mfd: wm8350-i2c: Make sure the i2c regmap functions are compiled
[linux/fpc-iii.git] / drivers / net / wireless / rtlwifi / rtl8192se / hw.c
blobc471400fe8f054345d4f30c7e632f5f989054bfa
1 /******************************************************************************
3 * Copyright(c) 2009-2012 Realtek Corporation.
5 * This program is free software; you can redistribute it and/or modify it
6 * under the terms of version 2 of the GNU General Public License as
7 * published by the Free Software Foundation.
9 * This program is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
12 * more details.
14 * You should have received a copy of the GNU General Public License along with
15 * this program; if not, write to the Free Software Foundation, Inc.,
16 * 51 Franklin Street, Fifth Floor, Boston, MA 02110, USA
18 * The full GNU General Public License is included in this distribution in the
19 * file called LICENSE.
21 * Contact Information:
22 * wlanfae <wlanfae@realtek.com>
23 * Realtek Corporation, No. 2, Innovation Road II, Hsinchu Science Park,
24 * Hsinchu 300, Taiwan.
26 * Larry Finger <Larry.Finger@lwfinger.net>
28 *****************************************************************************/
30 #include "../wifi.h"
31 #include "../efuse.h"
32 #include "../base.h"
33 #include "../regd.h"
34 #include "../cam.h"
35 #include "../ps.h"
36 #include "../pci.h"
37 #include "reg.h"
38 #include "def.h"
39 #include "phy.h"
40 #include "dm.h"
41 #include "fw.h"
42 #include "led.h"
43 #include "hw.h"
45 void rtl92se_get_hw_reg(struct ieee80211_hw *hw, u8 variable, u8 *val)
47 struct rtl_priv *rtlpriv = rtl_priv(hw);
48 struct rtl_ps_ctl *ppsc = rtl_psc(rtl_priv(hw));
49 struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw));
51 switch (variable) {
52 case HW_VAR_RCR: {
53 *((u32 *) (val)) = rtlpci->receive_config;
54 break;
56 case HW_VAR_RF_STATE: {
57 *((enum rf_pwrstate *)(val)) = ppsc->rfpwr_state;
58 break;
60 case HW_VAR_FW_PSMODE_STATUS: {
61 *((bool *) (val)) = ppsc->fw_current_inpsmode;
62 break;
64 case HW_VAR_CORRECT_TSF: {
65 u64 tsf;
66 u32 *ptsf_low = (u32 *)&tsf;
67 u32 *ptsf_high = ((u32 *)&tsf) + 1;
69 *ptsf_high = rtl_read_dword(rtlpriv, (TSFR + 4));
70 *ptsf_low = rtl_read_dword(rtlpriv, TSFR);
72 *((u64 *) (val)) = tsf;
74 break;
76 case HW_VAR_MRC: {
77 *((bool *)(val)) = rtlpriv->dm.current_mrc_switch;
78 break;
80 default: {
81 RT_TRACE(rtlpriv, COMP_ERR, DBG_EMERG,
82 "switch case not processed\n");
83 break;
88 void rtl92se_set_hw_reg(struct ieee80211_hw *hw, u8 variable, u8 *val)
90 struct rtl_priv *rtlpriv = rtl_priv(hw);
91 struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw));
92 struct rtl_mac *mac = rtl_mac(rtl_priv(hw));
93 struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw));
94 struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
95 struct rtl_ps_ctl *ppsc = rtl_psc(rtl_priv(hw));
97 switch (variable) {
98 case HW_VAR_ETHER_ADDR:{
99 rtl_write_dword(rtlpriv, IDR0, ((u32 *)(val))[0]);
100 rtl_write_word(rtlpriv, IDR4, ((u16 *)(val + 4))[0]);
101 break;
103 case HW_VAR_BASIC_RATE:{
104 u16 rate_cfg = ((u16 *) val)[0];
105 u8 rate_index = 0;
107 if (rtlhal->version == VERSION_8192S_ACUT)
108 rate_cfg = rate_cfg & 0x150;
109 else
110 rate_cfg = rate_cfg & 0x15f;
112 rate_cfg |= 0x01;
114 rtl_write_byte(rtlpriv, RRSR, rate_cfg & 0xff);
115 rtl_write_byte(rtlpriv, RRSR + 1,
116 (rate_cfg >> 8) & 0xff);
118 while (rate_cfg > 0x1) {
119 rate_cfg = (rate_cfg >> 1);
120 rate_index++;
122 rtl_write_byte(rtlpriv, INIRTSMCS_SEL, rate_index);
124 break;
126 case HW_VAR_BSSID:{
127 rtl_write_dword(rtlpriv, BSSIDR, ((u32 *)(val))[0]);
128 rtl_write_word(rtlpriv, BSSIDR + 4,
129 ((u16 *)(val + 4))[0]);
130 break;
132 case HW_VAR_SIFS:{
133 rtl_write_byte(rtlpriv, SIFS_OFDM, val[0]);
134 rtl_write_byte(rtlpriv, SIFS_OFDM + 1, val[1]);
135 break;
137 case HW_VAR_SLOT_TIME:{
138 u8 e_aci;
140 RT_TRACE(rtlpriv, COMP_MLME, DBG_LOUD,
141 "HW_VAR_SLOT_TIME %x\n", val[0]);
143 rtl_write_byte(rtlpriv, SLOT_TIME, val[0]);
145 for (e_aci = 0; e_aci < AC_MAX; e_aci++) {
146 rtlpriv->cfg->ops->set_hw_reg(hw,
147 HW_VAR_AC_PARAM,
148 (&e_aci));
150 break;
152 case HW_VAR_ACK_PREAMBLE:{
153 u8 reg_tmp;
154 u8 short_preamble = (bool) (*val);
155 reg_tmp = (mac->cur_40_prime_sc) << 5;
156 if (short_preamble)
157 reg_tmp |= 0x80;
159 rtl_write_byte(rtlpriv, RRSR + 2, reg_tmp);
160 break;
162 case HW_VAR_AMPDU_MIN_SPACE:{
163 u8 min_spacing_to_set;
164 u8 sec_min_space;
166 min_spacing_to_set = *val;
167 if (min_spacing_to_set <= 7) {
168 if (rtlpriv->sec.pairwise_enc_algorithm ==
169 NO_ENCRYPTION)
170 sec_min_space = 0;
171 else
172 sec_min_space = 1;
174 if (min_spacing_to_set < sec_min_space)
175 min_spacing_to_set = sec_min_space;
176 if (min_spacing_to_set > 5)
177 min_spacing_to_set = 5;
179 mac->min_space_cfg =
180 ((mac->min_space_cfg & 0xf8) |
181 min_spacing_to_set);
183 *val = min_spacing_to_set;
185 RT_TRACE(rtlpriv, COMP_MLME, DBG_LOUD,
186 "Set HW_VAR_AMPDU_MIN_SPACE: %#x\n",
187 mac->min_space_cfg);
189 rtl_write_byte(rtlpriv, AMPDU_MIN_SPACE,
190 mac->min_space_cfg);
192 break;
194 case HW_VAR_SHORTGI_DENSITY:{
195 u8 density_to_set;
197 density_to_set = *val;
198 mac->min_space_cfg = rtlpriv->rtlhal.minspace_cfg;
199 mac->min_space_cfg |= (density_to_set << 3);
201 RT_TRACE(rtlpriv, COMP_MLME, DBG_LOUD,
202 "Set HW_VAR_SHORTGI_DENSITY: %#x\n",
203 mac->min_space_cfg);
205 rtl_write_byte(rtlpriv, AMPDU_MIN_SPACE,
206 mac->min_space_cfg);
208 break;
210 case HW_VAR_AMPDU_FACTOR:{
211 u8 factor_toset;
212 u8 regtoset;
213 u8 factorlevel[18] = {
214 2, 4, 4, 7, 7, 13, 13,
215 13, 2, 7, 7, 13, 13,
216 15, 15, 15, 15, 0};
217 u8 index = 0;
219 factor_toset = *val;
220 if (factor_toset <= 3) {
221 factor_toset = (1 << (factor_toset + 2));
222 if (factor_toset > 0xf)
223 factor_toset = 0xf;
225 for (index = 0; index < 17; index++) {
226 if (factorlevel[index] > factor_toset)
227 factorlevel[index] =
228 factor_toset;
231 for (index = 0; index < 8; index++) {
232 regtoset = ((factorlevel[index * 2]) |
233 (factorlevel[index *
234 2 + 1] << 4));
235 rtl_write_byte(rtlpriv,
236 AGGLEN_LMT_L + index,
237 regtoset);
240 regtoset = ((factorlevel[16]) |
241 (factorlevel[17] << 4));
242 rtl_write_byte(rtlpriv, AGGLEN_LMT_H, regtoset);
244 RT_TRACE(rtlpriv, COMP_MLME, DBG_LOUD,
245 "Set HW_VAR_AMPDU_FACTOR: %#x\n",
246 factor_toset);
248 break;
250 case HW_VAR_AC_PARAM:{
251 u8 e_aci = *val;
252 rtl92s_dm_init_edca_turbo(hw);
254 if (rtlpci->acm_method != eAcmWay2_SW)
255 rtlpriv->cfg->ops->set_hw_reg(hw,
256 HW_VAR_ACM_CTRL,
257 &e_aci);
258 break;
260 case HW_VAR_ACM_CTRL:{
261 u8 e_aci = *val;
262 union aci_aifsn *p_aci_aifsn = (union aci_aifsn *)(&(
263 mac->ac[0].aifs));
264 u8 acm = p_aci_aifsn->f.acm;
265 u8 acm_ctrl = rtl_read_byte(rtlpriv, AcmHwCtrl);
267 acm_ctrl = acm_ctrl | ((rtlpci->acm_method == 2) ?
268 0x0 : 0x1);
270 if (acm) {
271 switch (e_aci) {
272 case AC0_BE:
273 acm_ctrl |= AcmHw_BeqEn;
274 break;
275 case AC2_VI:
276 acm_ctrl |= AcmHw_ViqEn;
277 break;
278 case AC3_VO:
279 acm_ctrl |= AcmHw_VoqEn;
280 break;
281 default:
282 RT_TRACE(rtlpriv, COMP_ERR, DBG_WARNING,
283 "HW_VAR_ACM_CTRL acm set failed: eACI is %d\n",
284 acm);
285 break;
287 } else {
288 switch (e_aci) {
289 case AC0_BE:
290 acm_ctrl &= (~AcmHw_BeqEn);
291 break;
292 case AC2_VI:
293 acm_ctrl &= (~AcmHw_ViqEn);
294 break;
295 case AC3_VO:
296 acm_ctrl &= (~AcmHw_BeqEn);
297 break;
298 default:
299 RT_TRACE(rtlpriv, COMP_ERR, DBG_EMERG,
300 "switch case not processed\n");
301 break;
305 RT_TRACE(rtlpriv, COMP_QOS, DBG_TRACE,
306 "HW_VAR_ACM_CTRL Write 0x%X\n", acm_ctrl);
307 rtl_write_byte(rtlpriv, AcmHwCtrl, acm_ctrl);
308 break;
310 case HW_VAR_RCR:{
311 rtl_write_dword(rtlpriv, RCR, ((u32 *) (val))[0]);
312 rtlpci->receive_config = ((u32 *) (val))[0];
313 break;
315 case HW_VAR_RETRY_LIMIT:{
316 u8 retry_limit = val[0];
318 rtl_write_word(rtlpriv, RETRY_LIMIT,
319 retry_limit << RETRY_LIMIT_SHORT_SHIFT |
320 retry_limit << RETRY_LIMIT_LONG_SHIFT);
321 break;
323 case HW_VAR_DUAL_TSF_RST: {
324 break;
326 case HW_VAR_EFUSE_BYTES: {
327 rtlefuse->efuse_usedbytes = *((u16 *) val);
328 break;
330 case HW_VAR_EFUSE_USAGE: {
331 rtlefuse->efuse_usedpercentage = *val;
332 break;
334 case HW_VAR_IO_CMD: {
335 break;
337 case HW_VAR_WPA_CONFIG: {
338 rtl_write_byte(rtlpriv, REG_SECR, *val);
339 break;
341 case HW_VAR_SET_RPWM:{
342 break;
344 case HW_VAR_H2C_FW_PWRMODE:{
345 break;
347 case HW_VAR_FW_PSMODE_STATUS: {
348 ppsc->fw_current_inpsmode = *((bool *) val);
349 break;
351 case HW_VAR_H2C_FW_JOINBSSRPT:{
352 break;
354 case HW_VAR_AID:{
355 break;
357 case HW_VAR_CORRECT_TSF:{
358 break;
360 case HW_VAR_MRC: {
361 bool bmrc_toset = *((bool *)val);
362 u8 u1bdata = 0;
364 if (bmrc_toset) {
365 rtl_set_bbreg(hw, ROFDM0_TRXPATHENABLE,
366 MASKBYTE0, 0x33);
367 u1bdata = (u8)rtl_get_bbreg(hw,
368 ROFDM1_TRXPATHENABLE,
369 MASKBYTE0);
370 rtl_set_bbreg(hw, ROFDM1_TRXPATHENABLE,
371 MASKBYTE0,
372 ((u1bdata & 0xf0) | 0x03));
373 u1bdata = (u8)rtl_get_bbreg(hw,
374 ROFDM0_TRXPATHENABLE,
375 MASKBYTE1);
376 rtl_set_bbreg(hw, ROFDM0_TRXPATHENABLE,
377 MASKBYTE1,
378 (u1bdata | 0x04));
380 /* Update current settings. */
381 rtlpriv->dm.current_mrc_switch = bmrc_toset;
382 } else {
383 rtl_set_bbreg(hw, ROFDM0_TRXPATHENABLE,
384 MASKBYTE0, 0x13);
385 u1bdata = (u8)rtl_get_bbreg(hw,
386 ROFDM1_TRXPATHENABLE,
387 MASKBYTE0);
388 rtl_set_bbreg(hw, ROFDM1_TRXPATHENABLE,
389 MASKBYTE0,
