2 * core.c -- Voltage/Current Regulator framework.
4 * Copyright 2007, 2008 Wolfson Microelectronics PLC.
5 * Copyright 2008 SlimLogic Ltd.
7 * Author: Liam Girdwood <lrg@slimlogic.co.uk>
9 * This program is free software; you can redistribute it and/or modify it
10 * under the terms of the GNU General Public License as published by the
11 * Free Software Foundation; either version 2 of the License, or (at your
12 * option) any later version.
16 #include <linux/kernel.h>
17 #include <linux/init.h>
18 #include <linux/debugfs.h>
19 #include <linux/device.h>
20 #include <linux/slab.h>
21 #include <linux/async.h>
22 #include <linux/err.h>
23 #include <linux/mutex.h>
24 #include <linux/suspend.h>
25 #include <linux/delay.h>
26 #include <linux/gpio.h>
28 #include <linux/regmap.h>
29 #include <linux/regulator/of_regulator.h>
30 #include <linux/regulator/consumer.h>
31 #include <linux/regulator/driver.h>
32 #include <linux/regulator/machine.h>
33 #include <linux/module.h>
35 #define CREATE_TRACE_POINTS
36 #include <trace/events/regulator.h>
40 #define rdev_crit(rdev, fmt, ...) \
41 pr_crit("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
42 #define rdev_err(rdev, fmt, ...) \
43 pr_err("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
44 #define rdev_warn(rdev, fmt, ...) \
45 pr_warn("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
46 #define rdev_info(rdev, fmt, ...) \
47 pr_info("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
48 #define rdev_dbg(rdev, fmt, ...) \
49 pr_debug("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
51 static DEFINE_MUTEX(regulator_list_mutex
);
52 static LIST_HEAD(regulator_list
);
53 static LIST_HEAD(regulator_map_list
);
54 static LIST_HEAD(regulator_ena_gpio_list
);
55 static bool has_full_constraints
;
56 static bool board_wants_dummy_regulator
;
58 static struct dentry
*debugfs_root
;
61 * struct regulator_map
63 * Used to provide symbolic supply names to devices.
65 struct regulator_map
{
66 struct list_head list
;
67 const char *dev_name
; /* The dev_name() for the consumer */
69 struct regulator_dev
*regulator
;
73 * struct regulator_enable_gpio
75 * Management for shared enable GPIO pin
77 struct regulator_enable_gpio
{
78 struct list_head list
;
80 u32 enable_count
; /* a number of enabled shared GPIO */
81 u32 request_count
; /* a number of requested shared GPIO */
82 unsigned int ena_gpio_invert
:1;
88 * One for each consumer device.
92 struct list_head list
;
93 unsigned int always_on
:1;
94 unsigned int bypass
:1;
99 struct device_attribute dev_attr
;
100 struct regulator_dev
*rdev
;
101 struct dentry
*debugfs
;
104 static int _regulator_is_enabled(struct regulator_dev
*rdev
);
105 static int _regulator_disable(struct regulator_dev
*rdev
);
106 static int _regulator_get_voltage(struct regulator_dev
*rdev
);
107 static int _regulator_get_current_limit(struct regulator_dev
*rdev
);
108 static unsigned int _regulator_get_mode(struct regulator_dev
*rdev
);
109 static void _notifier_call_chain(struct regulator_dev
*rdev
,
110 unsigned long event
, void *data
);
111 static int _regulator_do_set_voltage(struct regulator_dev
*rdev
,
112 int min_uV
, int max_uV
);
113 static struct regulator
*create_regulator(struct regulator_dev
*rdev
,
115 const char *supply_name
);
117 static const char *rdev_get_name(struct regulator_dev
*rdev
)
119 if (rdev
->constraints
&& rdev
->constraints
->name
)
120 return rdev
->constraints
->name
;
121 else if (rdev
->desc
->name
)
122 return rdev
->desc
->name
;
128 * of_get_regulator - get a regulator device node based on supply name
129 * @dev: Device pointer for the consumer (of regulator) device
130 * @supply: regulator supply name
132 * Extract the regulator device node corresponding to the supply name.
133 * returns the device node corresponding to the regulator if found, else
136 static struct device_node
*of_get_regulator(struct device
*dev
, const char *supply
)
138 struct device_node
*regnode
= NULL
;
139 char prop_name
[32]; /* 32 is max size of property name */
141 dev_dbg(dev
, "Looking up %s-supply from device tree\n", supply
);
143 snprintf(prop_name
, 32, "%s-supply", supply
);
144 regnode
= of_parse_phandle(dev
->of_node
, prop_name
, 0);
147 dev_dbg(dev
, "Looking up %s property in node %s failed",
148 prop_name
, dev
->of_node
->full_name
);
154 static int _regulator_can_change_status(struct regulator_dev
*rdev
)
156 if (!rdev
->constraints
)
159 if (rdev
->constraints
->valid_ops_mask
& REGULATOR_CHANGE_STATUS
)
165 /* Platform voltage constraint check */
166 static int regulator_check_voltage(struct regulator_dev
*rdev
,
167 int *min_uV
, int *max_uV
)
169 BUG_ON(*min_uV
> *max_uV
);
171 if (!rdev
->constraints
) {
172 rdev_err(rdev
, "no constraints\n");
175 if (!(rdev
->constraints
->valid_ops_mask
& REGULATOR_CHANGE_VOLTAGE
)) {
176 rdev_err(rdev
, "operation not allowed\n");
180 if (*max_uV
> rdev
->constraints
->max_uV
)
181 *max_uV
= rdev
->constraints
->max_uV
;
182 if (*min_uV
< rdev
->constraints
->min_uV
)
183 *min_uV
= rdev
->constraints
->min_uV
;
185 if (*min_uV
> *max_uV
) {
186 rdev_err(rdev
, "unsupportable voltage range: %d-%duV\n",
194 /* Make sure we select a voltage that suits the needs of all
195 * regulator consumers
197 static int regulator_check_consumers(struct regulator_dev
*rdev
,
198 int *min_uV
, int *max_uV
)
200 struct regulator
*regulator
;
202 list_for_each_entry(regulator
, &rdev
->consumer_list
, list
) {
204 * Assume consumers that didn't say anything are OK
205 * with anything in the constraint range.
207 if (!regulator
->min_uV
&& !regulator
->max_uV
)
210 if (*max_uV
> regulator
->max_uV
)
211 *max_uV
= regulator
->max_uV
;
212 if (*min_uV
< regulator
->min_uV
)
213 *min_uV
= regulator
->min_uV
;
216 if (*min_uV
> *max_uV
) {
217 rdev_err(rdev
, "Restricting voltage, %u-%uuV\n",
225 /* current constraint check */
226 static int regulator_check_current_limit(struct regulator_dev
*rdev
,
227 int *min_uA
, int *max_uA
)
229 BUG_ON(*min_uA
> *max_uA
);
231 if (!rdev
->constraints
) {
232 rdev_err(rdev
, "no constraints\n");
235 if (!(rdev
->constraints
->valid_ops_mask
& REGULATOR_CHANGE_CURRENT
)) {
236 rdev_err(rdev
, "operation not allowed\n");
240 if (*max_uA
> rdev
->constraints
->max_uA
)
241 *max_uA
= rdev
->constraints
->max_uA
;
242 if (*min_uA
< rdev
->constraints
->min_uA
)
243 *min_uA
= rdev
->constraints
->min_uA
;
245 if (*min_uA
> *max_uA
) {
246 rdev_err(rdev
, "unsupportable current range: %d-%duA\n",
254 /* operating mode constraint check */
255 static int regulator_mode_constrain(struct regulator_dev
*rdev
, int *mode
)
258 case REGULATOR_MODE_FAST
:
259 case REGULATOR_MODE_NORMAL
:
260 case REGULATOR_MODE_IDLE
:
261 case REGULATOR_MODE_STANDBY
:
264 rdev_err(rdev
, "invalid mode %x specified\n", *mode
);
268 if (!rdev
->constraints
) {
269 rdev_err(rdev
, "no constraints\n");
272 if (!(rdev
->constraints
->valid_ops_mask
& REGULATOR_CHANGE_MODE
)) {
273 rdev_err(rdev
, "operation not allowed\n");
277 /* The modes are bitmasks, the most power hungry modes having
278 * the lowest values. If the requested mode isn't supported
279 * try higher modes. */
281 if (rdev
->constraints
->valid_modes_mask
& *mode
)
289 /* dynamic regulator mode switching constraint check */
290 static int regulator_check_drms(struct regulator_dev
*rdev
)
292 if (!rdev
->constraints
) {
293 rdev_err(rdev
, "no constraints\n");
296 if (!(rdev
->constraints
->valid_ops_mask
& REGULATOR_CHANGE_DRMS
)) {
297 rdev_err(rdev
, "operation not allowed\n");
303 static ssize_t
regulator_uV_show(struct device
*dev
,
304 struct device_attribute
*attr
, char *buf
)
306 struct regulator_dev
*rdev
= dev_get_drvdata(dev
);
309 mutex_lock(&rdev
->mutex
);
310 ret
= sprintf(buf
, "%d\n", _regulator_get_voltage(rdev
));
311 mutex_unlock(&rdev
->mutex
);
315 static DEVICE_ATTR(microvolts
, 0444, regulator_uV_show
, NULL
);
317 static ssize_t
regulator_uA_show(struct device
*dev
,
318 struct device_attribute
*attr
, char *buf
)
320 struct regulator_dev
*rdev
= dev_get_drvdata(dev
);
322 return sprintf(buf
, "%d\n", _regulator_get_current_limit(rdev
));
324 static DEVICE_ATTR(microamps
, 0444, regulator_uA_show
, NULL
);
326 static ssize_t
name_show(struct device
*dev
, struct device_attribute
*attr
,
329 struct regulator_dev
*rdev
= dev_get_drvdata(dev
);
331 return sprintf(buf
, "%s\n", rdev_get_name(rdev
));
333 static DEVICE_ATTR_RO(name
);
335 static ssize_t
regulator_print_opmode(char *buf
, int mode
)
338 case REGULATOR_MODE_FAST
:
339 return sprintf(buf
, "fast\n");
340 case REGULATOR_MODE_NORMAL
:
341 return sprintf(buf
, "normal\n");
342 case REGULATOR_MODE_IDLE
:
343 return sprintf(buf
, "idle\n");
344 case REGULATOR_MODE_STANDBY
:
345 return sprintf(buf
, "standby\n");
347 return sprintf(buf
, "unknown\n");
350 static ssize_t
regulator_opmode_show(struct device
*dev
,
351 struct device_attribute
*attr
, char *buf
)
353 struct regulator_dev
*rdev
= dev_get_drvdata(dev
);
355 return regulator_print_opmode(buf
, _regulator_get_mode(rdev
));
357 static DEVICE_ATTR(opmode
, 0444, regulator_opmode_show
, NULL
);
359 static ssize_t
regulator_print_state(char *buf
, int state
)
362 return sprintf(buf
, "enabled\n");
364 return sprintf(buf
, "disabled\n");
366 return sprintf(buf
, "unknown\n");
369 static ssize_t
regulator_state_show(struct device
*dev
,
370 struct device_attribute
*attr
, char *buf
)
372 struct regulator_dev
*rdev
= dev_get_drvdata(dev
);
375 mutex_lock(&rdev
->mutex
);
376 ret
= regulator_print_state(buf
, _regulator_is_enabled(rdev
));
377 mutex_unlock(&rdev
->mutex
);
381 static DEVICE_ATTR(state
, 0444, regulator_state_show
, NULL
);
383 static ssize_t
regulator_status_show(struct device
*dev
,
384 struct device_attribute
*attr
, char *buf
)
386 struct regulator_dev
*rdev
= dev_get_drvdata(dev
);
390 status
= rdev
->desc
->ops
->get_status(rdev
);
395 case REGULATOR_STATUS_OFF
:
398 case REGULATOR_STATUS_ON
:
401 case REGULATOR_STATUS_ERROR
:
404 case REGULATOR_STATUS_FAST
:
407 case REGULATOR_STATUS_NORMAL
:
410 case REGULATOR_STATUS_IDLE
:
413 case REGULATOR_STATUS_STANDBY
:
416 case REGULATOR_STATUS_BYPASS
:
419 case REGULATOR_STATUS_UNDEFINED
:
426 return sprintf(buf
, "%s\n", label
);
428 static DEVICE_ATTR(status
, 0444, regulator_status_show
, NULL
);
430 static ssize_t
regulator_min_uA_show(struct device
*dev
,
431 struct device_attribute
*attr
, char *buf
)
433 struct regulator_dev
*rdev
= dev_get_drvdata(dev
);
435 if (!rdev
->constraints
)
436 return sprintf(buf
, "constraint not defined\n");
438 return sprintf(buf
, "%d\n", rdev
->constraints
->min_uA
);
440 static DEVICE_ATTR(min_microamps
, 0444, regulator_min_uA_show
, NULL
);
442 static ssize_t
regulator_max_uA_show(struct device
*dev
,
443 struct device_attribute
*attr
, char *buf
)
445 struct regulator_dev
*rdev
= dev_get_drvdata(dev
);
447 if (!rdev
->constraints
)
448 return sprintf(buf
, "constraint not defined\n");
450 return sprintf(buf
, "%d\n", rdev
->constraints
->max_uA
);
452 static DEVICE_ATTR(max_microamps
, 0444, regulator_max_uA_show
, NULL
);
454 static ssize_t
regulator_min_uV_show(struct device
*dev
,
455 struct device_attribute
*attr
, char *buf
)
457 struct regulator_dev
*rdev
= dev_get_drvdata(dev
);
