_set_field32(&word
, TXD_W0_IFS
, txdesc
->u
.plcp
.ifs
);
1478 rt2x00_set_field32(&word
, TXD_W0_RETRY_MODE
,
1479 test_bit(ENTRY_TXD_RETRY_MODE
, &txdesc
->flags
));
1480 rt2x00_set_field32(&word
, TXD_W0_TKIP_MIC
,
1481 test_bit(ENTRY_TXD_ENCRYPT_MMIC
, &txdesc
->flags
));
1482 rt2x00_set_field32(&word
, TXD_W0_KEY_TABLE
,
1483 test_bit(ENTRY_TXD_ENCRYPT_PAIRWISE
, &txdesc
->flags
));
1484 rt2x00_set_field32(&word
, TXD_W0_KEY_INDEX
, txdesc
->key_idx
);
1485 rt2x00_set_field32(&word
, TXD_W0_DATABYTE_COUNT
, txdesc
->length
);
1486 rt2x00_set_field32(&word
, TXD_W0_BURST2
,
1487 test_bit(ENTRY_TXD_BURST
, &txdesc
->flags
));
1488 rt2x00_set_field32(&word
, TXD_W0_CIPHER_ALG
, txdesc
->cipher
);
1489 rt2x00_desc_write(txd
, 0, word
);
1491 rt2x00_desc_read(txd
, 1, &word
);
1492 rt2x00_set_field32(&word
, TXD_W1_HOST_Q_ID
, entry
->queue
->qid
);
1493 rt2x00_set_field32(&word
, TXD_W1_AIFSN
, entry
->queue
->aifs
);
1494 rt2x00_set_field32(&word
, TXD_W1_CWMIN
, entry
->queue
->cw_min
);
1495 rt2x00_set_field32(&word
, TXD_W1_CWMAX
, entry
->queue
->cw_max
);
1496 rt2x00_set_field32(&word
, TXD_W1_IV_OFFSET
, txdesc
->iv_offset
);
1497 rt2x00_set_field32(&word
, TXD_W1_HW_SEQUENCE
,
1498 test_bit(ENTRY_TXD_GENERATE_SEQ
, &txdesc
->flags
));
1499 rt2x00_desc_write(txd
, 1, word
);
1501 rt2x00_desc_read(txd
, 2, &word
);
1502 rt2x00_set_field32(&word
, TXD_W2_PLCP_SIGNAL
, txdesc
->u
.plcp
.signal
);
1503 rt2x00_set_field32(&word
, TXD_W2_PLCP_SERVICE
, txdesc
->u
.plcp
.service
);
1504 rt2x00_set_field32(&word
, TXD_W2_PLCP_LENGTH_LOW
,
1505 txdesc
->u
.plcp
.length_low
);
1506 rt2x00_set_field32(&word
, TXD_W2_PLCP_LENGTH_HIGH
,
1507 txdesc
->u
.plcp
.length_high
);
1508 rt2x00_desc_write(txd
, 2, word
);
1510 if (test_bit(ENTRY_TXD_ENCRYPT
, &txdesc
->flags
)) {
1511 _rt2x00_desc_write(txd
, 3, skbdesc
->iv
[0]);
1512 _rt2x00_desc_write(txd
, 4, skbdesc
->iv
[1]);
1515 rt2x00_desc_read(txd
, 5, &word
);
1516 rt2x00_set_field32(&word
, TXD_W5_TX_POWER
,
1517 TXPOWER_TO_DEV(entry
->queue
->rt2x00dev
->tx_power
));
1518 rt2x00_set_field32(&word
, TXD_W5_WAITING_DMA_DONE_INT
, 1);
1519 rt2x00_desc_write(txd
, 5, word
);
1522 * Register descriptor details in skb frame descriptor.
1524 skbdesc
->flags
|= SKBDESC_DESC_IN_SKB
;
1525 skbdesc
->desc
= txd
;
1526 skbdesc
->desc_len
= TXD_DESC_SIZE
;
1530 * TX data initialization
1532 static void rt73usb_write_beacon(struct queue_entry
*entry
,
1533 struct txentry_desc
*txdesc
)
1535 struct rt2x00_dev
*rt2x00dev
= entry
->queue
->rt2x00dev
;
1536 unsigned int beacon_base
;
1537 unsigned int padding_len
;
1541 * Disable beaconing while we are reloading the beacon data,
1542 * otherwise we might be sending out invalid data.
1544 rt2x00usb_register_read(rt2x00dev
, TXRX_CSR9
, ®
);
1546 rt2x00_set_field32(®
, TXRX_CSR9_BEACON_GEN
, 0);
1547 rt2x00usb_register_write(rt2x00dev
, TXRX_CSR9
, reg
);
1550 * Add space for the descriptor in front of the skb.
1552 skb_push(entry
->skb
, TXD_DESC_SIZE
);
1553 memset(entry
->skb
->data
, 0, TXD_DESC_SIZE
);
1556 * Write the TX descriptor for the beacon.
1558 rt73usb_write_tx_desc(entry
, txdesc
);
1561 * Dump beacon to userspace through debugfs.
1563 rt2x00debug_dump_frame(rt2x00dev
, DUMP_FRAME_BEACON
, entry
->skb
);
1566 * Write entire beacon with descriptor and padding to register.
1568 padding_len
= roundup(entry
->skb
->len
, 4) - entry
->skb
->len
;
1569 if (padding_len
&& skb_pad(entry
->skb
, padding_len
)) {
1570 rt2x00_err(rt2x00dev
, "Failure padding beacon, aborting\n");
1571 /* skb freed by skb_pad() on failure */
1573 rt2x00usb_register_write(rt2x00dev
, TXRX_CSR9
, orig_reg
);
1577 beacon_base
= HW_BEACON_OFFSET(entry
->entry_idx
);
1578 rt2x00usb_register_multiwrite(rt2x00dev
, beacon_base
, entry
->skb
->data
,
1579 entry
->skb
->len
+ padding_len
);
1582 * Enable beaconing again.
1584 * For Wi-Fi faily generated beacons between participating stations.
1585 * Set TBTT phase adaptive adjustment step to 8us (default 16us)
1587 rt2x00usb_register_write(rt2x00dev
, TXRX_CSR10
, 0x00001008);
1589 rt2x00_set_field32(®
, TXRX_CSR9_BEACON_GEN
, 1);
1590 rt2x00usb_register_write(rt2x00dev
, TXRX_CSR9
, reg
);
1593 * Clean up the beacon skb.
1595 dev_kfree_skb(entry
->skb
);
1599 static void rt73usb_clear_beacon(struct queue_entry
*entry
)
1601 struct rt2x00_dev
*rt2x00dev
= entry
->queue
->rt2x00dev
;
1602 unsigned int beacon_base
;
1606 * Disable beaconing while we are reloading the beacon data,
1607 * otherwise we might be sending out invalid data.
