2 * hcd.h - DesignWare HS OTG Controller host-mode declarations
4 * Copyright (C) 2004-2013 Synopsys, Inc.
6 * Redistribution and use in source and binary forms, with or without
7 * modification, are permitted provided that the following conditions
9 * 1. Redistributions of source code must retain the above copyright
10 * notice, this list of conditions, and the following disclaimer,
11 * without modification.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. The names of the above-listed copyright holders may not be used
16 * to endorse or promote products derived from this software without
17 * specific prior written permission.
19 * ALTERNATIVELY, this software may be distributed under the terms of the
20 * GNU General Public License ("GPL") as published by the Free Software
21 * Foundation; either version 2 of the License, or (at your option) any
24 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
25 * IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
26 * THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
27 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
28 * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
29 * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
30 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
31 * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
32 * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
33 * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
34 * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
36 #ifndef __DWC2_HCD_H__
37 #define __DWC2_HCD_H__
40 * This file contains the structures, constants, and interfaces for the
41 * Host Contoller Driver (HCD)
43 * The Host Controller Driver (HCD) is responsible for translating requests
44 * from the USB Driver into the appropriate actions on the DWC_otg controller.
45 * It isolates the USBD from the specifics of the controller by providing an
52 * struct dwc2_host_chan - Software host channel descriptor
54 * @hc_num: Host channel number, used for register address lookup
55 * @dev_addr: Address of the device
56 * @ep_num: Endpoint of the device
57 * @ep_is_in: Endpoint direction
58 * @speed: Device speed. One of the following values:
62 * @ep_type: Endpoint type. One of the following values:
63 * - USB_ENDPOINT_XFER_CONTROL: 0
64 * - USB_ENDPOINT_XFER_ISOC: 1
65 * - USB_ENDPOINT_XFER_BULK: 2
66 * - USB_ENDPOINT_XFER_INTR: 3
67 * @max_packet: Max packet size in bytes
68 * @data_pid_start: PID for initial transaction.
72 * 3: MDATA (non-Control EP),
74 * @multi_count: Number of additional periodic transactions per
76 * @xfer_buf: Pointer to current transfer buffer position
77 * @xfer_dma: DMA address of xfer_buf
78 * @align_buf: In Buffer DMA mode this will be used if xfer_buf is not
80 * @xfer_len: Total number of bytes to transfer
81 * @xfer_count: Number of bytes transferred so far
82 * @start_pkt_count: Packet count at start of transfer
83 * @xfer_started: True if the transfer has been started
84 * @ping: True if a PING request should be issued on this channel
85 * @error_state: True if the error count for this transaction is non-zero
86 * @halt_on_queue: True if this channel should be halted the next time a
87 * request is queued for the channel. This is necessary in
88 * slave mode if no request queue space is available when
89 * an attempt is made to halt the channel.
90 * @halt_pending: True if the host channel has been halted, but the core
91 * is not finished flushing queued requests
92 * @do_split: Enable split for the channel
93 * @complete_split: Enable complete split
94 * @hub_addr: Address of high speed hub for the split
95 * @hub_port: Port of the low/full speed device for the split
96 * @xact_pos: Split transaction position. One of the following values:
97 * - DWC2_HCSPLT_XACTPOS_MID
98 * - DWC2_HCSPLT_XACTPOS_BEGIN
99 * - DWC2_HCSPLT_XACTPOS_END
100 * - DWC2_HCSPLT_XACTPOS_ALL
101 * @requests: Number of requests issued for this channel since it was
102 * assigned to the current transfer (not counting PINGs)
103 * @schinfo: Scheduling micro-frame bitmap
104 * @ntd: Number of transfer descriptors for the transfer
105 * @halt_status: Reason for halting the host channel
106 * @hcint Contents of the HCINT register when the interrupt came
107 * @qh: QH for the transfer being processed by this channel
108 * @hc_list_entry: For linking to list of host channels
109 * @desc_list_addr: Current QH's descriptor list DMA address
111 * This structure represents the state of a single host channel when acting in
112 * host mode. It contains the data items needed to transfer packets to an
113 * endpoint via a host channel.
