mfd: wm8350-i2c: Make sure the i2c regmap functions are compiled
[linux/fpc-iii.git] / drivers / scsi / esas2r / esas2r_io.c
blob324e2626a08beee6b358f5eb62a08dafe167458f
1 /*
2 * linux/drivers/scsi/esas2r/esas2r_io.c
3 * For use with ATTO ExpressSAS R6xx SAS/SATA RAID controllers
5 * Copyright (c) 2001-2013 ATTO Technology, Inc.
6 * (mailto:linuxdrivers@attotech.com)mpt3sas/mpt3sas_trigger_diag.
8 * This program is free software; you can redistribute it and/or
9 * modify it under the terms of the GNU General Public License
10 * as published by the Free Software Foundation; either version 2
11 * of the License, or (at your option) any later version.
13 * This program is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 * GNU General Public License for more details.
18 * NO WARRANTY
19 * THE PROGRAM IS PROVIDED ON AN "AS IS" BASIS, WITHOUT WARRANTIES OR
20 * CONDITIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED INCLUDING, WITHOUT
21 * LIMITATION, ANY WARRANTIES OR CONDITIONS OF TITLE, NON-INFRINGEMENT,
22 * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Each Recipient is
23 * solely responsible for determining the appropriateness of using and
24 * distributing the Program and assumes all risks associated with its
25 * exercise of rights under this Agreement, including but not limited to
26 * the risks and costs of program errors, damage to or loss of data,
27 * programs or equipment, and unavailability or interruption of operations.
29 * DISCLAIMER OF LIABILITY
30 * NEITHER RECIPIENT NOR ANY CONTRIBUTORS SHALL HAVE ANY LIABILITY FOR ANY
31 * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
32 * DAMAGES (INCLUDING WITHOUT LIMITATION LOST PROFITS), HOWEVER CAUSED AND
33 * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR
34 * TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
35 * USE OR DISTRIBUTION OF THE PROGRAM OR THE EXERCISE OF ANY RIGHTS GRANTED
36 * HEREUNDER, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGES
38 * You should have received a copy of the GNU General Public License
39 * along with this program; if not, write to the Free Software
40 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301,
41 * USA.
44 #include "esas2r.h"
46 void esas2r_start_request(struct esas2r_adapter *a, struct esas2r_request *rq)
48 struct esas2r_target *t = NULL;
49 struct esas2r_request *startrq = rq;
50 unsigned long flags;
52 if (unlikely(a->flags & (AF_DEGRADED_MODE | AF_POWER_DOWN))) {
53 if (rq->vrq->scsi.function == VDA_FUNC_SCSI)
54 rq->req_stat = RS_SEL2;
55 else
56 rq->req_stat = RS_DEGRADED;
57 } else if (likely(rq->vrq->scsi.function == VDA_FUNC_SCSI)) {
58 t = a->targetdb + rq->target_id;
60 if (unlikely(t >= a->targetdb_end
61 || !(t->flags & TF_USED))) {
62 rq->req_stat = RS_SEL;
63 } else {
64 /* copy in the target ID. */
65 rq->vrq->scsi.target_id = cpu_to_le16(t->virt_targ_id);
68 * Test if we want to report RS_SEL for missing target.
69 * Note that if AF_DISC_PENDING is set than this will
70 * go on the defer queue.
72 if (unlikely(t->target_state != TS_PRESENT
73 && !(a->flags & AF_DISC_PENDING)))
74 rq->req_stat = RS_SEL;
78 if (unlikely(rq->req_stat != RS_PENDING)) {
79 esas2r_complete_request(a, rq);
80 return;
83 esas2r_trace("rq=%p", rq);
84 esas2r_trace("rq->vrq->scsi.handle=%x", rq->vrq->scsi.handle);
86 if (rq->vrq->scsi.function == VDA_FUNC_SCSI) {
87 esas2r_trace("rq->target_id=%d", rq->target_id);
88 esas2r_trace("rq->vrq->scsi.flags=%x", rq->vrq->scsi.flags);
91 spin_lock_irqsave(&a->queue_lock, flags);
93 if (likely(list_empty(&a->defer_list) &&
94 !(a->flags &
95 (AF_CHPRST_PENDING | AF_FLASHING | AF_DISC_PENDING))))
96 esas2r_local_start_request(a, startrq);
97 else
98 list_add_tail(&startrq->req_list, &a->defer_list);
100 spin_unlock_irqrestore(&a->queue_lock, flags);
104 * Starts the specified request. all requests have RS_PENDING set when this
105 * routine is called. The caller is usually esas2r_start_request, but
106 * esas2r_do_deferred_processes will start request that are deferred.
