mfd: wm8350-i2c: Make sure the i2c regmap functions are compiled
[linux/fpc-iii.git] / drivers / regulator / helpers.c
blob6e30df14714bf15b944740c371d751413421ed3c
1 /*
2 * helpers.c -- Voltage/Current Regulator framework helper functions.
4 * Copyright 2007, 2008 Wolfson Microelectronics PLC.
5 * Copyright 2008 SlimLogic Ltd.
7 * This program is free software; you can redistribute it and/or modify it
8 * under the terms of the GNU General Public License as published by the
9 * Free Software Foundation; either version 2 of the License, or (at your
10 * option) any later version.
14 #include <linux/kernel.h>
15 #include <linux/err.h>
16 #include <linux/delay.h>
17 #include <linux/regmap.h>
18 #include <linux/regulator/consumer.h>
19 #include <linux/regulator/driver.h>
20 #include <linux/module.h>
22 /**
23 * regulator_is_enabled_regmap - standard is_enabled() for regmap users
25 * @rdev: regulator to operate on
27 * Regulators that use regmap for their register I/O can set the
28 * enable_reg and enable_mask fields in their descriptor and then use
29 * this as their is_enabled operation, saving some code.
31 int regulator_is_enabled_regmap(struct regulator_dev *rdev)
33 unsigned int val;
34 int ret;
36 ret = regmap_read(rdev->regmap, rdev->desc->enable_reg, &val);
37 if (ret != 0)
38 return ret;
40 if (rdev->desc->enable_is_inverted)
41 return (val & rdev->desc->enable_mask) == 0;
42 else
43 return (val & rdev->desc->enable_mask) != 0;
45 EXPORT_SYMBOL_GPL(regulator_is_enabled_regmap);
47 /**
48 * regulator_enable_regmap - standard enable() for regmap users
50 * @rdev: regulator to operate on
52 * Regulators that use regmap for their register I/O can set the
53 * enable_reg and enable_mask fields in their descriptor and then use
54 * this as their enable() operation, saving some code.
56 int regulator_enable_regmap(struct regulator_dev *rdev)
58 unsigned int val;
60 if (rdev->desc->enable_is_inverted)
61 val = 0;
62 else
63 val = rdev->desc->enable_mask;
65 return regmap_update_bits(rdev->regmap, rdev->desc->enable_reg,
66 rdev->desc->enable_mask, val);
68 EXPORT_SYMBOL_GPL(regulator_enable_regmap);
70 /**
71 * regulator_disable_regmap - standard disable() for regmap users
73 * @rdev: regulator to operate on
75 * Regulators that use regmap for their register I/O can set the
76 * enable_reg and enable_mask fields in their descriptor and then use
77 * this as their disable() operation, saving some code.
79 int regulator_disable_regmap(struct regulator_dev *rdev)
81 unsigned int val;
83 if (rdev->desc->enable_is_inverted)
84 val = rdev->desc->enable_mask;
85 else
86 val = 0;
88 return regmap_update_bits(rdev->regmap, rdev->desc->enable_reg,
89 rdev->desc->enable_mask, val);
91 EXPORT_SYMBOL_GPL(regulator_disable_regmap);
93 /**
94 * regulator_get_voltage_sel_regmap - standard get_voltage_sel for regmap users
96 * @rdev: regulator to operate on
98 * Regulators that use regmap for their register I/O can set the
99 * vsel_reg and vsel_mask fields in their descriptor and then use this
100 * as their get_voltage_vsel operation, saving some code.
102 int regulator_get_voltage_sel_regmap(struct regulator_dev *rdev)
104 unsigned int val;
105 int ret;
107 ret = regmap_read(rdev->regmap, rdev->desc->vsel_reg, &val);
108 if (ret != 0)
109 return ret;
111 val &= rdev->desc->vsel_mask;
112 val >>= ffs(rdev->desc->vsel_mask) - 1;
114 return val;
116 EXPORT_SYMBOL_GPL(regulator_get_voltage_sel_regmap);
119 * regulator_set_voltage_sel_regmap - standard set_voltage_sel for regmap users
121 * @rdev: regulator to operate on
122 * @sel: Selector to set
124 * Regulators that use regmap for their register I/O can set the
125 * vsel_reg and vsel_mask fields in their descriptor and then use this
126 * as their set_voltage_vsel operation, saving some code.