459 if (!rdev
->constraints
)
460 return sprintf(buf
, "constraint not defined\n");
462 return sprintf(buf
, "%d\n", rdev
->constraints
->min_uV
);
464 static DEVICE_ATTR(min_microvolts
, 0444, regulator_min_uV_show
, NULL
);
466 static ssize_t
regulator_max_uV_show(struct device
*dev
,
467 struct device_attribute
*attr
, char *buf
)
469 struct regulator_dev
*rdev
= dev_get_drvdata(dev
);
471 if (!rdev
->constraints
)
472 return sprintf(buf
, "constraint not defined\n");
474 return sprintf(buf
, "%d\n", rdev
->constraints
->max_uV
);
476 static DEVICE_ATTR(max_microvolts
, 0444, regulator_max_uV_show
, NULL
);
478 static ssize_t
regulator_total_uA_show(struct device
*dev
,
479 struct device_attribute
*attr
, char *buf
)
481 struct regulator_dev
*rdev
= dev_get_drvdata(dev
);
482 struct regulator
*regulator
;
485 mutex_lock(&rdev
->mutex
);
486 list_for_each_entry(regulator
, &rdev
->consumer_list
, list
)
487 uA
+= regulator
->uA_load
;
488 mutex_unlock(&rdev
->mutex
);
489 return sprintf(buf
, "%d\n", uA
);
491 static DEVICE_ATTR(requested_microamps
, 0444, regulator_total_uA_show
, NULL
);
493 static ssize_t
num_users_show(struct device
*dev
, struct device_attribute
*attr
,
496 struct regulator_dev
*rdev
= dev_get_drvdata(dev
);
497 return sprintf(buf
, "%d\n", rdev
->use_count
);
499 static DEVICE_ATTR_RO(num_users
);
501 static ssize_t
type_show(struct device
*dev
, struct device_attribute
*attr
,
504 struct regulator_dev
*rdev
= dev_get_drvdata(dev
);
506 switch (rdev
->desc
->type
) {
507 case REGULATOR_VOLTAGE
:
508 return sprintf(buf
, "voltage\n");
509 case REGULATOR_CURRENT
:
510 return sprintf(buf
, "current\n");
512 return sprintf(buf
, "unknown\n");
514 static DEVICE_ATTR_RO(type
);
516 static ssize_t
regulator_suspend_mem_uV_show(struct device
*dev
,
517 struct device_attribute
*attr
, char *buf
)
519 struct regulator_dev
*rdev
= dev_get_drvdata(dev
);
521 return sprintf(buf
, "%d\n", rdev
->constraints
->state_mem
.uV
);
523 static DEVICE_ATTR(suspend_mem_microvolts
, 0444,
524 regulator_suspend_mem_uV_show
, NULL
);
526 static ssize_t
regulator_suspend_disk_uV_show(struct device
*dev
,
527 struct device_attribute
*attr
, char *buf
)
529 struct regulator_dev
*rdev
= dev_get_drvdata(dev
);
531 return sprintf(buf
, "%d\n", rdev
->constraints
->state_disk
.uV
);
533 static DEVICE_ATTR(suspend_disk_microvolts
, 0444,
534 regulator_suspend_disk_uV_show
, NULL
);
536 static ssize_t
regulator_suspend_standby_uV_show(struct device
*dev
,
537 struct device_attribute
*attr
, char *buf
)
539 struct regulator_dev
*rdev
= dev_get_drvdata(dev
);
541 return sprintf(buf
, "%d\n", rdev
->constraints
->state_standby
.uV
);
543 static DEVICE_ATTR(suspend_standby_microvolts
, 0444,
544 regulator_suspend_standby_uV_show
, NULL
);
546 static ssize_t
regulator_suspend_mem_mode_show(struct device
*dev
,
547 struct device_attribute
*attr
, char *buf
)
549 struct regulator_dev
*rdev
= dev_get_drvdata(dev
);
551 return regulator_print_opmode(buf
,
552 rdev
->constraints
->state_mem
.mode
);
554 static DEVICE_ATTR(suspend_mem_mode
, 0444,
555 regulator_suspend_mem_mode_show
, NULL
);
557 static ssize_t
regulator_suspend_disk_mode_show(struct device
*dev
,
558 struct device_attribute
*attr
, char *buf
)
560 struct regulator_dev
*rdev
= dev_get_drvdata(dev
);
562 return regulator_print_opmode(buf
,
563 rdev
->constraints
->state_disk
.mode
);
565 static DEVICE_ATTR(suspend_disk_mode
, 0444,
566 regulator_suspend_disk_mode_show
, NULL
);
568 static ssize_t
regulator_suspend_standby_mode_show(struct device
*dev
,
569 struct device_attribute
*attr
, char *buf
)
571 struct regulator_dev
*rdev
= dev_get_drvdata(dev
);
573 return regulator_print_opmode(buf
,
574 rdev
->constraints
->state_standby
.mode
);
576 static DEVICE_ATTR(suspend_standby_mode
, 0444,
577 regulator_suspend_standby_mode_show
, NULL
);
579 static ssize_t
regulator_suspend_mem_state_show(struct device
*dev
,
580 struct device_attribute
*attr
, char *buf
)
582 struct regulator_dev
*rdev
= dev_get_drvdata(dev
);
584 return regulator_print_state(buf
,
585 rdev
->constraints
->state_mem
.enabled
);
587 static DEVICE_ATTR(suspend_mem_state
, 0444,
588 regulator_suspend_mem_state_show
, NULL
);
590 static ssize_t
regulator_suspend_disk_state_show(struct device
*dev
,
591 struct device_attribute
*attr
, char *buf
)
593 struct regulator_dev
*rdev
= dev_get_drvdata(dev
);
595 return regulator_print_state(buf
,
596 rdev
->constraints
->state_disk
.enabled
);
598 static DEVICE_ATTR(suspend_disk_state
, 0444,
599 regulator_suspend_disk_state_show
, NULL
);
601 static ssize_t
regulator_suspend_standby_state_show(struct device
*dev
,
602 struct device_attribute
*attr
, char *buf
)
604 struct regulator_dev
*rdev
= dev_get_drvdata(dev
);
606 return regulator_print_state(buf
,
607 rdev
->constraints
->state_standby
.enabled
);
609 static DEVICE_ATTR(suspend_standby_state
, 0444,
610 regulator_suspend_standby_state_show
, NULL
);
612 static ssize_t
regulator_bypass_show(struct device
*dev
,
613 struct device_attribute
*attr
, char *buf
)
615 struct regulator_dev
*rdev
= dev_get_drvdata(dev
);
620 ret
= rdev
->desc
->ops
->get_bypass(rdev
, &bypass
);
629 return sprintf(buf
, "%s\n", report
);
631 static DEVICE_ATTR(bypass
, 0444,
632 regulator_bypass_show
, NULL
);
635 * These are the only attributes are present for all regulators.
636 * Other attributes are a function of regulator functionality.
638 static struct attribute
*regulator_dev_attrs
[] = {
640 &dev_attr_num_users
.attr
,
644 ATTRIBUTE_GROUPS(regulator_dev
);
646 static void regulator_dev_release(struct device
*dev
)
648 struct regulator_dev
*rdev
= dev_get_drvdata(dev
);
652 static struct class regulator_class
= {
654 .dev_release
= regulator_dev_release
,
655 .dev_groups
= regulator_dev_groups
,
658 /* Calculate the new optimum regulator operating mode based on the new total
659 * consumer load. All locks held by caller */
660 static void drms_uA_update(struct regulator_dev
*rdev
)
662 struct regulator
*sibling
;
663 int current_uA
= 0, output_uV
, input_uV
, err
;
666 err
= regulator_check_drms(rdev
);
667 if (err
< 0 || !rdev
->desc
->ops
->get_optimum_mode
||
668 (!rdev
->desc
->ops
->get_voltage
&&
669 !rdev
->desc
->ops
->get_voltage_sel
) ||
670 !rdev
->desc
->ops
->set_mode
)
673 /* get output voltage */
674 output_uV
= _regulator_get_voltage(rdev
);
678 /* get input voltage */
681 input_uV
= regulator_get_voltage(rdev
->supply
);
683 input_uV
= rdev
->constraints
->input_uV
;
687 /* calc total requested load */
688 list_for_each_entry(sibling
, &rdev
->consumer_list
, list
)
689 current_uA
+= sibling
->uA_load
;
691 /* now get the optimum mode for our new total regulator load */
692 mode
= rdev
->desc
->ops
->get_optimum_mode(rdev
, input_uV
,
693 output_uV
, current_uA
);
695 /* check the new mode is allowed */
696 err
= regulator_mode_constrain(rdev
, &mode
);
698 rdev
->desc
->ops
->set_mode(rdev
, mode
);
701 static int suspend_set_state(struct regulator_dev
*rdev
,
702 struct regulator_state
*rstate
)
706 /* If we have no suspend mode configration don't set anything;
707 * only warn if the driver implements set_suspend_voltage or
708 * set_suspend_mode callback.
710 if (!rstate
->enabled
&& !rstate
->disabled
) {
711 if (rdev
->desc
->ops
->set_suspend_voltage
||
712 rdev
->desc
->ops
->set_suspend_mode
)
713 rdev_warn(rdev
, "No configuration\n");
717 if (rstate
->enabled
&& rstate
->disabled
) {
718 rdev_err(rdev
, "invalid configuration\n");
722 if (rstate
->enabled
&& rdev
->desc
->ops
->set_suspend_enable
)
723 ret
= rdev
->desc
->ops
->set_suspend_enable(rdev
);
724 else if (rstate
->disabled
&& rdev
->desc
->ops
->set_suspend_disable
)
725 ret
= rdev
->desc
->ops
->set_suspend_disable(rdev
);
726 else /* OK if set_suspend_enable or set_suspend_disable is NULL */
730 rdev_err(rdev
, "failed to enabled/disable\n");
734 if (rdev
->desc
->ops
->set_suspend_voltage
&& rstate
->uV
> 0) {
735 ret
= rdev
->desc
->ops
->set_suspend_voltage(rdev
, rstate
->uV
);
737 rdev_err(rdev
, "failed to set voltage\n");
742 if (rdev
->desc
->ops
->set_suspend_mode
&& rstate
->mode
> 0) {
743 ret
= rdev
->desc
->ops
->set_suspend_mode(rdev
, rstate
->mode
);
745 rdev_err(rdev
, "failed to set mode\n");
752 /* locks held by caller */
753 static int suspend_prepare(struct regulator_dev
*rdev
, suspend_state_t state
)
755 if (!rdev
->constraints
)
759 case PM_SUSPEND_STANDBY
:
760 return suspend_set_state(rdev
,
761 &rdev
->constraints
->state_standby
);
763 return suspend_set_state(rdev
,
764 &rdev
->constraints
->state_mem
);
766 return suspend_set_state(rdev
,
767 &rdev
->constraints
->state_disk
);
773 static void print_constraints(struct regulator_dev
*rdev
)
775 struct regulation_constraints
*constraints
= rdev
->constraints
;
780 if (constraints
->min_uV
&& constraints
->max_uV
) {
781 if (constraints
->min_uV
== constraints
->max_uV
)
782 count
+= sprintf(buf
+ count
, "%d mV ",
783 constraints
->min_uV
/ 1000);
785 count
+= sprintf(buf
+ count
, "%d <--> %d mV ",
786 constraints
->min_uV
/ 1000,
787 constraints
->max_uV
/ 1000);
790 if (!constraints
->min_uV
||
791 constraints
->min_uV
!= constraints
->max_uV
) {
792 ret
= _regulator_get_voltage(rdev
);
794 count
+= sprintf(buf
+ count
, "at %d mV ", ret
/ 1000);
797 if (constraints
->uV_offset
)
798 count
+= sprintf(buf
, "%dmV offset ",
799 constraints
->uV_offset
/ 1000);
801 if (constraints
->min_uA
&& constraints
->max_uA
) {
802 if (constraints
->min_uA
== constraints
->max_uA
)
803 count
+= sprintf(buf
+ count
, "%d mA ",
804 constraints
->min_uA
/ 1000);
806 count
+= sprintf(buf
+ count
, "%d <--> %d mA ",
807 constraints
->min_uA
/ 1000,
808 constraints
->max_uA
/ 1000);
811 if (!constraints
->min_uA
||
812 constraints
->min_uA
!= constraints
->max_uA
) {
813 ret
= _regulator_get_current_limit(rdev
);
815 count
+= sprintf(buf
+ count
, "at %d mA ", ret
/ 1000);
818 if (constraints
->valid_modes_mask
& REGULATOR_MODE_FAST
)
819 count
+= sprintf(buf
+ count
, "fast ");
820 if (constraints
->valid_modes_mask
& REGULATOR_MODE_NORMAL
)
821 count
+= sprintf(buf
+ count
, "normal ");
822 if (constraints
->valid_modes_mask
& REGULATOR_MODE_IDLE
)
823 count
+= sprintf(buf
+ count
, "idle ");
824 if (constraints
->valid_modes_mask
& REGULATOR_MODE_STANDBY
)
825 count
+= sprintf(buf
+ count
, "standby");
828 sprintf(buf
, "no parameters");
830 rdev_info(rdev
, "%s\n", buf
);
832 if ((constraints
->min_uV
!= constraints
->max_uV
) &&
833 !(constraints
->valid_ops_mask
& REGULATOR_CHANGE_VOLTAGE
))
835 "Voltage range but no REGULATOR_CHANGE_VOLTAGE\n");
838 static int machine_constraints_voltage(struct regulator_dev
*rdev
,
839 struct regulation_constraints
*constraints
)
841 struct regulator_ops
*ops
= rdev
->desc
->ops
;
844 /* do we need to apply the constraint voltage */
845 if (rdev
->constraints
->apply_uV
&&
846 rdev
->constraints
->min_uV
== rdev
->constraints
->max_uV
) {
847 ret
= _regulator_do_set_voltage(rdev
,
848 rdev
->constraints
->min_uV
,
849 rdev
->constraints
->max_uV
);
851 rdev_err(rdev
, "failed to apply %duV constraint\n",
852 rdev
->constraints
->min_uV
);
857 /* constrain machine-level voltage specs to fit
858 * the actual range supported by this regulator.
