mfd: wm8350-i2c: Make sure the i2c regmap functions are compiled
[linux/fpc-iii.git] / drivers / target / target_core_transport.c
blob9291eaa090467fe98d62e73120c40bc748b59c06
1 /*******************************************************************************
2 * Filename: target_core_transport.c
4 * This file contains the Generic Target Engine Core.
6 * (c) Copyright 2002-2013 Datera, Inc.
8 * Nicholas A. Bellinger <nab@kernel.org>
10 * This program is free software; you can redistribute it and/or modify
11 * it under the terms of the GNU General Public License as published by
12 * the Free Software Foundation; either version 2 of the License, or
13 * (at your option) any later version.
15 * This program is distributed in the hope that it will be useful,
16 * but WITHOUT ANY WARRANTY; without even the implied warranty of
17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 * GNU General Public License for more details.
20 * You should have received a copy of the GNU General Public License
21 * along with this program; if not, write to the Free Software
22 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
24 ******************************************************************************/
26 #include <linux/net.h>
27 #include <linux/delay.h>
28 #include <linux/string.h>
29 #include <linux/timer.h>
30 #include <linux/slab.h>
31 #include <linux/blkdev.h>
32 #include <linux/spinlock.h>
33 #include <linux/kthread.h>
34 #include <linux/in.h>
35 #include <linux/cdrom.h>
36 #include <linux/module.h>
37 #include <linux/ratelimit.h>
38 #include <asm/unaligned.h>
39 #include <net/sock.h>
40 #include <net/tcp.h>
41 #include <scsi/scsi.h>
42 #include <scsi/scsi_cmnd.h>
43 #include <scsi/scsi_tcq.h>
45 #include <target/target_core_base.h>
46 #include <target/target_core_backend.h>
47 #include <target/target_core_fabric.h>
48 #include <target/target_core_configfs.h>
50 #include "target_core_internal.h"
51 #include "target_core_alua.h"
52 #include "target_core_pr.h"
53 #include "target_core_ua.h"
55 #define CREATE_TRACE_POINTS
56 #include <trace/events/target.h>
58 static struct workqueue_struct *target_completion_wq;
59 static struct kmem_cache *se_sess_cache;
60 struct kmem_cache *se_ua_cache;
61 struct kmem_cache *t10_pr_reg_cache;
62 struct kmem_cache *t10_alua_lu_gp_cache;
63 struct kmem_cache *t10_alua_lu_gp_mem_cache;
64 struct kmem_cache *t10_alua_tg_pt_gp_cache;
65 struct kmem_cache *t10_alua_tg_pt_gp_mem_cache;
67 static void transport_complete_task_attr(struct se_cmd *cmd);
68 static void transport_handle_queue_full(struct se_cmd *cmd,
69 struct se_device *dev);
70 static int transport_put_cmd(struct se_cmd *cmd);
71 static void target_complete_ok_work(struct work_struct *work);
73 int init_se_kmem_caches(void)
75 se_sess_cache = kmem_cache_create("se_sess_cache",
76 sizeof(struct se_session), __alignof__(struct se_session),
77 0, NULL);
78 if (!se_sess_cache) {
79 pr_err("kmem_cache_create() for struct se_session"
80 " failed\n");
81 goto out;
83 se_ua_cache = kmem_cache_create("se_ua_cache",
84 sizeof(struct se_ua), __alignof__(struct se_ua),
85 0, NULL);
86 if (!se_ua_cache) {
87 pr_err("kmem_cache_create() for struct se_ua failed\n");
88 goto out_free_sess_cache;
90 t10_pr_reg_cache = kmem_cache_create("t10_pr_reg_cache",
91 sizeof(struct t10_pr_registration),
92 __alignof__(struct t10_pr_registration), 0, NULL);
93 if (!t10_pr_reg_cache) {
94 pr_err("kmem_cache_create() for struct t10_pr_registration"
95 " failed\n");
96 goto out_free_ua_cache;
98 t10_alua_lu_gp_cache = kmem_cache_create("t10_alua_lu_gp_cache",
99 sizeof(struct t10_alua_lu_gp), __alignof__(struct t10_alua_lu_gp),
100 0, NULL);
101 if (!t10_alua_lu_gp_cache) {
102 pr_err("kmem_cache_create() for t10_alua_lu_gp_cache"
103 " failed\n");
104 goto out_free_pr_reg_cache;
106 t10_alua_lu_gp_mem_cache = kmem_cache_create("t10_alua_lu_gp_mem_cache",
107 sizeof(struct t10_alua_lu_gp_member),
108 __alignof__(struct t10_alua_lu_gp_member), 0, NULL);
109 if (!t10_alua_lu_gp_mem_cache) {
110 pr_err("kmem_cache_create() for t10_alua_lu_gp_mem_"
111 "cache failed\n");
112 goto out_free_lu_gp_cache;
114 t10_alua_tg_pt_gp_cache = kmem_cache_create("t10_alua_tg_pt_gp_cache",
115 sizeof(struct t10_alua_tg_pt_gp),
116 __alignof__(struct t10_alua_tg_pt_gp), 0, NULL);
117 if (!t10_alua_tg_pt_gp_cache) {
118 pr_err("kmem_cache_create() for t10_alua_tg_pt_gp_"
119 "cache failed\n");
120 goto out_free_lu_gp_mem_cache;
122 t10_alua_tg_pt_gp_mem_cache = kmem_cache_create(
123 "t10_alua_tg_pt_gp_mem_cache",
124 sizeof(struct t10_alua_tg_pt_gp_member),
125 __alignof__(struct t10_alua_tg_pt_gp_member),
126 0, NULL);
127 if (!t10_alua_tg_pt_gp_mem_cache) {
128 pr_err("kmem_cache_create() for t10_alua_tg_pt_gp_"
129 "mem_t failed\n");
130 goto out_free_tg_pt_gp_cache;
133 target_completion_wq = alloc_workqueue("target_completion",
134 WQ_MEM_RECLAIM, 0);
135 if (!target_completion_wq)
136 goto out_free_tg_pt_gp_mem_cache;
138 return 0;
140 out_free_tg_pt_gp_mem_cache:
141 kmem_cache_destroy(t10_alua_tg_pt_gp_mem_cache);
142 out_free_tg_pt_gp_cache:
143 kmem_cache_destroy(t10_alua_tg_pt_gp_cache);
144 out_free_lu_gp_mem_cache:
145 kmem_cache_destroy(t10_alua_lu_gp_mem_cache);
146 out_free_lu_gp_cache:
147 kmem_cache_destroy(t10_alua_lu_gp_cache);
148 out_free_pr_reg_cache:
149 kmem_cache_destroy(t10_pr_reg_cache);
150 out_free_ua_cache:
151 kmem_cache_destroy(se_ua_cache);
152 out_free_sess_cache:
153 kmem_cache_destroy(se_sess_cache);
154 out:
155 return -ENOMEM;
158 void release_se_kmem_caches(void)
160 destroy_workqueue(target_completion_wq);
161 kmem_cache_destroy(se_sess_cache);
162 kmem_cache_destroy(se_ua_cache);
163 kmem_cache_destroy(t10_pr_reg_cache);
164 kmem_cache_destroy(t10_alua_lu_gp_cache);
165 kmem_cache_destroy(t10_alua_lu_gp_mem_cache);
166 kmem_cache_destroy(t10_alua_tg_pt_gp_cache);
167 kmem_cache_destroy(t10_alua_tg_pt_gp_mem_cache);
170 /* This code ensures unique mib indexes are handed out. */
171 static DEFINE_SPINLOCK(scsi_mib_index_lock);
172 static u32 scsi_mib_index[SCSI_INDEX_TYPE_MAX];
175 * Allocate a new row index for the entry type specified
177 u32 scsi_get_new_index(scsi_index_t type)
179 u32 new_index;
181 BUG_ON((type < 0) || (type >= SCSI_INDEX_TYPE_MAX));
183 spin_lock(&scsi_mib_index_lock);
184 new_index = ++scsi_mib_index[type];
185 spin_unlock(&scsi_mib_index_lock);
187 return new_index;
190 void transport_subsystem_check_init(void)
192 int ret;
193 static int sub_api_initialized;
195 if (sub_api_initialized)
196 return;
198 ret = request_module("target_core_iblock");
199 if (ret != 0)
200 pr_err("Unable to load target_core_iblock\n");
202 ret = request_module("target_core_file");
203 if (ret != 0)
204 pr_err("Unable to load target_core_file\n");
206 ret = request_module("target_core_pscsi");
207 if (ret != 0)
208 pr_err("Unable to load target_core_pscsi\n");
