mfd: wm8350-i2c: Make sure the i2c regmap functions are compiled
[linux/fpc-iii.git] / drivers / regulator / core.c
blobeb87279f3c73ebf48b5fb098a378d0555ecb814e
1 /*
2 * core.c -- Voltage/Current Regulator framework.
4 * Copyright 2007, 2008 Wolfson Microelectronics PLC.
5 * Copyright 2008 SlimLogic Ltd.
7 * Author: Liam Girdwood <lrg@slimlogic.co.uk>
9 * This program is free software; you can redistribute it and/or modify it
10 * under the terms of the GNU General Public License as published by the
11 * Free Software Foundation; either version 2 of the License, or (at your
12 * option) any later version.
16 #include <linux/kernel.h>
17 #include <linux/init.h>
18 #include <linux/debugfs.h>
19 #include <linux/device.h>
20 #include <linux/slab.h>
21 #include <linux/async.h>
22 #include <linux/err.h>
23 #include <linux/mutex.h>
24 #include <linux/suspend.h>
25 #include <linux/delay.h>
26 #include <linux/gpio.h>
27 #include <linux/of.h>
28 #include <linux/regmap.h>
29 #include <linux/regulator/of_regulator.h>
30 #include <linux/regulator/consumer.h>
31 #include <linux/regulator/driver.h>
32 #include <linux/regulator/machine.h>
33 #include <linux/module.h>
35 #define CREATE_TRACE_POINTS
36 #include <trace/events/regulator.h>
38 #include "dummy.h"
40 #define rdev_crit(rdev, fmt, ...) \
41 pr_crit("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
42 #define rdev_err(rdev, fmt, ...) \
43 pr_err("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
44 #define rdev_warn(rdev, fmt, ...) \
45 pr_warn("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
46 #define rdev_info(rdev, fmt, ...) \
47 pr_info("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
48 #define rdev_dbg(rdev, fmt, ...) \
49 pr_debug("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
51 static DEFINE_MUTEX(regulator_list_mutex);
52 static LIST_HEAD(regulator_list);
53 static LIST_HEAD(regulator_map_list);
54 static LIST_HEAD(regulator_ena_gpio_list);
55 static bool has_full_constraints;
56 static bool board_wants_dummy_regulator;
58 static struct dentry *debugfs_root;
61 * struct regulator_map
63 * Used to provide symbolic supply names to devices.
65 struct regulator_map {
66 struct list_head list;
67 const char *dev_name; /* The dev_name() for the consumer */
68 const char *supply;
69 struct regulator_dev *regulator;
73 * struct regulator_enable_gpio
75 * Management for shared enable GPIO pin
77 struct regulator_enable_gpio {
78 struct list_head list;
79 int gpio;
80 u32 enable_count; /* a number of enabled shared GPIO */
81 u32 request_count; /* a number of requested shared GPIO */
82 unsigned int ena_gpio_invert:1;
86 * struct regulator
88 * One for each consumer device.
90 struct regulator {
91 struct device *dev;
92 struct list_head list;
93 unsigned int always_on:1;
94 unsigned int bypass:1;
95 int uA_load;
96 int min_uV;
97 int max_uV;
98 char *supply_name;
99 struct device_attribute dev_attr;
100 struct regulator_dev *rdev;
101 struct dentry *debugfs;
104 static int _regulator_is_enabled(struct regulator_dev *rdev);
105 static int _regulator_disable(struct regulator_dev *rdev);
106 static int _regulator_get_voltage(struct regulator_dev *rdev);
107 static int _regulator_get_current_limit(struct regulator_dev *rdev);
108 static unsigned int _regulator_get_mode(struct regulator_dev *rdev);
109 static void _notifier_call_chain(struct regulator_dev *rdev,
110 unsigned long event, void *data);
111 static int _regulator_do_set_voltage(struct regulator_dev *rdev,
112 int min_uV, int max_uV);
113 static struct regulator *create_regulator(struct regulator_dev *rdev,
114 struct device *dev,
115 const char *supply_name);
117 static const char *rdev_get_name(struct regulator_dev *rdev)
119 if (rdev->constraints && rdev->constraints->name)
120 return rdev->constraints->name;
121 else if (rdev->desc->name)
122 return rdev->desc->name;
123 else
124 return "";
128 * of_get_regulator - get a regulator device node based on supply name
129 * @dev: Device pointer for the consumer (of regulator) device
130 * @supply: regulator supply name
132 * Extract the regulator device node corresponding to the supply name.
133 * returns the device node corresponding to the regulator if found, else
134 * returns NULL.
136 static struct device_node *of_get_regulator(struct device *dev, const char *supply)
138 struct device_node *regnode = NULL;
139 char prop_name[32]; /* 32 is max size of property name */
141 dev_dbg(dev, "Looking up %s-supply from device tree\n", supply);
143 snprintf(prop_name, 32, "%s-supply", supply);
144 regnode = of_parse_phandle(dev->of_node, prop_name, 0);
146 if (!regnode) {
147 dev_dbg(dev, "Looking up %s property in node %s failed",
148 prop_name, dev->of_node->full_name);
149 return NULL;
151 return regnode;
154 static int _regulator_can_change_status(struct regulator_dev *rdev)
156 if (!rdev->constraints)
157 return 0;
159 if (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_STATUS)
160 return 1;
161 else
162 return 0;
165 /* Platform voltage constraint check */
166 static int regulator_check_voltage(struct regulator_dev *rdev,
167 int *min_uV, int *max_uV)
169 BUG_ON(*min_uV > *max_uV);
171 if (!rdev->constraints) {
172 rdev_err(rdev, "no constraints\n");
173 return -ENODEV;
175 if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) {
176 rdev_err(rdev, "operation not allowed\n");
177 return -EPERM;
180 if (*max_uV > rdev->constraints->max_uV)
181 *max_uV = rdev->constraints->max_uV;
182 if (*min_uV < rdev->constraints->min_uV)
183 *min_uV = rdev->constraints->min_uV;
185 if (*min_uV > *max_uV) {
186 rdev_err(rdev, "unsupportable voltage range: %d-%duV\n",
187 *min_uV, *max_uV);
188 return -EINVAL;
191 return 0;
194 /* Make sure we select a voltage that suits the needs of all
195 * regulator consumers
197 static int regulator_check_consumers(struct regulator_dev *rdev,
198 int *min_uV, int *max_uV)
200 struct regulator *regulator;
202 list_for_each_entry(regulator, &rdev->consumer_list, list) {
204 * Assume consumers that didn't say anything are OK
205 * with anything in the constraint range.
207 if (!regulator->min_uV && !regulator->max_uV)
208 continue;
210 if (*max_uV > regulator->max_uV)
211 *max_uV = regulator->max_uV;
212 if (*min_uV < regulator->min_uV)
213 *min_uV = regulator->min_uV;
216 if (*min_uV > *max_uV) {
217 rdev_err(rdev, "Restricting voltage, %u-%uuV\n",
218 *min_uV, *max_uV);
219 return -EINVAL;
222 return 0;
225 /* current constraint check */
226 static int regulator_check_current_limit(struct regulator_dev *rdev,
227 int *min_uA, int *max_uA)
229 BUG_ON(*min_uA > *max_uA);
231 if (!rdev->constraints) {
232 rdev_err(rdev, "no constraints\n");
233 return -ENODEV;
235 if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_CURRENT)) {
236 rdev_err(rdev, "operation not allowed\n");
237 return -EPERM;
240 if (*max_uA > rdev->constraints->max_uA)
241 *max_uA = rdev->constraints->max_uA;
242 if (*min_uA < rdev->constraints->min_uA)
243 *min_uA = rdev->constraints->min_uA;
245 if (*min_uA > *max_uA) {
246 rdev_err(rdev, "unsupportable current range: %d-%duA\n",
247 *min_uA, *max_uA);
248 return -EINVAL;
251 return 0;
254 /* operating mode constraint check */
255 static int regulator_mode_constrain(struct regulator_dev *rdev, int *mode)
257 switch (*mode) {
258 case REGULATOR_MODE_FAST:
259 case REGULATOR_MODE_NORMAL:
260 case REGULATOR_MODE_IDLE:
261 case REGULATOR_MODE_STANDBY:
262 break;
263 default:
264 rdev_err(rdev, "invalid mode %x specified\n", *mode);
265 return -EINVAL;
268 if (!rdev->constraints) {
269 rdev_err(rdev, "no constraints\n");
270 return -ENODEV;
272 if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_MODE)) {
273 rdev_err(rdev, "operation not allowed\n");
274 return -EPERM;
277 /* The modes are bitmasks, the most power hungry modes having
278 * the lowest values. If the requested mode isn't supported
279 * try higher modes. */
280 while (*mode) {
281 if (rdev->constraints->valid_modes_mask & *mode)
282 return 0;
283 *mode /= 2;
286 return -EINVAL;
289 /* dynamic regulator mode switching constraint check */
290 static int regulator_check_drms(struct regulator_dev *rdev)
292 if (!rdev->constraints) {
293 rdev_err(rdev, "no constraints\n");
294 return -ENODEV;
296 if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_DRMS)) {
297 rdev_err(rdev, "operation not allowed\n");
298 return -EPERM;
300 return 0;
303 static ssize_t regulator_uV_show(struct device *dev,
304 struct device_attribute *attr, char *buf)
306 struct regulator_dev *rdev = dev_get_drvdata(dev);
307 ssize_t ret;
309 mutex_lock(&rdev->mutex);
310 ret = sprintf(buf, "%d\n", _regulator_get_voltage(rdev));
311 mutex_unlock(&rdev->mutex);
313 return ret;
315 static DEVICE_ATTR(microvolts, 0444, regulator_uV_show, NULL);
317 static ssize_t regulator_uA_show(struct device *dev,
318 struct device_attribute *attr, char *buf)
320 struct regulator_dev *rdev = dev_get_drvdata(dev);
322 return sprintf(buf, "%d\n", _regulator_get_current_limit(rdev));
324 static DEVICE_ATTR(microamps, 0444, regulator_uA_show, NULL);
326 static ssize_t name_show(struct device *dev, struct device_attribute *attr,
327 char *buf)
329 struct regulator_dev *rdev = dev_get_drvdata(dev);
331 return sprintf(buf, "%s\n", rdev_get_name(rdev));
333 static DEVICE_ATTR_RO(name);
335 static ssize_t regulator_print_opmode(char *buf, int mode)
337 switch (mode) {
338 case REGULATOR_MODE_FAST:
339 return sprintf(buf, "fast\n");
340 case REGULATOR_MODE_NORMAL:
341 return sprintf(buf, "normal\n");
342 case REGULATOR_MODE_IDLE:
343 return sprintf(buf, "idle\n");
344 case REGULATOR_MODE_STANDBY:
345 return sprintf(buf, "standby\n");
347 return sprintf(buf, "unknown\n");
350 static ssize_t regulator_opmode_show(struct device *dev,
351 struct device_attribute *attr, char *buf)
353 struct regulator_dev *rdev = dev_get_drvdata(dev);
355 return regulator_print_opmode(buf, _regulator_get_mode(rdev));
357 static DEVICE_ATTR(opmode, 0444, regulator_opmode_show, NULL);
359 static ssize_t regulator_print_state(char *buf, int state)
361 if (state > 0)
362 return sprintf(buf, "enabled\n");
363 else if (state == 0)
364 return sprintf(buf, "disabled\n");
365 else
366 return sprintf(buf, "unknown\n");
369 static ssize_t regulator_state_show(struct device *dev,
370 struct device_attribute *attr, char *buf)
372 struct regulator_dev *rdev = dev_get_drvdata(dev);
373 ssize_t ret;
375 mutex_lock(&rdev->mutex);
376 ret = regulator_print_state(buf, _regulator_is_enabled(rdev));
377 mutex_unlock(&rdev->mutex);
379 return ret;
381 static DEVICE_ATTR(state, 0444, regulator_state_show, NULL);
383 static ssize_t regulator_status_show(struct device *dev,
384 struct device_attribute *attr, char *buf)
386 struct regulator_dev *rdev = dev_get_drvdata(dev);
387 int status;
388 char *label;
390 status = rdev->desc->ops->get_status(rdev);
391 if (status < 0)
392 return status;
394 switch (status) {
395 case REGULATOR_STATUS_OFF:
396 label = "off";
397 break;
398 case REGULATOR_STATUS_ON:
399 label = "on";
400 break;
401 case REGULATOR_STATUS_ERROR:
402 label = "error";
403 break;
404 case REGULATOR_STATUS_FAST:
405 label = "fast";
406 break;
407 case REGULATOR_STATUS_NORMAL:
408 label = "normal";
409 break;
410 case REGULATOR_STATUS_IDLE:
411 label = "idle";
412 break;
413 case REGULATOR_STATUS_STANDBY:
414 label = "standby";
415 break;
416 case REGULATOR_STATUS_BYPASS:
417 label = "bypass";
418 break;
419 case REGULATOR_STATUS_UNDEFINED:
420 label = "undefined";
421 break;
422 default:
423 return -ERANGE;
426 return sprintf(buf, "%s\n", label);
428 static DEVICE_ATTR(status, 0444, regulator_status_show, NULL);
430 static ssize_t regulator_min_uA_show(struct device *dev,
431 struct device_attribute *attr, char *buf)
433 struct regulator_dev *rdev = dev_get_drvdata(dev);
435 if (!rdev->constraints)
436 return sprintf(buf, "constraint not defined\n");
438 return sprintf(buf, "%d\n", rdev->constraints->min_uA);
440 static DEVICE_ATTR(min_microamps, 0444, regulator_min_uA_show, NULL);
442 static ssize_t regulator_max_uA_show(struct device *dev,
443 struct device_attribute *attr, char *buf)
445 struct regulator_dev *rdev = dev_get_drvdata(dev);
447 if (!rdev->constraints)
448 return sprintf(buf, "constraint not defined\n");
450 return sprintf(buf, "%d\n", rdev->constraints->max_uA);
452 static DEVICE_ATTR(max_microamps, 0444, regulator_max_uA_show, NULL);
454 static ssize_t regulator_min_uV_show(struct device *dev,
455 struct device_attribute *attr, char *buf)
457 struct regulator_dev *rdev = dev_get_drvdata(dev);
459 if (!rdev->constraints)
460 return sprintf(buf, "constraint not defined\n");
462 return sprintf(buf, "%d\n", rdev->constraints->min_uV);
464 static DEVICE_ATTR(min_microvolts, 0444, regulator_min_uV_show, NULL);
466 static ssize_t regulator_max_uV_show(struct device *dev,
467 struct device_attribute *attr, char *buf)
469 struct regulator_dev *rdev = dev_get_drvdata(dev);
471 if (!rdev->constraints)
472 return sprintf(buf, "constraint not defined\n");
474 return sprintf(buf, "%d\n", rdev->constraints->max_uV);
476 static DEVICE_ATTR(max_microvolts, 0444, regulator_max_uV_show, NULL);
478 static ssize_t regulator_total_uA_show(struct device *dev,
479 struct device_attribute *attr, char *buf)
481 struct regulator_dev *rdev = dev_get_drvdata(dev);