860 if (ops
->list_voltage
&& rdev
->desc
->n_voltages
) {
861 int count
= rdev
->desc
->n_voltages
;
863 int min_uV
= INT_MAX
;
864 int max_uV
= INT_MIN
;
865 int cmin
= constraints
->min_uV
;
866 int cmax
= constraints
->max_uV
;
868 /* it's safe to autoconfigure fixed-voltage supplies
869 and the constraints are used by list_voltage. */
870 if (count
== 1 && !cmin
) {
873 constraints
->min_uV
= cmin
;
874 constraints
->max_uV
= cmax
;
877 /* voltage constraints are optional */
878 if ((cmin
== 0) && (cmax
== 0))
881 /* else require explicit machine-level constraints */
882 if (cmin
<= 0 || cmax
<= 0 || cmax
< cmin
) {
883 rdev_err(rdev
, "invalid voltage constraints\n");
887 /* initial: [cmin..cmax] valid, [min_uV..max_uV] not */
888 for (i
= 0; i
< count
; i
++) {
891 value
= ops
->list_voltage(rdev
, i
);
895 /* maybe adjust [min_uV..max_uV] */
896 if (value
>= cmin
&& value
< min_uV
)
898 if (value
<= cmax
&& value
> max_uV
)
902 /* final: [min_uV..max_uV] valid iff constraints valid */
903 if (max_uV
< min_uV
) {
905 "unsupportable voltage constraints %u-%uuV\n",
910 /* use regulator's subset of machine constraints */
911 if (constraints
->min_uV
< min_uV
) {
912 rdev_dbg(rdev
, "override min_uV, %d -> %d\n",
913 constraints
->min_uV
, min_uV
);
914 constraints
->min_uV
= min_uV
;
916 if (constraints
->max_uV
> max_uV
) {
917 rdev_dbg(rdev
, "override max_uV, %d -> %d\n",
918 constraints
->max_uV
, max_uV
);
919 constraints
->max_uV
= max_uV
;
926 static int _regulator_do_enable(struct regulator_dev
*rdev
);
929 * set_machine_constraints - sets regulator constraints
930 * @rdev: regulator source
931 * @constraints: constraints to apply
933 * Allows platform initialisation code to define and constrain
934 * regulator circuits e.g. valid voltage/current ranges, etc. NOTE:
935 * Constraints *must* be set by platform code in order for some
936 * regulator operations to proceed i.e. set_voltage, set_current_limit,
939 static int set_machine_constraints(struct regulator_dev
*rdev
,
940 const struct regulation_constraints
*constraints
)
943 struct regulator_ops
*ops
= rdev
->desc
->ops
;
946 rdev
->constraints
= kmemdup(constraints
, sizeof(*constraints
),
949 rdev
->constraints
= kzalloc(sizeof(*constraints
),
951 if (!rdev
->constraints
)
954 ret
= machine_constraints_voltage(rdev
, rdev
->constraints
);
958 /* do we need to setup our suspend state */
959 if (rdev
->constraints
->initial_state
) {
960 ret
= suspend_prepare(rdev
, rdev
->constraints
->initial_state
);
962 rdev_err(rdev
, "failed to set suspend state\n");
967 if (rdev
->constraints
->initial_mode
) {
968 if (!ops
->set_mode
) {
969 rdev_err(rdev
, "no set_mode operation\n");
974 ret
= ops
->set_mode(rdev
, rdev
->constraints
->initial_mode
);
976 rdev_err(rdev
, "failed to set initial mode: %d\n", ret
);
981 /* If the constraints say the regulator should be on at this point
982 * and we have control then make sure it is enabled.
984 if (rdev
->constraints
->always_on
|| rdev
->constraints
->boot_on
) {
985 ret
= _regulator_do_enable(rdev
);
986 if (ret
< 0 && ret
!= -EINVAL
) {
987 rdev_err(rdev
, "failed to enable\n");
992 if ((rdev
->constraints
->ramp_delay
|| rdev
->constraints
->ramp_disable
)
993 && ops
->set_ramp_delay
) {
994 ret
= ops
->set_ramp_delay(rdev
, rdev
->constraints
->ramp_delay
);
996 rdev_err(rdev
, "failed to set ramp_delay\n");
1001 print_constraints(rdev
);
1004 kfree(rdev
->constraints
);
1005 rdev
->constraints
= NULL
;
1010 * set_supply - set regulator supply regulator
1011 * @rdev: regulator name
1012 * @supply_rdev: supply regulator name
1014 * Called by platform initialisation code to set the supply regulator for this
1015 * regulator. This ensures that a regulators supply will also be enabled by the
1016 * core if it's child is enabled.
1018 static int set_supply(struct regulator_dev
*rdev
,
1019 struct regulator_dev
*supply_rdev
)
1023 rdev_info(rdev
, "supplied by %s\n", rdev_get_name(supply_rdev
));
1025 rdev
->supply
= create_regulator(supply_rdev
, &rdev
->dev
, "SUPPLY");
1026 if (rdev
->supply
== NULL
) {
1030 supply_rdev
->open_count
++;
1036 * set_consumer_device_supply - Bind a regulator to a symbolic supply
1037 * @rdev: regulator source
1038 * @consumer_dev_name: dev_name() string for device supply applies to
1039 * @supply: symbolic name for supply
1041 * Allows platform initialisation code to map physical regulator
1042 * sources to symbolic names for supplies for use by devices. Devices
1043 * should use these symbolic names to request regulators, avoiding the
1044 * need to provide board-specific regulator names as platform data.
1046 static int set_consumer_device_supply(struct regulator_dev
*rdev
,
1047 const char *consumer_dev_name
,
1050 struct regulator_map
*node
;
1056 if (consumer_dev_name
!= NULL
)
1061 list_for_each_entry(node
, ®ulator_map_list
, list
) {
1062 if (node
->dev_name
&& consumer_dev_name
) {
1063 if (strcmp(node
->dev_name
, consumer_dev_name
) != 0)
1065 } else if (node
->dev_name
|| consumer_dev_name
) {
1069 if (strcmp(node
->supply
, supply
) != 0)
1072 pr_debug("%s: %s/%s is '%s' supply; fail %s/%s\n",
1074 dev_name(&node
->regulator
->dev
),
1075 node
->regulator
->desc
->name
,
1077 dev_name(&rdev
->dev
), rdev_get_name(rdev
));
1081 node
= kzalloc(sizeof(struct regulator_map
), GFP_KERNEL
);
1085 node
->regulator
= rdev
;
1086 node
->supply
= supply
;
1089 node
->dev_name
= kstrdup(consumer_dev_name
, GFP_KERNEL
);
1090 if (node
->dev_name
== NULL
) {
1096 list_add(&node
->list
, ®ulator_map_list
);
1100 static void unset_regulator_supplies(struct regulator_dev
*rdev
)
1102 struct regulator_map
*node
, *n
;
1104 list_for_each_entry_safe(node
, n
, ®ulator_map_list
, list
) {
1105 if (rdev
== node
->regulator
) {
1106 list_del(&node
->list
);
1107 kfree(node
->dev_name
);
1113 #define REG_STR_SIZE 64
1115 static struct regulator
*create_regulator(struct regulator_dev
*rdev
,
1117 const char *supply_name
)
1119 struct regulator
*regulator
;
1120 char buf
[REG_STR_SIZE
];
1123 regulator
= kzalloc(sizeof(*regulator
), GFP_KERNEL
);
1124 if (regulator
== NULL
)
1127 mutex_lock(&rdev
->mutex
);
1128 regulator
->rdev
= rdev
;
1129 list_add(®ulator
->list
, &rdev
->consumer_list
);
1132 regulator
->dev
= dev
;
1134 /* Add a link to the device sysfs entry */
1135 size
= scnprintf(buf
, REG_STR_SIZE
, "%s-%s",
1136 dev
->kobj
.name
, supply_name
);
1137 if (size
>= REG_STR_SIZE
)
1140 regulator
->supply_name
= kstrdup(buf
, GFP_KERNEL
);
1141 if (regulator
->supply_name
== NULL
)
1144 err
= sysfs_create_link(&rdev
->dev
.kobj
, &dev
->kobj
,
1147 rdev_warn(rdev
, "could not add device link %s err %d\n",
1148 dev
->kobj
.name
, err
);
1152 regulator
->supply_name
= kstrdup(supply_name
, GFP_KERNEL
);
1153 if (regulator
->supply_name
== NULL
)
1157 regulator
->debugfs
= debugfs_create_dir(regulator
->supply_name
,
1159 if (!regulator
->debugfs
) {
1160 rdev_warn(rdev
, "Failed to create debugfs directory\n");
1162 debugfs_create_u32("uA_load", 0444, regulator
->debugfs
,
1163 ®ulator
->uA_load
);
1164 debugfs_create_u32("min_uV", 0444, regulator
->debugfs
,
1165 ®ulator
->min_uV
);
1166 debugfs_create_u32("max_uV", 0444, regulator
->debugfs
,
1167 ®ulator
->max_uV
);
1171 * Check now if the regulator is an always on regulator - if
1172 * it is then we don't need to do nearly so much work for
1173 * enable/disable calls.
1175 if (!_regulator_can_change_status(rdev
) &&
1176 _regulator_is_enabled(rdev
))
1177 regulator
->always_on
= true;
1179 mutex_unlock(&rdev
->mutex
);
1182 list_del(®ulator
->list
);
1184 mutex_unlock(&rdev
->mutex
);
1188 static int _regulator_get_enable_time(struct regulator_dev
*rdev
)
1190 if (!rdev
->desc
->ops
->enable_time
)
1191 return rdev
->desc
->enable_time
;
1192 return rdev
->desc
->ops
->enable_time(rdev
);
1195 static struct regulator_dev
*regulator_dev_lookup(struct device
*dev
,
1199 struct regulator_dev
*r
;
1200 struct device_node
*node
;
1201 struct regulator_map
*map
;
1202 const char *devname
= NULL
;
1204 /* first do a dt based lookup */
1205 if (dev
&& dev
->of_node
) {
1206 node
= of_get_regulator(dev
, supply
);
1208 list_for_each_entry(r
, ®ulator_list
, list
)
1209 if (r
->dev
.parent
&&
1210 node
== r
->dev
.of_node
)
1214 * If we couldn't even get the node then it's
1215 * not just that the device didn't register
1216 * yet, there's no node and we'll never
1223 /* if not found, try doing it non-dt way */
1225 devname
= dev_name(dev
);
1227 list_for_each_entry(r
, ®ulator_list
, list
)
1228 if (strcmp(rdev_get_name(r
), supply
) == 0)
1231 list_for_each_entry(map
, ®ulator_map_list
, list
) {
1232 /* If the mapping has a device set up it must match */
1233 if (map
->dev_name
&&
1234 (!devname
|| strcmp(map
->dev_name
, devname
)))
1237 if (strcmp(map
->supply
, supply
) == 0)
1238 return map
->regulator
;
1245 /* Internal regulator request function */
1246 static struct regulator
*_regulator_get(struct device
*dev
, const char *id
,
1249 struct regulator_dev
*rdev
;
1250 struct regulator
*regulator
= ERR_PTR(-EPROBE_DEFER
);
1251 const char *devname
= NULL
;
1255 pr_err("get() with no identifier\n");
1260 devname
= dev_name(dev
);
1262 mutex_lock(®ulator_list_mutex
);
1264 rdev
= regulator_dev_lookup(dev
, id
, &ret
);
1269 * If we have return value from dev_lookup fail, we do not expect to
1270 * succeed, so, quit with appropriate error value
1273 regulator
= ERR_PTR(ret
);
1277 if (board_wants_dummy_regulator
) {
1278 rdev
= dummy_regulator_rdev
;
1282 #ifdef CONFIG_REGULATOR_DUMMY
1284 devname
= "deviceless";
1286 /* If the board didn't flag that it was fully constrained then
1287 * substitute in a dummy regulator so consumers can continue.
1289 if (!has_full_constraints
) {
1290 pr_warn("%s supply %s not found, using dummy regulator\n",
1292 rdev
= dummy_regulator_rdev
;
1297 mutex_unlock(®ulator_list_mutex
);
1301 if (rdev
->exclusive
) {
1302 regulator
= ERR_PTR(-EPERM
);
1306 if (exclusive
&& rdev
->open_count
) {
1307 regulator
= ERR_PTR(-EBUSY
);
1311 if (!try_module_get(rdev
->owner
))
1314 regulator
= create_regulator(rdev
, dev
, id
);
1315 if (regulator
== NULL
) {
1316 regulator
= ERR_PTR(-ENOMEM
);
1317 module_put(rdev
->owner
);
1323 rdev
->exclusive
= 1;
1325 ret
= _regulator_is_enabled(rdev
);
1327 rdev
->use_count
= 1;
1329 rdev
->use_count
= 0;
1333 mutex_unlock(®ulator_list_mutex
);
1339 * regulator_get - lookup and obtain a reference to a regulator.
1340 * @dev: device for regulator "consumer"
1341 * @id: Supply name or regulator ID.
1343 * Returns a struct regulator corresponding to the regulator producer,
1344 * or IS_ERR() condition containing errno.
1346 * Use of supply names configured via regulator_set_device_supply() is
1347 * strongly encouraged. It is recommended that the supply name used
1348 * should match the name used for the supply and/or the relevant
1349 * device pins in the datasheet.
1351 struct regulator
*regulator_get(struct device
*dev
, const char *id
)
1353 return _regulator_get(dev
, id
, false);
1355 EXPORT_SYMBOL_GPL(regulator_get
);
1357 static void devm_regulator_release(struct device
*dev
, void *res
)
1359 regulator_put(*(struct regulator
**)res
);
1363 * devm_regulator_get - Resource managed regulator_get()
1364 * @dev: device for regulator "consumer"
1365 * @id: Supply name or regulator ID.
1367 * Managed regulator_get(). Regulators returned from this function are
1368 * automatically regulator_put() on driver detach. See regulator_get() for more
1371 struct regulator
*devm_regulator_get(struct device
*dev
, const char *id
)
1373 struct regulator
**ptr
, *regulator
;
1375 ptr
= devres_alloc(devm_regulator_release
, sizeof(*ptr
), GFP_KERNEL
);
1377 return ERR_PTR(-ENOMEM
);
1379 regulator
= regulator_get(dev
, id
);
1380 if (!IS_ERR(regulator
)) {
1382 devres_add(dev
, ptr
);
1389 EXPORT_SYMBOL_GPL(devm_regulator_get
);
1392 * regulator_get_exclusive - obtain exclusive access to a regulator.
1393 * @dev: device for regulator "consumer"
1394 * @id: Supply name or regulator ID.