108 * The caller must ensure that requests can be started.
110 * esas2r_start_request will defer a request if there are already requests
111 * waiting or there is a chip reset pending. once the reset condition clears,
112 * esas2r_do_deferred_processes will call this function to start the request.
114 * When a request is started, it is placed on the active list and queued to
115 * the controller.
117 void esas2r_local_start_request(struct esas2r_adapter *a,
118 struct esas2r_request *rq)
120 esas2r_trace_enter();
121 esas2r_trace("rq=%p", rq);
122 esas2r_trace("rq->vrq:%p", rq->vrq);
123 esas2r_trace("rq->vrq_md->phys_addr:%x", rq->vrq_md->phys_addr);
125 if (unlikely(rq->vrq->scsi.function == VDA_FUNC_FLASH
126 && rq->vrq->flash.sub_func == VDA_FLASH_COMMIT))
127 esas2r_lock_set_flags(&a->flags, AF_FLASHING);
129 list_add_tail(&rq->req_list, &a->active_list);
130 esas2r_start_vda_request(a, rq);
131 esas2r_trace_exit();
132 return;
135 void esas2r_start_vda_request(struct esas2r_adapter *a,
136 struct esas2r_request *rq)
138 struct esas2r_inbound_list_source_entry *element;
139 u32 dw;
141 rq->req_stat = RS_STARTED;
143 * Calculate the inbound list entry location and the current state of
144 * toggle bit.
146 a->last_write++;
147 if (a->last_write >= a->list_size) {
148 a->last_write = 0;
149 /* update the toggle bit */
150 if (a->flags & AF_COMM_LIST_TOGGLE)
151 esas2r_lock_clear_flags(&a->flags,
152 AF_COMM_LIST_TOGGLE);
153 else
154 esas2r_lock_set_flags(&a->flags, AF_COMM_LIST_TOGGLE);
157 element =
158 (struct esas2r_inbound_list_source_entry *)a->inbound_list_md.
159 virt_addr
160 + a->last_write;
162 /* Set the VDA request size if it was never modified */
163 if (rq->vda_req_sz == RQ_SIZE_DEFAULT)
164 rq->vda_req_sz = (u16)(a->max_vdareq_size / sizeof(u32));
166 element->address = cpu_to_le64(rq->vrq_md->phys_addr);
167 element->length = cpu_to_le32(rq->vda_req_sz);
169 /* Update the write pointer */
170 dw = a->last_write;
172 if (a->flags & AF_COMM_LIST_TOGGLE)
173 dw |= MU_ILW_TOGGLE;
175 esas2r_trace("rq->vrq->scsi.handle:%x", rq->vrq->scsi.handle);
176 esas2r_trace("dw:%x", dw);
177 esas2r_trace("rq->vda_req_sz:%x", rq->vda_req_sz);
178 esas2r_write_register_dword(a, MU_IN_LIST_WRITE, dw);
182 * Build the scatter/gather list for an I/O request according to the
183 * specifications placed in the s/g context. The caller must initialize
184 * context prior to the initial call by calling esas2r_sgc_init().
186 bool esas2r_build_sg_list_sge(struct esas2r_adapter *a,
187 struct esas2r_sg_context *sgc)
189 struct esas2r_request *rq = sgc->first_req;
190 union atto_vda_req *vrq = rq->vrq;
192 while (sgc->length) {
193 u32 rem = 0;
194 u64 addr;
195 u32 len;
197 len = (*sgc->get_phys_addr)(sgc, &addr);
199 if (unlikely(len == 0))
200 return false;
202 /* if current length is more than what's left, stop there */
203 if (unlikely(len > sgc->length))
204 len = sgc->length;
206 another_entry:
207 /* limit to a round number less than the maximum length */
208 if (len > SGE_LEN_MAX) {
210 * Save the remainder of the split. Whenever we limit
211 * an entry we come back around to build entries out
212 * of the leftover. We do this to prevent multiple
213 * calls to the get_phys_addr() function for an SGE
214 * that is too large.