482 struct regulator *regulator;
483 int uA = 0;
485 mutex_lock(&rdev->mutex);
486 list_for_each_entry(regulator, &rdev->consumer_list, list)
487 uA += regulator->uA_load;
488 mutex_unlock(&rdev->mutex);
489 return sprintf(buf, "%d\n", uA);
491 static DEVICE_ATTR(requested_microamps, 0444, regulator_total_uA_show, NULL);
493 static ssize_t num_users_show(struct device *dev, struct device_attribute *attr,
494 char *buf)
496 struct regulator_dev *rdev = dev_get_drvdata(dev);
497 return sprintf(buf, "%d\n", rdev->use_count);
499 static DEVICE_ATTR_RO(num_users);
501 static ssize_t type_show(struct device *dev, struct device_attribute *attr,
502 char *buf)
504 struct regulator_dev *rdev = dev_get_drvdata(dev);
506 switch (rdev->desc->type) {
507 case REGULATOR_VOLTAGE:
508 return sprintf(buf, "voltage\n");
509 case REGULATOR_CURRENT:
510 return sprintf(buf, "current\n");
512 return sprintf(buf, "unknown\n");
514 static DEVICE_ATTR_RO(type);
516 static ssize_t regulator_suspend_mem_uV_show(struct device *dev,
517 struct device_attribute *attr, char *buf)
519 struct regulator_dev *rdev = dev_get_drvdata(dev);
521 return sprintf(buf, "%d\n", rdev->constraints->state_mem.uV);
523 static DEVICE_ATTR(suspend_mem_microvolts, 0444,
524 regulator_suspend_mem_uV_show, NULL);
526 static ssize_t regulator_suspend_disk_uV_show(struct device *dev,
527 struct device_attribute *attr, char *buf)
529 struct regulator_dev *rdev = dev_get_drvdata(dev);
531 return sprintf(buf, "%d\n", rdev->constraints->state_disk.uV);
533 static DEVICE_ATTR(suspend_disk_microvolts, 0444,
534 regulator_suspend_disk_uV_show, NULL);
536 static ssize_t regulator_suspend_standby_uV_show(struct device *dev,
537 struct device_attribute *attr, char *buf)
539 struct regulator_dev *rdev = dev_get_drvdata(dev);
541 return sprintf(buf, "%d\n", rdev->constraints->state_standby.uV);
543 static DEVICE_ATTR(suspend_standby_microvolts, 0444,
544 regulator_suspend_standby_uV_show, NULL);
546 static ssize_t regulator_suspend_mem_mode_show(struct device *dev,
547 struct device_attribute *attr, char *buf)
549 struct regulator_dev *rdev = dev_get_drvdata(dev);
551 return regulator_print_opmode(buf,
552 rdev->constraints->state_mem.mode);
554 static DEVICE_ATTR(suspend_mem_mode, 0444,
555 regulator_suspend_mem_mode_show, NULL);
557 static ssize_t regulator_suspend_disk_mode_show(struct device *dev,
558 struct device_attribute *attr, char *buf)
560 struct regulator_dev *rdev = dev_get_drvdata(dev);
562 return regulator_print_opmode(buf,
563 rdev->constraints->state_disk.mode);
565 static DEVICE_ATTR(suspend_disk_mode, 0444,
566 regulator_suspend_disk_mode_show, NULL);
568 static ssize_t regulator_suspend_standby_mode_show(struct device *dev,
569 struct device_attribute *attr, char *buf)
571 struct regulator_dev *rdev = dev_get_drvdata(dev);
573 return regulator_print_opmode(buf,
574 rdev->constraints->state_standby.mode);
576 static DEVICE_ATTR(suspend_standby_mode, 0444,
577 regulator_suspend_standby_mode_show, NULL);
579 static ssize_t regulator_suspend_mem_state_show(struct device *dev,
580 struct device_attribute *attr, char *buf)
582 struct regulator_dev *rdev = dev_get_drvdata(dev);
584 return regulator_print_state(buf,
585 rdev->constraints->state_mem.enabled);
587 static DEVICE_ATTR(suspend_mem_state, 0444,
588 regulator_suspend_mem_state_show, NULL);
590 static ssize_t regulator_suspend_disk_state_show(struct device *dev,
591 struct device_attribute *attr, char *buf)
593 struct regulator_dev *rdev = dev_get_drvdata(dev);
595 return regulator_print_state(buf,
596 rdev->constraints->state_disk.enabled);
598 static DEVICE_ATTR(suspend_disk_state, 0444,
599 regulator_suspend_disk_state_show, NULL);
601 static ssize_t regulator_suspend_standby_state_show(struct device *dev,
602 struct device_attribute *attr, char *buf)
604 struct regulator_dev *rdev = dev_get_drvdata(dev);
606 return regulator_print_state(buf,
607 rdev->constraints->state_standby.enabled);
609 static DEVICE_ATTR(suspend_standby_state, 0444,
610 regulator_suspend_standby_state_show, NULL);
612 static ssize_t regulator_bypass_show(struct device *dev,
613 struct device_attribute *attr, char *buf)
615 struct regulator_dev *rdev = dev_get_drvdata(dev);
616 const char *report;
617 bool bypass;
618 int ret;
620 ret = rdev->desc->ops->get_bypass(rdev, &bypass);
622 if (ret != 0)
623 report = "unknown";
624 else if (bypass)
625 report = "enabled";
626 else
627 report = "disabled";
629 return sprintf(buf, "%s\n", report);
631 static DEVICE_ATTR(bypass, 0444,
632 regulator_bypass_show, NULL);
635 * These are the only attributes are present for all regulators.
636 * Other attributes are a function of regulator functionality.
638 static struct attribute *regulator_dev_attrs[] = {
639 &dev_attr_name.attr,
640 &dev_attr_num_users.attr,
641 &dev_attr_type.attr,
642 NULL,
644 ATTRIBUTE_GROUPS(regulator_dev);
646 static void regulator_dev_release(struct device *dev)
648 struct regulator_dev *rdev = dev_get_drvdata(dev);
649 kfree(rdev);
652 static struct class regulator_class = {
653 .name = "regulator",
654 .dev_release = regulator_dev_release,
655 .dev_groups = regulator_dev_groups,
658 /* Calculate the new optimum regulator operating mode based on the new total
659 * consumer load. All locks held by caller */
660 static void drms_uA_update(struct regulator_dev *rdev)
662 struct regulator *sibling;
663 int current_uA = 0, output_uV, input_uV, err;
664 unsigned int mode;
666 err = regulator_check_drms(rdev);
667 if (err < 0 || !rdev->desc->ops->get_optimum_mode ||
668 (!rdev->desc->ops->get_voltage &&
669 !rdev->desc->ops->get_voltage_sel) ||
670 !rdev->desc->ops->set_mode)
671 return;
673 /* get output voltage */
674 output_uV = _regulator_get_voltage(rdev);
675 if (output_uV <= 0)
676 return;
678 /* get input voltage */
679 input_uV = 0;
680 if (rdev->supply)
681 input_uV = regulator_get_voltage(rdev->supply);
682 if (input_uV <= 0)
683 input_uV = rdev->constraints->input_uV;
684 if (input_uV <= 0)
685 return;
687 /* calc total requested load */
688 list_for_each_entry(sibling, &rdev->consumer_list, list)
689 current_uA += sibling->uA_load;
691 /* now get the optimum mode for our new total regulator load */
692 mode = rdev->desc->ops->get_optimum_mode(rdev, input_uV,
693 output_uV, current_uA);
695 /* check the new mode is allowed */
696 err = regulator_mode_constrain(rdev, &mode);
697 if (err == 0)
698 rdev->desc->ops->set_mode(rdev, mode);
701 static int suspend_set_state(struct regulator_dev *rdev,
702 struct regulator_state *rstate)
704 int ret = 0;
706 /* If we have no suspend mode configration don't set anything;
707 * only warn if the driver implements set_suspend_voltage or
708 * set_suspend_mode callback.
710 if (!rstate->enabled && !rstate->disabled) {
711 if (rdev->desc->ops->set_suspend_voltage ||
712 rdev->desc->ops->set_suspend_mode)
713 rdev_warn(rdev, "No configuration\n");
714 return 0;
717 if (rstate->enabled && rstate->disabled) {
718 rdev_err(rdev, "invalid configuration\n");
719 return -EINVAL;
722 if (rstate->enabled && rdev->desc->ops->set_suspend_enable)
723 ret = rdev->desc->ops->set_suspend_enable(rdev);
724 else if (rstate->disabled && rdev->desc->ops->set_suspend_disable)
725 ret = rdev->desc->ops->set_suspend_disable(rdev);
726 else /* OK if set_suspend_enable or set_suspend_disable is NULL */
727 ret = 0;
729 if (ret < 0) {
730 rdev_err(rdev, "failed to enabled/disable\n");
731 return ret;
734 if (rdev->desc->ops->set_suspend_voltage && rstate->uV > 0) {
735 ret = rdev->desc->ops->set_suspend_voltage(rdev, rstate->uV);
736 if (ret < 0) {
737 rdev_err(rdev, "failed to set voltage\n");
738 return ret;
742 if (rdev->desc->ops->set_suspend_mode && rstate->mode > 0) {
743 ret = rdev->desc->ops->set_suspend_mode(rdev, rstate->mode);
744 if (ret < 0) {
745 rdev_err(rdev, "failed to set mode\n");
746 return ret;
749 return ret;
752 /* locks held by caller */
753 static int suspend_prepare(struct regulator_dev *rdev, suspend_state_t state)
755 if (!rdev->constraints)
756 return -EINVAL;
758 switch (state) {
759 case PM_SUSPEND_STANDBY:
760 return suspend_set_state(rdev,
761 &rdev->constraints->state_standby);
762 case PM_SUSPEND_MEM:
763 return suspend_set_state(rdev,
764 &rdev->constraints->state_mem);
765 case PM_SUSPEND_MAX:
766 return suspend_set_state(rdev,
767 &rdev->constraints->state_disk);
768 default:
769 return -EINVAL;
773 static void print_constraints(struct regulator_dev *rdev)
775 struct regulation_constraints *constraints = rdev->constraints;
776 char buf[160] = "";
777 int count = 0;
778 int ret;
780 if (constraints->min_uV && constraints->max_uV) {
781 if (constraints->min_uV == constraints->max_uV)
782 count += sprintf(buf + count, "%d mV ",
783 constraints->min_uV / 1000);
784 else
785 count += sprintf(buf + count, "%d <--> %d mV ",
786 constraints->min_uV / 1000,
787 constraints->max_uV / 1000);
790 if (!constraints->min_uV ||
791 constraints->min_uV != constraints->max_uV) {
792 ret = _regulator_get_voltage(rdev);
793 if (ret > 0)
794 count += sprintf(buf + count, "at %d mV ", ret / 1000);
797 if (constraints->uV_offset)
798 count += sprintf(buf, "%dmV offset ",
799 constraints->uV_offset / 1000);
801 if (constraints->min_uA && constraints->max_uA) {
802 if (constraints->min_uA == constraints->max_uA)
803 count += sprintf(buf + count, "%d mA ",
804 constraints->min_uA / 1000);
805 else
806 count += sprintf(buf + count, "%d <--> %d mA ",
807 constraints->min_uA / 1000,
808 constraints->max_uA / 1000);
811 if (!constraints->min_uA ||
812 constraints->min_uA != constraints->max_uA) {
813 ret = _regulator_get_current_limit(rdev);
814 if (ret > 0)
815 count += sprintf(buf + count, "at %d mA ", ret / 1000);
818 if (constraints->valid_modes_mask & REGULATOR_MODE_FAST)
819 count += sprintf(buf + count, "fast ");
820 if (constraints->valid_modes_mask & REGULATOR_MODE_NORMAL)
821 count += sprintf(buf + count, "normal ");
822 if (constraints->valid_modes_mask & REGULATOR_MODE_IDLE)
823 count += sprintf(buf + count, "idle ");
824 if (constraints->valid_modes_mask & REGULATOR_MODE_STANDBY)
825 count += sprintf(buf + count, "standby");
827 if (!count)
828 sprintf(buf, "no parameters");
830 rdev_info(rdev, "%s\n", buf);
832 if ((constraints->min_uV != constraints->max_uV) &&
833 !(constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE))
834 rdev_warn(rdev,
835 "Voltage range but no REGULATOR_CHANGE_VOLTAGE\n");
838 static int machine_constraints_voltage(struct regulator_dev *rdev,
839 struct regulation_constraints *constraints)
841 struct regulator_ops *ops = rdev->desc->ops;
842 int ret;
844 /* do we need to apply the constraint voltage */
845 if (rdev->constraints->apply_uV &&
846 rdev->constraints->min_uV == rdev->constraints->max_uV) {
847 ret = _regulator_do_set_voltage(rdev,
848 rdev->constraints->min_uV,
849 rdev->constraints->max_uV);
850 if (ret < 0) {
851 rdev_err(rdev, "failed to apply %duV constraint\n",
852 rdev->constraints->min_uV);
853 return ret;
857 /* constrain machine-level voltage specs to fit
858 * the actual range supported by this regulator.
860 if (ops->list_voltage && rdev->desc->n_voltages) {
861 int count = rdev->desc->n_voltages;
862 int i;
863 int min_uV = INT_MAX;
864 int max_uV = INT_MIN;
865 int cmin = constraints->min_uV;
866 int cmax = constraints->max_uV;
868 /* it's safe to autoconfigure fixed-voltage supplies
869 and the constraints are used by list_voltage. */
870 if (count == 1 && !cmin) {
871 cmin = 1;
872 cmax = INT_MAX;
873 constraints->min_uV = cmin;
874 constraints->max_uV = cmax;
877 /* voltage constraints are optional */
878 if ((cmin == 0) && (cmax == 0))
879 return 0;
881 /* else require explicit machine-level constraints */
882 if (cmin <= 0 || cmax <= 0 || cmax < cmin) {
883 rdev_err(rdev, "invalid voltage constraints\n");
884 return -EINVAL;
887 /* initial: [cmin..cmax] valid, [min_uV..max_uV] not */
888 for (i = 0; i < count; i++) {
889 int value;
891 value = ops->list_voltage(rdev, i);
892 if (value <= 0)
893 continue;
895 /* maybe adjust [min_uV..max_uV] */
896 if (value >= cmin && value < min_uV)
897 min_uV = value;
898 if (value <= cmax && value > max_uV)
899 max_uV = value;
902 /* final: [min_uV..max_uV] valid iff constraints valid */
903 if (max_uV < min_uV) {
904 rdev_err(rdev,
905 "unsupportable voltage constraints %u-%uuV\n",
906 min_uV, max_uV);
907 return -EINVAL;
910 /* use regulator's subset of machine constraints */
911 if (constraints->min_uV < min_uV) {
912 rdev_dbg(rdev, "override min_uV, %d -> %d\n",
913 constraints->min_uV, min_uV);
914 constraints->min_uV = min_uV;
916 if (constraints->max_uV > max_uV) {
917 rdev_dbg(rdev, "override max_uV, %d -> %d\n",
918 constraints->max_uV, max_uV);
919 constraints->max_uV = max_uV;
923 return 0;
926 static int _regulator_do_enable(struct regulator_dev *rdev);
929 * set_machine_constraints - sets regulator constraints
930 * @rdev: regulator source
931 * @constraints: constraints to apply
933 * Allows platform initialisation code to define and constrain
934 * regulator circuits e.g. valid voltage/current ranges, etc. NOTE:
935 * Constraints *must* be set by platform code in order for some
936 * regulator operations to proceed i.e. set_voltage, set_current_limit,
937 * set_mode.