1609 rt2x00usb_register_read(rt2x00dev
, TXRX_CSR9
, ®
);
1610 rt2x00_set_field32(®
, TXRX_CSR9_BEACON_GEN
, 0);
1611 rt2x00usb_register_write(rt2x00dev
, TXRX_CSR9
, reg
);
1616 beacon_base
= HW_BEACON_OFFSET(entry
->entry_idx
);
1617 rt2x00usb_register_write(rt2x00dev
, beacon_base
, 0);
1620 * Enable beaconing again.
1622 rt2x00_set_field32(®
, TXRX_CSR9_BEACON_GEN
, 1);
1623 rt2x00usb_register_write(rt2x00dev
, TXRX_CSR9
, reg
);
1626 static int rt73usb_get_tx_data_len(struct queue_entry
*entry
)
1631 * The length _must_ be a multiple of 4,
1632 * but it must _not_ be a multiple of the USB packet size.
1634 length
= roundup(entry
->skb
->len
, 4);
1635 length
+= (4 * !(length
% entry
->queue
->usb_maxpacket
));
1641 * RX control handlers
1643 static int rt73usb_agc_to_rssi(struct rt2x00_dev
*rt2x00dev
, int rxd_w1
)
1645 u8 offset
= rt2x00dev
->lna_gain
;
1648 lna
= rt2x00_get_field32(rxd_w1
, RXD_W1_RSSI_LNA
);
1663 if (rt2x00dev
->curr_band
== IEEE80211_BAND_5GHZ
) {
1664 if (test_bit(CAPABILITY_EXTERNAL_LNA_A
, &rt2x00dev
->cap_flags
)) {
1665 if (lna
== 3 || lna
== 2)
1675 return rt2x00_get_field32(rxd_w1
, RXD_W1_RSSI_AGC
) * 2 - offset
;
1678 static void rt73usb_fill_rxdone(struct queue_entry
*entry
,
1679 struct rxdone_entry_desc
*rxdesc
)
1681 struct rt2x00_dev
*rt2x00dev
= entry
->queue
->rt2x00dev
;
1682 struct skb_frame_desc
*skbdesc
= get_skb_frame_desc(entry
->skb
);
1683 __le32
*rxd
= (__le32
*)entry
->skb
->data
;
1688 * Copy descriptor to the skbdesc->desc buffer, making it safe from moving of
1689 * frame data in rt2x00usb.
1691 memcpy(skbdesc
->desc
, rxd
, skbdesc
->desc_len
);
1692 rxd
= (__le32
*)skbdesc
->desc
;
1695 * It is now safe to read the descriptor on all architectures.
1697 rt2x00_desc_read(rxd
, 0, &word0
);
1698 rt2x00_desc_read(rxd
, 1, &word1
);
1700 if (rt2x00_get_field32(word0
, RXD_W0_CRC_ERROR
))
1701 rxdesc
->flags
|= RX_FLAG_FAILED_FCS_CRC
;
1703 rxdesc
->cipher
= rt2x00_get_field32(word0
, RXD_W0_CIPHER_ALG
);
1704 rxdesc
->cipher_status
= rt2x00_get_field32(word0
, RXD_W0_CIPHER_ERROR
);
1706 if (rxdesc
->cipher
!= CIPHER_NONE
) {
1707 _rt2x00_desc_read(rxd
, 2, &rxdesc
->iv
[0]);
1708 _rt2x00_desc_read(rxd
, 3, &rxdesc
->iv
[1]);
1709 rxdesc
->dev_flags
|= RXDONE_CRYPTO_IV
;
1711 _rt2x00_desc_read(rxd
, 4, &rxdesc
->icv
);
1712 rxdesc
->dev_flags
|= RXDONE_CRYPTO_ICV
;
1715 * Hardware has stripped IV/EIV data from 802.11 frame during
1716 * decryption. It has provided the data separately but rt2x00lib
1717 * should decide if it should be reinserted.
1719 rxdesc
->flags
|= RX_FLAG_IV_STRIPPED
;
1722 * The hardware has already checked the Michael Mic and has
1723 * stripped it from the frame. Signal this to mac80211.
1725 rxdesc
->flags
|= RX_FLAG_MMIC_STRIPPED
;
1727 if (rxdesc
->cipher_status
== RX_CRYPTO_SUCCESS
)
1728 rxdesc
->flags
|= RX_FLAG_DECRYPTED
;
1729 else if (rxdesc
->cipher_status
== RX_CRYPTO_FAIL_MIC
)
1730 rxdesc
->flags
|= RX_FLAG_MMIC_ERROR
;
1734 * Obtain the status about this packet.
1735 * When frame was received with an OFDM bitrate,
1736 * the signal is the PLCP value. If it was received with
1737 * a CCK bitrate the signal is the rate in 100kbit/s.
1739 rxdesc
->signal
= rt2x00_get_field32(word1
, RXD_W1_SIGNAL
);
1740 rxdesc
->rssi
= rt73usb_agc_to_rssi(rt2x00dev
, word1
);
1741 rxdesc
->size
= rt2x00_get_field32(word0
, RXD_W0_DATABYTE_COUNT
);
1743 if (rt2x00_get_field32(word0
, RXD_W0_OFDM
))
1744 rxdesc
->dev_flags
|= RXDONE_SIGNAL_PLCP
;
1746 rxdesc
->dev_flags
|= RXDONE_SIGNAL_BITRATE
;
1747 if (rt2x00_get_field32(word0
, RXD_W0_MY_BSS
))
1748 rxdesc
->dev_flags
|= RXDONE_MY_BSS
;
1751 * Set skb pointers, and update frame information.
1753 skb_pull(entry
->skb
, entry
->queue
->desc_size
);
1754 skb_trim(entry
->skb
, rxdesc
->size
);
1758 * Device probe functions.
1760 static int rt73usb_validate_eeprom(struct rt2x00_dev
*rt2x00dev
)
1766 rt2x00usb_eeprom_read(rt2x00dev
, rt2x00dev
->eeprom
, EEPROM_SIZE
);
1769 * Start validation of the data that has been read.
