mfd: wm8350-i2c: Make sure the i2c regmap functions are compiled
[linux/fpc-iii.git] / drivers / scsi / scsi_lib.c
blobaeff397675882d564d8918a6016bae85e32ad1f5
1 /*
2 * scsi_lib.c Copyright (C) 1999 Eric Youngdale
4 * SCSI queueing library.
5 * Initial versions: Eric Youngdale (eric@andante.org).
6 * Based upon conversations with large numbers
7 * of people at Linux Expo.
8 */
10 #include <linux/bio.h>
11 #include <linux/bitops.h>
12 #include <linux/blkdev.h>
13 #include <linux/completion.h>
14 #include <linux/kernel.h>
15 #include <linux/export.h>
16 #include <linux/mempool.h>
17 #include <linux/slab.h>
18 #include <linux/init.h>
19 #include <linux/pci.h>
20 #include <linux/delay.h>
21 #include <linux/hardirq.h>
22 #include <linux/scatterlist.h>
24 #include <scsi/scsi.h>
25 #include <scsi/scsi_cmnd.h>
26 #include <scsi/scsi_dbg.h>
27 #include <scsi/scsi_device.h>
28 #include <scsi/scsi_driver.h>
29 #include <scsi/scsi_eh.h>
30 #include <scsi/scsi_host.h>
32 #include "scsi_priv.h"
33 #include "scsi_logging.h"
36 #define SG_MEMPOOL_NR ARRAY_SIZE(scsi_sg_pools)
37 #define SG_MEMPOOL_SIZE 2
39 struct scsi_host_sg_pool {
40 size_t size;
41 char *name;
42 struct kmem_cache *slab;
43 mempool_t *pool;
46 #define SP(x) { x, "sgpool-" __stringify(x) }
47 #if (SCSI_MAX_SG_SEGMENTS < 32)
48 #error SCSI_MAX_SG_SEGMENTS is too small (must be 32 or greater)
49 #endif
50 static struct scsi_host_sg_pool scsi_sg_pools[] = {
51 SP(8),
52 SP(16),
53 #if (SCSI_MAX_SG_SEGMENTS > 32)
54 SP(32),
55 #if (SCSI_MAX_SG_SEGMENTS > 64)
56 SP(64),
57 #if (SCSI_MAX_SG_SEGMENTS > 128)
58 SP(128),
59 #if (SCSI_MAX_SG_SEGMENTS > 256)
60 #error SCSI_MAX_SG_SEGMENTS is too large (256 MAX)
61 #endif
62 #endif
63 #endif
64 #endif
65 SP(SCSI_MAX_SG_SEGMENTS)
67 #undef SP
69 struct kmem_cache *scsi_sdb_cache;
72 * When to reinvoke queueing after a resource shortage. It's 3 msecs to
73 * not change behaviour from the previous unplug mechanism, experimentation
74 * may prove this needs changing.
76 #define SCSI_QUEUE_DELAY 3
79 * Function: scsi_unprep_request()
81 * Purpose: Remove all preparation done for a request, including its
82 * associated scsi_cmnd, so that it can be requeued.
84 * Arguments: req - request to unprepare
86 * Lock status: Assumed that no locks are held upon entry.
88 * Returns: Nothing.
90 static void scsi_unprep_request(struct request *req)
92 struct scsi_cmnd *cmd = req->special;
94 blk_unprep_request(req);
95 req->special = NULL;
97 scsi_put_command(cmd);
101 * __scsi_queue_insert - private queue insertion
102 * @cmd: The SCSI command being requeued
103 * @reason: The reason for the requeue
104 * @unbusy: Whether the queue should be unbusied
106 * This is a private queue insertion. The public interface
107 * scsi_queue_insert() always assumes the queue should be unbusied
108 * because it's always called before the completion. This function is
109 * for a requeue after completion, which should only occur in this
110 * file.
112 static void __scsi_queue_insert(struct scsi_cmnd *cmd, int reason, int unbusy)
114 struct Scsi_Host *host = cmd->device->host;
115 struct scsi_device *device = cmd->device;
116 struct scsi_target *starget = scsi_target(device);
117 struct request_queue *q = device->request_queue;
118 unsigned long flags;
120 SCSI_LOG_MLQUEUE(1,
121 printk("Inserting command %p into mlqueue\n", cmd));
124 * Set the appropriate busy bit for the device/host.
126 * If the host/device isn't busy, assume that something actually
127 * completed, and that we should be able to queue a command now.
129 * Note that the prior mid-layer assumption that any host could
130 * always queue at least one command is now broken. The mid-layer
131 * will implement a user specifiable stall (see
132 * scsi_host.max_host_blocked and scsi_device.max_device_blocked)
133 * if a command is requeued with no other commands outstanding
134 * either for the device or for the host.
136 switch (reason) {
137 case SCSI_MLQUEUE_HOST_BUSY:
138 host->host_blocked = host->max_host_blocked;
139 break;
140 case SCSI_MLQUEUE_DEVICE_BUSY:
141 case SCSI_MLQUEUE_EH_RETRY:
142 device->device_blocked = device->max_device_blocked;
143 break;
144 case SCSI_MLQUEUE_TARGET_BUSY:
145 starget->target_blocked = starget->max_target_blocked;
146 break;
150 * Decrement the counters, since these commands are no longer
151 * active on the host/device.
153 if (unbusy)
154 scsi_device_unbusy(device);
157 * Requeue this command. It will go before all other commands
158 * that are already in the queue. Schedule requeue work under
159 * lock such that the kblockd_schedule_work() call happens
160 * before blk_cleanup_queue() finishes.
162 spin_lock_irqsave(q->queue_lock, flags);
163 blk_requeue_request(q, cmd->request);
164 kblockd_schedule_work(q, &device->requeue_work);
165 spin_unlock_irqrestore(q->queue_lock, flags);
169 * Function: scsi_queue_insert()
171 * Purpose: Insert a command in the midlevel queue.
173 * Arguments: cmd - command that we are adding to queue.
174 * reason - why we are inserting command to queue.
176 * Lock status: Assumed that lock is not held upon entry.
178 * Returns: Nothing.
180 * Notes: We do this for one of two cases. Either the host is busy
181 * and it cannot accept any more commands for the time being,
182 * or the device returned QUEUE_FULL and can accept no more
183 * commands.
184 * Notes: This could be called either from an interrupt context or a
185 * normal process context.
187 void scsi_queue_insert(struct scsi_cmnd *cmd, int reason)
189 __scsi_queue_insert(cmd, reason, 1);
192 * scsi_execute - insert request and wait for the result
193 * @sdev: scsi device
194 * @cmd: scsi command
195 * @data_direction: data direction
196 * @buffer: data buffer
197 * @bufflen: len of buffer
198 * @sense: optional sense buffer
199 * @timeout: request timeout in seconds
200 * @retries: number of times to retry request
201 * @flags: or into request flags;
202 * @resid: optional residual length
204 * returns the req->errors value which is the scsi_cmnd result
205 * field.
207 int scsi_execute(struct scsi_device *sdev, const unsigned char *cmd,
208 int data_direction, void *buffer, unsigned bufflen,
209 unsigned char *sense, int timeout, int retries, int flags,
210 int *resid)
212 struct request *req;
213 int write = (data_direction == DMA_TO_DEVICE);
214 int ret = DRIVER_ERROR << 24;
216 req = blk_get_request(sdev->request_queue, write, __GFP_WAIT);
217 if (!req)
218 return ret;
220 if (bufflen && blk_rq_map_kern(sdev->request_queue, req,
221 buffer, bufflen, __GFP_WAIT))
222 goto out;
224 req->cmd_len = COMMAND_SIZE(cmd[0]);
225 memcpy(req->cmd, cmd, req->cmd_len);
226 req->sense = sense;
227 req->sense_len = 0;
228 req->retries = retries;
229 req->timeout = timeout;
230 req->cmd_type = REQ_TYPE_BLOCK_PC;
231 req->cmd_flags |= flags | REQ_QUIET | REQ_PREEMPT;
234 * head injection *required* here otherwise quiesce won't work
236 blk_execute_rq(req->q, NULL, req, 1);
239 * Some devices (USB mass-storage in particular) may transfer
240 * garbage data together with a residue indicating that the data
241 * is invalid. Prevent the garbage from being misinterpreted
242 * and prevent security leaks by zeroing out the excess data.
244 if (unlikely(req->resid_len > 0 && req->resid_len <= bufflen))
245 memset(buffer + (bufflen - req->resid_len), 0, req->resid_len);
247 if (resid)
248 *resid = req->resid_len;
249 ret = req->errors;
250 out:
251 blk_put_request(req);
253 return ret;
255 EXPORT_SYMBOL(scsi_execute);
257 int scsi_execute_req_flags(struct scsi_device *sdev, const unsigned char *cmd,
258 int data_direction, void *buffer, unsigned bufflen,
259 struct scsi_sense_hdr *sshdr, int timeout, int retries,
260 int *resid, int flags)
262 char *sense = NULL;
263 int result;
265 if (sshdr) {
266 sense = kzalloc(SCSI_SENSE_BUFFERSIZE, GFP_NOIO);
267 if (!sense)
268 return DRIVER_ERROR << 24;
270 result = scsi_execute(sdev, cmd, data_direction, buffer, bufflen,
271 sense, timeout, retries, flags, resid);
272 if (sshdr)
273 scsi_normalize_sense(sense, SCSI_SENSE_BUFFERSIZE, sshdr);
275 kfree(sense);
276 return result;
278 EXPORT_SYMBOL(scsi_execute_req_flags);
281 * Function: scsi_init_cmd_errh()
283 * Purpose: Initialize cmd fields related to error handling.
285 * Arguments: cmd - command that is ready to be queued.
287 * Notes: This function has the job of initializing a number of
288 * fields related to error handling. Typically this will
289 * be called once for each command, as required.
291 static void scsi_init_cmd_errh(struct scsi_cmnd *cmd)
293 cmd->serial_number = 0;
294 scsi_set_resid(cmd, 0);
295 memset(cmd->sense_buffer, 0, SCSI_SENSE_BUFFERSIZE);
296 if (cmd->cmd_len == 0)
297 cmd->cmd_len = scsi_command_size(cmd->cmnd);
300 void scsi_device_unbusy(struct scsi_device *sdev)
302 struct Scsi_Host *shost = sdev->host;
303 struct scsi_target *starget = scsi_target(sdev);
304 unsigned long flags;
306 spin_lock_irqsave(shost->host_lock, flags);
307 shost->host_busy--;
308 starget->target_busy--;
309 if (unlikely(scsi_host_in_recovery(shost) &&
310 (shost->host_failed || shost->host_eh_scheduled)))
311 scsi_eh_wakeup(shost);
312 spin_unlock(shost->host_lock);
313 spin_lock(sdev->request_queue->queue_lock);
314 sdev->device_busy--;
315 spin_unlock_irqrestore(sdev->request_queue->queue_lock, flags);
319 * Called for single_lun devices on IO completion. Clear starget_sdev_user,
320 * and call blk_run_queue for all the scsi_devices on the target -
321 * including current_sdev first.
