mfd: wm8350-i2c: Make sure the i2c regmap functions are compiled
[linux/fpc-iii.git] / drivers / net / wireless / rtlwifi / rtl8188ee / phy.c
blobe655c04732251f18ee1121625df732ab8b8d8096
1 /******************************************************************************
3 * Copyright(c) 2009-2013 Realtek Corporation.
5 * This program is free software; you can redistribute it and/or modify it
6 * under the terms of version 2 of the GNU General Public License as
7 * published by the Free Software Foundation.
9 * This program is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
12 * more details.
14 * You should have received a copy of the GNU General Public License along with
15 * this program; if not, write to the Free Software Foundation, Inc.,
16 * 51 Franklin Street, Fifth Floor, Boston, MA 02110, USA
18 * The full GNU General Public License is included in this distribution in the
19 * file called LICENSE.
21 * Contact Information:
22 * wlanfae <wlanfae@realtek.com>
23 * Realtek Corporation, No. 2, Innovation Road II, Hsinchu Science Park,
24 * Hsinchu 300, Taiwan.
26 * Larry Finger <Larry.Finger@lwfinger.net>
28 *****************************************************************************/
30 #include "../wifi.h"
31 #include "../pci.h"
32 #include "../ps.h"
33 #include "reg.h"
34 #include "def.h"
35 #include "phy.h"
36 #include "rf.h"
37 #include "dm.h"
38 #include "table.h"
40 static void set_baseband_phy_config(struct ieee80211_hw *hw);
41 static void set_baseband_agc_config(struct ieee80211_hw *hw);
42 static void store_pwrindex_offset(struct ieee80211_hw *hw,
43 u32 regaddr, u32 bitmask,
44 u32 data);
45 static bool check_cond(struct ieee80211_hw *hw, const u32 condition);
47 static u32 rf_serial_read(struct ieee80211_hw *hw,
48 enum radio_path rfpath, u32 offset)
50 struct rtl_priv *rtlpriv = rtl_priv(hw);
51 struct rtl_phy *rtlphy = &(rtlpriv->phy);
52 struct bb_reg_def *phreg = &rtlphy->phyreg_def[rfpath];
53 u32 newoffset;
54 u32 tmplong, tmplong2;
55 u8 rfpi_enable = 0;
56 u32 ret;
57 int jj = RF90_PATH_A;
58 int kk = RF90_PATH_B;
60 offset &= 0xff;
61 newoffset = offset;
62 if (RT_CANNOT_IO(hw)) {
63 RT_TRACE(rtlpriv, COMP_ERR, DBG_EMERG, "return all one\n");
64 return 0xFFFFFFFF;
66 tmplong = rtl_get_bbreg(hw, RFPGA0_XA_HSSIPARAMETER2, MASKDWORD);
67 if (rfpath == jj)
68 tmplong2 = tmplong;
69 else
70 tmplong2 = rtl_get_bbreg(hw, phreg->rfhssi_para2, MASKDWORD);
71 tmplong2 = (tmplong2 & (~BLSSIREADADDRESS)) |
72 (newoffset << 23) | BLSSIREADEDGE;
73 rtl_set_bbreg(hw, RFPGA0_XA_HSSIPARAMETER2, MASKDWORD,
74 tmplong & (~BLSSIREADEDGE));
75 mdelay(1);
76 rtl_set_bbreg(hw, phreg->rfhssi_para2, MASKDWORD, tmplong2);
77 mdelay(2);
78 if (rfpath == jj)
79 rfpi_enable = (u8) rtl_get_bbreg(hw, RFPGA0_XA_HSSIPARAMETER1,
80 BIT(8));
81 else if (rfpath == kk)
82 rfpi_enable = (u8) rtl_get_bbreg(hw, RFPGA0_XB_HSSIPARAMETER1,
83 BIT(8));
84 if (rfpi_enable)
85 ret = rtl_get_bbreg(hw, phreg->rf_rbpi, BLSSIREADBACKDATA);
86 else
87 ret = rtl_get_bbreg(hw, phreg->rf_rb, BLSSIREADBACKDATA);
88 RT_TRACE(rtlpriv, COMP_RF, DBG_TRACE, "RFR-%d Addr[0x%x]= 0x%x\n",
89 rfpath, phreg->rf_rb, ret);
90 return ret;
93 static void rf_serial_write(struct ieee80211_hw *hw,
94 enum radio_path rfpath, u32 offset,
95 u32 data)
97 u32 data_and_addr;
98 u32 newoffset;
99 struct rtl_priv *rtlpriv = rtl_priv(hw);
100 struct rtl_phy *rtlphy = &(rtlpriv->phy);
101 struct bb_reg_def *phreg = &rtlphy->phyreg_def[rfpath];
103 if (RT_CANNOT_IO(hw)) {
104 RT_TRACE(rtlpriv, COMP_ERR, DBG_EMERG, "stop\n");
105 return;
107 offset &= 0xff;
108 newoffset = offset;
109 data_and_addr = ((newoffset << 20) | (data & 0x000fffff)) & 0x0fffffff;
110 rtl_set_bbreg(hw, phreg->rf3wire_offset, MASKDWORD, data_and_addr);
111 RT_TRACE(rtlpriv, COMP_RF, DBG_TRACE, "RFW-%d Addr[0x%x]= 0x%x\n",
112 rfpath, phreg->rf3wire_offset, data_and_addr);
115 static u32 cal_bit_shift(u32 bitmask)
117 u32 i;
119 for (i = 0; i <= 31; i++) {
120 if (((bitmask >> i) & 0x1) == 1)
121 break;
123 return i;
126 static bool config_bb_with_header(struct ieee80211_hw *hw,
127 u8 configtype)
129 if (configtype == BASEBAND_CONFIG_PHY_REG)
130 set_baseband_phy_config(hw);
131 else if (configtype == BASEBAND_CONFIG_AGC_TAB)
132 set_baseband_agc_config(hw);
133 return true;
136 static bool config_bb_with_pgheader(struct ieee80211_hw *hw,
137 u8 configtype)
139 struct rtl_priv *rtlpriv = rtl_priv(hw);
140 int i;
141 u32 *table_pg;
142 u16 tbl_page_len;
143 u32 v1 = 0, v2 = 0;
145 tbl_page_len = RTL8188EEPHY_REG_ARRAY_PGLEN;
146 table_pg = RTL8188EEPHY_REG_ARRAY_PG;
148 if (configtype == BASEBAND_CONFIG_PHY_REG) {
149 for (i = 0; i < tbl_page_len; i = i + 3) {
150 v1 = table_pg[i];
151 v2 = table_pg[i + 1];
153 if (v1 < 0xcdcdcdcd) {
154 if (table_pg[i] == 0xfe)
155 mdelay(50);
156 else if (table_pg[i] == 0xfd)
157 mdelay(5);
158 else if (table_pg[i] == 0xfc)
159 mdelay(1);
160 else if (table_pg[i] == 0xfb)
161 udelay(50);
162 else if (table_pg[i] == 0xfa)
163 udelay(5);
164 else if (table_pg[i] == 0xf9)
165 udelay(1);
167 store_pwrindex_offset(hw, table_pg[i],
168 table_pg[i + 1],
169 table_pg[i + 2]);
170 continue;
171 } else {
172 if (!check_cond(hw, table_pg[i])) {
173 /*don't need the hw_body*/
174 i += 2; /* skip the pair of expression*/
175 v1 = table_pg[i];
176 v2 = table_pg[i + 1];
177 while (v2 != 0xDEAD) {
178 i += 3;
179 v1 = table_pg[i];
180 v2 = table_pg[i + 1];
185 } else {
186 RT_TRACE(rtlpriv, COMP_SEND, DBG_TRACE,
187 "configtype != BaseBand_Config_PHY_REG\n");
189 return true;
192 static bool config_parafile(struct ieee80211_hw *hw)
194 struct rtl_priv *rtlpriv = rtl_priv(hw);
195 struct rtl_phy *rtlphy = &(rtlpriv->phy);
196 struct rtl_efuse *fuse = rtl_efuse(rtl_priv(hw));
197 bool rtstatus;
199 rtstatus = config_bb_with_header(hw, BASEBAND_CONFIG_PHY_REG);
200 if (rtstatus != true) {
201 RT_TRACE(rtlpriv, COMP_ERR, DBG_EMERG, "Write BB Reg Fail!!");
202 return false;
205 if (fuse->autoload_failflag == false) {
206 rtlphy->pwrgroup_cnt = 0;
207 rtstatus = config_bb_with_pgheader(hw, BASEBAND_CONFIG_PHY_REG);
209 if (rtstatus != true) {
210 RT_TRACE(rtlpriv, COMP_ERR, DBG_EMERG, "BB_PG Reg Fail!!");
211 return false;
213 rtstatus = config_bb_with_header(hw, BASEBAND_CONFIG_AGC_TAB);
214 if (rtstatus != true) {
215 RT_TRACE(rtlpriv, COMP_ERR, DBG_EMERG, "AGC Table Fail\n");
216 return false;
218 rtlphy->cck_high_power = (bool) (rtl_get_bbreg(hw,
219 RFPGA0_XA_HSSIPARAMETER2, 0x200));
221 return true;
224 static void rtl88e_phy_init_bb_rf_register_definition(struct ieee80211_hw *hw)
226 struct rtl_priv *rtlpriv = rtl_priv(hw);
227 struct rtl_phy *rtlphy = &(rtlpriv->phy);
228 int jj = RF90_PATH_A;
229 int kk = RF90_PATH_B;
231 rtlphy->phyreg_def[jj].rfintfs = RFPGA0_XAB_RFINTERFACESW;
232 rtlphy->phyreg_def[kk].rfintfs = RFPGA0_XAB_RFINTERFACESW;
233 rtlphy->phyreg_def[RF90_PATH_C].rfintfs = RFPGA0_XCD_RFINTERFACESW;
234 rtlphy->phyreg_def[RF90_PATH_D].rfintfs = RFPGA0_XCD_RFINTERFACESW;
236 rtlphy->phyreg_def[jj].rfintfi = RFPGA0_XAB_RFINTERFACERB;
237 rtlphy->phyreg_def[kk].rfintfi = RFPGA0_XAB_RFINTERFACERB;
238 rtlphy->phyreg_def[RF90_PATH_C].rfintfi = RFPGA0_XCD_RFINTERFACERB;
239 rtlphy->phyreg_def[RF90_PATH_D].rfintfi = RFPGA0_XCD_RFINTERFACERB;
241 rtlphy->phyreg_def[jj].rfintfo = RFPGA0_XA_RFINTERFACEOE;
242 rtlphy->phyreg_def[kk].rfintfo = RFPGA0_XB_RFINTERFACEOE;
244 rtlphy->phyreg_def[jj].rfintfe = RFPGA0_XA_RFINTERFACEOE;
245 rtlphy->phyreg_def[kk].rfintfe = RFPGA0_XB_RFINTERFACEOE;
247 rtlphy->phyreg_def[jj].rf3wire_offset = RFPGA0_XA_LSSIPARAMETER;
248 rtlphy->phyreg_def[kk].rf3wire_offset = RFPGA0_XB_LSSIPARAMETER;
250 rtlphy->phyreg_def[jj].rflssi_select = rFPGA0_XAB_RFPARAMETER;
251 rtlphy->phyreg_def[kk].rflssi_select = rFPGA0_XAB_RFPARAMETER;
252 rtlphy->phyreg_def[RF90_PATH_C].rflssi_select = rFPGA0_XCD_RFPARAMETER;
253 rtlphy->phyreg_def[RF90_PATH_D].rflssi_select = rFPGA0_XCD_RFPARAMETER;
255 rtlphy->phyreg_def[jj].rftxgain_stage = RFPGA0_TXGAINSTAGE;
256 rtlphy->phyreg_def[kk].rftxgain_stage = RFPGA0_TXGAINSTAGE;
257 rtlphy->phyreg_def[RF90_PATH_C].rftxgain_stage = RFPGA0_TXGAINSTAGE;
258 rtlphy->phyreg_def[RF90_PATH_D].rftxgain_stage = RFPGA0_TXGAINSTAGE;
260 rtlphy->phyreg_def[jj].rfhssi_para1 = RFPGA0_XA_HSSIPARAMETER1;
261 rtlphy->phyreg_def[kk].rfhssi_para1 = RFPGA0_XB_HSSIPARAMETER1;
263 rtlphy->phyreg_def[jj].rfhssi_para2 = RFPGA0_XA_HSSIPARAMETER2;
264 rtlphy->phyreg_def[kk].rfhssi_para2 = RFPGA0_XB_HSSIPARAMETER2;
266 rtlphy->phyreg_def[jj].rfsw_ctrl = RFPGA0_XAB_SWITCHCONTROL;
267 rtlphy->phyreg_def[kk].rfsw_ctrl = RFPGA0_XAB_SWITCHCONTROL;
268 rtlphy->phyreg_def[RF90_PATH_C].rfsw_ctrl = RFPGA0_XCD_SWITCHCONTROL;
269 rtlphy->phyreg_def[RF90_PATH_D].rfsw_ctrl = RFPGA0_XCD_SWITCHCONTROL;
271 rtlphy->phyreg_def[jj].rfagc_control1 = ROFDM0_XAAGCCORE1;
272 rtlphy->phyreg_def[kk].rfagc_control1 = ROFDM0_XBAGCCORE1;
273 rtlphy->phyreg_def[RF90_PATH_C].rfagc_control1 = ROFDM0_XCAGCCORE1;
274 rtlphy->phyreg_def[RF90_PATH_D].rfagc_control1 = ROFDM0_XDAGCCORE1;