210 sub_api_initialized = 1;
213 struct se_session *transport_init_session(void)
215 struct se_session *se_sess;
217 se_sess = kmem_cache_zalloc(se_sess_cache, GFP_KERNEL);
218 if (!se_sess) {
219 pr_err("Unable to allocate struct se_session from"
220 " se_sess_cache\n");
221 return ERR_PTR(-ENOMEM);
223 INIT_LIST_HEAD(&se_sess->sess_list);
224 INIT_LIST_HEAD(&se_sess->sess_acl_list);
225 INIT_LIST_HEAD(&se_sess->sess_cmd_list);
226 INIT_LIST_HEAD(&se_sess->sess_wait_list);
227 spin_lock_init(&se_sess->sess_cmd_lock);
228 kref_init(&se_sess->sess_kref);
230 return se_sess;
232 EXPORT_SYMBOL(transport_init_session);
234 int transport_alloc_session_tags(struct se_session *se_sess,
235 unsigned int tag_num, unsigned int tag_size)
237 int rc;
239 se_sess->sess_cmd_map = kzalloc(tag_num * tag_size,
240 GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT);
241 if (!se_sess->sess_cmd_map) {
242 se_sess->sess_cmd_map = vzalloc(tag_num * tag_size);
243 if (!se_sess->sess_cmd_map) {
244 pr_err("Unable to allocate se_sess->sess_cmd_map\n");
245 return -ENOMEM;
249 rc = percpu_ida_init(&se_sess->sess_tag_pool, tag_num);
250 if (rc < 0) {
251 pr_err("Unable to init se_sess->sess_tag_pool,"
252 " tag_num: %u\n", tag_num);
253 if (is_vmalloc_addr(se_sess->sess_cmd_map))
254 vfree(se_sess->sess_cmd_map);
255 else
256 kfree(se_sess->sess_cmd_map);
257 se_sess->sess_cmd_map = NULL;
258 return -ENOMEM;
261 return 0;
263 EXPORT_SYMBOL(transport_alloc_session_tags);
265 struct se_session *transport_init_session_tags(unsigned int tag_num,
266 unsigned int tag_size)
268 struct se_session *se_sess;
269 int rc;
271 se_sess = transport_init_session();
272 if (IS_ERR(se_sess))
273 return se_sess;
275 rc = transport_alloc_session_tags(se_sess, tag_num, tag_size);
276 if (rc < 0) {
277 transport_free_session(se_sess);
278 return ERR_PTR(-ENOMEM);
281 return se_sess;
283 EXPORT_SYMBOL(transport_init_session_tags);
286 * Called with spin_lock_irqsave(&struct se_portal_group->session_lock called.
288 void __transport_register_session(
289 struct se_portal_group *se_tpg,
290 struct se_node_acl *se_nacl,
291 struct se_session *se_sess,
292 void *fabric_sess_ptr)
294 unsigned char buf[PR_REG_ISID_LEN];
296 se_sess->se_tpg = se_tpg;
297 se_sess->fabric_sess_ptr = fabric_sess_ptr;
299 * Used by struct se_node_acl's under ConfigFS to locate active se_session-t
301 * Only set for struct se_session's that will actually be moving I/O.
302 * eg: *NOT* discovery sessions.
304 if (se_nacl) {
306 * If the fabric module supports an ISID based TransportID,
307 * save this value in binary from the fabric I_T Nexus now.
309 if (se_tpg->se_tpg_tfo->sess_get_initiator_sid != NULL) {
310 memset(&buf[0], 0, PR_REG_ISID_LEN);
311 se_tpg->se_tpg_tfo->sess_get_initiator_sid(se_sess,
312 &buf[0], PR_REG_ISID_LEN);
313 se_sess->sess_bin_isid = get_unaligned_be64(&buf[0]);
315 kref_get(&se_nacl->acl_kref);
317 spin_lock_irq(&se_nacl->nacl_sess_lock);
319 * The se_nacl->nacl_sess pointer will be set to the
320 * last active I_T Nexus for each struct se_node_acl.
322 se_nacl->nacl_sess = se_sess;
324 list_add_tail(&se_sess->sess_acl_list,
325 &se_nacl->acl_sess_list);
326 spin_unlock_irq(&se_nacl->nacl_sess_lock);
328 list_add_tail(&se_sess->sess_list, &se_tpg->tpg_sess_list);
330 pr_debug("TARGET_CORE[%s]: Registered fabric_sess_ptr: %p\n",
331 se_tpg->se_tpg_tfo->get_fabric_name(), se_sess->fabric_sess_ptr);
333 EXPORT_SYMBOL(__transport_register_session);
335 void transport_register_session(
336 struct se_portal_group *se_tpg,
337 struct se_node_acl *se_nacl,
338 struct se_session *se_sess,
339 void *fabric_sess_ptr)
341 unsigned long flags;
343 spin_lock_irqsave(&se_tpg->session_lock, flags);
344 __transport_register_session(se_tpg, se_nacl, se_sess, fabric_sess_ptr);
345 spin_unlock_irqrestore(&se_tpg->session_lock, flags);
347 EXPORT_SYMBOL(transport_register_session);
349 static void target_release_session(struct kref *kref)
351 struct se_session *se_sess = container_of(kref,
352 struct se_session, sess_kref);
353 struct se_portal_group *se_tpg = se_sess->se_tpg;
355 se_tpg->se_tpg_tfo->close_session(se_sess);
358 void target_get_session(struct se_session *se_sess)
360 kref_get(&se_sess->sess_kref);
362 EXPORT_SYMBOL(target_get_session);
364 void target_put_session(struct se_session *se_sess)
366 struct se_portal_group *tpg = se_sess->se_tpg;
368 if (tpg->se_tpg_tfo->put_session != NULL) {
369 tpg->se_tpg_tfo->put_session(se_sess);
370 return;
372 kref_put(&se_sess->sess_kref, target_release_session);
374 EXPORT_SYMBOL(target_put_session);
376 static void target_complete_nacl(struct kref *kref)
378 struct se_node_acl *nacl = container_of(kref,
379 struct se_node_acl, acl_kref);
381 complete(&nacl->acl_free_comp);
384 void target_put_nacl(struct se_node_acl *nacl)
386 kref_put(&nacl->acl_kref, target_complete_nacl);
389 void transport_deregister_session_configfs(struct se_session *se_sess)
391 struct se_node_acl *se_nacl;
392 unsigned long flags;
394 * Used by struct se_node_acl's under ConfigFS to locate active struct se_session
396 se_nacl = se_sess->se_node_acl;
397 if (se_nacl) {
398 spin_lock_irqsave(&se_nacl->nacl_sess_lock, flags);
399 if (se_nacl->acl_stop == 0)
400 list_del(&se_sess->sess_acl_list);
402 * If the session list is empty, then clear the pointer.
403 * Otherwise, set the struct se_session pointer from the tail
404 * element of the per struct se_node_acl active session list.
406 if (list_empty(&se_nacl->acl_sess_list))
407 se_nacl->nacl_sess = NULL;
408 else {
409 se_nacl->nacl_sess = container_of(
410 se_nacl->acl_sess_list.prev,
411 struct se_session, sess_acl_list);
413 spin_unlock_irqrestore(&se_nacl->nacl_sess_lock, flags);
416 EXPORT_SYMBOL(transport_deregister_session_configfs);
418 void transport_free_session(struct se_session *se_sess)
420 if (se_sess->sess_cmd_map) {
421 percpu_ida_destroy(&se_sess->sess_tag_pool);
422 if (is_vmalloc_addr(se_sess->sess_cmd_map))
423 vfree(se_sess->sess_cmd_map);
424 else
425 kfree(se_sess->sess_cmd_map);
427 kmem_cache_free(se_sess_cache, se_sess);
429 EXPORT_SYMBOL(transport_free_session);
431 void transport_deregister_session(struct se_session *se_sess)
433 struct se_portal_group *se_tpg = se_sess->se_tpg;
434 struct target_core_fabric_ops *se_tfo;
435 struct se_node_acl *se_nacl;
436 unsigned long flags;
437 bool comp_nacl = true;
439 if (!se_tpg) {
440 transport_free_session(se_sess);
441 return;
443 se_tfo = se_tpg->se_tpg_tfo;
445 spin_lock_irqsave(&se_tpg->session_lock, flags);
446 list_del(&se_sess->sess_list);
447 se_sess->se_tpg = NULL;
448 se_sess->fabric_sess_ptr = NULL;
449 spin_unlock_irqrestore(&se_tpg->session_lock, flags);
452 * Determine if we need to do extra work for this initiator node's
453 * struct se_node_acl if it had been previously dynamically generated.