323 * Called with *no* scsi locks held.
325 static void scsi_single_lun_run(struct scsi_device *current_sdev)
327 struct Scsi_Host *shost = current_sdev->host;
328 struct scsi_device *sdev, *tmp;
329 struct scsi_target *starget = scsi_target(current_sdev);
330 unsigned long flags;
332 spin_lock_irqsave(shost->host_lock, flags);
333 starget->starget_sdev_user = NULL;
334 spin_unlock_irqrestore(shost->host_lock, flags);
337 * Call blk_run_queue for all LUNs on the target, starting with
338 * current_sdev. We race with others (to set starget_sdev_user),
339 * but in most cases, we will be first. Ideally, each LU on the
340 * target would get some limited time or requests on the target.
342 blk_run_queue(current_sdev->request_queue);
344 spin_lock_irqsave(shost->host_lock, flags);
345 if (starget->starget_sdev_user)
346 goto out;
347 list_for_each_entry_safe(sdev, tmp, &starget->devices,
348 same_target_siblings) {
349 if (sdev == current_sdev)
350 continue;
351 if (scsi_device_get(sdev))
352 continue;
354 spin_unlock_irqrestore(shost->host_lock, flags);
355 blk_run_queue(sdev->request_queue);
356 spin_lock_irqsave(shost->host_lock, flags);
358 scsi_device_put(sdev);
360 out:
361 spin_unlock_irqrestore(shost->host_lock, flags);
364 static inline int scsi_device_is_busy(struct scsi_device *sdev)
366 if (sdev->device_busy >= sdev->queue_depth || sdev->device_blocked)
367 return 1;
369 return 0;
372 static inline int scsi_target_is_busy(struct scsi_target *starget)
374 return ((starget->can_queue > 0 &&
375 starget->target_busy >= starget->can_queue) ||
376 starget->target_blocked);
379 static inline int scsi_host_is_busy(struct Scsi_Host *shost)
381 if ((shost->can_queue > 0 && shost->host_busy >= shost->can_queue) ||
382 shost->host_blocked || shost->host_self_blocked)
383 return 1;
385 return 0;
389 * Function: scsi_run_queue()
391 * Purpose: Select a proper request queue to serve next
393 * Arguments: q - last request's queue
395 * Returns: Nothing
397 * Notes: The previous command was completely finished, start
398 * a new one if possible.
400 static void scsi_run_queue(struct request_queue *q)
402 struct scsi_device *sdev = q->queuedata;
403 struct Scsi_Host *shost;
404 LIST_HEAD(starved_list);
405 unsigned long flags;
407 shost = sdev->host;
408 if (scsi_target(sdev)->single_lun)
409 scsi_single_lun_run(sdev);
411 spin_lock_irqsave(shost->host_lock, flags);
412 list_splice_init(&shost->starved_list, &starved_list);
414 while (!list_empty(&starved_list)) {
415 struct request_queue *slq;
418 * As long as shost is accepting commands and we have
419 * starved queues, call blk_run_queue. scsi_request_fn
420 * drops the queue_lock and can add us back to the
421 * starved_list.
423 * host_lock protects the starved_list and starved_entry.
424 * scsi_request_fn must get the host_lock before checking
425 * or modifying starved_list or starved_entry.
427 if (scsi_host_is_busy(shost))
428 break;
430 sdev = list_entry(starved_list.next,
431 struct scsi_device, starved_entry);
432 list_del_init(&sdev->starved_entry);
433 if (scsi_target_is_busy(scsi_target(sdev))) {
434 list_move_tail(&sdev->starved_entry,
435 &shost->starved_list);
436 continue;
440 * Once we drop the host lock, a racing scsi_remove_device()
441 * call may remove the sdev from the starved list and destroy
442 * it and the queue. Mitigate by taking a reference to the
443 * queue and never touching the sdev again after we drop the
444 * host lock. Note: if __scsi_remove_device() invokes
445 * blk_cleanup_queue() before the queue is run from this
446 * function then blk_run_queue() will return immediately since
447 * blk_cleanup_queue() marks the queue with QUEUE_FLAG_DYING.
449 slq = sdev->request_queue;
450 if (!blk_get_queue(slq))
451 continue;
452 spin_unlock_irqrestore(shost->host_lock, flags);
454 blk_run_queue(slq);
455 blk_put_queue(slq);
457 spin_lock_irqsave(shost->host_lock, flags);
459 /* put any unprocessed entries back */
460 list_splice(&starved_list, &shost->starved_list);
461 spin_unlock_irqrestore(shost->host_lock, flags);
463 blk_run_queue(q);
466 void scsi_requeue_run_queue(struct work_struct *work)
468 struct scsi_device *sdev;
469 struct request_queue *q;
471 sdev = container_of(work, struct scsi_device, requeue_work);
472 q = sdev->request_queue;
473 scsi_run_queue(q);
477 * Function: scsi_requeue_command()
479 * Purpose: Handle post-processing of completed commands.
481 * Arguments: q - queue to operate on
482 * cmd - command that may need to be requeued.
484 * Returns: Nothing
486 * Notes: After command completion, there may be blocks left
487 * over which weren't finished by the previous command
488 * this can be for a number of reasons - the main one is
489 * I/O errors in the middle of the request, in which case
490 * we need to request the blocks that come after the bad
491 * sector.
492 * Notes: Upon return, cmd is a stale pointer.
494 static void scsi_requeue_command(struct request_queue *q, struct scsi_cmnd *cmd)
496 struct scsi_device *sdev = cmd->device;
497 struct request *req = cmd->request;
498 unsigned long flags;
501 * We need to hold a reference on the device to avoid the queue being
502 * killed after the unlock and before scsi_run_queue is invoked which
503 * may happen because scsi_unprep_request() puts the command which
504 * releases its reference on the device.
506 get_device(&sdev->sdev_gendev);
508 spin_lock_irqsave(q->queue_lock, flags);
509 scsi_unprep_request(req);
510 blk_requeue_request(q, req);
511 spin_unlock_irqrestore(q->queue_lock, flags);
513 scsi_run_queue(q);
515 put_device(&sdev->sdev_gendev);
518 void scsi_next_command(struct scsi_cmnd *cmd)
520 struct scsi_device *sdev = cmd->device;
521 struct request_queue *q = sdev->request_queue;
523 /* need to hold a reference on the device before we let go of the cmd */
524 get_device(&sdev->sdev_gendev);
526 scsi_put_command(cmd);
527 scsi_run_queue(q);
529 /* ok to remove device now */
530 put_device(&sdev->sdev_gendev);
533 void scsi_run_host_queues(struct Scsi_Host *shost)
535 struct scsi_device *sdev;
537 shost_for_each_device(sdev, shost)
538 scsi_run_queue(sdev->request_queue);
541 static void __scsi_release_buffers(struct scsi_cmnd *, int);
543 static inline unsigned int scsi_sgtable_index(unsigned short nents)
545 unsigned int index;
547 BUG_ON(nents > SCSI_MAX_SG_SEGMENTS);
549 if (nents <= 8)
550 index = 0;
551 else
552 index = get_count_order(nents) - 3;
554 return index;
557 static void scsi_sg_free(struct scatterlist *sgl, unsigned int nents)
559 struct scsi_host_sg_pool *sgp;
561 sgp = scsi_sg_pools + scsi_sgtable_index(nents);
562 mempool_free(sgl, sgp->pool);
565 static struct scatterlist *scsi_sg_alloc(unsigned int nents, gfp_t gfp_mask)
567 struct scsi_host_sg_pool *sgp;
569 sgp = scsi_sg_pools + scsi_sgtable_index(nents);
570 return mempool_alloc(sgp->pool, gfp_mask);
573 static int scsi_alloc_sgtable(struct scsi_data_buffer *sdb, int nents,
574 gfp_t gfp_mask)
576 int ret;
578 BUG_ON(!nents);
580 ret = __sg_alloc_table(&sdb->table, nents, SCSI_MAX_SG_SEGMENTS,
581 gfp_mask, scsi_sg_alloc);
582 if (unlikely(ret))
583 __sg_free_table(&sdb->table, SCSI_MAX_SG_SEGMENTS,
584 scsi_sg_free);
586 return ret;
589 static void scsi_free_sgtable(struct scsi_data_buffer *sdb)
591 __sg_free_table(&sdb->table, SCSI_MAX_SG_SEGMENTS, scsi_sg_free);
594 static void __scsi_release_buffers(struct scsi_cmnd *cmd, int do_bidi_check)
597 if (cmd->sdb.table.nents)
598 scsi_free_sgtable(&cmd->sdb);
600 memset(&cmd->sdb, 0, sizeof(cmd->sdb));
602 if (do_bidi_check && scsi_bidi_cmnd(cmd)) {
603 struct scsi_data_buffer *bidi_sdb =
604 cmd->request->next_rq->special;
605 scsi_free_sgtable(bidi_sdb);
606 kmem_cache_free(scsi_sdb_cache, bidi_sdb);
607 cmd->request->next_rq->special = NULL;
610 if (scsi_prot_sg_count(cmd))
611 scsi_free_sgtable(cmd->prot_sdb);
615 * Function: scsi_release_buffers()
617 * Purpose: Completion processing for block device I/O requests.
619 * Arguments: cmd - command that we are bailing.
621 * Lock status: Assumed that no lock is held upon entry.
623 * Returns: Nothing
625 * Notes: In the event that an upper level driver rejects a
626 * command, we must release resources allocated during
627 * the __init_io() function. Primarily this would involve
628 * the scatter-gather table, and potentially any bounce
629 * buffers.
631 void scsi_release_buffers(struct scsi_cmnd *cmd)
633 __scsi_release_buffers(cmd, 1);
635 EXPORT_SYMBOL(scsi_release_buffers);
638 * __scsi_error_from_host_byte - translate SCSI error code into errno
639 * @cmd: SCSI command (unused)
640 * @result: scsi error code
642 * Translate SCSI error code into standard UNIX errno.
643 * Return values:
644 * -ENOLINK temporary transport failure
645 * -EREMOTEIO permanent target failure, do not retry
646 * -EBADE permanent nexus failure, retry on other path
647 * -ENOSPC No write space available
648 * -ENODATA Medium error
649 * -EIO unspecified I/O error
651 static int __scsi_error_from_host_byte(struct scsi_cmnd *cmd, int result)
653 int error = 0;
655 switch(host_byte(result)) {
656 case DID_TRANSPORT_FAILFAST:
657 error = -ENOLINK;
658 break;
659 case DID_TARGET_FAILURE:
660 set_host_byte(cmd, DID_OK);
661 error = -EREMOTEIO;
662 break;
663 case DID_NEXUS_FAILURE:
664 set_host_byte(cmd, DID_OK);
665 error = -EBADE;
666 break;
667 case DID_ALLOC_FAILURE:
668 set_host_byte(cmd, DID_OK);
669 error = -ENOSPC;
670 break;
671 case DID_MEDIUM_ERROR:
672 set_host_byte(cmd, DID_OK);
673 error = -ENODATA;
674 break;
675 default:
676 error = -EIO;
677 break;
680 return error;
684 * Function: scsi_io_completion()
686 * Purpose: Completion processing for block device I/O requests.