1771 mac
= rt2x00_eeprom_addr(rt2x00dev
, EEPROM_MAC_ADDR_0
);
1772 if (!is_valid_ether_addr(mac
)) {
1773 eth_random_addr(mac
);
1774 rt2x00_eeprom_dbg(rt2x00dev
, "MAC: %pM\n", mac
);
1777 rt2x00_eeprom_read(rt2x00dev
, EEPROM_ANTENNA
, &word
);
1778 if (word
== 0xffff) {
1779 rt2x00_set_field16(&word
, EEPROM_ANTENNA_NUM
, 2);
1780 rt2x00_set_field16(&word
, EEPROM_ANTENNA_TX_DEFAULT
,
1782 rt2x00_set_field16(&word
, EEPROM_ANTENNA_RX_DEFAULT
,
1784 rt2x00_set_field16(&word
, EEPROM_ANTENNA_FRAME_TYPE
, 0);
1785 rt2x00_set_field16(&word
, EEPROM_ANTENNA_DYN_TXAGC
, 0);
1786 rt2x00_set_field16(&word
, EEPROM_ANTENNA_HARDWARE_RADIO
, 0);
1787 rt2x00_set_field16(&word
, EEPROM_ANTENNA_RF_TYPE
, RF5226
);
1788 rt2x00_eeprom_write(rt2x00dev
, EEPROM_ANTENNA
, word
);
1789 rt2x00_eeprom_dbg(rt2x00dev
, "Antenna: 0x%04x\n", word
);
1792 rt2x00_eeprom_read(rt2x00dev
, EEPROM_NIC
, &word
);
1793 if (word
== 0xffff) {
1794 rt2x00_set_field16(&word
, EEPROM_NIC_EXTERNAL_LNA
, 0);
1795 rt2x00_eeprom_write(rt2x00dev
, EEPROM_NIC
, word
);
1796 rt2x00_eeprom_dbg(rt2x00dev
, "NIC: 0x%04x\n", word
);
1799 rt2x00_eeprom_read(rt2x00dev
, EEPROM_LED
, &word
);
1800 if (word
== 0xffff) {
1801 rt2x00_set_field16(&word
, EEPROM_LED_POLARITY_RDY_G
, 0);
1802 rt2x00_set_field16(&word
, EEPROM_LED_POLARITY_RDY_A
, 0);
1803 rt2x00_set_field16(&word
, EEPROM_LED_POLARITY_ACT
, 0);
1804 rt2x00_set_field16(&word
, EEPROM_LED_POLARITY_GPIO_0
, 0);
1805 rt2x00_set_field16(&word
, EEPROM_LED_POLARITY_GPIO_1
, 0);
1806 rt2x00_set_field16(&word
, EEPROM_LED_POLARITY_GPIO_2
, 0);
1807 rt2x00_set_field16(&word
, EEPROM_LED_POLARITY_GPIO_3
, 0);
1808 rt2x00_set_field16(&word
, EEPROM_LED_POLARITY_GPIO_4
, 0);
1809 rt2x00_set_field16(&word
, EEPROM_LED_LED_MODE
,
1811 rt2x00_eeprom_write(rt2x00dev
, EEPROM_LED
, word
);
1812 rt2x00_eeprom_dbg(rt2x00dev
, "Led: 0x%04x\n", word
);
1815 rt2x00_eeprom_read(rt2x00dev
, EEPROM_FREQ
, &word
);
1816 if (word
== 0xffff) {
1817 rt2x00_set_field16(&word
, EEPROM_FREQ_OFFSET
, 0);
1818 rt2x00_set_field16(&word
, EEPROM_FREQ_SEQ
, 0);
1819 rt2x00_eeprom_write(rt2x00dev
, EEPROM_FREQ
, word
);
1820 rt2x00_eeprom_dbg(rt2x00dev
, "Freq: 0x%04x\n", word
);
1823 rt2x00_eeprom_read(rt2x00dev
, EEPROM_RSSI_OFFSET_BG
, &word
);
1824 if (word
== 0xffff) {
1825 rt2x00_set_field16(&word
, EEPROM_RSSI_OFFSET_BG_1
, 0);
1826 rt2x00_set_field16(&word
, EEPROM_RSSI_OFFSET_BG_2
, 0);
1827 rt2x00_eeprom_write(rt2x00dev
, EEPROM_RSSI_OFFSET_BG
, word
);
1828 rt2x00_eeprom_dbg(rt2x00dev
, "RSSI OFFSET BG: 0x%04x\n", word
);
1830 value
= rt2x00_get_field16(word
, EEPROM_RSSI_OFFSET_BG_1
);
1831 if (value
< -10 || value
> 10)
1832 rt2x00_set_field16(&word
, EEPROM_RSSI_OFFSET_BG_1
, 0);
1833 value
= rt2x00_get_field16(word
, EEPROM_RSSI_OFFSET_BG_2
);
1834 if (value
< -10 || value
> 10)
1835 rt2x00_set_field16(&word
, EEPROM_RSSI_OFFSET_BG_2
, 0);
1836 rt2x00_eeprom_write(rt2x00dev
, EEPROM_RSSI_OFFSET_BG
, word
);
1839 rt2x00_eeprom_read(rt2x00dev
, EEPROM_RSSI_OFFSET_A
, &word
);
1840 if (word
== 0xffff) {
1841 rt2x00_set_field16(&word
, EEPROM_RSSI_OFFSET_A_1
, 0);
1842 rt2x00_set_field16(&word
, EEPROM_RSSI_OFFSET_A_2
, 0);
1843 rt2x00_eeprom_write(rt2x00dev
, EEPROM_RSSI_OFFSET_A
, word
);
1844 rt2x00_eeprom_dbg(rt2x00dev
, "RSSI OFFSET A: 0x%04x\n", word
);
1846 value
= rt2x00_get_field16(word
, EEPROM_RSSI_OFFSET_A_1
);
1847 if (value
< -10 || value
> 10)
1848 rt2x00_set_field16(&word
, EEPROM_RSSI_OFFSET_A_1
, 0);
1849 value
= rt2x00_get_field16(word
, EEPROM_RSSI_OFFSET_A_2
);
1850 if (value
< -10 || value
> 10)
1851 rt2x00_set_field16(&word
, EEPROM_RSSI_OFFSET_A_2
, 0);
1852 rt2x00_eeprom_write(rt2x00dev
, EEPROM_RSSI_OFFSET_A
, word
);
1858 static int rt73usb_init_eeprom(struct rt2x00_dev
*rt2x00dev
)
1865 * Read EEPROM word for configuration.
1867 rt2x00_eeprom_read(rt2x00dev
, EEPROM_ANTENNA
, &eeprom
);
1870 * Identify RF chipset.
1872 value
= rt2x00_get_field16(eeprom
, EEPROM_ANTENNA_RF_TYPE
);
1873 rt2x00usb_register_read(rt2x00dev
, MAC_CSR0
, ®
);
1874 rt2x00_set_chip(rt2x00dev
, rt2x00_get_field32(reg
, MAC_CSR0_CHIPSET
),
1875 value
, rt2x00_get_field32(reg
, MAC_CSR0_REVISION
));
1877 if (!rt2x00_rt(rt2x00dev
, RT2573
) || (rt2x00_rev(rt2x00dev
) == 0)) {
1878 rt2x00_err(rt2x00dev
, "Invalid RT chipset detected\n");
1882 if (!rt2x00_rf(rt2x00dev
, RF5226
) &&
1883 !rt2x00_rf(rt2x00dev
, RF2528
) &&
1884 !rt2x00_rf(rt2x00dev
, RF5225
) &&
1885 !rt2x00_rf(rt2x00dev
, RF2527
)) {
1886 rt2x00_err(rt2x00dev
, "Invalid RF chipset detected\n");
1891 * Identify default antenna configuration.
1893 rt2x00dev
->default_ant
.tx
=
1894 rt2x00_get_field16(eeprom
, EEPROM_ANTENNA_TX_DEFAULT
);
1895 rt2x00dev
->default_ant
.rx
=
1896 rt2x00_get_field16(eeprom
, EEPROM_ANTENNA_RX_DEFAULT
);
1899 * Read the Frame type.