216 rem = len - SGE_LEN_MAX;
217 len = SGE_LEN_MAX;
220 /* See if we need to allocate a new SGL */
221 if (unlikely(sgc->sge.a64.curr > sgc->sge.a64.limit)) {
222 u8 sgelen;
223 struct esas2r_mem_desc *sgl;
226 * If no SGls are available, return failure. The
227 * caller can call us later with the current context
228 * to pick up here.
230 sgl = esas2r_alloc_sgl(a);
232 if (unlikely(sgl == NULL))
233 return false;
235 /* Calculate the length of the last SGE filled in */
236 sgelen = (u8)((u8 *)sgc->sge.a64.curr
237 - (u8 *)sgc->sge.a64.last);
240 * Copy the last SGE filled in to the first entry of
241 * the new SGL to make room for the chain entry.
243 memcpy(sgl->virt_addr, sgc->sge.a64.last, sgelen);
245 /* Figure out the new curr pointer in the new segment */
246 sgc->sge.a64.curr =
247 (struct atto_vda_sge *)((u8 *)sgl->virt_addr +
248 sgelen);
250 /* Set the limit pointer and build the chain entry */
251 sgc->sge.a64.limit =
252 (struct atto_vda_sge *)((u8 *)sgl->virt_addr
253 + sgl_page_size
254 - sizeof(struct
255 atto_vda_sge));
256 sgc->sge.a64.last->length = cpu_to_le32(
257 SGE_CHAIN | SGE_ADDR_64);
258 sgc->sge.a64.last->address =
259 cpu_to_le64(sgl->phys_addr);
262 * Now, if there was a previous chain entry, then
263 * update it to contain the length of this segment
264 * and size of this chain. otherwise this is the
265 * first SGL, so set the chain_offset in the request.
267 if (sgc->sge.a64.chain) {
268 sgc->sge.a64.chain->length |=
269 cpu_to_le32(
270 ((u8 *)(sgc->sge.a64.
271 last + 1)
272 - (u8 *)rq->sg_table->
273 virt_addr)
274 + sizeof(struct atto_vda_sge) *
275 LOBIT(SGE_CHAIN_SZ));
276 } else {
277 vrq->scsi.chain_offset = (u8)
278 ((u8 *)sgc->
279 sge.a64.last -
280 (u8 *)vrq);
283 * This is the first SGL, so set the
284 * chain_offset and the VDA request size in
285 * the request.
287 rq->vda_req_sz =
288 (vrq->scsi.chain_offset +
289 sizeof(struct atto_vda_sge) +
291 / sizeof(u32);
295 * Remember this so when we get a new SGL filled in we
296 * can update the length of this chain entry.
298 sgc->sge.a64.chain = sgc->sge.a64.last;
300 /* Now link the new SGL onto the primary request. */
301 list_add(&sgl->next_desc, &rq->sg_table_head);
304 /* Update last one filled in */
305 sgc->sge.a64.last = sgc->sge.a64.curr;
307 /* Build the new SGE and update the S/G context */
308 sgc->sge.a64.curr->length = cpu_to_le32(SGE_ADDR_64 | len);
309 sgc->sge.a64.curr->address = cpu_to_le32(addr);
310 sgc->sge.a64.curr++;
311 sgc->cur_offset += len;
312 sgc->length -= len;
315 * Check if we previously split an entry. If so we have to
316 * pick up where we left off.
318 if (rem) {
319 addr += len;
320 len = rem;
321 rem = 0;
322 goto another_entry;
326 /* Mark the end of the SGL */
327 sgc->sge.a64.last->length |= cpu_to_le32(SGE_LAST);
330 * If there was a previous chain entry, update the length to indicate
331 * the length of this last segment.