390 ((u1bdata & 0xf0) | 0x01));
391 u1bdata = (u8)rtl_get_bbreg(hw,
392 ROFDM0_TRXPATHENABLE,
393 MASKBYTE1);
394 rtl_set_bbreg(hw, ROFDM0_TRXPATHENABLE,
395 MASKBYTE1, (u1bdata & 0xfb));
397 /* Update current settings. */
398 rtlpriv->dm.current_mrc_switch = bmrc_toset;
401 break;
403 case HW_VAR_FW_LPS_ACTION: {
404 bool enter_fwlps = *((bool *)val);
405 u8 rpwm_val, fw_pwrmode;
406 bool fw_current_inps;
408 if (enter_fwlps) {
409 rpwm_val = 0x02; /* RF off */
410 fw_current_inps = true;
411 rtlpriv->cfg->ops->set_hw_reg(hw,
412 HW_VAR_FW_PSMODE_STATUS,
413 (u8 *)(&fw_current_inps));
414 rtlpriv->cfg->ops->set_hw_reg(hw,
415 HW_VAR_H2C_FW_PWRMODE,
416 (u8 *)(&ppsc->fwctrl_psmode));
418 rtlpriv->cfg->ops->set_hw_reg(hw,
419 HW_VAR_SET_RPWM,
420 (u8 *)(&rpwm_val));
421 } else {
422 rpwm_val = 0x0C; /* RF on */
423 fw_pwrmode = FW_PS_ACTIVE_MODE;
424 fw_current_inps = false;
425 rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_SET_RPWM,
426 (u8 *)(&rpwm_val));
427 rtlpriv->cfg->ops->set_hw_reg(hw,
428 HW_VAR_H2C_FW_PWRMODE,
429 (u8 *)(&fw_pwrmode));
431 rtlpriv->cfg->ops->set_hw_reg(hw,
432 HW_VAR_FW_PSMODE_STATUS,
433 (u8 *)(&fw_current_inps));
435 break; }
436 default:
437 RT_TRACE(rtlpriv, COMP_ERR, DBG_EMERG,
438 "switch case not processed\n");
439 break;
444 void rtl92se_enable_hw_security_config(struct ieee80211_hw *hw)
446 struct rtl_priv *rtlpriv = rtl_priv(hw);
447 u8 sec_reg_value = 0x0;
449 RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD,
450 "PairwiseEncAlgorithm = %d GroupEncAlgorithm = %d\n",
451 rtlpriv->sec.pairwise_enc_algorithm,
452 rtlpriv->sec.group_enc_algorithm);
454 if (rtlpriv->cfg->mod_params->sw_crypto || rtlpriv->sec.use_sw_sec) {
455 RT_TRACE(rtlpriv, COMP_SEC, DBG_DMESG,
456 "not open hw encryption\n");
457 return;
460 sec_reg_value = SCR_TXENCENABLE | SCR_RXENCENABLE;
462 if (rtlpriv->sec.use_defaultkey) {
463 sec_reg_value |= SCR_TXUSEDK;
464 sec_reg_value |= SCR_RXUSEDK;
467 RT_TRACE(rtlpriv, COMP_SEC, DBG_LOUD, "The SECR-value %x\n",
468 sec_reg_value);
470 rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_WPA_CONFIG, &sec_reg_value);
474 static u8 _rtl92se_halset_sysclk(struct ieee80211_hw *hw, u8 data)
476 struct rtl_priv *rtlpriv = rtl_priv(hw);
477 u8 waitcount = 100;
478 bool bresult = false;
479 u8 tmpvalue;
481 rtl_write_byte(rtlpriv, SYS_CLKR + 1, data);
483 /* Wait the MAC synchronized. */
484 udelay(400);
486 /* Check if it is set ready. */
487 tmpvalue = rtl_read_byte(rtlpriv, SYS_CLKR + 1);
488 bresult = ((tmpvalue & BIT(7)) == (data & BIT(7)));
490 if ((data & (BIT(6) | BIT(7))) == false) {
491 waitcount = 100;
492 tmpvalue = 0;
494 while (1) {
495 waitcount--;
497 tmpvalue = rtl_read_byte(rtlpriv, SYS_CLKR + 1);
498 if ((tmpvalue & BIT(6)))
499 break;
501 pr_err("wait for BIT(6) return value %x\n", tmpvalue);
502 if (waitcount == 0)
503 break;
505 udelay(10);
508 if (waitcount == 0)
509 bresult = false;
510 else
511 bresult = true;
514 return bresult;
517 void rtl8192se_gpiobit3_cfg_inputmode(struct ieee80211_hw *hw)
519 struct rtl_priv *rtlpriv = rtl_priv(hw);
520 u8 u1tmp;
522 /* The following config GPIO function */
523 rtl_write_byte(rtlpriv, MAC_PINMUX_CFG, (GPIOMUX_EN | GPIOSEL_GPIO));
524 u1tmp = rtl_read_byte(rtlpriv, GPIO_IO_SEL);
526 /* config GPIO3 to input */
527 u1tmp &= HAL_8192S_HW_GPIO_OFF_MASK;
528 rtl_write_byte(rtlpriv, GPIO_IO_SEL, u1tmp);
532 static u8 _rtl92se_rf_onoff_detect(struct ieee80211_hw *hw)
534 struct rtl_priv *rtlpriv = rtl_priv(hw);
535 u8 u1tmp;
536 u8 retval = ERFON;
538 /* The following config GPIO function */
539 rtl_write_byte(rtlpriv, MAC_PINMUX_CFG, (GPIOMUX_EN | GPIOSEL_GPIO));
540 u1tmp = rtl_read_byte(rtlpriv, GPIO_IO_SEL);
542 /* config GPIO3 to input */
543 u1tmp &= HAL_8192S_HW_GPIO_OFF_MASK;
544 rtl_write_byte(rtlpriv, GPIO_IO_SEL, u1tmp);
546 /* On some of the platform, driver cannot read correct
547 * value without delay between Write_GPIO_SEL and Read_GPIO_IN */
548 mdelay(10);
550 /* check GPIO3 */
551 u1tmp = rtl_read_byte(rtlpriv, GPIO_IN_SE);
552 retval = (u1tmp & HAL_8192S_HW_GPIO_OFF_BIT) ? ERFON : ERFOFF;
554 return retval;
557 static void _rtl92se_macconfig_before_fwdownload(struct ieee80211_hw *hw)
559 struct rtl_priv *rtlpriv = rtl_priv(hw);
560 struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw));
561 struct rtl_ps_ctl *ppsc = rtl_psc(rtl_priv(hw));
563 u8 i;
564 u8 tmpu1b;
565 u16 tmpu2b;
566 u8 pollingcnt = 20;
568 if (rtlpci->first_init) {
569 /* Reset PCIE Digital */
570 tmpu1b = rtl_read_byte(rtlpriv, REG_SYS_FUNC_EN + 1);
571 tmpu1b &= 0xFE;
572 rtl_write_byte(rtlpriv, REG_SYS_FUNC_EN + 1, tmpu1b);
573 udelay(1);
574 rtl_write_byte(rtlpriv, REG_SYS_FUNC_EN + 1, tmpu1b | BIT(0));
577 /* Switch to SW IO control */
578 tmpu1b = rtl_read_byte(rtlpriv, (SYS_CLKR + 1));
579 if (tmpu1b & BIT(7)) {
580 tmpu1b &= ~(BIT(6) | BIT(7));
582 /* Set failed, return to prevent hang. */
583 if (!_rtl92se_halset_sysclk(hw, tmpu1b))
584 return;
587 rtl_write_byte(rtlpriv, AFE_PLL_CTRL, 0x0);
588 udelay(50);
589 rtl_write_byte(rtlpriv, LDOA15_CTRL, 0x34);
590 udelay(50);
592 /* Clear FW RPWM for FW control LPS.*/
593 rtl_write_byte(rtlpriv, RPWM, 0x0);
595 /* Reset MAC-IO and CPU and Core Digital BIT(10)/11/15 */
596 tmpu1b = rtl_read_byte(rtlpriv, REG_SYS_FUNC_EN + 1);
597 tmpu1b &= 0x73;
598 rtl_write_byte(rtlpriv, REG_SYS_FUNC_EN + 1, tmpu1b);
599 /* wait for BIT 10/11/15 to pull high automatically!! */
600 mdelay(1);
602 rtl_write_byte(rtlpriv, CMDR, 0);
603 rtl_write_byte(rtlpriv, TCR, 0);
605 /* Data sheet not define 0x562!!! Copy from WMAC!!!!! */
606 tmpu1b = rtl_read_byte(rtlpriv, 0x562);
607 tmpu1b |= 0x08;
608 rtl_write_byte(rtlpriv, 0x562, tmpu1b);
609 tmpu1b &= ~(BIT(3));
610 rtl_write_byte(rtlpriv, 0x562, tmpu1b);
612 /* Enable AFE clock source */
613 tmpu1b = rtl_read_byte(rtlpriv, AFE_XTAL_CTRL);
614 rtl_write_byte(rtlpriv, AFE_XTAL_CTRL, (tmpu1b | 0x01));
615 /* Delay 1.5ms */
616 mdelay(2);
617 tmpu1b = rtl_read_byte(rtlpriv, AFE_XTAL_CTRL + 1);
618 rtl_write_byte(rtlpriv, AFE_XTAL_CTRL + 1, (tmpu1b & 0xfb));
620 /* Enable AFE Macro Block's Bandgap */
621 tmpu1b = rtl_read_byte(rtlpriv, AFE_MISC);
622 rtl_write_byte(rtlpriv, AFE_MISC, (tmpu1b | BIT(0)));
623 mdelay(1);
625 /* Enable AFE Mbias */
626 tmpu1b = rtl_read_byte(rtlpriv, AFE_MISC);
627 rtl_write_byte(rtlpriv, AFE_MISC, (tmpu1b | 0x02));
628 mdelay(1);
630 /* Enable LDOA15 block */
631 tmpu1b = rtl_read_byte(rtlpriv, LDOA15_CTRL);
632 rtl_write_byte(rtlpriv, LDOA15_CTRL, (tmpu1b | BIT(0)));
634 /* Set Digital Vdd to Retention isolation Path. */
635 tmpu2b = rtl_read_word(rtlpriv, REG_SYS_ISO_CTRL);
636 rtl_write_word(rtlpriv, REG_SYS_ISO_CTRL, (tmpu2b | BIT(11)));
638 /* For warm reboot NIC disappera bug. */
639 tmpu2b = rtl_read_word(rtlpriv, REG_SYS_FUNC_EN);
640 rtl_write_word(rtlpriv, REG_SYS_FUNC_EN, (tmpu2b | BIT(13)));
642 rtl_write_byte(rtlpriv, REG_SYS_ISO_CTRL + 1, 0x68);
644 /* Enable AFE PLL Macro Block */
645 /* We need to delay 100u before enabling PLL. */
646 udelay(200);
647 tmpu1b = rtl_read_byte(rtlpriv, AFE_PLL_CTRL);
648 rtl_write_byte(rtlpriv, AFE_PLL_CTRL, (tmpu1b | BIT(0) | BIT(4)));
650 /* for divider reset */
651 udelay(100);
652 rtl_write_byte(rtlpriv, AFE_PLL_CTRL, (tmpu1b | BIT(0) |
653 BIT(4) | BIT(6)));
654 udelay(10);
655 rtl_write_byte(rtlpriv, AFE_PLL_CTRL, (tmpu1b | BIT(0) | BIT(4)));
656 udelay(10);
658 /* Enable MAC 80MHZ clock */
659 tmpu1b = rtl_read_byte(rtlpriv, AFE_PLL_CTRL + 1);
660 rtl_write_byte(rtlpriv, AFE_PLL_CTRL + 1, (tmpu1b | BIT(0)));
661 mdelay(1);
663 /* Release isolation AFE PLL & MD */
664 rtl_write_byte(rtlpriv, REG_SYS_ISO_CTRL, 0xA6);
666 /* Enable MAC clock */
667 tmpu2b = rtl_read_word(rtlpriv, SYS_CLKR);
668 rtl_write_word(rtlpriv, SYS_CLKR, (tmpu2b | BIT(12) | BIT(11)));
670 /* Enable Core digital and enable IOREG R/W */
671 tmpu2b = rtl_read_word(rtlpriv, REG_SYS_FUNC_EN);
672 rtl_write_word(rtlpriv, REG_SYS_FUNC_EN, (tmpu2b | BIT(11)));
674 tmpu1b = rtl_read_byte(rtlpriv, REG_SYS_FUNC_EN + 1);
675 rtl_write_byte(rtlpriv, REG_SYS_FUNC_EN + 1, tmpu1b & ~(BIT(7)));
677 /* enable REG_EN */
678 rtl_write_word(rtlpriv, REG_SYS_FUNC_EN, (tmpu2b | BIT(11) | BIT(15)));
680 /* Switch the control path. */
681 tmpu2b = rtl_read_word(rtlpriv, SYS_CLKR);
682 rtl_write_word(rtlpriv, SYS_CLKR, (tmpu2b & (~BIT(2))));
684 tmpu1b = rtl_read_byte(rtlpriv, (SYS_CLKR + 1));
685 tmpu1b = ((tmpu1b | BIT(7)) & (~BIT(6)));
686 if (!_rtl92se_halset_sysclk(hw, tmpu1b))
687 return; /* Set failed, return to prevent hang. */
689 rtl_write_word(rtlpriv, CMDR, 0x07FC);
691 /* MH We must enable the section of code to prevent load IMEM fail. */
692 /* Load MAC register from WMAc temporarily We simulate macreg. */
693 /* txt HW will provide MAC txt later */
694 rtl_write_byte(rtlpriv, 0x6, 0x30);
695 rtl_write_byte(rtlpriv, 0x49, 0xf0);
697 rtl_write_byte(rtlpriv, 0x4b, 0x81);
699 rtl_write_byte(rtlpriv, 0xb5, 0x21);
701 rtl_write_byte(rtlpriv, 0xdc, 0xff);
702 rtl_write_byte(rtlpriv, 0xdd, 0xff);
703 rtl_write_byte(rtlpriv, 0xde, 0xff);
704 rtl_write_byte(rtlpriv, 0xdf, 0xff);
706 rtl_write_byte(rtlpriv, 0x11a, 0x00);
707 rtl_write_byte(rtlpriv, 0x11b, 0x00);
709 for (i = 0; i < 32; i++)
710 rtl_write_byte(rtlpriv, INIMCS_SEL + i, 0x1b);
712 rtl_write_byte(rtlpriv, 0x236, 0xff);
714 rtl_write_byte(rtlpriv, 0x503, 0x22);
716 if (ppsc->support_aspm && !ppsc->support_backdoor)
717 rtl_write_byte(rtlpriv, 0x560, 0x40);
718 else
719 rtl_write_byte(rtlpriv, 0x560, 0x00);