1901 if (rt2x00_get_field16(eeprom
, EEPROM_ANTENNA_FRAME_TYPE
))
1902 __set_bit(CAPABILITY_FRAME_TYPE
, &rt2x00dev
->cap_flags
);
1905 * Detect if this device has an hardware controlled radio.
1907 if (rt2x00_get_field16(eeprom
, EEPROM_ANTENNA_HARDWARE_RADIO
))
1908 __set_bit(CAPABILITY_HW_BUTTON
, &rt2x00dev
->cap_flags
);
1911 * Read frequency offset.
1913 rt2x00_eeprom_read(rt2x00dev
, EEPROM_FREQ
, &eeprom
);
1914 rt2x00dev
->freq_offset
= rt2x00_get_field16(eeprom
, EEPROM_FREQ_OFFSET
);
1917 * Read external LNA informations.
1919 rt2x00_eeprom_read(rt2x00dev
, EEPROM_NIC
, &eeprom
);
1921 if (rt2x00_get_field16(eeprom
, EEPROM_NIC_EXTERNAL_LNA
)) {
1922 __set_bit(CAPABILITY_EXTERNAL_LNA_A
, &rt2x00dev
->cap_flags
);
1923 __set_bit(CAPABILITY_EXTERNAL_LNA_BG
, &rt2x00dev
->cap_flags
);
1927 * Store led settings, for correct led behaviour.
1929 #ifdef CONFIG_RT2X00_LIB_LEDS
1930 rt2x00_eeprom_read(rt2x00dev
, EEPROM_LED
, &eeprom
);
1932 rt73usb_init_led(rt2x00dev
, &rt2x00dev
->led_radio
, LED_TYPE_RADIO
);
1933 rt73usb_init_led(rt2x00dev
, &rt2x00dev
->led_assoc
, LED_TYPE_ASSOC
);
1934 if (value
== LED_MODE_SIGNAL_STRENGTH
)
1935 rt73usb_init_led(rt2x00dev
, &rt2x00dev
->led_qual
,
1938 rt2x00_set_field16(&rt2x00dev
->led_mcu_reg
, MCU_LEDCS_LED_MODE
, value
);
1939 rt2x00_set_field16(&rt2x00dev
->led_mcu_reg
, MCU_LEDCS_POLARITY_GPIO_0
,
1940 rt2x00_get_field16(eeprom
,
1941 EEPROM_LED_POLARITY_GPIO_0
));
1942 rt2x00_set_field16(&rt2x00dev
->led_mcu_reg
, MCU_LEDCS_POLARITY_GPIO_1
,
1943 rt2x00_get_field16(eeprom
,
1944 EEPROM_LED_POLARITY_GPIO_1
));
1945 rt2x00_set_field16(&rt2x00dev
->led_mcu_reg
, MCU_LEDCS_POLARITY_GPIO_2
,
1946 rt2x00_get_field16(eeprom
,
1947 EEPROM_LED_POLARITY_GPIO_2
));
1948 rt2x00_set_field16(&rt2x00dev
->led_mcu_reg
, MCU_LEDCS_POLARITY_GPIO_3
,
1949 rt2x00_get_field16(eeprom
,
1950 EEPROM_LED_POLARITY_GPIO_3
));
1951 rt2x00_set_field16(&rt2x00dev
->led_mcu_reg
, MCU_LEDCS_POLARITY_GPIO_4
,
1952 rt2x00_get_field16(eeprom
,
1953 EEPROM_LED_POLARITY_GPIO_4
));
1954 rt2x00_set_field16(&rt2x00dev
->led_mcu_reg
, MCU_LEDCS_POLARITY_ACT
,
1955 rt2x00_get_field16(eeprom
, EEPROM_LED_POLARITY_ACT
));
1956 rt2x00_set_field16(&rt2x00dev
->led_mcu_reg
, MCU_LEDCS_POLARITY_READY_BG
,
1957 rt2x00_get_field16(eeprom
,
1958 EEPROM_LED_POLARITY_RDY_G
));
1959 rt2x00_set_field16(&rt2x00dev
->led_mcu_reg
, MCU_LEDCS_POLARITY_READY_A
,
1960 rt2x00_get_field16(eeprom
,
1961 EEPROM_LED_POLARITY_RDY_A
));
1962 #endif /* CONFIG_RT2X00_LIB_LEDS */
1968 * RF value list for RF2528
1971 static const struct rf_channel rf_vals_bg_2528
[] = {
1972 { 1, 0x00002c0c, 0x00000786, 0x00068255, 0x000fea0b },
1973 { 2, 0x00002c0c, 0x00000786, 0x00068255, 0x000fea1f },
1974 { 3, 0x00002c0c, 0x0000078a, 0x00068255, 0x000fea0b },
1975 { 4, 0x00002c0c, 0x0000078a, 0x00068255, 0x000fea1f },
1976 { 5, 0x00002c0c, 0x0000078e, 0x00068255, 0x000fea0b },
1977 { 6, 0x00002c0c, 0x0000078e, 0x00068255, 0x000fea1f },
1978 { 7, 0x00002c0c, 0x00000792, 0x00068255, 0x000fea0b },
1979 { 8, 0x00002c0c, 0x00000792, 0x00068255, 0x000fea1f },
1980 { 9, 0x00002c0c, 0x00000796, 0x00068255, 0x000fea0b },
1981 { 10, 0x00002c0c, 0x00000796, 0x00068255, 0x000fea1f },
1982 { 11, 0x00002c0c, 0x0000079a, 0x00068255, 0x000fea0b },
1983 { 12, 0x00002c0c, 0x0000079a, 0x00068255, 0x000fea1f },
1984 { 13, 0x00002c0c, 0x0000079e, 0x00068255, 0x000fea0b },
1985 { 14, 0x00002c0c, 0x000007a2, 0x00068255, 0x000fea13 },
1989 * RF value list for RF5226
1990 * Supports: 2.4 GHz & 5.2 GHz
1992 static const struct rf_channel rf_vals_5226
[] = {
1993 { 1, 0x00002c0c, 0x00000786, 0x00068255, 0x000fea0b },
1994 { 2, 0x00002c0c, 0x00000786, 0x00068255, 0x000fea1f },
1995 { 3, 0x00002c0c, 0x0000078a, 0x00068255, 0x000fea0b },
1996 { 4, 0x00002c0c, 0x0000078a, 0x00068255, 0x000fea1f },
1997 { 5, 0x00002c0c, 0x0000078e, 0x00068255, 0x000fea0b },
1998 { 6, 0x00002c0c, 0x0000078e, 0x00068255, 0x000fea1f },
1999 { 7, 0x00002c0c, 0x00000792, 0x00068255, 0x000fea0b },
2000 { 8, 0x00002c0c, 0x00000792, 0x00068255, 0x000fea1f },
2001 { 9, 0x00002c0c, 0x00000796, 0x00068255, 0x000fea0b },
2002 { 10, 0x00002c0c, 0x00000796, 0x00068255, 0x000fea1f },
2003 { 11, 0x00002c0c, 0x0000079a, 0x00068255, 0x000fea0b },
2004 { 12, 0x00002c0c, 0x0000079a, 0x00068255, 0x000fea1f },
2005 { 13, 0x00002c0c, 0x0000079e, 0x00068255, 0x000fea0b },
2006 { 14, 0x00002c0c, 0x000007a2, 0x00068255, 0x000fea13 },
2008 /* 802.11 UNI / HyperLan 2 */
2009 { 36, 0x00002c0c, 0x0000099a, 0x00098255, 0x000fea23 },
2010 { 40, 0x00002c0c, 0x000009a2, 0x00098255, 0x000fea03 },
2011 { 44, 0x00002c0c, 0x000009a6, 0x00098255, 0x000fea0b },