455 se_nacl = se_sess->se_node_acl;
457 spin_lock_irqsave(&se_tpg->acl_node_lock, flags);
458 if (se_nacl && se_nacl->dynamic_node_acl) {
459 if (!se_tfo->tpg_check_demo_mode_cache(se_tpg)) {
460 list_del(&se_nacl->acl_list);
461 se_tpg->num_node_acls--;
462 spin_unlock_irqrestore(&se_tpg->acl_node_lock, flags);
463 core_tpg_wait_for_nacl_pr_ref(se_nacl);
464 core_free_device_list_for_node(se_nacl, se_tpg);
465 se_tfo->tpg_release_fabric_acl(se_tpg, se_nacl);
467 comp_nacl = false;
468 spin_lock_irqsave(&se_tpg->acl_node_lock, flags);
471 spin_unlock_irqrestore(&se_tpg->acl_node_lock, flags);
473 pr_debug("TARGET_CORE[%s]: Deregistered fabric_sess\n",
474 se_tpg->se_tpg_tfo->get_fabric_name());
476 * If last kref is dropping now for an explict NodeACL, awake sleeping
477 * ->acl_free_comp caller to wakeup configfs se_node_acl->acl_group
478 * removal context.
480 if (se_nacl && comp_nacl == true)
481 target_put_nacl(se_nacl);
483 transport_free_session(se_sess);
485 EXPORT_SYMBOL(transport_deregister_session);
488 * Called with cmd->t_state_lock held.
490 static void target_remove_from_state_list(struct se_cmd *cmd)
492 struct se_device *dev = cmd->se_dev;
493 unsigned long flags;
495 if (!dev)
496 return;
498 if (cmd->transport_state & CMD_T_BUSY)
499 return;
501 spin_lock_irqsave(&dev->execute_task_lock, flags);
502 if (cmd->state_active) {
503 list_del(&cmd->state_list);
504 cmd->state_active = false;
506 spin_unlock_irqrestore(&dev->execute_task_lock, flags);
509 static int transport_cmd_check_stop(struct se_cmd *cmd, bool remove_from_lists,
510 bool write_pending)
512 unsigned long flags;
514 spin_lock_irqsave(&cmd->t_state_lock, flags);
515 if (write_pending)
516 cmd->t_state = TRANSPORT_WRITE_PENDING;
519 * Determine if IOCTL context caller in requesting the stopping of this
520 * command for LUN shutdown purposes.
522 if (cmd->transport_state & CMD_T_LUN_STOP) {
523 pr_debug("%s:%d CMD_T_LUN_STOP for ITT: 0x%08x\n",
524 __func__, __LINE__, cmd->se_tfo->get_task_tag(cmd));
526 cmd->transport_state &= ~CMD_T_ACTIVE;
527 if (remove_from_lists)
528 target_remove_from_state_list(cmd);
529 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
531 complete(&cmd->transport_lun_stop_comp);
532 return 1;
535 if (remove_from_lists) {
536 target_remove_from_state_list(cmd);
539 * Clear struct se_cmd->se_lun before the handoff to FE.
541 cmd->se_lun = NULL;
545 * Determine if frontend context caller is requesting the stopping of
546 * this command for frontend exceptions.
548 if (cmd->transport_state & CMD_T_STOP) {
549 pr_debug("%s:%d CMD_T_STOP for ITT: 0x%08x\n",
550 __func__, __LINE__,
551 cmd->se_tfo->get_task_tag(cmd));
553 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
555 complete_all(&cmd->t_transport_stop_comp);
556 return 1;
559 cmd->transport_state &= ~CMD_T_ACTIVE;
560 if (remove_from_lists) {
562 * Some fabric modules like tcm_loop can release
563 * their internally allocated I/O reference now and
564 * struct se_cmd now.
566 * Fabric modules are expected to return '1' here if the
567 * se_cmd being passed is released at this point,
568 * or zero if not being released.
570 if (cmd->se_tfo->check_stop_free != NULL) {
571 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
572 return cmd->se_tfo->check_stop_free(cmd);
576 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
577 return 0;
580 static int transport_cmd_check_stop_to_fabric(struct se_cmd *cmd)
582 return transport_cmd_check_stop(cmd, true, false);
585 static void transport_lun_remove_cmd(struct se_cmd *cmd)
587 struct se_lun *lun = cmd->se_lun;
588 unsigned long flags;
590 if (!lun)
591 return;
593 spin_lock_irqsave(&lun->lun_cmd_lock, flags);
594 if (!list_empty(&cmd->se_lun_node))
595 list_del_init(&cmd->se_lun_node);
596 spin_unlock_irqrestore(&lun->lun_cmd_lock, flags);
599 void transport_cmd_finish_abort(struct se_cmd *cmd, int remove)
601 if (transport_cmd_check_stop_to_fabric(cmd))
602 return;
603 if (remove)
604 transport_put_cmd(cmd);
607 static void target_complete_failure_work(struct work_struct *work)
609 struct se_cmd *cmd = container_of(work, struct se_cmd, work);
611 transport_generic_request_failure(cmd,
612 TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE);
616 * Used when asking transport to copy Sense Data from the underlying
617 * Linux/SCSI struct scsi_cmnd
619 static unsigned char *transport_get_sense_buffer(struct se_cmd *cmd)
621 struct se_device *dev = cmd->se_dev;
623 WARN_ON(!cmd->se_lun);
625 if (!dev)
626 return NULL;
628 if (cmd->se_cmd_flags & SCF_SENT_CHECK_CONDITION)
629 return NULL;
631 cmd->scsi_sense_length = TRANSPORT_SENSE_BUFFER;
633 pr_debug("HBA_[%u]_PLUG[%s]: Requesting sense for SAM STATUS: 0x%02x\n",
634 dev->se_hba->hba_id, dev->transport->name, cmd->scsi_status);
635 return cmd->sense_buffer;
638 void target_complete_cmd(struct se_cmd *cmd, u8 scsi_status)
640 struct se_device *dev = cmd->se_dev;
641 int success = scsi_status == GOOD;
642 unsigned long flags;
644 cmd->scsi_status = scsi_status;
647 spin_lock_irqsave(&cmd->t_state_lock, flags);
648 cmd->transport_state &= ~CMD_T_BUSY;
650 if (dev && dev->transport->transport_complete) {
651 dev->transport->transport_complete(cmd,
652 cmd->t_data_sg,
653 transport_get_sense_buffer(cmd));
654 if (cmd->se_cmd_flags & SCF_TRANSPORT_TASK_SENSE)
655 success = 1;
659 * See if we are waiting to complete for an exception condition.
661 if (cmd->transport_state & CMD_T_REQUEST_STOP) {
662 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
663 complete(&cmd->task_stop_comp);
664 return;
667 if (!success)
668 cmd->transport_state |= CMD_T_FAILED;
671 * Check for case where an explict ABORT_TASK has been received
672 * and transport_wait_for_tasks() will be waiting for completion..