276 rtlphy->phyreg_def[jj].rfagc_control2 = ROFDM0_XAAGCCORE2;
277 rtlphy->phyreg_def[kk].rfagc_control2 = ROFDM0_XBAGCCORE2;
278 rtlphy->phyreg_def[RF90_PATH_C].rfagc_control2 = ROFDM0_XCAGCCORE2;
279 rtlphy->phyreg_def[RF90_PATH_D].rfagc_control2 = ROFDM0_XDAGCCORE2;
281 rtlphy->phyreg_def[jj].rfrxiq_imbal = ROFDM0_XARXIQIMBAL;
282 rtlphy->phyreg_def[kk].rfrxiq_imbal = ROFDM0_XBRXIQIMBAL;
283 rtlphy->phyreg_def[RF90_PATH_C].rfrxiq_imbal = ROFDM0_XCRXIQIMBAL;
284 rtlphy->phyreg_def[RF90_PATH_D].rfrxiq_imbal = ROFDM0_XDRXIQIMBAL;
286 rtlphy->phyreg_def[jj].rfrx_afe = ROFDM0_XARXAFE;
287 rtlphy->phyreg_def[kk].rfrx_afe = ROFDM0_XBRXAFE;
288 rtlphy->phyreg_def[RF90_PATH_C].rfrx_afe = ROFDM0_XCRXAFE;
289 rtlphy->phyreg_def[RF90_PATH_D].rfrx_afe = ROFDM0_XDRXAFE;
291 rtlphy->phyreg_def[jj].rftxiq_imbal = ROFDM0_XATXIQIMBAL;
292 rtlphy->phyreg_def[kk].rftxiq_imbal = ROFDM0_XBTXIQIMBAL;
293 rtlphy->phyreg_def[RF90_PATH_C].rftxiq_imbal = ROFDM0_XCTXIQIMBAL;
294 rtlphy->phyreg_def[RF90_PATH_D].rftxiq_imbal = ROFDM0_XDTXIQIMBAL;
296 rtlphy->phyreg_def[jj].rftx_afe = ROFDM0_XATXAFE;
297 rtlphy->phyreg_def[kk].rftx_afe = ROFDM0_XBTXAFE;
299 rtlphy->phyreg_def[jj].rf_rb = RFPGA0_XA_LSSIREADBACK;
300 rtlphy->phyreg_def[kk].rf_rb = RFPGA0_XB_LSSIREADBACK;
302 rtlphy->phyreg_def[jj].rf_rbpi = TRANSCEIVEA_HSPI_READBACK;
303 rtlphy->phyreg_def[kk].rf_rbpi = TRANSCEIVEB_HSPI_READBACK;
306 static bool rtl88e_phy_set_sw_chnl_cmdarray(struct swchnlcmd *cmdtable,
307 u32 cmdtableidx, u32 cmdtablesz,
308 enum swchnlcmd_id cmdid,
309 u32 para1, u32 para2, u32 msdelay)
311 struct swchnlcmd *pcmd;
313 if (cmdtable == NULL) {
314 RT_ASSERT(false, "cmdtable cannot be NULL.\n");
315 return false;
318 if (cmdtableidx >= cmdtablesz)
319 return false;
321 pcmd = cmdtable + cmdtableidx;
322 pcmd->cmdid = cmdid;
323 pcmd->para1 = para1;
324 pcmd->para2 = para2;
325 pcmd->msdelay = msdelay;
326 return true;
329 static bool chnl_step_by_step(struct ieee80211_hw *hw,
330 u8 channel, u8 *stage, u8 *step,
331 u32 *delay)
333 struct rtl_priv *rtlpriv = rtl_priv(hw);
334 struct rtl_phy *rtlphy = &(rtlpriv->phy);
335 struct swchnlcmd precommoncmd[MAX_PRECMD_CNT];
336 u32 precommoncmdcnt;
337 struct swchnlcmd postcommoncmd[MAX_POSTCMD_CNT];
338 u32 postcommoncmdcnt;
339 struct swchnlcmd rfdependcmd[MAX_RFDEPENDCMD_CNT];
340 u32 rfdependcmdcnt;
341 struct swchnlcmd *currentcmd = NULL;
342 u8 rfpath;
343 u8 num_total_rfpath = rtlphy->num_total_rfpath;
345 precommoncmdcnt = 0;
346 rtl88e_phy_set_sw_chnl_cmdarray(precommoncmd, precommoncmdcnt++,
347 MAX_PRECMD_CNT,
348 CMDID_SET_TXPOWEROWER_LEVEL, 0, 0, 0);
349 rtl88e_phy_set_sw_chnl_cmdarray(precommoncmd, precommoncmdcnt++,
350 MAX_PRECMD_CNT, CMDID_END, 0, 0, 0);
352 postcommoncmdcnt = 0;
354 rtl88e_phy_set_sw_chnl_cmdarray(postcommoncmd, postcommoncmdcnt++,
355 MAX_POSTCMD_CNT, CMDID_END, 0, 0, 0);
357 rfdependcmdcnt = 0;
359 RT_ASSERT((channel >= 1 && channel <= 14),
360 "illegal channel for Zebra: %d\n", channel);
362 rtl88e_phy_set_sw_chnl_cmdarray(rfdependcmd, rfdependcmdcnt++,
363 MAX_RFDEPENDCMD_CNT, CMDID_RF_WRITEREG,
364 RF_CHNLBW, channel, 10);
366 rtl88e_phy_set_sw_chnl_cmdarray(rfdependcmd, rfdependcmdcnt++,
367 MAX_RFDEPENDCMD_CNT, CMDID_END, 0, 0,
370 do {
371 switch (*stage) {
372 case 0:
373 currentcmd = &precommoncmd[*step];
374 break;
375 case 1:
376 currentcmd = &rfdependcmd[*step];
377 break;
378 case 2:
379 currentcmd = &postcommoncmd[*step];
380 break;
383 if (currentcmd->cmdid == CMDID_END) {
384 if ((*stage) == 2) {
385 return true;
386 } else {
387 (*stage)++;
388 (*step) = 0;
389 continue;
393 switch (currentcmd->cmdid) {
394 case CMDID_SET_TXPOWEROWER_LEVEL:
395 rtl88e_phy_set_txpower_level(hw, channel);
396 break;
397 case CMDID_WRITEPORT_ULONG:
398 rtl_write_dword(rtlpriv, currentcmd->para1,
399 currentcmd->para2);
400 break;
401 case CMDID_WRITEPORT_USHORT:
402 rtl_write_word(rtlpriv, currentcmd->para1,
403 (u16) currentcmd->para2);
404 break;
405 case CMDID_WRITEPORT_UCHAR:
406 rtl_write_byte(rtlpriv, currentcmd->para1,
407 (u8) currentcmd->para2);
408 break;
409 case CMDID_RF_WRITEREG:
410 for (rfpath = 0; rfpath < num_total_rfpath; rfpath++) {
411 rtlphy->rfreg_chnlval[rfpath] =
412 ((rtlphy->rfreg_chnlval[rfpath] &
413 0xfffffc00) | currentcmd->para2);
415 rtl_set_rfreg(hw, (enum radio_path)rfpath,
416 currentcmd->para1,
417 RFREG_OFFSET_MASK,
418 rtlphy->rfreg_chnlval[rfpath]);
420 break;
421 default:
422 RT_TRACE(rtlpriv, COMP_ERR, DBG_EMERG,
423 "switch case not processed\n");
424 break;
427 break;
428 } while (true);
430 (*delay) = currentcmd->msdelay;
431 (*step)++;
432 return false;
435 static long rtl88e_pwr_idx_dbm(struct ieee80211_hw *hw,
436 enum wireless_mode wirelessmode,
437 u8 txpwridx)
439 long offset;
440 long pwrout_dbm;
442 switch (wirelessmode) {
443 case WIRELESS_MODE_B:
444 offset = -7;
445 break;
446 case WIRELESS_MODE_G:
447 case WIRELESS_MODE_N_24G:
448 offset = -8;
449 break;
450 default:
451 offset = -8;
452 break;
454 pwrout_dbm = txpwridx / 2 + offset;
455 return pwrout_dbm;
458 static void rtl88e_phy_set_io(struct ieee80211_hw *hw)
460 struct rtl_priv *rtlpriv = rtl_priv(hw);
461 struct rtl_phy *rtlphy = &(rtlpriv->phy);
462 struct dig_t *dm_digtable = &rtlpriv->dm_digtable;
464 RT_TRACE(rtlpriv, COMP_CMD, DBG_TRACE,
465 "--->Cmd(%#x), set_io_inprogress(%d)\n",
466 rtlphy->current_io_type, rtlphy->set_io_inprogress);
467 switch (rtlphy->current_io_type) {
468 case IO_CMD_RESUME_DM_BY_SCAN:
469 dm_digtable->cur_igvalue = rtlphy->initgain_backup.xaagccore1;
470 /*rtl92c_dm_write_dig(hw);*/
471 rtl88e_phy_set_txpower_level(hw, rtlphy->current_channel);
472 rtl_set_bbreg(hw, RCCK0_CCA, 0xff0000, 0x83);
473 break;
474 case IO_CMD_PAUSE_DM_BY_SCAN:
475 rtlphy->initgain_backup.xaagccore1 = dm_digtable->cur_igvalue;
476 dm_digtable->cur_igvalue = 0x17;
477 rtl_set_bbreg(hw, RCCK0_CCA, 0xff0000, 0x40);
478 break;
479 default:
480 RT_TRACE(rtlpriv, COMP_ERR, DBG_EMERG,
481 "switch case not processed\n");
482 break;
484 rtlphy->set_io_inprogress = false;
485 RT_TRACE(rtlpriv, COMP_CMD, DBG_TRACE,
486 "(%#x)\n", rtlphy->current_io_type);
489 u32 rtl88e_phy_query_bb_reg(struct ieee80211_hw *hw, u32 regaddr, u32 bitmask)
491 struct rtl_priv *rtlpriv = rtl_priv(hw);
492 u32 returnvalue, originalvalue, bitshift;
494 RT_TRACE(rtlpriv, COMP_RF, DBG_TRACE,
495 "regaddr(%#x), bitmask(%#x)\n", regaddr, bitmask);
496 originalvalue = rtl_read_dword(rtlpriv, regaddr);
497 bitshift = cal_bit_shift(bitmask);
498 returnvalue = (originalvalue & bitmask) >> bitshift;
500 RT_TRACE(rtlpriv, COMP_RF, DBG_TRACE,
501 "BBR MASK = 0x%x Addr[0x%x]= 0x%x\n", bitmask,
502 regaddr, originalvalue);
504 return returnvalue;
507 void rtl88e_phy_set_bb_reg(struct ieee80211_hw *hw,
508 u32 regaddr, u32 bitmask, u32 data)
510 struct rtl_priv *rtlpriv = rtl_priv(hw);
511 u32 originalvalue, bitshift;
513 RT_TRACE(rtlpriv, COMP_RF, DBG_TRACE,
514 "regaddr(%#x), bitmask(%#x),data(%#x)\n",
515 regaddr, bitmask, data);
517 if (bitmask != MASKDWORD) {
518 originalvalue = rtl_read_dword(rtlpriv, regaddr);
519 bitshift = cal_bit_shift(bitmask);
520 data = ((originalvalue & (~bitmask)) | (data << bitshift));
523 rtl_write_dword(rtlpriv, regaddr, data);
525 RT_TRACE(rtlpriv, COMP_RF, DBG_TRACE,
526 "regaddr(%#x), bitmask(%#x), data(%#x)\n",
527 regaddr, bitmask, data);
530 u32 rtl88e_phy_query_rf_reg(struct ieee80211_hw *hw,
531 enum radio_path rfpath, u32 regaddr, u32 bitmask)
533 struct rtl_priv *rtlpriv = rtl_priv(hw);
534 u32 original_value, readback_value, bitshift;
535 unsigned long flags;
537 RT_TRACE(rtlpriv, COMP_RF, DBG_TRACE,
538 "regaddr(%#x), rfpath(%#x), bitmask(%#x)\n",
539 regaddr, rfpath, bitmask);
541 spin_lock_irqsave(&rtlpriv->locks.rf_lock, flags);
544 original_value = rf_serial_read(hw, rfpath, regaddr);
545 bitshift = cal_bit_shift(bitmask);
546 readback_value = (original_value & bitmask) >> bitshift;
548 spin_unlock_irqrestore(&rtlpriv->locks.rf_lock, flags);
550 RT_TRACE(rtlpriv, COMP_RF, DBG_TRACE,
551 "regaddr(%#x), rfpath(%#x), bitmask(%#x), original_value(%#x)\n",
552 regaddr, rfpath, bitmask, original_value);
554 return readback_value;
557 void rtl88e_phy_set_rf_reg(struct ieee80211_hw *hw,
558 enum radio_path rfpath,
559 u32 regaddr, u32 bitmask, u32 data)
561 struct rtl_priv *rtlpriv = rtl_priv(hw);
562 u32 original_value, bitshift;
563 unsigned long flags;
565 RT_TRACE(rtlpriv, COMP_RF, DBG_TRACE,
566 "regaddr(%#x), bitmask(%#x), data(%#x), rfpath(%#x)\n",
567 regaddr, bitmask, data, rfpath);
569 spin_lock_irqsave(&rtlpriv->locks.rf_lock, flags);
571 if (bitmask != RFREG_OFFSET_MASK) {
572 original_value = rf_serial_read(hw, rfpath, regaddr);
573 bitshift = cal_bit_shift(bitmask);
574 data = ((original_value & (~bitmask)) |
575 (data << bitshift));
578 rf_serial_write(hw, rfpath, regaddr, data);
581 spin_unlock_irqrestore(&rtlpriv->locks.rf_lock, flags);
583 RT_TRACE(rtlpriv, COMP_RF, DBG_TRACE,
584 "regaddr(%#x), bitmask(%#x), data(%#x), rfpath(%#x)\n",
585 regaddr, bitmask, data, rfpath);