2012 { 48, 0x00002c0c, 0x000009aa, 0x00098255, 0x000fea13 },
2013 { 52, 0x00002c0c, 0x000009ae, 0x00098255, 0x000fea1b },
2014 { 56, 0x00002c0c, 0x000009b2, 0x00098255, 0x000fea23 },
2015 { 60, 0x00002c0c, 0x000009ba, 0x00098255, 0x000fea03 },
2016 { 64, 0x00002c0c, 0x000009be, 0x00098255, 0x000fea0b },
2018 /* 802.11 HyperLan 2 */
2019 { 100, 0x00002c0c, 0x00000a2a, 0x000b8255, 0x000fea03 },
2020 { 104, 0x00002c0c, 0x00000a2e, 0x000b8255, 0x000fea0b },
2021 { 108, 0x00002c0c, 0x00000a32, 0x000b8255, 0x000fea13 },
2022 { 112, 0x00002c0c, 0x00000a36, 0x000b8255, 0x000fea1b },
2023 { 116, 0x00002c0c, 0x00000a3a, 0x000b8255, 0x000fea23 },
2024 { 120, 0x00002c0c, 0x00000a82, 0x000b8255, 0x000fea03 },
2025 { 124, 0x00002c0c, 0x00000a86, 0x000b8255, 0x000fea0b },
2026 { 128, 0x00002c0c, 0x00000a8a, 0x000b8255, 0x000fea13 },
2027 { 132, 0x00002c0c, 0x00000a8e, 0x000b8255, 0x000fea1b },
2028 { 136, 0x00002c0c, 0x00000a92, 0x000b8255, 0x000fea23 },
2031 { 140, 0x00002c0c, 0x00000a9a, 0x000b8255, 0x000fea03 },
2032 { 149, 0x00002c0c, 0x00000aa2, 0x000b8255, 0x000fea1f },
2033 { 153, 0x00002c0c, 0x00000aa6, 0x000b8255, 0x000fea27 },
2034 { 157, 0x00002c0c, 0x00000aae, 0x000b8255, 0x000fea07 },
2035 { 161, 0x00002c0c, 0x00000ab2, 0x000b8255, 0x000fea0f },
2036 { 165, 0x00002c0c, 0x00000ab6, 0x000b8255, 0x000fea17 },
2038 /* MMAC(Japan)J52 ch 34,38,42,46 */
2039 { 34, 0x00002c0c, 0x0008099a, 0x000da255, 0x000d3a0b },
2040 { 38, 0x00002c0c, 0x0008099e, 0x000da255, 0x000d3a13 },
2041 { 42, 0x00002c0c, 0x000809a2, 0x000da255, 0x000d3a1b },
2042 { 46, 0x00002c0c, 0x000809a6, 0x000da255, 0x000d3a23 },
2046 * RF value list for RF5225 & RF2527
2047 * Supports: 2.4 GHz & 5.2 GHz
2049 static const struct rf_channel rf_vals_5225_2527
[] = {
2050 { 1, 0x00002ccc, 0x00004786, 0x00068455, 0x000ffa0b },
2051 { 2, 0x00002ccc, 0x00004786, 0x00068455, 0x000ffa1f },
2052 { 3, 0x00002ccc, 0x0000478a, 0x00068455, 0x000ffa0b },
2053 { 4, 0x00002ccc, 0x0000478a, 0x00068455, 0x000ffa1f },
2054 { 5, 0x00002ccc, 0x0000478e, 0x00068455, 0x000ffa0b },
2055 { 6, 0x00002ccc, 0x0000478e, 0x00068455, 0x000ffa1f },
2056 { 7, 0x00002ccc, 0x00004792, 0x00068455, 0x000ffa0b },
2057 { 8, 0x00002ccc, 0x00004792, 0x00068455, 0x000ffa1f },
2058 { 9, 0x00002ccc, 0x00004796, 0x00068455, 0x000ffa0b },
2059 { 10, 0x00002ccc, 0x00004796, 0x00068455, 0x000ffa1f },
2060 { 11, 0x00002ccc, 0x0000479a, 0x00068455, 0x000ffa0b },
2061 { 12, 0x00002ccc, 0x0000479a, 0x00068455, 0x000ffa1f },
2062 { 13, 0x00002ccc, 0x0000479e, 0x00068455, 0x000ffa0b },
2063 { 14, 0x00002ccc, 0x000047a2, 0x00068455, 0x000ffa13 },
2065 /* 802.11 UNI / HyperLan 2 */
2066 { 36, 0x00002ccc, 0x0000499a, 0x0009be55, 0x000ffa23 },
2067 { 40, 0x00002ccc, 0x000049a2, 0x0009be55, 0x000ffa03 },
2068 { 44, 0x00002ccc, 0x000049a6, 0x0009be55, 0x000ffa0b },
2069 { 48, 0x00002ccc, 0x000049aa, 0x0009be55, 0x000ffa13 },
2070 { 52, 0x00002ccc, 0x000049ae, 0x0009ae55, 0x000ffa1b },
2071 { 56, 0x00002ccc, 0x000049b2, 0x0009ae55, 0x000ffa23 },
2072 { 60, 0x00002ccc, 0x000049ba, 0x0009ae55, 0x000ffa03 },
2073 { 64, 0x00002ccc, 0x000049be, 0x0009ae55, 0x000ffa0b },
2075 /* 802.11 HyperLan 2 */
2076 { 100, 0x00002ccc, 0x00004a2a, 0x000bae55, 0x000ffa03 },
2077 { 104, 0x00002ccc, 0x00004a2e, 0x000bae55, 0x000ffa0b },
2078 { 108, 0x00002ccc, 0x00004a32, 0x000bae55, 0x000ffa13 },
2079 { 112, 0x00002ccc, 0x00004a36, 0x000bae55, 0x000ffa1b },
2080 { 116, 0x00002ccc, 0x00004a3a, 0x000bbe55, 0x000ffa23 },
2081 { 120, 0x00002ccc, 0x00004a82, 0x000bbe55, 0x000ffa03 },
2082 { 124, 0x00002ccc, 0x00004a86, 0x000bbe55, 0x000ffa0b },
2083 { 128, 0x00002ccc, 0x00004a8a, 0x000bbe55, 0x000ffa13 },
2084 { 132, 0x00002ccc, 0x00004a8e, 0x000bbe55, 0x000ffa1b },
2085 { 136, 0x00002ccc, 0x00004a92, 0x000bbe55, 0x000ffa23 },
2088 { 140, 0x00002ccc, 0x00004a9a, 0x000bbe55, 0x000ffa03 },
2089 { 149, 0x00002ccc, 0x00004aa2, 0x000bbe55, 0x000ffa1f },
2090 { 153, 0x00002ccc, 0x00004aa6, 0x000bbe55, 0x000ffa27 },
2091 { 157, 0x00002ccc, 0x00004aae, 0x000bbe55, 0x000ffa07 },
2092 { 161, 0x00002ccc, 0x00004ab2, 0x000bbe55, 0x000ffa0f },
2093 { 165, 0x00002ccc, 0x00004ab6, 0x000bbe55, 0x000ffa17 },
2095 /* MMAC(Japan)J52 ch 34,38,42,46 */
2096 { 34, 0x00002ccc, 0x0000499a, 0x0009be55, 0x000ffa0b },
2097 { 38, 0x00002ccc, 0x0000499e, 0x0009be55, 0x000ffa13 },
2098 { 42, 0x00002ccc, 0x000049a2, 0x0009be55, 0x000ffa1b },
2099 { 46, 0x00002ccc, 0x000049a6, 0x0009be55, 0x000ffa23 },
2103 static int rt73usb_probe_hw_mode(struct rt2x00_dev
*rt2x00dev
)
2105 struct hw_mode_spec
*spec
= &rt2x00dev
->spec
;
2106 struct channel_info
*info
;
2111 * Initialize all hw fields.