115 struct dwc2_host_chan
{
123 unsigned max_packet
:11;
124 unsigned data_pid_start
:2;
125 #define DWC2_HC_PID_DATA0 TSIZ_SC_MC_PID_DATA0
126 #define DWC2_HC_PID_DATA2 TSIZ_SC_MC_PID_DATA2
127 #define DWC2_HC_PID_DATA1 TSIZ_SC_MC_PID_DATA1
128 #define DWC2_HC_PID_MDATA TSIZ_SC_MC_PID_MDATA
129 #define DWC2_HC_PID_SETUP TSIZ_SC_MC_PID_SETUP
131 unsigned multi_count
:2;
135 dma_addr_t align_buf
;
149 #define DWC2_HCSPLT_XACTPOS_MID HCSPLT_XACTPOS_MID
150 #define DWC2_HCSPLT_XACTPOS_END HCSPLT_XACTPOS_END
151 #define DWC2_HCSPLT_XACTPOS_BEGIN HCSPLT_XACTPOS_BEGIN
152 #define DWC2_HCSPLT_XACTPOS_ALL HCSPLT_XACTPOS_ALL
157 enum dwc2_halt_status halt_status
;
160 struct list_head hc_list_entry
;
161 dma_addr_t desc_list_addr
;
164 struct dwc2_hcd_pipe_info
{
172 struct dwc2_hcd_iso_packet_desc
{
181 struct dwc2_hcd_urb
{
183 struct dwc2_qtd
*qtd
;
187 dma_addr_t setup_dma
;
195 struct dwc2_hcd_pipe_info pipe_info
;
196 struct dwc2_hcd_iso_packet_desc iso_descs
[0];
199 /* Phases for control transfers */
200 enum dwc2_control_phase
{
206 /* Transaction types */
207 enum dwc2_transaction_type
{
208 DWC2_TRANSACTION_NONE
,
209 DWC2_TRANSACTION_PERIODIC
,
210 DWC2_TRANSACTION_NON_PERIODIC
,
211 DWC2_TRANSACTION_ALL
,
215 * struct dwc2_qh - Software queue head structure
217 * @ep_type: Endpoint type. One of the following values:
218 * - USB_ENDPOINT_XFER_CONTROL
219 * - USB_ENDPOINT_XFER_BULK
220 * - USB_ENDPOINT_XFER_INT
221 * - USB_ENDPOINT_XFER_ISOC
222 * @ep_is_in: Endpoint direction
223 * @maxp: Value from wMaxPacketSize field of Endpoint Descriptor
224 * @dev_speed: Device speed. One of the following values:
228 * @data_toggle: Determines the PID of the next data packet for
229 * non-controltransfers. Ignored for control transfers.
230 * One of the following values:
231 * - DWC2_HC_PID_DATA0
232 * - DWC2_HC_PID_DATA1
233 * @ping_state: Ping state
234 * @do_split: Full/low speed endpoint on high-speed hub requires split
235 * @td_first: Index of first activated isochronous transfer descriptor
236 * @td_last: Index of last activated isochronous transfer descriptor
237 * @usecs: Bandwidth in microseconds per (micro)frame
238 * @interval: Interval between transfers in (micro)frames
239 * @sched_frame: (Micro)frame to initialize a periodic transfer.
240 * The transfer executes in the following (micro)frame.
241 * @start_split_frame: (Micro)frame at which last start split was initialized
242 * @ntd: Actual number of transfer descriptors in a list
243 * @dw_align_buf: Used instead of original buffer if its physical address
244 * is not dword-aligned
245 * @dw_align_buf_dma: DMA address for align_buf
246 * @qtd_list: List of QTDs for this QH
247 * @channel: Host channel currently processing transfers for this QH
248 * @qh_list_entry: Entry for QH in either the periodic or non-periodic
250 * @desc_list: List of transfer descriptors
251 * @desc_list_dma: Physical address of desc_list
252 * @n_bytes: Xfer Bytes array. Each element corresponds to a transfer
253 * descriptor and indicates original XferSize value for the
255 * @tt_buffer_dirty True if clear_tt_buffer_complete is pending
257 * A Queue Head (QH) holds the static characteristics of an endpoint and
258 * maintains a list of transfers (QTDs) for that endpoint. A QH structure may
259 * be entered in either the non-periodic or periodic schedule.