1396 * Returns a struct regulator corresponding to the regulator producer,
1397 * or IS_ERR() condition containing errno. Other consumers will be
1398 * unable to obtain this reference is held and the use count for the
1399 * regulator will be initialised to reflect the current state of the
1402 * This is intended for use by consumers which cannot tolerate shared
1403 * use of the regulator such as those which need to force the
1404 * regulator off for correct operation of the hardware they are
1407 * Use of supply names configured via regulator_set_device_supply() is
1408 * strongly encouraged. It is recommended that the supply name used
1409 * should match the name used for the supply and/or the relevant
1410 * device pins in the datasheet.
1412 struct regulator
*regulator_get_exclusive(struct device
*dev
, const char *id
)
1414 return _regulator_get(dev
, id
, true);
1416 EXPORT_SYMBOL_GPL(regulator_get_exclusive
);
1419 * regulator_get_optional - obtain optional access to a regulator.
1420 * @dev: device for regulator "consumer"
1421 * @id: Supply name or regulator ID.
1423 * Returns a struct regulator corresponding to the regulator producer,
1424 * or IS_ERR() condition containing errno. Other consumers will be
1425 * unable to obtain this reference is held and the use count for the
1426 * regulator will be initialised to reflect the current state of the
1429 * This is intended for use by consumers for devices which can have
1430 * some supplies unconnected in normal use, such as some MMC devices.
1431 * It can allow the regulator core to provide stub supplies for other
1432 * supplies requested using normal regulator_get() calls without
1433 * disrupting the operation of drivers that can handle absent
1436 * Use of supply names configured via regulator_set_device_supply() is
1437 * strongly encouraged. It is recommended that the supply name used
1438 * should match the name used for the supply and/or the relevant
1439 * device pins in the datasheet.
1441 struct regulator
*regulator_get_optional(struct device
*dev
, const char *id
)
1443 return _regulator_get(dev
, id
, 0);
1445 EXPORT_SYMBOL_GPL(regulator_get_optional
);
1448 * devm_regulator_get_optional - Resource managed regulator_get_optional()
1449 * @dev: device for regulator "consumer"
1450 * @id: Supply name or regulator ID.
1452 * Managed regulator_get_optional(). Regulators returned from this
1453 * function are automatically regulator_put() on driver detach. See
1454 * regulator_get_optional() for more information.
1456 struct regulator
*devm_regulator_get_optional(struct device
*dev
,
1459 struct regulator
**ptr
, *regulator
;
1461 ptr
= devres_alloc(devm_regulator_release
, sizeof(*ptr
), GFP_KERNEL
);
1463 return ERR_PTR(-ENOMEM
);
1465 regulator
= regulator_get_optional(dev
, id
);
1466 if (!IS_ERR(regulator
)) {
1468 devres_add(dev
, ptr
);
1475 EXPORT_SYMBOL_GPL(devm_regulator_get_optional
);
1477 /* regulator_list_mutex lock held by regulator_put() */
1478 static void _regulator_put(struct regulator
*regulator
)
1480 struct regulator_dev
*rdev
;
1482 if (regulator
== NULL
|| IS_ERR(regulator
))
1485 rdev
= regulator
->rdev
;
1487 debugfs_remove_recursive(regulator
->debugfs
);
1489 /* remove any sysfs entries */
1491 sysfs_remove_link(&rdev
->dev
.kobj
, regulator
->supply_name
);
1492 mutex_lock(&rdev
->mutex
);
1493 kfree(regulator
->supply_name
);
1494 list_del(®ulator
->list
);
1498 rdev
->exclusive
= 0;
1499 mutex_unlock(&rdev
->mutex
);
1501 module_put(rdev
->owner
);
1505 * devm_regulator_get_exclusive - Resource managed regulator_get_exclusive()
1506 * @dev: device for regulator "consumer"
1507 * @id: Supply name or regulator ID.
1509 * Managed regulator_get_exclusive(). Regulators returned from this function
1510 * are automatically regulator_put() on driver detach. See regulator_get() for
1513 struct regulator
*devm_regulator_get_exclusive(struct device
*dev
,
1516 struct regulator
**ptr
, *regulator
;
1518 ptr
= devres_alloc(devm_regulator_release
, sizeof(*ptr
), GFP_KERNEL
);
1520 return ERR_PTR(-ENOMEM
);
1522 regulator
= _regulator_get(dev
, id
, 1);
1523 if (!IS_ERR(regulator
)) {
1525 devres_add(dev
, ptr
);
1532 EXPORT_SYMBOL_GPL(devm_regulator_get_exclusive
);
1535 * regulator_put - "free" the regulator source
1536 * @regulator: regulator source
1538 * Note: drivers must ensure that all regulator_enable calls made on this
1539 * regulator source are balanced by regulator_disable calls prior to calling
1542 void regulator_put(struct regulator
*regulator
)
1544 mutex_lock(®ulator_list_mutex
);
1545 _regulator_put(regulator
);
1546 mutex_unlock(®ulator_list_mutex
);
1548 EXPORT_SYMBOL_GPL(regulator_put
);
1550 static int devm_regulator_match(struct device
*dev
, void *res
, void *data
)
1552 struct regulator
**r
= res
;
1561 * devm_regulator_put - Resource managed regulator_put()
1562 * @regulator: regulator to free
1564 * Deallocate a regulator allocated with devm_regulator_get(). Normally
1565 * this function will not need to be called and the resource management
1566 * code will ensure that the resource is freed.
1568 void devm_regulator_put(struct regulator
*regulator
)
1572 rc
= devres_release(regulator
->dev
, devm_regulator_release
,
1573 devm_regulator_match
, regulator
);
1577 EXPORT_SYMBOL_GPL(devm_regulator_put
);
1579 /* Manage enable GPIO list. Same GPIO pin can be shared among regulators */
1580 static int regulator_ena_gpio_request(struct regulator_dev
*rdev
,
1581 const struct regulator_config
*config
)
1583 struct regulator_enable_gpio
*pin
;
1586 list_for_each_entry(pin
, ®ulator_ena_gpio_list
, list
) {
1587 if (pin
->gpio
== config
->ena_gpio
) {
1588 rdev_dbg(rdev
, "GPIO %d is already used\n",
1590 goto update_ena_gpio_to_rdev
;
1594 ret
= gpio_request_one(config
->ena_gpio
,
1595 GPIOF_DIR_OUT
| config
->ena_gpio_flags
,
1596 rdev_get_name(rdev
));
1600 pin
= kzalloc(sizeof(struct regulator_enable_gpio
), GFP_KERNEL
);
1602 gpio_free(config
->ena_gpio
);
1606 pin
->gpio
= config
->ena_gpio
;
1607 pin
->ena_gpio_invert
= config
->ena_gpio_invert
;
1608 list_add(&pin
->list
, ®ulator_ena_gpio_list
);
1610 update_ena_gpio_to_rdev
:
1611 pin
->request_count
++;
1612 rdev
->ena_pin
= pin
;
1616 static void regulator_ena_gpio_free(struct regulator_dev
*rdev
)
1618 struct regulator_enable_gpio
*pin
, *n
;
1623 /* Free the GPIO only in case of no use */
1624 list_for_each_entry_safe(pin
, n
, ®ulator_ena_gpio_list
, list
) {
1625 if (pin
->gpio
== rdev
->ena_pin
->gpio
) {
1626 if (pin
->request_count
<= 1) {
1627 pin
->request_count
= 0;
1628 gpio_free(pin
->gpio
);
1629 list_del(&pin
->list
);
1632 pin
->request_count
--;
1639 * regulator_ena_gpio_ctrl - balance enable_count of each GPIO and actual GPIO pin control
1640 * @rdev: regulator_dev structure
1641 * @enable: enable GPIO at initial use?
1643 * GPIO is enabled in case of initial use. (enable_count is 0)
1644 * GPIO is disabled when it is not shared any more. (enable_count <= 1)
1646 static int regulator_ena_gpio_ctrl(struct regulator_dev
*rdev
, bool enable
)
1648 struct regulator_enable_gpio
*pin
= rdev
->ena_pin
;
1654 /* Enable GPIO at initial use */
1655 if (pin
->enable_count
== 0)
1656 gpio_set_value_cansleep(pin
->gpio
,
1657 !pin
->ena_gpio_invert
);
1659 pin
->enable_count
++;
1661 if (pin
->enable_count
> 1) {
1662 pin
->enable_count
--;
1666 /* Disable GPIO if not used */
1667 if (pin
->enable_count
<= 1) {
1668 gpio_set_value_cansleep(pin
->gpio
,
1669 pin
->ena_gpio_invert
);
1670 pin
->enable_count
= 0;
1677 static int _regulator_do_enable(struct regulator_dev
*rdev
)
1681 /* Query before enabling in case configuration dependent. */
1682 ret
= _regulator_get_enable_time(rdev
);
1686 rdev_warn(rdev
, "enable_time() failed: %d\n", ret
);
1690 trace_regulator_enable(rdev_get_name(rdev
));
1692 if (rdev
->ena_pin
) {
1693 if (!rdev
->ena_gpio_state
) {
1694 ret
= regulator_ena_gpio_ctrl(rdev
, true);
1697 rdev
->ena_gpio_state
= 1;
1699 } else if (rdev
->desc
->ops
->enable
) {
1700 ret
= rdev
->desc
->ops
->enable(rdev
);
1707 /* Allow the regulator to ramp; it would be useful to extend
1708 * this for bulk operations so that the regulators can ramp
1710 trace_regulator_enable_delay(rdev_get_name(rdev
));
1712 if (delay
>= 1000) {
1713 mdelay(delay
/ 1000);
1714 udelay(delay
% 1000);
1719 trace_regulator_enable_complete(rdev_get_name(rdev
));
1724 /* locks held by regulator_enable() */
1725 static int _regulator_enable(struct regulator_dev
*rdev
)
1729 /* check voltage and requested load before enabling */
1730 if (rdev
->constraints
&&
1731 (rdev
->constraints
->valid_ops_mask
& REGULATOR_CHANGE_DRMS
))
1732 drms_uA_update(rdev
);
1734 if (rdev
->use_count
== 0) {
1735 /* The regulator may on if it's not switchable or left on */
1736 ret
= _regulator_is_enabled(rdev
);
1737 if (ret
== -EINVAL
|| ret
== 0) {
1738 if (!_regulator_can_change_status(rdev
))
1741 ret
= _regulator_do_enable(rdev
);
1745 } else if (ret
< 0) {
1746 rdev_err(rdev
, "is_enabled() failed: %d\n", ret
);
1749 /* Fallthrough on positive return values - already enabled */
1758 * regulator_enable - enable regulator output
1759 * @regulator: regulator source
1761 * Request that the regulator be enabled with the regulator output at
1762 * the predefined voltage or current value. Calls to regulator_enable()
1763 * must be balanced with calls to regulator_disable().
1765 * NOTE: the output value can be set by other drivers, boot loader or may be
1766 * hardwired in the regulator.
1768 int regulator_enable(struct regulator
*regulator
)
1770 struct regulator_dev
*rdev
= regulator
->rdev
;
1773 if (regulator
->always_on
)
1777 ret
= regulator_enable(rdev
->supply
);
1782 mutex_lock(&rdev
->mutex
);
1783 ret
= _regulator_enable(rdev
);
1784 mutex_unlock(&rdev
->mutex
);
1786 if (ret
!= 0 && rdev
->supply
)
1787 regulator_disable(rdev
->supply
);
1791 EXPORT_SYMBOL_GPL(regulator_enable
);
1793 static int _regulator_do_disable(struct regulator_dev
*rdev
)
1797 trace_regulator_disable(rdev_get_name(rdev
));
1799 if (rdev
->ena_pin
) {
1800 if (rdev
->ena_gpio_state
) {
1801 ret
= regulator_ena_gpio_ctrl(rdev
, false);
1804 rdev
->ena_gpio_state
= 0;
1807 } else if (rdev
->desc
->ops
->disable
) {
1808 ret
= rdev
->desc
->ops
->disable(rdev
);
1813 trace_regulator_disable_complete(rdev_get_name(rdev
));
1818 /* locks held by regulator_disable() */
1819 static int _regulator_disable(struct regulator_dev
*rdev
)
1823 if (WARN(rdev
->use_count
<= 0,
1824 "unbalanced disables for %s\n", rdev_get_name(rdev
)))
1827 /* are we the last user and permitted to disable ? */
1828 if (rdev
->use_count
== 1 &&
1829 (rdev
->constraints
&& !rdev
->constraints
->always_on
)) {
1831 /* we are last user */
1832 if (_regulator_can_change_status(rdev
)) {
1833 ret
= _regulator_do_disable(rdev
);
1835 rdev_err(rdev
, "failed to disable\n");
1838 _notifier_call_chain(rdev
, REGULATOR_EVENT_DISABLE
,
1842 rdev
->use_count
= 0;
1843 } else if (rdev
->use_count
> 1) {
1845 if (rdev
->constraints
&&
1846 (rdev
->constraints
->valid_ops_mask
&
1847 REGULATOR_CHANGE_DRMS
))
1848 drms_uA_update(rdev
);
1857 * regulator_disable - disable regulator output
1858 * @regulator: regulator source
1860 * Disable the regulator output voltage or current. Calls to
1861 * regulator_enable() must be balanced with calls to
1862 * regulator_disable().
1864 * NOTE: this will only disable the regulator output if no other consumer
1865 * devices have it enabled, the regulator device supports disabling and
1866 * machine constraints permit this operation.
1868 int regulator_disable(struct regulator
*regulator
)
1870 struct regulator_dev
*rdev
= regulator
->rdev
;
1873 if (regulator
->always_on
)
1876 mutex_lock(&rdev
->mutex
);
1877 ret
= _regulator_disable(rdev
);
1878 mutex_unlock(&rdev
->mutex
);
1880 if (ret
== 0 && rdev
->supply
)
1881 regulator_disable(rdev
->supply
);
1885 EXPORT_SYMBOL_GPL(regulator_disable
);
1887 /* locks held by regulator_force_disable() */
1888 static int _regulator_force_disable(struct regulator_dev
*rdev
)
1892 ret
= _regulator_do_disable(rdev
);
1894 rdev_err(rdev
, "failed to force disable\n");
1898 _notifier_call_chain(rdev
, REGULATOR_EVENT_FORCE_DISABLE
|
1899 REGULATOR_EVENT_DISABLE
, NULL
);
1905 * regulator_force_disable - force disable regulator output
1906 * @regulator: regulator source
1908 * Forcibly disable the regulator output voltage or current.