2113 * Don't set IEEE80211_HW_HOST_BROADCAST_PS_BUFFERING unless we are
2114 * capable of sending the buffered frames out after the DTIM
2115 * transmission using rt2x00lib_beacondone. This will send out
2116 * multicast and broadcast traffic immediately instead of buffering it
2117 * infinitly and thus dropping it after some time.
2119 rt2x00dev
->hw
->flags
=
2120 IEEE80211_HW_SIGNAL_DBM
|
2121 IEEE80211_HW_SUPPORTS_PS
|
2122 IEEE80211_HW_PS_NULLFUNC_STACK
;
2124 SET_IEEE80211_DEV(rt2x00dev
->hw
, rt2x00dev
->dev
);
2125 SET_IEEE80211_PERM_ADDR(rt2x00dev
->hw
,
2126 rt2x00_eeprom_addr(rt2x00dev
,
2127 EEPROM_MAC_ADDR_0
));
2130 * Initialize hw_mode information.
2132 spec
->supported_bands
= SUPPORT_BAND_2GHZ
;
2133 spec
->supported_rates
= SUPPORT_RATE_CCK
| SUPPORT_RATE_OFDM
;
2135 if (rt2x00_rf(rt2x00dev
, RF2528
)) {
2136 spec
->num_channels
= ARRAY_SIZE(rf_vals_bg_2528
);
2137 spec
->channels
= rf_vals_bg_2528
;
2138 } else if (rt2x00_rf(rt2x00dev
, RF5226
)) {
2139 spec
->supported_bands
|= SUPPORT_BAND_5GHZ
;
2140 spec
->num_channels
= ARRAY_SIZE(rf_vals_5226
);
2141 spec
->channels
= rf_vals_5226
;
2142 } else if (rt2x00_rf(rt2x00dev
, RF2527
)) {
2143 spec
->num_channels
= 14;
2144 spec
->channels
= rf_vals_5225_2527
;
2145 } else if (rt2x00_rf(rt2x00dev
, RF5225
)) {
2146 spec
->supported_bands
|= SUPPORT_BAND_5GHZ
;
2147 spec
->num_channels
= ARRAY_SIZE(rf_vals_5225_2527
);
2148 spec
->channels
= rf_vals_5225_2527
;
2152 * Create channel information array
2154 info
= kcalloc(spec
->num_channels
, sizeof(*info
), GFP_KERNEL
);
2158 spec
->channels_info
= info
;
2160 tx_power
= rt2x00_eeprom_addr(rt2x00dev
, EEPROM_TXPOWER_G_START
);
2161 for (i
= 0; i
< 14; i
++) {
2162 info
[i
].max_power
= MAX_TXPOWER
;
2163 info
[i
].default_power1
= TXPOWER_FROM_DEV(tx_power
[i
]);
2166 if (spec
->num_channels
> 14) {
2167 tx_power
= rt2x00_eeprom_addr(rt2x00dev
, EEPROM_TXPOWER_A_START
);
2168 for (i
= 14; i
< spec
->num_channels
; i
++) {
2169 info
[i
].max_power
= MAX_TXPOWER
;
2170 info
[i
].default_power1
=
2171 TXPOWER_FROM_DEV(tx_power
[i
- 14]);
2178 static int rt73usb_probe_hw(struct rt2x00_dev
*rt2x00dev
)
2184 * Allocate eeprom data.
2186 retval
= rt73usb_validate_eeprom(rt2x00dev
);
2190 retval
= rt73usb_init_eeprom(rt2x00dev
);
2195 * Enable rfkill polling by setting GPIO direction of the
2196 * rfkill switch GPIO pin correctly.
2198 rt2x00usb_register_read(rt2x00dev
, MAC_CSR13
, ®
);
2199 rt2x00_set_field32(®
, MAC_CSR13_DIR7
, 0);
2200 rt2x00usb_register_write(rt2x00dev
, MAC_CSR13
, reg
);
2203 * Initialize hw specifications.
2205 retval
= rt73usb_probe_hw_mode(rt2x00dev
);
2210 * This device has multiple filters for control frames,
2211 * but has no a separate filter for PS Poll frames.
2213 __set_bit(CAPABILITY_CONTROL_FILTERS
, &rt2x00dev
->cap_flags
);
2216 * This device requires firmware.
2218 __set_bit(REQUIRE_FIRMWARE
, &rt2x00dev
->cap_flags
);
2219 if (!modparam_nohwcrypt
)
2220 __set_bit(CAPABILITY_HW_CRYPTO
, &rt2x00dev
->cap_flags
);
2221 __set_bit(CAPABILITY_LINK_TUNING
, &rt2x00dev
->cap_flags
);
2222 __set_bit(REQUIRE_PS_AUTOWAKE
, &rt2x00dev
->cap_flags
);
2225 * Set the rssi offset.
2227 rt2x00dev
->rssi_offset
= DEFAULT_RSSI_OFFSET
;
2233 * IEEE80211 stack callback functions.