688 * Arguments: cmd - command that is finished.
690 * Lock status: Assumed that no lock is held upon entry.
692 * Returns: Nothing
694 * Notes: We will finish off the specified number of sectors. If we
695 * are done, the command block will be released and the queue
696 * function will be goosed. If we are not done then we have to
697 * figure out what to do next:
699 * a) We can call scsi_requeue_command(). The request
700 * will be unprepared and put back on the queue. Then
701 * a new command will be created for it. This should
702 * be used if we made forward progress, or if we want
703 * to switch from READ(10) to READ(6) for example.
705 * b) We can call __scsi_queue_insert(). The request will
706 * be put back on the queue and retried using the same
707 * command as before, possibly after a delay.
709 * c) We can call blk_end_request() with -EIO to fail
710 * the remainder of the request.
712 void scsi_io_completion(struct scsi_cmnd *cmd, unsigned int good_bytes)
714 int result = cmd->result;
715 struct request_queue *q = cmd->device->request_queue;
716 struct request *req = cmd->request;
717 int error = 0;
718 struct scsi_sense_hdr sshdr;
719 int sense_valid = 0;
720 int sense_deferred = 0;
721 enum {ACTION_FAIL, ACTION_REPREP, ACTION_RETRY,
722 ACTION_DELAYED_RETRY} action;
723 char *description = NULL;
725 if (result) {
726 sense_valid = scsi_command_normalize_sense(cmd, &sshdr);
727 if (sense_valid)
728 sense_deferred = scsi_sense_is_deferred(&sshdr);
731 if (req->cmd_type == REQ_TYPE_BLOCK_PC) { /* SG_IO ioctl from block level */
732 if (result) {
733 if (sense_valid && req->sense) {
735 * SG_IO wants current and deferred errors
737 int len = 8 + cmd->sense_buffer[7];
739 if (len > SCSI_SENSE_BUFFERSIZE)
740 len = SCSI_SENSE_BUFFERSIZE;
741 memcpy(req->sense, cmd->sense_buffer, len);
742 req->sense_len = len;
744 if (!sense_deferred)
745 error = __scsi_error_from_host_byte(cmd, result);
748 * __scsi_error_from_host_byte may have reset the host_byte
750 req->errors = cmd->result;
752 req->resid_len = scsi_get_resid(cmd);
754 if (scsi_bidi_cmnd(cmd)) {
756 * Bidi commands Must be complete as a whole,
757 * both sides at once.
759 req->next_rq->resid_len = scsi_in(cmd)->resid;
761 scsi_release_buffers(cmd);
762 blk_end_request_all(req, 0);
764 scsi_next_command(cmd);
765 return;
767 } else if (blk_rq_bytes(req) == 0 && result && !sense_deferred) {
769 * Certain non BLOCK_PC requests are commands that don't
770 * actually transfer anything (FLUSH), so cannot use
771 * good_bytes != blk_rq_bytes(req) as the signal for an error.
772 * This sets the error explicitly for the problem case.
774 error = __scsi_error_from_host_byte(cmd, result);
777 /* no bidi support for !REQ_TYPE_BLOCK_PC yet */
778 BUG_ON(blk_bidi_rq(req));
781 * Next deal with any sectors which we were able to correctly
782 * handle.
784 SCSI_LOG_HLCOMPLETE(1, printk("%u sectors total, "
785 "%d bytes done.\n",
786 blk_rq_sectors(req), good_bytes));
789 * Recovered errors need reporting, but they're always treated
790 * as success, so fiddle the result code here. For BLOCK_PC
791 * we already took a copy of the original into rq->errors which
792 * is what gets returned to the user
794 if (sense_valid && (sshdr.sense_key == RECOVERED_ERROR)) {
795 /* if ATA PASS-THROUGH INFORMATION AVAILABLE skip
796 * print since caller wants ATA registers. Only occurs on
797 * SCSI ATA PASS_THROUGH commands when CK_COND=1
799 if ((sshdr.asc == 0x0) && (sshdr.ascq == 0x1d))
801 else if (!(req->cmd_flags & REQ_QUIET))
802 scsi_print_sense("", cmd);
803 result = 0;
804 /* BLOCK_PC may have set error */
805 error = 0;
809 * special case: failed zero length commands always need to
810 * drop down into the retry code. Otherwise, if we finished
811 * all bytes in the request we are done now.
813 if (!(blk_rq_bytes(req) == 0 && error) &&
814 !blk_end_request(req, error, good_bytes))
815 goto next_command;
818 * Kill remainder if no retrys.
820 if (error && scsi_noretry_cmd(cmd)) {
821 blk_end_request_all(req, error);
822 goto next_command;
826 * If there had been no error, but we have leftover bytes in the
827 * requeues just queue the command up again.
829 if (result == 0)
830 goto requeue;
832 error = __scsi_error_from_host_byte(cmd, result);
834 if (host_byte(result) == DID_RESET) {
835 /* Third party bus reset or reset for error recovery
836 * reasons. Just retry the command and see what
837 * happens.
839 action = ACTION_RETRY;
840 } else if (sense_valid && !sense_deferred) {
841 switch (sshdr.sense_key) {
842 case UNIT_ATTENTION:
843 if (cmd->device->removable) {
844 /* Detected disc change. Set a bit
845 * and quietly refuse further access.
847 cmd->device->changed = 1;
848 description = "Media Changed";
849 action = ACTION_FAIL;
850 } else {
851 /* Must have been a power glitch, or a
852 * bus reset. Could not have been a
853 * media change, so we just retry the
854 * command and see what happens.
856 action = ACTION_RETRY;
858 break;
859 case ILLEGAL_REQUEST:
860 /* If we had an ILLEGAL REQUEST returned, then
861 * we may have performed an unsupported
862 * command. The only thing this should be
863 * would be a ten byte read where only a six
864 * byte read was supported. Also, on a system
865 * where READ CAPACITY failed, we may have
866 * read past the end of the disk.
868 if ((cmd->device->use_10_for_rw &&
869 sshdr.asc == 0x20 && sshdr.ascq == 0x00) &&
870 (cmd->cmnd[0] == READ_10 ||
871 cmd->cmnd[0] == WRITE_10)) {
872 /* This will issue a new 6-byte command. */
873 cmd->device->use_10_for_rw = 0;
874 action = ACTION_REPREP;
875 } else if (sshdr.asc == 0x10) /* DIX */ {
876 description = "Host Data Integrity Failure";
877 action = ACTION_FAIL;
878 error = -EILSEQ;
879 /* INVALID COMMAND OPCODE or INVALID FIELD IN CDB */
880 } else if (sshdr.asc == 0x20 || sshdr.asc == 0x24) {
881 switch (cmd->cmnd[0]) {
882 case UNMAP:
883 description = "Discard failure";
884 break;
885 case WRITE_SAME:
886 case WRITE_SAME_16:
887 if (cmd->cmnd[1] & 0x8)
888 description = "Discard failure";
889 else
890 description =
891 "Write same failure";
892 break;
893 default:
894 description = "Invalid command failure";
895 break;
897 action = ACTION_FAIL;
898 error = -EREMOTEIO;
899 } else
900 action = ACTION_FAIL;
901 break;
902 case ABORTED_COMMAND:
903 action = ACTION_FAIL;
904 if (sshdr.asc == 0x10) { /* DIF */
905 description = "Target Data Integrity Failure";
906 error = -EILSEQ;
908 break;
909 case NOT_READY:
910 /* If the device is in the process of becoming
911 * ready, or has a temporary blockage, retry.
913 if (sshdr.asc == 0x04) {
914 switch (sshdr.ascq) {
915 case 0x01: /* becoming ready */
916 case 0x04: /* format in progress */
917 case 0x05: /* rebuild in progress */
918 case 0x06: /* recalculation in progress */
919 case 0x07: /* operation in progress */
920 case 0x08: /* Long write in progress */
921 case 0x09: /* self test in progress */
922 case 0x14: /* space allocation in progress */
923 action = ACTION_DELAYED_RETRY;
924 break;
925 default:
926 description = "Device not ready";
927 action = ACTION_FAIL;
928 break;
930 } else {
931 description = "Device not ready";
932 action = ACTION_FAIL;
934 break;
935 case VOLUME_OVERFLOW:
936 /* See SSC3rXX or current. */
937 action = ACTION_FAIL;
938 break;
939 default:
940 description = "Unhandled sense code";
941 action = ACTION_FAIL;
942 break;
944 } else {
945 description = "Unhandled error code";
946 action = ACTION_FAIL;
949 switch (action) {
950 case ACTION_FAIL:
951 /* Give up and fail the remainder of the request */
952 if (!(req->cmd_flags & REQ_QUIET)) {
953 if (description)
954 scmd_printk(KERN_INFO, cmd, "%s\n",
955 description);
956 scsi_print_result(cmd);
957 if (driver_byte(result) & DRIVER_SENSE)
958 scsi_print_sense("", cmd);
959 scsi_print_command(cmd);
961 if (!blk_end_request_err(req, error))
962 goto next_command;
963 /*FALLTHRU*/
964 case ACTION_REPREP:
965 requeue:
966 /* Unprep the request and put it back at the head of the queue.
967 * A new command will be prepared and issued.
969 scsi_release_buffers(cmd);
970 scsi_requeue_command(q, cmd);
971 break;
972 case ACTION_RETRY:
973 /* Retry the same command immediately */
974 __scsi_queue_insert(cmd, SCSI_MLQUEUE_EH_RETRY, 0);
975 break;
976 case ACTION_DELAYED_RETRY:
977 /* Retry the same command after a delay */
978 __scsi_queue_insert(cmd, SCSI_MLQUEUE_DEVICE_BUSY, 0);
979 break;
981 return;
983 next_command:
984 __scsi_release_buffers(cmd, 0);
985 scsi_next_command(cmd);
988 static int scsi_init_sgtable(struct request *req, struct scsi_data_buffer *sdb,
989 gfp_t gfp_mask)
991 int count;
994 * If sg table allocation fails, requeue request later.
996 if (unlikely(scsi_alloc_sgtable(sdb, req->nr_phys_segments,
997 gfp_mask))) {
998 return BLKPREP_DEFER;
1001 req->buffer = NULL;
1004 * Next, walk the list, and fill in the addresses and sizes of
1005 * each segment.