588 static bool config_mac_with_header(struct ieee80211_hw *hw)
590 struct rtl_priv *rtlpriv = rtl_priv(hw);
591 u32 i;
592 u32 arraylength;
593 u32 *ptrarray;
595 RT_TRACE(rtlpriv, COMP_INIT, DBG_TRACE, "Read Rtl8188EMACPHY_Array\n");
596 arraylength = RTL8188EEMAC_1T_ARRAYLEN;
597 ptrarray = RTL8188EEMAC_1T_ARRAY;
598 RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD,
599 "Img:RTL8188EEMAC_1T_ARRAY LEN %d\n", arraylength);
600 for (i = 0; i < arraylength; i = i + 2)
601 rtl_write_byte(rtlpriv, ptrarray[i], (u8) ptrarray[i + 1]);
602 return true;
605 bool rtl88e_phy_mac_config(struct ieee80211_hw *hw)
607 struct rtl_priv *rtlpriv = rtl_priv(hw);
608 bool rtstatus = config_mac_with_header(hw);
610 rtl_write_byte(rtlpriv, 0x04CA, 0x0B);
611 return rtstatus;
614 bool rtl88e_phy_bb_config(struct ieee80211_hw *hw)
616 bool rtstatus = true;
617 struct rtl_priv *rtlpriv = rtl_priv(hw);
618 u16 regval;
619 u8 reg_hwparafile = 1;
620 u32 tmp;
621 rtl88e_phy_init_bb_rf_register_definition(hw);
622 regval = rtl_read_word(rtlpriv, REG_SYS_FUNC_EN);
623 rtl_write_word(rtlpriv, REG_SYS_FUNC_EN,
624 regval | BIT(13) | BIT(0) | BIT(1));
626 rtl_write_byte(rtlpriv, REG_RF_CTRL, RF_EN | RF_RSTB | RF_SDMRSTB);
627 rtl_write_byte(rtlpriv, REG_SYS_FUNC_EN,
628 FEN_PPLL | FEN_PCIEA | FEN_DIO_PCIE |
629 FEN_BB_GLB_RSTN | FEN_BBRSTB);
630 tmp = rtl_read_dword(rtlpriv, 0x4c);
631 rtl_write_dword(rtlpriv, 0x4c, tmp | BIT(23));
632 if (reg_hwparafile == 1)
633 rtstatus = config_parafile(hw);
634 return rtstatus;
637 bool rtl88e_phy_rf_config(struct ieee80211_hw *hw)
639 return rtl88e_phy_rf6052_config(hw);
642 static bool check_cond(struct ieee80211_hw *hw,
643 const u32 condition)
645 struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw));
646 struct rtl_efuse *fuse = rtl_efuse(rtl_priv(hw));
647 u32 _board = fuse->board_type; /*need efuse define*/
648 u32 _interface = rtlhal->interface;
649 u32 _platform = 0x08;/*SupportPlatform */
650 u32 cond = condition;
652 if (condition == 0xCDCDCDCD)
653 return true;
655 cond = condition & 0xFF;
656 if ((_board & cond) == 0 && cond != 0x1F)
657 return false;
659 cond = condition & 0xFF00;
660 cond = cond >> 8;
661 if ((_interface & cond) == 0 && cond != 0x07)
662 return false;
664 cond = condition & 0xFF0000;
665 cond = cond >> 16;
666 if ((_platform & cond) == 0 && cond != 0x0F)
667 return false;
668 return true;
671 static void _rtl8188e_config_rf_reg(struct ieee80211_hw *hw,
672 u32 addr, u32 data, enum radio_path rfpath,
673 u32 regaddr)
675 if (addr == 0xffe) {
676 mdelay(50);
677 } else if (addr == 0xfd) {
678 mdelay(5);
679 } else if (addr == 0xfc) {
680 mdelay(1);
681 } else if (addr == 0xfb) {
682 udelay(50);
683 } else if (addr == 0xfa) {
684 udelay(5);
685 } else if (addr == 0xf9) {
686 udelay(1);
687 } else {
688 rtl_set_rfreg(hw, rfpath, regaddr,
689 RFREG_OFFSET_MASK,
690 data);
691 udelay(1);
695 static void rtl88_config_s(struct ieee80211_hw *hw,
696 u32 addr, u32 data)
698 u32 content = 0x1000; /*RF Content: radio_a_txt*/
699 u32 maskforphyset = (u32)(content & 0xE000);
701 _rtl8188e_config_rf_reg(hw, addr, data, RF90_PATH_A,
702 addr | maskforphyset);
705 static void _rtl8188e_config_bb_reg(struct ieee80211_hw *hw,
706 u32 addr, u32 data)
708 if (addr == 0xfe) {
709 mdelay(50);
710 } else if (addr == 0xfd) {
711 mdelay(5);
712 } else if (addr == 0xfc) {
713 mdelay(1);
714 } else if (addr == 0xfb) {
715 udelay(50);
716 } else if (addr == 0xfa) {
717 udelay(5);
718 } else if (addr == 0xf9) {
719 udelay(1);
720 } else {
721 rtl_set_bbreg(hw, addr, MASKDWORD, data);
722 udelay(1);
727 #define NEXT_PAIR(v1, v2, i) \
728 do { \
729 i += 2; v1 = array_table[i]; \
730 v2 = array_table[i + 1]; \
731 } while (0)
733 static void set_baseband_agc_config(struct ieee80211_hw *hw)
735 int i;
736 u32 *array_table;
737 u16 arraylen;
738 struct rtl_priv *rtlpriv = rtl_priv(hw);
739 u32 v1 = 0, v2 = 0;
741 arraylen = RTL8188EEAGCTAB_1TARRAYLEN;
742 array_table = RTL8188EEAGCTAB_1TARRAY;
744 for (i = 0; i < arraylen; i += 2) {
745 v1 = array_table[i];
746 v2 = array_table[i + 1];
747 if (v1 < 0xCDCDCDCD) {
748 rtl_set_bbreg(hw, array_table[i], MASKDWORD,
749 array_table[i + 1]);
750 udelay(1);
751 continue;
752 } else {/*This line is the start line of branch.*/
753 if (!check_cond(hw, array_table[i])) {
754 /*Discard the following (offset, data) pairs*/
755 NEXT_PAIR(v1, v2, i);
756 while (v2 != 0xDEAD && v2 != 0xCDEF &&
757 v2 != 0xCDCD && i < arraylen - 2) {
758 NEXT_PAIR(v1, v2, i);
760 i -= 2; /* compensate for loop's += 2*/
761 } else {
762 /* Configure matched pairs and skip to end */
763 NEXT_PAIR(v1, v2, i);
764 while (v2 != 0xDEAD && v2 != 0xCDEF &&
765 v2 != 0xCDCD && i < arraylen - 2) {
766 rtl_set_bbreg(hw, array_table[i],
767 MASKDWORD,
768 array_table[i + 1]);
769 udelay(1);
770 NEXT_PAIR(v1, v2, i);
773 while (v2 != 0xDEAD && i < arraylen - 2)
774 NEXT_PAIR(v1, v2, i);
777 RT_TRACE(rtlpriv, COMP_INIT, DBG_TRACE,
778 "The agctab_array_table[0] is %x Rtl818EEPHY_REGArray[1] is %x\n",
779 array_table[i],
780 array_table[i + 1]);
784 static void set_baseband_phy_config(struct ieee80211_hw *hw)
786 int i;
787 u32 *array_table;
788 u16 arraylen;
789 u32 v1 = 0, v2 = 0;
791 arraylen = RTL8188EEPHY_REG_1TARRAYLEN;
792 array_table = RTL8188EEPHY_REG_1TARRAY;
794 for (i = 0; i < arraylen; i += 2) {
795 v1 = array_table[i];
796 v2 = array_table[i + 1];
797 if (v1 < 0xcdcdcdcd) {
798 _rtl8188e_config_bb_reg(hw, v1, v2);
799 } else {/*This line is the start line of branch.*/
800 if (!check_cond(hw, array_table[i])) {
801 /*Discard the following (offset, data) pairs*/
802 NEXT_PAIR(v1, v2, i);
803 while (v2 != 0xDEAD &&
804 v2 != 0xCDEF &&
805 v2 != 0xCDCD && i < arraylen - 2)
806 NEXT_PAIR(v1, v2, i);
807 i -= 2; /* prevent from for-loop += 2*/
808 } else {
809 /* Configure matched pairs and skip to end */
810 NEXT_PAIR(v1, v2, i);
811 while (v2 != 0xDEAD &&
812 v2 != 0xCDEF &&
813 v2 != 0xCDCD && i < arraylen - 2) {
814 _rtl8188e_config_bb_reg(hw, v1, v2);
815 NEXT_PAIR(v1, v2, i);
818 while (v2 != 0xDEAD && i < arraylen - 2)
819 NEXT_PAIR(v1, v2, i);
825 static void store_pwrindex_offset(struct ieee80211_hw *hw,
826 u32 regaddr, u32 bitmask,
827 u32 data)
829 struct rtl_priv *rtlpriv = rtl_priv(hw);
830 struct rtl_phy *rtlphy = &(rtlpriv->phy);
832 if (regaddr == RTXAGC_A_RATE18_06) {
833 rtlphy->mcs_offset[rtlphy->pwrgroup_cnt][0] = data;
834 RT_TRACE(rtlpriv, COMP_INIT, DBG_TRACE,
835 "MCSTxPowerLevelOriginalOffset[%d][0] = 0x%x\n",
836 rtlphy->pwrgroup_cnt,
837 rtlphy->mcs_offset[rtlphy->pwrgroup_cnt][0]);
839 if (regaddr == RTXAGC_A_RATE54_24) {
840 rtlphy->mcs_offset[rtlphy->pwrgroup_cnt][1] = data;
841 RT_TRACE(rtlpriv, COMP_INIT, DBG_TRACE,
842 "MCSTxPowerLevelOriginalOffset[%d][1] = 0x%x\n",
843 rtlphy->pwrgroup_cnt,
844 rtlphy->mcs_offset[rtlphy->pwrgroup_cnt][1]);
846 if (regaddr == RTXAGC_A_CCK1_MCS32) {
847 rtlphy->mcs_offset[rtlphy->pwrgroup_cnt][6] = data;
848 RT_TRACE(rtlpriv, COMP_INIT, DBG_TRACE,
849 "MCSTxPowerLevelOriginalOffset[%d][6] = 0x%x\n",
850 rtlphy->pwrgroup_cnt,
851 rtlphy->mcs_offset[rtlphy->pwrgroup_cnt][6]);
853 if (regaddr == RTXAGC_B_CCK11_A_CCK2_11 && bitmask == 0xffffff00) {
854 rtlphy->mcs_offset[rtlphy->pwrgroup_cnt][7] = data;
855 RT_TRACE(rtlpriv, COMP_INIT, DBG_TRACE,
856 "MCSTxPowerLevelOriginalOffset[%d][7] = 0x%x\n",
857 rtlphy->pwrgroup_cnt,
858 rtlphy->mcs_offset[rtlphy->pwrgroup_cnt][7]);
860 if (regaddr == RTXAGC_A_MCS03_MCS00) {
861 rtlphy->mcs_offset[rtlphy->pwrgroup_cnt][2] = data;
862 RT_TRACE(rtlpriv, COMP_INIT, DBG_TRACE,
863 "MCSTxPowerLevelOriginalOffset[%d][2] = 0x%x\n",
864 rtlphy->pwrgroup_cnt,
865 rtlphy->mcs_offset[rtlphy->pwrgroup_cnt][2]);
867 if (regaddr == RTXAGC_A_MCS07_MCS04) {
868 rtlphy->mcs_offset[rtlphy->pwrgroup_cnt][3] = data;
869 RT_TRACE(rtlpriv, COMP_INIT, DBG_TRACE,
870 "MCSTxPowerLevelOriginalOffset[%d][3] = 0x%x\n",
871 rtlphy->pwrgroup_cnt,
872 rtlphy->mcs_offset[rtlphy->pwrgroup_cnt][3]);
874 if (regaddr == RTXAGC_A_MCS11_MCS08) {
875 rtlphy->mcs_offset[rtlphy->pwrgroup_cnt][4] = data;
876 RT_TRACE(rtlpriv, COMP_INIT, DBG_TRACE,
877 "MCSTxPowerLevelOriginalOffset[%d][4] = 0x%x\n",
878 rtlphy->pwrgroup_cnt,
879 rtlphy->mcs_offset[rtlphy->pwrgroup_cnt][4]);
881 if (regaddr == RTXAGC_A_MCS15_MCS12) {
882 rtlphy->mcs_offset[rtlphy->pwrgroup_cnt][5] = data;
883 if (get_rf_type(rtlphy) == RF_1T1R)
884 rtlphy->pwrgroup_cnt++;
885 RT_TRACE(rtlpriv, COMP_INIT, DBG_TRACE,
886 "MCSTxPowerLevelOriginalOffset[%d][5] = 0x%x\n",
887 rtlphy->pwrgroup_cnt,
888 rtlphy->mcs_offset[rtlphy->pwrgroup_cnt][5]);
890 if (regaddr == RTXAGC_B_RATE18_06) {
891 rtlphy->mcs_offset[rtlphy->pwrgroup_cnt][8] = data;
892 RT_TRACE(rtlpriv, COMP_INIT, DBG_TRACE,
893 "MCSTxPowerLevelOriginalOffset[%d][8] = 0x%x\n",
894 rtlphy->pwrgroup_cnt,
895 rtlphy->mcs_offset[rtlphy->pwrgroup_cnt][8]);
897 if (regaddr == RTXAGC_B_RATE54_24) {
898 rtlphy->mcs_offset[rtlphy->pwrgroup_cnt][9] = data;
899 RT_TRACE(rtlpriv, COMP_INIT, DBG_TRACE,
900 "MCSTxPowerLevelOriginalOffset[%d][9] = 0x%x\n",