128 int regulator_set_voltage_sel_regmap(struct regulator_dev *rdev, unsigned sel)
130 int ret;
132 sel <<= ffs(rdev->desc->vsel_mask) - 1;
134 ret = regmap_update_bits(rdev->regmap, rdev->desc->vsel_reg,
135 rdev->desc->vsel_mask, sel);
136 if (ret)
137 return ret;
139 if (rdev->desc->apply_bit)
140 ret = regmap_update_bits(rdev->regmap, rdev->desc->apply_reg,
141 rdev->desc->apply_bit,
142 rdev->desc->apply_bit);
143 return ret;
145 EXPORT_SYMBOL_GPL(regulator_set_voltage_sel_regmap);
148 * regulator_map_voltage_iterate - map_voltage() based on list_voltage()
150 * @rdev: Regulator to operate on
151 * @min_uV: Lower bound for voltage
152 * @max_uV: Upper bound for voltage
154 * Drivers implementing set_voltage_sel() and list_voltage() can use
155 * this as their map_voltage() operation. It will find a suitable
156 * voltage by calling list_voltage() until it gets something in bounds
157 * for the requested voltages.
159 int regulator_map_voltage_iterate(struct regulator_dev *rdev,
160 int min_uV, int max_uV)
162 int best_val = INT_MAX;
163 int selector = 0;
164 int i, ret;
166 /* Find the smallest voltage that falls within the specified
167 * range.
169 for (i = 0; i < rdev->desc->n_voltages; i++) {
170 ret = rdev->desc->ops->list_voltage(rdev, i);
171 if (ret < 0)
172 continue;
174 if (ret < best_val && ret >= min_uV && ret <= max_uV) {
175 best_val = ret;
176 selector = i;
180 if (best_val != INT_MAX)
181 return selector;
182 else
183 return -EINVAL;
185 EXPORT_SYMBOL_GPL(regulator_map_voltage_iterate);
188 * regulator_map_voltage_ascend - map_voltage() for ascendant voltage list
190 * @rdev: Regulator to operate on
191 * @min_uV: Lower bound for voltage
192 * @max_uV: Upper bound for voltage
194 * Drivers that have ascendant voltage list can use this as their
195 * map_voltage() operation.
197 int regulator_map_voltage_ascend(struct regulator_dev *rdev,
198 int min_uV, int max_uV)
200 int i, ret;
202 for (i = 0; i < rdev->desc->n_voltages; i++) {
203 ret = rdev->desc->ops->list_voltage(rdev, i);
204 if (ret < 0)
205 continue;
207 if (ret > max_uV)
208 break;
210 if (ret >= min_uV && ret <= max_uV)
211 return i;
214 return -EINVAL;
216 EXPORT_SYMBOL_GPL(regulator_map_voltage_ascend);
219 * regulator_map_voltage_linear - map_voltage() for simple linear mappings
221 * @rdev: Regulator to operate on
222 * @min_uV: Lower bound for voltage
223 * @max_uV: Upper bound for voltage
225 * Drivers providing min_uV and uV_step in their regulator_desc can
226 * use this as their map_voltage() operation.
228 int regulator_map_voltage_linear(struct regulator_dev *rdev,
229 int min_uV, int max_uV)
231 int ret, voltage;
233 /* Allow uV_step to be 0 for fixed voltage */
234 if (rdev->desc->n_voltages == 1 && rdev->desc->uV_step == 0) {
235 if (min_uV <= rdev->desc->min_uV && rdev->desc->min_uV <= max_uV)
236 return 0;
237 else
238 return -EINVAL;
241 if (!rdev->desc->uV_step) {
242 BUG_ON(!rdev->desc->uV_step);
243 return -EINVAL;
246 if (min_uV < rdev->desc->min_uV)
247 min_uV = rdev->desc->min_uV;
249 ret = DIV_ROUND_UP(min_uV - rdev->desc->min_uV, rdev->desc->uV_step);
250 if (ret < 0)
251 return ret;
253 ret += rdev->desc->linear_min_sel;
255 /* Map back into a voltage to verify we're still in bounds */
256 voltage = rdev->desc->ops->list_voltage(rdev, ret);
257 if (voltage < min_uV || voltage > max_uV)
258 return -EINVAL;
260 return ret;
262 EXPORT_SYMBOL_GPL(regulator_map_voltage_linear);
265 * regulator_map_voltage_linear - map_voltage() for multiple linear ranges
267 * @rdev: Regulator to operate on
268 * @min_uV: Lower bound for voltage
269 * @max_uV: Upper bound for voltage
271 * Drivers providing linear_ranges in their descriptor can use this as
272 * their map_voltage() callback.