333 if (sgc->sge.a64.chain) {
334 sgc->sge.a64.chain->length |= cpu_to_le32(
335 ((u8 *)(sgc->sge.a64.curr) -
336 (u8 *)rq->sg_table->virt_addr));
337 } else {
338 u16 reqsize;
341 * The entire VDA request was not used so lets
342 * set the size of the VDA request to be DMA'd
344 reqsize =
345 ((u16)((u8 *)sgc->sge.a64.last - (u8 *)vrq)
346 + sizeof(struct atto_vda_sge) + 3) / sizeof(u32);
349 * Only update the request size if it is bigger than what is
350 * already there. We can come in here twice for some management
351 * commands.
353 if (reqsize > rq->vda_req_sz)
354 rq->vda_req_sz = reqsize;
356 return true;
361 * Create PRD list for each I-block consumed by the command. This routine
362 * determines how much data is required from each I-block being consumed
363 * by the command. The first and last I-blocks can be partials and all of
364 * the I-blocks in between are for a full I-block of data.
366 * The interleave size is used to determine the number of bytes in the 1st
367 * I-block and the remaining I-blocks are what remeains.
369 static bool esas2r_build_prd_iblk(struct esas2r_adapter *a,
370 struct esas2r_sg_context *sgc)
372 struct esas2r_request *rq = sgc->first_req;
373 u64 addr;
374 u32 len;
375 struct esas2r_mem_desc *sgl;
376 u32 numchain = 1;
377 u32 rem = 0;
379 while (sgc->length) {
380 /* Get the next address/length pair */
382 len = (*sgc->get_phys_addr)(sgc, &addr);
384 if (unlikely(len == 0))
385 return false;
387 /* If current length is more than what's left, stop there */
389 if (unlikely(len > sgc->length))
390 len = sgc->length;
392 another_entry:
393 /* Limit to a round number less than the maximum length */
395 if (len > PRD_LEN_MAX) {
397 * Save the remainder of the split. whenever we limit
398 * an entry we come back around to build entries out
399 * of the leftover. We do this to prevent multiple
400 * calls to the get_phys_addr() function for an SGE
401 * that is too large.
403 rem = len - PRD_LEN_MAX;
404 len = PRD_LEN_MAX;
407 /* See if we need to allocate a new SGL */
408 if (sgc->sge.prd.sge_cnt == 0) {
409 if (len == sgc->length) {
411 * We only have 1 PRD entry left.
412 * It can be placed where the chain
413 * entry would have gone
416 /* Build the simple SGE */
417 sgc->sge.prd.curr->ctl_len = cpu_to_le32(
418 PRD_DATA | len);
419 sgc->sge.prd.curr->address = cpu_to_le64(addr);
421 /* Adjust length related fields */
422 sgc->cur_offset += len;
423 sgc->length -= len;
425 /* We use the reserved chain entry for data */
426 numchain = 0;
428 break;
431 if (sgc->sge.prd.chain) {
433 * Fill # of entries of current SGL in previous
434 * chain the length of this current SGL may not
435 * full.
438 sgc->sge.prd.chain->ctl_len |= cpu_to_le32(
439 sgc->sge.prd.sgl_max_cnt);
443 * If no SGls are available, return failure. The
444 * caller can call us later with the current context
445 * to pick up here.
448 sgl = esas2r_alloc_sgl(a);
450 if (unlikely(sgl == NULL))
451 return false;
454 * Link the new SGL onto the chain
455 * They are in reverse order
457 list_add(&sgl->next_desc, &rq->sg_table_head);
460 * An SGL was just filled in and we are starting
461 * a new SGL. Prime the chain of the ending SGL with
462 * info that points to the new SGL. The length gets
463 * filled in when the new SGL is filled or ended
466 sgc->sge.prd.chain = sgc->sge.prd.curr;
468 sgc->sge.prd.chain->ctl_len = cpu_to_le32(PRD_CHAIN);
469 sgc->sge.prd.chain->address =
470 cpu_to_le64(sgl->phys_addr);
473 * Start a new segment.
474 * Take one away and save for chain SGE
477 sgc->sge.prd.curr =
478 (struct atto_physical_region_description *)sgl
480 virt_addr;
481 sgc->sge.prd.sge_cnt = sgc->sge.prd.sgl_max_cnt - 1;
484 sgc->sge.prd.sge_cnt--;
485 /* Build the simple SGE */
486 sgc->sge.prd.curr->ctl_len = cpu_to_le32(PRD_DATA | len);
487 sgc->sge.prd.curr->address = cpu_to_le64(addr);
489 /* Used another element. Point to the next one */
491 sgc->sge.prd.curr++;
493 /* Adjust length related fields */
495 sgc->cur_offset += len;
496 sgc->length -= len;
499 * Check if we previously split an entry. If so we have to
500 * pick up where we left off.