901 rtlphy->pwrgroup_cnt,
902 rtlphy->mcs_offset[rtlphy->pwrgroup_cnt][9]);
904 if (regaddr == RTXAGC_B_CCK1_55_MCS32) {
905 rtlphy->mcs_offset[rtlphy->pwrgroup_cnt][14] = data;
906 RT_TRACE(rtlpriv, COMP_INIT, DBG_TRACE,
907 "MCSTxPowerLevelOriginalOffset[%d][14] = 0x%x\n",
908 rtlphy->pwrgroup_cnt,
909 rtlphy->mcs_offset[rtlphy->pwrgroup_cnt][14]);
911 if (regaddr == RTXAGC_B_CCK11_A_CCK2_11 && bitmask == 0x000000ff) {
912 rtlphy->mcs_offset[rtlphy->pwrgroup_cnt][15] = data;
913 RT_TRACE(rtlpriv, COMP_INIT, DBG_TRACE,
914 "MCSTxPowerLevelOriginalOffset[%d][15] = 0x%x\n",
915 rtlphy->pwrgroup_cnt,
916 rtlphy->mcs_offset[rtlphy->pwrgroup_cnt][15]);
918 if (regaddr == RTXAGC_B_MCS03_MCS00) {
919 rtlphy->mcs_offset[rtlphy->pwrgroup_cnt][10] = data;
920 RT_TRACE(rtlpriv, COMP_INIT, DBG_TRACE,
921 "MCSTxPowerLevelOriginalOffset[%d][10] = 0x%x\n",
922 rtlphy->pwrgroup_cnt,
923 rtlphy->mcs_offset[rtlphy->pwrgroup_cnt][10]);
925 if (regaddr == RTXAGC_B_MCS07_MCS04) {
926 rtlphy->mcs_offset[rtlphy->pwrgroup_cnt][11] = data;
927 RT_TRACE(rtlpriv, COMP_INIT, DBG_TRACE,
928 "MCSTxPowerLevelOriginalOffset[%d][11] = 0x%x\n",
929 rtlphy->pwrgroup_cnt,
930 rtlphy->mcs_offset[rtlphy->pwrgroup_cnt][11]);
932 if (regaddr == RTXAGC_B_MCS11_MCS08) {
933 rtlphy->mcs_offset[rtlphy->pwrgroup_cnt][12] = data;
934 RT_TRACE(rtlpriv, COMP_INIT, DBG_TRACE,
935 "MCSTxPowerLevelOriginalOffset[%d][12] = 0x%x\n",
936 rtlphy->pwrgroup_cnt,
937 rtlphy->mcs_offset[rtlphy->pwrgroup_cnt][12]);
939 if (regaddr == RTXAGC_B_MCS15_MCS12) {
940 rtlphy->mcs_offset[rtlphy->pwrgroup_cnt][13] = data;
941 RT_TRACE(rtlpriv, COMP_INIT, DBG_TRACE,
942 "MCSTxPowerLevelOriginalOffset[%d][13] = 0x%x\n",
943 rtlphy->pwrgroup_cnt,
944 rtlphy->mcs_offset[rtlphy->pwrgroup_cnt][13]);
945 if (get_rf_type(rtlphy) != RF_1T1R)
946 rtlphy->pwrgroup_cnt++;
950 #define READ_NEXT_RF_PAIR(v1, v2, i) \
951 do { \
952 i += 2; v1 = a_table[i]; \
953 v2 = a_table[i + 1]; \
954 } while (0)
956 bool rtl88e_phy_config_rf_with_headerfile(struct ieee80211_hw *hw,
957 enum radio_path rfpath)
959 int i;
960 u32 *a_table;
961 u16 a_len;
962 struct rtl_priv *rtlpriv = rtl_priv(hw);
963 struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw));
964 u32 v1 = 0, v2 = 0;
966 a_len = RTL8188EE_RADIOA_1TARRAYLEN;
967 a_table = RTL8188EE_RADIOA_1TARRAY;
968 RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD,
969 "Radio_A:RTL8188EE_RADIOA_1TARRAY %d\n", a_len);
970 RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD, "Radio No %x\n", rfpath);
971 switch (rfpath) {
972 case RF90_PATH_A:
973 for (i = 0; i < a_len; i = i + 2) {
974 v1 = a_table[i];
975 v2 = a_table[i + 1];
976 if (v1 < 0xcdcdcdcd) {
977 rtl88_config_s(hw, v1, v2);
978 } else {/*This line is the start line of branch.*/
979 if (!check_cond(hw, a_table[i])) {
980 /* Discard the following (offset, data)
981 * pairs
983 READ_NEXT_RF_PAIR(v1, v2, i);
984 while (v2 != 0xDEAD && v2 != 0xCDEF &&
985 v2 != 0xCDCD && i < a_len - 2)
986 READ_NEXT_RF_PAIR(v1, v2, i);
987 i -= 2; /* prevent from for-loop += 2*/
988 } else {
989 /* Configure matched pairs and skip to
990 * end of if-else.
992 READ_NEXT_RF_PAIR(v1, v2, i);
993 while (v2 != 0xDEAD && v2 != 0xCDEF &&
994 v2 != 0xCDCD && i < a_len - 2) {
995 rtl88_config_s(hw, v1, v2);
996 READ_NEXT_RF_PAIR(v1, v2, i);
999 while (v2 != 0xDEAD && i < a_len - 2)
1000 READ_NEXT_RF_PAIR(v1, v2, i);
1005 if (rtlhal->oem_id == RT_CID_819x_HP)
1006 rtl88_config_s(hw, 0x52, 0x7E4BD);
1008 break;
1010 case RF90_PATH_B:
1011 case RF90_PATH_C:
1012 case RF90_PATH_D:
1013 default:
1014 RT_TRACE(rtlpriv, COMP_ERR, DBG_EMERG,
1015 "switch case not processed\n");
1016 break;
1018 return true;
1021 void rtl88e_phy_get_hw_reg_originalvalue(struct ieee80211_hw *hw)
1023 struct rtl_priv *rtlpriv = rtl_priv(hw);
1024 struct rtl_phy *rtlphy = &(rtlpriv->phy);
1026 rtlphy->default_initialgain[0] = rtl_get_bbreg(hw, ROFDM0_XAAGCCORE1,
1027 MASKBYTE0);
1028 rtlphy->default_initialgain[1] = rtl_get_bbreg(hw, ROFDM0_XBAGCCORE1,
1029 MASKBYTE0);
1030 rtlphy->default_initialgain[2] = rtl_get_bbreg(hw, ROFDM0_XCAGCCORE1,
1031 MASKBYTE0);
1032 rtlphy->default_initialgain[3] = rtl_get_bbreg(hw, ROFDM0_XDAGCCORE1,
1033 MASKBYTE0);
1035 RT_TRACE(rtlpriv, COMP_INIT, DBG_TRACE,
1036 "Default initial gain (c50 = 0x%x, c58 = 0x%x, c60 = 0x%x, c68 = 0x%x\n",
1037 rtlphy->default_initialgain[0],
1038 rtlphy->default_initialgain[1],
1039 rtlphy->default_initialgain[2],
1040 rtlphy->default_initialgain[3]);
1042 rtlphy->framesync = rtl_get_bbreg(hw, ROFDM0_RXDETECTOR3,
1043 MASKBYTE0);
1044 rtlphy->framesync_c34 = rtl_get_bbreg(hw, ROFDM0_RXDETECTOR2,
1045 MASKDWORD);
1047 RT_TRACE(rtlpriv, COMP_INIT, DBG_TRACE,
1048 "Default framesync (0x%x) = 0x%x\n",
1049 ROFDM0_RXDETECTOR3, rtlphy->framesync);
1052 void rtl88e_phy_get_txpower_level(struct ieee80211_hw *hw, long *powerlevel)
1054 struct rtl_priv *rtlpriv = rtl_priv(hw);
1055 struct rtl_phy *rtlphy = &(rtlpriv->phy);
1056 u8 level;
1057 long dbm;
1059 level = rtlphy->cur_cck_txpwridx;
1060 dbm = rtl88e_pwr_idx_dbm(hw, WIRELESS_MODE_B, level);
1061 level = rtlphy->cur_ofdm24g_txpwridx;
1062 if (rtl88e_pwr_idx_dbm(hw, WIRELESS_MODE_G, level) > dbm)
1063 dbm = rtl88e_pwr_idx_dbm(hw, WIRELESS_MODE_G, level);
1064 level = rtlphy->cur_ofdm24g_txpwridx;
1065 if (rtl88e_pwr_idx_dbm(hw, WIRELESS_MODE_N_24G, level) > dbm)
1066 dbm = rtl88e_pwr_idx_dbm(hw, WIRELESS_MODE_N_24G, level);
1067 *powerlevel = dbm;
1070 static void _rtl88e_get_txpower_index(struct ieee80211_hw *hw, u8 channel,
1071 u8 *cckpower, u8 *ofdm, u8 *bw20_pwr,
1072 u8 *bw40_pwr)
1074 struct rtl_efuse *fuse = rtl_efuse(rtl_priv(hw));
1075 u8 i = (channel - 1);
1076 u8 rf_path = 0;
1077 int jj = RF90_PATH_A;
1078 int kk = RF90_PATH_B;
1080 for (rf_path = 0; rf_path < 2; rf_path++) {
1081 if (rf_path == jj) {
1082 cckpower[jj] = fuse->txpwrlevel_cck[jj][i];
1083 if (fuse->txpwr_ht20diff[jj][i] > 0x0f) /*-8~7 */
1084 bw20_pwr[jj] = fuse->txpwrlevel_ht40_1s[jj][i] -
1085 (~(fuse->txpwr_ht20diff[jj][i]) + 1);
1086 else
1087 bw20_pwr[jj] = fuse->txpwrlevel_ht40_1s[jj][i] +
1088 fuse->txpwr_ht20diff[jj][i];
1089 if (fuse->txpwr_legacyhtdiff[jj][i] > 0xf)
1090 ofdm[jj] = fuse->txpwrlevel_ht40_1s[jj][i] -
1091 (~(fuse->txpwr_legacyhtdiff[jj][i])+1);
1092 else
1093 ofdm[jj] = fuse->txpwrlevel_ht40_1s[jj][i] +
1094 fuse->txpwr_legacyhtdiff[jj][i];
1095 bw40_pwr[jj] = fuse->txpwrlevel_ht40_1s[jj][i];
1097 } else if (rf_path == kk) {
1098 cckpower[kk] = fuse->txpwrlevel_cck[kk][i];
1099 bw20_pwr[kk] = fuse->txpwrlevel_ht40_1s[kk][i] +
1100 fuse->txpwr_ht20diff[kk][i];
1101 ofdm[kk] = fuse->txpwrlevel_ht40_1s[kk][i] +
1102 fuse->txpwr_legacyhtdiff[kk][i];
1103 bw40_pwr[kk] = fuse->txpwrlevel_ht40_1s[kk][i];
1108 static void _rtl88e_ccxpower_index_check(struct ieee80211_hw *hw,
1109 u8 channel, u8 *cckpower,
1110 u8 *ofdm, u8 *bw20_pwr,
1111 u8 *bw40_pwr)
1113 struct rtl_priv *rtlpriv = rtl_priv(hw);
1114 struct rtl_phy *rtlphy = &(rtlpriv->phy);
1116 rtlphy->cur_cck_txpwridx = cckpower[0];
1117 rtlphy->cur_ofdm24g_txpwridx = ofdm[0];
1118 rtlphy->cur_bw20_txpwridx = bw20_pwr[0];
1119 rtlphy->cur_bw40_txpwridx = bw40_pwr[0];
1122 void rtl88e_phy_set_txpower_level(struct ieee80211_hw *hw, u8 channel)
1124 struct rtl_efuse *fuse = rtl_efuse(rtl_priv(hw));
1125 u8 cckpower[MAX_TX_COUNT] = {0}, ofdm[MAX_TX_COUNT] = {0};
1126 u8 bw20_pwr[MAX_TX_COUNT] = {0}, bw40_pwr[MAX_TX_COUNT] = {0};
1128 if (fuse->txpwr_fromeprom == false)
1129 return;
1130 _rtl88e_get_txpower_index(hw, channel, &cckpower[0], &ofdm[0],
1131 &bw20_pwr[0], &bw40_pwr[0]);
1132 _rtl88e_ccxpower_index_check(hw, channel, &cckpower[0], &ofdm[0],
1133 &bw20_pwr[0], &bw40_pwr[0]);
1134 rtl88e_phy_rf6052_set_cck_txpower(hw, &cckpower[0]);
1135 rtl88e_phy_rf6052_set_ofdm_txpower(hw, &ofdm[0], &bw20_pwr[0],
1136 &bw40_pwr[0], channel);
1139 void rtl88e_phy_scan_operation_backup(struct ieee80211_hw *hw, u8 operation)
1141 struct rtl_priv *rtlpriv = rtl_priv(hw);
1142 struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw));
1143 enum io_type iotype;
1145 if (!is_hal_stop(rtlhal)) {
1146 switch (operation) {
1147 case SCAN_OPT_BACKUP:
1148 iotype = IO_CMD_PAUSE_DM_BY_SCAN;
1149 rtlpriv->cfg->ops->set_hw_reg(hw,
1150 HW_VAR_IO_CMD,
1151 (u8 *)&iotype);
1152 break;
1153 case SCAN_OPT_RESTORE:
1154 iotype = IO_CMD_RESUME_DM_BY_SCAN;
1155 rtlpriv->cfg->ops->set_hw_reg(hw,
1156 HW_VAR_IO_CMD,
1157 (u8 *)&iotype);
1158 break;
1159 default:
1160 RT_TRACE(rtlpriv, COMP_ERR, DBG_EMERG,
1161 "Unknown Scan Backup operation.\n");
1162 break;
1167 void rtl88e_phy_set_bw_mode_callback(struct ieee80211_hw *hw)
1169 struct rtl_priv *rtlpriv = rtl_priv(hw);
1170 struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw));
1171 struct rtl_phy *rtlphy = &(rtlpriv->phy);
1172 struct rtl_mac *mac = rtl_mac(rtl_priv(hw));
1173 u8 reg_bw_opmode;
1174 u8 reg_prsr_rsc;
1176 RT_TRACE(rtlpriv, COMP_SCAN, DBG_TRACE,
1177 "Switch to %s bandwidth\n",
1178 rtlphy->current_chan_bw == HT_CHANNEL_WIDTH_20 ?