1909 * NOTE: this *will* disable the regulator output even if other consumer
1910 * devices have it enabled. This should be used for situations when device
1911 * damage will likely occur if the regulator is not disabled (e.g. over temp).
1913 int regulator_force_disable(struct regulator
*regulator
)
1915 struct regulator_dev
*rdev
= regulator
->rdev
;
1918 mutex_lock(&rdev
->mutex
);
1919 regulator
->uA_load
= 0;
1920 ret
= _regulator_force_disable(regulator
->rdev
);
1921 mutex_unlock(&rdev
->mutex
);
1924 while (rdev
->open_count
--)
1925 regulator_disable(rdev
->supply
);
1929 EXPORT_SYMBOL_GPL(regulator_force_disable
);
1931 static void regulator_disable_work(struct work_struct
*work
)
1933 struct regulator_dev
*rdev
= container_of(work
, struct regulator_dev
,
1937 mutex_lock(&rdev
->mutex
);
1939 BUG_ON(!rdev
->deferred_disables
);
1941 count
= rdev
->deferred_disables
;
1942 rdev
->deferred_disables
= 0;
1944 for (i
= 0; i
< count
; i
++) {
1945 ret
= _regulator_disable(rdev
);
1947 rdev_err(rdev
, "Deferred disable failed: %d\n", ret
);
1950 mutex_unlock(&rdev
->mutex
);
1953 for (i
= 0; i
< count
; i
++) {
1954 ret
= regulator_disable(rdev
->supply
);
1957 "Supply disable failed: %d\n", ret
);
1964 * regulator_disable_deferred - disable regulator output with delay
1965 * @regulator: regulator source
1966 * @ms: miliseconds until the regulator is disabled
1968 * Execute regulator_disable() on the regulator after a delay. This
1969 * is intended for use with devices that require some time to quiesce.
1971 * NOTE: this will only disable the regulator output if no other consumer
1972 * devices have it enabled, the regulator device supports disabling and
1973 * machine constraints permit this operation.
1975 int regulator_disable_deferred(struct regulator
*regulator
, int ms
)
1977 struct regulator_dev
*rdev
= regulator
->rdev
;
1980 if (regulator
->always_on
)
1984 return regulator_disable(regulator
);
1986 mutex_lock(&rdev
->mutex
);
1987 rdev
->deferred_disables
++;
1988 mutex_unlock(&rdev
->mutex
);
1990 ret
= queue_delayed_work(system_power_efficient_wq
,
1991 &rdev
->disable_work
,
1992 msecs_to_jiffies(ms
));
1998 EXPORT_SYMBOL_GPL(regulator_disable_deferred
);
2000 static int _regulator_is_enabled(struct regulator_dev
*rdev
)
2002 /* A GPIO control always takes precedence */
2004 return rdev
->ena_gpio_state
;
2006 /* If we don't know then assume that the regulator is always on */
2007 if (!rdev
->desc
->ops
->is_enabled
)
2010 return rdev
->desc
->ops
->is_enabled(rdev
);
2014 * regulator_is_enabled - is the regulator output enabled
2015 * @regulator: regulator source
2017 * Returns positive if the regulator driver backing the source/client
2018 * has requested that the device be enabled, zero if it hasn't, else a
2019 * negative errno code.
2021 * Note that the device backing this regulator handle can have multiple
2022 * users, so it might be enabled even if regulator_enable() was never
2023 * called for this particular source.
2025 int regulator_is_enabled(struct regulator
*regulator
)
2029 if (regulator
->always_on
)
2032 mutex_lock(®ulator
->rdev
->mutex
);
2033 ret
= _regulator_is_enabled(regulator
->rdev
);
2034 mutex_unlock(®ulator
->rdev
->mutex
);
2038 EXPORT_SYMBOL_GPL(regulator_is_enabled
);
2041 * regulator_can_change_voltage - check if regulator can change voltage
2042 * @regulator: regulator source
2044 * Returns positive if the regulator driver backing the source/client
2045 * can change its voltage, false otherwise. Usefull for detecting fixed
2046 * or dummy regulators and disabling voltage change logic in the client
2049 int regulator_can_change_voltage(struct regulator
*regulator
)
2051 struct regulator_dev
*rdev
= regulator
->rdev
;
2053 if (rdev
->constraints
&&
2054 (rdev
->constraints
->valid_ops_mask
& REGULATOR_CHANGE_VOLTAGE
)) {
2055 if (rdev
->desc
->n_voltages
- rdev
->desc
->linear_min_sel
> 1)
2058 if (rdev
->desc
->continuous_voltage_range
&&
2059 rdev
->constraints
->min_uV
&& rdev
->constraints
->max_uV
&&
2060 rdev
->constraints
->min_uV
!= rdev
->constraints
->max_uV
)
2066 EXPORT_SYMBOL_GPL(regulator_can_change_voltage
);
2069 * regulator_count_voltages - count regulator_list_voltage() selectors
2070 * @regulator: regulator source
2072 * Returns number of selectors, or negative errno. Selectors are
2073 * numbered starting at zero, and typically correspond to bitfields
2074 * in hardware registers.
2076 int regulator_count_voltages(struct regulator
*regulator
)
2078 struct regulator_dev
*rdev
= regulator
->rdev
;
2080 return rdev
->desc
->n_voltages
? : -EINVAL
;
2082 EXPORT_SYMBOL_GPL(regulator_count_voltages
);
2085 * regulator_list_voltage - enumerate supported voltages
2086 * @regulator: regulator source
2087 * @selector: identify voltage to list
2088 * Context: can sleep
2090 * Returns a voltage that can be passed to @regulator_set_voltage(),
2091 * zero if this selector code can't be used on this system, or a
2094 int regulator_list_voltage(struct regulator
*regulator
, unsigned selector
)
2096 struct regulator_dev
*rdev
= regulator
->rdev
;
2097 struct regulator_ops
*ops
= rdev
->desc
->ops
;
2100 if (!ops
->list_voltage
|| selector
>= rdev
->desc
->n_voltages
)
2103 mutex_lock(&rdev
->mutex
);
2104 ret
= ops
->list_voltage(rdev
, selector
);
2105 mutex_unlock(&rdev
->mutex
);
2108 if (ret
< rdev
->constraints
->min_uV
)
2110 else if (ret
> rdev
->constraints
->max_uV
)
2116 EXPORT_SYMBOL_GPL(regulator_list_voltage
);
2119 * regulator_get_linear_step - return the voltage step size between VSEL values
2120 * @regulator: regulator source
2122 * Returns the voltage step size between VSEL values for linear
2123 * regulators, or return 0 if the regulator isn't a linear regulator.
2125 unsigned int regulator_get_linear_step(struct regulator
*regulator
)
2127 struct regulator_dev
*rdev
= regulator
->rdev
;
2129 return rdev
->desc
->uV_step
;
2131 EXPORT_SYMBOL_GPL(regulator_get_linear_step
);
2134 * regulator_is_supported_voltage - check if a voltage range can be supported
2136 * @regulator: Regulator to check.
2137 * @min_uV: Minimum required voltage in uV.
2138 * @max_uV: Maximum required voltage in uV.
2140 * Returns a boolean or a negative error code.
2142 int regulator_is_supported_voltage(struct regulator
*regulator
,
2143 int min_uV
, int max_uV
)
2145 struct regulator_dev
*rdev
= regulator
->rdev
;
2146 int i
, voltages
, ret
;
2148 /* If we can't change voltage check the current voltage */
2149 if (!(rdev
->constraints
->valid_ops_mask
& REGULATOR_CHANGE_VOLTAGE
)) {
2150 ret
= regulator_get_voltage(regulator
);
2152 return (min_uV
<= ret
&& ret
<= max_uV
);
2157 /* Any voltage within constrains range is fine? */
2158 if (rdev
->desc
->continuous_voltage_range
)
2159 return min_uV
>= rdev
->constraints
->min_uV
&&
2160 max_uV
<= rdev
->constraints
->max_uV
;
2162 ret
= regulator_count_voltages(regulator
);
2167 for (i
= 0; i
< voltages
; i
++) {
2168 ret
= regulator_list_voltage(regulator
, i
);
2170 if (ret
>= min_uV
&& ret
<= max_uV
)
2176 EXPORT_SYMBOL_GPL(regulator_is_supported_voltage
);
2178 static int _regulator_do_set_voltage(struct regulator_dev
*rdev
,
2179 int min_uV
, int max_uV
)
2184 unsigned int selector
;
2185 int old_selector
= -1;
2187 trace_regulator_set_voltage(rdev_get_name(rdev
), min_uV
, max_uV
);
2189 min_uV
+= rdev
->constraints
->uV_offset
;
2190 max_uV
+= rdev
->constraints
->uV_offset
;
2193 * If we can't obtain the old selector there is not enough
2194 * info to call set_voltage_time_sel().
2196 if (_regulator_is_enabled(rdev
) &&
2197 rdev
->desc
->ops
->set_voltage_time_sel
&&
2198 rdev
->desc
->ops
->get_voltage_sel
) {
2199 old_selector
= rdev
->desc
->ops
->get_voltage_sel(rdev
);
2200 if (old_selector
< 0)
2201 return old_selector
;
2204 if (rdev
->desc
->ops
->set_voltage
) {
2205 ret
= rdev
->desc
->ops
->set_voltage(rdev
, min_uV
, max_uV
,
2209 if (rdev
->desc
->ops
->list_voltage
)
2210 best_val
= rdev
->desc
->ops
->list_voltage(rdev
,
2213 best_val
= _regulator_get_voltage(rdev
);
2216 } else if (rdev
->desc
->ops
->set_voltage_sel
) {
2217 if (rdev
->desc
->ops
->map_voltage
) {
2218 ret
= rdev
->desc
->ops
->map_voltage(rdev
, min_uV
,
2221 if (rdev
->desc
->ops
->list_voltage
==
2222 regulator_list_voltage_linear
)
2223 ret
= regulator_map_voltage_linear(rdev
,
2226 ret
= regulator_map_voltage_iterate(rdev
,
2231 best_val
= rdev
->desc
->ops
->list_voltage(rdev
, ret
);
2232 if (min_uV
<= best_val
&& max_uV
>= best_val
) {
2234 if (old_selector
== selector
)
2237 ret
= rdev
->desc
->ops
->set_voltage_sel(
2247 /* Call set_voltage_time_sel if successfully obtained old_selector */
2248 if (ret
== 0 && !rdev
->constraints
->ramp_disable
&& old_selector
>= 0
2249 && old_selector
!= selector
) {
2251 delay
= rdev
->desc
->ops
->set_voltage_time_sel(rdev
,
2252 old_selector
, selector
);
2254 rdev_warn(rdev
, "set_voltage_time_sel() failed: %d\n",
2259 /* Insert any necessary delays */
2260 if (delay
>= 1000) {
2261 mdelay(delay
/ 1000);
2262 udelay(delay
% 1000);
2268 if (ret
== 0 && best_val
>= 0) {
2269 unsigned long data
= best_val
;
2271 _notifier_call_chain(rdev
, REGULATOR_EVENT_VOLTAGE_CHANGE
,
2275 trace_regulator_set_voltage_complete(rdev_get_name(rdev
), best_val
);
2281 * regulator_set_voltage - set regulator output voltage
2282 * @regulator: regulator source
2283 * @min_uV: Minimum required voltage in uV
2284 * @max_uV: Maximum acceptable voltage in uV
2286 * Sets a voltage regulator to the desired output voltage. This can be set
2287 * during any regulator state. IOW, regulator can be disabled or enabled.
2289 * If the regulator is enabled then the voltage will change to the new value
2290 * immediately otherwise if the regulator is disabled the regulator will
2291 * output at the new voltage when enabled.
2293 * NOTE: If the regulator is shared between several devices then the lowest
2294 * request voltage that meets the system constraints will be used.
2295 * Regulator system constraints must be set for this regulator before
2296 * calling this function otherwise this call will fail.
2298 int regulator_set_voltage(struct regulator
*regulator
, int min_uV
, int max_uV
)
2300 struct regulator_dev
*rdev
= regulator
->rdev
;
2302 int old_min_uV
, old_max_uV
;
2304 mutex_lock(&rdev
->mutex
);
2306 /* If we're setting the same range as last time the change
2307 * should be a noop (some cpufreq implementations use the same
2308 * voltage for multiple frequencies, for example).
2310 if (regulator
->min_uV
== min_uV
&& regulator
->max_uV
== max_uV
)
2314 if (!rdev
->desc
->ops
->set_voltage
&&
2315 !rdev
->desc
->ops
->set_voltage_sel
) {
2320 /* constraints check */
2321 ret
= regulator_check_voltage(rdev
, &min_uV
, &max_uV
);
2325 /* restore original values in case of error */
2326 old_min_uV
= regulator
->min_uV
;
2327 old_max_uV
= regulator
->max_uV
;
2328 regulator
->min_uV
= min_uV
;
2329 regulator
->max_uV
= max_uV
;
2331 ret
= regulator_check_consumers(rdev
, &min_uV
, &max_uV
);
2335 ret
= _regulator_do_set_voltage(rdev
, min_uV
, max_uV
);
2340 mutex_unlock(&rdev
->mutex
);
2343 regulator
->min_uV
= old_min_uV
;
2344 regulator
->max_uV
= old_max_uV
;
2345 mutex_unlock(&rdev
->mutex
);
2348 EXPORT_SYMBOL_GPL(regulator_set_voltage
);
2351 * regulator_set_voltage_time - get raise/fall time
2352 * @regulator: regulator source
2353 * @old_uV: starting voltage in microvolts
2354 * @new_uV: target voltage in microvolts
2356 * Provided with the starting and ending voltage, this function attempts to
2357 * calculate the time in microseconds required to rise or fall to this new
2360 int regulator_set_voltage_time(struct regulator
*regulator
,
2361 int old_uV
, int new_uV
)
2363 struct regulator_dev
*rdev
= regulator
->rdev
;
2364 struct regulator_ops
*ops
= rdev
->desc
->ops
;
2370 /* Currently requires operations to do this */
2371 if (!ops
->list_voltage
|| !ops
->set_voltage_time_sel
2372 || !rdev
->desc
->n_voltages
)
2375 for (i
= 0; i
< rdev
->desc
->n_voltages
; i
++) {
2376 /* We only look for exact voltage matches here */
2377 voltage
= regulator_list_voltage(regulator
, i
);
2382 if (voltage
== old_uV
)
2384 if (voltage
== new_uV
)
2388 if (old_sel
< 0 || new_sel
< 0)
2391 return ops
->set_voltage_time_sel(rdev
, old_sel
, new_sel
);
2393 EXPORT_SYMBOL_GPL(regulator_set_voltage_time
);
2396 * regulator_set_voltage_time_sel - get raise/fall time
2397 * @rdev: regulator source device
2398 * @old_selector: selector for starting voltage
2399 * @new_selector: selector for target voltage
2401 * Provided with the starting and target voltage selectors, this function
2402 * returns time in microseconds required to rise or fall to this new voltage
2404 * Drivers providing ramp_delay in regulation_constraints can use this as their
2405 * set_voltage_time_sel() operation.