2235 static int rt73usb_conf_tx(struct ieee80211_hw
*hw
,
2236 struct ieee80211_vif
*vif
, u16 queue_idx
,
2237 const struct ieee80211_tx_queue_params
*params
)
2239 struct rt2x00_dev
*rt2x00dev
= hw
->priv
;
2240 struct data_queue
*queue
;
2241 struct rt2x00_field32 field
;
2247 * First pass the configuration through rt2x00lib, that will
2248 * update the queue settings and validate the input. After that
2249 * we are free to update the registers based on the value
2250 * in the queue parameter.
2252 retval
= rt2x00mac_conf_tx(hw
, vif
, queue_idx
, params
);
2257 * We only need to perform additional register initialization
2263 queue
= rt2x00queue_get_tx_queue(rt2x00dev
, queue_idx
);
2265 /* Update WMM TXOP register */
2266 offset
= AC_TXOP_CSR0
+ (sizeof(u32
) * (!!(queue_idx
& 2)));
2267 field
.bit_offset
= (queue_idx
& 1) * 16;
2268 field
.bit_mask
= 0xffff << field
.bit_offset
;
2270 rt2x00usb_register_read(rt2x00dev
, offset
, ®
);
2271 rt2x00_set_field32(®
, field
, queue
->txop
);
2272 rt2x00usb_register_write(rt2x00dev
, offset
, reg
);
2274 /* Update WMM registers */
2275 field
.bit_offset
= queue_idx
* 4;
2276 field
.bit_mask
= 0xf << field
.bit_offset
;
2278 rt2x00usb_register_read(rt2x00dev
, AIFSN_CSR
, ®
);
2279 rt2x00_set_field32(®
, field
, queue
->aifs
);
2280 rt2x00usb_register_write(rt2x00dev
, AIFSN_CSR
, reg
);
2282 rt2x00usb_register_read(rt2x00dev
, CWMIN_CSR
, ®
);
2283 rt2x00_set_field32(®
, field
, queue
->cw_min
);
2284 rt2x00usb_register_write(rt2x00dev
, CWMIN_CSR
, reg
);
2286 rt2x00usb_register_read(rt2x00dev
, CWMAX_CSR
, ®
);
2287 rt2x00_set_field32(®
, field
, queue
->cw_max
);
2288 rt2x00usb_register_write(rt2x00dev
, CWMAX_CSR
, reg
);
2293 static u64
rt73usb_get_tsf(struct ieee80211_hw
*hw
, struct ieee80211_vif
*vif
)
2295 struct rt2x00_dev
*rt2x00dev
= hw
->priv
;
2299 rt2x00usb_register_read(rt2x00dev
, TXRX_CSR13
, ®
);
2300 tsf
= (u64
) rt2x00_get_field32(reg
, TXRX_CSR13_HIGH_TSFTIMER
) << 32;
2301 rt2x00usb_register_read(rt2x00dev
, TXRX_CSR12
, ®
);
2302 tsf
|= rt2x00_get_field32(reg
, TXRX_CSR12_LOW_TSFTIMER
);
2307 static const struct ieee80211_ops rt73usb_mac80211_ops
= {
2309 .start
= rt2x00mac_start
,
2310 .stop
= rt2x00mac_stop
,
2311 .add_interface
= rt2x00mac_add_interface
,
2312 .remove_interface
= rt2x00mac_remove_interface
,
2313 .config
= rt2x00mac_config
,
2314 .configure_filter
= rt2x00mac_configure_filter
,
2315 .set_tim
= rt2x00mac_set_tim
,
2316 .set_key
= rt2x00mac_set_key
,
2317 .sw_scan_start
= rt2x00mac_sw_scan_start
,
2318 .sw_scan_complete
= rt2x00mac_sw_scan_complete
,
2319 .get_stats
= rt2x00mac_get_stats
,
2320 .bss_info_changed
= rt2x00mac_bss_info_changed
,
2321 .conf_tx
= rt73usb_conf_tx
,
2322 .get_tsf
= rt73usb_get_tsf
,
2323 .rfkill_poll
= rt2x00mac_rfkill_poll
,
2324 .flush
= rt2x00mac_flush
,
2325 .set_antenna
= rt2x00mac_set_antenna
,
2326 .get_antenna
= rt2x00mac_get_antenna
,
2327 .get_ringparam
= rt2x00mac_get_ringparam
,
2328 .tx_frames_pending
= rt2x00mac_tx_frames_pending
,
2331 static const struct rt2x00lib_ops rt73usb_rt2x00_ops
= {
2332 .probe_hw
= rt73usb_probe_hw
,
2333 .get_firmware_name
= rt73usb_get_firmware_name
,
2334 .check_firmware
= rt73usb_check_firmware
,
2335 .load_firmware
= rt73usb_load_firmware
,
2336 .initialize
= rt2x00usb_initialize
,
2337 .uninitialize
= rt2x00usb_uninitialize
,
2338 .clear_entry
= rt2x00usb_clear_entry
,
2339 .set_device_state
= rt73usb_set_device_state
,
2340 .rfkill_poll
= rt73usb_rfkill_poll
,
2341 .link_stats
= rt73usb_link_stats
,
2342 .reset_tuner
= rt73usb_reset_tuner
,
2343 .link_tuner
= rt73usb_link_tuner
,
2344 .watchdog
= rt2x00usb_watchdog
,
2345 .start_queue
= rt73usb_start_queue
,
2346 .kick_queue
= rt2x00usb_kick_queue
,
2347 .stop_queue
= rt73usb_stop_queue
,
2348 .flush_queue
= rt2x00usb_flush_queue
,
2349 .write_tx_desc
= rt73usb_write_tx_desc
,
2350 .write_beacon
= rt73usb_write_beacon
,
2351 .clear_beacon
= rt73usb_clear_beacon
,
2352 .get_tx_data_len
= rt73usb_get_tx_data_len
,
2353 .fill_rxdone
= rt73usb_fill_rxdone
,
2354 .config_shared_key
= rt73usb_config_shared_key
,
2355 .config_pairwise_key
= rt73usb_config_pairwise_key
,
2356 .config_filter
= rt73usb_config_filter
,
2357 .config_intf
= rt73usb_config_intf
,
2358 .config_erp
= rt73usb_config_erp
,
2359 .config_ant
= rt73usb_config_ant
,
2360 .config
= rt73usb_config
,
2363 static void rt73usb_queue_init(struct data_queue
*queue
)
2365 switch (queue
->qid
) {
2368 queue
->data_size
= DATA_FRAME_SIZE
;
2369 queue
->desc_size
= RXD_DESC_SIZE
;
2370 queue
->priv_size
= sizeof(struct queue_entry_priv_usb
);
2378 queue
->data_size
= DATA_FRAME_SIZE
;
2379 queue
->desc_size
= TXD_DESC_SIZE
;
2380 queue
->priv_size
= sizeof(struct queue_entry_priv_usb
);
2385 queue
->data_size
= MGMT_FRAME_SIZE
;
2386 queue
->desc_size
= TXINFO_SIZE
;
2387 queue
->priv_size
= sizeof(struct queue_entry_priv_usb
);
2398 static const struct rt2x00_ops rt73usb_ops
= {
2399 .name
= KBUILD_MODNAME
,
2401 .eeprom_size
= EEPROM_SIZE
,
2403 .tx_queues
= NUM_TX_QUEUES
,
2404 .queue_init
= rt73usb_queue_init
,
2405 .lib
= &rt73usb_rt2x00_ops
,
2406 .hw
= &rt73usb_mac80211_ops
,
2407 #ifdef CONFIG_RT2X00_LIB_DEBUGFS
2408 .debugfs
= &rt73usb_rt2x00debug
,
2409 #endif /* CONFIG_RT2X00_LIB_DEBUGFS */
2413 * rt73usb module information.