1007 count = blk_rq_map_sg(req->q, req, sdb->table.sgl);
1008 BUG_ON(count > sdb->table.nents);
1009 sdb->table.nents = count;
1010 sdb->length = blk_rq_bytes(req);
1011 return BLKPREP_OK;
1015 * Function: scsi_init_io()
1017 * Purpose: SCSI I/O initialize function.
1019 * Arguments: cmd - Command descriptor we wish to initialize
1021 * Returns: 0 on success
1022 * BLKPREP_DEFER if the failure is retryable
1023 * BLKPREP_KILL if the failure is fatal
1025 int scsi_init_io(struct scsi_cmnd *cmd, gfp_t gfp_mask)
1027 struct request *rq = cmd->request;
1029 int error = scsi_init_sgtable(rq, &cmd->sdb, gfp_mask);
1030 if (error)
1031 goto err_exit;
1033 if (blk_bidi_rq(rq)) {
1034 struct scsi_data_buffer *bidi_sdb = kmem_cache_zalloc(
1035 scsi_sdb_cache, GFP_ATOMIC);
1036 if (!bidi_sdb) {
1037 error = BLKPREP_DEFER;
1038 goto err_exit;
1041 rq->next_rq->special = bidi_sdb;
1042 error = scsi_init_sgtable(rq->next_rq, bidi_sdb, GFP_ATOMIC);
1043 if (error)
1044 goto err_exit;
1047 if (blk_integrity_rq(rq)) {
1048 struct scsi_data_buffer *prot_sdb = cmd->prot_sdb;
1049 int ivecs, count;
1051 if (prot_sdb == NULL) {
1053 * This can happen if someone (e.g. multipath)
1054 * queues a command to a device on an adapter
1055 * that does not support DIX.
1057 WARN_ON_ONCE(1);
1058 error = BLKPREP_KILL;
1059 goto err_exit;
1062 ivecs = blk_rq_count_integrity_sg(rq->q, rq->bio);
1064 if (scsi_alloc_sgtable(prot_sdb, ivecs, gfp_mask)) {
1065 error = BLKPREP_DEFER;
1066 goto err_exit;
1069 count = blk_rq_map_integrity_sg(rq->q, rq->bio,
1070 prot_sdb->table.sgl);
1071 BUG_ON(unlikely(count > ivecs));
1072 BUG_ON(unlikely(count > queue_max_integrity_segments(rq->q)));
1074 cmd->prot_sdb = prot_sdb;
1075 cmd->prot_sdb->table.nents = count;
1078 return BLKPREP_OK ;
1080 err_exit:
1081 scsi_release_buffers(cmd);
1082 cmd->request->special = NULL;
1083 scsi_put_command(cmd);
1084 return error;
1086 EXPORT_SYMBOL(scsi_init_io);
1088 static struct scsi_cmnd *scsi_get_cmd_from_req(struct scsi_device *sdev,
1089 struct request *req)
1091 struct scsi_cmnd *cmd;
1093 if (!req->special) {
1094 cmd = scsi_get_command(sdev, GFP_ATOMIC);
1095 if (unlikely(!cmd))
1096 return NULL;
1097 req->special = cmd;
1098 } else {
1099 cmd = req->special;
1102 /* pull a tag out of the request if we have one */
1103 cmd->tag = req->tag;
1104 cmd->request = req;
1106 cmd->cmnd = req->cmd;
1107 cmd->prot_op = SCSI_PROT_NORMAL;
1109 return cmd;
1112 int scsi_setup_blk_pc_cmnd(struct scsi_device *sdev, struct request *req)
1114 struct scsi_cmnd *cmd;
1115 int ret = scsi_prep_state_check(sdev, req);
1117 if (ret != BLKPREP_OK)
1118 return ret;
1120 cmd = scsi_get_cmd_from_req(sdev, req);
1121 if (unlikely(!cmd))
1122 return BLKPREP_DEFER;
1125 * BLOCK_PC requests may transfer data, in which case they must
1126 * a bio attached to them. Or they might contain a SCSI command
1127 * that does not transfer data, in which case they may optionally
1128 * submit a request without an attached bio.
1130 if (req->bio) {
1131 int ret;
1133 BUG_ON(!req->nr_phys_segments);
1135 ret = scsi_init_io(cmd, GFP_ATOMIC);
1136 if (unlikely(ret))
1137 return ret;
1138 } else {
1139 BUG_ON(blk_rq_bytes(req));
1141 memset(&cmd->sdb, 0, sizeof(cmd->sdb));
1142 req->buffer = NULL;
1145 cmd->cmd_len = req->cmd_len;
1146 if (!blk_rq_bytes(req))
1147 cmd->sc_data_direction = DMA_NONE;
1148 else if (rq_data_dir(req) == WRITE)
1149 cmd->sc_data_direction = DMA_TO_DEVICE;
1150 else
1151 cmd->sc_data_direction = DMA_FROM_DEVICE;
1153 cmd->transfersize = blk_rq_bytes(req);
1154 cmd->allowed = req->retries;
1155 return BLKPREP_OK;
1157 EXPORT_SYMBOL(scsi_setup_blk_pc_cmnd);
1160 * Setup a REQ_TYPE_FS command. These are simple read/write request
1161 * from filesystems that still need to be translated to SCSI CDBs from
1162 * the ULD.
1164 int scsi_setup_fs_cmnd(struct scsi_device *sdev, struct request *req)
1166 struct scsi_cmnd *cmd;
1167 int ret = scsi_prep_state_check(sdev, req);
1169 if (ret != BLKPREP_OK)
1170 return ret;
1172 if (unlikely(sdev->scsi_dh_data && sdev->scsi_dh_data->scsi_dh
1173 && sdev->scsi_dh_data->scsi_dh->prep_fn)) {
1174 ret = sdev->scsi_dh_data->scsi_dh->prep_fn(sdev, req);
1175 if (ret != BLKPREP_OK)
1176 return ret;
1180 * Filesystem requests must transfer data.
1182 BUG_ON(!req->nr_phys_segments);
1184 cmd = scsi_get_cmd_from_req(sdev, req);
1185 if (unlikely(!cmd))
1186 return BLKPREP_DEFER;
1188 memset(cmd->cmnd, 0, BLK_MAX_CDB);
1189 return scsi_init_io(cmd, GFP_ATOMIC);
1191 EXPORT_SYMBOL(scsi_setup_fs_cmnd);
1193 int scsi_prep_state_check(struct scsi_device *sdev, struct request *req)
1195 int ret = BLKPREP_OK;
1198 * If the device is not in running state we will reject some
1199 * or all commands.
1201 if (unlikely(sdev->sdev_state != SDEV_RUNNING)) {
1202 switch (sdev->sdev_state) {
1203 case SDEV_OFFLINE:
1204 case SDEV_TRANSPORT_OFFLINE:
1206 * If the device is offline we refuse to process any
1207 * commands. The device must be brought online
1208 * before trying any recovery commands.
1210 sdev_printk(KERN_ERR, sdev,
1211 "rejecting I/O to offline device\n");
1212 ret = BLKPREP_KILL;
1213 break;
1214 case SDEV_DEL:
1216 * If the device is fully deleted, we refuse to
1217 * process any commands as well.
1219 sdev_printk(KERN_ERR, sdev,
1220 "rejecting I/O to dead device\n");
1221 ret = BLKPREP_KILL;
1222 break;
1223 case SDEV_BLOCK:
1224 case SDEV_CREATED_BLOCK:
1225 ret = BLKPREP_DEFER;
1226 break;
1227 case SDEV_QUIESCE:
1229 * If the devices is blocked we defer normal commands.
1231 if (!(req->cmd_flags & REQ_PREEMPT))
1232 ret = BLKPREP_DEFER;
1233 break;
1234 default:
1236 * For any other not fully online state we only allow
1237 * special commands. In particular any user initiated
1238 * command is not allowed.
1240 if (!(req->cmd_flags & REQ_PREEMPT))
1241 ret = BLKPREP_KILL;
1242 break;
1245 return ret;
1247 EXPORT_SYMBOL(scsi_prep_state_check);
1249 int scsi_prep_return(struct request_queue *q, struct request *req, int ret)
1251 struct scsi_device *sdev = q->queuedata;
1253 switch (ret) {
1254 case BLKPREP_KILL:
1255 req->errors = DID_NO_CONNECT << 16;
1256 /* release the command and kill it */
1257 if (req->special) {
1258 struct scsi_cmnd *cmd = req->special;
1259 scsi_release_buffers(cmd);
1260 scsi_put_command(cmd);
1261 req->special = NULL;
1263 break;
1264 case BLKPREP_DEFER:
1266 * If we defer, the blk_peek_request() returns NULL, but the
1267 * queue must be restarted, so we schedule a callback to happen
1268 * shortly.
1270 if (sdev->device_busy == 0)
1271 blk_delay_queue(q, SCSI_QUEUE_DELAY);
1272 break;
1273 default:
1274 req->cmd_flags |= REQ_DONTPREP;
1277 return ret;
1279 EXPORT_SYMBOL(scsi_prep_return);
1281 int scsi_prep_fn(struct request_queue *q, struct request *req)
1283 struct scsi_device *sdev = q->queuedata;
1284 int ret = BLKPREP_KILL;
1286 if (req->cmd_type == REQ_TYPE_BLOCK_PC)
1287 ret = scsi_setup_blk_pc_cmnd(sdev, req);
1288 return scsi_prep_return(q, req, ret);
1290 EXPORT_SYMBOL(scsi_prep_fn);
1293 * scsi_dev_queue_ready: if we can send requests to sdev, return 1 else
1294 * return 0.
1296 * Called with the queue_lock held.
1298 static inline int scsi_dev_queue_ready(struct request_queue *q,
1299 struct scsi_device *sdev)
1301 if (sdev->device_busy == 0 && sdev->device_blocked) {
1303 * unblock after device_blocked iterates to zero
1305 if (--sdev->device_blocked == 0) {
1306 SCSI_LOG_MLQUEUE(3,
1307 sdev_printk(KERN_INFO, sdev,
1308 "unblocking device at zero depth\n"));
1309 } else {
1310 blk_delay_queue(q, SCSI_QUEUE_DELAY);
1311 return 0;
1314 if (scsi_device_is_busy(sdev))
1315 return 0;
1317 return 1;
1322 * scsi_target_queue_ready: checks if there we can send commands to target
1323 * @sdev: scsi device on starget to check.
1325 * Called with the host lock held.
1327 static inline int scsi_target_queue_ready(struct Scsi_Host *shost,
1328 struct scsi_device *sdev)
1330 struct scsi_target *starget = scsi_target(sdev);
1332 if (starget->single_lun) {
1333 if (starget->starget_sdev_user &&
1334 starget->starget_sdev_user != sdev)
1335 return 0;
1336 starget->starget_sdev_user = sdev;
1339 if (starget->target_busy == 0 && starget->target_blocked) {
1341 * unblock after target_blocked iterates to zero
1343 if (--starget->target_blocked == 0) {
1344 SCSI_LOG_MLQUEUE(3, starget_printk(KERN_INFO, starget,
1345 "unblocking target at zero depth\n"));
1346 } else
1347 return 0;
1350 if (scsi_target_is_busy(starget)) {
1351 list_move_tail(&sdev->starved_entry, &shost->starved_list);
1352 return 0;
1355 return 1;
1359 * scsi_host_queue_ready: if we can send requests to shost, return 1 else
1360 * return 0. We must end up running the queue again whenever 0 is
1361 * returned, else IO can hang.