503 if (rem) {
504 addr += len;
505 len = rem;
506 rem = 0;
507 goto another_entry;
511 if (!list_empty(&rq->sg_table_head)) {
512 if (sgc->sge.prd.chain) {
513 sgc->sge.prd.chain->ctl_len |=
514 cpu_to_le32(sgc->sge.prd.sgl_max_cnt
515 - sgc->sge.prd.sge_cnt
516 - numchain);
520 return true;
523 bool esas2r_build_sg_list_prd(struct esas2r_adapter *a,
524 struct esas2r_sg_context *sgc)
526 struct esas2r_request *rq = sgc->first_req;
527 u32 len = sgc->length;
528 struct esas2r_target *t = a->targetdb + rq->target_id;
529 u8 is_i_o = 0;
530 u16 reqsize;
531 struct atto_physical_region_description *curr_iblk_chn;
532 u8 *cdb = (u8 *)&rq->vrq->scsi.cdb[0];
535 * extract LBA from command so we can determine
536 * the I-Block boundary
539 if (rq->vrq->scsi.function == VDA_FUNC_SCSI
540 && t->target_state == TS_PRESENT
541 && !(t->flags & TF_PASS_THRU)) {
542 u32 lbalo = 0;
544 switch (rq->vrq->scsi.cdb[0]) {
545 case READ_16:
546 case WRITE_16:
548 lbalo =
549 MAKEDWORD(MAKEWORD(cdb[9],
550 cdb[8]),
551 MAKEWORD(cdb[7],
552 cdb[6]));
553 is_i_o = 1;
554 break;
557 case READ_12:
558 case WRITE_12:
559 case READ_10:
560 case WRITE_10:
562 lbalo =
563 MAKEDWORD(MAKEWORD(cdb[5],
564 cdb[4]),
565 MAKEWORD(cdb[3],
566 cdb[2]));
567 is_i_o = 1;
568 break;
571 case READ_6:
572 case WRITE_6:
574 lbalo =
575 MAKEDWORD(MAKEWORD(cdb[3],
576 cdb[2]),
577 MAKEWORD(cdb[1] & 0x1F,
578 0));
579 is_i_o = 1;
580 break;
583 default:
584 break;
587 if (is_i_o) {
588 u32 startlba;
590 rq->vrq->scsi.iblk_cnt_prd = 0;
592 /* Determine size of 1st I-block PRD list */
593 startlba = t->inter_block - (lbalo & (t->inter_block -
594 1));
595 sgc->length = startlba * t->block_size;
597 /* Chk if the 1st iblk chain starts at base of Iblock */
598 if ((lbalo & (t->inter_block - 1)) == 0)
599 rq->flags |= RF_1ST_IBLK_BASE;
601 if (sgc->length > len)
602 sgc->length = len;
603 } else {
604 sgc->length = len;
606 } else {
607 sgc->length = len;
610 /* get our starting chain address */
612 curr_iblk_chn =
613 (struct atto_physical_region_description *)sgc->sge.a64.curr;
615 sgc->sge.prd.sgl_max_cnt = sgl_page_size /
616 sizeof(struct
617 atto_physical_region_description);
619 /* create all of the I-block PRD lists */
621 while (len) {
622 sgc->sge.prd.sge_cnt = 0;
623 sgc->sge.prd.chain = NULL;
624 sgc->sge.prd.curr = curr_iblk_chn;
626 /* increment to next I-Block */
628 len -= sgc->length;
630 /* go build the next I-Block PRD list */
632 if (unlikely(!esas2r_build_prd_iblk(a, sgc)))
633 return false;
635 curr_iblk_chn++;
637 if (is_i_o) {
638 rq->vrq->scsi.iblk_cnt_prd++;
640 if (len > t->inter_byte)
641 sgc->length = t->inter_byte;
642 else
643 sgc->length = len;
647 /* figure out the size used of the VDA request */
649 reqsize = ((u16)((u8 *)curr_iblk_chn - (u8 *)rq->vrq))
650 / sizeof(u32);
653 * only update the request size if it is bigger than what is
654 * already there. we can come in here twice for some management
655 * commands.