939 static int set_machine_constraints(struct regulator_dev *rdev,
940 const struct regulation_constraints *constraints)
942 int ret = 0;
943 struct regulator_ops *ops = rdev->desc->ops;
945 if (constraints)
946 rdev->constraints = kmemdup(constraints, sizeof(*constraints),
947 GFP_KERNEL);
948 else
949 rdev->constraints = kzalloc(sizeof(*constraints),
950 GFP_KERNEL);
951 if (!rdev->constraints)
952 return -ENOMEM;
954 ret = machine_constraints_voltage(rdev, rdev->constraints);
955 if (ret != 0)
956 goto out;
958 /* do we need to setup our suspend state */
959 if (rdev->constraints->initial_state) {
960 ret = suspend_prepare(rdev, rdev->constraints->initial_state);
961 if (ret < 0) {
962 rdev_err(rdev, "failed to set suspend state\n");
963 goto out;
967 if (rdev->constraints->initial_mode) {
968 if (!ops->set_mode) {
969 rdev_err(rdev, "no set_mode operation\n");
970 ret = -EINVAL;
971 goto out;
974 ret = ops->set_mode(rdev, rdev->constraints->initial_mode);
975 if (ret < 0) {
976 rdev_err(rdev, "failed to set initial mode: %d\n", ret);
977 goto out;
981 /* If the constraints say the regulator should be on at this point
982 * and we have control then make sure it is enabled.
984 if (rdev->constraints->always_on || rdev->constraints->boot_on) {
985 ret = _regulator_do_enable(rdev);
986 if (ret < 0 && ret != -EINVAL) {
987 rdev_err(rdev, "failed to enable\n");
988 goto out;
992 if ((rdev->constraints->ramp_delay || rdev->constraints->ramp_disable)
993 && ops->set_ramp_delay) {
994 ret = ops->set_ramp_delay(rdev, rdev->constraints->ramp_delay);
995 if (ret < 0) {
996 rdev_err(rdev, "failed to set ramp_delay\n");
997 goto out;
1001 print_constraints(rdev);
1002 return 0;
1003 out:
1004 kfree(rdev->constraints);
1005 rdev->constraints = NULL;
1006 return ret;
1010 * set_supply - set regulator supply regulator
1011 * @rdev: regulator name
1012 * @supply_rdev: supply regulator name
1014 * Called by platform initialisation code to set the supply regulator for this
1015 * regulator. This ensures that a regulators supply will also be enabled by the
1016 * core if it's child is enabled.
1018 static int set_supply(struct regulator_dev *rdev,
1019 struct regulator_dev *supply_rdev)
1021 int err;
1023 rdev_info(rdev, "supplied by %s\n", rdev_get_name(supply_rdev));
1025 rdev->supply = create_regulator(supply_rdev, &rdev->dev, "SUPPLY");
1026 if (rdev->supply == NULL) {
1027 err = -ENOMEM;
1028 return err;
1030 supply_rdev->open_count++;
1032 return 0;
1036 * set_consumer_device_supply - Bind a regulator to a symbolic supply
1037 * @rdev: regulator source
1038 * @consumer_dev_name: dev_name() string for device supply applies to
1039 * @supply: symbolic name for supply
1041 * Allows platform initialisation code to map physical regulator
1042 * sources to symbolic names for supplies for use by devices. Devices
1043 * should use these symbolic names to request regulators, avoiding the
1044 * need to provide board-specific regulator names as platform data.
1046 static int set_consumer_device_supply(struct regulator_dev *rdev,
1047 const char *consumer_dev_name,
1048 const char *supply)
1050 struct regulator_map *node;
1051 int has_dev;
1053 if (supply == NULL)
1054 return -EINVAL;
1056 if (consumer_dev_name != NULL)
1057 has_dev = 1;
1058 else
1059 has_dev = 0;
1061 list_for_each_entry(node, &regulator_map_list, list) {
1062 if (node->dev_name && consumer_dev_name) {
1063 if (strcmp(node->dev_name, consumer_dev_name) != 0)
1064 continue;
1065 } else if (node->dev_name || consumer_dev_name) {
1066 continue;
1069 if (strcmp(node->supply, supply) != 0)
1070 continue;
1072 pr_debug("%s: %s/%s is '%s' supply; fail %s/%s\n",
1073 consumer_dev_name,
1074 dev_name(&node->regulator->dev),
1075 node->regulator->desc->name,
1076 supply,
1077 dev_name(&rdev->dev), rdev_get_name(rdev));
1078 return -EBUSY;
1081 node = kzalloc(sizeof(struct regulator_map), GFP_KERNEL);
1082 if (node == NULL)
1083 return -ENOMEM;
1085 node->regulator = rdev;
1086 node->supply = supply;
1088 if (has_dev) {
1089 node->dev_name = kstrdup(consumer_dev_name, GFP_KERNEL);
1090 if (node->dev_name == NULL) {
1091 kfree(node);
1092 return -ENOMEM;
1096 list_add(&node->list, &regulator_map_list);
1097 return 0;
1100 static void unset_regulator_supplies(struct regulator_dev *rdev)
1102 struct regulator_map *node, *n;
1104 list_for_each_entry_safe(node, n, &regulator_map_list, list) {
1105 if (rdev == node->regulator) {
1106 list_del(&node->list);
1107 kfree(node->dev_name);
1108 kfree(node);
1113 #define REG_STR_SIZE 64
1115 static struct regulator *create_regulator(struct regulator_dev *rdev,
1116 struct device *dev,
1117 const char *supply_name)
1119 struct regulator *regulator;
1120 char buf[REG_STR_SIZE];
1121 int err, size;
1123 regulator = kzalloc(sizeof(*regulator), GFP_KERNEL);
1124 if (regulator == NULL)
1125 return NULL;
1127 mutex_lock(&rdev->mutex);
1128 regulator->rdev = rdev;
1129 list_add(&regulator->list, &rdev->consumer_list);
1131 if (dev) {
1132 regulator->dev = dev;
1134 /* Add a link to the device sysfs entry */
1135 size = scnprintf(buf, REG_STR_SIZE, "%s-%s",
1136 dev->kobj.name, supply_name);
1137 if (size >= REG_STR_SIZE)
1138 goto overflow_err;
1140 regulator->supply_name = kstrdup(buf, GFP_KERNEL);
1141 if (regulator->supply_name == NULL)
1142 goto overflow_err;
1144 err = sysfs_create_link(&rdev->dev.kobj, &dev->kobj,
1145 buf);
1146 if (err) {
1147 rdev_warn(rdev, "could not add device link %s err %d\n",
1148 dev->kobj.name, err);
1149 /* non-fatal */
1151 } else {
1152 regulator->supply_name = kstrdup(supply_name, GFP_KERNEL);
1153 if (regulator->supply_name == NULL)
1154 goto overflow_err;
1157 regulator->debugfs = debugfs_create_dir(regulator->supply_name,
1158 rdev->debugfs);
1159 if (!regulator->debugfs) {
1160 rdev_warn(rdev, "Failed to create debugfs directory\n");
1161 } else {
1162 debugfs_create_u32("uA_load", 0444, regulator->debugfs,
1163 &regulator->uA_load);
1164 debugfs_create_u32("min_uV", 0444, regulator->debugfs,
1165 &regulator->min_uV);
1166 debugfs_create_u32("max_uV", 0444, regulator->debugfs,
1167 &regulator->max_uV);
1171 * Check now if the regulator is an always on regulator - if
1172 * it is then we don't need to do nearly so much work for
1173 * enable/disable calls.
1175 if (!_regulator_can_change_status(rdev) &&
1176 _regulator_is_enabled(rdev))
1177 regulator->always_on = true;
1179 mutex_unlock(&rdev->mutex);
1180 return regulator;
1181 overflow_err:
1182 list_del(&regulator->list);
1183 kfree(regulator);
1184 mutex_unlock(&rdev->mutex);
1185 return NULL;
1188 static int _regulator_get_enable_time(struct regulator_dev *rdev)
1190 if (!rdev->desc->ops->enable_time)
1191 return rdev->desc->enable_time;
1192 return rdev->desc->ops->enable_time(rdev);
1195 static struct regulator_dev *regulator_dev_lookup(struct device *dev,
1196 const char *supply,
1197 int *ret)
1199 struct regulator_dev *r;
1200 struct device_node *node;
1201 struct regulator_map *map;
1202 const char *devname = NULL;
1204 /* first do a dt based lookup */
1205 if (dev && dev->of_node) {
1206 node = of_get_regulator(dev, supply);
1207 if (node) {
1208 list_for_each_entry(r, &regulator_list, list)
1209 if (r->dev.parent &&
1210 node == r->dev.of_node)
1211 return r;
1212 } else {
1214 * If we couldn't even get the node then it's
1215 * not just that the device didn't register
1216 * yet, there's no node and we'll never
1217 * succeed.
1219 *ret = -ENODEV;
1223 /* if not found, try doing it non-dt way */
1224 if (dev)
1225 devname = dev_name(dev);
1227 list_for_each_entry(r, &regulator_list, list)
1228 if (strcmp(rdev_get_name(r), supply) == 0)
1229 return r;
1231 list_for_each_entry(map, &regulator_map_list, list) {
1232 /* If the mapping has a device set up it must match */
1233 if (map->dev_name &&
1234 (!devname || strcmp(map->dev_name, devname)))
1235 continue;
1237 if (strcmp(map->supply, supply) == 0)
1238 return map->regulator;
1242 return NULL;
1245 /* Internal regulator request function */
1246 static struct regulator *_regulator_get(struct device *dev, const char *id,
1247 bool exclusive)
1249 struct regulator_dev *rdev;
1250 struct regulator *regulator = ERR_PTR(-EPROBE_DEFER);
1251 const char *devname = NULL;
1252 int ret = 0;
1254 if (id == NULL) {
1255 pr_err("get() with no identifier\n");
1256 return regulator;
1259 if (dev)
1260 devname = dev_name(dev);
1262 mutex_lock(&regulator_list_mutex);
1264 rdev = regulator_dev_lookup(dev, id, &ret);
1265 if (rdev)
1266 goto found;
1269 * If we have return value from dev_lookup fail, we do not expect to
1270 * succeed, so, quit with appropriate error value
1272 if (ret) {
1273 regulator = ERR_PTR(ret);
1274 goto out;
1277 if (board_wants_dummy_regulator) {
1278 rdev = dummy_regulator_rdev;
1279 goto found;
1282 #ifdef CONFIG_REGULATOR_DUMMY
1283 if (!devname)
1284 devname = "deviceless";
1286 /* If the board didn't flag that it was fully constrained then
1287 * substitute in a dummy regulator so consumers can continue.
1289 if (!has_full_constraints) {
1290 pr_warn("%s supply %s not found, using dummy regulator\n",
1291 devname, id);
1292 rdev = dummy_regulator_rdev;
1293 goto found;
1295 #endif
1297 mutex_unlock(&regulator_list_mutex);
1298 return regulator;
1300 found:
1301 if (rdev->exclusive) {
1302 regulator = ERR_PTR(-EPERM);
1303 goto out;
1306 if (exclusive && rdev->open_count) {
1307 regulator = ERR_PTR(-EBUSY);
1308 goto out;
1311 if (!try_module_get(rdev->owner))
1312 goto out;
1314 regulator = create_regulator(rdev, dev, id);
1315 if (regulator == NULL) {
1316 regulator = ERR_PTR(-ENOMEM);
1317 module_put(rdev->owner);
1318 goto out;
1321 rdev->open_count++;
1322 if (exclusive) {
1323 rdev->exclusive = 1;
1325 ret = _regulator_is_enabled(rdev);
1326 if (ret > 0)
1327 rdev->use_count = 1;
1328 else
1329 rdev->use_count = 0;
1332 out:
1333 mutex_unlock(&regulator_list_mutex);
1335 return regulator;
1339 * regulator_get - lookup and obtain a reference to a regulator.
1340 * @dev: device for regulator "consumer"
1341 * @id: Supply name or regulator ID.
1343 * Returns a struct regulator corresponding to the regulator producer,
1344 * or IS_ERR() condition containing errno.
1346 * Use of supply names configured via regulator_set_device_supply() is
1347 * strongly encouraged. It is recommended that the supply name used
1348 * should match the name used for the supply and/or the relevant
1349 * device pins in the datasheet.
1351 struct regulator *regulator_get(struct device *dev, const char *id)
1353 return _regulator_get(dev, id, false);
1355 EXPORT_SYMBOL_GPL(regulator_get);
1357 static void devm_regulator_release(struct device *dev, void *res)
1359 regulator_put(*(struct regulator **)res);
1363 * devm_regulator_get - Resource managed regulator_get()
1364 * @dev: device for regulator "consumer"
1365 * @id: Supply name or regulator ID.
1367 * Managed regulator_get(). Regulators returned from this function are
1368 * automatically regulator_put() on driver detach. See regulator_get() for more
1369 * information.
1371 struct regulator *devm_regulator_get(struct device *dev, const char *id)
1373 struct regulator **ptr, *regulator;
1375 ptr = devres_alloc(devm_regulator_release, sizeof(*ptr), GFP_KERNEL);
1376 if (!ptr)
1377 return ERR_PTR(-ENOMEM);
1379 regulator = regulator_get(dev, id);
1380 if (!IS_ERR(regulator)) {
1381 *ptr = regulator;
1382 devres_add(dev, ptr);
1383 } else {
1384 devres_free(ptr);
1387 return regulator;
1389 EXPORT_SYMBOL_GPL(devm_regulator_get);
1392 * regulator_get_exclusive - obtain exclusive access to a regulator.
1393 * @dev: device for regulator "consumer"
1394 * @id: Supply name or regulator ID.
1396 * Returns a struct regulator corresponding to the regulator producer,
1397 * or IS_ERR() condition containing errno. Other consumers will be
1398 * unable to obtain this reference is held and the use count for the
1399 * regulator will be initialised to reflect the current state of the
1400 * regulator.
1402 * This is intended for use by consumers which cannot tolerate shared
1403 * use of the regulator such as those which need to force the
1404 * regulator off for correct operation of the hardware they are
1405 * controlling.
1407 * Use of supply names configured via regulator_set_device_supply() is
1408 * strongly encouraged. It is recommended that the supply name used
1409 * should match the name used for the supply and/or the relevant
1410 * device pins in the datasheet.