1363 * Called with host_lock held.
1365 static inline int scsi_host_queue_ready(struct request_queue *q,
1366 struct Scsi_Host *shost,
1367 struct scsi_device *sdev)
1369 if (scsi_host_in_recovery(shost))
1370 return 0;
1371 if (shost->host_busy == 0 && shost->host_blocked) {
1373 * unblock after host_blocked iterates to zero
1375 if (--shost->host_blocked == 0) {
1376 SCSI_LOG_MLQUEUE(3,
1377 printk("scsi%d unblocking host at zero depth\n",
1378 shost->host_no));
1379 } else {
1380 return 0;
1383 if (scsi_host_is_busy(shost)) {
1384 if (list_empty(&sdev->starved_entry))
1385 list_add_tail(&sdev->starved_entry, &shost->starved_list);
1386 return 0;
1389 /* We're OK to process the command, so we can't be starved */
1390 if (!list_empty(&sdev->starved_entry))
1391 list_del_init(&sdev->starved_entry);
1393 return 1;
1397 * Busy state exporting function for request stacking drivers.
1399 * For efficiency, no lock is taken to check the busy state of
1400 * shost/starget/sdev, since the returned value is not guaranteed and
1401 * may be changed after request stacking drivers call the function,
1402 * regardless of taking lock or not.
1404 * When scsi can't dispatch I/Os anymore and needs to kill I/Os scsi
1405 * needs to return 'not busy'. Otherwise, request stacking drivers
1406 * may hold requests forever.
1408 static int scsi_lld_busy(struct request_queue *q)
1410 struct scsi_device *sdev = q->queuedata;
1411 struct Scsi_Host *shost;
1413 if (blk_queue_dying(q))
1414 return 0;
1416 shost = sdev->host;
1419 * Ignore host/starget busy state.
1420 * Since block layer does not have a concept of fairness across
1421 * multiple queues, congestion of host/starget needs to be handled
1422 * in SCSI layer.
1424 if (scsi_host_in_recovery(shost) || scsi_device_is_busy(sdev))
1425 return 1;
1427 return 0;
1431 * Kill a request for a dead device
1433 static void scsi_kill_request(struct request *req, struct request_queue *q)
1435 struct scsi_cmnd *cmd = req->special;
1436 struct scsi_device *sdev;
1437 struct scsi_target *starget;
1438 struct Scsi_Host *shost;
1440 blk_start_request(req);
1442 scmd_printk(KERN_INFO, cmd, "killing request\n");
1444 sdev = cmd->device;
1445 starget = scsi_target(sdev);
1446 shost = sdev->host;
1447 scsi_init_cmd_errh(cmd);
1448 cmd->result = DID_NO_CONNECT << 16;
1449 atomic_inc(&cmd->device->iorequest_cnt);
1452 * SCSI request completion path will do scsi_device_unbusy(),
1453 * bump busy counts. To bump the counters, we need to dance
1454 * with the locks as normal issue path does.
1456 sdev->device_busy++;
1457 spin_unlock(sdev->request_queue->queue_lock);
1458 spin_lock(shost->host_lock);
1459 shost->host_busy++;
1460 starget->target_busy++;
1461 spin_unlock(shost->host_lock);
1462 spin_lock(sdev->request_queue->queue_lock);
1464 blk_complete_request(req);
1467 static void scsi_softirq_done(struct request *rq)
1469 struct scsi_cmnd *cmd = rq->special;
1470 unsigned long wait_for = (cmd->allowed + 1) * rq->timeout;
1471 int disposition;
1473 INIT_LIST_HEAD(&cmd->eh_entry);
1475 atomic_inc(&cmd->device->iodone_cnt);
1476 if (cmd->result)
1477 atomic_inc(&cmd->device->ioerr_cnt);
1479 disposition = scsi_decide_disposition(cmd);
1480 if (disposition != SUCCESS &&
1481 time_before(cmd->jiffies_at_alloc + wait_for, jiffies)) {
1482 sdev_printk(KERN_ERR, cmd->device,
1483 "timing out command, waited %lus\n",
1484 wait_for/HZ);
1485 disposition = SUCCESS;
1488 scsi_log_completion(cmd, disposition);
1490 switch (disposition) {
1491 case SUCCESS:
1492 scsi_finish_command(cmd);
1493 break;
1494 case NEEDS_RETRY:
1495 scsi_queue_insert(cmd, SCSI_MLQUEUE_EH_RETRY);
1496 break;
1497 case ADD_TO_MLQUEUE:
1498 scsi_queue_insert(cmd, SCSI_MLQUEUE_DEVICE_BUSY);
1499 break;
1500 default:
1501 if (!scsi_eh_scmd_add(cmd, 0))
1502 scsi_finish_command(cmd);
1507 * Function: scsi_request_fn()
1509 * Purpose: Main strategy routine for SCSI.
1511 * Arguments: q - Pointer to actual queue.
1513 * Returns: Nothing
1515 * Lock status: IO request lock assumed to be held when called.
1517 static void scsi_request_fn(struct request_queue *q)
1519 struct scsi_device *sdev = q->queuedata;
1520 struct Scsi_Host *shost;
1521 struct scsi_cmnd *cmd;
1522 struct request *req;
1524 if(!get_device(&sdev->sdev_gendev))
1525 /* We must be tearing the block queue down already */
1526 return;
1529 * To start with, we keep looping until the queue is empty, or until
1530 * the host is no longer able to accept any more requests.
1532 shost = sdev->host;
1533 for (;;) {
1534 int rtn;
1536 * get next queueable request. We do this early to make sure
1537 * that the request is fully prepared even if we cannot
1538 * accept it.
1540 req = blk_peek_request(q);
1541 if (!req || !scsi_dev_queue_ready(q, sdev))
1542 break;
1544 if (unlikely(!scsi_device_online(sdev))) {
1545 sdev_printk(KERN_ERR, sdev,
1546 "rejecting I/O to offline device\n");
1547 scsi_kill_request(req, q);
1548 continue;
1553 * Remove the request from the request list.
1555 if (!(blk_queue_tagged(q) && !blk_queue_start_tag(q, req)))
1556 blk_start_request(req);
1557 sdev->device_busy++;
1559 spin_unlock(q->queue_lock);
1560 cmd = req->special;
1561 if (unlikely(cmd == NULL)) {
1562 printk(KERN_CRIT "impossible request in %s.\n"
1563 "please mail a stack trace to "
1564 "linux-scsi@vger.kernel.org\n",
1565 __func__);
1566 blk_dump_rq_flags(req, "foo");
1567 BUG();
1569 spin_lock(shost->host_lock);
1572 * We hit this when the driver is using a host wide
1573 * tag map. For device level tag maps the queue_depth check
1574 * in the device ready fn would prevent us from trying
1575 * to allocate a tag. Since the map is a shared host resource
1576 * we add the dev to the starved list so it eventually gets
1577 * a run when a tag is freed.
1579 if (blk_queue_tagged(q) && !blk_rq_tagged(req)) {
1580 if (list_empty(&sdev->starved_entry))
1581 list_add_tail(&sdev->starved_entry,
1582 &shost->starved_list);
1583 goto not_ready;
1586 if (!scsi_target_queue_ready(shost, sdev))
1587 goto not_ready;
1589 if (!scsi_host_queue_ready(q, shost, sdev))
1590 goto not_ready;
1592 scsi_target(sdev)->target_busy++;
1593 shost->host_busy++;
1596 * XXX(hch): This is rather suboptimal, scsi_dispatch_cmd will
1597 * take the lock again.
1599 spin_unlock_irq(shost->host_lock);
1602 * Finally, initialize any error handling parameters, and set up
1603 * the timers for timeouts.
1605 scsi_init_cmd_errh(cmd);
1608 * Dispatch the command to the low-level driver.
1610 rtn = scsi_dispatch_cmd(cmd);
1611 spin_lock_irq(q->queue_lock);
1612 if (rtn)
1613 goto out_delay;
1616 goto out;
1618 not_ready:
1619 spin_unlock_irq(shost->host_lock);
1622 * lock q, handle tag, requeue req, and decrement device_busy. We
1623 * must return with queue_lock held.
1625 * Decrementing device_busy without checking it is OK, as all such
1626 * cases (host limits or settings) should run the queue at some
1627 * later time.
1629 spin_lock_irq(q->queue_lock);
1630 blk_requeue_request(q, req);
1631 sdev->device_busy--;
1632 out_delay:
1633 if (sdev->device_busy == 0)
1634 blk_delay_queue(q, SCSI_QUEUE_DELAY);
1635 out:
1636 /* must be careful here...if we trigger the ->remove() function
1637 * we cannot be holding the q lock */
1638 spin_unlock_irq(q->queue_lock);
1639 put_device(&sdev->sdev_gendev);
1640 spin_lock_irq(q->queue_lock);
1643 u64 scsi_calculate_bounce_limit(struct Scsi_Host *shost)
1645 struct device *host_dev;
1646 u64 bounce_limit = 0xffffffff;
1648 if (shost->unchecked_isa_dma)
1649 return BLK_BOUNCE_ISA;
1651 * Platforms with virtual-DMA translation
1652 * hardware have no practical limit.
1654 if (!PCI_DMA_BUS_IS_PHYS)
1655 return BLK_BOUNCE_ANY;
1657 host_dev = scsi_get_device(shost);
1658 if (host_dev && host_dev->dma_mask)
1659 bounce_limit = *host_dev->dma_mask;
1661 return bounce_limit;
1663 EXPORT_SYMBOL(scsi_calculate_bounce_limit);
1665 struct request_queue *__scsi_alloc_queue(struct Scsi_Host *shost,
1666 request_fn_proc *request_fn)
1668 struct request_queue *q;
1669 struct device *dev = shost->dma_dev;
1671 q = blk_init_queue(request_fn, NULL);
1672 if (!q)
1673 return NULL;
1676 * this limit is imposed by hardware restrictions
1678 blk_queue_max_segments(q, min_t(unsigned short, shost->sg_tablesize,
1679 SCSI_MAX_SG_CHAIN_SEGMENTS));
1681 if (scsi_host_prot_dma(shost)) {
1682 shost->sg_prot_tablesize =
1683 min_not_zero(shost->sg_prot_tablesize,
1684 (unsigned short)SCSI_MAX_PROT_SG_SEGMENTS);
1685 BUG_ON(shost->sg_prot_tablesize < shost->sg_tablesize);
1686 blk_queue_max_integrity_segments(q, shost->sg_prot_tablesize);
1689 blk_queue_max_hw_sectors(q, shost->max_sectors);
1690 blk_queue_bounce_limit(q, scsi_calculate_bounce_limit(shost));
1691 blk_queue_segment_boundary(q, shost->dma_boundary);
1692 dma_set_seg_boundary(dev, shost->dma_boundary);
1694 blk_queue_max_segment_size(q, dma_get_max_seg_size(dev));
1696 if (!shost->use_clustering)
1697 q->limits.cluster = 0;
1700 * set a reasonable default alignment on word boundaries: the
1701 * host and device may alter it using
1702 * blk_queue_update_dma_alignment() later.