274 u16 start_split_frame
;
277 dma_addr_t dw_align_buf_dma
;
278 struct list_head qtd_list
;
279 struct dwc2_host_chan
*channel
;
280 struct list_head qh_list_entry
;
281 struct dwc2_hcd_dma_desc
*desc_list
;
282 dma_addr_t desc_list_dma
;
284 unsigned tt_buffer_dirty
:1;
288 * struct dwc2_qtd - Software queue transfer descriptor (QTD)
290 * @control_phase: Current phase for control transfers (Setup, Data, or
292 * @in_process: Indicates if this QTD is currently processed by HW
293 * @data_toggle: Determines the PID of the next data packet for the
294 * data phase of control transfers. Ignored for other
295 * transfer types. One of the following values:
296 * - DWC2_HC_PID_DATA0
297 * - DWC2_HC_PID_DATA1
298 * @complete_split: Keeps track of the current split type for FS/LS
299 * endpoints on a HS Hub
300 * @isoc_split_pos: Position of the ISOC split in full/low speed
301 * @isoc_frame_index: Index of the next frame descriptor for an isochronous
302 * transfer. A frame descriptor describes the buffer
303 * position and length of the data to be transferred in the
304 * next scheduled (micro)frame of an isochronous transfer.
305 * It also holds status for that transaction. The frame
307 * @isoc_split_offset: Position of the ISOC split in the buffer for the
309 * @ssplit_out_xfer_count: How many bytes transferred during SSPLIT OUT
310 * @error_count: Holds the number of bus errors that have occurred for
311 * a transaction within this transfer
312 * @n_desc: Number of DMA descriptors for this QTD
313 * @isoc_frame_index_last: Last activated frame (packet) index, used in
314 * descriptor DMA mode only
315 * @urb: URB for this transfer
316 * @qh: Queue head for this QTD
317 * @qtd_list_entry: For linking to the QH's list of QTDs
319 * A Queue Transfer Descriptor (QTD) holds the state of a bulk, control,
320 * interrupt, or isochronous transfer. A single QTD is created for each URB
321 * (of one of these types) submitted to the HCD. The transfer associated with
322 * a QTD may require one or multiple transactions.
324 * A QTD is linked to a Queue Head, which is entered in either the
325 * non-periodic or periodic schedule for execution. When a QTD is chosen for
326 * execution, some or all of its transactions may be executed. After
327 * execution, the state of the QTD is updated. The QTD may be retired if all
328 * its transactions are complete or if an error occurred. Otherwise, it
329 * remains in the schedule so more transactions can be executed later.
332 enum dwc2_control_phase control_phase
;
337 u16 isoc_frame_index
;
338 u16 isoc_split_offset
;
339 u32 ssplit_out_xfer_count
;
342 u16 isoc_frame_index_last
;
343 struct dwc2_hcd_urb
*urb
;
345 struct list_head qtd_list_entry
;
349 struct hc_xfer_info
{
350 struct dwc2_hsotg
*hsotg
;
351 struct dwc2_host_chan
*chan
;
355 /* Gets the struct usb_hcd that contains a struct dwc2_hsotg */
356 static inline struct usb_hcd
*dwc2_hsotg_to_hcd(struct dwc2_hsotg
*hsotg
)
358 return (struct usb_hcd
*)hsotg
->priv
;
362 * Inline used to disable one channel interrupt. Channel interrupts are
363 * disabled when the channel is halted or released by the interrupt handler.
364 * There is no need to handle further interrupts of that type until the
365 * channel is re-assigned. In fact, subsequent handling may cause crashes
366 * because the channel structures are cleaned up when the channel is released.