1412 struct regulator *regulator_get_exclusive(struct device *dev, const char *id)
1414 return _regulator_get(dev, id, true);
1416 EXPORT_SYMBOL_GPL(regulator_get_exclusive);
1419 * regulator_get_optional - obtain optional access to a regulator.
1420 * @dev: device for regulator "consumer"
1421 * @id: Supply name or regulator ID.
1423 * Returns a struct regulator corresponding to the regulator producer,
1424 * or IS_ERR() condition containing errno. Other consumers will be
1425 * unable to obtain this reference is held and the use count for the
1426 * regulator will be initialised to reflect the current state of the
1427 * regulator.
1429 * This is intended for use by consumers for devices which can have
1430 * some supplies unconnected in normal use, such as some MMC devices.
1431 * It can allow the regulator core to provide stub supplies for other
1432 * supplies requested using normal regulator_get() calls without
1433 * disrupting the operation of drivers that can handle absent
1434 * supplies.
1436 * Use of supply names configured via regulator_set_device_supply() is
1437 * strongly encouraged. It is recommended that the supply name used
1438 * should match the name used for the supply and/or the relevant
1439 * device pins in the datasheet.
1441 struct regulator *regulator_get_optional(struct device *dev, const char *id)
1443 return _regulator_get(dev, id, 0);
1445 EXPORT_SYMBOL_GPL(regulator_get_optional);
1448 * devm_regulator_get_optional - Resource managed regulator_get_optional()
1449 * @dev: device for regulator "consumer"
1450 * @id: Supply name or regulator ID.
1452 * Managed regulator_get_optional(). Regulators returned from this
1453 * function are automatically regulator_put() on driver detach. See
1454 * regulator_get_optional() for more information.
1456 struct regulator *devm_regulator_get_optional(struct device *dev,
1457 const char *id)
1459 struct regulator **ptr, *regulator;
1461 ptr = devres_alloc(devm_regulator_release, sizeof(*ptr), GFP_KERNEL);
1462 if (!ptr)
1463 return ERR_PTR(-ENOMEM);
1465 regulator = regulator_get_optional(dev, id);
1466 if (!IS_ERR(regulator)) {
1467 *ptr = regulator;
1468 devres_add(dev, ptr);
1469 } else {
1470 devres_free(ptr);
1473 return regulator;
1475 EXPORT_SYMBOL_GPL(devm_regulator_get_optional);
1477 /* regulator_list_mutex lock held by regulator_put() */
1478 static void _regulator_put(struct regulator *regulator)
1480 struct regulator_dev *rdev;
1482 if (regulator == NULL || IS_ERR(regulator))
1483 return;
1485 rdev = regulator->rdev;
1487 debugfs_remove_recursive(regulator->debugfs);
1489 /* remove any sysfs entries */
1490 if (regulator->dev)
1491 sysfs_remove_link(&rdev->dev.kobj, regulator->supply_name);
1492 mutex_lock(&rdev->mutex);
1493 kfree(regulator->supply_name);
1494 list_del(&regulator->list);
1495 kfree(regulator);
1497 rdev->open_count--;
1498 rdev->exclusive = 0;
1499 mutex_unlock(&rdev->mutex);
1501 module_put(rdev->owner);
1505 * devm_regulator_get_exclusive - Resource managed regulator_get_exclusive()
1506 * @dev: device for regulator "consumer"
1507 * @id: Supply name or regulator ID.
1509 * Managed regulator_get_exclusive(). Regulators returned from this function
1510 * are automatically regulator_put() on driver detach. See regulator_get() for
1511 * more information.
1513 struct regulator *devm_regulator_get_exclusive(struct device *dev,
1514 const char *id)
1516 struct regulator **ptr, *regulator;
1518 ptr = devres_alloc(devm_regulator_release, sizeof(*ptr), GFP_KERNEL);
1519 if (!ptr)
1520 return ERR_PTR(-ENOMEM);
1522 regulator = _regulator_get(dev, id, 1);
1523 if (!IS_ERR(regulator)) {
1524 *ptr = regulator;
1525 devres_add(dev, ptr);
1526 } else {
1527 devres_free(ptr);
1530 return regulator;
1532 EXPORT_SYMBOL_GPL(devm_regulator_get_exclusive);
1535 * regulator_put - "free" the regulator source
1536 * @regulator: regulator source
1538 * Note: drivers must ensure that all regulator_enable calls made on this
1539 * regulator source are balanced by regulator_disable calls prior to calling
1540 * this function.
1542 void regulator_put(struct regulator *regulator)
1544 mutex_lock(&regulator_list_mutex);
1545 _regulator_put(regulator);
1546 mutex_unlock(&regulator_list_mutex);
1548 EXPORT_SYMBOL_GPL(regulator_put);
1550 static int devm_regulator_match(struct device *dev, void *res, void *data)
1552 struct regulator **r = res;
1553 if (!r || !*r) {
1554 WARN_ON(!r || !*r);
1555 return 0;
1557 return *r == data;
1561 * devm_regulator_put - Resource managed regulator_put()
1562 * @regulator: regulator to free
1564 * Deallocate a regulator allocated with devm_regulator_get(). Normally
1565 * this function will not need to be called and the resource management
1566 * code will ensure that the resource is freed.
1568 void devm_regulator_put(struct regulator *regulator)
1570 int rc;
1572 rc = devres_release(regulator->dev, devm_regulator_release,
1573 devm_regulator_match, regulator);
1574 if (rc != 0)
1575 WARN_ON(rc);
1577 EXPORT_SYMBOL_GPL(devm_regulator_put);
1579 /* Manage enable GPIO list. Same GPIO pin can be shared among regulators */
1580 static int regulator_ena_gpio_request(struct regulator_dev *rdev,
1581 const struct regulator_config *config)
1583 struct regulator_enable_gpio *pin;
1584 int ret;
1586 list_for_each_entry(pin, &regulator_ena_gpio_list, list) {
1587 if (pin->gpio == config->ena_gpio) {
1588 rdev_dbg(rdev, "GPIO %d is already used\n",
1589 config->ena_gpio);
1590 goto update_ena_gpio_to_rdev;
1594 ret = gpio_request_one(config->ena_gpio,
1595 GPIOF_DIR_OUT | config->ena_gpio_flags,
1596 rdev_get_name(rdev));
1597 if (ret)
1598 return ret;
1600 pin = kzalloc(sizeof(struct regulator_enable_gpio), GFP_KERNEL);
1601 if (pin == NULL) {
1602 gpio_free(config->ena_gpio);
1603 return -ENOMEM;
1606 pin->gpio = config->ena_gpio;
1607 pin->ena_gpio_invert = config->ena_gpio_invert;
1608 list_add(&pin->list, &regulator_ena_gpio_list);
1610 update_ena_gpio_to_rdev:
1611 pin->request_count++;
1612 rdev->ena_pin = pin;
1613 return 0;
1616 static void regulator_ena_gpio_free(struct regulator_dev *rdev)
1618 struct regulator_enable_gpio *pin, *n;
1620 if (!rdev->ena_pin)
1621 return;
1623 /* Free the GPIO only in case of no use */
1624 list_for_each_entry_safe(pin, n, &regulator_ena_gpio_list, list) {
1625 if (pin->gpio == rdev->ena_pin->gpio) {
1626 if (pin->request_count <= 1) {
1627 pin->request_count = 0;
1628 gpio_free(pin->gpio);
1629 list_del(&pin->list);
1630 kfree(pin);
1631 } else {
1632 pin->request_count--;
1639 * regulator_ena_gpio_ctrl - balance enable_count of each GPIO and actual GPIO pin control
1640 * @rdev: regulator_dev structure
1641 * @enable: enable GPIO at initial use?
1643 * GPIO is enabled in case of initial use. (enable_count is 0)
1644 * GPIO is disabled when it is not shared any more. (enable_count <= 1)
1646 static int regulator_ena_gpio_ctrl(struct regulator_dev *rdev, bool enable)
1648 struct regulator_enable_gpio *pin = rdev->ena_pin;
1650 if (!pin)
1651 return -EINVAL;
1653 if (enable) {
1654 /* Enable GPIO at initial use */
1655 if (pin->enable_count == 0)
1656 gpio_set_value_cansleep(pin->gpio,
1657 !pin->ena_gpio_invert);
1659 pin->enable_count++;
1660 } else {
1661 if (pin->enable_count > 1) {
1662 pin->enable_count--;
1663 return 0;
1666 /* Disable GPIO if not used */
1667 if (pin->enable_count <= 1) {
1668 gpio_set_value_cansleep(pin->gpio,
1669 pin->ena_gpio_invert);
1670 pin->enable_count = 0;
1674 return 0;
1677 static int _regulator_do_enable(struct regulator_dev *rdev)
1679 int ret, delay;
1681 /* Query before enabling in case configuration dependent. */
1682 ret = _regulator_get_enable_time(rdev);
1683 if (ret >= 0) {
1684 delay = ret;
1685 } else {
1686 rdev_warn(rdev, "enable_time() failed: %d\n", ret);
1687 delay = 0;
1690 trace_regulator_enable(rdev_get_name(rdev));
1692 if (rdev->ena_pin) {
1693 if (!rdev->ena_gpio_state) {
1694 ret = regulator_ena_gpio_ctrl(rdev, true);
1695 if (ret < 0)
1696 return ret;
1697 rdev->ena_gpio_state = 1;
1699 } else if (rdev->desc->ops->enable) {
1700 ret = rdev->desc->ops->enable(rdev);
1701 if (ret < 0)
1702 return ret;
1703 } else {
1704 return -EINVAL;
1707 /* Allow the regulator to ramp; it would be useful to extend
1708 * this for bulk operations so that the regulators can ramp
1709 * together. */
1710 trace_regulator_enable_delay(rdev_get_name(rdev));
1712 if (delay >= 1000) {
1713 mdelay(delay / 1000);
1714 udelay(delay % 1000);
1715 } else if (delay) {
1716 udelay(delay);
1719 trace_regulator_enable_complete(rdev_get_name(rdev));
1721 return 0;
1724 /* locks held by regulator_enable() */
1725 static int _regulator_enable(struct regulator_dev *rdev)
1727 int ret;
1729 /* check voltage and requested load before enabling */
1730 if (rdev->constraints &&
1731 (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_DRMS))
1732 drms_uA_update(rdev);
1734 if (rdev->use_count == 0) {
1735 /* The regulator may on if it's not switchable or left on */
1736 ret = _regulator_is_enabled(rdev);
1737 if (ret == -EINVAL || ret == 0) {
1738 if (!_regulator_can_change_status(rdev))
1739 return -EPERM;
1741 ret = _regulator_do_enable(rdev);
1742 if (ret < 0)
1743 return ret;
1745 } else if (ret < 0) {
1746 rdev_err(rdev, "is_enabled() failed: %d\n", ret);
1747 return ret;
1749 /* Fallthrough on positive return values - already enabled */
1752 rdev->use_count++;
1754 return 0;
1758 * regulator_enable - enable regulator output
1759 * @regulator: regulator source
1761 * Request that the regulator be enabled with the regulator output at
1762 * the predefined voltage or current value. Calls to regulator_enable()
1763 * must be balanced with calls to regulator_disable().
1765 * NOTE: the output value can be set by other drivers, boot loader or may be
1766 * hardwired in the regulator.
1768 int regulator_enable(struct regulator *regulator)
1770 struct regulator_dev *rdev = regulator->rdev;
1771 int ret = 0;
1773 if (regulator->always_on)
1774 return 0;
1776 if (rdev->supply) {
1777 ret = regulator_enable(rdev->supply);
1778 if (ret != 0)
1779 return ret;
1782 mutex_lock(&rdev->mutex);
1783 ret = _regulator_enable(rdev);
1784 mutex_unlock(&rdev->mutex);
1786 if (ret != 0 && rdev->supply)
1787 regulator_disable(rdev->supply);
1789 return ret;
1791 EXPORT_SYMBOL_GPL(regulator_enable);
1793 static int _regulator_do_disable(struct regulator_dev *rdev)
1795 int ret;
1797 trace_regulator_disable(rdev_get_name(rdev));
1799 if (rdev->ena_pin) {
1800 if (rdev->ena_gpio_state) {
1801 ret = regulator_ena_gpio_ctrl(rdev, false);
1802 if (ret < 0)
1803 return ret;
1804 rdev->ena_gpio_state = 0;
1807 } else if (rdev->desc->ops->disable) {
1808 ret = rdev->desc->ops->disable(rdev);
1809 if (ret != 0)
1810 return ret;
1813 trace_regulator_disable_complete(rdev_get_name(rdev));
1815 return 0;
1818 /* locks held by regulator_disable() */
1819 static int _regulator_disable(struct regulator_dev *rdev)
1821 int ret = 0;
1823 if (WARN(rdev->use_count <= 0,
1824 "unbalanced disables for %s\n", rdev_get_name(rdev)))
1825 return -EIO;
1827 /* are we the last user and permitted to disable ? */
1828 if (rdev->use_count == 1 &&
1829 (rdev->constraints && !rdev->constraints->always_on)) {
1831 /* we are last user */
1832 if (_regulator_can_change_status(rdev)) {
1833 ret = _regulator_do_disable(rdev);
1834 if (ret < 0) {
1835 rdev_err(rdev, "failed to disable\n");
1836 return ret;
1838 _notifier_call_chain(rdev, REGULATOR_EVENT_DISABLE,
1839 NULL);
1842 rdev->use_count = 0;
1843 } else if (rdev->use_count > 1) {
1845 if (rdev->constraints &&
1846 (rdev->constraints->valid_ops_mask &
1847 REGULATOR_CHANGE_DRMS))
1848 drms_uA_update(rdev);
1850 rdev->use_count--;
1853 return ret;
1857 * regulator_disable - disable regulator output
1858 * @regulator: regulator source
1860 * Disable the regulator output voltage or current. Calls to
1861 * regulator_enable() must be balanced with calls to
1862 * regulator_disable().
1864 * NOTE: this will only disable the regulator output if no other consumer
1865 * devices have it enabled, the regulator device supports disabling and
1866 * machine constraints permit this operation.
1868 int regulator_disable(struct regulator *regulator)
1870 struct regulator_dev *rdev = regulator->rdev;
1871 int ret = 0;
1873 if (regulator->always_on)
1874 return 0;
1876 mutex_lock(&rdev->mutex);
1877 ret = _regulator_disable(rdev);
1878 mutex_unlock(&rdev->mutex);
1880 if (ret == 0 && rdev->supply)
1881 regulator_disable(rdev->supply);
1883 return ret;
1885 EXPORT_SYMBOL_GPL(regulator_disable);
1887 /* locks held by regulator_force_disable() */
1888 static int _regulator_force_disable(struct regulator_dev *rdev)
1890 int ret = 0;
1892 ret = _regulator_do_disable(rdev);
1893 if (ret < 0) {
1894 rdev_err(rdev, "failed to force disable\n");
1895 return ret;
1898 _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
1899 REGULATOR_EVENT_DISABLE, NULL);
1901 return 0;
1905 * regulator_force_disable - force disable regulator output
1906 * @regulator: regulator source
1908 * Forcibly disable the regulator output voltage or current.