674 if (cmd->transport_state & CMD_T_ABORTED &&
675 cmd->transport_state & CMD_T_STOP) {
676 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
677 complete_all(&cmd->t_transport_stop_comp);
678 return;
679 } else if (cmd->transport_state & CMD_T_FAILED) {
680 INIT_WORK(&cmd->work, target_complete_failure_work);
681 } else {
682 INIT_WORK(&cmd->work, target_complete_ok_work);
685 cmd->t_state = TRANSPORT_COMPLETE;
686 cmd->transport_state |= (CMD_T_COMPLETE | CMD_T_ACTIVE);
687 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
689 queue_work(target_completion_wq, &cmd->work);
691 EXPORT_SYMBOL(target_complete_cmd);
693 void target_complete_cmd_with_length(struct se_cmd *cmd, u8 scsi_status, int length)
695 if (scsi_status == SAM_STAT_GOOD && length < cmd->data_length) {
696 if (cmd->se_cmd_flags & SCF_UNDERFLOW_BIT) {
697 cmd->residual_count += cmd->data_length - length;
698 } else {
699 cmd->se_cmd_flags |= SCF_UNDERFLOW_BIT;
700 cmd->residual_count = cmd->data_length - length;
703 cmd->data_length = length;
706 target_complete_cmd(cmd, scsi_status);
708 EXPORT_SYMBOL(target_complete_cmd_with_length);
710 static void target_add_to_state_list(struct se_cmd *cmd)
712 struct se_device *dev = cmd->se_dev;
713 unsigned long flags;
715 spin_lock_irqsave(&dev->execute_task_lock, flags);
716 if (!cmd->state_active) {
717 list_add_tail(&cmd->state_list, &dev->state_list);
718 cmd->state_active = true;
720 spin_unlock_irqrestore(&dev->execute_task_lock, flags);
724 * Handle QUEUE_FULL / -EAGAIN and -ENOMEM status
726 static void transport_write_pending_qf(struct se_cmd *cmd);
727 static void transport_complete_qf(struct se_cmd *cmd);
729 void target_qf_do_work(struct work_struct *work)
731 struct se_device *dev = container_of(work, struct se_device,
732 qf_work_queue);
733 LIST_HEAD(qf_cmd_list);
734 struct se_cmd *cmd, *cmd_tmp;
736 spin_lock_irq(&dev->qf_cmd_lock);
737 list_splice_init(&dev->qf_cmd_list, &qf_cmd_list);
738 spin_unlock_irq(&dev->qf_cmd_lock);
740 list_for_each_entry_safe(cmd, cmd_tmp, &qf_cmd_list, se_qf_node) {
741 list_del(&cmd->se_qf_node);
742 atomic_dec(&dev->dev_qf_count);
743 smp_mb__after_atomic_dec();
745 pr_debug("Processing %s cmd: %p QUEUE_FULL in work queue"
746 " context: %s\n", cmd->se_tfo->get_fabric_name(), cmd,
747 (cmd->t_state == TRANSPORT_COMPLETE_QF_OK) ? "COMPLETE_OK" :
748 (cmd->t_state == TRANSPORT_COMPLETE_QF_WP) ? "WRITE_PENDING"
749 : "UNKNOWN");
751 if (cmd->t_state == TRANSPORT_COMPLETE_QF_WP)
752 transport_write_pending_qf(cmd);
753 else if (cmd->t_state == TRANSPORT_COMPLETE_QF_OK)
754 transport_complete_qf(cmd);
758 unsigned char *transport_dump_cmd_direction(struct se_cmd *cmd)
760 switch (cmd->data_direction) {
761 case DMA_NONE:
762 return "NONE";
763 case DMA_FROM_DEVICE:
764 return "READ";
765 case DMA_TO_DEVICE:
766 return "WRITE";
767 case DMA_BIDIRECTIONAL:
768 return "BIDI";
769 default:
770 break;
773 return "UNKNOWN";
776 void transport_dump_dev_state(
777 struct se_device *dev,
778 char *b,
779 int *bl)
781 *bl += sprintf(b + *bl, "Status: ");
782 if (dev->export_count)
783 *bl += sprintf(b + *bl, "ACTIVATED");
784 else
785 *bl += sprintf(b + *bl, "DEACTIVATED");
787 *bl += sprintf(b + *bl, " Max Queue Depth: %d", dev->queue_depth);
788 *bl += sprintf(b + *bl, " SectorSize: %u HwMaxSectors: %u\n",
789 dev->dev_attrib.block_size,
790 dev->dev_attrib.hw_max_sectors);
791 *bl += sprintf(b + *bl, " ");
794 void transport_dump_vpd_proto_id(
795 struct t10_vpd *vpd,
796 unsigned char *p_buf,
797 int p_buf_len)
799 unsigned char buf[VPD_TMP_BUF_SIZE];
800 int len;
802 memset(buf, 0, VPD_TMP_BUF_SIZE);
803 len = sprintf(buf, "T10 VPD Protocol Identifier: ");
805 switch (vpd->protocol_identifier) {
806 case 0x00:
807 sprintf(buf+len, "Fibre Channel\n");
808 break;
809 case 0x10:
810 sprintf(buf+len, "Parallel SCSI\n");
811 break;
812 case 0x20:
813 sprintf(buf+len, "SSA\n");
814 break;
815 case 0x30:
816 sprintf(buf+len, "IEEE 1394\n");
817 break;
818 case 0x40:
819 sprintf(buf+len, "SCSI Remote Direct Memory Access"
820 " Protocol\n");
821 break;
822 case 0x50:
823 sprintf(buf+len, "Internet SCSI (iSCSI)\n");
824 break;
825 case 0x60:
826 sprintf(buf+len, "SAS Serial SCSI Protocol\n");
827 break;
828 case 0x70:
829 sprintf(buf+len, "Automation/Drive Interface Transport"
830 " Protocol\n");
831 break;
832 case 0x80:
833 sprintf(buf+len, "AT Attachment Interface ATA/ATAPI\n");
834 break;
835 default:
836 sprintf(buf+len, "Unknown 0x%02x\n",
837 vpd->protocol_identifier);
838 break;
841 if (p_buf)
842 strncpy(p_buf, buf, p_buf_len);
843 else
844 pr_debug("%s", buf);
847 void
848 transport_set_vpd_proto_id(struct t10_vpd *vpd, unsigned char *page_83)
851 * Check if the Protocol Identifier Valid (PIV) bit is set..
853 * from spc3r23.pdf section 7.5.1
855 if (page_83[1] & 0x80) {
856 vpd->protocol_identifier = (page_83[0] & 0xf0);
857 vpd->protocol_identifier_set = 1;
858 transport_dump_vpd_proto_id(vpd, NULL, 0);
861 EXPORT_SYMBOL(transport_set_vpd_proto_id);
863 int transport_dump_vpd_assoc(
864 struct t10_vpd *vpd,
865 unsigned char *p_buf,
866 int p_buf_len)
868 unsigned char buf[VPD_TMP_BUF_SIZE];
869 int ret = 0;
870 int len;
872 memset(buf, 0, VPD_TMP_BUF_SIZE);
873 len = sprintf(buf, "T10 VPD Identifier Association: ");
875 switch (vpd->association) {
876 case 0x00:
877 sprintf(buf+len, "addressed logical unit\n");
878 break;
879 case 0x10:
880 sprintf(buf+len, "target port\n");
881 break;
882 case 0x20:
883 sprintf(buf+len, "SCSI target device\n");
884 break;
885 default:
886 sprintf(buf+len, "Unknown 0x%02x\n", vpd->association);
887 ret = -EINVAL;
888 break;
891 if (p_buf)
892 strncpy(p_buf, buf, p_buf_len);
893 else
894 pr_debug("%s", buf);
896 return ret;
899 int transport_set_vpd_assoc(struct t10_vpd *vpd, unsigned char *page_83)
902 * The VPD identification association..
904 * from spc3r23.pdf Section 7.6.3.1 Table 297
906 vpd->association = (page_83[1] & 0x30);
907 return transport_dump_vpd_assoc(vpd, NULL, 0);
909 EXPORT_SYMBOL(transport_set_vpd_assoc);
911 int transport_dump_vpd_ident_type(
912 struct t10_vpd *vpd,
913 unsigned char *p_buf,
914 int p_buf_len)
916 unsigned char buf[VPD_TMP_BUF_SIZE];
917 int ret = 0;
918 int len;
920 memset(buf, 0, VPD_TMP_BUF_SIZE);
921 len = sprintf(buf, "T10 VPD Identifier Type: ");
923 switch (vpd->device_identifier_type) {
924 case 0x00:
925 sprintf(buf+len, "Vendor specific\n");
926 break;
927 case 0x01:
928 sprintf(buf+len, "T10 Vendor ID based\n");
929 break;
930 case 0x02:
931 sprintf(buf+len, "EUI-64 based\n");
932 break;
933 case 0x03:
934 sprintf(buf+len, "NAA\n");
935 break;
936 case 0x04:
937 sprintf(buf+len, "Relative target port identifier\n");
938 break;
939 case 0x08:
940 sprintf(buf+len, "SCSI name string\n");
941 break;
942 default:
943 sprintf(buf+len, "Unsupported: 0x%02x\n",
944 vpd->device_identifier_type);
945 ret = -EINVAL;
946 break;
949 if (p_buf) {
950 if (p_buf_len < strlen(buf)+1)
951 return -EINVAL;
952 strncpy(p_buf, buf, p_buf_len);
953 } else {
954 pr_debug("%s", buf);
957 return ret;
960 int transport_set_vpd_ident_type(struct t10_vpd *vpd, unsigned char *page_83)
963 * The VPD identifier type..