368 static inline void disable_hc_int(struct dwc2_hsotg
*hsotg
, int chnum
, u32 intr
)
370 u32 mask
= readl(hsotg
->regs
+ HCINTMSK(chnum
));
373 writel(mask
, hsotg
->regs
+ HCINTMSK(chnum
));
377 * Returns the mode of operation, host or device
379 static inline int dwc2_is_host_mode(struct dwc2_hsotg
*hsotg
)
381 return (readl(hsotg
->regs
+ GINTSTS
) & GINTSTS_CURMODE_HOST
) != 0;
383 static inline int dwc2_is_device_mode(struct dwc2_hsotg
*hsotg
)
385 return (readl(hsotg
->regs
+ GINTSTS
) & GINTSTS_CURMODE_HOST
) == 0;
389 * Reads HPRT0 in preparation to modify. It keeps the WC bits 0 so that if they
390 * are read as 1, they won't clear when written back.
392 static inline u32
dwc2_read_hprt0(struct dwc2_hsotg
*hsotg
)
394 u32 hprt0
= readl(hsotg
->regs
+ HPRT0
);
396 hprt0
&= ~(HPRT0_ENA
| HPRT0_CONNDET
| HPRT0_ENACHG
| HPRT0_OVRCURRCHG
);
400 static inline u8
dwc2_hcd_get_ep_num(struct dwc2_hcd_pipe_info
*pipe
)
405 static inline u8
dwc2_hcd_get_pipe_type(struct dwc2_hcd_pipe_info
*pipe
)
407 return pipe
->pipe_type
;
410 static inline u16
dwc2_hcd_get_mps(struct dwc2_hcd_pipe_info
*pipe
)
415 static inline u8
dwc2_hcd_get_dev_addr(struct dwc2_hcd_pipe_info
*pipe
)
417 return pipe
->dev_addr
;
420 static inline u8
dwc2_hcd_is_pipe_isoc(struct dwc2_hcd_pipe_info
*pipe
)
422 return pipe
->pipe_type
== USB_ENDPOINT_XFER_ISOC
;
425 static inline u8
dwc2_hcd_is_pipe_int(struct dwc2_hcd_pipe_info
*pipe
)
427 return pipe
->pipe_type
== USB_ENDPOINT_XFER_INT
;
430 static inline u8
dwc2_hcd_is_pipe_bulk(struct dwc2_hcd_pipe_info
*pipe
)
432 return pipe
->pipe_type
== USB_ENDPOINT_XFER_BULK
;
435 static inline u8
dwc2_hcd_is_pipe_control(struct dwc2_hcd_pipe_info
*pipe
)
437 return pipe
->pipe_type
== USB_ENDPOINT_XFER_CONTROL
;
440 static inline u8
dwc2_hcd_is_pipe_in(struct dwc2_hcd_pipe_info
*pipe
)
442 return pipe
->pipe_dir
== USB_DIR_IN
;
445 static inline u8
dwc2_hcd_is_pipe_out(struct dwc2_hcd_pipe_info
*pipe
)
447 return !dwc2_hcd_is_pipe_in(pipe
);
450 extern int dwc2_hcd_init(struct dwc2_hsotg
*hsotg
, int irq
,
451 const struct dwc2_core_params
*params
);
452 extern void dwc2_hcd_remove(struct dwc2_hsotg
*hsotg
);
453 extern int dwc2_set_parameters(struct dwc2_hsotg
*hsotg
,
454 const struct dwc2_core_params
*params
);
455 extern void dwc2_set_all_params(struct dwc2_core_params
*params
, int value
);
456 extern int dwc2_get_hwparams(struct dwc2_hsotg
*hsotg
);
458 /* Transaction Execution Functions */
459 extern enum dwc2_transaction_type
dwc2_hcd_select_transactions(
460 struct dwc2_hsotg
*hsotg
);
461 extern void dwc2_hcd_queue_transactions(struct dwc2_hsotg
*hsotg
,
462 enum dwc2_transaction_type tr_type
);
464 /* Schedule Queue Functions */
465 /* Implemented in hcd_queue.c */