1909 * NOTE: this *will* disable the regulator output even if other consumer
1910 * devices have it enabled. This should be used for situations when device
1911 * damage will likely occur if the regulator is not disabled (e.g. over temp).
1913 int regulator_force_disable(struct regulator *regulator)
1915 struct regulator_dev *rdev = regulator->rdev;
1916 int ret;
1918 mutex_lock(&rdev->mutex);
1919 regulator->uA_load = 0;
1920 ret = _regulator_force_disable(regulator->rdev);
1921 mutex_unlock(&rdev->mutex);
1923 if (rdev->supply)
1924 while (rdev->open_count--)
1925 regulator_disable(rdev->supply);
1927 return ret;
1929 EXPORT_SYMBOL_GPL(regulator_force_disable);
1931 static void regulator_disable_work(struct work_struct *work)
1933 struct regulator_dev *rdev = container_of(work, struct regulator_dev,
1934 disable_work.work);
1935 int count, i, ret;
1937 mutex_lock(&rdev->mutex);
1939 BUG_ON(!rdev->deferred_disables);
1941 count = rdev->deferred_disables;
1942 rdev->deferred_disables = 0;
1944 for (i = 0; i < count; i++) {
1945 ret = _regulator_disable(rdev);
1946 if (ret != 0)
1947 rdev_err(rdev, "Deferred disable failed: %d\n", ret);
1950 mutex_unlock(&rdev->mutex);
1952 if (rdev->supply) {
1953 for (i = 0; i < count; i++) {
1954 ret = regulator_disable(rdev->supply);
1955 if (ret != 0) {
1956 rdev_err(rdev,
1957 "Supply disable failed: %d\n", ret);
1964 * regulator_disable_deferred - disable regulator output with delay
1965 * @regulator: regulator source
1966 * @ms: miliseconds until the regulator is disabled
1968 * Execute regulator_disable() on the regulator after a delay. This
1969 * is intended for use with devices that require some time to quiesce.
1971 * NOTE: this will only disable the regulator output if no other consumer
1972 * devices have it enabled, the regulator device supports disabling and
1973 * machine constraints permit this operation.
1975 int regulator_disable_deferred(struct regulator *regulator, int ms)
1977 struct regulator_dev *rdev = regulator->rdev;
1978 int ret;
1980 if (regulator->always_on)
1981 return 0;
1983 if (!ms)
1984 return regulator_disable(regulator);
1986 mutex_lock(&rdev->mutex);
1987 rdev->deferred_disables++;
1988 mutex_unlock(&rdev->mutex);
1990 ret = queue_delayed_work(system_power_efficient_wq,
1991 &rdev->disable_work,
1992 msecs_to_jiffies(ms));
1993 if (ret < 0)
1994 return ret;
1995 else
1996 return 0;
1998 EXPORT_SYMBOL_GPL(regulator_disable_deferred);
2000 static int _regulator_is_enabled(struct regulator_dev *rdev)
2002 /* A GPIO control always takes precedence */
2003 if (rdev->ena_pin)
2004 return rdev->ena_gpio_state;
2006 /* If we don't know then assume that the regulator is always on */
2007 if (!rdev->desc->ops->is_enabled)
2008 return 1;
2010 return rdev->desc->ops->is_enabled(rdev);
2014 * regulator_is_enabled - is the regulator output enabled
2015 * @regulator: regulator source
2017 * Returns positive if the regulator driver backing the source/client
2018 * has requested that the device be enabled, zero if it hasn't, else a
2019 * negative errno code.
2021 * Note that the device backing this regulator handle can have multiple
2022 * users, so it might be enabled even if regulator_enable() was never
2023 * called for this particular source.
2025 int regulator_is_enabled(struct regulator *regulator)
2027 int ret;
2029 if (regulator->always_on)
2030 return 1;
2032 mutex_lock(&regulator->rdev->mutex);
2033 ret = _regulator_is_enabled(regulator->rdev);
2034 mutex_unlock(&regulator->rdev->mutex);
2036 return ret;
2038 EXPORT_SYMBOL_GPL(regulator_is_enabled);
2041 * regulator_can_change_voltage - check if regulator can change voltage
2042 * @regulator: regulator source
2044 * Returns positive if the regulator driver backing the source/client
2045 * can change its voltage, false otherwise. Usefull for detecting fixed
2046 * or dummy regulators and disabling voltage change logic in the client
2047 * driver.
2049 int regulator_can_change_voltage(struct regulator *regulator)
2051 struct regulator_dev *rdev = regulator->rdev;
2053 if (rdev->constraints &&
2054 (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) {
2055 if (rdev->desc->n_voltages - rdev->desc->linear_min_sel > 1)
2056 return 1;
2058 if (rdev->desc->continuous_voltage_range &&
2059 rdev->constraints->min_uV && rdev->constraints->max_uV &&
2060 rdev->constraints->min_uV != rdev->constraints->max_uV)
2061 return 1;
2064 return 0;
2066 EXPORT_SYMBOL_GPL(regulator_can_change_voltage);
2069 * regulator_count_voltages - count regulator_list_voltage() selectors
2070 * @regulator: regulator source
2072 * Returns number of selectors, or negative errno. Selectors are
2073 * numbered starting at zero, and typically correspond to bitfields
2074 * in hardware registers.
2076 int regulator_count_voltages(struct regulator *regulator)
2078 struct regulator_dev *rdev = regulator->rdev;
2080 return rdev->desc->n_voltages ? : -EINVAL;
2082 EXPORT_SYMBOL_GPL(regulator_count_voltages);
2085 * regulator_list_voltage - enumerate supported voltages
2086 * @regulator: regulator source
2087 * @selector: identify voltage to list
2088 * Context: can sleep
2090 * Returns a voltage that can be passed to @regulator_set_voltage(),
2091 * zero if this selector code can't be used on this system, or a
2092 * negative errno.
2094 int regulator_list_voltage(struct regulator *regulator, unsigned selector)
2096 struct regulator_dev *rdev = regulator->rdev;
2097 struct regulator_ops *ops = rdev->desc->ops;
2098 int ret;
2100 if (!ops->list_voltage || selector >= rdev->desc->n_voltages)
2101 return -EINVAL;
2103 mutex_lock(&rdev->mutex);
2104 ret = ops->list_voltage(rdev, selector);
2105 mutex_unlock(&rdev->mutex);
2107 if (ret > 0) {
2108 if (ret < rdev->constraints->min_uV)
2109 ret = 0;
2110 else if (ret > rdev->constraints->max_uV)
2111 ret = 0;
2114 return ret;
2116 EXPORT_SYMBOL_GPL(regulator_list_voltage);
2119 * regulator_get_linear_step - return the voltage step size between VSEL values
2120 * @regulator: regulator source
2122 * Returns the voltage step size between VSEL values for linear
2123 * regulators, or return 0 if the regulator isn't a linear regulator.
2125 unsigned int regulator_get_linear_step(struct regulator *regulator)
2127 struct regulator_dev *rdev = regulator->rdev;
2129 return rdev->desc->uV_step;
2131 EXPORT_SYMBOL_GPL(regulator_get_linear_step);
2134 * regulator_is_supported_voltage - check if a voltage range can be supported
2136 * @regulator: Regulator to check.
2137 * @min_uV: Minimum required voltage in uV.
2138 * @max_uV: Maximum required voltage in uV.
2140 * Returns a boolean or a negative error code.
2142 int regulator_is_supported_voltage(struct regulator *regulator,
2143 int min_uV, int max_uV)
2145 struct regulator_dev *rdev = regulator->rdev;
2146 int i, voltages, ret;
2148 /* If we can't change voltage check the current voltage */
2149 if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) {
2150 ret = regulator_get_voltage(regulator);
2151 if (ret >= 0)
2152 return (min_uV <= ret && ret <= max_uV);
2153 else
2154 return ret;
2157 /* Any voltage within constrains range is fine? */
2158 if (rdev->desc->continuous_voltage_range)
2159 return min_uV >= rdev->constraints->min_uV &&
2160 max_uV <= rdev->constraints->max_uV;
2162 ret = regulator_count_voltages(regulator);
2163 if (ret < 0)
2164 return ret;
2165 voltages = ret;
2167 for (i = 0; i < voltages; i++) {
2168 ret = regulator_list_voltage(regulator, i);
2170 if (ret >= min_uV && ret <= max_uV)
2171 return 1;
2174 return 0;
2176 EXPORT_SYMBOL_GPL(regulator_is_supported_voltage);
2178 static int _regulator_do_set_voltage(struct regulator_dev *rdev,
2179 int min_uV, int max_uV)
2181 int ret;
2182 int delay = 0;
2183 int best_val = 0;
2184 unsigned int selector;
2185 int old_selector = -1;
2187 trace_regulator_set_voltage(rdev_get_name(rdev), min_uV, max_uV);
2189 min_uV += rdev->constraints->uV_offset;
2190 max_uV += rdev->constraints->uV_offset;
2193 * If we can't obtain the old selector there is not enough
2194 * info to call set_voltage_time_sel().
2196 if (_regulator_is_enabled(rdev) &&
2197 rdev->desc->ops->set_voltage_time_sel &&
2198 rdev->desc->ops->get_voltage_sel) {
2199 old_selector = rdev->desc->ops->get_voltage_sel(rdev);
2200 if (old_selector < 0)
2201 return old_selector;
2204 if (rdev->desc->ops->set_voltage) {
2205 ret = rdev->desc->ops->set_voltage(rdev, min_uV, max_uV,
2206 &selector);
2208 if (ret >= 0) {
2209 if (rdev->desc->ops->list_voltage)
2210 best_val = rdev->desc->ops->list_voltage(rdev,
2211 selector);
2212 else
2213 best_val = _regulator_get_voltage(rdev);
2216 } else if (rdev->desc->ops->set_voltage_sel) {
2217 if (rdev->desc->ops->map_voltage) {
2218 ret = rdev->desc->ops->map_voltage(rdev, min_uV,
2219 max_uV);
2220 } else {
2221 if (rdev->desc->ops->list_voltage ==
2222 regulator_list_voltage_linear)
2223 ret = regulator_map_voltage_linear(rdev,
2224 min_uV, max_uV);
2225 else
2226 ret = regulator_map_voltage_iterate(rdev,
2227 min_uV, max_uV);
2230 if (ret >= 0) {
2231 best_val = rdev->desc->ops->list_voltage(rdev, ret);
2232 if (min_uV <= best_val && max_uV >= best_val) {
2233 selector = ret;
2234 if (old_selector == selector)
2235 ret = 0;
2236 else
2237 ret = rdev->desc->ops->set_voltage_sel(
2238 rdev, ret);
2239 } else {
2240 ret = -EINVAL;
2243 } else {
2244 ret = -EINVAL;
2247 /* Call set_voltage_time_sel if successfully obtained old_selector */
2248 if (ret == 0 && !rdev->constraints->ramp_disable && old_selector >= 0
2249 && old_selector != selector) {
2251 delay = rdev->desc->ops->set_voltage_time_sel(rdev,
2252 old_selector, selector);
2253 if (delay < 0) {
2254 rdev_warn(rdev, "set_voltage_time_sel() failed: %d\n",
2255 delay);
2256 delay = 0;
2259 /* Insert any necessary delays */
2260 if (delay >= 1000) {
2261 mdelay(delay / 1000);
2262 udelay(delay % 1000);
2263 } else if (delay) {
2264 udelay(delay);
2268 if (ret == 0 && best_val >= 0) {
2269 unsigned long data = best_val;
2271 _notifier_call_chain(rdev, REGULATOR_EVENT_VOLTAGE_CHANGE,
2272 (void *)data);
2275 trace_regulator_set_voltage_complete(rdev_get_name(rdev), best_val);
2277 return ret;
2281 * regulator_set_voltage - set regulator output voltage
2282 * @regulator: regulator source
2283 * @min_uV: Minimum required voltage in uV
2284 * @max_uV: Maximum acceptable voltage in uV
2286 * Sets a voltage regulator to the desired output voltage. This can be set
2287 * during any regulator state. IOW, regulator can be disabled or enabled.
2289 * If the regulator is enabled then the voltage will change to the new value
2290 * immediately otherwise if the regulator is disabled the regulator will
2291 * output at the new voltage when enabled.
2293 * NOTE: If the regulator is shared between several devices then the lowest
2294 * request voltage that meets the system constraints will be used.
2295 * Regulator system constraints must be set for this regulator before
2296 * calling this function otherwise this call will fail.
2298 int regulator_set_voltage(struct regulator *regulator, int min_uV, int max_uV)
2300 struct regulator_dev *rdev = regulator->rdev;
2301 int ret = 0;
2302 int old_min_uV, old_max_uV;
2304 mutex_lock(&rdev->mutex);
2306 /* If we're setting the same range as last time the change
2307 * should be a noop (some cpufreq implementations use the same
2308 * voltage for multiple frequencies, for example).
2310 if (regulator->min_uV == min_uV && regulator->max_uV == max_uV)
2311 goto out;
2313 /* sanity check */
2314 if (!rdev->desc->ops->set_voltage &&
2315 !rdev->desc->ops->set_voltage_sel) {
2316 ret = -EINVAL;
2317 goto out;
2320 /* constraints check */
2321 ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
2322 if (ret < 0)
2323 goto out;
2325 /* restore original values in case of error */
2326 old_min_uV = regulator->min_uV;
2327 old_max_uV = regulator->max_uV;
2328 regulator->min_uV = min_uV;
2329 regulator->max_uV = max_uV;
2331 ret = regulator_check_consumers(rdev, &min_uV, &max_uV);
2332 if (ret < 0)
2333 goto out2;
2335 ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
2336 if (ret < 0)
2337 goto out2;
2339 out:
2340 mutex_unlock(&rdev->mutex);
2341 return ret;
2342 out2:
2343 regulator->min_uV = old_min_uV;
2344 regulator->max_uV = old_max_uV;
2345 mutex_unlock(&rdev->mutex);
2346 return ret;
2348 EXPORT_SYMBOL_GPL(regulator_set_voltage);
2351 * regulator_set_voltage_time - get raise/fall time
2352 * @regulator: regulator source
2353 * @old_uV: starting voltage in microvolts
2354 * @new_uV: target voltage in microvolts
2356 * Provided with the starting and ending voltage, this function attempts to
2357 * calculate the time in microseconds required to rise or fall to this new
2358 * voltage.