721 rtl_write_byte(rtlpriv, DBG_PORT, 0x91);
723 /* Set RX Desc Address */
724 rtl_write_dword(rtlpriv, RDQDA, rtlpci->rx_ring[RX_MPDU_QUEUE].dma);
725 rtl_write_dword(rtlpriv, RCDA, rtlpci->rx_ring[RX_CMD_QUEUE].dma);
727 /* Set TX Desc Address */
728 rtl_write_dword(rtlpriv, TBKDA, rtlpci->tx_ring[BK_QUEUE].dma);
729 rtl_write_dword(rtlpriv, TBEDA, rtlpci->tx_ring[BE_QUEUE].dma);
730 rtl_write_dword(rtlpriv, TVIDA, rtlpci->tx_ring[VI_QUEUE].dma);
731 rtl_write_dword(rtlpriv, TVODA, rtlpci->tx_ring[VO_QUEUE].dma);
732 rtl_write_dword(rtlpriv, TBDA, rtlpci->tx_ring[BEACON_QUEUE].dma);
733 rtl_write_dword(rtlpriv, TCDA, rtlpci->tx_ring[TXCMD_QUEUE].dma);
734 rtl_write_dword(rtlpriv, TMDA, rtlpci->tx_ring[MGNT_QUEUE].dma);
735 rtl_write_dword(rtlpriv, THPDA, rtlpci->tx_ring[HIGH_QUEUE].dma);
736 rtl_write_dword(rtlpriv, HDA, rtlpci->tx_ring[HCCA_QUEUE].dma);
738 rtl_write_word(rtlpriv, CMDR, 0x37FC);
740 /* To make sure that TxDMA can ready to download FW. */
741 /* We should reset TxDMA if IMEM RPT was not ready. */
742 do {
743 tmpu1b = rtl_read_byte(rtlpriv, TCR);
744 if ((tmpu1b & TXDMA_INIT_VALUE) == TXDMA_INIT_VALUE)
745 break;
747 udelay(5);
748 } while (pollingcnt--);
750 if (pollingcnt <= 0) {
751 RT_TRACE(rtlpriv, COMP_ERR, DBG_EMERG,
752 "Polling TXDMA_INIT_VALUE timeout!! Current TCR(%#x)\n",
753 tmpu1b);
754 tmpu1b = rtl_read_byte(rtlpriv, CMDR);
755 rtl_write_byte(rtlpriv, CMDR, tmpu1b & (~TXDMA_EN));
756 udelay(2);
757 /* Reset TxDMA */
758 rtl_write_byte(rtlpriv, CMDR, tmpu1b | TXDMA_EN);
761 /* After MACIO reset,we must refresh LED state. */
762 if ((ppsc->rfoff_reason == RF_CHANGE_BY_IPS) ||
763 (ppsc->rfoff_reason == 0)) {
764 struct rtl_pci_priv *pcipriv = rtl_pcipriv(hw);
765 struct rtl_led *pLed0 = &(pcipriv->ledctl.sw_led0);
766 enum rf_pwrstate rfpwr_state_toset;
767 rfpwr_state_toset = _rtl92se_rf_onoff_detect(hw);
769 if (rfpwr_state_toset == ERFON)
770 rtl92se_sw_led_on(hw, pLed0);
774 static void _rtl92se_macconfig_after_fwdownload(struct ieee80211_hw *hw)
776 struct rtl_priv *rtlpriv = rtl_priv(hw);
777 struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw));
778 struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
779 struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw));
780 u8 i;
781 u16 tmpu2b;
783 /* 1. System Configure Register (Offset: 0x0000 - 0x003F) */
785 /* 2. Command Control Register (Offset: 0x0040 - 0x004F) */
786 /* Turn on 0x40 Command register */
787 rtl_write_word(rtlpriv, CMDR, (BBRSTN | BB_GLB_RSTN |
788 SCHEDULE_EN | MACRXEN | MACTXEN | DDMA_EN | FW2HW_EN |
789 RXDMA_EN | TXDMA_EN | HCI_RXDMA_EN | HCI_TXDMA_EN));
791 /* Set TCR TX DMA pre 2 FULL enable bit */
792 rtl_write_dword(rtlpriv, TCR, rtl_read_dword(rtlpriv, TCR) |
793 TXDMAPRE2FULL);
795 /* Set RCR */
796 rtl_write_dword(rtlpriv, RCR, rtlpci->receive_config);
798 /* 3. MACID Setting Register (Offset: 0x0050 - 0x007F) */
800 /* 4. Timing Control Register (Offset: 0x0080 - 0x009F) */
801 /* Set CCK/OFDM SIFS */
802 /* CCK SIFS shall always be 10us. */
803 rtl_write_word(rtlpriv, SIFS_CCK, 0x0a0a);
804 rtl_write_word(rtlpriv, SIFS_OFDM, 0x1010);
806 /* Set AckTimeout */
807 rtl_write_byte(rtlpriv, ACK_TIMEOUT, 0x40);
809 /* Beacon related */
810 rtl_write_word(rtlpriv, BCN_INTERVAL, 100);
811 rtl_write_word(rtlpriv, ATIMWND, 2);
813 /* 5. FIFO Control Register (Offset: 0x00A0 - 0x015F) */
814 /* 5.1 Initialize Number of Reserved Pages in Firmware Queue */
815 /* Firmware allocate now, associate with FW internal setting.!!! */
817 /* 5.2 Setting TX/RX page size 0/1/2/3/4=64/128/256/512/1024 */
818 /* 5.3 Set driver info, we only accept PHY status now. */
819 /* 5.4 Set RXDMA arbitration to control RXDMA/MAC/FW R/W for RXFIFO */
820 rtl_write_byte(rtlpriv, RXDMA, rtl_read_byte(rtlpriv, RXDMA) | BIT(6));
822 /* 6. Adaptive Control Register (Offset: 0x0160 - 0x01CF) */
823 /* Set RRSR to all legacy rate and HT rate
824 * CCK rate is supported by default.
825 * CCK rate will be filtered out only when associated
826 * AP does not support it.
827 * Only enable ACK rate to OFDM 24M
828 * Disable RRSR for CCK rate in A-Cut */
830 if (rtlhal->version == VERSION_8192S_ACUT)
831 rtl_write_byte(rtlpriv, RRSR, 0xf0);
832 else if (rtlhal->version == VERSION_8192S_BCUT)
833 rtl_write_byte(rtlpriv, RRSR, 0xff);
834 rtl_write_byte(rtlpriv, RRSR + 1, 0x01);
835 rtl_write_byte(rtlpriv, RRSR + 2, 0x00);
837 /* A-Cut IC do not support CCK rate. We forbid ARFR to */
838 /* fallback to CCK rate */
839 for (i = 0; i < 8; i++) {
840 /*Disable RRSR for CCK rate in A-Cut */
841 if (rtlhal->version == VERSION_8192S_ACUT)
842 rtl_write_dword(rtlpriv, ARFR0 + i * 4, 0x1f0ff0f0);
845 /* Different rate use different AMPDU size */
846 /* MCS32/ MCS15_SG use max AMPDU size 15*2=30K */
847 rtl_write_byte(rtlpriv, AGGLEN_LMT_H, 0x0f);
848 /* MCS0/1/2/3 use max AMPDU size 4*2=8K */
849 rtl_write_word(rtlpriv, AGGLEN_LMT_L, 0x7442);
850 /* MCS4/5 use max AMPDU size 8*2=16K 6/7 use 10*2=20K */
851 rtl_write_word(rtlpriv, AGGLEN_LMT_L + 2, 0xddd7);
852 /* MCS8/9 use max AMPDU size 8*2=16K 10/11 use 10*2=20K */
853 rtl_write_word(rtlpriv, AGGLEN_LMT_L + 4, 0xd772);
854 /* MCS12/13/14/15 use max AMPDU size 15*2=30K */
855 rtl_write_word(rtlpriv, AGGLEN_LMT_L + 6, 0xfffd);
857 /* Set Data / Response auto rate fallack retry count */
858 rtl_write_dword(rtlpriv, DARFRC, 0x04010000);
859 rtl_write_dword(rtlpriv, DARFRC + 4, 0x09070605);
860 rtl_write_dword(rtlpriv, RARFRC, 0x04010000);
861 rtl_write_dword(rtlpriv, RARFRC + 4, 0x09070605);
863 /* 7. EDCA Setting Register (Offset: 0x01D0 - 0x01FF) */
864 /* Set all rate to support SG */
865 rtl_write_word(rtlpriv, SG_RATE, 0xFFFF);
867 /* 8. WMAC, BA, and CCX related Register (Offset: 0x0200 - 0x023F) */
868 /* Set NAV protection length */
869 rtl_write_word(rtlpriv, NAV_PROT_LEN, 0x0080);
870 /* CF-END Threshold */
871 rtl_write_byte(rtlpriv, CFEND_TH, 0xFF);
872 /* Set AMPDU minimum space */
873 rtl_write_byte(rtlpriv, AMPDU_MIN_SPACE, 0x07);
874 /* Set TXOP stall control for several queue/HI/BCN/MGT/ */
875 rtl_write_byte(rtlpriv, TXOP_STALL_CTRL, 0x00);
877 /* 9. Security Control Register (Offset: 0x0240 - 0x025F) */
878 /* 10. Power Save Control Register (Offset: 0x0260 - 0x02DF) */
879 /* 11. General Purpose Register (Offset: 0x02E0 - 0x02FF) */
880 /* 12. Host Interrupt Status Register (Offset: 0x0300 - 0x030F) */
881 /* 13. Test Mode and Debug Control Register (Offset: 0x0310 - 0x034F) */
883 /* 14. Set driver info, we only accept PHY status now. */
884 rtl_write_byte(rtlpriv, RXDRVINFO_SZ, 4);
886 /* 15. For EEPROM R/W Workaround */
887 /* 16. For EFUSE to share REG_SYS_FUNC_EN with EEPROM!!! */
888 tmpu2b = rtl_read_byte(rtlpriv, REG_SYS_FUNC_EN);
889 rtl_write_byte(rtlpriv, REG_SYS_FUNC_EN, tmpu2b | BIT(13));
890 tmpu2b = rtl_read_byte(rtlpriv, REG_SYS_ISO_CTRL);
891 rtl_write_byte(rtlpriv, REG_SYS_ISO_CTRL, tmpu2b & (~BIT(8)));
893 /* 17. For EFUSE */
894 /* We may R/W EFUSE in EEPROM mode */
895 if (rtlefuse->epromtype == EEPROM_BOOT_EFUSE) {
896 u8 tempval;
898 tempval = rtl_read_byte(rtlpriv, REG_SYS_ISO_CTRL + 1);
899 tempval &= 0xFE;
900 rtl_write_byte(rtlpriv, REG_SYS_ISO_CTRL + 1, tempval);
902 /* Change Program timing */
903 rtl_write_byte(rtlpriv, REG_EFUSE_CTRL + 3, 0x72);
904 RT_TRACE(rtlpriv, COMP_INIT, DBG_DMESG, "EFUSE CONFIG OK\n");
907 RT_TRACE(rtlpriv, COMP_INIT, DBG_DMESG, "OK\n");
911 static void _rtl92se_hw_configure(struct ieee80211_hw *hw)
913 struct rtl_priv *rtlpriv = rtl_priv(hw);
914 struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw));
915 struct rtl_phy *rtlphy = &(rtlpriv->phy);
916 struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw));
918 u8 reg_bw_opmode = 0;
919 u32 reg_rrsr = 0;
920 u8 regtmp = 0;
922 reg_bw_opmode = BW_OPMODE_20MHZ;
923 reg_rrsr = RATE_ALL_CCK | RATE_ALL_OFDM_AG;
925 regtmp = rtl_read_byte(rtlpriv, INIRTSMCS_SEL);
926 reg_rrsr = ((reg_rrsr & 0x000fffff) << 8) | regtmp;
927 rtl_write_dword(rtlpriv, INIRTSMCS_SEL, reg_rrsr);
928 rtl_write_byte(rtlpriv, BW_OPMODE, reg_bw_opmode);
930 /* Set Retry Limit here */
931 rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_RETRY_LIMIT,
932 (u8 *)(&rtlpci->shortretry_limit));
934 rtl_write_byte(rtlpriv, MLT, 0x8f);
936 /* For Min Spacing configuration. */
937 switch (rtlphy->rf_type) {
938 case RF_1T2R:
939 case RF_1T1R:
940 rtlhal->minspace_cfg = (MAX_MSS_DENSITY_1T << 3);
941 break;
942 case RF_2T2R:
943 case RF_2T2R_GREEN:
944 rtlhal->minspace_cfg = (MAX_MSS_DENSITY_2T << 3);
945 break;
947 rtl_write_byte(rtlpriv, AMPDU_MIN_SPACE, rtlhal->minspace_cfg);
950 int rtl92se_hw_init(struct ieee80211_hw *hw)
952 struct rtl_priv *rtlpriv = rtl_priv(hw);
953 struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw));
954 struct rtl_phy *rtlphy = &(rtlpriv->phy);
955 struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw));
956 struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
957 u8 tmp_byte = 0;
958 unsigned long flags;
959 bool rtstatus = true;
960 u8 tmp_u1b;
961 int err = false;
962 u8 i;
963 int wdcapra_add[] = {
964 EDCAPARA_BE, EDCAPARA_BK,
965 EDCAPARA_VI, EDCAPARA_VO};
966 u8 secr_value = 0x0;
968 rtlpci->being_init_adapter = true;
970 /* As this function can take a very long time (up to 350 ms)
971 * and can be called with irqs disabled, reenable the irqs
972 * to let the other devices continue being serviced.
974 * It is safe doing so since our own interrupts will only be enabled
975 * in a subsequent step.