466 extern void dwc2_hcd_qh_free(struct dwc2_hsotg
*hsotg
, struct dwc2_qh
*qh
);
467 extern int dwc2_hcd_qh_add(struct dwc2_hsotg
*hsotg
, struct dwc2_qh
*qh
);
468 extern void dwc2_hcd_qh_unlink(struct dwc2_hsotg
*hsotg
, struct dwc2_qh
*qh
);
469 extern void dwc2_hcd_qh_deactivate(struct dwc2_hsotg
*hsotg
, struct dwc2_qh
*qh
,
472 extern void dwc2_hcd_qtd_init(struct dwc2_qtd
*qtd
, struct dwc2_hcd_urb
*urb
);
473 extern int dwc2_hcd_qtd_add(struct dwc2_hsotg
*hsotg
, struct dwc2_qtd
*qtd
,
474 struct dwc2_qh
**qh
, gfp_t mem_flags
);
476 /* Unlinks and frees a QTD */
477 static inline void dwc2_hcd_qtd_unlink_and_free(struct dwc2_hsotg
*hsotg
,
478 struct dwc2_qtd
*qtd
,
481 list_del(&qtd
->qtd_list_entry
);
485 /* Descriptor DMA support functions */
486 extern void dwc2_hcd_start_xfer_ddma(struct dwc2_hsotg
*hsotg
,
488 extern void dwc2_hcd_complete_xfer_ddma(struct dwc2_hsotg
*hsotg
,
489 struct dwc2_host_chan
*chan
, int chnum
,
490 enum dwc2_halt_status halt_status
);
492 extern int dwc2_hcd_qh_init_ddma(struct dwc2_hsotg
*hsotg
, struct dwc2_qh
*qh
,
494 extern void dwc2_hcd_qh_free_ddma(struct dwc2_hsotg
*hsotg
, struct dwc2_qh
*qh
);
496 /* Check if QH is non-periodic */
497 #define dwc2_qh_is_non_per(_qh_ptr_) \
498 ((_qh_ptr_)->ep_type == USB_ENDPOINT_XFER_BULK || \
499 (_qh_ptr_)->ep_type == USB_ENDPOINT_XFER_CONTROL)
501 #ifdef CONFIG_USB_DWC2_DEBUG_PERIODIC
502 static inline bool dbg_hc(struct dwc2_host_chan
*hc
) { return true; }
503 static inline bool dbg_qh(struct dwc2_qh
*qh
) { return true; }
504 static inline bool dbg_urb(struct urb
*urb
) { return true; }
505 static inline bool dbg_perio(void) { return true; }
506 #else /* !CONFIG_USB_DWC2_DEBUG_PERIODIC */
507 static inline bool dbg_hc(struct dwc2_host_chan
*hc
)
509 return hc
->ep_type
== USB_ENDPOINT_XFER_BULK
||
510 hc
->ep_type
== USB_ENDPOINT_XFER_CONTROL
;
513 static inline bool dbg_qh(struct dwc2_qh
*qh
)
515 return qh
->ep_type
== USB_ENDPOINT_XFER_BULK
||
516 qh
->ep_type
== USB_ENDPOINT_XFER_CONTROL
;
519 static inline bool dbg_urb(struct urb
*urb
)
521 return usb_pipetype(urb
->pipe
) == PIPE_BULK
||
522 usb_pipetype(urb
->pipe
) == PIPE_CONTROL
;
525 static inline bool dbg_perio(void) { return false; }
528 /* High bandwidth multiplier as encoded in highspeed endpoint descriptors */
529 #define dwc2_hb_mult(wmaxpacketsize) (1 + (((wmaxpacketsize) >> 11) & 0x03))
531 /* Packet size for any kind of endpoint descriptor */
532 #define dwc2_max_packet(wmaxpacketsize) ((wmaxpacketsize) & 0x07ff)
535 * Returns true if frame1 is less than or equal to frame2. The comparison is
536 * done modulo HFNUM_MAX_FRNUM. This accounts for the rollover of the
537 * frame number when the max frame number is reached.