2360 int regulator_set_voltage_time(struct regulator *regulator,
2361 int old_uV, int new_uV)
2363 struct regulator_dev *rdev = regulator->rdev;
2364 struct regulator_ops *ops = rdev->desc->ops;
2365 int old_sel = -1;
2366 int new_sel = -1;
2367 int voltage;
2368 int i;
2370 /* Currently requires operations to do this */
2371 if (!ops->list_voltage || !ops->set_voltage_time_sel
2372 || !rdev->desc->n_voltages)
2373 return -EINVAL;
2375 for (i = 0; i < rdev->desc->n_voltages; i++) {
2376 /* We only look for exact voltage matches here */
2377 voltage = regulator_list_voltage(regulator, i);
2378 if (voltage < 0)
2379 return -EINVAL;
2380 if (voltage == 0)
2381 continue;
2382 if (voltage == old_uV)
2383 old_sel = i;
2384 if (voltage == new_uV)
2385 new_sel = i;
2388 if (old_sel < 0 || new_sel < 0)
2389 return -EINVAL;
2391 return ops->set_voltage_time_sel(rdev, old_sel, new_sel);
2393 EXPORT_SYMBOL_GPL(regulator_set_voltage_time);
2396 * regulator_set_voltage_time_sel - get raise/fall time
2397 * @rdev: regulator source device
2398 * @old_selector: selector for starting voltage
2399 * @new_selector: selector for target voltage
2401 * Provided with the starting and target voltage selectors, this function
2402 * returns time in microseconds required to rise or fall to this new voltage
2404 * Drivers providing ramp_delay in regulation_constraints can use this as their
2405 * set_voltage_time_sel() operation.
2407 int regulator_set_voltage_time_sel(struct regulator_dev *rdev,
2408 unsigned int old_selector,
2409 unsigned int new_selector)
2411 unsigned int ramp_delay = 0;
2412 int old_volt, new_volt;
2414 if (rdev->constraints->ramp_delay)
2415 ramp_delay = rdev->constraints->ramp_delay;
2416 else if (rdev->desc->ramp_delay)
2417 ramp_delay = rdev->desc->ramp_delay;
2419 if (ramp_delay == 0) {
2420 rdev_warn(rdev, "ramp_delay not set\n");
2421 return 0;
2424 /* sanity check */
2425 if (!rdev->desc->ops->list_voltage)
2426 return -EINVAL;
2428 old_volt = rdev->desc->ops->list_voltage(rdev, old_selector);
2429 new_volt = rdev->desc->ops->list_voltage(rdev, new_selector);
2431 return DIV_ROUND_UP(abs(new_volt - old_volt), ramp_delay);
2433 EXPORT_SYMBOL_GPL(regulator_set_voltage_time_sel);
2436 * regulator_sync_voltage - re-apply last regulator output voltage
2437 * @regulator: regulator source
2439 * Re-apply the last configured voltage. This is intended to be used
2440 * where some external control source the consumer is cooperating with
2441 * has caused the configured voltage to change.
2443 int regulator_sync_voltage(struct regulator *regulator)
2445 struct regulator_dev *rdev = regulator->rdev;
2446 int ret, min_uV, max_uV;
2448 mutex_lock(&rdev->mutex);
2450 if (!rdev->desc->ops->set_voltage &&
2451 !rdev->desc->ops->set_voltage_sel) {
2452 ret = -EINVAL;
2453 goto out;
2456 /* This is only going to work if we've had a voltage configured. */
2457 if (!regulator->min_uV && !regulator->max_uV) {
2458 ret = -EINVAL;
2459 goto out;
2462 min_uV = regulator->min_uV;
2463 max_uV = regulator->max_uV;
2465 /* This should be a paranoia check... */
2466 ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
2467 if (ret < 0)
2468 goto out;
2470 ret = regulator_check_consumers(rdev, &min_uV, &max_uV);
2471 if (ret < 0)
2472 goto out;
2474 ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
2476 out:
2477 mutex_unlock(&rdev->mutex);
2478 return ret;
2480 EXPORT_SYMBOL_GPL(regulator_sync_voltage);
2482 static int _regulator_get_voltage(struct regulator_dev *rdev)
2484 int sel, ret;
2486 if (rdev->desc->ops->get_voltage_sel) {
2487 sel = rdev->desc->ops->get_voltage_sel(rdev);
2488 if (sel < 0)
2489 return sel;
2490 ret = rdev->desc->ops->list_voltage(rdev, sel);
2491 } else if (rdev->desc->ops->get_voltage) {
2492 ret = rdev->desc->ops->get_voltage(rdev);
2493 } else if (rdev->desc->ops->list_voltage) {
2494 ret = rdev->desc->ops->list_voltage(rdev, 0);
2495 } else {
2496 return -EINVAL;
2499 if (ret < 0)
2500 return ret;
2501 return ret - rdev->constraints->uV_offset;
2505 * regulator_get_voltage - get regulator output voltage
2506 * @regulator: regulator source
2508 * This returns the current regulator voltage in uV.
2510 * NOTE: If the regulator is disabled it will return the voltage value. This
2511 * function should not be used to determine regulator state.
2513 int regulator_get_voltage(struct regulator *regulator)
2515 int ret;
2517 mutex_lock(&regulator->rdev->mutex);
2519 ret = _regulator_get_voltage(regulator->rdev);
2521 mutex_unlock(&regulator->rdev->mutex);
2523 return ret;
2525 EXPORT_SYMBOL_GPL(regulator_get_voltage);
2528 * regulator_set_current_limit - set regulator output current limit
2529 * @regulator: regulator source
2530 * @min_uA: Minimum supported current in uA
2531 * @max_uA: Maximum supported current in uA
2533 * Sets current sink to the desired output current. This can be set during
2534 * any regulator state. IOW, regulator can be disabled or enabled.
2536 * If the regulator is enabled then the current will change to the new value
2537 * immediately otherwise if the regulator is disabled the regulator will
2538 * output at the new current when enabled.
2540 * NOTE: Regulator system constraints must be set for this regulator before
2541 * calling this function otherwise this call will fail.
2543 int regulator_set_current_limit(struct regulator *regulator,
2544 int min_uA, int max_uA)
2546 struct regulator_dev *rdev = regulator->rdev;
2547 int ret;
2549 mutex_lock(&rdev->mutex);
2551 /* sanity check */
2552 if (!rdev->desc->ops->set_current_limit) {
2553 ret = -EINVAL;
2554 goto out;
2557 /* constraints check */
2558 ret = regulator_check_current_limit(rdev, &min_uA, &max_uA);
2559 if (ret < 0)
2560 goto out;
2562 ret = rdev->desc->ops->set_current_limit(rdev, min_uA, max_uA);
2563 out:
2564 mutex_unlock(&rdev->mutex);
2565 return ret;
2567 EXPORT_SYMBOL_GPL(regulator_set_current_limit);
2569 static int _regulator_get_current_limit(struct regulator_dev *rdev)
2571 int ret;
2573 mutex_lock(&rdev->mutex);
2575 /* sanity check */
2576 if (!rdev->desc->ops->get_current_limit) {
2577 ret = -EINVAL;
2578 goto out;
2581 ret = rdev->desc->ops->get_current_limit(rdev);
2582 out:
2583 mutex_unlock(&rdev->mutex);
2584 return ret;
2588 * regulator_get_current_limit - get regulator output current
2589 * @regulator: regulator source
2591 * This returns the current supplied by the specified current sink in uA.
2593 * NOTE: If the regulator is disabled it will return the current value. This
2594 * function should not be used to determine regulator state.
2596 int regulator_get_current_limit(struct regulator *regulator)
2598 return _regulator_get_current_limit(regulator->rdev);
2600 EXPORT_SYMBOL_GPL(regulator_get_current_limit);
2603 * regulator_set_mode - set regulator operating mode
2604 * @regulator: regulator source
2605 * @mode: operating mode - one of the REGULATOR_MODE constants
2607 * Set regulator operating mode to increase regulator efficiency or improve
2608 * regulation performance.
2610 * NOTE: Regulator system constraints must be set for this regulator before
2611 * calling this function otherwise this call will fail.
2613 int regulator_set_mode(struct regulator *regulator, unsigned int mode)
2615 struct regulator_dev *rdev = regulator->rdev;
2616 int ret;
2617 int regulator_curr_mode;
2619 mutex_lock(&rdev->mutex);
2621 /* sanity check */
2622 if (!rdev->desc->ops->set_mode) {
2623 ret = -EINVAL;
2624 goto out;
2627 /* return if the same mode is requested */
2628 if (rdev->desc->ops->get_mode) {
2629 regulator_curr_mode = rdev->desc->ops->get_mode(rdev);
2630 if (regulator_curr_mode == mode) {
2631 ret = 0;
2632 goto out;
2636 /* constraints check */
2637 ret = regulator_mode_constrain(rdev, &mode);
2638 if (ret < 0)
2639 goto out;
2641 ret = rdev->desc->ops->set_mode(rdev, mode);
2642 out:
2643 mutex_unlock(&rdev->mutex);
2644 return ret;
2646 EXPORT_SYMBOL_GPL(regulator_set_mode);
2648 static unsigned int _regulator_get_mode(struct regulator_dev *rdev)
2650 int ret;
2652 mutex_lock(&rdev->mutex);
2654 /* sanity check */
2655 if (!rdev->desc->ops->get_mode) {
2656 ret = -EINVAL;
2657 goto out;
2660 ret = rdev->desc->ops->get_mode(rdev);
2661 out:
2662 mutex_unlock(&rdev->mutex);
2663 return ret;
2667 * regulator_get_mode - get regulator operating mode
2668 * @regulator: regulator source
2670 * Get the current regulator operating mode.
2672 unsigned int regulator_get_mode(struct regulator *regulator)
2674 return _regulator_get_mode(regulator->rdev);
2676 EXPORT_SYMBOL_GPL(regulator_get_mode);
2679 * regulator_set_optimum_mode - set regulator optimum operating mode
2680 * @regulator: regulator source
2681 * @uA_load: load current
2683 * Notifies the regulator core of a new device load. This is then used by
2684 * DRMS (if enabled by constraints) to set the most efficient regulator
2685 * operating mode for the new regulator loading.
2687 * Consumer devices notify their supply regulator of the maximum power
2688 * they will require (can be taken from device datasheet in the power
2689 * consumption tables) when they change operational status and hence power
2690 * state. Examples of operational state changes that can affect power
2691 * consumption are :-
2693 * o Device is opened / closed.
2694 * o Device I/O is about to begin or has just finished.
2695 * o Device is idling in between work.
2697 * This information is also exported via sysfs to userspace.
2699 * DRMS will sum the total requested load on the regulator and change
2700 * to the most efficient operating mode if platform constraints allow.
2702 * Returns the new regulator mode or error.
2704 int regulator_set_optimum_mode(struct regulator *regulator, int uA_load)
2706 struct regulator_dev *rdev = regulator->rdev;
2707 struct regulator *consumer;
2708 int ret, output_uV, input_uV = 0, total_uA_load = 0;
2709 unsigned int mode;
2711 if (rdev->supply)
2712 input_uV = regulator_get_voltage(rdev->supply);
2714 mutex_lock(&rdev->mutex);
2717 * first check to see if we can set modes at all, otherwise just
2718 * tell the consumer everything is OK.
2720 regulator->uA_load = uA_load;
2721 ret = regulator_check_drms(rdev);
2722 if (ret < 0) {
2723 ret = 0;
2724 goto out;
2727 if (!rdev->desc->ops->get_optimum_mode)
2728 goto out;
2731 * we can actually do this so any errors are indicators of
2732 * potential real failure.
2734 ret = -EINVAL;
2736 if (!rdev->desc->ops->set_mode)
2737 goto out;
2739 /* get output voltage */
2740 output_uV = _regulator_get_voltage(rdev);
2741 if (output_uV <= 0) {
2742 rdev_err(rdev, "invalid output voltage found\n");
2743 goto out;
2746 /* No supply? Use constraint voltage */
2747 if (input_uV <= 0)
2748 input_uV = rdev->constraints->input_uV;
2749 if (input_uV <= 0) {
2750 rdev_err(rdev, "invalid input voltage found\n");
2751 goto out;
2754 /* calc total requested load for this regulator */
2755 list_for_each_entry(consumer, &rdev->consumer_list, list)
2756 total_uA_load += consumer->uA_load;
2758 mode = rdev->desc->ops->get_optimum_mode(rdev,
2759 input_uV, output_uV,
2760 total_uA_load);
2761 ret = regulator_mode_constrain(rdev, &mode);
2762 if (ret < 0) {
2763 rdev_err(rdev, "failed to get optimum mode @ %d uA %d -> %d uV\n",
2764 total_uA_load, input_uV, output_uV);
2765 goto out;
2768 ret = rdev->desc->ops->set_mode(rdev, mode);
2769 if (ret < 0) {
2770 rdev_err(rdev, "failed to set optimum mode %x\n", mode);
2771 goto out;
2773 ret = mode;
2774 out:
2775 mutex_unlock(&rdev->mutex);
2776 return ret;
2778 EXPORT_SYMBOL_GPL(regulator_set_optimum_mode);
2781 * regulator_allow_bypass - allow the regulator to go into bypass mode
2783 * @regulator: Regulator to configure
2784 * @enable: enable or disable bypass mode
2786 * Allow the regulator to go into bypass mode if all other consumers
2787 * for the regulator also enable bypass mode and the machine
2788 * constraints allow this. Bypass mode means that the regulator is
2789 * simply passing the input directly to the output with no regulation.
2791 int regulator_allow_bypass(struct regulator *regulator, bool enable)
2793 struct regulator_dev *rdev = regulator->rdev;
2794 int ret = 0;
2796 if (!rdev->desc->ops->set_bypass)
2797 return 0;
2799 if (rdev->constraints &&
2800 !(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_BYPASS))
2801 return 0;
2803 mutex_lock(&rdev->mutex);
2805 if (enable && !regulator->bypass) {
2806 rdev->bypass_count++;
2808 if (rdev->bypass_count == rdev->open_count) {
2809 ret = rdev->desc->ops->set_bypass(rdev, enable);
2810 if (ret != 0)
2811 rdev->bypass_count--;
2814 } else if (!enable && regulator->bypass) {
2815 rdev->bypass_count--;
2817 if (rdev->bypass_count != rdev->open_count) {
2818 ret = rdev->desc->ops->set_bypass(rdev, enable);
2819 if (ret != 0)
2820 rdev->bypass_count++;
2824 if (ret == 0)
2825 regulator->bypass = enable;
2827 mutex_unlock(&rdev->mutex);
2829 return ret;
2831 EXPORT_SYMBOL_GPL(regulator_allow_bypass);
2834 * regulator_register_notifier - register regulator event notifier
2835 * @regulator: regulator source
2836 * @nb: notifier block
2838 * Register notifier block to receive regulator events.
2840 int regulator_register_notifier(struct regulator *regulator,
2841 struct notifier_block *nb)
2843 return blocking_notifier_chain_register(&regulator->rdev->notifier,
2844 nb);
2846 EXPORT_SYMBOL_GPL(regulator_register_notifier);
2849 * regulator_unregister_notifier - unregister regulator event notifier
2850 * @regulator: regulator source
2851 * @nb: notifier block
2853 * Unregister regulator event notifier block.
2855 int regulator_unregister_notifier(struct regulator *regulator,
2856 struct notifier_block *nb)
2858 return blocking_notifier_chain_unregister(&regulator->rdev->notifier,
2859 nb);
2861 EXPORT_SYMBOL_GPL(regulator_unregister_notifier);
2863 /* notify regulator consumers and downstream regulator consumers.