977 local_save_flags(flags);
978 local_irq_enable();
980 rtlpriv->intf_ops->disable_aspm(hw);
982 /* 1. MAC Initialize */
983 /* Before FW download, we have to set some MAC register */
984 _rtl92se_macconfig_before_fwdownload(hw);
986 rtlhal->version = (enum version_8192s)((rtl_read_dword(rtlpriv,
987 PMC_FSM) >> 16) & 0xF);
989 rtl8192se_gpiobit3_cfg_inputmode(hw);
991 /* 2. download firmware */
992 rtstatus = rtl92s_download_fw(hw);
993 if (!rtstatus) {
994 RT_TRACE(rtlpriv, COMP_ERR, DBG_WARNING,
995 "Failed to download FW. Init HW without FW now... "
996 "Please copy FW into /lib/firmware/rtlwifi\n");
997 err = 1;
998 goto exit;
1001 /* After FW download, we have to reset MAC register */
1002 _rtl92se_macconfig_after_fwdownload(hw);
1004 /*Retrieve default FW Cmd IO map. */
1005 rtlhal->fwcmd_iomap = rtl_read_word(rtlpriv, LBUS_MON_ADDR);
1006 rtlhal->fwcmd_ioparam = rtl_read_dword(rtlpriv, LBUS_ADDR_MASK);
1008 /* 3. Initialize MAC/PHY Config by MACPHY_reg.txt */
1009 if (!rtl92s_phy_mac_config(hw)) {
1010 RT_TRACE(rtlpriv, COMP_ERR, DBG_EMERG, "MAC Config failed\n");
1011 err = rtstatus;
1012 goto exit;
1015 /* because last function modify RCR, so we update
1016 * rcr var here, or TP will unstable for receive_config
1017 * is wrong, RX RCR_ACRC32 will cause TP unstabel & Rx
1018 * RCR_APP_ICV will cause mac80211 unassoc for cisco 1252
1020 rtlpci->receive_config = rtl_read_dword(rtlpriv, RCR);
1021 rtlpci->receive_config &= ~(RCR_ACRC32 | RCR_AICV);
1022 rtl_write_dword(rtlpriv, RCR, rtlpci->receive_config);
1024 /* Make sure BB/RF write OK. We should prevent enter IPS. radio off. */
1025 /* We must set flag avoid BB/RF config period later!! */
1026 rtl_write_dword(rtlpriv, CMDR, 0x37FC);
1028 /* 4. Initialize BB After MAC Config PHY_reg.txt, AGC_Tab.txt */
1029 if (!rtl92s_phy_bb_config(hw)) {
1030 RT_TRACE(rtlpriv, COMP_INIT, DBG_EMERG, "BB Config failed\n");
1031 err = rtstatus;
1032 goto exit;
1035 /* 5. Initiailze RF RAIO_A.txt RF RAIO_B.txt */
1036 /* Before initalizing RF. We can not use FW to do RF-R/W. */
1038 rtlphy->rf_mode = RF_OP_BY_SW_3WIRE;
1040 /* Before RF-R/W we must execute the IO from Scott's suggestion. */
1041 rtl_write_byte(rtlpriv, AFE_XTAL_CTRL + 1, 0xDB);
1042 if (rtlhal->version == VERSION_8192S_ACUT)
1043 rtl_write_byte(rtlpriv, SPS1_CTRL + 3, 0x07);
1044 else
1045 rtl_write_byte(rtlpriv, RF_CTRL, 0x07);
1047 if (!rtl92s_phy_rf_config(hw)) {
1048 RT_TRACE(rtlpriv, COMP_INIT, DBG_DMESG, "RF Config failed\n");
1049 err = rtstatus;
1050 goto exit;
1053 /* After read predefined TXT, we must set BB/MAC/RF
1054 * register as our requirement */
1056 rtlphy->rfreg_chnlval[0] = rtl92s_phy_query_rf_reg(hw,
1057 (enum radio_path)0,
1058 RF_CHNLBW,
1059 RFREG_OFFSET_MASK);
1060 rtlphy->rfreg_chnlval[1] = rtl92s_phy_query_rf_reg(hw,
1061 (enum radio_path)1,
1062 RF_CHNLBW,
1063 RFREG_OFFSET_MASK);
1065 /*---- Set CCK and OFDM Block "ON"----*/
1066 rtl_set_bbreg(hw, RFPGA0_RFMOD, BCCKEN, 0x1);
1067 rtl_set_bbreg(hw, RFPGA0_RFMOD, BOFDMEN, 0x1);
1069 /*3 Set Hardware(Do nothing now) */
1070 _rtl92se_hw_configure(hw);
1072 /* Read EEPROM TX power index and PHY_REG_PG.txt to capture correct */
1073 /* TX power index for different rate set. */
1074 /* Get original hw reg values */
1075 rtl92s_phy_get_hw_reg_originalvalue(hw);
1076 /* Write correct tx power index */
1077 rtl92s_phy_set_txpower(hw, rtlphy->current_channel);
1079 /* We must set MAC address after firmware download. */
1080 for (i = 0; i < 6; i++)
1081 rtl_write_byte(rtlpriv, MACIDR0 + i, rtlefuse->dev_addr[i]);
1083 /* EEPROM R/W workaround */
1084 tmp_u1b = rtl_read_byte(rtlpriv, MAC_PINMUX_CFG);
1085 rtl_write_byte(rtlpriv, MAC_PINMUX_CFG, tmp_u1b & (~BIT(3)));
1087 rtl_write_byte(rtlpriv, 0x4d, 0x0);
1089 if (hal_get_firmwareversion(rtlpriv) >= 0x49) {
1090 tmp_byte = rtl_read_byte(rtlpriv, FW_RSVD_PG_CRTL) & (~BIT(4));
1091 tmp_byte = tmp_byte | BIT(5);
1092 rtl_write_byte(rtlpriv, FW_RSVD_PG_CRTL, tmp_byte);
1093 rtl_write_dword(rtlpriv, TXDESC_MSK, 0xFFFFCFFF);
1096 /* We enable high power and RA related mechanism after NIC
1097 * initialized. */
1098 if (hal_get_firmwareversion(rtlpriv) >= 0x35) {
1099 /* Fw v.53 and later. */
1100 rtl92s_phy_set_fw_cmd(hw, FW_CMD_RA_INIT);
1101 } else if (hal_get_firmwareversion(rtlpriv) == 0x34) {
1102 /* Fw v.52. */
1103 rtl_write_dword(rtlpriv, WFM5, FW_RA_INIT);
1104 rtl92s_phy_chk_fwcmd_iodone(hw);
1105 } else {
1106 /* Compatible earlier FW version. */
1107 rtl_write_dword(rtlpriv, WFM5, FW_RA_RESET);
1108 rtl92s_phy_chk_fwcmd_iodone(hw);
1109 rtl_write_dword(rtlpriv, WFM5, FW_RA_ACTIVE);
1110 rtl92s_phy_chk_fwcmd_iodone(hw);
1111 rtl_write_dword(rtlpriv, WFM5, FW_RA_REFRESH);
1112 rtl92s_phy_chk_fwcmd_iodone(hw);
1115 /* Add to prevent ASPM bug. */
1116 /* Always enable hst and NIC clock request. */
1117 rtl92s_phy_switch_ephy_parameter(hw);
1119 /* Security related
1120 * 1. Clear all H/W keys.
1121 * 2. Enable H/W encryption/decryption. */
1122 rtl_cam_reset_all_entry(hw);
1123 secr_value |= SCR_TXENCENABLE;
1124 secr_value |= SCR_RXENCENABLE;
1125 secr_value |= SCR_NOSKMC;
1126 rtl_write_byte(rtlpriv, REG_SECR, secr_value);
1128 for (i = 0; i < 4; i++)
1129 rtl_write_dword(rtlpriv, wdcapra_add[i], 0x5e4322);
1131 if (rtlphy->rf_type == RF_1T2R) {
1132 bool mrc2set = true;
1133 /* Turn on B-Path */
1134 rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_MRC, (u8 *)&mrc2set);
1137 rtlpriv->cfg->ops->led_control(hw, LED_CTL_POWER_ON);
1138 rtl92s_dm_init(hw);
1139 exit:
1140 local_irq_restore(flags);
1141 rtlpci->being_init_adapter = false;
1142 return err;
1145 void rtl92se_set_mac_addr(struct rtl_io *io, const u8 *addr)
1147 /* This is a stub. */
1150 void rtl92se_set_check_bssid(struct ieee80211_hw *hw, bool check_bssid)
1152 struct rtl_priv *rtlpriv = rtl_priv(hw);
1153 struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw));
1154 u32 reg_rcr = rtlpci->receive_config;
1156 if (rtlpriv->psc.rfpwr_state != ERFON)
1157 return;
1159 if (check_bssid) {
1160 reg_rcr |= (RCR_CBSSID);
1161 rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_RCR, (u8 *)(&reg_rcr));
1162 } else if (!check_bssid) {
1163 reg_rcr &= (~RCR_CBSSID);
1164 rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_RCR, (u8 *)(&reg_rcr));
1169 static int _rtl92se_set_media_status(struct ieee80211_hw *hw,
1170 enum nl80211_iftype type)
1172 struct rtl_priv *rtlpriv = rtl_priv(hw);
1173 u8 bt_msr = rtl_read_byte(rtlpriv, MSR);
1174 u32 temp;
1175 bt_msr &= ~MSR_LINK_MASK;
1177 switch (type) {
1178 case NL80211_IFTYPE_UNSPECIFIED:
1179 bt_msr |= (MSR_LINK_NONE << MSR_LINK_SHIFT);
1180 RT_TRACE(rtlpriv, COMP_INIT, DBG_TRACE,
1181 "Set Network type to NO LINK!\n");
1182 break;
1183 case NL80211_IFTYPE_ADHOC:
1184 bt_msr |= (MSR_LINK_ADHOC << MSR_LINK_SHIFT);
1185 RT_TRACE(rtlpriv, COMP_INIT, DBG_TRACE,
1186 "Set Network type to Ad Hoc!\n");
1187 break;
1188 case NL80211_IFTYPE_STATION:
1189 bt_msr |= (MSR_LINK_MANAGED << MSR_LINK_SHIFT);
1190 RT_TRACE(rtlpriv, COMP_INIT, DBG_TRACE,
1191 "Set Network type to STA!\n");
1192 break;
1193 case NL80211_IFTYPE_AP:
1194 bt_msr |= (MSR_LINK_MASTER << MSR_LINK_SHIFT);
1195 RT_TRACE(rtlpriv, COMP_INIT, DBG_TRACE,
1196 "Set Network type to AP!\n");
1197 break;
1198 default:
1199 RT_TRACE(rtlpriv, COMP_ERR, DBG_EMERG,
1200 "Network type %d not supported!\n", type);
1201 return 1;
1202 break;
1206 rtl_write_byte(rtlpriv, (MSR), bt_msr);
1208 temp = rtl_read_dword(rtlpriv, TCR);
1209 rtl_write_dword(rtlpriv, TCR, temp & (~BIT(8)));
1210 rtl_write_dword(rtlpriv, TCR, temp | BIT(8));
1213 return 0;
1216 /* HW_VAR_MEDIA_STATUS & HW_VAR_CECHK_BSSID */
1217 int rtl92se_set_network_type(struct ieee80211_hw *hw, enum nl80211_iftype type)
1219 struct rtl_priv *rtlpriv = rtl_priv(hw);
1221 if (_rtl92se_set_media_status(hw, type))
1222 return -EOPNOTSUPP;
1224 if (rtlpriv->mac80211.link_state == MAC80211_LINKED) {
1225 if (type != NL80211_IFTYPE_AP)
1226 rtl92se_set_check_bssid(hw, true);
1227 } else {
1228 rtl92se_set_check_bssid(hw, false);
1231 return 0;
1234 /* don't set REG_EDCA_BE_PARAM here because mac80211 will send pkt when scan */
1235 void rtl92se_set_qos(struct ieee80211_hw *hw, int aci)
1237 struct rtl_priv *rtlpriv = rtl_priv(hw);
1238 rtl92s_dm_init_edca_turbo(hw);
1240 switch (aci) {
1241 case AC1_BK:
1242 rtl_write_dword(rtlpriv, EDCAPARA_BK, 0xa44f);
1243 break;
1244 case AC0_BE:
1245 /* rtl_write_dword(rtlpriv, EDCAPARA_BE, u4b_ac_param); */
1246 break;
1247 case AC2_VI:
1248 rtl_write_dword(rtlpriv, EDCAPARA_VI, 0x5e4322);
1249 break;
1250 case AC3_VO:
1251 rtl_write_dword(rtlpriv, EDCAPARA_VO, 0x2f3222);
1252 break;
1253 default:
1254 RT_ASSERT(false, "invalid aci: %d !\n", aci);
1255 break;
1259 void rtl92se_enable_interrupt(struct ieee80211_hw *hw)
1261 struct rtl_priv *rtlpriv = rtl_priv(hw);
1262 struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw));
1264 rtl_write_dword(rtlpriv, INTA_MASK, rtlpci->irq_mask[0]);
1265 /* Support Bit 32-37(Assign as Bit 0-5) interrupt setting now */
1266 rtl_write_dword(rtlpriv, INTA_MASK + 4, rtlpci->irq_mask[1] & 0x3F);
1269 void rtl92se_disable_interrupt(struct ieee80211_hw *hw)