2407 int regulator_set_voltage_time_sel(struct regulator_dev
*rdev
,
2408 unsigned int old_selector
,
2409 unsigned int new_selector
)
2411 unsigned int ramp_delay
= 0;
2412 int old_volt
, new_volt
;
2414 if (rdev
->constraints
->ramp_delay
)
2415 ramp_delay
= rdev
->constraints
->ramp_delay
;
2416 else if (rdev
->desc
->ramp_delay
)
2417 ramp_delay
= rdev
->desc
->ramp_delay
;
2419 if (ramp_delay
== 0) {
2420 rdev_warn(rdev
, "ramp_delay not set\n");
2425 if (!rdev
->desc
->ops
->list_voltage
)
2428 old_volt
= rdev
->desc
->ops
->list_voltage(rdev
, old_selector
);
2429 new_volt
= rdev
->desc
->ops
->list_voltage(rdev
, new_selector
);
2431 return DIV_ROUND_UP(abs(new_volt
- old_volt
), ramp_delay
);
2433 EXPORT_SYMBOL_GPL(regulator_set_voltage_time_sel
);
2436 * regulator_sync_voltage - re-apply last regulator output voltage
2437 * @regulator: regulator source
2439 * Re-apply the last configured voltage. This is intended to be used
2440 * where some external control source the consumer is cooperating with
2441 * has caused the configured voltage to change.
2443 int regulator_sync_voltage(struct regulator
*regulator
)
2445 struct regulator_dev
*rdev
= regulator
->rdev
;
2446 int ret
, min_uV
, max_uV
;
2448 mutex_lock(&rdev
->mutex
);
2450 if (!rdev
->desc
->ops
->set_voltage
&&
2451 !rdev
->desc
->ops
->set_voltage_sel
) {
2456 /* This is only going to work if we've had a voltage configured. */
2457 if (!regulator
->min_uV
&& !regulator
->max_uV
) {
2462 min_uV
= regulator
->min_uV
;
2463 max_uV
= regulator
->max_uV
;
2465 /* This should be a paranoia check... */
2466 ret
= regulator_check_voltage(rdev
, &min_uV
, &max_uV
);
2470 ret
= regulator_check_consumers(rdev
, &min_uV
, &max_uV
);
2474 ret
= _regulator_do_set_voltage(rdev
, min_uV
, max_uV
);
2477 mutex_unlock(&rdev
->mutex
);
2480 EXPORT_SYMBOL_GPL(regulator_sync_voltage
);
2482 static int _regulator_get_voltage(struct regulator_dev
*rdev
)
2486 if (rdev
->desc
->ops
->get_voltage_sel
) {
2487 sel
= rdev
->desc
->ops
->get_voltage_sel(rdev
);
2490 ret
= rdev
->desc
->ops
->list_voltage(rdev
, sel
);
2491 } else if (rdev
->desc
->ops
->get_voltage
) {
2492 ret
= rdev
->desc
->ops
->get_voltage(rdev
);
2493 } else if (rdev
->desc
->ops
->list_voltage
) {
2494 ret
= rdev
->desc
->ops
->list_voltage(rdev
, 0);
2501 return ret
- rdev
->constraints
->uV_offset
;
2505 * regulator_get_voltage - get regulator output voltage
2506 * @regulator: regulator source
2508 * This returns the current regulator voltage in uV.
2510 * NOTE: If the regulator is disabled it will return the voltage value. This
2511 * function should not be used to determine regulator state.
2513 int regulator_get_voltage(struct regulator
*regulator
)
2517 mutex_lock(®ulator
->rdev
->mutex
);
2519 ret
= _regulator_get_voltage(regulator
->rdev
);
2521 mutex_unlock(®ulator
->rdev
->mutex
);
2525 EXPORT_SYMBOL_GPL(regulator_get_voltage
);
2528 * regulator_set_current_limit - set regulator output current limit
2529 * @regulator: regulator source
2530 * @min_uA: Minimum supported current in uA
2531 * @max_uA: Maximum supported current in uA
2533 * Sets current sink to the desired output current. This can be set during
2534 * any regulator state. IOW, regulator can be disabled or enabled.
2536 * If the regulator is enabled then the current will change to the new value
2537 * immediately otherwise if the regulator is disabled the regulator will
2538 * output at the new current when enabled.
2540 * NOTE: Regulator system constraints must be set for this regulator before
2541 * calling this function otherwise this call will fail.
2543 int regulator_set_current_limit(struct regulator
*regulator
,
2544 int min_uA
, int max_uA
)
2546 struct regulator_dev
*rdev
= regulator
->rdev
;
2549 mutex_lock(&rdev
->mutex
);
2552 if (!rdev
->desc
->ops
->set_current_limit
) {
2557 /* constraints check */
2558 ret
= regulator_check_current_limit(rdev
, &min_uA
, &max_uA
);
2562 ret
= rdev
->desc
->ops
->set_current_limit(rdev
, min_uA
, max_uA
);
2564 mutex_unlock(&rdev
->mutex
);
2567 EXPORT_SYMBOL_GPL(regulator_set_current_limit
);
2569 static int _regulator_get_current_limit(struct regulator_dev
*rdev
)
2573 mutex_lock(&rdev
->mutex
);
2576 if (!rdev
->desc
->ops
->get_current_limit
) {
2581 ret
= rdev
->desc
->ops
->get_current_limit(rdev
);
2583 mutex_unlock(&rdev
->mutex
);
2588 * regulator_get_current_limit - get regulator output current
2589 * @regulator: regulator source
2591 * This returns the current supplied by the specified current sink in uA.
2593 * NOTE: If the regulator is disabled it will return the current value. This
2594 * function should not be used to determine regulator state.
2596 int regulator_get_current_limit(struct regulator
*regulator
)
2598 return _regulator_get_current_limit(regulator
->rdev
);
2600 EXPORT_SYMBOL_GPL(regulator_get_current_limit
);
2603 * regulator_set_mode - set regulator operating mode
2604 * @regulator: regulator source
2605 * @mode: operating mode - one of the REGULATOR_MODE constants
2607 * Set regulator operating mode to increase regulator efficiency or improve
2608 * regulation performance.
2610 * NOTE: Regulator system constraints must be set for this regulator before
2611 * calling this function otherwise this call will fail.
2613 int regulator_set_mode(struct regulator
*regulator
, unsigned int mode
)
2615 struct regulator_dev
*rdev
= regulator
->rdev
;
2617 int regulator_curr_mode
;
2619 mutex_lock(&rdev
->mutex
);
2622 if (!rdev
->desc
->ops
->set_mode
) {
2627 /* return if the same mode is requested */
2628 if (rdev
->desc
->ops
->get_mode
) {
2629 regulator_curr_mode
= rdev
->desc
->ops
->get_mode(rdev
);
2630 if (regulator_curr_mode
== mode
) {
2636 /* constraints check */
2637 ret
= regulator_mode_constrain(rdev
, &mode
);
2641 ret
= rdev
->desc
->ops
->set_mode(rdev
, mode
);
2643 mutex_unlock(&rdev
->mutex
);
2646 EXPORT_SYMBOL_GPL(regulator_set_mode
);
2648 static unsigned int _regulator_get_mode(struct regulator_dev
*rdev
)
2652 mutex_lock(&rdev
->mutex
);
2655 if (!rdev
->desc
->ops
->get_mode
) {
2660 ret
= rdev
->desc
->ops
->get_mode(rdev
);
2662 mutex_unlock(&rdev
->mutex
);
2667 * regulator_get_mode - get regulator operating mode
2668 * @regulator: regulator source
2670 * Get the current regulator operating mode.
2672 unsigned int regulator_get_mode(struct regulator
*regulator
)
2674 return _regulator_get_mode(regulator
->rdev
);
2676 EXPORT_SYMBOL_GPL(regulator_get_mode
);
2679 * regulator_set_optimum_mode - set regulator optimum operating mode
2680 * @regulator: regulator source
2681 * @uA_load: load current
2683 * Notifies the regulator core of a new device load. This is then used by
2684 * DRMS (if enabled by constraints) to set the most efficient regulator
2685 * operating mode for the new regulator loading.
2687 * Consumer devices notify their supply regulator of the maximum power
2688 * they will require (can be taken from device datasheet in the power
2689 * consumption tables) when they change operational status and hence power
2690 * state. Examples of operational state changes that can affect power
2691 * consumption are :-
2693 * o Device is opened / closed.
2694 * o Device I/O is about to begin or has just finished.
2695 * o Device is idling in between work.
2697 * This information is also exported via sysfs to userspace.
2699 * DRMS will sum the total requested load on the regulator and change
2700 * to the most efficient operating mode if platform constraints allow.
2702 * Returns the new regulator mode or error.
2704 int regulator_set_optimum_mode(struct regulator
*regulator
, int uA_load
)
2706 struct regulator_dev
*rdev
= regulator
->rdev
;
2707 struct regulator
*consumer
;
2708 int ret
, output_uV
, input_uV
= 0, total_uA_load
= 0;
2712 input_uV
= regulator_get_voltage(rdev
->supply
);
2714 mutex_lock(&rdev
->mutex
);
2717 * first check to see if we can set modes at all, otherwise just
2718 * tell the consumer everything is OK.
2720 regulator
->uA_load
= uA_load
;
2721 ret
= regulator_check_drms(rdev
);
2727 if (!rdev
->desc
->ops
->get_optimum_mode
)
2731 * we can actually do this so any errors are indicators of
2732 * potential real failure.
2736 if (!rdev
->desc
->ops
->set_mode
)
2739 /* get output voltage */
2740 output_uV
= _regulator_get_voltage(rdev
);
2741 if (output_uV
<= 0) {
2742 rdev_err(rdev
, "invalid output voltage found\n");
2746 /* No supply? Use constraint voltage */
2748 input_uV
= rdev
->constraints
->input_uV
;
2749 if (input_uV
<= 0) {
2750 rdev_err(rdev
, "invalid input voltage found\n");
2754 /* calc total requested load for this regulator */
2755 list_for_each_entry(consumer
, &rdev
->consumer_list
, list
)
2756 total_uA_load
+= consumer
->uA_load
;
2758 mode
= rdev
->desc
->ops
->get_optimum_mode(rdev
,
2759 input_uV
, output_uV
,
2761 ret
= regulator_mode_constrain(rdev
, &mode
);
2763 rdev_err(rdev
, "failed to get optimum mode @ %d uA %d -> %d uV\n",
2764 total_uA_load
, input_uV
, output_uV
);
2768 ret
= rdev
->desc
->ops
->set_mode(rdev
, mode
);
2770 rdev_err(rdev
, "failed to set optimum mode %x\n", mode
);
2775 mutex_unlock(&rdev
->mutex
);
2778 EXPORT_SYMBOL_GPL(regulator_set_optimum_mode
);
2781 * regulator_allow_bypass - allow the regulator to go into bypass mode
2783 * @regulator: Regulator to configure
2784 * @enable: enable or disable bypass mode
2786 * Allow the regulator to go into bypass mode if all other consumers
2787 * for the regulator also enable bypass mode and the machine
2788 * constraints allow this. Bypass mode means that the regulator is
2789 * simply passing the input directly to the output with no regulation.
2791 int regulator_allow_bypass(struct regulator
*regulator
, bool enable
)
2793 struct regulator_dev
*rdev
= regulator
->rdev
;
2796 if (!rdev
->desc
->ops
->set_bypass
)
2799 if (rdev
->constraints
&&
2800 !(rdev
->constraints
->valid_ops_mask
& REGULATOR_CHANGE_BYPASS
))
2803 mutex_lock(&rdev
->mutex
);
2805 if (enable
&& !regulator
->bypass
) {
2806 rdev
->bypass_count
++;
2808 if (rdev
->bypass_count
== rdev
->open_count
) {
2809 ret
= rdev
->desc
->ops
->set_bypass(rdev
, enable
);
2811 rdev
->bypass_count
--;
2814 } else if (!enable
&& regulator
->bypass
) {
2815 rdev
->bypass_count
--;
2817 if (rdev
->bypass_count
!= rdev
->open_count
) {
2818 ret
= rdev
->desc
->ops
->set_bypass(rdev
, enable
);
2820 rdev
->bypass_count
++;
2825 regulator
->bypass
= enable
;
2827 mutex_unlock(&rdev
->mutex
);
2831 EXPORT_SYMBOL_GPL(regulator_allow_bypass
);
2834 * regulator_register_notifier - register regulator event notifier
2835 * @regulator: regulator source
2836 * @nb: notifier block
2838 * Register notifier block to receive regulator events.
2840 int regulator_register_notifier(struct regulator
*regulator
,
2841 struct notifier_block
*nb
)
2843 return blocking_notifier_chain_register(®ulator
->rdev
->notifier
,
2846 EXPORT_SYMBOL_GPL(regulator_register_notifier
);
2849 * regulator_unregister_notifier - unregister regulator event notifier
2850 * @regulator: regulator source
2851 * @nb: notifier block
2853 * Unregister regulator event notifier block.