2864 * Note mutex must be held by caller.
2866 static void _notifier_call_chain(struct regulator_dev *rdev,
2867 unsigned long event, void *data)
2869 /* call rdev chain first */
2870 blocking_notifier_call_chain(&rdev->notifier, event, data);
2874 * regulator_bulk_get - get multiple regulator consumers
2876 * @dev: Device to supply
2877 * @num_consumers: Number of consumers to register
2878 * @consumers: Configuration of consumers; clients are stored here.
2880 * @return 0 on success, an errno on failure.
2882 * This helper function allows drivers to get several regulator
2883 * consumers in one operation. If any of the regulators cannot be
2884 * acquired then any regulators that were allocated will be freed
2885 * before returning to the caller.
2887 int regulator_bulk_get(struct device *dev, int num_consumers,
2888 struct regulator_bulk_data *consumers)
2890 int i;
2891 int ret;
2893 for (i = 0; i < num_consumers; i++)
2894 consumers[i].consumer = NULL;
2896 for (i = 0; i < num_consumers; i++) {
2897 consumers[i].consumer = regulator_get(dev,
2898 consumers[i].supply);
2899 if (IS_ERR(consumers[i].consumer)) {
2900 ret = PTR_ERR(consumers[i].consumer);
2901 dev_err(dev, "Failed to get supply '%s': %d\n",
2902 consumers[i].supply, ret);
2903 consumers[i].consumer = NULL;
2904 goto err;
2908 return 0;
2910 err:
2911 while (--i >= 0)
2912 regulator_put(consumers[i].consumer);
2914 return ret;
2916 EXPORT_SYMBOL_GPL(regulator_bulk_get);
2919 * devm_regulator_bulk_get - managed get multiple regulator consumers
2921 * @dev: Device to supply
2922 * @num_consumers: Number of consumers to register
2923 * @consumers: Configuration of consumers; clients are stored here.
2925 * @return 0 on success, an errno on failure.
2927 * This helper function allows drivers to get several regulator
2928 * consumers in one operation with management, the regulators will
2929 * automatically be freed when the device is unbound. If any of the
2930 * regulators cannot be acquired then any regulators that were
2931 * allocated will be freed before returning to the caller.
2933 int devm_regulator_bulk_get(struct device *dev, int num_consumers,
2934 struct regulator_bulk_data *consumers)
2936 int i;
2937 int ret;
2939 for (i = 0; i < num_consumers; i++)
2940 consumers[i].consumer = NULL;
2942 for (i = 0; i < num_consumers; i++) {
2943 consumers[i].consumer = devm_regulator_get(dev,
2944 consumers[i].supply);
2945 if (IS_ERR(consumers[i].consumer)) {
2946 ret = PTR_ERR(consumers[i].consumer);
2947 dev_err(dev, "Failed to get supply '%s': %d\n",
2948 consumers[i].supply, ret);
2949 consumers[i].consumer = NULL;
2950 goto err;
2954 return 0;
2956 err:
2957 for (i = 0; i < num_consumers && consumers[i].consumer; i++)
2958 devm_regulator_put(consumers[i].consumer);
2960 return ret;
2962 EXPORT_SYMBOL_GPL(devm_regulator_bulk_get);
2964 static void regulator_bulk_enable_async(void *data, async_cookie_t cookie)
2966 struct regulator_bulk_data *bulk = data;
2968 bulk->ret = regulator_enable(bulk->consumer);
2972 * regulator_bulk_enable - enable multiple regulator consumers
2974 * @num_consumers: Number of consumers
2975 * @consumers: Consumer data; clients are stored here.
2976 * @return 0 on success, an errno on failure
2978 * This convenience API allows consumers to enable multiple regulator
2979 * clients in a single API call. If any consumers cannot be enabled
2980 * then any others that were enabled will be disabled again prior to
2981 * return.
2983 int regulator_bulk_enable(int num_consumers,
2984 struct regulator_bulk_data *consumers)
2986 ASYNC_DOMAIN_EXCLUSIVE(async_domain);
2987 int i;
2988 int ret = 0;
2990 for (i = 0; i < num_consumers; i++) {
2991 if (consumers[i].consumer->always_on)
2992 consumers[i].ret = 0;
2993 else
2994 async_schedule_domain(regulator_bulk_enable_async,
2995 &consumers[i], &async_domain);
2998 async_synchronize_full_domain(&async_domain);
3000 /* If any consumer failed we need to unwind any that succeeded */
3001 for (i = 0; i < num_consumers; i++) {
3002 if (consumers[i].ret != 0) {
3003 ret = consumers[i].ret;
3004 goto err;
3008 return 0;
3010 err:
3011 for (i = 0; i < num_consumers; i++) {
3012 if (consumers[i].ret < 0)
3013 pr_err("Failed to enable %s: %d\n", consumers[i].supply,
3014 consumers[i].ret);
3015 else
3016 regulator_disable(consumers[i].consumer);
3019 return ret;
3021 EXPORT_SYMBOL_GPL(regulator_bulk_enable);
3024 * regulator_bulk_disable - disable multiple regulator consumers
3026 * @num_consumers: Number of consumers
3027 * @consumers: Consumer data; clients are stored here.
3028 * @return 0 on success, an errno on failure
3030 * This convenience API allows consumers to disable multiple regulator
3031 * clients in a single API call. If any consumers cannot be disabled
3032 * then any others that were disabled will be enabled again prior to
3033 * return.
3035 int regulator_bulk_disable(int num_consumers,
3036 struct regulator_bulk_data *consumers)
3038 int i;
3039 int ret, r;
3041 for (i = num_consumers - 1; i >= 0; --i) {
3042 ret = regulator_disable(consumers[i].consumer);
3043 if (ret != 0)
3044 goto err;
3047 return 0;
3049 err:
3050 pr_err("Failed to disable %s: %d\n", consumers[i].supply, ret);
3051 for (++i; i < num_consumers; ++i) {
3052 r = regulator_enable(consumers[i].consumer);
3053 if (r != 0)
3054 pr_err("Failed to reename %s: %d\n",
3055 consumers[i].supply, r);
3058 return ret;
3060 EXPORT_SYMBOL_GPL(regulator_bulk_disable);
3063 * regulator_bulk_force_disable - force disable multiple regulator consumers
3065 * @num_consumers: Number of consumers
3066 * @consumers: Consumer data; clients are stored here.
3067 * @return 0 on success, an errno on failure
3069 * This convenience API allows consumers to forcibly disable multiple regulator
3070 * clients in a single API call.
3071 * NOTE: This should be used for situations when device damage will
3072 * likely occur if the regulators are not disabled (e.g. over temp).
3073 * Although regulator_force_disable function call for some consumers can
3074 * return error numbers, the function is called for all consumers.
3076 int regulator_bulk_force_disable(int num_consumers,
3077 struct regulator_bulk_data *consumers)
3079 int i;
3080 int ret;
3082 for (i = 0; i < num_consumers; i++)
3083 consumers[i].ret =
3084 regulator_force_disable(consumers[i].consumer);
3086 for (i = 0; i < num_consumers; i++) {
3087 if (consumers[i].ret != 0) {
3088 ret = consumers[i].ret;
3089 goto out;
3093 return 0;
3094 out:
3095 return ret;
3097 EXPORT_SYMBOL_GPL(regulator_bulk_force_disable);
3100 * regulator_bulk_free - free multiple regulator consumers
3102 * @num_consumers: Number of consumers
3103 * @consumers: Consumer data; clients are stored here.
3105 * This convenience API allows consumers to free multiple regulator
3106 * clients in a single API call.
3108 void regulator_bulk_free(int num_consumers,
3109 struct regulator_bulk_data *consumers)
3111 int i;
3113 for (i = 0; i < num_consumers; i++) {
3114 regulator_put(consumers[i].consumer);
3115 consumers[i].consumer = NULL;
3118 EXPORT_SYMBOL_GPL(regulator_bulk_free);
3121 * regulator_notifier_call_chain - call regulator event notifier
3122 * @rdev: regulator source
3123 * @event: notifier block
3124 * @data: callback-specific data.
3126 * Called by regulator drivers to notify clients a regulator event has
3127 * occurred. We also notify regulator clients downstream.
3128 * Note lock must be held by caller.
3130 int regulator_notifier_call_chain(struct regulator_dev *rdev,
3131 unsigned long event, void *data)
3133 _notifier_call_chain(rdev, event, data);
3134 return NOTIFY_DONE;
3137 EXPORT_SYMBOL_GPL(regulator_notifier_call_chain);
3140 * regulator_mode_to_status - convert a regulator mode into a status
3142 * @mode: Mode to convert
3144 * Convert a regulator mode into a status.
3146 int regulator_mode_to_status(unsigned int mode)
3148 switch (mode) {
3149 case REGULATOR_MODE_FAST:
3150 return REGULATOR_STATUS_FAST;
3151 case REGULATOR_MODE_NORMAL:
3152 return REGULATOR_STATUS_NORMAL;
3153 case REGULATOR_MODE_IDLE:
3154 return REGULATOR_STATUS_IDLE;
3155 case REGULATOR_MODE_STANDBY:
3156 return REGULATOR_STATUS_STANDBY;
3157 default:
3158 return REGULATOR_STATUS_UNDEFINED;
3161 EXPORT_SYMBOL_GPL(regulator_mode_to_status);
3164 * To avoid cluttering sysfs (and memory) with useless state, only
3165 * create attributes that can be meaningfully displayed.
3167 static int add_regulator_attributes(struct regulator_dev *rdev)
3169 struct device *dev = &rdev->dev;
3170 struct regulator_ops *ops = rdev->desc->ops;
3171 int status = 0;
3173 /* some attributes need specific methods to be displayed */
3174 if ((ops->get_voltage && ops->get_voltage(rdev) >= 0) ||
3175 (ops->get_voltage_sel && ops->get_voltage_sel(rdev) >= 0) ||
3176 (ops->list_voltage && ops->list_voltage(rdev, 0) >= 0)) {
3177 status = device_create_file(dev, &dev_attr_microvolts);
3178 if (status < 0)
3179 return status;
3181 if (ops->get_current_limit) {
3182 status = device_create_file(dev, &dev_attr_microamps);
3183 if (status < 0)
3184 return status;
3186 if (ops->get_mode) {
3187 status = device_create_file(dev, &dev_attr_opmode);
3188 if (status < 0)
3189 return status;
3191 if (rdev->ena_pin || ops->is_enabled) {
3192 status = device_create_file(dev, &dev_attr_state);
3193 if (status < 0)
3194 return status;
3196 if (ops->get_status) {
3197 status = device_create_file(dev, &dev_attr_status);
3198 if (status < 0)
3199 return status;
3201 if (ops->get_bypass) {
3202 status = device_create_file(dev, &dev_attr_bypass);
3203 if (status < 0)
3204 return status;
3207 /* some attributes are type-specific */
3208 if (rdev->desc->type == REGULATOR_CURRENT) {
3209 status = device_create_file(dev, &dev_attr_requested_microamps);
3210 if (status < 0)
3211 return status;
3214 /* all the other attributes exist to support constraints;
3215 * don't show them if there are no constraints, or if the
3216 * relevant supporting methods are missing.
3218 if (!rdev->constraints)
3219 return status;
3221 /* constraints need specific supporting methods */
3222 if (ops->set_voltage || ops->set_voltage_sel) {
3223 status = device_create_file(dev, &dev_attr_min_microvolts);
3224 if (status < 0)
3225 return status;
3226 status = device_create_file(dev, &dev_attr_max_microvolts);
3227 if (status < 0)
3228 return status;
3230 if (ops->set_current_limit) {
3231 status = device_create_file(dev, &dev_attr_min_microamps);
3232 if (status < 0)
3233 return status;
3234 status = device_create_file(dev, &dev_attr_max_microamps);
3235 if (status < 0)
3236 return status;
3239 status = device_create_file(dev, &dev_attr_suspend_standby_state);
3240 if (status < 0)
3241 return status;
3242 status = device_create_file(dev, &dev_attr_suspend_mem_state);
3243 if (status < 0)
3244 return status;
3245 status = device_create_file(dev, &dev_attr_suspend_disk_state);
3246 if (status < 0)
3247 return status;
3249 if (ops->set_suspend_voltage) {
3250 status = device_create_file(dev,
3251 &dev_attr_suspend_standby_microvolts);
3252 if (status < 0)
3253 return status;
3254 status = device_create_file(dev,
3255 &dev_attr_suspend_mem_microvolts);
3256 if (status < 0)
3257 return status;
3258 status = device_create_file(dev,
3259 &dev_attr_suspend_disk_microvolts);
3260 if (status < 0)
3261 return status;
3264 if (ops->set_suspend_mode) {
3265 status = device_create_file(dev,
3266 &dev_attr_suspend_standby_mode);
3267 if (status < 0)
3268 return status;
3269 status = device_create_file(dev,
3270 &dev_attr_suspend_mem_mode);
3271 if (status < 0)
3272 return status;
3273 status = device_create_file(dev,
3274 &dev_attr_suspend_disk_mode);
3275 if (status < 0)
3276 return status;
3279 return status;
3282 static void rdev_init_debugfs(struct regulator_dev *rdev)
3284 rdev->debugfs = debugfs_create_dir(rdev_get_name(rdev), debugfs_root);
3285 if (!rdev->debugfs) {
3286 rdev_warn(rdev, "Failed to create debugfs directory\n");
3287 return;
3290 debugfs_create_u32("use_count", 0444, rdev->debugfs,
3291 &rdev->use_count);
3292 debugfs_create_u32("open_count", 0444, rdev->debugfs,
3293 &rdev->open_count);
3294 debugfs_create_u32("bypass_count", 0444, rdev->debugfs,
3295 &rdev->bypass_count);
3299 * regulator_register - register regulator
3300 * @regulator_desc: regulator to register
3301 * @config: runtime configuration for regulator
3303 * Called by regulator drivers to register a regulator.
3304 * Returns a valid pointer to struct regulator_dev on success
3305 * or an ERR_PTR() on error.