965 * from spc3r23.pdf Section 7.6.3.1 Table 298
967 vpd->device_identifier_type = (page_83[1] & 0x0f);
968 return transport_dump_vpd_ident_type(vpd, NULL, 0);
970 EXPORT_SYMBOL(transport_set_vpd_ident_type);
972 int transport_dump_vpd_ident(
973 struct t10_vpd *vpd,
974 unsigned char *p_buf,
975 int p_buf_len)
977 unsigned char buf[VPD_TMP_BUF_SIZE];
978 int ret = 0;
980 memset(buf, 0, VPD_TMP_BUF_SIZE);
982 switch (vpd->device_identifier_code_set) {
983 case 0x01: /* Binary */
984 snprintf(buf, sizeof(buf),
985 "T10 VPD Binary Device Identifier: %s\n",
986 &vpd->device_identifier[0]);
987 break;
988 case 0x02: /* ASCII */
989 snprintf(buf, sizeof(buf),
990 "T10 VPD ASCII Device Identifier: %s\n",
991 &vpd->device_identifier[0]);
992 break;
993 case 0x03: /* UTF-8 */
994 snprintf(buf, sizeof(buf),
995 "T10 VPD UTF-8 Device Identifier: %s\n",
996 &vpd->device_identifier[0]);
997 break;
998 default:
999 sprintf(buf, "T10 VPD Device Identifier encoding unsupported:"
1000 " 0x%02x", vpd->device_identifier_code_set);
1001 ret = -EINVAL;
1002 break;
1005 if (p_buf)
1006 strncpy(p_buf, buf, p_buf_len);
1007 else
1008 pr_debug("%s", buf);
1010 return ret;
1014 transport_set_vpd_ident(struct t10_vpd *vpd, unsigned char *page_83)
1016 static const char hex_str[] = "0123456789abcdef";
1017 int j = 0, i = 4; /* offset to start of the identifier */
1020 * The VPD Code Set (encoding)
1022 * from spc3r23.pdf Section 7.6.3.1 Table 296
1024 vpd->device_identifier_code_set = (page_83[0] & 0x0f);
1025 switch (vpd->device_identifier_code_set) {
1026 case 0x01: /* Binary */
1027 vpd->device_identifier[j++] =
1028 hex_str[vpd->device_identifier_type];
1029 while (i < (4 + page_83[3])) {
1030 vpd->device_identifier[j++] =
1031 hex_str[(page_83[i] & 0xf0) >> 4];
1032 vpd->device_identifier[j++] =
1033 hex_str[page_83[i] & 0x0f];
1034 i++;
1036 break;
1037 case 0x02: /* ASCII */
1038 case 0x03: /* UTF-8 */
1039 while (i < (4 + page_83[3]))
1040 vpd->device_identifier[j++] = page_83[i++];
1041 break;
1042 default:
1043 break;
1046 return transport_dump_vpd_ident(vpd, NULL, 0);
1048 EXPORT_SYMBOL(transport_set_vpd_ident);
1050 sense_reason_t
1051 target_cmd_size_check(struct se_cmd *cmd, unsigned int size)
1053 struct se_device *dev = cmd->se_dev;
1055 if (cmd->unknown_data_length) {
1056 cmd->data_length = size;
1057 } else if (size != cmd->data_length) {
1058 pr_warn("TARGET_CORE[%s]: Expected Transfer Length:"
1059 " %u does not match SCSI CDB Length: %u for SAM Opcode:"
1060 " 0x%02x\n", cmd->se_tfo->get_fabric_name(),
1061 cmd->data_length, size, cmd->t_task_cdb[0]);
1063 if (cmd->data_direction == DMA_TO_DEVICE) {
1064 pr_err("Rejecting underflow/overflow"
1065 " WRITE data\n");
1066 return TCM_INVALID_CDB_FIELD;
1069 * Reject READ_* or WRITE_* with overflow/underflow for
1070 * type SCF_SCSI_DATA_CDB.
1072 if (dev->dev_attrib.block_size != 512) {
1073 pr_err("Failing OVERFLOW/UNDERFLOW for LBA op"
1074 " CDB on non 512-byte sector setup subsystem"
1075 " plugin: %s\n", dev->transport->name);
1076 /* Returns CHECK_CONDITION + INVALID_CDB_FIELD */
1077 return TCM_INVALID_CDB_FIELD;
1080 * For the overflow case keep the existing fabric provided
1081 * ->data_length. Otherwise for the underflow case, reset
1082 * ->data_length to the smaller SCSI expected data transfer
1083 * length.
1085 if (size > cmd->data_length) {
1086 cmd->se_cmd_flags |= SCF_OVERFLOW_BIT;
1087 cmd->residual_count = (size - cmd->data_length);
1088 } else {
1089 cmd->se_cmd_flags |= SCF_UNDERFLOW_BIT;
1090 cmd->residual_count = (cmd->data_length - size);
1091 cmd->data_length = size;
1095 return 0;
1100 * Used by fabric modules containing a local struct se_cmd within their
1101 * fabric dependent per I/O descriptor.
1103 void transport_init_se_cmd(
1104 struct se_cmd *cmd,
1105 struct target_core_fabric_ops *tfo,
1106 struct se_session *se_sess,
1107 u32 data_length,
1108 int data_direction,
1109 int task_attr,
1110 unsigned char *sense_buffer)
1112 INIT_LIST_HEAD(&cmd->se_lun_node);
1113 INIT_LIST_HEAD(&cmd->se_delayed_node);
1114 INIT_LIST_HEAD(&cmd->se_qf_node);
1115 INIT_LIST_HEAD(&cmd->se_cmd_list);
1116 INIT_LIST_HEAD(&cmd->state_list);
1117 init_completion(&cmd->transport_lun_fe_stop_comp);
1118 init_completion(&cmd->transport_lun_stop_comp);
1119 init_completion(&cmd->t_transport_stop_comp);
1120 init_completion(&cmd->cmd_wait_comp);
1121 init_completion(&cmd->task_stop_comp);
1122 spin_lock_init(&cmd->t_state_lock);
1123 kref_init(&cmd->cmd_kref);
1124 cmd->transport_state = CMD_T_DEV_ACTIVE;
1126 cmd->se_tfo = tfo;
1127 cmd->se_sess = se_sess;
1128 cmd->data_length = data_length;
1129 cmd->data_direction = data_direction;
1130 cmd->sam_task_attr = task_attr;
1131 cmd->sense_buffer = sense_buffer;
1133 cmd->state_active = false;
1135 EXPORT_SYMBOL(transport_init_se_cmd);
1137 static sense_reason_t
1138 transport_check_alloc_task_attr(struct se_cmd *cmd)
1140 struct se_device *dev = cmd->se_dev;
1143 * Check if SAM Task Attribute emulation is enabled for this
1144 * struct se_device storage object
1146 if (dev->transport->transport_type == TRANSPORT_PLUGIN_PHBA_PDEV)
1147 return 0;
1149 if (cmd->sam_task_attr == MSG_ACA_TAG) {
1150 pr_debug("SAM Task Attribute ACA"
1151 " emulation is not supported\n");
1152 return TCM_INVALID_CDB_FIELD;
1155 * Used to determine when ORDERED commands should go from
1156 * Dormant to Active status.
1158 cmd->se_ordered_id = atomic_inc_return(&dev->dev_ordered_id);
1159 smp_mb__after_atomic_inc();
1160 pr_debug("Allocated se_ordered_id: %u for Task Attr: 0x%02x on %s\n",
1161 cmd->se_ordered_id, cmd->sam_task_attr,
1162 dev->transport->name);
1163 return 0;
1166 sense_reason_t
1167 target_setup_cmd_from_cdb(struct se_cmd *cmd, unsigned char *cdb)
1169 struct se_device *dev = cmd->se_dev;
1170 sense_reason_t ret;
1173 * Ensure that the received CDB is less than the max (252 + 8) bytes
1174 * for VARIABLE_LENGTH_CMD
1176 if (scsi_command_size(cdb) > SCSI_MAX_VARLEN_CDB_SIZE) {
1177 pr_err("Received SCSI CDB with command_size: %d that"
1178 " exceeds SCSI_MAX_VARLEN_CDB_SIZE: %d\n",
1179 scsi_command_size(cdb), SCSI_MAX_VARLEN_CDB_SIZE);
1180 return TCM_INVALID_CDB_FIELD;
1183 * If the received CDB is larger than TCM_MAX_COMMAND_SIZE,
1184 * allocate the additional extended CDB buffer now.. Otherwise
1185 * setup the pointer from __t_task_cdb to t_task_cdb.