1179 "20MHz" : "40MHz");
1181 if (is_hal_stop(rtlhal)) {
1182 rtlphy->set_bwmode_inprogress = false;
1183 return;
1186 reg_bw_opmode = rtl_read_byte(rtlpriv, REG_BWOPMODE);
1187 reg_prsr_rsc = rtl_read_byte(rtlpriv, REG_RRSR + 2);
1189 switch (rtlphy->current_chan_bw) {
1190 case HT_CHANNEL_WIDTH_20:
1191 reg_bw_opmode |= BW_OPMODE_20MHZ;
1192 rtl_write_byte(rtlpriv, REG_BWOPMODE, reg_bw_opmode);
1193 break;
1194 case HT_CHANNEL_WIDTH_20_40:
1195 reg_bw_opmode &= ~BW_OPMODE_20MHZ;
1196 rtl_write_byte(rtlpriv, REG_BWOPMODE, reg_bw_opmode);
1197 reg_prsr_rsc =
1198 (reg_prsr_rsc & 0x90) | (mac->cur_40_prime_sc << 5);
1199 rtl_write_byte(rtlpriv, REG_RRSR + 2, reg_prsr_rsc);
1200 break;
1201 default:
1202 RT_TRACE(rtlpriv, COMP_ERR, DBG_EMERG,
1203 "unknown bandwidth: %#X\n", rtlphy->current_chan_bw);
1204 break;
1207 switch (rtlphy->current_chan_bw) {
1208 case HT_CHANNEL_WIDTH_20:
1209 rtl_set_bbreg(hw, RFPGA0_RFMOD, BRFMOD, 0x0);
1210 rtl_set_bbreg(hw, RFPGA1_RFMOD, BRFMOD, 0x0);
1211 /* rtl_set_bbreg(hw, RFPGA0_ANALOGPARAMETER2, BIT(10), 1);*/
1212 break;
1213 case HT_CHANNEL_WIDTH_20_40:
1214 rtl_set_bbreg(hw, RFPGA0_RFMOD, BRFMOD, 0x1);
1215 rtl_set_bbreg(hw, RFPGA1_RFMOD, BRFMOD, 0x1);
1217 rtl_set_bbreg(hw, RCCK0_SYSTEM, BCCK_SIDEBAND,
1218 (mac->cur_40_prime_sc >> 1));
1219 rtl_set_bbreg(hw, ROFDM1_LSTF, 0xC00, mac->cur_40_prime_sc);
1220 /*rtl_set_bbreg(hw, RFPGA0_ANALOGPARAMETER2, BIT(10), 0);*/
1222 rtl_set_bbreg(hw, 0x818, (BIT(26) | BIT(27)),
1223 (mac->cur_40_prime_sc ==
1224 HAL_PRIME_CHNL_OFFSET_LOWER) ? 2 : 1);
1225 break;
1226 default:
1227 RT_TRACE(rtlpriv, COMP_ERR, DBG_EMERG,
1228 "unknown bandwidth: %#X\n", rtlphy->current_chan_bw);
1229 break;
1231 rtl88e_phy_rf6052_set_bandwidth(hw, rtlphy->current_chan_bw);
1232 rtlphy->set_bwmode_inprogress = false;
1233 RT_TRACE(rtlpriv, COMP_SCAN, DBG_LOUD, "\n");
1236 void rtl88e_phy_set_bw_mode(struct ieee80211_hw *hw,
1237 enum nl80211_channel_type ch_type)
1239 struct rtl_priv *rtlpriv = rtl_priv(hw);
1240 struct rtl_phy *rtlphy = &(rtlpriv->phy);
1241 struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw));
1242 u8 tmp_bw = rtlphy->current_chan_bw;
1244 if (rtlphy->set_bwmode_inprogress)
1245 return;
1246 rtlphy->set_bwmode_inprogress = true;
1247 if ((!is_hal_stop(rtlhal)) && !(RT_CANNOT_IO(hw))) {
1248 rtl88e_phy_set_bw_mode_callback(hw);
1249 } else {
1250 RT_TRACE(rtlpriv, COMP_ERR, DBG_WARNING,
1251 "FALSE driver sleep or unload\n");
1252 rtlphy->set_bwmode_inprogress = false;
1253 rtlphy->current_chan_bw = tmp_bw;
1257 void rtl88e_phy_sw_chnl_callback(struct ieee80211_hw *hw)
1259 struct rtl_priv *rtlpriv = rtl_priv(hw);
1260 struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw));
1261 struct rtl_phy *rtlphy = &(rtlpriv->phy);
1262 u32 delay;
1264 RT_TRACE(rtlpriv, COMP_SCAN, DBG_TRACE,
1265 "switch to channel%d\n", rtlphy->current_channel);
1266 if (is_hal_stop(rtlhal))
1267 return;
1268 do {
1269 if (!rtlphy->sw_chnl_inprogress)
1270 break;
1271 if (!chnl_step_by_step(hw, rtlphy->current_channel,
1272 &rtlphy->sw_chnl_stage,
1273 &rtlphy->sw_chnl_step, &delay)) {
1274 if (delay > 0)
1275 mdelay(delay);
1276 else
1277 continue;
1278 } else {
1279 rtlphy->sw_chnl_inprogress = false;
1281 break;
1282 } while (true);
1283 RT_TRACE(rtlpriv, COMP_SCAN, DBG_TRACE, "\n");
1286 u8 rtl88e_phy_sw_chnl(struct ieee80211_hw *hw)
1288 struct rtl_priv *rtlpriv = rtl_priv(hw);
1289 struct rtl_phy *rtlphy = &(rtlpriv->phy);
1290 struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw));
1292 if (rtlphy->sw_chnl_inprogress)
1293 return 0;
1294 if (rtlphy->set_bwmode_inprogress)
1295 return 0;
1296 RT_ASSERT((rtlphy->current_channel <= 14),
1297 "WIRELESS_MODE_G but channel>14");
1298 rtlphy->sw_chnl_inprogress = true;
1299 rtlphy->sw_chnl_stage = 0;
1300 rtlphy->sw_chnl_step = 0;
1301 if (!(is_hal_stop(rtlhal)) && !(RT_CANNOT_IO(hw))) {
1302 rtl88e_phy_sw_chnl_callback(hw);
1303 RT_TRACE(rtlpriv, COMP_CHAN, DBG_LOUD,
1304 "sw_chnl_inprogress false schdule workitem current channel %d\n",
1305 rtlphy->current_channel);
1306 rtlphy->sw_chnl_inprogress = false;
1307 } else {
1308 RT_TRACE(rtlpriv, COMP_CHAN, DBG_LOUD,
1309 "sw_chnl_inprogress false driver sleep or unload\n");
1310 rtlphy->sw_chnl_inprogress = false;
1312 return 1;
1315 static u8 _rtl88e_phy_path_a_iqk(struct ieee80211_hw *hw, bool config_pathb)
1317 u32 reg_eac, reg_e94, reg_e9c;
1318 u8 result = 0x00;
1320 rtl_set_bbreg(hw, 0xe30, MASKDWORD, 0x10008c1c);
1321 rtl_set_bbreg(hw, 0xe34, MASKDWORD, 0x30008c1c);
1322 rtl_set_bbreg(hw, 0xe38, MASKDWORD, 0x8214032a);
1323 rtl_set_bbreg(hw, 0xe3c, MASKDWORD, 0x28160000);
1325 rtl_set_bbreg(hw, 0xe4c, MASKDWORD, 0x00462911);
1326 rtl_set_bbreg(hw, 0xe48, MASKDWORD, 0xf9000000);
1327 rtl_set_bbreg(hw, 0xe48, MASKDWORD, 0xf8000000);
1329 mdelay(IQK_DELAY_TIME);
1331 reg_eac = rtl_get_bbreg(hw, 0xeac, MASKDWORD);
1332 reg_e94 = rtl_get_bbreg(hw, 0xe94, MASKDWORD);
1333 reg_e9c = rtl_get_bbreg(hw, 0xe9c, MASKDWORD);
1335 if (!(reg_eac & BIT(28)) &&
1336 (((reg_e94 & 0x03FF0000) >> 16) != 0x142) &&
1337 (((reg_e9c & 0x03FF0000) >> 16) != 0x42))
1338 result |= 0x01;
1339 return result;
1342 static u8 _rtl88e_phy_path_b_iqk(struct ieee80211_hw *hw)
1344 u32 reg_eac, reg_eb4, reg_ebc, reg_ec4, reg_ecc;
1345 u8 result = 0x00;
1347 rtl_set_bbreg(hw, 0xe60, MASKDWORD, 0x00000002);
1348 rtl_set_bbreg(hw, 0xe60, MASKDWORD, 0x00000000);
1349 mdelay(IQK_DELAY_TIME);
1350 reg_eac = rtl_get_bbreg(hw, 0xeac, MASKDWORD);
1351 reg_eb4 = rtl_get_bbreg(hw, 0xeb4, MASKDWORD);
1352 reg_ebc = rtl_get_bbreg(hw, 0xebc, MASKDWORD);
1353 reg_ec4 = rtl_get_bbreg(hw, 0xec4, MASKDWORD);
1354 reg_ecc = rtl_get_bbreg(hw, 0xecc, MASKDWORD);
1356 if (!(reg_eac & BIT(31)) &&
1357 (((reg_eb4 & 0x03FF0000) >> 16) != 0x142) &&
1358 (((reg_ebc & 0x03FF0000) >> 16) != 0x42))
1359 result |= 0x01;
1360 else
1361 return result;
1362 if (!(reg_eac & BIT(30)) &&
1363 (((reg_ec4 & 0x03FF0000) >> 16) != 0x132) &&
1364 (((reg_ecc & 0x03FF0000) >> 16) != 0x36))
1365 result |= 0x02;
1366 return result;
1369 static u8 _rtl88e_phy_path_a_rx_iqk(struct ieee80211_hw *hw, bool config_pathb)
1371 u32 reg_eac, reg_e94, reg_e9c, reg_ea4, u32temp;
1372 u8 result = 0x00;
1373 int jj = RF90_PATH_A;
1375 /*Get TXIMR Setting*/
1376 /*Modify RX IQK mode table*/
1377 rtl_set_bbreg(hw, RFPGA0_IQK, MASKDWORD, 0x00000000);
1378 rtl_set_rfreg(hw, jj, RF_WE_LUT, RFREG_OFFSET_MASK, 0x800a0);
1379 rtl_set_rfreg(hw, jj, RF_RCK_OS, RFREG_OFFSET_MASK, 0x30000);
1380 rtl_set_rfreg(hw, jj, RF_TXPA_G1, RFREG_OFFSET_MASK, 0x0000f);
1381 rtl_set_rfreg(hw, jj, RF_TXPA_G2, RFREG_OFFSET_MASK, 0xf117b);
1382 rtl_set_bbreg(hw, RFPGA0_IQK, MASKDWORD, 0x80800000);
1384 /*IQK Setting*/
1385 rtl_set_bbreg(hw, RTX_IQK, MASKDWORD, 0x01007c00);