539 static inline int dwc2_frame_num_le(u16 frame1
, u16 frame2
)
541 return ((frame2
- frame1
) & HFNUM_MAX_FRNUM
) <= (HFNUM_MAX_FRNUM
>> 1);
545 * Returns true if frame1 is greater than frame2. The comparison is done
546 * modulo HFNUM_MAX_FRNUM. This accounts for the rollover of the frame
547 * number when the max frame number is reached.
549 static inline int dwc2_frame_num_gt(u16 frame1
, u16 frame2
)
551 return (frame1
!= frame2
) &&
552 ((frame1
- frame2
) & HFNUM_MAX_FRNUM
) < (HFNUM_MAX_FRNUM
>> 1);
556 * Increments frame by the amount specified by inc. The addition is done
557 * modulo HFNUM_MAX_FRNUM. Returns the incremented value.
559 static inline u16
dwc2_frame_num_inc(u16 frame
, u16 inc
)
561 return (frame
+ inc
) & HFNUM_MAX_FRNUM
;
564 static inline u16
dwc2_full_frame_num(u16 frame
)
566 return (frame
& HFNUM_MAX_FRNUM
) >> 3;
569 static inline u16
dwc2_micro_frame_num(u16 frame
)
575 * Returns the Core Interrupt Status register contents, ANDed with the Core
576 * Interrupt Mask register contents
578 static inline u32
dwc2_read_core_intr(struct dwc2_hsotg
*hsotg
)
580 return readl(hsotg
->regs
+ GINTSTS
) & readl(hsotg
->regs
+ GINTMSK
);
583 static inline u32
dwc2_hcd_urb_get_status(struct dwc2_hcd_urb
*dwc2_urb
)
585 return dwc2_urb
->status
;
588 static inline u32
dwc2_hcd_urb_get_actual_length(
589 struct dwc2_hcd_urb
*dwc2_urb
)
591 return dwc2_urb
->actual_length
;
594 static inline u32
dwc2_hcd_urb_get_error_count(struct dwc2_hcd_urb
*dwc2_urb
)
596 return dwc2_urb
->error_count
;
599 static inline void dwc2_hcd_urb_set_iso_desc_params(
600 struct dwc2_hcd_urb
*dwc2_urb
, int desc_num
, u32 offset
,
603 dwc2_urb
->iso_descs
[desc_num
].offset
= offset
;
604 dwc2_urb
->iso_descs
[desc_num
].length
= length
;
607 static inline u32
dwc2_hcd_urb_get_iso_desc_status(
608 struct dwc2_hcd_urb
*dwc2_urb
, int desc_num
)
610 return dwc2_urb
->iso_descs
[desc_num
].status
;
613 static inline u32
dwc2_hcd_urb_get_iso_desc_actual_length(
614 struct dwc2_hcd_urb
*dwc2_urb
, int desc_num
)
616 return dwc2_urb
->iso_descs
[desc_num
].actual_length
;
619 static inline int dwc2_hcd_is_bandwidth_allocated(struct dwc2_hsotg
*hsotg
,
620 struct usb_host_endpoint
*ep
)
622 struct dwc2_qh
*qh
= ep
->hcpriv
;
624 if (qh
&& !list_empty(&qh
->qh_list_entry
))
630 static inline u16
dwc2_hcd_get_ep_bandwidth(struct dwc2_hsotg
*hsotg
,
631 struct usb_host_endpoint
*ep
)
633 struct dwc2_qh
*qh
= ep
->hcpriv
;
643 extern void dwc2_hcd_save_data_toggle(struct dwc2_hsotg
*hsotg
,
644 struct dwc2_host_chan
*chan
, int chnum
,
645 struct dwc2_qtd
*qtd
);
650 * dwc2_handle_hcd_intr() - Called on every hardware interrupt
652 * @hsotg: The DWC2 HCD
654 * Returns IRQ_HANDLED if interrupt is handled
655 * Return IRQ_NONE if interrupt is not handled
657 extern irqreturn_t
dwc2_handle_hcd_intr(struct dwc2_hsotg
*hsotg
);
660 * dwc2_hcd_stop() - Halts the DWC_otg host mode operation