2855 int regulator_unregister_notifier(struct regulator
*regulator
,
2856 struct notifier_block
*nb
)
2858 return blocking_notifier_chain_unregister(®ulator
->rdev
->notifier
,
2861 EXPORT_SYMBOL_GPL(regulator_unregister_notifier
);
2863 /* notify regulator consumers and downstream regulator consumers.
2864 * Note mutex must be held by caller.
2866 static void _notifier_call_chain(struct regulator_dev
*rdev
,
2867 unsigned long event
, void *data
)
2869 /* call rdev chain first */
2870 blocking_notifier_call_chain(&rdev
->notifier
, event
, data
);
2874 * regulator_bulk_get - get multiple regulator consumers
2876 * @dev: Device to supply
2877 * @num_consumers: Number of consumers to register
2878 * @consumers: Configuration of consumers; clients are stored here.
2880 * @return 0 on success, an errno on failure.
2882 * This helper function allows drivers to get several regulator
2883 * consumers in one operation. If any of the regulators cannot be
2884 * acquired then any regulators that were allocated will be freed
2885 * before returning to the caller.
2887 int regulator_bulk_get(struct device
*dev
, int num_consumers
,
2888 struct regulator_bulk_data
*consumers
)
2893 for (i
= 0; i
< num_consumers
; i
++)
2894 consumers
[i
].consumer
= NULL
;
2896 for (i
= 0; i
< num_consumers
; i
++) {
2897 consumers
[i
].consumer
= regulator_get(dev
,
2898 consumers
[i
].supply
);
2899 if (IS_ERR(consumers
[i
].consumer
)) {
2900 ret
= PTR_ERR(consumers
[i
].consumer
);
2901 dev_err(dev
, "Failed to get supply '%s': %d\n",
2902 consumers
[i
].supply
, ret
);
2903 consumers
[i
].consumer
= NULL
;
2912 regulator_put(consumers
[i
].consumer
);
2916 EXPORT_SYMBOL_GPL(regulator_bulk_get
);
2919 * devm_regulator_bulk_get - managed get multiple regulator consumers
2921 * @dev: Device to supply
2922 * @num_consumers: Number of consumers to register
2923 * @consumers: Configuration of consumers; clients are stored here.
2925 * @return 0 on success, an errno on failure.
2927 * This helper function allows drivers to get several regulator
2928 * consumers in one operation with management, the regulators will
2929 * automatically be freed when the device is unbound. If any of the
2930 * regulators cannot be acquired then any regulators that were
2931 * allocated will be freed before returning to the caller.
2933 int devm_regulator_bulk_get(struct device
*dev
, int num_consumers
,
2934 struct regulator_bulk_data
*consumers
)
2939 for (i
= 0; i
< num_consumers
; i
++)
2940 consumers
[i
].consumer
= NULL
;
2942 for (i
= 0; i
< num_consumers
; i
++) {
2943 consumers
[i
].consumer
= devm_regulator_get(dev
,
2944 consumers
[i
].supply
);
2945 if (IS_ERR(consumers
[i
].consumer
)) {
2946 ret
= PTR_ERR(consumers
[i
].consumer
);
2947 dev_err(dev
, "Failed to get supply '%s': %d\n",
2948 consumers
[i
].supply
, ret
);
2949 consumers
[i
].consumer
= NULL
;
2957 for (i
= 0; i
< num_consumers
&& consumers
[i
].consumer
; i
++)
2958 devm_regulator_put(consumers
[i
].consumer
);
2962 EXPORT_SYMBOL_GPL(devm_regulator_bulk_get
);
2964 static void regulator_bulk_enable_async(void *data
, async_cookie_t cookie
)
2966 struct regulator_bulk_data
*bulk
= data
;
2968 bulk
->ret
= regulator_enable(bulk
->consumer
);
2972 * regulator_bulk_enable - enable multiple regulator consumers
2974 * @num_consumers: Number of consumers
2975 * @consumers: Consumer data; clients are stored here.
2976 * @return 0 on success, an errno on failure
2978 * This convenience API allows consumers to enable multiple regulator
2979 * clients in a single API call. If any consumers cannot be enabled
2980 * then any others that were enabled will be disabled again prior to
2983 int regulator_bulk_enable(int num_consumers
,
2984 struct regulator_bulk_data
*consumers
)
2986 ASYNC_DOMAIN_EXCLUSIVE(async_domain
);
2990 for (i
= 0; i
< num_consumers
; i
++) {
2991 if (consumers
[i
].consumer
->always_on
)
2992 consumers
[i
].ret
= 0;
2994 async_schedule_domain(regulator_bulk_enable_async
,
2995 &consumers
[i
], &async_domain
);
2998 async_synchronize_full_domain(&async_domain
);
3000 /* If any consumer failed we need to unwind any that succeeded */
3001 for (i
= 0; i
< num_consumers
; i
++) {
3002 if (consumers
[i
].ret
!= 0) {
3003 ret
= consumers
[i
].ret
;
3011 for (i
= 0; i
< num_consumers
; i
++) {
3012 if (consumers
[i
].ret
< 0)
3013 pr_err("Failed to enable %s: %d\n", consumers
[i
].supply
,
3016 regulator_disable(consumers
[i
].consumer
);
3021 EXPORT_SYMBOL_GPL(regulator_bulk_enable
);
3024 * regulator_bulk_disable - disable multiple regulator consumers
3026 * @num_consumers: Number of consumers
3027 * @consumers: Consumer data; clients are stored here.
3028 * @return 0 on success, an errno on failure
3030 * This convenience API allows consumers to disable multiple regulator
3031 * clients in a single API call. If any consumers cannot be disabled
3032 * then any others that were disabled will be enabled again prior to
3035 int regulator_bulk_disable(int num_consumers
,
3036 struct regulator_bulk_data
*consumers
)
3041 for (i
= num_consumers
- 1; i
>= 0; --i
) {
3042 ret
= regulator_disable(consumers
[i
].consumer
);
3050 pr_err("Failed to disable %s: %d\n", consumers
[i
].supply
, ret
);
3051 for (++i
; i
< num_consumers
; ++i
) {
3052 r
= regulator_enable(consumers
[i
].consumer
);
3054 pr_err("Failed to reename %s: %d\n",
3055 consumers
[i
].supply
, r
);
3060 EXPORT_SYMBOL_GPL(regulator_bulk_disable
);
3063 * regulator_bulk_force_disable - force disable multiple regulator consumers
3065 * @num_consumers: Number of consumers
3066 * @consumers: Consumer data; clients are stored here.
3067 * @return 0 on success, an errno on failure
3069 * This convenience API allows consumers to forcibly disable multiple regulator
3070 * clients in a single API call.
3071 * NOTE: This should be used for situations when device damage will
3072 * likely occur if the regulators are not disabled (e.g. over temp).
3073 * Although regulator_force_disable function call for some consumers can
3074 * return error numbers, the function is called for all consumers.
3076 int regulator_bulk_force_disable(int num_consumers
,
3077 struct regulator_bulk_data
*consumers
)
3082 for (i
= 0; i
< num_consumers
; i
++)
3084 regulator_force_disable(consumers
[i
].consumer
);
3086 for (i
= 0; i
< num_consumers
; i
++) {
3087 if (consumers
[i
].ret
!= 0) {
3088 ret
= consumers
[i
].ret
;
3097 EXPORT_SYMBOL_GPL(regulator_bulk_force_disable
);
3100 * regulator_bulk_free - free multiple regulator consumers
3102 * @num_consumers: Number of consumers
3103 * @consumers: Consumer data; clients are stored here.
3105 * This convenience API allows consumers to free multiple regulator
3106 * clients in a single API call.
3108 void regulator_bulk_free(int num_consumers
,
3109 struct regulator_bulk_data
*consumers
)
3113 for (i
= 0; i
< num_consumers
; i
++) {
3114 regulator_put(consumers
[i
].consumer
);
3115 consumers
[i
].consumer
= NULL
;
3118 EXPORT_SYMBOL_GPL(regulator_bulk_free
);
3121 * regulator_notifier_call_chain - call regulator event notifier
3122 * @rdev: regulator source
3123 * @event: notifier block
3124 * @data: callback-specific data.
3126 * Called by regulator drivers to notify clients a regulator event has
3127 * occurred. We also notify regulator clients downstream.
3128 * Note lock must be held by caller.
3130 int regulator_notifier_call_chain(struct regulator_dev
*rdev
,
3131 unsigned long event
, void *data
)
3133 _notifier_call_chain(rdev
, event
, data
);
3137 EXPORT_SYMBOL_GPL(regulator_notifier_call_chain
);
3140 * regulator_mode_to_status - convert a regulator mode into a status
3142 * @mode: Mode to convert
3144 * Convert a regulator mode into a status.
3146 int regulator_mode_to_status(unsigned int mode
)
3149 case REGULATOR_MODE_FAST
:
3150 return REGULATOR_STATUS_FAST
;
3151 case REGULATOR_MODE_NORMAL
:
3152 return REGULATOR_STATUS_NORMAL
;
3153 case REGULATOR_MODE_IDLE
:
3154 return REGULATOR_STATUS_IDLE
;
3155 case REGULATOR_MODE_STANDBY
:
3156 return REGULATOR_STATUS_STANDBY
;
3158 return REGULATOR_STATUS_UNDEFINED
;
3161 EXPORT_SYMBOL_GPL(regulator_mode_to_status
);
3164 * To avoid cluttering sysfs (and memory) with useless state, only
3165 * create attributes that can be meaningfully displayed.
3167 static int add_regulator_attributes(struct regulator_dev
*rdev
)
3169 struct device
*dev
= &rdev
->dev
;
3170 struct regulator_ops
*ops
= rdev
->desc
->ops
;
3173 /* some attributes need specific methods to be displayed */
3174 if ((ops
->get_voltage
&& ops
->get_voltage(rdev
) >= 0) ||
3175 (ops
->get_voltage_sel
&& ops
->get_voltage_sel(rdev
) >= 0) ||
3176 (ops
->list_voltage
&& ops
->list_voltage(rdev
, 0) >= 0)) {
3177 status
= device_create_file(dev
, &dev_attr_microvolts
);
3181 if (ops
->get_current_limit
) {
3182 status
= device_create_file(dev
, &dev_attr_microamps
);
3186 if (ops
->get_mode
) {
3187 status
= device_create_file(dev
, &dev_attr_opmode
);
3191 if (rdev
->ena_pin
|| ops
->is_enabled
) {
3192 status
= device_create_file(dev
, &dev_attr_state
);
3196 if (ops
->get_status
) {
3197 status
= device_create_file(dev
, &dev_attr_status
);
3201 if (ops
->get_bypass
) {
3202 status
= device_create_file(dev
, &dev_attr_bypass
);
3207 /* some attributes are type-specific */
3208 if (rdev
->desc
->type
== REGULATOR_CURRENT
) {
3209 status
= device_create_file(dev
, &dev_attr_requested_microamps
);
3214 /* all the other attributes exist to support constraints;
3215 * don't show them if there are no constraints, or if the
3216 * relevant supporting methods are missing.
3218 if (!rdev
->constraints
)
3221 /* constraints need specific supporting methods */
3222 if (ops
->set_voltage
|| ops
->set_voltage_sel
) {
3223 status
= device_create_file(dev
, &dev_attr_min_microvolts
);
3226 status
= device_create_file(dev
, &dev_attr_max_microvolts
);
3230 if (ops
->set_current_limit
) {
3231 status
= device_create_file(dev
, &dev_attr_min_microamps
);
3234 status
= device_create_file(dev
, &dev_attr_max_microamps
);
3239 status
= device_create_file(dev
, &dev_attr_suspend_standby_state
);
3242 status
= device_create_file(dev
, &dev_attr_suspend_mem_state
);
3245 status
= device_create_file(dev
, &dev_attr_suspend_disk_state
);
3249 if (ops
->set_suspend_voltage
) {
3250 status
= device_create_file(dev
,
3251 &dev_attr_suspend_standby_microvolts
);
3254 status
= device_create_file(dev
,
3255 &dev_attr_suspend_mem_microvolts
);
3258 status
= device_create_file(dev
,
3259 &dev_attr_suspend_disk_microvolts
);
3264 if (ops
->set_suspend_mode
) {
3265 status
= device_create_file(dev
,
3266 &dev_attr_suspend_standby_mode
);
3269 status
= device_create_file(dev
,
3270 &dev_attr_suspend_mem_mode
);
3273 status
= device_create_file(dev
,
3274 &dev_attr_suspend_disk_mode
);
3282 static void rdev_init_debugfs(struct regulator_dev
*rdev
)
3284 rdev
->debugfs
= debugfs_create_dir(rdev_get_name(rdev
), debugfs_root
);
3285 if (!rdev
->debugfs
) {
3286 rdev_warn(rdev
, "Failed to create debugfs directory\n");
3290 debugfs_create_u32("use_count", 0444, rdev
->debugfs
,
3292 debugfs_create_u32("open_count", 0444, rdev
->debugfs
,
3294 debugfs_create_u32("bypass_count", 0444, rdev
->debugfs
,
3295 &rdev
->bypass_count
);
3299 * regulator_register - register regulator
3300 * @regulator_desc: regulator to register
3301 * @config: runtime configuration for regulator
3303 * Called by regulator drivers to register a regulator.
3304 * Returns a valid pointer to struct regulator_dev on success
3305 * or an ERR_PTR() on error.