1187 if (scsi_command_size(cdb) > sizeof(cmd->__t_task_cdb)) {
1188 cmd->t_task_cdb = kzalloc(scsi_command_size(cdb),
1189 GFP_KERNEL);
1190 if (!cmd->t_task_cdb) {
1191 pr_err("Unable to allocate cmd->t_task_cdb"
1192 " %u > sizeof(cmd->__t_task_cdb): %lu ops\n",
1193 scsi_command_size(cdb),
1194 (unsigned long)sizeof(cmd->__t_task_cdb));
1195 return TCM_OUT_OF_RESOURCES;
1197 } else
1198 cmd->t_task_cdb = &cmd->__t_task_cdb[0];
1200 * Copy the original CDB into cmd->
1202 memcpy(cmd->t_task_cdb, cdb, scsi_command_size(cdb));
1204 trace_target_sequencer_start(cmd);
1207 * Check for an existing UNIT ATTENTION condition
1209 ret = target_scsi3_ua_check(cmd);
1210 if (ret)
1211 return ret;
1213 ret = target_alua_state_check(cmd);
1214 if (ret)
1215 return ret;
1217 ret = target_check_reservation(cmd);
1218 if (ret) {
1219 cmd->scsi_status = SAM_STAT_RESERVATION_CONFLICT;
1220 return ret;
1223 ret = dev->transport->parse_cdb(cmd);
1224 if (ret)
1225 return ret;
1227 ret = transport_check_alloc_task_attr(cmd);
1228 if (ret)
1229 return ret;
1231 cmd->se_cmd_flags |= SCF_SUPPORTED_SAM_OPCODE;
1233 spin_lock(&cmd->se_lun->lun_sep_lock);
1234 if (cmd->se_lun->lun_sep)
1235 cmd->se_lun->lun_sep->sep_stats.cmd_pdus++;
1236 spin_unlock(&cmd->se_lun->lun_sep_lock);
1237 return 0;
1239 EXPORT_SYMBOL(target_setup_cmd_from_cdb);
1242 * Used by fabric module frontends to queue tasks directly.
1243 * Many only be used from process context only
1245 int transport_handle_cdb_direct(
1246 struct se_cmd *cmd)
1248 sense_reason_t ret;
1250 if (!cmd->se_lun) {
1251 dump_stack();
1252 pr_err("cmd->se_lun is NULL\n");
1253 return -EINVAL;
1255 if (in_interrupt()) {
1256 dump_stack();
1257 pr_err("transport_generic_handle_cdb cannot be called"
1258 " from interrupt context\n");
1259 return -EINVAL;
1262 * Set TRANSPORT_NEW_CMD state and CMD_T_ACTIVE to ensure that
1263 * outstanding descriptors are handled correctly during shutdown via
1264 * transport_wait_for_tasks()
1266 * Also, we don't take cmd->t_state_lock here as we only expect
1267 * this to be called for initial descriptor submission.
1269 cmd->t_state = TRANSPORT_NEW_CMD;
1270 cmd->transport_state |= CMD_T_ACTIVE;
1273 * transport_generic_new_cmd() is already handling QUEUE_FULL,
1274 * so follow TRANSPORT_NEW_CMD processing thread context usage
1275 * and call transport_generic_request_failure() if necessary..
1277 ret = transport_generic_new_cmd(cmd);
1278 if (ret)
1279 transport_generic_request_failure(cmd, ret);
1280 return 0;
1282 EXPORT_SYMBOL(transport_handle_cdb_direct);
1284 sense_reason_t
1285 transport_generic_map_mem_to_cmd(struct se_cmd *cmd, struct scatterlist *sgl,
1286 u32 sgl_count, struct scatterlist *sgl_bidi, u32 sgl_bidi_count)
1288 if (!sgl || !sgl_count)
1289 return 0;
1292 * Reject SCSI data overflow with map_mem_to_cmd() as incoming
1293 * scatterlists already have been set to follow what the fabric
1294 * passes for the original expected data transfer length.
1296 if (cmd->se_cmd_flags & SCF_OVERFLOW_BIT) {
1297 pr_warn("Rejecting SCSI DATA overflow for fabric using"
1298 " SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC\n");
1299 return TCM_INVALID_CDB_FIELD;
1302 cmd->t_data_sg = sgl;
1303 cmd->t_data_nents = sgl_count;
1305 if (sgl_bidi && sgl_bidi_count) {
1306 cmd->t_bidi_data_sg = sgl_bidi;
1307 cmd->t_bidi_data_nents = sgl_bidi_count;
1309 cmd->se_cmd_flags |= SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC;
1310 return 0;
1314 * target_submit_cmd_map_sgls - lookup unpacked lun and submit uninitialized
1315 * se_cmd + use pre-allocated SGL memory.
1317 * @se_cmd: command descriptor to submit
1318 * @se_sess: associated se_sess for endpoint
1319 * @cdb: pointer to SCSI CDB
1320 * @sense: pointer to SCSI sense buffer
1321 * @unpacked_lun: unpacked LUN to reference for struct se_lun
1322 * @data_length: fabric expected data transfer length
1323 * @task_addr: SAM task attribute
1324 * @data_dir: DMA data direction
1325 * @flags: flags for command submission from target_sc_flags_tables
1326 * @sgl: struct scatterlist memory for unidirectional mapping
1327 * @sgl_count: scatterlist count for unidirectional mapping
1328 * @sgl_bidi: struct scatterlist memory for bidirectional READ mapping
1329 * @sgl_bidi_count: scatterlist count for bidirectional READ mapping
1331 * Returns non zero to signal active I/O shutdown failure. All other
1332 * setup exceptions will be returned as a SCSI CHECK_CONDITION response,
1333 * but still return zero here.
1335 * This may only be called from process context, and also currently
1336 * assumes internal allocation of fabric payload buffer by target-core.
1338 int target_submit_cmd_map_sgls(struct se_cmd *se_cmd, struct se_session *se_sess,
1339 unsigned char *cdb, unsigned char *sense, u32 unpacked_lun,
1340 u32 data_length, int task_attr, int data_dir, int flags,
1341 struct scatterlist *sgl, u32 sgl_count,
1342 struct scatterlist *sgl_bidi, u32 sgl_bidi_count)
1344 struct se_portal_group *se_tpg;
1345 sense_reason_t rc;
1346 int ret;
1348 se_tpg = se_sess->se_tpg;
1349 BUG_ON(!se_tpg);
1350 BUG_ON(se_cmd->se_tfo || se_cmd->se_sess);
1351 BUG_ON(in_interrupt());
1353 * Initialize se_cmd for target operation. From this point
1354 * exceptions are handled by sending exception status via
1355 * target_core_fabric_ops->queue_status() callback
1357 transport_init_se_cmd(se_cmd, se_tpg->se_tpg_tfo, se_sess,
1358 data_length, data_dir, task_attr, sense);
1359 if (flags & TARGET_SCF_UNKNOWN_SIZE)
1360 se_cmd->unknown_data_length = 1;
1362 * Obtain struct se_cmd->cmd_kref reference and add new cmd to
1363 * se_sess->sess_cmd_list. A second kref_get here is necessary
1364 * for fabrics using TARGET_SCF_ACK_KREF that expect a second
1365 * kref_put() to happen during fabric packet acknowledgement.
1367 ret = target_get_sess_cmd(se_sess, se_cmd, (flags & TARGET_SCF_ACK_KREF));
1368 if (ret)
1369 return ret;
1371 * Signal bidirectional data payloads to target-core
1373 if (flags & TARGET_SCF_BIDI_OP)
1374 se_cmd->se_cmd_flags |= SCF_BIDI;
1376 * Locate se_lun pointer and attach it to struct se_cmd
1378 rc = transport_lookup_cmd_lun(se_cmd, unpacked_lun);
1379 if (rc) {
1380 transport_send_check_condition_and_sense(se_cmd, rc, 0);
1381 target_put_sess_cmd(se_sess, se_cmd);
1382 return 0;
1385 rc = target_setup_cmd_from_cdb(se_cmd, cdb);
1386 if (rc != 0) {
1387 transport_generic_request_failure(se_cmd, rc);
1388 return 0;
1391 * When a non zero sgl_count has been passed perform SGL passthrough
1392 * mapping for pre-allocated fabric memory instead of having target
1393 * core perform an internal SGL allocation..
1395 if (sgl_count != 0) {
1396 BUG_ON(!sgl);
1399 * A work-around for tcm_loop as some userspace code via
1400 * scsi-generic do not memset their associated read buffers,
1401 * so go ahead and do that here for type non-data CDBs. Also
1402 * note that this is currently guaranteed to be a single SGL
1403 * for this case by target core in target_setup_cmd_from_cdb()
1404 * -> transport_generic_cmd_sequencer().