658 if (reqsize > rq->vda_req_sz)
659 rq->vda_req_sz = reqsize;
661 return true;
664 static void esas2r_handle_pending_reset(struct esas2r_adapter *a, u32 currtime)
666 u32 delta = currtime - a->chip_init_time;
668 if (delta <= ESAS2R_CHPRST_WAIT_TIME) {
669 /* Wait before accessing registers */
670 } else if (delta >= ESAS2R_CHPRST_TIME) {
672 * The last reset failed so try again. Reset
673 * processing will give up after three tries.
675 esas2r_local_reset_adapter(a);
676 } else {
677 /* We can now see if the firmware is ready */
678 u32 doorbell;
680 doorbell = esas2r_read_register_dword(a, MU_DOORBELL_OUT);
681 if (doorbell == 0xFFFFFFFF || !(doorbell & DRBL_FORCE_INT)) {
682 esas2r_force_interrupt(a);
683 } else {
684 u32 ver = (doorbell & DRBL_FW_VER_MSK);
686 /* Driver supports API version 0 and 1 */
687 esas2r_write_register_dword(a, MU_DOORBELL_OUT,
688 doorbell);
689 if (ver == DRBL_FW_VER_0) {
690 esas2r_lock_set_flags(&a->flags,
691 AF_CHPRST_DETECTED);
692 esas2r_lock_set_flags(&a->flags,
693 AF_LEGACY_SGE_MODE);
695 a->max_vdareq_size = 128;
696 a->build_sgl = esas2r_build_sg_list_sge;
697 } else if (ver == DRBL_FW_VER_1) {
698 esas2r_lock_set_flags(&a->flags,
699 AF_CHPRST_DETECTED);
700 esas2r_lock_clear_flags(&a->flags,
701 AF_LEGACY_SGE_MODE);
703 a->max_vdareq_size = 1024;
704 a->build_sgl = esas2r_build_sg_list_prd;
705 } else {
706 esas2r_local_reset_adapter(a);
713 /* This function must be called once per timer tick */
714 void esas2r_timer_tick(struct esas2r_adapter *a)
716 u32 currtime = jiffies_to_msecs(jiffies);
717 u32 deltatime = currtime - a->last_tick_time;
719 a->last_tick_time = currtime;
721 /* count down the uptime */
722 if (a->chip_uptime
723 && !(a->flags & (AF_CHPRST_PENDING | AF_DISC_PENDING))) {
724 if (deltatime >= a->chip_uptime)
725 a->chip_uptime = 0;
726 else
727 a->chip_uptime -= deltatime;
730 if (a->flags & AF_CHPRST_PENDING) {
731 if (!(a->flags & AF_CHPRST_NEEDED)
732 && !(a->flags & AF_CHPRST_DETECTED))
733 esas2r_handle_pending_reset(a, currtime);
734 } else {
735 if (a->flags & AF_DISC_PENDING)
736 esas2r_disc_check_complete(a);
738 if (a->flags & AF_HEARTBEAT_ENB) {
739 if (a->flags & AF_HEARTBEAT) {
740 if ((currtime - a->heartbeat_time) >=
741 ESAS2R_HEARTBEAT_TIME) {
742 esas2r_lock_clear_flags(&a->flags,
743 AF_HEARTBEAT);
744 esas2r_hdebug("heartbeat failed");
745 esas2r_log(ESAS2R_LOG_CRIT,
746 "heartbeat failed");
747 esas2r_bugon();
748 esas2r_local_reset_adapter(a);
750 } else {
751 esas2r_lock_set_flags(&a->flags, AF_HEARTBEAT);
752 a->heartbeat_time = currtime;
753 esas2r_force_interrupt(a);
758 if (atomic_read(&a->disable_cnt) == 0)
759 esas2r_do_deferred_processes(a);
763 * Send the specified task management function to the target and LUN
764 * specified in rqaux. in addition, immediately abort any commands that
765 * are queued but not sent to the device according to the rules specified
766 * by the task management function.