1386 rtl_set_bbreg(hw, RRX_IQK, MASKDWORD, 0x81004800);
1388 /*path a IQK setting*/
1389 rtl_set_bbreg(hw, RTX_IQK_TONE_A, MASKDWORD, 0x10008c1c);
1390 rtl_set_bbreg(hw, RRX_IQK_TONE_A, MASKDWORD, 0x30008c1c);
1391 rtl_set_bbreg(hw, RTX_IQK_PI_A, MASKDWORD, 0x82160804);
1392 rtl_set_bbreg(hw, RRX_IQK_PI_A, MASKDWORD, 0x28160000);
1394 /*LO calibration Setting*/
1395 rtl_set_bbreg(hw, RIQK_AGC_RSP, MASKDWORD, 0x0046a911);
1396 /*one shot, path A LOK & iqk*/
1397 rtl_set_bbreg(hw, RIQK_AGC_PTS, MASKDWORD, 0xf9000000);
1398 rtl_set_bbreg(hw, RIQK_AGC_PTS, MASKDWORD, 0xf8000000);
1400 mdelay(IQK_DELAY_TIME);
1402 reg_eac = rtl_get_bbreg(hw, RRX_POWER_AFTER_IQK_A_2, MASKDWORD);
1403 reg_e94 = rtl_get_bbreg(hw, RTX_POWER_BEFORE_IQK_A, MASKDWORD);
1404 reg_e9c = rtl_get_bbreg(hw, RTX_POWER_AFTER_IQK_A, MASKDWORD);
1407 if (!(reg_eac & BIT(28)) &&
1408 (((reg_e94 & 0x03FF0000) >> 16) != 0x142) &&
1409 (((reg_e9c & 0x03FF0000) >> 16) != 0x42))
1410 result |= 0x01;
1411 else
1412 return result;
1414 u32temp = 0x80007C00 | (reg_e94&0x3FF0000) |
1415 ((reg_e9c&0x3FF0000) >> 16);
1416 rtl_set_bbreg(hw, RTX_IQK, MASKDWORD, u32temp);
1417 /*RX IQK*/
1418 /*Modify RX IQK mode table*/
1419 rtl_set_bbreg(hw, RFPGA0_IQK, MASKDWORD, 0x00000000);
1420 rtl_set_rfreg(hw, jj, RF_WE_LUT, RFREG_OFFSET_MASK, 0x800a0);
1421 rtl_set_rfreg(hw, jj, RF_RCK_OS, RFREG_OFFSET_MASK, 0x30000);
1422 rtl_set_rfreg(hw, jj, RF_TXPA_G1, RFREG_OFFSET_MASK, 0x0000f);
1423 rtl_set_rfreg(hw, jj, RF_TXPA_G2, RFREG_OFFSET_MASK, 0xf7ffa);
1424 rtl_set_bbreg(hw, RFPGA0_IQK, MASKDWORD, 0x80800000);
1426 /*IQK Setting*/
1427 rtl_set_bbreg(hw, RRX_IQK, MASKDWORD, 0x01004800);
1429 /*path a IQK setting*/
1430 rtl_set_bbreg(hw, RTX_IQK_TONE_A, MASKDWORD, 0x30008c1c);
1431 rtl_set_bbreg(hw, RRX_IQK_TONE_A, MASKDWORD, 0x10008c1c);
1432 rtl_set_bbreg(hw, RTX_IQK_PI_A, MASKDWORD, 0x82160c05);
1433 rtl_set_bbreg(hw, RRX_IQK_PI_A, MASKDWORD, 0x28160c05);
1435 /*LO calibration Setting*/
1436 rtl_set_bbreg(hw, RIQK_AGC_RSP, MASKDWORD, 0x0046a911);
1437 /*one shot, path A LOK & iqk*/
1438 rtl_set_bbreg(hw, RIQK_AGC_PTS, MASKDWORD, 0xf9000000);
1439 rtl_set_bbreg(hw, RIQK_AGC_PTS, MASKDWORD, 0xf8000000);
1441 mdelay(IQK_DELAY_TIME);
1443 reg_eac = rtl_get_bbreg(hw, RRX_POWER_AFTER_IQK_A_2, MASKDWORD);
1444 reg_e94 = rtl_get_bbreg(hw, RTX_POWER_BEFORE_IQK_A, MASKDWORD);
1445 reg_e9c = rtl_get_bbreg(hw, RTX_POWER_AFTER_IQK_A, MASKDWORD);
1446 reg_ea4 = rtl_get_bbreg(hw, RRX_POWER_BEFORE_IQK_A_2, MASKDWORD);
1448 if (!(reg_eac & BIT(27)) &&
1449 (((reg_ea4 & 0x03FF0000) >> 16) != 0x132) &&
1450 (((reg_eac & 0x03FF0000) >> 16) != 0x36))
1451 result |= 0x02;
1452 return result;
1455 static void fill_iqk(struct ieee80211_hw *hw, bool iqk_ok, long result[][8],
1456 u8 final, bool btxonly)
1458 u32 oldval_0, x, tx0_a, reg;
1459 long y, tx0_c;
1461 if (final == 0xFF) {
1462 return;
1463 } else if (iqk_ok) {
1464 oldval_0 = (rtl_get_bbreg(hw, ROFDM0_XATXIQIMBAL,
1465 MASKDWORD) >> 22) & 0x3FF;
1466 x = result[final][0];
1467 if ((x & 0x00000200) != 0)
1468 x = x | 0xFFFFFC00;
1469 tx0_a = (x * oldval_0) >> 8;
1470 rtl_set_bbreg(hw, ROFDM0_XATXIQIMBAL, 0x3FF, tx0_a);
1471 rtl_set_bbreg(hw, ROFDM0_ECCATHRES, BIT(31),
1472 ((x * oldval_0 >> 7) & 0x1));
1473 y = result[final][1];
1474 if ((y & 0x00000200) != 0)
1475 y |= 0xFFFFFC00;
1476 tx0_c = (y * oldval_0) >> 8;
1477 rtl_set_bbreg(hw, ROFDM0_XCTXAFE, 0xF0000000,
1478 ((tx0_c & 0x3C0) >> 6));
1479 rtl_set_bbreg(hw, ROFDM0_XATXIQIMBAL, 0x003F0000,
1480 (tx0_c & 0x3F));
1481 rtl_set_bbreg(hw, ROFDM0_ECCATHRES, BIT(29),
1482 ((y * oldval_0 >> 7) & 0x1));
1483 if (btxonly)
1484 return;
1485 reg = result[final][2];
1486 rtl_set_bbreg(hw, ROFDM0_XARXIQIMBAL, 0x3FF, reg);
1487 reg = result[final][3] & 0x3F;
1488 rtl_set_bbreg(hw, ROFDM0_XARXIQIMBAL, 0xFC00, reg);
1489 reg = (result[final][3] >> 6) & 0xF;
1490 rtl_set_bbreg(hw, 0xca0, 0xF0000000, reg);
1494 static void save_adda_reg(struct ieee80211_hw *hw,
1495 const u32 *addareg, u32 *backup,
1496 u32 registernum)
1498 u32 i;
1500 for (i = 0; i < registernum; i++)
1501 backup[i] = rtl_get_bbreg(hw, addareg[i], MASKDWORD);
1504 static void save_mac_reg(struct ieee80211_hw *hw, const u32 *macreg,
1505 u32 *macbackup)
1507 struct rtl_priv *rtlpriv = rtl_priv(hw);
1508 u32 i;
1510 for (i = 0; i < (IQK_MAC_REG_NUM - 1); i++)
1511 macbackup[i] = rtl_read_byte(rtlpriv, macreg[i]);
1512 macbackup[i] = rtl_read_dword(rtlpriv, macreg[i]);
1515 static void reload_adda(struct ieee80211_hw *hw, const u32 *addareg,
1516 u32 *backup, u32 reg_num)
1518 u32 i;
1520 for (i = 0; i < reg_num; i++)
1521 rtl_set_bbreg(hw, addareg[i], MASKDWORD, backup[i]);
1524 static void reload_mac(struct ieee80211_hw *hw, const u32 *macreg,
1525 u32 *macbackup)
1527 struct rtl_priv *rtlpriv = rtl_priv(hw);
1528 u32 i;
1530 for (i = 0; i < (IQK_MAC_REG_NUM - 1); i++)
1531 rtl_write_byte(rtlpriv, macreg[i], (u8) macbackup[i]);
1532 rtl_write_dword(rtlpriv, macreg[i], macbackup[i]);
1535 static void _rtl88e_phy_path_adda_on(struct ieee80211_hw *hw,
1536 const u32 *addareg, bool is_patha_on,
1537 bool is2t)
1539 u32 pathon;
1540 u32 i;
1542 pathon = is_patha_on ? 0x04db25a4 : 0x0b1b25a4;
1543 if (false == is2t) {
1544 pathon = 0x0bdb25a0;
1545 rtl_set_bbreg(hw, addareg[0], MASKDWORD, 0x0b1b25a0);
1546 } else {
1547 rtl_set_bbreg(hw, addareg[0], MASKDWORD, pathon);
1550 for (i = 1; i < IQK_ADDA_REG_NUM; i++)
1551 rtl_set_bbreg(hw, addareg[i], MASKDWORD, pathon);
1554 static void _rtl88e_phy_mac_setting_calibration(struct ieee80211_hw *hw,
1555 const u32 *macreg,
1556 u32 *macbackup)
1558 struct rtl_priv *rtlpriv = rtl_priv(hw);
1559 u32 i = 0;
1561 rtl_write_byte(rtlpriv, macreg[i], 0x3F);
1563 for (i = 1; i < (IQK_MAC_REG_NUM - 1); i++)
1564 rtl_write_byte(rtlpriv, macreg[i],
1565 (u8) (macbackup[i] & (~BIT(3))));
1566 rtl_write_byte(rtlpriv, macreg[i], (u8) (macbackup[i] & (~BIT(5))));
1569 static void _rtl88e_phy_path_a_standby(struct ieee80211_hw *hw)
1571 rtl_set_bbreg(hw, 0xe28, MASKDWORD, 0x0);
1572 rtl_set_bbreg(hw, 0x840, MASKDWORD, 0x00010000);
1573 rtl_set_bbreg(hw, 0xe28, MASKDWORD, 0x80800000);
1576 static void _rtl88e_phy_pi_mode_switch(struct ieee80211_hw *hw, bool pi_mode)
1578 u32 mode;
1580 mode = pi_mode ? 0x01000100 : 0x01000000;
1581 rtl_set_bbreg(hw, 0x820, MASKDWORD, mode);
1582 rtl_set_bbreg(hw, 0x828, MASKDWORD, mode);
1585 static bool sim_comp(struct ieee80211_hw *hw, long result[][8], u8 c1, u8 c2)
1587 u32 i, j, diff, bitmap, bound;
1588 struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw));
1590 u8 final[2] = {0xFF, 0xFF};
1591 bool bresult = true, is2t = IS_92C_SERIAL(rtlhal->version);
1593 if (is2t)
1594 bound = 8;
1595 else
1596 bound = 4;
1598 bitmap = 0;
1600 for (i = 0; i < bound; i++) {
1601 diff = (result[c1][i] > result[c2][i]) ?