1406 if (!(se_cmd->se_cmd_flags & SCF_SCSI_DATA_CDB) &&
1407 se_cmd->data_direction == DMA_FROM_DEVICE) {
1408 unsigned char *buf = NULL;
1410 if (sgl)
1411 buf = kmap(sg_page(sgl)) + sgl->offset;
1413 if (buf) {
1414 memset(buf, 0, sgl->length);
1415 kunmap(sg_page(sgl));
1419 rc = transport_generic_map_mem_to_cmd(se_cmd, sgl, sgl_count,
1420 sgl_bidi, sgl_bidi_count);
1421 if (rc != 0) {
1422 transport_generic_request_failure(se_cmd, rc);
1423 return 0;
1427 * Check if we need to delay processing because of ALUA
1428 * Active/NonOptimized primary access state..
1430 core_alua_check_nonop_delay(se_cmd);
1432 transport_handle_cdb_direct(se_cmd);
1433 return 0;
1435 EXPORT_SYMBOL(target_submit_cmd_map_sgls);
1438 * target_submit_cmd - lookup unpacked lun and submit uninitialized se_cmd
1440 * @se_cmd: command descriptor to submit
1441 * @se_sess: associated se_sess for endpoint
1442 * @cdb: pointer to SCSI CDB
1443 * @sense: pointer to SCSI sense buffer
1444 * @unpacked_lun: unpacked LUN to reference for struct se_lun
1445 * @data_length: fabric expected data transfer length
1446 * @task_addr: SAM task attribute
1447 * @data_dir: DMA data direction
1448 * @flags: flags for command submission from target_sc_flags_tables
1450 * Returns non zero to signal active I/O shutdown failure. All other
1451 * setup exceptions will be returned as a SCSI CHECK_CONDITION response,
1452 * but still return zero here.
1454 * This may only be called from process context, and also currently
1455 * assumes internal allocation of fabric payload buffer by target-core.
1457 * It also assumes interal target core SGL memory allocation.
1459 int target_submit_cmd(struct se_cmd *se_cmd, struct se_session *se_sess,
1460 unsigned char *cdb, unsigned char *sense, u32 unpacked_lun,
1461 u32 data_length, int task_attr, int data_dir, int flags)
1463 return target_submit_cmd_map_sgls(se_cmd, se_sess, cdb, sense,
1464 unpacked_lun, data_length, task_attr, data_dir,
1465 flags, NULL, 0, NULL, 0);
1467 EXPORT_SYMBOL(target_submit_cmd);
1469 static void target_complete_tmr_failure(struct work_struct *work)
1471 struct se_cmd *se_cmd = container_of(work, struct se_cmd, work);
1473 se_cmd->se_tmr_req->response = TMR_LUN_DOES_NOT_EXIST;
1474 se_cmd->se_tfo->queue_tm_rsp(se_cmd);
1476 transport_cmd_check_stop_to_fabric(se_cmd);
1480 * target_submit_tmr - lookup unpacked lun and submit uninitialized se_cmd
1481 * for TMR CDBs
1483 * @se_cmd: command descriptor to submit
1484 * @se_sess: associated se_sess for endpoint
1485 * @sense: pointer to SCSI sense buffer
1486 * @unpacked_lun: unpacked LUN to reference for struct se_lun
1487 * @fabric_context: fabric context for TMR req
1488 * @tm_type: Type of TM request
1489 * @gfp: gfp type for caller
1490 * @tag: referenced task tag for TMR_ABORT_TASK
1491 * @flags: submit cmd flags
1493 * Callable from all contexts.
1496 int target_submit_tmr(struct se_cmd *se_cmd, struct se_session *se_sess,
1497 unsigned char *sense, u32 unpacked_lun,
1498 void *fabric_tmr_ptr, unsigned char tm_type,
1499 gfp_t gfp, unsigned int tag, int flags)
1501 struct se_portal_group *se_tpg;
1502 int ret;
1504 se_tpg = se_sess->se_tpg;
1505 BUG_ON(!se_tpg);
1507 transport_init_se_cmd(se_cmd, se_tpg->se_tpg_tfo, se_sess,
1508 0, DMA_NONE, MSG_SIMPLE_TAG, sense);
1510 * FIXME: Currently expect caller to handle se_cmd->se_tmr_req
1511 * allocation failure.
1513 ret = core_tmr_alloc_req(se_cmd, fabric_tmr_ptr, tm_type, gfp);
1514 if (ret < 0)
1515 return -ENOMEM;
1517 if (tm_type == TMR_ABORT_TASK)
1518 se_cmd->se_tmr_req->ref_task_tag = tag;
1520 /* See target_submit_cmd for commentary */
1521 ret = target_get_sess_cmd(se_sess, se_cmd, (flags & TARGET_SCF_ACK_KREF));
1522 if (ret) {
1523 core_tmr_release_req(se_cmd->se_tmr_req);
1524 return ret;
1527 ret = transport_lookup_tmr_lun(se_cmd, unpacked_lun);
1528 if (ret) {
1530 * For callback during failure handling, push this work off
1531 * to process context with TMR_LUN_DOES_NOT_EXIST status.
1533 INIT_WORK(&se_cmd->work, target_complete_tmr_failure);
1534 schedule_work(&se_cmd->work);
1535 return 0;
1537 transport_generic_handle_tmr(se_cmd);
1538 return 0;
1540 EXPORT_SYMBOL(target_submit_tmr);
1543 * If the cmd is active, request it to be stopped and sleep until it
1544 * has completed.
1546 bool target_stop_cmd(struct se_cmd *cmd, unsigned long *flags)
1548 bool was_active = false;
1550 if (cmd->transport_state & CMD_T_BUSY) {
1551 cmd->transport_state |= CMD_T_REQUEST_STOP;
1552 spin_unlock_irqrestore(&cmd->t_state_lock, *flags);
1554 pr_debug("cmd %p waiting to complete\n", cmd);
1555 wait_for_completion(&cmd->task_stop_comp);
1556 pr_debug("cmd %p stopped successfully\n", cmd);
1558 spin_lock_irqsave(&cmd->t_state_lock, *flags);
1559 cmd->transport_state &= ~CMD_T_REQUEST_STOP;
1560 cmd->transport_state &= ~CMD_T_BUSY;
1561 was_active = true;
1564 return was_active;
1568 * Handle SAM-esque emulation for generic transport request failures.
1570 void transport_generic_request_failure(struct se_cmd *cmd,
1571 sense_reason_t sense_reason)
1573 int ret = 0, post_ret = 0;
1575 pr_debug("-----[ Storage Engine Exception for cmd: %p ITT: 0x%08x"
1576 " CDB: 0x%02x\n", cmd, cmd->se_tfo->get_task_tag(cmd),
1577 cmd->t_task_cdb[0]);
1578 pr_debug("-----[ i_state: %d t_state: %d sense_reason: %d\n",
1579 cmd->se_tfo->get_cmd_state(cmd),
1580 cmd->t_state, sense_reason);
1581 pr_debug("-----[ CMD_T_ACTIVE: %d CMD_T_STOP: %d CMD_T_SENT: %d\n",
1582 (cmd->transport_state & CMD_T_ACTIVE) != 0,
1583 (cmd->transport_state & CMD_T_STOP) != 0,
1584 (cmd->transport_state & CMD_T_SENT) != 0);
1587 * For SAM Task Attribute emulation for failed struct se_cmd
1589 transport_complete_task_attr(cmd);
1591 * Handle special case for COMPARE_AND_WRITE failure, where the
1592 * callback is expected to drop the per device ->caw_sem.
1594 if ((cmd->se_cmd_flags & SCF_COMPARE_AND_WRITE) &&
1595 cmd->transport_complete_callback)
1596 cmd->transport_complete_callback(cmd, false, &post_ret);
1598 switch (sense_reason) {
1599 case TCM_NON_EXISTENT_LUN:
1600 case TCM_UNSUPPORTED_SCSI_OPCODE:
1601 case TCM_INVALID_CDB_FIELD:
1602 case TCM_INVALID_PARAMETER_LIST:
1603 case TCM_PARAMETER_LIST_LENGTH_ERROR:
1604 case TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE:
1605 case TCM_UNKNOWN_MODE_PAGE:
1606 case TCM_WRITE_PROTECTED:
1607 case TCM_ADDRESS_OUT_OF_RANGE:
1608 case TCM_CHECK_CONDITION_ABORT_CMD:
1609 case TCM_CHECK_CONDITION_UNIT_ATTENTION:
1610 case TCM_CHECK_CONDITION_NOT_READY:
1611 break;
1612 case TCM_OUT_OF_RESOURCES:
1613 sense_reason = TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
1614 break;
1615 case TCM_RESERVATION_CONFLICT:
1617 * No SENSE Data payload for this case, set SCSI Status
1618 * and queue the response to $FABRIC_MOD.