2415 static struct usb_device_id rt73usb_device_table
[] = {
2417 { USB_DEVICE(0x07b8, 0xb21b) },
2418 { USB_DEVICE(0x07b8, 0xb21c) },
2419 { USB_DEVICE(0x07b8, 0xb21d) },
2420 { USB_DEVICE(0x07b8, 0xb21e) },
2421 { USB_DEVICE(0x07b8, 0xb21f) },
2423 { USB_DEVICE(0x14b2, 0x3c10) },
2425 { USB_DEVICE(0x148f, 0x9021) },
2426 { USB_DEVICE(0x0eb0, 0x9021) },
2428 { USB_DEVICE(0x18c5, 0x0002) },
2430 { USB_DEVICE(0x1690, 0x0722) },
2432 { USB_DEVICE(0x0b05, 0x1723) },
2433 { USB_DEVICE(0x0b05, 0x1724) },
2435 { USB_DEVICE(0x050d, 0x7050) }, /* FCC ID: K7SF5D7050B ver. 3.x */
2436 { USB_DEVICE(0x050d, 0x705a) },
2437 { USB_DEVICE(0x050d, 0x905b) },
2438 { USB_DEVICE(0x050d, 0x905c) },
2440 { USB_DEVICE(0x1631, 0xc019) },
2441 { USB_DEVICE(0x08dd, 0x0120) },
2443 { USB_DEVICE(0x0411, 0x00d8) },
2444 { USB_DEVICE(0x0411, 0x00d9) },
2445 { USB_DEVICE(0x0411, 0x00e6) },
2446 { USB_DEVICE(0x0411, 0x00f4) },
2447 { USB_DEVICE(0x0411, 0x0116) },
2448 { USB_DEVICE(0x0411, 0x0119) },
2449 { USB_DEVICE(0x0411, 0x0137) },
2451 { USB_DEVICE(0x178d, 0x02be) },
2453 { USB_DEVICE(0x1371, 0x9022) },
2454 { USB_DEVICE(0x1371, 0x9032) },
2456 { USB_DEVICE(0x14b2, 0x3c22) },
2458 { USB_DEVICE(0x07aa, 0x002e) },
2460 { USB_DEVICE(0x07d1, 0x3c03) },
2461 { USB_DEVICE(0x07d1, 0x3c04) },
2462 { USB_DEVICE(0x07d1, 0x3c06) },
2463 { USB_DEVICE(0x07d1, 0x3c07) },
2465 { USB_DEVICE(0x7392, 0x7318) },
2466 { USB_DEVICE(0x7392, 0x7618) },
2468 { USB_DEVICE(0x1740, 0x3701) },
2470 { USB_DEVICE(0x15a9, 0x0004) },
2472 { USB_DEVICE(0x1044, 0x8008) },
2473 { USB_DEVICE(0x1044, 0x800a) },
2475 { USB_DEVICE(0x1472, 0x0009) },
2477 { USB_DEVICE(0x06f8, 0xe002) },
2478 { USB_DEVICE(0x06f8, 0xe010) },
2479 { USB_DEVICE(0x06f8, 0xe020) },
2481 { USB_DEVICE(0x13b1, 0x0020) },
2482 { USB_DEVICE(0x13b1, 0x0023) },
2483 { USB_DEVICE(0x13b1, 0x0028) },
2485 { USB_DEVICE(0x0db0, 0x4600) },
2486 { USB_DEVICE(0x0db0, 0x6877) },
2487 { USB_DEVICE(0x0db0, 0x6874) },
2488 { USB_DEVICE(0x0db0, 0xa861) },
2489 { USB_DEVICE(0x0db0, 0xa874) },
2491 { USB_DEVICE(0x1b75, 0x7318) },
2493 { USB_DEVICE(0x04bb, 0x093d) },
2494 { USB_DEVICE(0x148f, 0x2573) },
2495 { USB_DEVICE(0x148f, 0x2671) },
2496 { USB_DEVICE(0x0812, 0x3101) },
2498 { USB_DEVICE(0x18e8, 0x6196) },
2499 { USB_DEVICE(0x18e8, 0x6229) },
2500 { USB_DEVICE(0x18e8, 0x6238) },
2502 { USB_DEVICE(0x04e8, 0x4471) },
2504 { USB_DEVICE(0x1740, 0x7100) },
2506 { USB_DEVICE(0x0df6, 0x0024) },
2507 { USB_DEVICE(0x0df6, 0x0027) },
2508 { USB_DEVICE(0x0df6, 0x002f) },
2509 { USB_DEVICE(0x0df6, 0x90ac) },
2510 { USB_DEVICE(0x0df6, 0x9712) },
2512 { USB_DEVICE(0x0769, 0x31f3) },
2514 { USB_DEVICE(0x6933, 0x5001) },
2516 { USB_DEVICE(0x0471, 0x200a) },
2518 { USB_DEVICE(0x2019, 0xab01) },
2519 { USB_DEVICE(0x2019, 0xab50) },
2521 { USB_DEVICE(0x7167, 0x3840) },
2523 { USB_DEVICE(0x0cde, 0x001c) },
2525 { USB_DEVICE(0x0586, 0x3415) },
2529 MODULE_AUTHOR(DRV_PROJECT
);
2530 MODULE_VERSION(DRV_VERSION
);
2531 MODULE_DESCRIPTION("Ralink RT73 USB Wireless LAN driver.");
2532 MODULE_SUPPORTED_DEVICE("Ralink RT2571W & RT2671 USB chipset based cards");
2533 MODULE_DEVICE_TABLE(usb
, rt73usb_device_table
);
2534 MODULE_FIRMWARE(FIRMWARE_RT2571
);
2535 MODULE_LICENSE("GPL");
2537 static int rt73usb_probe(struct usb_interface
*usb_intf
,
2538 const struct usb_device_id
*id
)
2540 return rt2x00usb_probe(usb_intf
, &rt73usb_ops
);
2543 static struct usb_driver rt73usb_driver
= {
2544 .name
= KBUILD_MODNAME
,
2545 .id_table
= rt73usb_device_table
,
2546 .probe
= rt73usb_probe
,
2547 .disconnect
= rt2x00usb_disconnect
,
2548 .suspend
= rt2x00usb_suspend
,
2549 .resume
= rt2x00usb_resume
,
2550 .reset_resume
= rt2x00usb_resume
,
2551 .disable_hub_initiated_lpm
= 1,
2554 module_usb_driver(rt73usb_driver
);