1704 blk_queue_dma_alignment(q, 0x03);
1706 return q;
1708 EXPORT_SYMBOL(__scsi_alloc_queue);
1710 struct request_queue *scsi_alloc_queue(struct scsi_device *sdev)
1712 struct request_queue *q;
1714 q = __scsi_alloc_queue(sdev->host, scsi_request_fn);
1715 if (!q)
1716 return NULL;
1718 blk_queue_prep_rq(q, scsi_prep_fn);
1719 blk_queue_softirq_done(q, scsi_softirq_done);
1720 blk_queue_rq_timed_out(q, scsi_times_out);
1721 blk_queue_lld_busy(q, scsi_lld_busy);
1722 return q;
1726 * Function: scsi_block_requests()
1728 * Purpose: Utility function used by low-level drivers to prevent further
1729 * commands from being queued to the device.
1731 * Arguments: shost - Host in question
1733 * Returns: Nothing
1735 * Lock status: No locks are assumed held.
1737 * Notes: There is no timer nor any other means by which the requests
1738 * get unblocked other than the low-level driver calling
1739 * scsi_unblock_requests().
1741 void scsi_block_requests(struct Scsi_Host *shost)
1743 shost->host_self_blocked = 1;
1745 EXPORT_SYMBOL(scsi_block_requests);
1748 * Function: scsi_unblock_requests()
1750 * Purpose: Utility function used by low-level drivers to allow further
1751 * commands from being queued to the device.
1753 * Arguments: shost - Host in question
1755 * Returns: Nothing
1757 * Lock status: No locks are assumed held.
1759 * Notes: There is no timer nor any other means by which the requests
1760 * get unblocked other than the low-level driver calling
1761 * scsi_unblock_requests().
1763 * This is done as an API function so that changes to the
1764 * internals of the scsi mid-layer won't require wholesale
1765 * changes to drivers that use this feature.
1767 void scsi_unblock_requests(struct Scsi_Host *shost)
1769 shost->host_self_blocked = 0;
1770 scsi_run_host_queues(shost);
1772 EXPORT_SYMBOL(scsi_unblock_requests);
1774 int __init scsi_init_queue(void)
1776 int i;
1778 scsi_sdb_cache = kmem_cache_create("scsi_data_buffer",
1779 sizeof(struct scsi_data_buffer),
1780 0, 0, NULL);
1781 if (!scsi_sdb_cache) {
1782 printk(KERN_ERR "SCSI: can't init scsi sdb cache\n");
1783 return -ENOMEM;
1786 for (i = 0; i < SG_MEMPOOL_NR; i++) {
1787 struct scsi_host_sg_pool *sgp = scsi_sg_pools + i;
1788 int size = sgp->size * sizeof(struct scatterlist);
1790 sgp->slab = kmem_cache_create(sgp->name, size, 0,
1791 SLAB_HWCACHE_ALIGN, NULL);
1792 if (!sgp->slab) {
1793 printk(KERN_ERR "SCSI: can't init sg slab %s\n",
1794 sgp->name);
1795 goto cleanup_sdb;
1798 sgp->pool = mempool_create_slab_pool(SG_MEMPOOL_SIZE,
1799 sgp->slab);
1800 if (!sgp->pool) {
1801 printk(KERN_ERR "SCSI: can't init sg mempool %s\n",
1802 sgp->name);
1803 goto cleanup_sdb;
1807 return 0;
1809 cleanup_sdb:
1810 for (i = 0; i < SG_MEMPOOL_NR; i++) {
1811 struct scsi_host_sg_pool *sgp = scsi_sg_pools + i;
1812 if (sgp->pool)
1813 mempool_destroy(sgp->pool);
1814 if (sgp->slab)
1815 kmem_cache_destroy(sgp->slab);
1817 kmem_cache_destroy(scsi_sdb_cache);
1819 return -ENOMEM;
1822 void scsi_exit_queue(void)
1824 int i;
1826 kmem_cache_destroy(scsi_sdb_cache);
1828 for (i = 0; i < SG_MEMPOOL_NR; i++) {
1829 struct scsi_host_sg_pool *sgp = scsi_sg_pools + i;
1830 mempool_destroy(sgp->pool);
1831 kmem_cache_destroy(sgp->slab);
1836 * scsi_mode_select - issue a mode select
1837 * @sdev: SCSI device to be queried
1838 * @pf: Page format bit (1 == standard, 0 == vendor specific)
1839 * @sp: Save page bit (0 == don't save, 1 == save)
1840 * @modepage: mode page being requested
1841 * @buffer: request buffer (may not be smaller than eight bytes)
1842 * @len: length of request buffer.
1843 * @timeout: command timeout
1844 * @retries: number of retries before failing
1845 * @data: returns a structure abstracting the mode header data
1846 * @sshdr: place to put sense data (or NULL if no sense to be collected).
1847 * must be SCSI_SENSE_BUFFERSIZE big.
1849 * Returns zero if successful; negative error number or scsi
1850 * status on error
1854 scsi_mode_select(struct scsi_device *sdev, int pf, int sp, int modepage,
1855 unsigned char *buffer, int len, int timeout, int retries,
1856 struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr)
1858 unsigned char cmd[10];
1859 unsigned char *real_buffer;
1860 int ret;
1862 memset(cmd, 0, sizeof(cmd));
1863 cmd[1] = (pf ? 0x10 : 0) | (sp ? 0x01 : 0);
1865 if (sdev->use_10_for_ms) {
1866 if (len > 65535)
1867 return -EINVAL;
1868 real_buffer = kmalloc(8 + len, GFP_KERNEL);
1869 if (!real_buffer)
1870 return -ENOMEM;
1871 memcpy(real_buffer + 8, buffer, len);
1872 len += 8;
1873 real_buffer[0] = 0;
1874 real_buffer[1] = 0;
1875 real_buffer[2] = data->medium_type;
1876 real_buffer[3] = data->device_specific;
1877 real_buffer[4] = data->longlba ? 0x01 : 0;
1878 real_buffer[5] = 0;
1879 real_buffer[6] = data->block_descriptor_length >> 8;
1880 real_buffer[7] = data->block_descriptor_length;
1882 cmd[0] = MODE_SELECT_10;
1883 cmd[7] = len >> 8;
1884 cmd[8] = len;
1885 } else {
1886 if (len > 255 || data->block_descriptor_length > 255 ||
1887 data->longlba)
1888 return -EINVAL;
1890 real_buffer = kmalloc(4 + len, GFP_KERNEL);
1891 if (!real_buffer)
1892 return -ENOMEM;
1893 memcpy(real_buffer + 4, buffer, len);
1894 len += 4;
1895 real_buffer[0] = 0;
1896 real_buffer[1] = data->medium_type;
1897 real_buffer[2] = data->device_specific;
1898 real_buffer[3] = data->block_descriptor_length;
1901 cmd[0] = MODE_SELECT;
1902 cmd[4] = len;
1905 ret = scsi_execute_req(sdev, cmd, DMA_TO_DEVICE, real_buffer, len,
1906 sshdr, timeout, retries, NULL);
1907 kfree(real_buffer);
1908 return ret;
1910 EXPORT_SYMBOL_GPL(scsi_mode_select);
1913 * scsi_mode_sense - issue a mode sense, falling back from 10 to six bytes if necessary.
1914 * @sdev: SCSI device to be queried
1915 * @dbd: set if mode sense will allow block descriptors to be returned
1916 * @modepage: mode page being requested
1917 * @buffer: request buffer (may not be smaller than eight bytes)
1918 * @len: length of request buffer.
1919 * @timeout: command timeout
1920 * @retries: number of retries before failing
1921 * @data: returns a structure abstracting the mode header data
1922 * @sshdr: place to put sense data (or NULL if no sense to be collected).
1923 * must be SCSI_SENSE_BUFFERSIZE big.
1925 * Returns zero if unsuccessful, or the header offset (either 4
1926 * or 8 depending on whether a six or ten byte command was
1927 * issued) if successful.
1930 scsi_mode_sense(struct scsi_device *sdev, int dbd, int modepage,
1931 unsigned char *buffer, int len, int timeout, int retries,
1932 struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr)
1934 unsigned char cmd[12];
1935 int use_10_for_ms;
1936 int header_length;
1937 int result;
1938 struct scsi_sense_hdr my_sshdr;
1940 memset(data, 0, sizeof(*data));
1941 memset(&cmd[0], 0, 12);
1942 cmd[1] = dbd & 0x18; /* allows DBD and LLBA bits */
1943 cmd[2] = modepage;
1945 /* caller might not be interested in sense, but we need it */
1946 if (!sshdr)
1947 sshdr = &my_sshdr;
1949 retry:
1950 use_10_for_ms = sdev->use_10_for_ms;
1952 if (use_10_for_ms) {
1953 if (len < 8)
1954 len = 8;
1956 cmd[0] = MODE_SENSE_10;
1957 cmd[8] = len;
1958 header_length = 8;
1959 } else {
1960 if (len < 4)
1961 len = 4;
1963 cmd[0] = MODE_SENSE;
1964 cmd[4] = len;
1965 header_length = 4;
1968 memset(buffer, 0, len);
1970 result = scsi_execute_req(sdev, cmd, DMA_FROM_DEVICE, buffer, len,
1971 sshdr, timeout, retries, NULL);
1973 /* This code looks awful: what it's doing is making sure an
1974 * ILLEGAL REQUEST sense return identifies the actual command
1975 * byte as the problem. MODE_SENSE commands can return
1976 * ILLEGAL REQUEST if the code page isn't supported */
1978 if (use_10_for_ms && !scsi_status_is_good(result) &&
1979 (driver_byte(result) & DRIVER_SENSE)) {
1980 if (scsi_sense_valid(sshdr)) {
1981 if ((sshdr->sense_key == ILLEGAL_REQUEST) &&
1982 (sshdr->asc == 0x20) && (sshdr->ascq == 0)) {
1984 * Invalid command operation code
1986 sdev->use_10_for_ms = 0;
1987 goto retry;
1992 if(scsi_status_is_good(result)) {
1993 if (unlikely(buffer[0] == 0x86 && buffer[1] == 0x0b &&
1994 (modepage == 6 || modepage == 8))) {
1995 /* Initio breakage? */
1996 header_length = 0;
1997 data->length = 13;
1998 data->medium_type = 0;
1999 data->device_specific = 0;
2000 data->longlba = 0;
2001 data->block_descriptor_length = 0;
2002 } else if(use_10_for_ms) {
2003 data->length = buffer[0]*256 + buffer[1] + 2;
2004 data->medium_type = buffer[2];
2005 data->device_specific = buffer[3];
2006 data->longlba = buffer[4] & 0x01;
2007 data->block_descriptor_length = buffer[6]*256
2008 + buffer[7];
2009 } else {
2010 data->length = buffer[0] + 1;
2011 data->medium_type = buffer[1];
2012 data->device_specific = buffer[2];
2013 data->block_descriptor_length = buffer[3];
2015 data->header_length = header_length;
2018 return result;
2020 EXPORT_SYMBOL(scsi_mode_sense);
2023 * scsi_test_unit_ready - test if unit is ready
2024 * @sdev: scsi device to change the state of.