1602 (result[c1][i] - result[c2][i]) :
1603 (result[c2][i] - result[c1][i]);
1605 if (diff > MAX_TOLERANCE) {
1606 if ((i == 2 || i == 6) && !bitmap) {
1607 if (result[c1][i] + result[c1][i + 1] == 0)
1608 final[(i / 4)] = c2;
1609 else if (result[c2][i] + result[c2][i + 1] == 0)
1610 final[(i / 4)] = c1;
1611 else
1612 bitmap = bitmap | (1 << i);
1613 } else {
1614 bitmap = bitmap | (1 << i);
1619 if (bitmap == 0) {
1620 for (i = 0; i < (bound / 4); i++) {
1621 if (final[i] != 0xFF) {
1622 for (j = i * 4; j < (i + 1) * 4 - 2; j++)
1623 result[3][j] = result[final[i]][j];
1624 bresult = false;
1627 return bresult;
1628 } else if (!(bitmap & 0x0F)) {
1629 for (i = 0; i < 4; i++)
1630 result[3][i] = result[c1][i];
1631 return false;
1632 } else if (!(bitmap & 0xF0) && is2t) {
1633 for (i = 4; i < 8; i++)
1634 result[3][i] = result[c1][i];
1635 return false;
1636 } else {
1637 return false;
1641 static void _rtl88e_phy_iq_calibrate(struct ieee80211_hw *hw,
1642 long result[][8], u8 t, bool is2t)
1644 struct rtl_priv *rtlpriv = rtl_priv(hw);
1645 struct rtl_phy *rtlphy = &(rtlpriv->phy);
1646 u32 i;
1647 u8 patha_ok, pathb_ok;
1648 const u32 adda_reg[IQK_ADDA_REG_NUM] = {
1649 0x85c, 0xe6c, 0xe70, 0xe74,
1650 0xe78, 0xe7c, 0xe80, 0xe84,
1651 0xe88, 0xe8c, 0xed0, 0xed4,
1652 0xed8, 0xedc, 0xee0, 0xeec
1654 const u32 iqk_mac_reg[IQK_MAC_REG_NUM] = {
1655 0x522, 0x550, 0x551, 0x040
1657 const u32 iqk_bb_reg[IQK_BB_REG_NUM] = {
1658 ROFDM0_TRXPATHENABLE, ROFDM0_TRMUXPAR, RFPGA0_XCD_RFINTERFACESW,
1659 0xb68, 0xb6c, 0x870, 0x860, 0x864, 0x800
1661 const u32 retrycount = 2;
1663 if (t == 0) {
1664 save_adda_reg(hw, adda_reg, rtlphy->adda_backup, 16);
1665 save_mac_reg(hw, iqk_mac_reg, rtlphy->iqk_mac_backup);
1666 save_adda_reg(hw, iqk_bb_reg, rtlphy->iqk_bb_backup,
1667 IQK_BB_REG_NUM);
1669 _rtl88e_phy_path_adda_on(hw, adda_reg, true, is2t);
1670 if (t == 0) {
1671 rtlphy->rfpi_enable = (u8) rtl_get_bbreg(hw,
1672 RFPGA0_XA_HSSIPARAMETER1, BIT(8));
1675 if (!rtlphy->rfpi_enable)
1676 _rtl88e_phy_pi_mode_switch(hw, true);
1677 /*BB Setting*/
1678 rtl_set_bbreg(hw, 0x800, BIT(24), 0x00);
1679 rtl_set_bbreg(hw, 0xc04, MASKDWORD, 0x03a05600);
1680 rtl_set_bbreg(hw, 0xc08, MASKDWORD, 0x000800e4);
1681 rtl_set_bbreg(hw, 0x874, MASKDWORD, 0x22204000);
1683 rtl_set_bbreg(hw, 0x870, BIT(10), 0x01);
1684 rtl_set_bbreg(hw, 0x870, BIT(26), 0x01);
1685 rtl_set_bbreg(hw, 0x860, BIT(10), 0x00);
1686 rtl_set_bbreg(hw, 0x864, BIT(10), 0x00);
1688 if (is2t) {
1689 rtl_set_bbreg(hw, 0x840, MASKDWORD, 0x00010000);
1690 rtl_set_bbreg(hw, 0x844, MASKDWORD, 0x00010000);
1692 _rtl88e_phy_mac_setting_calibration(hw, iqk_mac_reg,
1693 rtlphy->iqk_mac_backup);
1694 rtl_set_bbreg(hw, 0xb68, MASKDWORD, 0x0f600000);
1695 if (is2t)
1696 rtl_set_bbreg(hw, 0xb6c, MASKDWORD, 0x0f600000);
1698 rtl_set_bbreg(hw, 0xe28, MASKDWORD, 0x80800000);
1699 rtl_set_bbreg(hw, 0xe40, MASKDWORD, 0x01007c00);
1700 rtl_set_bbreg(hw, 0xe44, MASKDWORD, 0x81004800);
1701 for (i = 0; i < retrycount; i++) {
1702 patha_ok = _rtl88e_phy_path_a_iqk(hw, is2t);
1703 if (patha_ok == 0x01) {
1704 RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD,
1705 "Path A Tx IQK Success!!\n");
1706 result[t][0] = (rtl_get_bbreg(hw, 0xe94, MASKDWORD) &
1707 0x3FF0000) >> 16;
1708 result[t][1] = (rtl_get_bbreg(hw, 0xe9c, MASKDWORD) &
1709 0x3FF0000) >> 16;
1710 break;
1714 for (i = 0; i < retrycount; i++) {
1715 patha_ok = _rtl88e_phy_path_a_rx_iqk(hw, is2t);
1716 if (patha_ok == 0x03) {
1717 RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD,
1718 "Path A Rx IQK Success!!\n");
1719 result[t][2] = (rtl_get_bbreg(hw, 0xea4, MASKDWORD) &
1720 0x3FF0000) >> 16;
1721 result[t][3] = (rtl_get_bbreg(hw, 0xeac, MASKDWORD) &
1722 0x3FF0000) >> 16;
1723 break;
1724 } else {
1725 RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD,
1726 "Path a RX iqk fail!!!\n");
1730 if (0 == patha_ok) {
1731 RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD,
1732 "Path A IQK Success!!\n");
1734 if (is2t) {
1735 _rtl88e_phy_path_a_standby(hw);
1736 _rtl88e_phy_path_adda_on(hw, adda_reg, false, is2t);
1737 for (i = 0; i < retrycount; i++) {
1738 pathb_ok = _rtl88e_phy_path_b_iqk(hw);
1739 if (pathb_ok == 0x03) {
1740 result[t][4] = (rtl_get_bbreg(hw,
1741 0xeb4, MASKDWORD) &
1742 0x3FF0000) >> 16;
1743 result[t][5] =
1744 (rtl_get_bbreg(hw, 0xebc, MASKDWORD) &
1745 0x3FF0000) >> 16;
1746 result[t][6] =
1747 (rtl_get_bbreg(hw, 0xec4, MASKDWORD) &
1748 0x3FF0000) >> 16;
1749 result[t][7] =
1750 (rtl_get_bbreg(hw, 0xecc, MASKDWORD) &
1751 0x3FF0000) >> 16;
1752 break;
1753 } else if (i == (retrycount - 1) && pathb_ok == 0x01) {
1754 result[t][4] = (rtl_get_bbreg(hw,
1755 0xeb4, MASKDWORD) &
1756 0x3FF0000) >> 16;
1758 result[t][5] = (rtl_get_bbreg(hw, 0xebc, MASKDWORD) &
1759 0x3FF0000) >> 16;
1763 rtl_set_bbreg(hw, 0xe28, MASKDWORD, 0);
1765 if (t != 0) {
1766 if (!rtlphy->rfpi_enable)
1767 _rtl88e_phy_pi_mode_switch(hw, false);
1768 reload_adda(hw, adda_reg, rtlphy->adda_backup, 16);
1769 reload_mac(hw, iqk_mac_reg, rtlphy->iqk_mac_backup);
1770 reload_adda(hw, iqk_bb_reg, rtlphy->iqk_bb_backup,
1771 IQK_BB_REG_NUM);
1773 rtl_set_bbreg(hw, 0x840, MASKDWORD, 0x00032ed3);
1774 if (is2t)
1775 rtl_set_bbreg(hw, 0x844, MASKDWORD, 0x00032ed3);
1776 rtl_set_bbreg(hw, 0xe30, MASKDWORD, 0x01008c00);
1777 rtl_set_bbreg(hw, 0xe34, MASKDWORD, 0x01008c00);
1779 RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD, "88ee IQK Finish!!\n");
1782 static void _rtl88e_phy_lc_calibrate(struct ieee80211_hw *hw, bool is2t)
1784 u8 tmpreg;
1785 u32 rf_a_mode = 0, rf_b_mode = 0, lc_cal;
1786 struct rtl_priv *rtlpriv = rtl_priv(hw);
1787 int jj = RF90_PATH_A;
1788 int kk = RF90_PATH_B;
1790 tmpreg = rtl_read_byte(rtlpriv, 0xd03);
1792 if ((tmpreg & 0x70) != 0)
1793 rtl_write_byte(rtlpriv, 0xd03, tmpreg & 0x8F);
1794 else
1795 rtl_write_byte(rtlpriv, REG_TXPAUSE, 0xFF);
1797 if ((tmpreg & 0x70) != 0) {
1798 rf_a_mode = rtl_get_rfreg(hw, jj, 0x00, MASK12BITS);
1800 if (is2t)
1801 rf_b_mode = rtl_get_rfreg(hw, kk, 0x00,
1802 MASK12BITS);
1804 rtl_set_rfreg(hw, jj, 0x00, MASK12BITS,
1805 (rf_a_mode & 0x8FFFF) | 0x10000);
1807 if (is2t)
1808 rtl_set_rfreg(hw, kk, 0x00, MASK12BITS,
1809 (rf_b_mode & 0x8FFFF) | 0x10000);
1811 lc_cal = rtl_get_rfreg(hw, jj, 0x18, MASK12BITS);
1813 rtl_set_rfreg(hw, jj, 0x18, MASK12BITS, lc_cal | 0x08000);
1815 mdelay(100);
1817 if ((tmpreg & 0x70) != 0) {
1818 rtl_write_byte(rtlpriv, 0xd03, tmpreg);
1819 rtl_set_rfreg(hw, jj, 0x00, MASK12BITS, rf_a_mode);
1821 if (is2t)
1822 rtl_set_rfreg(hw, kk, 0x00, MASK12BITS,
1823 rf_b_mode);
1824 } else {
1825 rtl_write_byte(rtlpriv, REG_TXPAUSE, 0x00);
1827 RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD, "\n");
1830 static void rfpath_switch(struct ieee80211_hw *hw,
1831 bool bmain, bool is2t)
1833 struct rtl_priv *rtlpriv = rtl_priv(hw);
1834 struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw));
1835 struct rtl_efuse *fuse = rtl_efuse(rtl_priv(hw));
1836 RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD, "\n");
1838 if (is_hal_stop(rtlhal)) {
1839 u8 u1btmp;
1840 u1btmp = rtl_read_byte(rtlpriv, REG_LEDCFG0);
1841 rtl_write_byte(rtlpriv, REG_LEDCFG0, u1btmp | BIT(7));
1842 rtl_set_bbreg(hw, rFPGA0_XAB_RFPARAMETER, BIT(13), 0x01);
1844 if (is2t) {
1845 if (bmain)
1846 rtl_set_bbreg(hw, RFPGA0_XB_RFINTERFACEOE,
1847 BIT(5) | BIT(6), 0x1);
1848 else
1849 rtl_set_bbreg(hw, RFPGA0_XB_RFINTERFACEOE,
1850 BIT(5) | BIT(6), 0x2);
1851 } else {
1852 rtl_set_bbreg(hw, RFPGA0_XAB_RFINTERFACESW, BIT(8) | BIT(9), 0);
1853 rtl_set_bbreg(hw, 0x914, MASKLWORD, 0x0201);
1855 /* We use the RF definition of MAIN and AUX, left antenna and
1856 * right antenna repectively.
1857 * Default output at AUX.