3307 struct regulator_dev
*
3308 regulator_register(const struct regulator_desc
*regulator_desc
,
3309 const struct regulator_config
*config
)
3311 const struct regulation_constraints
*constraints
= NULL
;
3312 const struct regulator_init_data
*init_data
;
3313 static atomic_t regulator_no
= ATOMIC_INIT(0);
3314 struct regulator_dev
*rdev
;
3317 const char *supply
= NULL
;
3319 if (regulator_desc
== NULL
|| config
== NULL
)
3320 return ERR_PTR(-EINVAL
);
3325 if (regulator_desc
->name
== NULL
|| regulator_desc
->ops
== NULL
)
3326 return ERR_PTR(-EINVAL
);
3328 if (regulator_desc
->type
!= REGULATOR_VOLTAGE
&&
3329 regulator_desc
->type
!= REGULATOR_CURRENT
)
3330 return ERR_PTR(-EINVAL
);
3332 /* Only one of each should be implemented */
3333 WARN_ON(regulator_desc
->ops
->get_voltage
&&
3334 regulator_desc
->ops
->get_voltage_sel
);
3335 WARN_ON(regulator_desc
->ops
->set_voltage
&&
3336 regulator_desc
->ops
->set_voltage_sel
);
3338 /* If we're using selectors we must implement list_voltage. */
3339 if (regulator_desc
->ops
->get_voltage_sel
&&
3340 !regulator_desc
->ops
->list_voltage
) {
3341 return ERR_PTR(-EINVAL
);
3343 if (regulator_desc
->ops
->set_voltage_sel
&&
3344 !regulator_desc
->ops
->list_voltage
) {
3345 return ERR_PTR(-EINVAL
);
3348 init_data
= config
->init_data
;
3350 rdev
= kzalloc(sizeof(struct regulator_dev
), GFP_KERNEL
);
3352 return ERR_PTR(-ENOMEM
);
3354 mutex_lock(®ulator_list_mutex
);
3356 mutex_init(&rdev
->mutex
);
3357 rdev
->reg_data
= config
->driver_data
;
3358 rdev
->owner
= regulator_desc
->owner
;
3359 rdev
->desc
= regulator_desc
;
3361 rdev
->regmap
= config
->regmap
;
3362 else if (dev_get_regmap(dev
, NULL
))
3363 rdev
->regmap
= dev_get_regmap(dev
, NULL
);
3364 else if (dev
->parent
)
3365 rdev
->regmap
= dev_get_regmap(dev
->parent
, NULL
);
3366 INIT_LIST_HEAD(&rdev
->consumer_list
);
3367 INIT_LIST_HEAD(&rdev
->list
);
3368 BLOCKING_INIT_NOTIFIER_HEAD(&rdev
->notifier
);
3369 INIT_DELAYED_WORK(&rdev
->disable_work
, regulator_disable_work
);
3371 /* preform any regulator specific init */
3372 if (init_data
&& init_data
->regulator_init
) {
3373 ret
= init_data
->regulator_init(rdev
->reg_data
);
3378 /* register with sysfs */
3379 rdev
->dev
.class = ®ulator_class
;
3380 rdev
->dev
.of_node
= config
->of_node
;
3381 rdev
->dev
.parent
= dev
;
3382 dev_set_name(&rdev
->dev
, "regulator.%d",
3383 atomic_inc_return(®ulator_no
) - 1);
3384 ret
= device_register(&rdev
->dev
);
3386 put_device(&rdev
->dev
);
3390 dev_set_drvdata(&rdev
->dev
, rdev
);
3392 if (config
->ena_gpio
&& gpio_is_valid(config
->ena_gpio
)) {
3393 ret
= regulator_ena_gpio_request(rdev
, config
);
3395 rdev_err(rdev
, "Failed to request enable GPIO%d: %d\n",
3396 config
->ena_gpio
, ret
);
3401 /* set regulator constraints */
3403 constraints
= &init_data
->constraints
;
3405 ret
= set_machine_constraints(rdev
, constraints
);
3409 /* add attributes supported by this regulator */
3410 ret
= add_regulator_attributes(rdev
);
3414 if (init_data
&& init_data
->supply_regulator
)
3415 supply
= init_data
->supply_regulator
;
3416 else if (regulator_desc
->supply_name
)
3417 supply
= regulator_desc
->supply_name
;
3420 struct regulator_dev
*r
;
3422 r
= regulator_dev_lookup(dev
, supply
, &ret
);
3424 if (ret
== -ENODEV
) {
3426 * No supply was specified for this regulator and
3427 * there will never be one.
3432 dev_err(dev
, "Failed to find supply %s\n", supply
);
3433 ret
= -EPROBE_DEFER
;
3437 ret
= set_supply(rdev
, r
);
3441 /* Enable supply if rail is enabled */
3442 if (_regulator_is_enabled(rdev
)) {
3443 ret
= regulator_enable(rdev
->supply
);
3450 /* add consumers devices */
3452 for (i
= 0; i
< init_data
->num_consumer_supplies
; i
++) {
3453 ret
= set_consumer_device_supply(rdev
,
3454 init_data
->consumer_supplies
[i
].dev_name
,
3455 init_data
->consumer_supplies
[i
].supply
);
3457 dev_err(dev
, "Failed to set supply %s\n",
3458 init_data
->consumer_supplies
[i
].supply
);
3459 goto unset_supplies
;
3464 list_add(&rdev
->list
, ®ulator_list
);
3466 rdev_init_debugfs(rdev
);
3468 mutex_unlock(®ulator_list_mutex
);
3472 unset_regulator_supplies(rdev
);
3476 _regulator_put(rdev
->supply
);
3477 regulator_ena_gpio_free(rdev
);
3478 kfree(rdev
->constraints
);
3480 device_unregister(&rdev
->dev
);
3481 /* device core frees rdev */
3482 rdev
= ERR_PTR(ret
);
3487 rdev
= ERR_PTR(ret
);
3490 EXPORT_SYMBOL_GPL(regulator_register
);
3493 * regulator_unregister - unregister regulator
3494 * @rdev: regulator to unregister
3496 * Called by regulator drivers to unregister a regulator.
3498 void regulator_unregister(struct regulator_dev
*rdev
)
3504 while (rdev
->use_count
--)
3505 regulator_disable(rdev
->supply
);
3506 regulator_put(rdev
->supply
);
3508 mutex_lock(®ulator_list_mutex
);
3509 debugfs_remove_recursive(rdev
->debugfs
);
3510 flush_work(&rdev
->disable_work
.work
);
3511 WARN_ON(rdev
->open_count
);
3512 unset_regulator_supplies(rdev
);
3513 list_del(&rdev
->list
);
3514 kfree(rdev
->constraints
);
3515 regulator_ena_gpio_free(rdev
);
3516 device_unregister(&rdev
->dev
);
3517 mutex_unlock(®ulator_list_mutex
);
3519 EXPORT_SYMBOL_GPL(regulator_unregister
);
3522 * regulator_suspend_prepare - prepare regulators for system wide suspend
3523 * @state: system suspend state
3525 * Configure each regulator with it's suspend operating parameters for state.
3526 * This will usually be called by machine suspend code prior to supending.
3528 int regulator_suspend_prepare(suspend_state_t state
)
3530 struct regulator_dev
*rdev
;
3533 /* ON is handled by regulator active state */
3534 if (state
== PM_SUSPEND_ON
)
3537 mutex_lock(®ulator_list_mutex
);
3538 list_for_each_entry(rdev
, ®ulator_list
, list
) {
3540 mutex_lock(&rdev
->mutex
);
3541 ret
= suspend_prepare(rdev
, state
);
3542 mutex_unlock(&rdev
->mutex
);
3545 rdev_err(rdev
, "failed to prepare\n");
3550 mutex_unlock(®ulator_list_mutex
);
3553 EXPORT_SYMBOL_GPL(regulator_suspend_prepare
);
3556 * regulator_suspend_finish - resume regulators from system wide suspend
3558 * Turn on regulators that might be turned off by regulator_suspend_prepare
3559 * and that should be turned on according to the regulators properties.
3561 int regulator_suspend_finish(void)
3563 struct regulator_dev
*rdev
;
3566 mutex_lock(®ulator_list_mutex
);
3567 list_for_each_entry(rdev
, ®ulator_list
, list
) {
3568 mutex_lock(&rdev
->mutex
);
3569 if (rdev
->use_count
> 0 || rdev
->constraints
->always_on
) {
3570 if (!_regulator_is_enabled(rdev
)) {
3571 error
= _regulator_do_enable(rdev
);
3576 if (!has_full_constraints
)
3578 if (!_regulator_is_enabled(rdev
))
3581 error
= _regulator_do_disable(rdev
);
3586 mutex_unlock(&rdev
->mutex
);
3588 mutex_unlock(®ulator_list_mutex
);
3591 EXPORT_SYMBOL_GPL(regulator_suspend_finish
);
3594 * regulator_has_full_constraints - the system has fully specified constraints
3596 * Calling this function will cause the regulator API to disable all
3597 * regulators which have a zero use count and don't have an always_on
3598 * constraint in a late_initcall.
3600 * The intention is that this will become the default behaviour in a
3601 * future kernel release so users are encouraged to use this facility
3604 void regulator_has_full_constraints(void)
3606 has_full_constraints
= 1;
3608 EXPORT_SYMBOL_GPL(regulator_has_full_constraints
);
3611 * regulator_use_dummy_regulator - Provide a dummy regulator when none is found
3613 * Calling this function will cause the regulator API to provide a
3614 * dummy regulator to consumers if no physical regulator is found,
3615 * allowing most consumers to proceed as though a regulator were
3616 * configured. This allows systems such as those with software
3617 * controllable regulators for the CPU core only to be brought up more
3620 void regulator_use_dummy_regulator(void)
3622 board_wants_dummy_regulator
= true;
3624 EXPORT_SYMBOL_GPL(regulator_use_dummy_regulator
);
3627 * rdev_get_drvdata - get rdev regulator driver data
3630 * Get rdev regulator driver private data. This call can be used in the
3631 * regulator driver context.
3633 void *rdev_get_drvdata(struct regulator_dev
*rdev
)
3635 return rdev
->reg_data
;
3637 EXPORT_SYMBOL_GPL(rdev_get_drvdata
);
3640 * regulator_get_drvdata - get regulator driver data
3641 * @regulator: regulator
3643 * Get regulator driver private data. This call can be used in the consumer
3644 * driver context when non API regulator specific functions need to be called.
3646 void *regulator_get_drvdata(struct regulator
*regulator
)
3648 return regulator
->rdev
->reg_data
;
3650 EXPORT_SYMBOL_GPL(regulator_get_drvdata
);
3653 * regulator_set_drvdata - set regulator driver data
3654 * @regulator: regulator
3657 void regulator_set_drvdata(struct regulator
*regulator
, void *data
)
3659 regulator
->rdev
->reg_data
= data
;
3661 EXPORT_SYMBOL_GPL(regulator_set_drvdata
);
3664 * regulator_get_id - get regulator ID
3667 int rdev_get_id(struct regulator_dev
*rdev
)
3669 return rdev
->desc
->id
;
3671 EXPORT_SYMBOL_GPL(rdev_get_id
);
3673 struct device
*rdev_get_dev(struct regulator_dev
*rdev
)
3677 EXPORT_SYMBOL_GPL(rdev_get_dev
);
3679 void *regulator_get_init_drvdata(struct regulator_init_data
*reg_init_data
)
3681 return reg_init_data
->driver_data
;
3683 EXPORT_SYMBOL_GPL(regulator_get_init_drvdata
);
3685 #ifdef CONFIG_DEBUG_FS
3686 static ssize_t
supply_map_read_file(struct file
*file
, char __user
*user_buf
,
3687 size_t count
, loff_t
*ppos
)
3689 char *buf
= kmalloc(PAGE_SIZE
, GFP_KERNEL
);
3690 ssize_t len
, ret
= 0;
3691 struct regulator_map
*map
;
3696 list_for_each_entry(map
, ®ulator_map_list
, list
) {
3697 len
= snprintf(buf
+ ret
, PAGE_SIZE
- ret
,
3699 rdev_get_name(map
->regulator
), map
->dev_name
,
3703 if (ret
> PAGE_SIZE
) {
3709 ret
= simple_read_from_buffer(user_buf
, count
, ppos
, buf
, ret
);
3717 static const struct file_operations supply_map_fops
= {
3718 #ifdef CONFIG_DEBUG_FS
3719 .read
= supply_map_read_file
,
3720 .llseek
= default_llseek
,
3724 static int __init
regulator_init(void)
3728 ret
= class_register(®ulator_class
);
3730 debugfs_root
= debugfs_create_dir("regulator", NULL
);
3732 pr_warn("regulator: Failed to create debugfs directory\n");
3734 debugfs_create_file("supply_map", 0444, debugfs_root
, NULL
,
3737 regulator_dummy_init();
3742 /* init early to allow our consumers to complete system booting */
3743 core_initcall(regulator_init
);
3745 static int __init
regulator_init_complete(void)
3747 struct regulator_dev
*rdev
;
3748 struct regulator_ops
*ops
;
3749 struct regulation_constraints
*c
;
3753 * Since DT doesn't provide an idiomatic mechanism for
3754 * enabling full constraints and since it's much more natural
3755 * with DT to provide them just assume that a DT enabled
3756 * system has full constraints.
3758 if (of_have_populated_dt())
3759 has_full_constraints
= true;
3761 mutex_lock(®ulator_list_mutex
);
3763 /* If we have a full configuration then disable any regulators
3764 * which are not in use or always_on. This will become the
3765 * default behaviour in the future.
3767 list_for_each_entry(rdev
, ®ulator_list
, list
) {
3768 ops
= rdev
->desc
->ops
;
3769 c
= rdev
->constraints
;
3771 if (c
&& c
->always_on
)
3774 mutex_lock(&rdev
->mutex
);
3776 if (rdev
->use_count
)
3779 /* If we can't read the status assume it's on. */
3780 if (ops
->is_enabled
)
3781 enabled
= ops
->is_enabled(rdev
);
3788 if (has_full_constraints
) {
3789 /* We log since this may kill the system if it
3791 rdev_info(rdev
, "disabling\n");
3792 ret
= _regulator_do_disable(rdev
);
3794 rdev_err(rdev
, "couldn't disable: %d\n", ret
);
3797 /* The intention is that in future we will
3798 * assume that full constraints are provided
3799 * so warn even if we aren't going to do
3802 rdev_warn(rdev
, "incomplete constraints, leaving on\n");
3806 mutex_unlock(&rdev
->mutex
);
3809 mutex_unlock(®ulator_list_mutex
);
3813 late_initcall(regulator_init_complete
);