2025 * @timeout: command timeout
2026 * @retries: number of retries before failing
2027 * @sshdr_external: Optional pointer to struct scsi_sense_hdr for
2028 * returning sense. Make sure that this is cleared before passing
2029 * in.
2031 * Returns zero if unsuccessful or an error if TUR failed. For
2032 * removable media, UNIT_ATTENTION sets ->changed flag.
2035 scsi_test_unit_ready(struct scsi_device *sdev, int timeout, int retries,
2036 struct scsi_sense_hdr *sshdr_external)
2038 char cmd[] = {
2039 TEST_UNIT_READY, 0, 0, 0, 0, 0,
2041 struct scsi_sense_hdr *sshdr;
2042 int result;
2044 if (!sshdr_external)
2045 sshdr = kzalloc(sizeof(*sshdr), GFP_KERNEL);
2046 else
2047 sshdr = sshdr_external;
2049 /* try to eat the UNIT_ATTENTION if there are enough retries */
2050 do {
2051 result = scsi_execute_req(sdev, cmd, DMA_NONE, NULL, 0, sshdr,
2052 timeout, retries, NULL);
2053 if (sdev->removable && scsi_sense_valid(sshdr) &&
2054 sshdr->sense_key == UNIT_ATTENTION)
2055 sdev->changed = 1;
2056 } while (scsi_sense_valid(sshdr) &&
2057 sshdr->sense_key == UNIT_ATTENTION && --retries);
2059 if (!sshdr_external)
2060 kfree(sshdr);
2061 return result;
2063 EXPORT_SYMBOL(scsi_test_unit_ready);
2066 * scsi_device_set_state - Take the given device through the device state model.
2067 * @sdev: scsi device to change the state of.
2068 * @state: state to change to.
2070 * Returns zero if unsuccessful or an error if the requested
2071 * transition is illegal.
2074 scsi_device_set_state(struct scsi_device *sdev, enum scsi_device_state state)
2076 enum scsi_device_state oldstate = sdev->sdev_state;
2078 if (state == oldstate)
2079 return 0;
2081 switch (state) {
2082 case SDEV_CREATED:
2083 switch (oldstate) {
2084 case SDEV_CREATED_BLOCK:
2085 break;
2086 default:
2087 goto illegal;
2089 break;
2091 case SDEV_RUNNING:
2092 switch (oldstate) {
2093 case SDEV_CREATED:
2094 case SDEV_OFFLINE:
2095 case SDEV_TRANSPORT_OFFLINE:
2096 case SDEV_QUIESCE:
2097 case SDEV_BLOCK:
2098 break;
2099 default:
2100 goto illegal;
2102 break;
2104 case SDEV_QUIESCE:
2105 switch (oldstate) {
2106 case SDEV_RUNNING:
2107 case SDEV_OFFLINE:
2108 case SDEV_TRANSPORT_OFFLINE:
2109 break;
2110 default:
2111 goto illegal;
2113 break;
2115 case SDEV_OFFLINE:
2116 case SDEV_TRANSPORT_OFFLINE:
2117 switch (oldstate) {
2118 case SDEV_CREATED:
2119 case SDEV_RUNNING:
2120 case SDEV_QUIESCE:
2121 case SDEV_BLOCK:
2122 break;
2123 default:
2124 goto illegal;
2126 break;
2128 case SDEV_BLOCK:
2129 switch (oldstate) {
2130 case SDEV_RUNNING:
2131 case SDEV_CREATED_BLOCK:
2132 break;
2133 default:
2134 goto illegal;
2136 break;
2138 case SDEV_CREATED_BLOCK:
2139 switch (oldstate) {
2140 case SDEV_CREATED:
2141 break;
2142 default:
2143 goto illegal;
2145 break;
2147 case SDEV_CANCEL:
2148 switch (oldstate) {
2149 case SDEV_CREATED:
2150 case SDEV_RUNNING:
2151 case SDEV_QUIESCE:
2152 case SDEV_OFFLINE:
2153 case SDEV_TRANSPORT_OFFLINE:
2154 case SDEV_BLOCK:
2155 break;
2156 default:
2157 goto illegal;
2159 break;
2161 case SDEV_DEL:
2162 switch (oldstate) {
2163 case SDEV_CREATED:
2164 case SDEV_RUNNING:
2165 case SDEV_OFFLINE:
2166 case SDEV_TRANSPORT_OFFLINE:
2167 case SDEV_CANCEL:
2168 case SDEV_CREATED_BLOCK:
2169 break;
2170 default:
2171 goto illegal;
2173 break;
2176 sdev->sdev_state = state;
2177 return 0;
2179 illegal:
2180 SCSI_LOG_ERROR_RECOVERY(1,
2181 sdev_printk(KERN_ERR, sdev,
2182 "Illegal state transition %s->%s\n",
2183 scsi_device_state_name(oldstate),
2184 scsi_device_state_name(state))
2186 return -EINVAL;
2188 EXPORT_SYMBOL(scsi_device_set_state);
2191 * sdev_evt_emit - emit a single SCSI device uevent
2192 * @sdev: associated SCSI device
2193 * @evt: event to emit
2195 * Send a single uevent (scsi_event) to the associated scsi_device.
2197 static void scsi_evt_emit(struct scsi_device *sdev, struct scsi_event *evt)
2199 int idx = 0;
2200 char *envp[3];
2202 switch (evt->evt_type) {
2203 case SDEV_EVT_MEDIA_CHANGE:
2204 envp[idx++] = "SDEV_MEDIA_CHANGE=1";
2205 break;
2206 case SDEV_EVT_INQUIRY_CHANGE_REPORTED:
2207 envp[idx++] = "SDEV_UA=INQUIRY_DATA_HAS_CHANGED";
2208 break;
2209 case SDEV_EVT_CAPACITY_CHANGE_REPORTED:
2210 envp[idx++] = "SDEV_UA=CAPACITY_DATA_HAS_CHANGED";
2211 break;
2212 case SDEV_EVT_SOFT_THRESHOLD_REACHED_REPORTED:
2213 envp[idx++] = "SDEV_UA=THIN_PROVISIONING_SOFT_THRESHOLD_REACHED";
2214 break;
2215 case SDEV_EVT_MODE_PARAMETER_CHANGE_REPORTED:
2216 envp[idx++] = "SDEV_UA=MODE_PARAMETERS_CHANGED";
2217 break;
2218 case SDEV_EVT_LUN_CHANGE_REPORTED:
2219 envp[idx++] = "SDEV_UA=REPORTED_LUNS_DATA_HAS_CHANGED";
2220 break;
2221 default:
2222 /* do nothing */
2223 break;
2226 envp[idx++] = NULL;
2228 kobject_uevent_env(&sdev->sdev_gendev.kobj, KOBJ_CHANGE, envp);
2232 * sdev_evt_thread - send a uevent for each scsi event
2233 * @work: work struct for scsi_device
2235 * Dispatch queued events to their associated scsi_device kobjects
2236 * as uevents.
2238 void scsi_evt_thread(struct work_struct *work)
2240 struct scsi_device *sdev;
2241 enum scsi_device_event evt_type;
2242 LIST_HEAD(event_list);
2244 sdev = container_of(work, struct scsi_device, event_work);
2246 for (evt_type = SDEV_EVT_FIRST; evt_type <= SDEV_EVT_LAST; evt_type++)
2247 if (test_and_clear_bit(evt_type, sdev->pending_events))
2248 sdev_evt_send_simple(sdev, evt_type, GFP_KERNEL);
2250 while (1) {
2251 struct scsi_event *evt;
2252 struct list_head *this, *tmp;
2253 unsigned long flags;
2255 spin_lock_irqsave(&sdev->list_lock, flags);
2256 list_splice_init(&sdev->event_list, &event_list);
2257 spin_unlock_irqrestore(&sdev->list_lock, flags);
2259 if (list_empty(&event_list))
2260 break;
2262 list_for_each_safe(this, tmp, &event_list) {
2263 evt = list_entry(this, struct scsi_event, node);
2264 list_del(&evt->node);
2265 scsi_evt_emit(sdev, evt);
2266 kfree(evt);
2272 * sdev_evt_send - send asserted event to uevent thread
2273 * @sdev: scsi_device event occurred on
2274 * @evt: event to send
2276 * Assert scsi device event asynchronously.
2278 void sdev_evt_send(struct scsi_device *sdev, struct scsi_event *evt)
2280 unsigned long flags;
2282 #if 0
2283 /* FIXME: currently this check eliminates all media change events
2284 * for polled devices. Need to update to discriminate between AN
2285 * and polled events */
2286 if (!test_bit(evt->evt_type, sdev->supported_events)) {
2287 kfree(evt);
2288 return;
2290 #endif
2292 spin_lock_irqsave(&sdev->list_lock, flags);
2293 list_add_tail(&evt->node, &sdev->event_list);
2294 schedule_work(&sdev->event_work);
2295 spin_unlock_irqrestore(&sdev->list_lock, flags);
2297 EXPORT_SYMBOL_GPL(sdev_evt_send);
2300 * sdev_evt_alloc - allocate a new scsi event
2301 * @evt_type: type of event to allocate
2302 * @gfpflags: GFP flags for allocation
2304 * Allocates and returns a new scsi_event.
2306 struct scsi_event *sdev_evt_alloc(enum scsi_device_event evt_type,
2307 gfp_t gfpflags)
2309 struct scsi_event *evt = kzalloc(sizeof(struct scsi_event), gfpflags);
2310 if (!evt)
2311 return NULL;
2313 evt->evt_type = evt_type;
2314 INIT_LIST_HEAD(&evt->node);
2316 /* evt_type-specific initialization, if any */
2317 switch (evt_type) {
2318 case SDEV_EVT_MEDIA_CHANGE:
2319 case SDEV_EVT_INQUIRY_CHANGE_REPORTED:
2320 case SDEV_EVT_CAPACITY_CHANGE_REPORTED:
2321 case SDEV_EVT_SOFT_THRESHOLD_REACHED_REPORTED:
2322 case SDEV_EVT_MODE_PARAMETER_CHANGE_REPORTED:
2323 case SDEV_EVT_LUN_CHANGE_REPORTED:
2324 default:
2325 /* do nothing */
2326 break;
2329 return evt;
2331 EXPORT_SYMBOL_GPL(sdev_evt_alloc);
2334 * sdev_evt_send_simple - send asserted event to uevent thread
2335 * @sdev: scsi_device event occurred on
2336 * @evt_type: type of event to send
2337 * @gfpflags: GFP flags for allocation
2339 * Assert scsi device event asynchronously, given an event type.