1271 struct rtl_priv *rtlpriv;
1272 struct rtl_pci *rtlpci;
1274 rtlpriv = rtl_priv(hw);
1275 /* if firmware not available, no interrupts */
1276 if (!rtlpriv || !rtlpriv->max_fw_size)
1277 return;
1278 rtlpci = rtl_pcidev(rtl_pcipriv(hw));
1279 rtl_write_dword(rtlpriv, INTA_MASK, 0);
1280 rtl_write_dword(rtlpriv, INTA_MASK + 4, 0);
1282 synchronize_irq(rtlpci->pdev->irq);
1285 static u8 _rtl92s_set_sysclk(struct ieee80211_hw *hw, u8 data)
1287 struct rtl_priv *rtlpriv = rtl_priv(hw);
1288 u8 waitcnt = 100;
1289 bool result = false;
1290 u8 tmp;
1292 rtl_write_byte(rtlpriv, SYS_CLKR + 1, data);
1294 /* Wait the MAC synchronized. */
1295 udelay(400);
1297 /* Check if it is set ready. */
1298 tmp = rtl_read_byte(rtlpriv, SYS_CLKR + 1);
1299 result = ((tmp & BIT(7)) == (data & BIT(7)));
1301 if ((data & (BIT(6) | BIT(7))) == false) {
1302 waitcnt = 100;
1303 tmp = 0;
1305 while (1) {
1306 waitcnt--;
1307 tmp = rtl_read_byte(rtlpriv, SYS_CLKR + 1);
1309 if ((tmp & BIT(6)))
1310 break;
1312 pr_err("wait for BIT(6) return value %x\n", tmp);
1314 if (waitcnt == 0)
1315 break;
1316 udelay(10);
1319 if (waitcnt == 0)
1320 result = false;
1321 else
1322 result = true;
1325 return result;
1328 static void _rtl92s_phy_set_rfhalt(struct ieee80211_hw *hw)
1330 struct rtl_priv *rtlpriv = rtl_priv(hw);
1331 struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw));
1332 struct rtl_ps_ctl *ppsc = rtl_psc(rtl_priv(hw));
1333 u8 u1btmp;
1335 if (rtlhal->driver_going2unload)
1336 rtl_write_byte(rtlpriv, 0x560, 0x0);
1338 /* Power save for BB/RF */
1339 u1btmp = rtl_read_byte(rtlpriv, LDOV12D_CTRL);
1340 u1btmp |= BIT(0);
1341 rtl_write_byte(rtlpriv, LDOV12D_CTRL, u1btmp);
1342 rtl_write_byte(rtlpriv, SPS1_CTRL, 0x0);
1343 rtl_write_byte(rtlpriv, TXPAUSE, 0xFF);
1344 rtl_write_word(rtlpriv, CMDR, 0x57FC);
1345 udelay(100);
1346 rtl_write_word(rtlpriv, CMDR, 0x77FC);
1347 rtl_write_byte(rtlpriv, PHY_CCA, 0x0);
1348 udelay(10);
1349 rtl_write_word(rtlpriv, CMDR, 0x37FC);
1350 udelay(10);
1351 rtl_write_word(rtlpriv, CMDR, 0x77FC);
1352 udelay(10);
1353 rtl_write_word(rtlpriv, CMDR, 0x57FC);
1354 rtl_write_word(rtlpriv, CMDR, 0x0000);
1356 if (rtlhal->driver_going2unload) {
1357 u1btmp = rtl_read_byte(rtlpriv, (REG_SYS_FUNC_EN + 1));
1358 u1btmp &= ~(BIT(0));
1359 rtl_write_byte(rtlpriv, REG_SYS_FUNC_EN + 1, u1btmp);
1362 u1btmp = rtl_read_byte(rtlpriv, (SYS_CLKR + 1));
1364 /* Add description. After switch control path. register
1365 * after page1 will be invisible. We can not do any IO
1366 * for register>0x40. After resume&MACIO reset, we need
1367 * to remember previous reg content. */
1368 if (u1btmp & BIT(7)) {
1369 u1btmp &= ~(BIT(6) | BIT(7));
1370 if (!_rtl92s_set_sysclk(hw, u1btmp)) {
1371 pr_err("Switch ctrl path fail\n");
1372 return;
1376 /* Power save for MAC */
1377 if (ppsc->rfoff_reason == RF_CHANGE_BY_IPS &&
1378 !rtlhal->driver_going2unload) {
1379 /* enable LED function */
1380 rtl_write_byte(rtlpriv, 0x03, 0xF9);
1381 /* SW/HW radio off or halt adapter!! For example S3/S4 */
1382 } else {
1383 /* LED function disable. Power range is about 8mA now. */
1384 /* if write 0xF1 disconnet_pci power
1385 * ifconfig wlan0 down power are both high 35:70 */
1386 /* if write oxF9 disconnet_pci power
1387 * ifconfig wlan0 down power are both low 12:45*/
1388 rtl_write_byte(rtlpriv, 0x03, 0xF9);
1391 rtl_write_byte(rtlpriv, SYS_CLKR + 1, 0x70);
1392 rtl_write_byte(rtlpriv, AFE_PLL_CTRL + 1, 0x68);
1393 rtl_write_byte(rtlpriv, AFE_PLL_CTRL, 0x00);
1394 rtl_write_byte(rtlpriv, LDOA15_CTRL, 0x34);
1395 rtl_write_byte(rtlpriv, AFE_XTAL_CTRL, 0x0E);
1396 RT_SET_PS_LEVEL(ppsc, RT_RF_OFF_LEVL_HALT_NIC);
1400 static void _rtl92se_gen_refreshledstate(struct ieee80211_hw *hw)
1402 struct rtl_priv *rtlpriv = rtl_priv(hw);
1403 struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw));
1404 struct rtl_pci_priv *pcipriv = rtl_pcipriv(hw);
1405 struct rtl_led *pLed0 = &(pcipriv->ledctl.sw_led0);
1407 if (rtlpci->up_first_time == 1)
1408 return;
1410 if (rtlpriv->psc.rfoff_reason == RF_CHANGE_BY_IPS)
1411 rtl92se_sw_led_on(hw, pLed0);
1412 else
1413 rtl92se_sw_led_off(hw, pLed0);
1417 static void _rtl92se_power_domain_init(struct ieee80211_hw *hw)
1419 struct rtl_priv *rtlpriv = rtl_priv(hw);
1420 u16 tmpu2b;
1421 u8 tmpu1b;
1423 rtlpriv->psc.pwrdomain_protect = true;
1425 tmpu1b = rtl_read_byte(rtlpriv, (SYS_CLKR + 1));
1426 if (tmpu1b & BIT(7)) {
1427 tmpu1b &= ~(BIT(6) | BIT(7));
1428 if (!_rtl92s_set_sysclk(hw, tmpu1b)) {
1429 rtlpriv->psc.pwrdomain_protect = false;
1430 return;
1434 rtl_write_byte(rtlpriv, AFE_PLL_CTRL, 0x0);
1435 rtl_write_byte(rtlpriv, LDOA15_CTRL, 0x34);
1437 /* Reset MAC-IO and CPU and Core Digital BIT10/11/15 */
1438 tmpu1b = rtl_read_byte(rtlpriv, REG_SYS_FUNC_EN + 1);
1440 /* If IPS we need to turn LED on. So we not
1441 * not disable BIT 3/7 of reg3. */
1442 if (rtlpriv->psc.rfoff_reason & (RF_CHANGE_BY_IPS | RF_CHANGE_BY_HW))
1443 tmpu1b &= 0xFB;
1444 else
1445 tmpu1b &= 0x73;
1447 rtl_write_byte(rtlpriv, REG_SYS_FUNC_EN + 1, tmpu1b);
1448 /* wait for BIT 10/11/15 to pull high automatically!! */
1449 mdelay(1);
1451 rtl_write_byte(rtlpriv, CMDR, 0);
1452 rtl_write_byte(rtlpriv, TCR, 0);
1454 /* Data sheet not define 0x562!!! Copy from WMAC!!!!! */
1455 tmpu1b = rtl_read_byte(rtlpriv, 0x562);
1456 tmpu1b |= 0x08;
1457 rtl_write_byte(rtlpriv, 0x562, tmpu1b);
1458 tmpu1b &= ~(BIT(3));
1459 rtl_write_byte(rtlpriv, 0x562, tmpu1b);
1461 /* Enable AFE clock source */
1462 tmpu1b = rtl_read_byte(rtlpriv, AFE_XTAL_CTRL);
1463 rtl_write_byte(rtlpriv, AFE_XTAL_CTRL, (tmpu1b | 0x01));
1464 /* Delay 1.5ms */
1465 udelay(1500);
1466 tmpu1b = rtl_read_byte(rtlpriv, AFE_XTAL_CTRL + 1);
1467 rtl_write_byte(rtlpriv, AFE_XTAL_CTRL + 1, (tmpu1b & 0xfb));
1469 /* Enable AFE Macro Block's Bandgap */
1470 tmpu1b = rtl_read_byte(rtlpriv, AFE_MISC);
1471 rtl_write_byte(rtlpriv, AFE_MISC, (tmpu1b | BIT(0)));
1472 mdelay(1);
1474 /* Enable AFE Mbias */
1475 tmpu1b = rtl_read_byte(rtlpriv, AFE_MISC);
1476 rtl_write_byte(rtlpriv, AFE_MISC, (tmpu1b | 0x02));
1477 mdelay(1);
1479 /* Enable LDOA15 block */
1480 tmpu1b = rtl_read_byte(rtlpriv, LDOA15_CTRL);
1481 rtl_write_byte(rtlpriv, LDOA15_CTRL, (tmpu1b | BIT(0)));
1483 /* Set Digital Vdd to Retention isolation Path. */
1484 tmpu2b = rtl_read_word(rtlpriv, REG_SYS_ISO_CTRL);
1485 rtl_write_word(rtlpriv, REG_SYS_ISO_CTRL, (tmpu2b | BIT(11)));
1488 /* For warm reboot NIC disappera bug. */
1489 tmpu2b = rtl_read_word(rtlpriv, REG_SYS_FUNC_EN);
1490 rtl_write_word(rtlpriv, REG_SYS_FUNC_EN, (tmpu2b | BIT(13)));
1492 rtl_write_byte(rtlpriv, REG_SYS_ISO_CTRL + 1, 0x68);
1494 /* Enable AFE PLL Macro Block */
1495 tmpu1b = rtl_read_byte(rtlpriv, AFE_PLL_CTRL);
1496 rtl_write_byte(rtlpriv, AFE_PLL_CTRL, (tmpu1b | BIT(0) | BIT(4)));
1497 /* Enable MAC 80MHZ clock */
1498 tmpu1b = rtl_read_byte(rtlpriv, AFE_PLL_CTRL + 1);
1499 rtl_write_byte(rtlpriv, AFE_PLL_CTRL + 1, (tmpu1b | BIT(0)));
1500 mdelay(1);
1502 /* Release isolation AFE PLL & MD */
1503 rtl_write_byte(rtlpriv, REG_SYS_ISO_CTRL, 0xA6);
1505 /* Enable MAC clock */
1506 tmpu2b = rtl_read_word(rtlpriv, SYS_CLKR);
1507 rtl_write_word(rtlpriv, SYS_CLKR, (tmpu2b | BIT(12) | BIT(11)));
1509 /* Enable Core digital and enable IOREG R/W */
1510 tmpu2b = rtl_read_word(rtlpriv, REG_SYS_FUNC_EN);
1511 rtl_write_word(rtlpriv, REG_SYS_FUNC_EN, (tmpu2b | BIT(11)));
1512 /* enable REG_EN */
1513 rtl_write_word(rtlpriv, REG_SYS_FUNC_EN, (tmpu2b | BIT(11) | BIT(15)));
1515 /* Switch the control path. */
1516 tmpu2b = rtl_read_word(rtlpriv, SYS_CLKR);
1517 rtl_write_word(rtlpriv, SYS_CLKR, (tmpu2b & (~BIT(2))));
1519 tmpu1b = rtl_read_byte(rtlpriv, (SYS_CLKR + 1));
1520 tmpu1b = ((tmpu1b | BIT(7)) & (~BIT(6)));
1521 if (!_rtl92s_set_sysclk(hw, tmpu1b)) {
1522 rtlpriv->psc.pwrdomain_protect = false;
1523 return;
1526 rtl_write_word(rtlpriv, CMDR, 0x37FC);
1528 /* After MACIO reset,we must refresh LED state. */
1529 _rtl92se_gen_refreshledstate(hw);
1531 rtlpriv->psc.pwrdomain_protect = false;
1534 void rtl92se_card_disable(struct ieee80211_hw *hw)
1536 struct rtl_priv *rtlpriv = rtl_priv(hw);
1537 struct rtl_mac *mac = rtl_mac(rtl_priv(hw));
1538 struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw));
1539 struct rtl_ps_ctl *ppsc = rtl_psc(rtl_priv(hw));
1540 enum nl80211_iftype opmode;
1541 u8 wait = 30;
1543 rtlpriv->intf_ops->enable_aspm(hw);
1545 if (rtlpci->driver_is_goingto_unload ||
1546 ppsc->rfoff_reason > RF_CHANGE_BY_PS)
1547 rtlpriv->cfg->ops->led_control(hw, LED_CTL_POWER_OFF);
1549 /* we should chnge GPIO to input mode
1550 * this will drop away current about 25mA*/
1551 rtl8192se_gpiobit3_cfg_inputmode(hw);
1553 /* this is very important for ips power save */
1554 while (wait-- >= 10 && rtlpriv->psc.pwrdomain_protect) {
1555 if (rtlpriv->psc.pwrdomain_protect)
1556 mdelay(20);
1557 else
1558 break;
1561 mac->link_state = MAC80211_NOLINK;
1562 opmode = NL80211_IFTYPE_UNSPECIFIED;
1563 _rtl92se_set_media_status(hw, opmode);
1565 _rtl92s_phy_set_rfhalt(hw);
1566 udelay(100);
1569 void rtl92se_interrupt_recognized(struct ieee80211_hw *hw, u32 *p_inta,
1570 u32 *p_intb)