662 * @hsotg: The DWC2 HCD
664 extern void dwc2_hcd_stop(struct dwc2_hsotg
*hsotg
);
666 extern void dwc2_hcd_start(struct dwc2_hsotg
*hsotg
);
667 extern void dwc2_hcd_disconnect(struct dwc2_hsotg
*hsotg
);
670 * dwc2_hcd_is_b_host() - Returns 1 if core currently is acting as B host,
673 * @hsotg: The DWC2 HCD
675 extern int dwc2_hcd_is_b_host(struct dwc2_hsotg
*hsotg
);
678 * dwc2_hcd_get_frame_number() - Returns current frame number
680 * @hsotg: The DWC2 HCD
682 extern int dwc2_hcd_get_frame_number(struct dwc2_hsotg
*hsotg
);
685 * dwc2_hcd_dump_state() - Dumps hsotg state
687 * @hsotg: The DWC2 HCD
689 * NOTE: This function will be removed once the peripheral controller code
690 * is integrated and the driver is stable
692 extern void dwc2_hcd_dump_state(struct dwc2_hsotg
*hsotg
);
695 * dwc2_hcd_dump_frrem() - Dumps the average frame remaining at SOF
697 * @hsotg: The DWC2 HCD
699 * This can be used to determine average interrupt latency. Frame remaining is
700 * also shown for start transfer and two additional sample points.
702 * NOTE: This function will be removed once the peripheral controller code
703 * is integrated and the driver is stable
705 extern void dwc2_hcd_dump_frrem(struct dwc2_hsotg
*hsotg
);
710 #define URB_GIVEBACK_ASAP 0x1
711 #define URB_SEND_ZERO_PACKET 0x2
713 /* Host driver callbacks */
715 extern void dwc2_host_start(struct dwc2_hsotg
*hsotg
);
716 extern void dwc2_host_disconnect(struct dwc2_hsotg
*hsotg
);
717 extern void dwc2_host_hub_info(struct dwc2_hsotg
*hsotg
, void *context
,
718 int *hub_addr
, int *hub_port
);
719 extern int dwc2_host_get_speed(struct dwc2_hsotg
*hsotg
, void *context
);
720 extern void dwc2_host_complete(struct dwc2_hsotg
*hsotg
, struct dwc2_qtd
*qtd
,
725 * Macro to sample the remaining PHY clocks left in the current frame. This
726 * may be used during debugging to determine the average time it takes to
727 * execute sections of code. There are two possible sample points, "a" and
728 * "b", so the _letter_ argument must be one of these values.
730 * To dump the average sample times, read the "hcd_frrem" sysfs attribute. For
731 * example, "cat /sys/devices/lm0/hcd_frrem".
733 #define dwc2_sample_frrem(_hcd_, _qh_, _letter_) \
735 struct hfnum_data _hfnum_; \
736 struct dwc2_qtd *_qtd_; \
738 _qtd_ = list_entry((_qh_)->qtd_list.next, struct dwc2_qtd, \
740 if (usb_pipeint(_qtd_->urb->pipe) && \
741 (_qh_)->start_split_frame != 0 && !_qtd_->complete_split) { \
742 _hfnum_.d32 = readl((_hcd_)->regs + HFNUM); \
743 switch (_hfnum_.b.frnum & 0x7) { \
745 (_hcd_)->hfnum_7_samples_##_letter_++; \
746 (_hcd_)->hfnum_7_frrem_accum_##_letter_ += \
750 (_hcd_)->hfnum_0_samples_##_letter_++; \
751 (_hcd_)->hfnum_0_frrem_accum_##_letter_ += \
755 (_hcd_)->hfnum_other_samples_##_letter_++; \
756 (_hcd_)->hfnum_other_frrem_accum_##_letter_ += \
763 #define dwc2_sample_frrem(_hcd_, _qh_, _letter_) do {} while (0)
766 #endif /* __DWC2_HCD_H__ */