3307 struct regulator_dev *
3308 regulator_register(const struct regulator_desc *regulator_desc,
3309 const struct regulator_config *config)
3311 const struct regulation_constraints *constraints = NULL;
3312 const struct regulator_init_data *init_data;
3313 static atomic_t regulator_no = ATOMIC_INIT(0);
3314 struct regulator_dev *rdev;
3315 struct device *dev;
3316 int ret, i;
3317 const char *supply = NULL;
3319 if (regulator_desc == NULL || config == NULL)
3320 return ERR_PTR(-EINVAL);
3322 dev = config->dev;
3323 WARN_ON(!dev);
3325 if (regulator_desc->name == NULL || regulator_desc->ops == NULL)
3326 return ERR_PTR(-EINVAL);
3328 if (regulator_desc->type != REGULATOR_VOLTAGE &&
3329 regulator_desc->type != REGULATOR_CURRENT)
3330 return ERR_PTR(-EINVAL);
3332 /* Only one of each should be implemented */
3333 WARN_ON(regulator_desc->ops->get_voltage &&
3334 regulator_desc->ops->get_voltage_sel);
3335 WARN_ON(regulator_desc->ops->set_voltage &&
3336 regulator_desc->ops->set_voltage_sel);
3338 /* If we're using selectors we must implement list_voltage. */
3339 if (regulator_desc->ops->get_voltage_sel &&
3340 !regulator_desc->ops->list_voltage) {
3341 return ERR_PTR(-EINVAL);
3343 if (regulator_desc->ops->set_voltage_sel &&
3344 !regulator_desc->ops->list_voltage) {
3345 return ERR_PTR(-EINVAL);
3348 init_data = config->init_data;
3350 rdev = kzalloc(sizeof(struct regulator_dev), GFP_KERNEL);
3351 if (rdev == NULL)
3352 return ERR_PTR(-ENOMEM);
3354 mutex_lock(&regulator_list_mutex);
3356 mutex_init(&rdev->mutex);
3357 rdev->reg_data = config->driver_data;
3358 rdev->owner = regulator_desc->owner;
3359 rdev->desc = regulator_desc;
3360 if (config->regmap)
3361 rdev->regmap = config->regmap;
3362 else if (dev_get_regmap(dev, NULL))
3363 rdev->regmap = dev_get_regmap(dev, NULL);
3364 else if (dev->parent)
3365 rdev->regmap = dev_get_regmap(dev->parent, NULL);
3366 INIT_LIST_HEAD(&rdev->consumer_list);
3367 INIT_LIST_HEAD(&rdev->list);
3368 BLOCKING_INIT_NOTIFIER_HEAD(&rdev->notifier);
3369 INIT_DELAYED_WORK(&rdev->disable_work, regulator_disable_work);
3371 /* preform any regulator specific init */
3372 if (init_data && init_data->regulator_init) {
3373 ret = init_data->regulator_init(rdev->reg_data);
3374 if (ret < 0)
3375 goto clean;
3378 /* register with sysfs */
3379 rdev->dev.class = &regulator_class;
3380 rdev->dev.of_node = config->of_node;
3381 rdev->dev.parent = dev;
3382 dev_set_name(&rdev->dev, "regulator.%d",
3383 atomic_inc_return(&regulator_no) - 1);
3384 ret = device_register(&rdev->dev);
3385 if (ret != 0) {
3386 put_device(&rdev->dev);
3387 goto clean;
3390 dev_set_drvdata(&rdev->dev, rdev);
3392 if (config->ena_gpio && gpio_is_valid(config->ena_gpio)) {
3393 ret = regulator_ena_gpio_request(rdev, config);
3394 if (ret != 0) {
3395 rdev_err(rdev, "Failed to request enable GPIO%d: %d\n",
3396 config->ena_gpio, ret);
3397 goto wash;
3401 /* set regulator constraints */
3402 if (init_data)
3403 constraints = &init_data->constraints;
3405 ret = set_machine_constraints(rdev, constraints);
3406 if (ret < 0)
3407 goto scrub;
3409 /* add attributes supported by this regulator */
3410 ret = add_regulator_attributes(rdev);
3411 if (ret < 0)
3412 goto scrub;
3414 if (init_data && init_data->supply_regulator)
3415 supply = init_data->supply_regulator;
3416 else if (regulator_desc->supply_name)
3417 supply = regulator_desc->supply_name;
3419 if (supply) {
3420 struct regulator_dev *r;
3422 r = regulator_dev_lookup(dev, supply, &ret);
3424 if (ret == -ENODEV) {
3426 * No supply was specified for this regulator and
3427 * there will never be one.
3429 ret = 0;
3430 goto add_dev;
3431 } else if (!r) {
3432 dev_err(dev, "Failed to find supply %s\n", supply);
3433 ret = -EPROBE_DEFER;
3434 goto scrub;
3437 ret = set_supply(rdev, r);
3438 if (ret < 0)
3439 goto scrub;
3441 /* Enable supply if rail is enabled */
3442 if (_regulator_is_enabled(rdev)) {
3443 ret = regulator_enable(rdev->supply);
3444 if (ret < 0)
3445 goto scrub;
3449 add_dev:
3450 /* add consumers devices */
3451 if (init_data) {
3452 for (i = 0; i < init_data->num_consumer_supplies; i++) {
3453 ret = set_consumer_device_supply(rdev,
3454 init_data->consumer_supplies[i].dev_name,
3455 init_data->consumer_supplies[i].supply);
3456 if (ret < 0) {
3457 dev_err(dev, "Failed to set supply %s\n",
3458 init_data->consumer_supplies[i].supply);
3459 goto unset_supplies;
3464 list_add(&rdev->list, &regulator_list);
3466 rdev_init_debugfs(rdev);
3467 out:
3468 mutex_unlock(&regulator_list_mutex);
3469 return rdev;
3471 unset_supplies:
3472 unset_regulator_supplies(rdev);
3474 scrub:
3475 if (rdev->supply)
3476 _regulator_put(rdev->supply);
3477 regulator_ena_gpio_free(rdev);
3478 kfree(rdev->constraints);
3479 wash:
3480 device_unregister(&rdev->dev);
3481 /* device core frees rdev */
3482 rdev = ERR_PTR(ret);
3483 goto out;
3485 clean:
3486 kfree(rdev);
3487 rdev = ERR_PTR(ret);
3488 goto out;
3490 EXPORT_SYMBOL_GPL(regulator_register);
3493 * regulator_unregister - unregister regulator
3494 * @rdev: regulator to unregister
3496 * Called by regulator drivers to unregister a regulator.
3498 void regulator_unregister(struct regulator_dev *rdev)
3500 if (rdev == NULL)
3501 return;
3503 if (rdev->supply) {
3504 while (rdev->use_count--)
3505 regulator_disable(rdev->supply);
3506 regulator_put(rdev->supply);
3508 mutex_lock(&regulator_list_mutex);
3509 debugfs_remove_recursive(rdev->debugfs);
3510 flush_work(&rdev->disable_work.work);
3511 WARN_ON(rdev->open_count);
3512 unset_regulator_supplies(rdev);
3513 list_del(&rdev->list);
3514 kfree(rdev->constraints);
3515 regulator_ena_gpio_free(rdev);
3516 device_unregister(&rdev->dev);
3517 mutex_unlock(&regulator_list_mutex);
3519 EXPORT_SYMBOL_GPL(regulator_unregister);
3522 * regulator_suspend_prepare - prepare regulators for system wide suspend
3523 * @state: system suspend state
3525 * Configure each regulator with it's suspend operating parameters for state.
3526 * This will usually be called by machine suspend code prior to supending.
3528 int regulator_suspend_prepare(suspend_state_t state)
3530 struct regulator_dev *rdev;
3531 int ret = 0;
3533 /* ON is handled by regulator active state */
3534 if (state == PM_SUSPEND_ON)
3535 return -EINVAL;
3537 mutex_lock(&regulator_list_mutex);
3538 list_for_each_entry(rdev, &regulator_list, list) {
3540 mutex_lock(&rdev->mutex);
3541 ret = suspend_prepare(rdev, state);
3542 mutex_unlock(&rdev->mutex);
3544 if (ret < 0) {
3545 rdev_err(rdev, "failed to prepare\n");
3546 goto out;
3549 out:
3550 mutex_unlock(&regulator_list_mutex);
3551 return ret;
3553 EXPORT_SYMBOL_GPL(regulator_suspend_prepare);
3556 * regulator_suspend_finish - resume regulators from system wide suspend
3558 * Turn on regulators that might be turned off by regulator_suspend_prepare
3559 * and that should be turned on according to the regulators properties.
3561 int regulator_suspend_finish(void)
3563 struct regulator_dev *rdev;
3564 int ret = 0, error;
3566 mutex_lock(&regulator_list_mutex);
3567 list_for_each_entry(rdev, &regulator_list, list) {
3568 mutex_lock(&rdev->mutex);
3569 if (rdev->use_count > 0 || rdev->constraints->always_on) {
3570 if (!_regulator_is_enabled(rdev)) {
3571 error = _regulator_do_enable(rdev);
3572 if (error)
3573 ret = error;
3575 } else {
3576 if (!has_full_constraints)
3577 goto unlock;
3578 if (!_regulator_is_enabled(rdev))
3579 goto unlock;
3581 error = _regulator_do_disable(rdev);
3582 if (error)
3583 ret = error;
3585 unlock:
3586 mutex_unlock(&rdev->mutex);
3588 mutex_unlock(&regulator_list_mutex);
3589 return ret;
3591 EXPORT_SYMBOL_GPL(regulator_suspend_finish);
3594 * regulator_has_full_constraints - the system has fully specified constraints
3596 * Calling this function will cause the regulator API to disable all
3597 * regulators which have a zero use count and don't have an always_on
3598 * constraint in a late_initcall.
3600 * The intention is that this will become the default behaviour in a
3601 * future kernel release so users are encouraged to use this facility
3602 * now.
3604 void regulator_has_full_constraints(void)
3606 has_full_constraints = 1;
3608 EXPORT_SYMBOL_GPL(regulator_has_full_constraints);
3611 * regulator_use_dummy_regulator - Provide a dummy regulator when none is found
3613 * Calling this function will cause the regulator API to provide a
3614 * dummy regulator to consumers if no physical regulator is found,
3615 * allowing most consumers to proceed as though a regulator were
3616 * configured. This allows systems such as those with software
3617 * controllable regulators for the CPU core only to be brought up more
3618 * readily.
3620 void regulator_use_dummy_regulator(void)
3622 board_wants_dummy_regulator = true;
3624 EXPORT_SYMBOL_GPL(regulator_use_dummy_regulator);
3627 * rdev_get_drvdata - get rdev regulator driver data
3628 * @rdev: regulator
3630 * Get rdev regulator driver private data. This call can be used in the
3631 * regulator driver context.
3633 void *rdev_get_drvdata(struct regulator_dev *rdev)
3635 return rdev->reg_data;
3637 EXPORT_SYMBOL_GPL(rdev_get_drvdata);
3640 * regulator_get_drvdata - get regulator driver data
3641 * @regulator: regulator
3643 * Get regulator driver private data. This call can be used in the consumer
3644 * driver context when non API regulator specific functions need to be called.
3646 void *regulator_get_drvdata(struct regulator *regulator)
3648 return regulator->rdev->reg_data;
3650 EXPORT_SYMBOL_GPL(regulator_get_drvdata);
3653 * regulator_set_drvdata - set regulator driver data
3654 * @regulator: regulator
3655 * @data: data
3657 void regulator_set_drvdata(struct regulator *regulator, void *data)
3659 regulator->rdev->reg_data = data;
3661 EXPORT_SYMBOL_GPL(regulator_set_drvdata);
3664 * regulator_get_id - get regulator ID
3665 * @rdev: regulator
3667 int rdev_get_id(struct regulator_dev *rdev)
3669 return rdev->desc->id;
3671 EXPORT_SYMBOL_GPL(rdev_get_id);
3673 struct device *rdev_get_dev(struct regulator_dev *rdev)
3675 return &rdev->dev;
3677 EXPORT_SYMBOL_GPL(rdev_get_dev);
3679 void *regulator_get_init_drvdata(struct regulator_init_data *reg_init_data)
3681 return reg_init_data->driver_data;
3683 EXPORT_SYMBOL_GPL(regulator_get_init_drvdata);
3685 #ifdef CONFIG_DEBUG_FS
3686 static ssize_t supply_map_read_file(struct file *file, char __user *user_buf,
3687 size_t count, loff_t *ppos)
3689 char *buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
3690 ssize_t len, ret = 0;
3691 struct regulator_map *map;
3693 if (!buf)
3694 return -ENOMEM;
3696 list_for_each_entry(map, &regulator_map_list, list) {
3697 len = snprintf(buf + ret, PAGE_SIZE - ret,
3698 "%s -> %s.%s\n",
3699 rdev_get_name(map->regulator), map->dev_name,
3700 map->supply);
3701 if (len >= 0)
3702 ret += len;
3703 if (ret > PAGE_SIZE) {
3704 ret = PAGE_SIZE;
3705 break;
3709 ret = simple_read_from_buffer(user_buf, count, ppos, buf, ret);
3711 kfree(buf);
3713 return ret;
3715 #endif
3717 static const struct file_operations supply_map_fops = {
3718 #ifdef CONFIG_DEBUG_FS
3719 .read = supply_map_read_file,
3720 .llseek = default_llseek,
3721 #endif
3724 static int __init regulator_init(void)
3726 int ret;
3728 ret = class_register(&regulator_class);
3730 debugfs_root = debugfs_create_dir("regulator", NULL);
3731 if (!debugfs_root)
3732 pr_warn("regulator: Failed to create debugfs directory\n");
3734 debugfs_create_file("supply_map", 0444, debugfs_root, NULL,
3735 &supply_map_fops);
3737 regulator_dummy_init();
3739 return ret;
3742 /* init early to allow our consumers to complete system booting */
3743 core_initcall(regulator_init);
3745 static int __init regulator_init_complete(void)
3747 struct regulator_dev *rdev;
3748 struct regulator_ops *ops;
3749 struct regulation_constraints *c;
3750 int enabled, ret;
3753 * Since DT doesn't provide an idiomatic mechanism for
3754 * enabling full constraints and since it's much more natural
3755 * with DT to provide them just assume that a DT enabled
3756 * system has full constraints.
3758 if (of_have_populated_dt())
3759 has_full_constraints = true;
3761 mutex_lock(&regulator_list_mutex);
3763 /* If we have a full configuration then disable any regulators
3764 * which are not in use or always_on. This will become the
3765 * default behaviour in the future.
3767 list_for_each_entry(rdev, &regulator_list, list) {
3768 ops = rdev->desc->ops;
3769 c = rdev->constraints;
3771 if (c && c->always_on)
3772 continue;
3774 mutex_lock(&rdev->mutex);
3776 if (rdev->use_count)
3777 goto unlock;
3779 /* If we can't read the status assume it's on. */
3780 if (ops->is_enabled)
3781 enabled = ops->is_enabled(rdev);
3782 else
3783 enabled = 1;
3785 if (!enabled)
3786 goto unlock;
3788 if (has_full_constraints) {
3789 /* We log since this may kill the system if it
3790 * goes wrong. */
3791 rdev_info(rdev, "disabling\n");
3792 ret = _regulator_do_disable(rdev);
3793 if (ret != 0) {
3794 rdev_err(rdev, "couldn't disable: %d\n", ret);
3796 } else {
3797 /* The intention is that in future we will
3798 * assume that full constraints are provided
3799 * so warn even if we aren't going to do
3800 * anything here.
3802 rdev_warn(rdev, "incomplete constraints, leaving on\n");
3805 unlock:
3806 mutex_unlock(&rdev->mutex);
3809 mutex_unlock(&regulator_list_mutex);
3811 return 0;
3813 late_initcall(regulator_init_complete);