1572 struct rtl_priv *rtlpriv = rtl_priv(hw);
1573 struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw));
1575 *p_inta = rtl_read_dword(rtlpriv, ISR) & rtlpci->irq_mask[0];
1576 rtl_write_dword(rtlpriv, ISR, *p_inta);
1578 *p_intb = rtl_read_dword(rtlpriv, ISR + 4) & rtlpci->irq_mask[1];
1579 rtl_write_dword(rtlpriv, ISR + 4, *p_intb);
1582 void rtl92se_set_beacon_related_registers(struct ieee80211_hw *hw)
1584 struct rtl_priv *rtlpriv = rtl_priv(hw);
1585 struct rtl_mac *mac = rtl_mac(rtl_priv(hw));
1586 u16 bcntime_cfg = 0;
1587 u16 bcn_cw = 6, bcn_ifs = 0xf;
1588 u16 atim_window = 2;
1590 /* ATIM Window (in unit of TU). */
1591 rtl_write_word(rtlpriv, ATIMWND, atim_window);
1593 /* Beacon interval (in unit of TU). */
1594 rtl_write_word(rtlpriv, BCN_INTERVAL, mac->beacon_interval);
1596 /* DrvErlyInt (in unit of TU). (Time to send
1597 * interrupt to notify driver to change
1598 * beacon content) */
1599 rtl_write_word(rtlpriv, BCN_DRV_EARLY_INT, 10 << 4);
1601 /* BcnDMATIM(in unit of us). Indicates the
1602 * time before TBTT to perform beacon queue DMA */
1603 rtl_write_word(rtlpriv, BCN_DMATIME, 256);
1605 /* Force beacon frame transmission even
1606 * after receiving beacon frame from
1607 * other ad hoc STA */
1608 rtl_write_byte(rtlpriv, BCN_ERR_THRESH, 100);
1610 /* Beacon Time Configuration */
1611 if (mac->opmode == NL80211_IFTYPE_ADHOC)
1612 bcntime_cfg |= (bcn_cw << BCN_TCFG_CW_SHIFT);
1614 /* TODO: bcn_ifs may required to be changed on ASIC */
1615 bcntime_cfg |= bcn_ifs << BCN_TCFG_IFS;
1617 /*for beacon changed */
1618 rtl92s_phy_set_beacon_hwreg(hw, mac->beacon_interval);
1621 void rtl92se_set_beacon_interval(struct ieee80211_hw *hw)
1623 struct rtl_priv *rtlpriv = rtl_priv(hw);
1624 struct rtl_mac *mac = rtl_mac(rtl_priv(hw));
1625 u16 bcn_interval = mac->beacon_interval;
1627 /* Beacon interval (in unit of TU). */
1628 rtl_write_word(rtlpriv, BCN_INTERVAL, bcn_interval);
1629 /* 2008.10.24 added by tynli for beacon changed. */
1630 rtl92s_phy_set_beacon_hwreg(hw, bcn_interval);
1633 void rtl92se_update_interrupt_mask(struct ieee80211_hw *hw,
1634 u32 add_msr, u32 rm_msr)
1636 struct rtl_priv *rtlpriv = rtl_priv(hw);
1637 struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw));
1639 RT_TRACE(rtlpriv, COMP_INTR, DBG_LOUD, "add_msr:%x, rm_msr:%x\n",
1640 add_msr, rm_msr);
1642 if (add_msr)
1643 rtlpci->irq_mask[0] |= add_msr;
1645 if (rm_msr)
1646 rtlpci->irq_mask[0] &= (~rm_msr);
1648 rtl92se_disable_interrupt(hw);
1649 rtl92se_enable_interrupt(hw);
1652 static void _rtl8192se_get_IC_Inferiority(struct ieee80211_hw *hw)
1654 struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
1655 struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw));
1656 u8 efuse_id;
1658 rtlhal->ic_class = IC_INFERIORITY_A;
1660 /* Only retrieving while using EFUSE. */
1661 if ((rtlefuse->epromtype == EEPROM_BOOT_EFUSE) &&
1662 !rtlefuse->autoload_failflag) {
1663 efuse_id = efuse_read_1byte(hw, EFUSE_IC_ID_OFFSET);
1665 if (efuse_id == 0xfe)
1666 rtlhal->ic_class = IC_INFERIORITY_B;
1670 static void _rtl92se_read_adapter_info(struct ieee80211_hw *hw)
1672 struct rtl_priv *rtlpriv = rtl_priv(hw);
1673 struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
1674 struct rtl_phy *rtlphy = &(rtlpriv->phy);
1675 u16 i, usvalue;
1676 u16 eeprom_id;
1677 u8 tempval;
1678 u8 hwinfo[HWSET_MAX_SIZE_92S];
1679 u8 rf_path, index;
1681 if (rtlefuse->epromtype == EEPROM_93C46) {
1682 RT_TRACE(rtlpriv, COMP_ERR, DBG_EMERG,
1683 "RTL819X Not boot from eeprom, check it !!\n");
1684 } else if (rtlefuse->epromtype == EEPROM_BOOT_EFUSE) {
1685 rtl_efuse_shadow_map_update(hw);
1687 memcpy((void *)hwinfo, (void *)
1688 &rtlefuse->efuse_map[EFUSE_INIT_MAP][0],
1689 HWSET_MAX_SIZE_92S);
1692 RT_PRINT_DATA(rtlpriv, COMP_INIT, DBG_DMESG, "MAP",
1693 hwinfo, HWSET_MAX_SIZE_92S);
1695 eeprom_id = *((u16 *)&hwinfo[0]);
1696 if (eeprom_id != RTL8190_EEPROM_ID) {
1697 RT_TRACE(rtlpriv, COMP_ERR, DBG_WARNING,
1698 "EEPROM ID(%#x) is invalid!!\n", eeprom_id);
1699 rtlefuse->autoload_failflag = true;
1700 } else {
1701 RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD, "Autoload OK\n");
1702 rtlefuse->autoload_failflag = false;
1705 if (rtlefuse->autoload_failflag)
1706 return;
1708 _rtl8192se_get_IC_Inferiority(hw);
1710 /* Read IC Version && Channel Plan */
1711 /* VID, DID SE 0xA-D */
1712 rtlefuse->eeprom_vid = *(u16 *)&hwinfo[EEPROM_VID];
1713 rtlefuse->eeprom_did = *(u16 *)&hwinfo[EEPROM_DID];
1714 rtlefuse->eeprom_svid = *(u16 *)&hwinfo[EEPROM_SVID];
1715 rtlefuse->eeprom_smid = *(u16 *)&hwinfo[EEPROM_SMID];
1716 rtlefuse->eeprom_version = *(u16 *)&hwinfo[EEPROM_VERSION];
1718 RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD,
1719 "EEPROMId = 0x%4x\n", eeprom_id);
1720 RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD,
1721 "EEPROM VID = 0x%4x\n", rtlefuse->eeprom_vid);
1722 RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD,
1723 "EEPROM DID = 0x%4x\n", rtlefuse->eeprom_did);
1724 RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD,
1725 "EEPROM SVID = 0x%4x\n", rtlefuse->eeprom_svid);
1726 RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD,
1727 "EEPROM SMID = 0x%4x\n", rtlefuse->eeprom_smid);
1729 for (i = 0; i < 6; i += 2) {
1730 usvalue = *(u16 *)&hwinfo[EEPROM_MAC_ADDR + i];
1731 *((u16 *) (&rtlefuse->dev_addr[i])) = usvalue;
1734 for (i = 0; i < 6; i++)
1735 rtl_write_byte(rtlpriv, MACIDR0 + i, rtlefuse->dev_addr[i]);
1737 RT_TRACE(rtlpriv, COMP_INIT, DBG_DMESG, "%pM\n", rtlefuse->dev_addr);
1739 /* Get Tx Power Level by Channel */
1740 /* Read Tx power of Channel 1 ~ 14 from EEPROM. */
1741 /* 92S suupport RF A & B */
1742 for (rf_path = 0; rf_path < 2; rf_path++) {
1743 for (i = 0; i < 3; i++) {
1744 /* Read CCK RF A & B Tx power */
1745 rtlefuse->eeprom_chnlarea_txpwr_cck[rf_path][i] =
1746 hwinfo[EEPROM_TXPOWERBASE + rf_path * 3 + i];
1748 /* Read OFDM RF A & B Tx power for 1T */
1749 rtlefuse->eeprom_chnlarea_txpwr_ht40_1s[rf_path][i] =
1750 hwinfo[EEPROM_TXPOWERBASE + 6 + rf_path * 3 + i];
1752 /* Read OFDM RF A & B Tx power for 2T */
1753 rtlefuse->eprom_chnl_txpwr_ht40_2sdf[rf_path][i]
1754 = hwinfo[EEPROM_TXPOWERBASE + 12 +
1755 rf_path * 3 + i];
1759 for (rf_path = 0; rf_path < 2; rf_path++)
1760 for (i = 0; i < 3; i++)
1761 RTPRINT(rtlpriv, FINIT, INIT_EEPROM,
1762 "RF(%d) EEPROM CCK Area(%d) = 0x%x\n",
1763 rf_path, i,
1764 rtlefuse->eeprom_chnlarea_txpwr_cck
1765 [rf_path][i]);
1766 for (rf_path = 0; rf_path < 2; rf_path++)
1767 for (i = 0; i < 3; i++)
1768 RTPRINT(rtlpriv, FINIT, INIT_EEPROM,
1769 "RF(%d) EEPROM HT40 1S Area(%d) = 0x%x\n",
1770 rf_path, i,
1771 rtlefuse->eeprom_chnlarea_txpwr_ht40_1s
1772 [rf_path][i]);
1773 for (rf_path = 0; rf_path < 2; rf_path++)
1774 for (i = 0; i < 3; i++)
1775 RTPRINT(rtlpriv, FINIT, INIT_EEPROM,
1776 "RF(%d) EEPROM HT40 2S Diff Area(%d) = 0x%x\n",
1777 rf_path, i,
1778 rtlefuse->eprom_chnl_txpwr_ht40_2sdf
1779 [rf_path][i]);
1781 for (rf_path = 0; rf_path < 2; rf_path++) {
1783 /* Assign dedicated channel tx power */
1784 for (i = 0; i < 14; i++) {
1785 /* channel 1~3 use the same Tx Power Level. */
1786 if (i < 3)
1787 index = 0;
1788 /* Channel 4-8 */
1789 else if (i < 8)
1790 index = 1;
1791 /* Channel 9-14 */
1792 else
1793 index = 2;
1795 /* Record A & B CCK /OFDM - 1T/2T Channel area
1796 * tx power */
1797 rtlefuse->txpwrlevel_cck[rf_path][i] =
1798 rtlefuse->eeprom_chnlarea_txpwr_cck
1799 [rf_path][index];
1800 rtlefuse->txpwrlevel_ht40_1s[rf_path][i] =
1801 rtlefuse->eeprom_chnlarea_txpwr_ht40_1s
1802 [rf_path][index];
1803 rtlefuse->txpwrlevel_ht40_2s[rf_path][i] =
1804 rtlefuse->eprom_chnl_txpwr_ht40_2sdf
1805 [rf_path][index];
1808 for (i = 0; i < 14; i++) {
1809 RTPRINT(rtlpriv, FINIT, INIT_TXPOWER,
1810 "RF(%d)-Ch(%d) [CCK / HT40_1S / HT40_2S] = [0x%x / 0x%x / 0x%x]\n",
1811 rf_path, i,
1812 rtlefuse->txpwrlevel_cck[rf_path][i],
1813 rtlefuse->txpwrlevel_ht40_1s[rf_path][i],
1814 rtlefuse->txpwrlevel_ht40_2s[rf_path][i]);
1818 for (rf_path = 0; rf_path < 2; rf_path++) {
1819 for (i = 0; i < 3; i++) {
1820 /* Read Power diff limit. */
1821 rtlefuse->eeprom_pwrgroup[rf_path][i] =
1822 hwinfo[EEPROM_TXPWRGROUP + rf_path * 3 + i];
1826 for (rf_path = 0; rf_path < 2; rf_path++) {
1827 /* Fill Pwr group */
1828 for (i = 0; i < 14; i++) {
1829 /* Chanel 1-3 */
1830 if (i < 3)
1831 index = 0;
1832 /* Channel 4-8 */
1833 else if (i < 8)
1834 index = 1;
1835 /* Channel 9-13 */
1836 else
1837 index = 2;
1839 rtlefuse->pwrgroup_ht20[rf_path][i] =
1840 (rtlefuse->eeprom_pwrgroup[rf_path][index] &
1841 0xf);
1842 rtlefuse->pwrgroup_ht40[rf_path][i] =
1843 ((rtlefuse->eeprom_pwrgroup[rf_path][index] &
1844 0xf0) >> 4);
1846 RTPRINT(rtlpriv, FINIT, INIT_TXPOWER,
1847 "RF-%d pwrgroup_ht20[%d] = 0x%x\n",
1848 rf_path, i,
1849 rtlefuse->pwrgroup_ht20[rf_path][i]);
1850 RTPRINT(rtlpriv, FINIT, INIT_TXPOWER,
1851 "RF-%d pwrgroup_ht40[%d] = 0x%x\n",
1852 rf_path, i,
1853 rtlefuse->pwrgroup_ht40[rf_path][i]);
1857 for (i = 0; i < 14; i++) {
1858 /* Read tx power difference between HT OFDM 20/40 MHZ */
1859 /* channel 1-3 */
1860 if (i < 3)
1861 index = 0;
1862 /* Channel 4-8 */
1863 else if (i < 8)
1864 index = 1;