768 bool esas2r_send_task_mgmt(struct esas2r_adapter *a,
769 struct esas2r_request *rqaux, u8 task_mgt_func)
771 u16 targetid = rqaux->target_id;
772 u8 lun = (u8)le32_to_cpu(rqaux->vrq->scsi.flags);
773 bool ret = false;
774 struct esas2r_request *rq;
775 struct list_head *next, *element;
776 unsigned long flags;
778 LIST_HEAD(comp_list);
780 esas2r_trace_enter();
781 esas2r_trace("rqaux:%p", rqaux);
782 esas2r_trace("task_mgt_func:%x", task_mgt_func);
783 spin_lock_irqsave(&a->queue_lock, flags);
785 /* search the defer queue looking for requests for the device */
786 list_for_each_safe(element, next, &a->defer_list) {
787 rq = list_entry(element, struct esas2r_request, req_list);
789 if (rq->vrq->scsi.function == VDA_FUNC_SCSI
790 && rq->target_id == targetid
791 && (((u8)le32_to_cpu(rq->vrq->scsi.flags)) == lun
792 || task_mgt_func == 0x20)) { /* target reset */
793 /* Found a request affected by the task management */
794 if (rq->req_stat == RS_PENDING) {
796 * The request is pending or waiting. We can
797 * safelycomplete the request now.
799 if (esas2r_ioreq_aborted(a, rq, RS_ABORTED))
800 list_add_tail(&rq->comp_list,
801 &comp_list);
806 /* Send the task management request to the firmware */
807 rqaux->sense_len = 0;
808 rqaux->vrq->scsi.length = 0;
809 rqaux->target_id = targetid;
810 rqaux->vrq->scsi.flags |= cpu_to_le32(lun);
811 memset(rqaux->vrq->scsi.cdb, 0, sizeof(rqaux->vrq->scsi.cdb));
812 rqaux->vrq->scsi.flags |=
813 cpu_to_le16(task_mgt_func * LOBIT(FCP_CMND_TM_MASK));
815 if (a->flags & AF_FLASHING) {
816 /* Assume success. if there are active requests, return busy */
817 rqaux->req_stat = RS_SUCCESS;
819 list_for_each_safe(element, next, &a->active_list) {
820 rq = list_entry(element, struct esas2r_request,
821 req_list);
822 if (rq->vrq->scsi.function == VDA_FUNC_SCSI
823 && rq->target_id == targetid
824 && (((u8)le32_to_cpu(rq->vrq->scsi.flags)) == lun
825 || task_mgt_func == 0x20)) /* target reset */
826 rqaux->req_stat = RS_BUSY;
829 ret = true;
832 spin_unlock_irqrestore(&a->queue_lock, flags);
834 if (!(a->flags & AF_FLASHING))
835 esas2r_start_request(a, rqaux);
837 esas2r_comp_list_drain(a, &comp_list);
839 if (atomic_read(&a->disable_cnt) == 0)
840 esas2r_do_deferred_processes(a);
842 esas2r_trace_exit();
844 return ret;
847 void esas2r_reset_bus(struct esas2r_adapter *a)
849 esas2r_log(ESAS2R_LOG_INFO, "performing a bus reset");
851 if (!(a->flags & AF_DEGRADED_MODE)
852 && !(a->flags & (AF_CHPRST_PENDING | AF_DISC_PENDING))) {
853 esas2r_lock_set_flags(&a->flags, AF_BUSRST_NEEDED);
854 esas2r_lock_set_flags(&a->flags, AF_BUSRST_PENDING);
855 esas2r_lock_set_flags(&a->flags, AF_OS_RESET);
857 esas2r_schedule_tasklet(a);
861 bool esas2r_ioreq_aborted(struct esas2r_adapter *a, struct esas2r_request *rq,
862 u8 status)
864 esas2r_trace_enter();
865 esas2r_trace("rq:%p", rq);
866 list_del_init(&rq->req_list);
867 if (rq->timeout > RQ_MAX_TIMEOUT) {
869 * The request timed out, but we could not abort it because a
870 * chip reset occurred. Return busy status.
872 rq->req_stat = RS_BUSY;
873 esas2r_trace_exit();
874 return true;
877 rq->req_stat = status;
878 esas2r_trace_exit();
879 return true;