274 int regulator_map_voltage_linear_range(struct regulator_dev *rdev,
275 int min_uV, int max_uV)
277 const struct regulator_linear_range *range;
278 int ret = -EINVAL;
279 int voltage, i;
281 if (!rdev->desc->n_linear_ranges) {
282 BUG_ON(!rdev->desc->n_linear_ranges);
283 return -EINVAL;
286 for (i = 0; i < rdev->desc->n_linear_ranges; i++) {
287 range = &rdev->desc->linear_ranges[i];
289 if (!(min_uV <= range->max_uV && max_uV >= range->min_uV))
290 continue;
292 if (min_uV <= range->min_uV)
293 min_uV = range->min_uV;
295 /* range->uV_step == 0 means fixed voltage range */
296 if (range->uV_step == 0) {
297 ret = 0;
298 } else {
299 ret = DIV_ROUND_UP(min_uV - range->min_uV,
300 range->uV_step);
301 if (ret < 0)
302 return ret;
305 ret += range->min_sel;
307 break;
310 if (i == rdev->desc->n_linear_ranges)
311 return -EINVAL;
313 /* Map back into a voltage to verify we're still in bounds */
314 voltage = rdev->desc->ops->list_voltage(rdev, ret);
315 if (voltage < min_uV || voltage > max_uV)
316 return -EINVAL;
318 return ret;
320 EXPORT_SYMBOL_GPL(regulator_map_voltage_linear_range);
323 * regulator_list_voltage_linear - List voltages with simple calculation
325 * @rdev: Regulator device
326 * @selector: Selector to convert into a voltage
328 * Regulators with a simple linear mapping between voltages and
329 * selectors can set min_uV and uV_step in the regulator descriptor
330 * and then use this function as their list_voltage() operation,
332 int regulator_list_voltage_linear(struct regulator_dev *rdev,
333 unsigned int selector)
335 if (selector >= rdev->desc->n_voltages)
336 return -EINVAL;
337 if (selector < rdev->desc->linear_min_sel)
338 return 0;
340 selector -= rdev->desc->linear_min_sel;
342 return rdev->desc->min_uV + (rdev->desc->uV_step * selector);
344 EXPORT_SYMBOL_GPL(regulator_list_voltage_linear);
347 * regulator_list_voltage_linear_range - List voltages for linear ranges
349 * @rdev: Regulator device
350 * @selector: Selector to convert into a voltage
352 * Regulators with a series of simple linear mappings between voltages
353 * and selectors can set linear_ranges in the regulator descriptor and
354 * then use this function as their list_voltage() operation,
356 int regulator_list_voltage_linear_range(struct regulator_dev *rdev,
357 unsigned int selector)
359 const struct regulator_linear_range *range;
360 int i;
362 if (!rdev->desc->n_linear_ranges) {
363 BUG_ON(!rdev->desc->n_linear_ranges);
364 return -EINVAL;
367 for (i = 0; i < rdev->desc->n_linear_ranges; i++) {
368 range = &rdev->desc->linear_ranges[i];
370 if (!(selector >= range->min_sel &&
371 selector <= range->max_sel))
372 continue;
374 selector -= range->min_sel;
376 return range->min_uV + (range->uV_step * selector);
379 return -EINVAL;
381 EXPORT_SYMBOL_GPL(regulator_list_voltage_linear_range);
384 * regulator_list_voltage_table - List voltages with table based mapping
386 * @rdev: Regulator device
387 * @selector: Selector to convert into a voltage
389 * Regulators with table based mapping between voltages and
390 * selectors can set volt_table in the regulator descriptor
391 * and then use this function as their list_voltage() operation.
393 int regulator_list_voltage_table(struct regulator_dev *rdev,
394 unsigned int selector)
396 if (!rdev->desc->volt_table) {
397 BUG_ON(!rdev->desc->volt_table);
398 return -EINVAL;
401 if (selector >= rdev->desc->n_voltages)
402 return -EINVAL;
404 return rdev->desc->volt_table[selector];
406 EXPORT_SYMBOL_GPL(regulator_list_voltage_table);
409 * regulator_set_bypass_regmap - Default set_bypass() using regmap
411 * @rdev: device to operate on.
412 * @enable: state to set.
414 int regulator_set_bypass_regmap(struct regulator_dev *rdev, bool enable)
416 unsigned int val;
418 if (enable)
419 val = rdev->desc->bypass_mask;
420 else
421 val = 0;
423 return regmap_update_bits(rdev->regmap, rdev->desc->bypass_reg,
424 rdev->desc->bypass_mask, val);
426 EXPORT_SYMBOL_GPL(regulator_set_bypass_regmap);
429 * regulator_get_bypass_regmap - Default get_bypass() using regmap
431 * @rdev: device to operate on.
432 * @enable: current state.
434 int regulator_get_bypass_regmap(struct regulator_dev *rdev, bool *enable)
436 unsigned int val;
437 int ret;
439 ret = regmap_read(rdev->regmap, rdev->desc->bypass_reg, &val);
440 if (ret != 0)
441 return ret;
443 *enable = val & rdev->desc->bypass_mask;
445 return 0;
447 EXPORT_SYMBOL_GPL(regulator_get_bypass_regmap);