1865 /* Channel 9-14 */
1866 else
1867 index = 2;
1869 tempval = hwinfo[EEPROM_TX_PWR_HT20_DIFF + index] & 0xff;
1870 rtlefuse->txpwr_ht20diff[RF90_PATH_A][i] = (tempval & 0xF);
1871 rtlefuse->txpwr_ht20diff[RF90_PATH_B][i] =
1872 ((tempval >> 4) & 0xF);
1874 /* Read OFDM<->HT tx power diff */
1875 /* Channel 1-3 */
1876 if (i < 3)
1877 index = 0;
1878 /* Channel 4-8 */
1879 else if (i < 8)
1880 index = 0x11;
1881 /* Channel 9-14 */
1882 else
1883 index = 1;
1885 tempval = hwinfo[EEPROM_TX_PWR_OFDM_DIFF + index] & 0xff;
1886 rtlefuse->txpwr_legacyhtdiff[RF90_PATH_A][i] =
1887 (tempval & 0xF);
1888 rtlefuse->txpwr_legacyhtdiff[RF90_PATH_B][i] =
1889 ((tempval >> 4) & 0xF);
1891 tempval = hwinfo[TX_PWR_SAFETY_CHK];
1892 rtlefuse->txpwr_safetyflag = (tempval & 0x01);
1895 rtlefuse->eeprom_regulatory = 0;
1896 if (rtlefuse->eeprom_version >= 2) {
1897 /* BIT(0)~2 */
1898 if (rtlefuse->eeprom_version >= 4)
1899 rtlefuse->eeprom_regulatory =
1900 (hwinfo[EEPROM_REGULATORY] & 0x7);
1901 else /* BIT(0) */
1902 rtlefuse->eeprom_regulatory =
1903 (hwinfo[EEPROM_REGULATORY] & 0x1);
1905 RTPRINT(rtlpriv, FINIT, INIT_TXPOWER,
1906 "eeprom_regulatory = 0x%x\n", rtlefuse->eeprom_regulatory);
1908 for (i = 0; i < 14; i++)
1909 RTPRINT(rtlpriv, FINIT, INIT_TXPOWER,
1910 "RF-A Ht20 to HT40 Diff[%d] = 0x%x\n",
1911 i, rtlefuse->txpwr_ht20diff[RF90_PATH_A][i]);
1912 for (i = 0; i < 14; i++)
1913 RTPRINT(rtlpriv, FINIT, INIT_TXPOWER,
1914 "RF-A Legacy to Ht40 Diff[%d] = 0x%x\n",
1915 i, rtlefuse->txpwr_legacyhtdiff[RF90_PATH_A][i]);
1916 for (i = 0; i < 14; i++)
1917 RTPRINT(rtlpriv, FINIT, INIT_TXPOWER,
1918 "RF-B Ht20 to HT40 Diff[%d] = 0x%x\n",
1919 i, rtlefuse->txpwr_ht20diff[RF90_PATH_B][i]);
1920 for (i = 0; i < 14; i++)
1921 RTPRINT(rtlpriv, FINIT, INIT_TXPOWER,
1922 "RF-B Legacy to HT40 Diff[%d] = 0x%x\n",
1923 i, rtlefuse->txpwr_legacyhtdiff[RF90_PATH_B][i]);
1925 RTPRINT(rtlpriv, FINIT, INIT_TXPOWER,
1926 "TxPwrSafetyFlag = %d\n", rtlefuse->txpwr_safetyflag);
1928 /* Read RF-indication and Tx Power gain
1929 * index diff of legacy to HT OFDM rate. */
1930 tempval = hwinfo[EEPROM_RFIND_POWERDIFF] & 0xff;
1931 rtlefuse->eeprom_txpowerdiff = tempval;
1932 rtlefuse->legacy_httxpowerdiff =
1933 rtlefuse->txpwr_legacyhtdiff[RF90_PATH_A][0];
1935 RTPRINT(rtlpriv, FINIT, INIT_TXPOWER,
1936 "TxPowerDiff = %#x\n", rtlefuse->eeprom_txpowerdiff);
1938 /* Get TSSI value for each path. */
1939 usvalue = *(u16 *)&hwinfo[EEPROM_TSSI_A];
1940 rtlefuse->eeprom_tssi[RF90_PATH_A] = (u8)((usvalue & 0xff00) >> 8);
1941 usvalue = hwinfo[EEPROM_TSSI_B];
1942 rtlefuse->eeprom_tssi[RF90_PATH_B] = (u8)(usvalue & 0xff);
1944 RTPRINT(rtlpriv, FINIT, INIT_TXPOWER, "TSSI_A = 0x%x, TSSI_B = 0x%x\n",
1945 rtlefuse->eeprom_tssi[RF90_PATH_A],
1946 rtlefuse->eeprom_tssi[RF90_PATH_B]);
1948 /* Read antenna tx power offset of B/C/D to A from EEPROM */
1949 /* and read ThermalMeter from EEPROM */
1950 tempval = hwinfo[EEPROM_THERMALMETER];
1951 rtlefuse->eeprom_thermalmeter = tempval;
1952 RTPRINT(rtlpriv, FINIT, INIT_TXPOWER,
1953 "thermalmeter = 0x%x\n", rtlefuse->eeprom_thermalmeter);
1955 /* ThermalMeter, BIT(0)~3 for RFIC1, BIT(4)~7 for RFIC2 */
1956 rtlefuse->thermalmeter[0] = (rtlefuse->eeprom_thermalmeter & 0x1f);
1957 rtlefuse->tssi_13dbm = rtlefuse->eeprom_thermalmeter * 100;
1959 /* Read CrystalCap from EEPROM */
1960 tempval = hwinfo[EEPROM_CRYSTALCAP] >> 4;
1961 rtlefuse->eeprom_crystalcap = tempval;
1962 /* CrystalCap, BIT(12)~15 */
1963 rtlefuse->crystalcap = rtlefuse->eeprom_crystalcap;
1965 /* Read IC Version && Channel Plan */
1966 /* Version ID, Channel plan */
1967 rtlefuse->eeprom_channelplan = hwinfo[EEPROM_CHANNELPLAN];
1968 rtlefuse->txpwr_fromeprom = true;
1969 RTPRINT(rtlpriv, FINIT, INIT_TXPOWER,
1970 "EEPROM ChannelPlan = 0x%4x\n", rtlefuse->eeprom_channelplan);
1972 /* Read Customer ID or Board Type!!! */
1973 tempval = hwinfo[EEPROM_BOARDTYPE];
1974 /* Change RF type definition */
1975 if (tempval == 0)
1976 rtlphy->rf_type = RF_2T2R;
1977 else if (tempval == 1)
1978 rtlphy->rf_type = RF_1T2R;
1979 else if (tempval == 2)
1980 rtlphy->rf_type = RF_1T2R;
1981 else if (tempval == 3)
1982 rtlphy->rf_type = RF_1T1R;
1984 /* 1T2R but 1SS (1x1 receive combining) */
1985 rtlefuse->b1x1_recvcombine = false;
1986 if (rtlphy->rf_type == RF_1T2R) {
1987 tempval = rtl_read_byte(rtlpriv, 0x07);
1988 if (!(tempval & BIT(0))) {
1989 rtlefuse->b1x1_recvcombine = true;
1990 RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD,
1991 "RF_TYPE=1T2R but only 1SS\n");
1994 rtlefuse->b1ss_support = rtlefuse->b1x1_recvcombine;
1995 rtlefuse->eeprom_oemid = *&hwinfo[EEPROM_CUSTOMID];
1997 RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD, "EEPROM Customer ID: 0x%2x",
1998 rtlefuse->eeprom_oemid);
2000 /* set channel paln to world wide 13 */
2001 rtlefuse->channel_plan = COUNTRY_CODE_WORLD_WIDE_13;
2004 void rtl92se_read_eeprom_info(struct ieee80211_hw *hw)
2006 struct rtl_priv *rtlpriv = rtl_priv(hw);
2007 struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
2008 u8 tmp_u1b = 0;
2010 tmp_u1b = rtl_read_byte(rtlpriv, EPROM_CMD);
2012 if (tmp_u1b & BIT(4)) {
2013 RT_TRACE(rtlpriv, COMP_INIT, DBG_DMESG, "Boot from EEPROM\n");
2014 rtlefuse->epromtype = EEPROM_93C46;
2015 } else {
2016 RT_TRACE(rtlpriv, COMP_INIT, DBG_DMESG, "Boot from EFUSE\n");
2017 rtlefuse->epromtype = EEPROM_BOOT_EFUSE;
2020 if (tmp_u1b & BIT(5)) {
2021 RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD, "Autoload OK\n");
2022 rtlefuse->autoload_failflag = false;
2023 _rtl92se_read_adapter_info(hw);
2024 } else {
2025 RT_TRACE(rtlpriv, COMP_ERR, DBG_EMERG, "Autoload ERR!!\n");
2026 rtlefuse->autoload_failflag = true;
2030 static void rtl92se_update_hal_rate_table(struct ieee80211_hw *hw,
2031 struct ieee80211_sta *sta)
2033 struct rtl_priv *rtlpriv = rtl_priv(hw);
2034 struct rtl_phy *rtlphy = &(rtlpriv->phy);
2035 struct rtl_mac *mac = rtl_mac(rtl_priv(hw));
2036 struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw));
2037 u32 ratr_value;
2038 u8 ratr_index = 0;
2039 u8 nmode = mac->ht_enable;
2040 u8 mimo_ps = IEEE80211_SMPS_OFF;
2041 u16 shortgi_rate = 0;
2042 u32 tmp_ratr_value = 0;
2043 u8 curtxbw_40mhz = mac->bw_40;
2044 u8 curshortgi_40mhz = (sta->ht_cap.cap & IEEE80211_HT_CAP_SGI_40) ?
2045 1 : 0;
2046 u8 curshortgi_20mhz = (sta->ht_cap.cap & IEEE80211_HT_CAP_SGI_20) ?
2047 1 : 0;
2048 enum wireless_mode wirelessmode = mac->mode;
2050 if (rtlhal->current_bandtype == BAND_ON_5G)
2051 ratr_value = sta->supp_rates[1] << 4;
2052 else
2053 ratr_value = sta->supp_rates[0];
2054 if (mac->opmode == NL80211_IFTYPE_ADHOC)
2055 ratr_value = 0xfff;
2056 ratr_value |= (sta->ht_cap.mcs.rx_mask[1] << 20 |
2057 sta->ht_cap.mcs.rx_mask[0] << 12);
2058 switch (wirelessmode) {
2059 case WIRELESS_MODE_B:
2060 ratr_value &= 0x0000000D;
2061 break;
2062 case WIRELESS_MODE_G:
2063 ratr_value &= 0x00000FF5;
2064 break;
2065 case WIRELESS_MODE_N_24G:
2066 case WIRELESS_MODE_N_5G:
2067 nmode = 1;
2068 if (mimo_ps == IEEE80211_SMPS_STATIC) {
2069 ratr_value &= 0x0007F005;
2070 } else {
2071 u32 ratr_mask;
2073 if (get_rf_type(rtlphy) == RF_1T2R ||
2074 get_rf_type(rtlphy) == RF_1T1R) {
2075 if (curtxbw_40mhz)
2076 ratr_mask = 0x000ff015;
2077 else
2078 ratr_mask = 0x000ff005;
2079 } else {
2080 if (curtxbw_40mhz)
2081 ratr_mask = 0x0f0ff015;
2082 else
2083 ratr_mask = 0x0f0ff005;
2086 ratr_value &= ratr_mask;
2088 break;
2089 default:
2090 if (rtlphy->rf_type == RF_1T2R)
2091 ratr_value &= 0x000ff0ff;
2092 else
2093 ratr_value &= 0x0f0ff0ff;
2095 break;
2098 if (rtlpriv->rtlhal.version >= VERSION_8192S_BCUT)
2099 ratr_value &= 0x0FFFFFFF;
2100 else if (rtlpriv->rtlhal.version == VERSION_8192S_ACUT)
2101 ratr_value &= 0x0FFFFFF0;
2103 if (nmode && ((curtxbw_40mhz &&
2104 curshortgi_40mhz) || (!curtxbw_40mhz &&
2105 curshortgi_20mhz))) {
2107 ratr_value |= 0x10000000;
2108 tmp_ratr_value = (ratr_value >> 12);
2110 for (shortgi_rate = 15; shortgi_rate > 0; shortgi_rate--) {
2111 if ((1 << shortgi_rate) & tmp_ratr_value)
2112 break;
2115 shortgi_rate = (shortgi_rate << 12) | (shortgi_rate << 8) |
2116 (shortgi_rate << 4) | (shortgi_rate);
2118 rtl_write_byte(rtlpriv, SG_RATE, shortgi_rate);
2121 rtl_write_dword(rtlpriv, ARFR0 + ratr_index * 4, ratr_value);
2122 if (ratr_value & 0xfffff000)
2123 rtl92s_phy_set_fw_cmd(hw, FW_CMD_RA_REFRESH_N);
2124 else
2125 rtl92s_phy_set_fw_cmd(hw, FW_CMD_RA_REFRESH_BG);
2127 RT_TRACE(rtlpriv, COMP_RATR, DBG_DMESG, "%x\n",
2128 rtl_read_dword(rtlpriv, ARFR0));
2131 static void rtl92se_update_hal_rate_mask(struct ieee80211_hw *hw,
2132 struct ieee80211_sta *sta,
2133 u8 rssi_level)
2135 struct rtl_priv *rtlpriv = rtl_priv(hw);
2136 struct rtl_phy *rtlphy = &(rtlpriv->phy);
2137 struct rtl_mac *mac = rtl_mac(rtl_priv(hw));
2138 struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw));
2139 struct rtl_sta_info *sta_entry = NULL;
2140 u32 ratr_bitmap;
2141 u8 ratr_index = 0;
2142 u8 curtxbw_40mhz = (sta->bandwidth >= IEEE80211_STA_RX_BW_40) ? 1 : 0;
2143 u8 curshortgi_40mhz = (sta->ht_cap.cap & IEEE80211_HT_CAP_SGI_40) ?
2144 1 : 0;
2145 u8 curshortgi_20mhz = (sta->ht_cap.cap & IEEE80211_HT_CAP_SGI_20) ?