2341 void sdev_evt_send_simple(struct scsi_device *sdev,
2342 enum scsi_device_event evt_type, gfp_t gfpflags)
2344 struct scsi_event *evt = sdev_evt_alloc(evt_type, gfpflags);
2345 if (!evt) {
2346 sdev_printk(KERN_ERR, sdev, "event %d eaten due to OOM\n",
2347 evt_type);
2348 return;
2351 sdev_evt_send(sdev, evt);
2353 EXPORT_SYMBOL_GPL(sdev_evt_send_simple);
2356 * scsi_device_quiesce - Block user issued commands.
2357 * @sdev: scsi device to quiesce.
2359 * This works by trying to transition to the SDEV_QUIESCE state
2360 * (which must be a legal transition). When the device is in this
2361 * state, only special requests will be accepted, all others will
2362 * be deferred. Since special requests may also be requeued requests,
2363 * a successful return doesn't guarantee the device will be
2364 * totally quiescent.
2366 * Must be called with user context, may sleep.
2368 * Returns zero if unsuccessful or an error if not.
2371 scsi_device_quiesce(struct scsi_device *sdev)
2373 int err = scsi_device_set_state(sdev, SDEV_QUIESCE);
2374 if (err)
2375 return err;
2377 scsi_run_queue(sdev->request_queue);
2378 while (sdev->device_busy) {
2379 msleep_interruptible(200);
2380 scsi_run_queue(sdev->request_queue);
2382 return 0;
2384 EXPORT_SYMBOL(scsi_device_quiesce);
2387 * scsi_device_resume - Restart user issued commands to a quiesced device.
2388 * @sdev: scsi device to resume.
2390 * Moves the device from quiesced back to running and restarts the
2391 * queues.
2393 * Must be called with user context, may sleep.
2395 void scsi_device_resume(struct scsi_device *sdev)
2397 /* check if the device state was mutated prior to resume, and if
2398 * so assume the state is being managed elsewhere (for example
2399 * device deleted during suspend)
2401 if (sdev->sdev_state != SDEV_QUIESCE ||
2402 scsi_device_set_state(sdev, SDEV_RUNNING))
2403 return;
2404 scsi_run_queue(sdev->request_queue);
2406 EXPORT_SYMBOL(scsi_device_resume);
2408 static void
2409 device_quiesce_fn(struct scsi_device *sdev, void *data)
2411 scsi_device_quiesce(sdev);
2414 void
2415 scsi_target_quiesce(struct scsi_target *starget)
2417 starget_for_each_device(starget, NULL, device_quiesce_fn);
2419 EXPORT_SYMBOL(scsi_target_quiesce);
2421 static void
2422 device_resume_fn(struct scsi_device *sdev, void *data)
2424 scsi_device_resume(sdev);
2427 void
2428 scsi_target_resume(struct scsi_target *starget)
2430 starget_for_each_device(starget, NULL, device_resume_fn);
2432 EXPORT_SYMBOL(scsi_target_resume);
2435 * scsi_internal_device_block - internal function to put a device temporarily into the SDEV_BLOCK state
2436 * @sdev: device to block
2438 * Block request made by scsi lld's to temporarily stop all
2439 * scsi commands on the specified device. Called from interrupt
2440 * or normal process context.
2442 * Returns zero if successful or error if not
2444 * Notes:
2445 * This routine transitions the device to the SDEV_BLOCK state
2446 * (which must be a legal transition). When the device is in this
2447 * state, all commands are deferred until the scsi lld reenables
2448 * the device with scsi_device_unblock or device_block_tmo fires.
2451 scsi_internal_device_block(struct scsi_device *sdev)
2453 struct request_queue *q = sdev->request_queue;
2454 unsigned long flags;
2455 int err = 0;
2457 err = scsi_device_set_state(sdev, SDEV_BLOCK);
2458 if (err) {
2459 err = scsi_device_set_state(sdev, SDEV_CREATED_BLOCK);
2461 if (err)
2462 return err;
2466 * The device has transitioned to SDEV_BLOCK. Stop the
2467 * block layer from calling the midlayer with this device's
2468 * request queue.
2470 spin_lock_irqsave(q->queue_lock, flags);
2471 blk_stop_queue(q);
2472 spin_unlock_irqrestore(q->queue_lock, flags);
2474 return 0;
2476 EXPORT_SYMBOL_GPL(scsi_internal_device_block);
2479 * scsi_internal_device_unblock - resume a device after a block request
2480 * @sdev: device to resume
2481 * @new_state: state to set devices to after unblocking
2483 * Called by scsi lld's or the midlayer to restart the device queue
2484 * for the previously suspended scsi device. Called from interrupt or
2485 * normal process context.
2487 * Returns zero if successful or error if not.
2489 * Notes:
2490 * This routine transitions the device to the SDEV_RUNNING state
2491 * or to one of the offline states (which must be a legal transition)
2492 * allowing the midlayer to goose the queue for this device.
2495 scsi_internal_device_unblock(struct scsi_device *sdev,
2496 enum scsi_device_state new_state)
2498 struct request_queue *q = sdev->request_queue;
2499 unsigned long flags;
2502 * Try to transition the scsi device to SDEV_RUNNING or one of the
2503 * offlined states and goose the device queue if successful.
2505 if ((sdev->sdev_state == SDEV_BLOCK) ||
2506 (sdev->sdev_state == SDEV_TRANSPORT_OFFLINE))
2507 sdev->sdev_state = new_state;
2508 else if (sdev->sdev_state == SDEV_CREATED_BLOCK) {
2509 if (new_state == SDEV_TRANSPORT_OFFLINE ||
2510 new_state == SDEV_OFFLINE)
2511 sdev->sdev_state = new_state;
2512 else
2513 sdev->sdev_state = SDEV_CREATED;
2514 } else if (sdev->sdev_state != SDEV_CANCEL &&
2515 sdev->sdev_state != SDEV_OFFLINE)
2516 return -EINVAL;
2518 spin_lock_irqsave(q->queue_lock, flags);
2519 blk_start_queue(q);
2520 spin_unlock_irqrestore(q->queue_lock, flags);
2522 return 0;
2524 EXPORT_SYMBOL_GPL(scsi_internal_device_unblock);
2526 static void
2527 device_block(struct scsi_device *sdev, void *data)
2529 scsi_internal_device_block(sdev);
2532 static int
2533 target_block(struct device *dev, void *data)
2535 if (scsi_is_target_device(dev))
2536 starget_for_each_device(to_scsi_target(dev), NULL,
2537 device_block);
2538 return 0;
2541 void
2542 scsi_target_block(struct device *dev)
2544 if (scsi_is_target_device(dev))
2545 starget_for_each_device(to_scsi_target(dev), NULL,
2546 device_block);
2547 else
2548 device_for_each_child(dev, NULL, target_block);
2550 EXPORT_SYMBOL_GPL(scsi_target_block);
2552 static void
2553 device_unblock(struct scsi_device *sdev, void *data)
2555 scsi_internal_device_unblock(sdev, *(enum scsi_device_state *)data);
2558 static int
2559 target_unblock(struct device *dev, void *data)
2561 if (scsi_is_target_device(dev))
2562 starget_for_each_device(to_scsi_target(dev), data,
2563 device_unblock);
2564 return 0;
2567 void
2568 scsi_target_unblock(struct device *dev, enum scsi_device_state new_state)
2570 if (scsi_is_target_device(dev))
2571 starget_for_each_device(to_scsi_target(dev), &new_state,
2572 device_unblock);
2573 else
2574 device_for_each_child(dev, &new_state, target_unblock);
2576 EXPORT_SYMBOL_GPL(scsi_target_unblock);
2579 * scsi_kmap_atomic_sg - find and atomically map an sg-elemnt
2580 * @sgl: scatter-gather list
2581 * @sg_count: number of segments in sg
2582 * @offset: offset in bytes into sg, on return offset into the mapped area
2583 * @len: bytes to map, on return number of bytes mapped
2585 * Returns virtual address of the start of the mapped page
2587 void *scsi_kmap_atomic_sg(struct scatterlist *sgl, int sg_count,
2588 size_t *offset, size_t *len)
2590 int i;
2591 size_t sg_len = 0, len_complete = 0;
2592 struct scatterlist *sg;
2593 struct page *page;
2595 WARN_ON(!irqs_disabled());
2597 for_each_sg(sgl, sg, sg_count, i) {
2598 len_complete = sg_len; /* Complete sg-entries */
2599 sg_len += sg->length;
2600 if (sg_len > *offset)
2601 break;
2604 if (unlikely(i == sg_count)) {
2605 printk(KERN_ERR "%s: Bytes in sg: %zu, requested offset %zu, "
2606 "elements %d\n",
2607 __func__, sg_len, *offset, sg_count);
2608 WARN_ON(1);
2609 return NULL;
2612 /* Offset starting from the beginning of first page in this sg-entry */
2613 *offset = *offset - len_complete + sg->offset;
2615 /* Assumption: contiguous pages can be accessed as "page + i" */
2616 page = nth_page(sg_page(sg), (*offset >> PAGE_SHIFT));
2617 *offset &= ~PAGE_MASK;
2619 /* Bytes in this sg-entry from *offset to the end of the page */
2620 sg_len = PAGE_SIZE - *offset;
2621 if (*len > sg_len)
2622 *len = sg_len;
2624 return kmap_atomic(page);
2626 EXPORT_SYMBOL(scsi_kmap_atomic_sg);
2629 * scsi_kunmap_atomic_sg - atomically unmap a virtual address, previously mapped with scsi_kmap_atomic_sg
2630 * @virt: virtual address to be unmapped
2632 void scsi_kunmap_atomic_sg(void *virt)
2634 kunmap_atomic(virt);
2636 EXPORT_SYMBOL(scsi_kunmap_atomic_sg);
2638 void sdev_disable_disk_events(struct scsi_device *sdev)
2640 atomic_inc(&sdev->disk_events_disable_depth);
2642 EXPORT_SYMBOL(sdev_disable_disk_events);
2644 void sdev_enable_disk_events(struct scsi_device *sdev)
2646 if (WARN_ON_ONCE(atomic_read(&sdev->disk_events_disable_depth) <= 0))
2647 return;
2648 atomic_dec(&sdev->disk_events_disable_depth);
2650 EXPORT_SYMBOL(sdev_enable_disk_events);