1859 if (bmain) {
1860 rtl_set_bbreg(hw, RFPGA0_XA_RFINTERFACEOE, BIT(14) |
1861 BIT(13) | BIT(12), 0);
1862 rtl_set_bbreg(hw, RFPGA0_XB_RFINTERFACEOE, BIT(5) |
1863 BIT(4) | BIT(3), 0);
1864 if (fuse->antenna_div_type == CGCS_RX_HW_ANTDIV)
1865 rtl_set_bbreg(hw, RCONFIG_RAM64X16, BIT(31), 0);
1866 } else {
1867 rtl_set_bbreg(hw, RFPGA0_XA_RFINTERFACEOE, BIT(14) |
1868 BIT(13) | BIT(12), 1);
1869 rtl_set_bbreg(hw, RFPGA0_XB_RFINTERFACEOE, BIT(5) |
1870 BIT(4) | BIT(3), 1);
1871 if (fuse->antenna_div_type == CGCS_RX_HW_ANTDIV)
1872 rtl_set_bbreg(hw, RCONFIG_RAM64X16, BIT(31), 1);
1877 #undef IQK_ADDA_REG_NUM
1878 #undef IQK_DELAY_TIME
1880 void rtl88e_phy_iq_calibrate(struct ieee80211_hw *hw, bool recovery)
1882 struct rtl_priv *rtlpriv = rtl_priv(hw);
1883 struct rtl_phy *rtlphy = &(rtlpriv->phy);
1884 long result[4][8];
1885 u8 i, final;
1886 bool patha_ok;
1887 long reg_e94, reg_e9c, reg_ea4, reg_eb4, reg_ebc, reg_tmp = 0;
1888 bool is12simular, is13simular, is23simular;
1889 u32 iqk_bb_reg[9] = {
1890 ROFDM0_XARXIQIMBAL,
1891 ROFDM0_XBRXIQIMBAL,
1892 ROFDM0_ECCATHRES,
1893 ROFDM0_AGCRSSITABLE,
1894 ROFDM0_XATXIQIMBAL,
1895 ROFDM0_XBTXIQIMBAL,
1896 ROFDM0_XCTXAFE,
1897 ROFDM0_XDTXAFE,
1898 ROFDM0_RXIQEXTANTA
1901 if (recovery) {
1902 reload_adda(hw, iqk_bb_reg, rtlphy->iqk_bb_backup, 9);
1903 return;
1906 memset(result, 0, 32 * sizeof(long));
1907 final = 0xff;
1908 patha_ok = false;
1909 is12simular = false;
1910 is23simular = false;
1911 is13simular = false;
1912 for (i = 0; i < 3; i++) {
1913 if (get_rf_type(rtlphy) == RF_2T2R)
1914 _rtl88e_phy_iq_calibrate(hw, result, i, true);
1915 else
1916 _rtl88e_phy_iq_calibrate(hw, result, i, false);
1917 if (i == 1) {
1918 is12simular = sim_comp(hw, result, 0, 1);
1919 if (is12simular) {
1920 final = 0;
1921 break;
1924 if (i == 2) {
1925 is13simular = sim_comp(hw, result, 0, 2);
1926 if (is13simular) {
1927 final = 0;
1928 break;
1930 is23simular = sim_comp(hw, result, 1, 2);
1931 if (is23simular) {
1932 final = 1;
1933 } else {
1934 for (i = 0; i < 8; i++)
1935 reg_tmp += result[3][i];
1937 if (reg_tmp != 0)
1938 final = 3;
1939 else
1940 final = 0xFF;
1944 for (i = 0; i < 4; i++) {
1945 reg_e94 = result[i][0];
1946 reg_e9c = result[i][1];
1947 reg_ea4 = result[i][2];
1948 reg_eb4 = result[i][4];
1949 reg_ebc = result[i][5];
1951 if (final != 0xff) {
1952 reg_e94 = result[final][0];
1953 rtlphy->reg_e94 = reg_e94;
1954 reg_e9c = result[final][1];
1955 rtlphy->reg_e9c = reg_e9c;
1956 reg_ea4 = result[final][2];
1957 reg_eb4 = result[final][4];
1958 rtlphy->reg_eb4 = reg_eb4;
1959 reg_ebc = result[final][5];
1960 rtlphy->reg_ebc = reg_ebc;
1961 patha_ok = true;
1962 } else {
1963 rtlphy->reg_e94 = 0x100;
1964 rtlphy->reg_eb4 = 0x100;
1965 rtlphy->reg_ebc = 0x0;
1966 rtlphy->reg_e9c = 0x0;
1968 if (reg_e94 != 0) /*&&(reg_ea4 != 0) */
1969 fill_iqk(hw, patha_ok, result, final, (reg_ea4 == 0));
1970 if (final != 0xFF) {
1971 for (i = 0; i < IQK_MATRIX_REG_NUM; i++)
1972 rtlphy->iqk_matrix[0].value[0][i] = result[final][i];
1973 rtlphy->iqk_matrix[0].iqk_done = true;
1975 save_adda_reg(hw, iqk_bb_reg, rtlphy->iqk_bb_backup, 9);
1978 void rtl88e_phy_lc_calibrate(struct ieee80211_hw *hw)
1980 struct rtl_priv *rtlpriv = rtl_priv(hw);
1981 struct rtl_phy *rtlphy = &(rtlpriv->phy);
1982 struct rtl_hal *rtlhal = &(rtlpriv->rtlhal);
1983 bool start_conttx = false, singletone = false;
1984 u32 timeout = 2000, timecount = 0;
1986 if (start_conttx || singletone)
1987 return;
1989 while (rtlpriv->mac80211.act_scanning && timecount < timeout) {
1990 udelay(50);
1991 timecount += 50;
1994 rtlphy->lck_inprogress = true;
1995 RTPRINT(rtlpriv, FINIT, INIT_IQK,
1996 "LCK:Start!!! currentband %x delay %d ms\n",
1997 rtlhal->current_bandtype, timecount);
1999 _rtl88e_phy_lc_calibrate(hw, false);
2001 rtlphy->lck_inprogress = false;
2004 void rtl88e_phy_set_rfpath_switch(struct ieee80211_hw *hw, bool bmain)
2006 rfpath_switch(hw, bmain, false);
2009 bool rtl88e_phy_set_io_cmd(struct ieee80211_hw *hw, enum io_type iotype)
2011 struct rtl_priv *rtlpriv = rtl_priv(hw);
2012 struct rtl_phy *rtlphy = &(rtlpriv->phy);
2013 bool postprocessing = false;
2015 RT_TRACE(rtlpriv, COMP_CMD, DBG_TRACE,
2016 "-->IO Cmd(%#x), set_io_inprogress(%d)\n",
2017 iotype, rtlphy->set_io_inprogress);
2018 do {
2019 switch (iotype) {
2020 case IO_CMD_RESUME_DM_BY_SCAN:
2021 RT_TRACE(rtlpriv, COMP_CMD, DBG_TRACE,
2022 "[IO CMD] Resume DM after scan.\n");
2023 postprocessing = true;
2024 break;
2025 case IO_CMD_PAUSE_DM_BY_SCAN:
2026 RT_TRACE(rtlpriv, COMP_CMD, DBG_TRACE,
2027 "[IO CMD] Pause DM before scan.\n");
2028 postprocessing = true;
2029 break;
2030 default:
2031 RT_TRACE(rtlpriv, COMP_ERR, DBG_EMERG,
2032 "switch case not processed\n");
2033 break;
2035 } while (false);
2036 if (postprocessing && !rtlphy->set_io_inprogress) {
2037 rtlphy->set_io_inprogress = true;
2038 rtlphy->current_io_type = iotype;
2039 } else {
2040 return false;
2042 rtl88e_phy_set_io(hw);
2043 RT_TRACE(rtlpriv, COMP_CMD, DBG_TRACE, "IO Type(%#x)\n", iotype);
2044 return true;
2047 static void rtl88ee_phy_set_rf_on(struct ieee80211_hw *hw)
2049 struct rtl_priv *rtlpriv = rtl_priv(hw);
2051 rtl_write_byte(rtlpriv, REG_SPS0_CTRL, 0x2b);
2052 rtl_write_byte(rtlpriv, REG_SYS_FUNC_EN, 0xE3);
2053 /*rtl_write_byte(rtlpriv, REG_APSD_CTRL, 0x00);*/
2054 rtl_write_byte(rtlpriv, REG_SYS_FUNC_EN, 0xE2);
2055 rtl_write_byte(rtlpriv, REG_SYS_FUNC_EN, 0xE3);
2056 rtl_write_byte(rtlpriv, REG_TXPAUSE, 0x00);
2059 static void _rtl88ee_phy_set_rf_sleep(struct ieee80211_hw *hw)
2061 struct rtl_priv *rtlpriv = rtl_priv(hw);
2062 int jj = RF90_PATH_A;
2064 rtl_write_byte(rtlpriv, REG_TXPAUSE, 0xFF);
2065 rtl_set_rfreg(hw, jj, 0x00, RFREG_OFFSET_MASK, 0x00);
2066 rtl_write_byte(rtlpriv, REG_SYS_FUNC_EN, 0xE2);
2067 rtl_write_byte(rtlpriv, REG_SPS0_CTRL, 0x22);
2070 static bool _rtl88ee_phy_set_rf_power_state(struct ieee80211_hw *hw,
2071 enum rf_pwrstate rfpwr_state)
2073 struct rtl_priv *rtlpriv = rtl_priv(hw);
2074 struct rtl_pci_priv *pcipriv = rtl_pcipriv(hw);
2075 struct rtl_mac *mac = rtl_mac(rtl_priv(hw));
2076 struct rtl_ps_ctl *ppsc = rtl_psc(rtl_priv(hw));
2077 struct rtl8192_tx_ring *ring = NULL;
2078 bool bresult = true;
2079 u8 i, queue_id;
2081 switch (rfpwr_state) {
2082 case ERFON:{
2083 if ((ppsc->rfpwr_state == ERFOFF) &&
2084 RT_IN_PS_LEVEL(ppsc, RT_RF_OFF_LEVL_HALT_NIC)) {
2085 bool rtstatus;
2086 u32 init = 0;
2087 do {
2088 init++;
2089 RT_TRACE(rtlpriv, COMP_RF, DBG_DMESG,
2090 "IPS Set eRf nic enable\n");
2091 rtstatus = rtl_ps_enable_nic(hw);
2092 } while ((rtstatus != true) && (init < 10));
2093 RT_CLEAR_PS_LEVEL(ppsc,
2094 RT_RF_OFF_LEVL_HALT_NIC);
2095 } else {
2096 RT_TRACE(rtlpriv, COMP_RF, DBG_DMESG,
2097 "Set ERFON sleeped:%d ms\n",
2098 jiffies_to_msecs(jiffies - ppsc->
2099 last_sleep_jiffies));
2100 ppsc->last_awake_jiffies = jiffies;
2101 rtl88ee_phy_set_rf_on(hw);
2103 if (mac->link_state == MAC80211_LINKED)
2104 rtlpriv->cfg->ops->led_control(hw, LED_CTL_LINK);
2105 else
2106 rtlpriv->cfg->ops->led_control(hw, LED_CTL_NO_LINK);
2107 break; }
2108 case ERFOFF:{
2109 for (queue_id = 0, i = 0;
2110 queue_id < RTL_PCI_MAX_TX_QUEUE_COUNT;) {
2111 ring = &pcipriv->dev.tx_ring[queue_id];
2112 if (skb_queue_len(&ring->queue) == 0) {
2113 queue_id++;
2114 continue;
2115 } else {
2116 RT_TRACE(rtlpriv, COMP_ERR, DBG_WARNING,
2117 "eRf Off/Sleep: %d times TcbBusyQueue[%d] =%d before doze!\n",
2118 (i + 1), queue_id,
2119 skb_queue_len(&ring->queue));
2121 udelay(10);
2122 i++;
2124 if (i >= MAX_DOZE_WAITING_TIMES_9x) {
2125 RT_TRACE(rtlpriv, COMP_ERR, DBG_WARNING,
2126 "\n ERFSLEEP: %d times TcbBusyQueue[%d] = %d !\n",
2127 MAX_DOZE_WAITING_TIMES_9x,
2128 queue_id,
2129 skb_queue_len(&ring->queue));
2130 break;
2133 if (ppsc->reg_rfps_level & RT_RF_OFF_LEVL_HALT_NIC) {
2134 RT_TRACE(rtlpriv, COMP_RF, DBG_DMESG,
2135 "IPS Set eRf nic disable\n");
2136 rtl_ps_disable_nic(hw);
2137 RT_SET_PS_LEVEL(ppsc, RT_RF_OFF_LEVL_HALT_NIC);
2138 } else {
2139 if (ppsc->rfoff_reason == RF_CHANGE_BY_IPS) {
2140 rtlpriv->cfg->ops->led_control(hw,
2141 LED_CTL_NO_LINK);
2142 } else {
2143 rtlpriv->cfg->ops->led_control(hw,
2144 LED_CTL_POWER_OFF);
2147 break; }
2148 case ERFSLEEP:{
2149 if (ppsc->rfpwr_state == ERFOFF)
2150 break;
2151 for (queue_id = 0, i = 0;
2152 queue_id < RTL_PCI_MAX_TX_QUEUE_COUNT;) {
2153 ring = &pcipriv->dev.tx_ring[queue_id];
2154 if (skb_queue_len(&ring->queue) == 0) {
2155 queue_id++;
2156 continue;
2157 } else {
2158 RT_TRACE(rtlpriv, COMP_ERR, DBG_WARNING,
2159 "eRf Off/Sleep: %d times TcbBusyQueue[%d] =%d before doze!\n",
2160 (i + 1), queue_id,
2161 skb_queue_len(&ring->queue));
2163 udelay(10);
2164 i++;
2166 if (i >= MAX_DOZE_WAITING_TIMES_9x) {
2167 RT_TRACE(rtlpriv, COMP_ERR, DBG_WARNING,
2168 "\n ERFSLEEP: %d times TcbBusyQueue[%d] = %d !\n",
2169 MAX_DOZE_WAITING_TIMES_9x,
2170 queue_id,
2171 skb_queue_len(&ring->queue));
2172 break;
2175 RT_TRACE(rtlpriv, COMP_RF, DBG_DMESG,
2176 "Set ERFSLEEP awaked:%d ms\n",
2177 jiffies_to_msecs(jiffies - ppsc->last_awake_jiffies));
2178 ppsc->last_sleep_jiffies = jiffies;
2179 _rtl88ee_phy_set_rf_sleep(hw);
2180 break; }
2181 default:
2182 RT_TRACE(rtlpriv, COMP_ERR, DBG_EMERG,
2183 "switch case not processed\n");
2184 bresult = false;
2185 break;
2187 if (bresult)
2188 ppsc->rfpwr_state = rfpwr_state;
2189 return bresult;
2192 bool rtl88e_phy_set_rf_power_state(struct ieee80211_hw *hw,
2193 enum rf_pwrstate rfpwr_state)
2195 struct rtl_ps_ctl *ppsc = rtl_psc(rtl_priv(hw));
2196 bool bresult;
2198 if (rfpwr_state == ppsc->rfpwr_state)
2199 return false;
2200 bresult = _rtl88ee_phy_set_rf_power_state(hw, rfpwr_state);
2201 return bresult;