2146 1 : 0;
2147 enum wireless_mode wirelessmode = 0;
2148 bool shortgi = false;
2149 u32 ratr_value = 0;
2150 u8 shortgi_rate = 0;
2151 u32 mask = 0;
2152 u32 band = 0;
2153 bool bmulticast = false;
2154 u8 macid = 0;
2155 u8 mimo_ps = IEEE80211_SMPS_OFF;
2157 sta_entry = (struct rtl_sta_info *) sta->drv_priv;
2158 wirelessmode = sta_entry->wireless_mode;
2159 if (mac->opmode == NL80211_IFTYPE_STATION)
2160 curtxbw_40mhz = mac->bw_40;
2161 else if (mac->opmode == NL80211_IFTYPE_AP ||
2162 mac->opmode == NL80211_IFTYPE_ADHOC)
2163 macid = sta->aid + 1;
2165 if (rtlhal->current_bandtype == BAND_ON_5G)
2166 ratr_bitmap = sta->supp_rates[1] << 4;
2167 else
2168 ratr_bitmap = sta->supp_rates[0];
2169 if (mac->opmode == NL80211_IFTYPE_ADHOC)
2170 ratr_bitmap = 0xfff;
2171 ratr_bitmap |= (sta->ht_cap.mcs.rx_mask[1] << 20 |
2172 sta->ht_cap.mcs.rx_mask[0] << 12);
2173 switch (wirelessmode) {
2174 case WIRELESS_MODE_B:
2175 band |= WIRELESS_11B;
2176 ratr_index = RATR_INX_WIRELESS_B;
2177 if (ratr_bitmap & 0x0000000c)
2178 ratr_bitmap &= 0x0000000d;
2179 else
2180 ratr_bitmap &= 0x0000000f;
2181 break;
2182 case WIRELESS_MODE_G:
2183 band |= (WIRELESS_11G | WIRELESS_11B);
2184 ratr_index = RATR_INX_WIRELESS_GB;
2186 if (rssi_level == 1)
2187 ratr_bitmap &= 0x00000f00;
2188 else if (rssi_level == 2)
2189 ratr_bitmap &= 0x00000ff0;
2190 else
2191 ratr_bitmap &= 0x00000ff5;
2192 break;
2193 case WIRELESS_MODE_A:
2194 band |= WIRELESS_11A;
2195 ratr_index = RATR_INX_WIRELESS_A;
2196 ratr_bitmap &= 0x00000ff0;
2197 break;
2198 case WIRELESS_MODE_N_24G:
2199 case WIRELESS_MODE_N_5G:
2200 band |= (WIRELESS_11N | WIRELESS_11G | WIRELESS_11B);
2201 ratr_index = RATR_INX_WIRELESS_NGB;
2203 if (mimo_ps == IEEE80211_SMPS_STATIC) {
2204 if (rssi_level == 1)
2205 ratr_bitmap &= 0x00070000;
2206 else if (rssi_level == 2)
2207 ratr_bitmap &= 0x0007f000;
2208 else
2209 ratr_bitmap &= 0x0007f005;
2210 } else {
2211 if (rtlphy->rf_type == RF_1T2R ||
2212 rtlphy->rf_type == RF_1T1R) {
2213 if (rssi_level == 1) {
2214 ratr_bitmap &= 0x000f0000;
2215 } else if (rssi_level == 3) {
2216 ratr_bitmap &= 0x000fc000;
2217 } else if (rssi_level == 5) {
2218 ratr_bitmap &= 0x000ff000;
2219 } else {
2220 if (curtxbw_40mhz)
2221 ratr_bitmap &= 0x000ff015;
2222 else
2223 ratr_bitmap &= 0x000ff005;
2225 } else {
2226 if (rssi_level == 1) {
2227 ratr_bitmap &= 0x0f8f0000;
2228 } else if (rssi_level == 3) {
2229 ratr_bitmap &= 0x0f8fc000;
2230 } else if (rssi_level == 5) {
2231 ratr_bitmap &= 0x0f8ff000;
2232 } else {
2233 if (curtxbw_40mhz)
2234 ratr_bitmap &= 0x0f8ff015;
2235 else
2236 ratr_bitmap &= 0x0f8ff005;
2241 if ((curtxbw_40mhz && curshortgi_40mhz) ||
2242 (!curtxbw_40mhz && curshortgi_20mhz)) {
2243 if (macid == 0)
2244 shortgi = true;
2245 else if (macid == 1)
2246 shortgi = false;
2248 break;
2249 default:
2250 band |= (WIRELESS_11N | WIRELESS_11G | WIRELESS_11B);
2251 ratr_index = RATR_INX_WIRELESS_NGB;
2253 if (rtlphy->rf_type == RF_1T2R)
2254 ratr_bitmap &= 0x000ff0ff;
2255 else
2256 ratr_bitmap &= 0x0f8ff0ff;
2257 break;
2259 sta_entry->ratr_index = ratr_index;
2261 if (rtlpriv->rtlhal.version >= VERSION_8192S_BCUT)
2262 ratr_bitmap &= 0x0FFFFFFF;
2263 else if (rtlpriv->rtlhal.version == VERSION_8192S_ACUT)
2264 ratr_bitmap &= 0x0FFFFFF0;
2266 if (shortgi) {
2267 ratr_bitmap |= 0x10000000;
2268 /* Get MAX MCS available. */
2269 ratr_value = (ratr_bitmap >> 12);
2270 for (shortgi_rate = 15; shortgi_rate > 0; shortgi_rate--) {
2271 if ((1 << shortgi_rate) & ratr_value)
2272 break;
2275 shortgi_rate = (shortgi_rate << 12) | (shortgi_rate << 8) |
2276 (shortgi_rate << 4) | (shortgi_rate);
2277 rtl_write_byte(rtlpriv, SG_RATE, shortgi_rate);
2280 mask |= (bmulticast ? 1 : 0) << 9 | (macid & 0x1f) << 4 | (band & 0xf);
2282 RT_TRACE(rtlpriv, COMP_RATR, DBG_TRACE, "mask = %x, bitmap = %x\n",
2283 mask, ratr_bitmap);
2284 rtl_write_dword(rtlpriv, 0x2c4, ratr_bitmap);
2285 rtl_write_dword(rtlpriv, WFM5, (FW_RA_UPDATE_MASK | (mask << 8)));
2287 if (macid != 0)
2288 sta_entry->ratr_index = ratr_index;
2291 void rtl92se_update_hal_rate_tbl(struct ieee80211_hw *hw,
2292 struct ieee80211_sta *sta, u8 rssi_level)
2294 struct rtl_priv *rtlpriv = rtl_priv(hw);
2296 if (rtlpriv->dm.useramask)
2297 rtl92se_update_hal_rate_mask(hw, sta, rssi_level);
2298 else
2299 rtl92se_update_hal_rate_table(hw, sta);
2302 void rtl92se_update_channel_access_setting(struct ieee80211_hw *hw)
2304 struct rtl_priv *rtlpriv = rtl_priv(hw);
2305 struct rtl_mac *mac = rtl_mac(rtl_priv(hw));
2306 u16 sifs_timer;
2308 rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_SLOT_TIME,
2309 &mac->slot_time);
2310 sifs_timer = 0x0e0e;
2311 rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_SIFS, (u8 *)&sifs_timer);
2315 /* this ifunction is for RFKILL, it's different with windows,
2316 * because UI will disable wireless when GPIO Radio Off.
2317 * And here we not check or Disable/Enable ASPM like windows*/
2318 bool rtl92se_gpio_radio_on_off_checking(struct ieee80211_hw *hw, u8 *valid)
2320 struct rtl_priv *rtlpriv = rtl_priv(hw);
2321 struct rtl_ps_ctl *ppsc = rtl_psc(rtl_priv(hw));
2322 struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw));
2323 enum rf_pwrstate rfpwr_toset /*, cur_rfstate */;
2324 unsigned long flag = 0;
2325 bool actuallyset = false;
2326 bool turnonbypowerdomain = false;
2328 /* just 8191se can check gpio before firstup, 92c/92d have fixed it */
2329 if ((rtlpci->up_first_time == 1) || (rtlpci->being_init_adapter))
2330 return false;
2332 if (ppsc->swrf_processing)
2333 return false;
2335 spin_lock_irqsave(&rtlpriv->locks.rf_ps_lock, flag);
2336 if (ppsc->rfchange_inprogress) {
2337 spin_unlock_irqrestore(&rtlpriv->locks.rf_ps_lock, flag);
2338 return false;
2339 } else {
2340 ppsc->rfchange_inprogress = true;
2341 spin_unlock_irqrestore(&rtlpriv->locks.rf_ps_lock, flag);
2344 /* cur_rfstate = ppsc->rfpwr_state;*/
2346 /* because after _rtl92s_phy_set_rfhalt, all power
2347 * closed, so we must open some power for GPIO check,
2348 * or we will always check GPIO RFOFF here,
2349 * And we should close power after GPIO check */
2350 if (RT_IN_PS_LEVEL(ppsc, RT_RF_OFF_LEVL_HALT_NIC)) {
2351 _rtl92se_power_domain_init(hw);
2352 turnonbypowerdomain = true;
2355 rfpwr_toset = _rtl92se_rf_onoff_detect(hw);
2357 if ((ppsc->hwradiooff) && (rfpwr_toset == ERFON)) {
2358 RT_TRACE(rtlpriv, COMP_RF, DBG_DMESG,
2359 "RFKILL-HW Radio ON, RF ON\n");
2361 rfpwr_toset = ERFON;
2362 ppsc->hwradiooff = false;
2363 actuallyset = true;
2364 } else if ((!ppsc->hwradiooff) && (rfpwr_toset == ERFOFF)) {
2365 RT_TRACE(rtlpriv, COMP_RF,
2366 DBG_DMESG, "RFKILL-HW Radio OFF, RF OFF\n");
2368 rfpwr_toset = ERFOFF;
2369 ppsc->hwradiooff = true;
2370 actuallyset = true;
2373 if (actuallyset) {
2374 spin_lock_irqsave(&rtlpriv->locks.rf_ps_lock, flag);
2375 ppsc->rfchange_inprogress = false;
2376 spin_unlock_irqrestore(&rtlpriv->locks.rf_ps_lock, flag);
2378 /* this not include ifconfig wlan0 down case */
2379 /* } else if (rfpwr_toset == ERFOFF || cur_rfstate == ERFOFF) { */
2380 } else {
2381 /* because power_domain_init may be happen when
2382 * _rtl92s_phy_set_rfhalt, this will open some powers
2383 * and cause current increasing about 40 mA for ips,
2384 * rfoff and ifconfig down, so we set
2385 * _rtl92s_phy_set_rfhalt again here */
2386 if (ppsc->reg_rfps_level & RT_RF_OFF_LEVL_HALT_NIC &&
2387 turnonbypowerdomain) {
2388 _rtl92s_phy_set_rfhalt(hw);
2389 RT_SET_PS_LEVEL(ppsc, RT_RF_OFF_LEVL_HALT_NIC);
2392 spin_lock_irqsave(&rtlpriv->locks.rf_ps_lock, flag);
2393 ppsc->rfchange_inprogress = false;
2394 spin_unlock_irqrestore(&rtlpriv->locks.rf_ps_lock, flag);
2397 *valid = 1;
2398 return !ppsc->hwradiooff;
2402 /* Is_wepkey just used for WEP used as group & pairwise key
2403 * if pairwise is AES ang group is WEP Is_wepkey == false.*/
2404 void rtl92se_set_key(struct ieee80211_hw *hw, u32 key_index, u8 *p_macaddr,
2405 bool is_group, u8 enc_algo, bool is_wepkey, bool clear_all)
2407 struct rtl_priv *rtlpriv = rtl_priv(hw);
2408 struct rtl_mac *mac = rtl_mac(rtl_priv(hw));
2409 struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
2410 u8 *macaddr = p_macaddr;
2412 u32 entry_id = 0;
2413 bool is_pairwise = false;
2415 static u8 cam_const_addr[4][6] = {
2416 {0x00, 0x00, 0x00, 0x00, 0x00, 0x00},
2417 {0x00, 0x00, 0x00, 0x00, 0x00, 0x01},
2418 {0x00, 0x00, 0x00, 0x00, 0x00, 0x02},
2419 {0x00, 0x00, 0x00, 0x00, 0x00, 0x03}
2421 static u8 cam_const_broad[] = {
2422 0xff, 0xff, 0xff, 0xff, 0xff, 0xff
2425 if (clear_all) {
2426 u8 idx = 0;
2427 u8 cam_offset = 0;
2428 u8 clear_number = 5;
2430 RT_TRACE(rtlpriv, COMP_SEC, DBG_DMESG, "clear_all\n");
2432 for (idx = 0; idx < clear_number; idx++) {
2433 rtl_cam_mark_invalid(hw, cam_offset + idx);
2434 rtl_cam_empty_entry(hw, cam_offset + idx);
2436 if (idx < 5) {
2437 memset(rtlpriv->sec.key_buf[idx], 0,
2438 MAX_KEY_LEN);
2439 rtlpriv->sec.key_len[idx] = 0;
2443 } else {
2444 switch (enc_algo) {
2445 case WEP40_ENCRYPTION:
2446 enc_algo = CAM_WEP40;
2447 break;
2448 case WEP104_ENCRYPTION:
2449 enc_algo = CAM_WEP104;
2450 break;
2451 case TKIP_ENCRYPTION:
2452 enc_algo = CAM_TKIP;
2453 break;
2454 case AESCCMP_ENCRYPTION:
2455 enc_algo = CAM_AES;
2456 break;
2457 default:
2458 RT_TRACE(rtlpriv, COMP_ERR, DBG_EMERG,
2459 "switch case not processed\n");
2460 enc_algo = CAM_TKIP;
2461 break;
2464 if (is_wepkey || rtlpriv->sec.use_defaultkey) {
2465 macaddr = cam_const_addr[key_index];
2466 entry_id = key_index;
2467 } else {
2468 if (is_group) {
2469 macaddr = cam_const_broad;
2470 entry_id = key_index;
2471 } else {
2472 if (mac->opmode == NL80211_IFTYPE_AP) {
2473 entry_id = rtl_cam_get_free_entry(hw,
2474 p_macaddr);
2475 if (entry_id >= TOTAL_CAM_ENTRY) {
2476 RT_TRACE(rtlpriv,
2477 COMP_SEC, DBG_EMERG,
2478 "Can not find free hw security cam entry\n");
2479 return;
2481 } else {
2482 entry_id = CAM_PAIRWISE_KEY_POSITION;
2485 key_index = PAIRWISE_KEYIDX;
2486 is_pairwise = true;
2490 if (rtlpriv->sec.key_len[key_index] == 0) {
2491 RT_TRACE(rtlpriv, COMP_SEC, DBG_DMESG,
2492 "delete one entry, entry_id is %d\n",
2493 entry_id);
2494 if (mac->opmode == NL80211_IFTYPE_AP)
2495 rtl_cam_del_entry(hw, p_macaddr);
2496 rtl_cam_delete_one_entry(hw, p_macaddr, entry_id);
2497 } else {
2498 RT_TRACE(rtlpriv, COMP_SEC, DBG_DMESG,
2499 "add one entry\n");
2500 if (is_pairwise) {
2501 RT_TRACE(rtlpriv, COMP_SEC, DBG_DMESG,
2502 "set Pairwise key\n");
2504 rtl_cam_add_one_entry(hw, macaddr, key_index,
2505 entry_id, enc_algo,
2506 CAM_CONFIG_NO_USEDK,
2507 rtlpriv->sec.key_buf[key_index]);
2508 } else {
2509 RT_TRACE(rtlpriv, COMP_SEC, DBG_DMESG,
2510 "set group key\n");
2512 if (mac->opmode == NL80211_IFTYPE_ADHOC) {
2513 rtl_cam_add_one_entry(hw,
2514 rtlefuse->dev_addr,
2515 PAIRWISE_KEYIDX,
2516 CAM_PAIRWISE_KEY_POSITION,
2517 enc_algo, CAM_CONFIG_NO_USEDK,
2518 rtlpriv->sec.key_buf[entry_id]);
2521 rtl_cam_add_one_entry(hw, macaddr, key_index,
2522 entry_id, enc_algo,
2523 CAM_CONFIG_NO_USEDK,
2524 rtlpriv->sec.key_buf[entry_id]);
2531 void rtl92se_suspend(struct ieee80211_hw *hw)
2533 struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw));
2535 rtlpci->up_first_time = true;
2538 void rtl92se_resume(struct ieee80211_hw *hw)
2540 struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw));
2541 u32 val;
2543 pci_read_config_dword(rtlpci->pdev, 0x40, &val);
2544 if ((val & 0x0000ff00) != 0)
2545 pci_write_config_dword(rtlpci->pdev, 0x40,
2546 val & 0xffff00ff);
2549 /* Turn on AAP (RCR:bit 0) for promicuous mode. */
2550 void rtl92se_allow_all_destaddr(struct ieee80211_hw *hw,
2551 bool allow_all_da, bool write_into_reg)
2553 struct rtl_priv *rtlpriv = rtl_priv(hw);
2554 struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw));
2556 if (allow_all_da) /* Set BIT0 */
2557 rtlpci->receive_config |= RCR_AAP;
2558 else /* Clear BIT0 */
2559 rtlpci->receive_config &= ~RCR_AAP;
2561 if (write_into_reg)
2562 rtl_write_dword(rtlpriv, RCR, rtlpci->receive_config);
2564 RT_TRACE(rtlpriv, COMP_TURBO | COMP_INIT, DBG_LOUD,
2565 "receive_config=0x%08X, write_into_reg=%d\n",
2566 rtlpci->receive_config, write_into_reg);