1620 * Uses linux/include/scsi/scsi.h SAM status codes defs
1622 cmd->scsi_status = SAM_STAT_RESERVATION_CONFLICT;
1624 * For UA Interlock Code 11b, a RESERVATION CONFLICT will
1625 * establish a UNIT ATTENTION with PREVIOUS RESERVATION
1626 * CONFLICT STATUS.
1628 * See spc4r17, section 7.4.6 Control Mode Page, Table 349
1630 if (cmd->se_sess &&
1631 cmd->se_dev->dev_attrib.emulate_ua_intlck_ctrl == 2)
1632 core_scsi3_ua_allocate(cmd->se_sess->se_node_acl,
1633 cmd->orig_fe_lun, 0x2C,
1634 ASCQ_2CH_PREVIOUS_RESERVATION_CONFLICT_STATUS);
1636 trace_target_cmd_complete(cmd);
1637 ret = cmd->se_tfo-> queue_status(cmd);
1638 if (ret == -EAGAIN || ret == -ENOMEM)
1639 goto queue_full;
1640 goto check_stop;
1641 default:
1642 pr_err("Unknown transport error for CDB 0x%02x: %d\n",
1643 cmd->t_task_cdb[0], sense_reason);
1644 sense_reason = TCM_UNSUPPORTED_SCSI_OPCODE;
1645 break;
1648 ret = transport_send_check_condition_and_sense(cmd, sense_reason, 0);
1649 if (ret == -EAGAIN || ret == -ENOMEM)
1650 goto queue_full;
1652 check_stop:
1653 transport_lun_remove_cmd(cmd);
1654 if (!transport_cmd_check_stop_to_fabric(cmd))
1656 return;
1658 queue_full:
1659 cmd->t_state = TRANSPORT_COMPLETE_QF_OK;
1660 transport_handle_queue_full(cmd, cmd->se_dev);
1662 EXPORT_SYMBOL(transport_generic_request_failure);
1664 void __target_execute_cmd(struct se_cmd *cmd)
1666 sense_reason_t ret;
1668 if (cmd->execute_cmd) {
1669 ret = cmd->execute_cmd(cmd);
1670 if (ret) {
1671 spin_lock_irq(&cmd->t_state_lock);
1672 cmd->transport_state &= ~(CMD_T_BUSY|CMD_T_SENT);
1673 spin_unlock_irq(&cmd->t_state_lock);
1675 transport_generic_request_failure(cmd, ret);
1680 static bool target_handle_task_attr(struct se_cmd *cmd)
1682 struct se_device *dev = cmd->se_dev;
1684 if (dev->transport->transport_type == TRANSPORT_PLUGIN_PHBA_PDEV)
1685 return false;
1688 * Check for the existence of HEAD_OF_QUEUE, and if true return 1
1689 * to allow the passed struct se_cmd list of tasks to the front of the list.
1691 switch (cmd->sam_task_attr) {
1692 case MSG_HEAD_TAG:
1693 pr_debug("Added HEAD_OF_QUEUE for CDB: 0x%02x, "
1694 "se_ordered_id: %u\n",
1695 cmd->t_task_cdb[0], cmd->se_ordered_id);
1696 return false;
1697 case MSG_ORDERED_TAG:
1698 atomic_inc(&dev->dev_ordered_sync);
1699 smp_mb__after_atomic_inc();
1701 pr_debug("Added ORDERED for CDB: 0x%02x to ordered list, "
1702 " se_ordered_id: %u\n",
1703 cmd->t_task_cdb[0], cmd->se_ordered_id);
1706 * Execute an ORDERED command if no other older commands
1707 * exist that need to be completed first.
1709 if (!atomic_read(&dev->simple_cmds))
1710 return false;
1711 break;
1712 default:
1714 * For SIMPLE and UNTAGGED Task Attribute commands
1716 atomic_inc(&dev->simple_cmds);
1717 smp_mb__after_atomic_inc();
1718 break;
1721 if (atomic_read(&dev->dev_ordered_sync) == 0)
1722 return false;
1724 spin_lock(&dev->delayed_cmd_lock);
1725 list_add_tail(&cmd->se_delayed_node, &dev->delayed_cmd_list);
1726 spin_unlock(&dev->delayed_cmd_lock);
1728 pr_debug("Added CDB: 0x%02x Task Attr: 0x%02x to"
1729 " delayed CMD list, se_ordered_id: %u\n",
1730 cmd->t_task_cdb[0], cmd->sam_task_attr,
1731 cmd->se_ordered_id);
1732 return true;
1735 void target_execute_cmd(struct se_cmd *cmd)
1738 * If the received CDB has aleady been aborted stop processing it here.
1740 if (transport_check_aborted_status(cmd, 1)) {
1741 complete(&cmd->transport_lun_stop_comp);
1742 return;
1746 * Determine if IOCTL context caller in requesting the stopping of this
1747 * command for LUN shutdown purposes.
1749 spin_lock_irq(&cmd->t_state_lock);
1750 if (cmd->transport_state & CMD_T_LUN_STOP) {
1751 pr_debug("%s:%d CMD_T_LUN_STOP for ITT: 0x%08x\n",
1752 __func__, __LINE__, cmd->se_tfo->get_task_tag(cmd));
1754 cmd->transport_state &= ~CMD_T_ACTIVE;
1755 spin_unlock_irq(&cmd->t_state_lock);
1756 complete(&cmd->transport_lun_stop_comp);
1757 return;
1760 * Determine if frontend context caller is requesting the stopping of
1761 * this command for frontend exceptions.
1763 if (cmd->transport_state & CMD_T_STOP) {
1764 pr_debug("%s:%d CMD_T_STOP for ITT: 0x%08x\n",
1765 __func__, __LINE__,
1766 cmd->se_tfo->get_task_tag(cmd));
1768 spin_unlock_irq(&cmd->t_state_lock);
1769 complete_all(&cmd->t_transport_stop_comp);
1770 return;
1773 cmd->t_state = TRANSPORT_PROCESSING;
1774 cmd->transport_state |= CMD_T_ACTIVE|CMD_T_BUSY|CMD_T_SENT;
1775 spin_unlock_irq(&cmd->t_state_lock);
1777 if (target_handle_task_attr(cmd)) {
1778 spin_lock_irq(&cmd->t_state_lock);
1779 cmd->transport_state &= ~CMD_T_BUSY|CMD_T_SENT;
1780 spin_unlock_irq(&cmd->t_state_lock);
1781 return;
1784 __target_execute_cmd(cmd);
1786 EXPORT_SYMBOL(target_execute_cmd);
1789 * Process all commands up to the last received ORDERED task attribute which
1790 * requires another blocking boundary
1792 static void target_restart_delayed_cmds(struct se_device *dev)
1794 for (;;) {
1795 struct se_cmd *cmd;
1797 spin_lock(&dev->delayed_cmd_lock);
1798 if (list_empty(&dev->delayed_cmd_list)) {
1799 spin_unlock(&dev->delayed_cmd_lock);
1800 break;
1803 cmd = list_entry(dev->delayed_cmd_list.next,
1804 struct se_cmd, se_delayed_node);
1805 list_del(&cmd->se_delayed_node);
1806 spin_unlock(&dev->delayed_cmd_lock);
1808 __target_execute_cmd(cmd);
1810 if (cmd->sam_task_attr == MSG_ORDERED_TAG)
1811 break;
1816 * Called from I/O completion to determine which dormant/delayed
1817 * and ordered cmds need to have their tasks added to the execution queue.
1819 static void transport_complete_task_attr(struct se_cmd *cmd)
1821 struct se_device *dev = cmd->se_dev;
1823 if (dev->transport->transport_type == TRANSPORT_PLUGIN_PHBA_PDEV)
1824 return;
1826 if (cmd->sam_task_attr == MSG_SIMPLE_TAG) {
1827 atomic_dec(&dev->simple_cmds);
1828 smp_mb__after_atomic_dec();
1829 dev->dev_cur_ordered_id++;
1830 pr_debug("Incremented dev->dev_cur_ordered_id: %u for"
1831 " SIMPLE: %u\n", dev->dev_cur_ordered_id,
1832 cmd->se_ordered_id);
1833 } else if (cmd->sam_task_attr == MSG_HEAD_TAG) {
1834 dev->dev_cur_ordered_id++;
1835 pr_debug("Incremented dev_cur_ordered_id: %u for"
1836 " HEAD_OF_QUEUE: %u\n", dev->dev_cur_ordered_id,
1837 cmd->se_ordered_id);
1838 } else if (cmd->sam_task_attr == MSG_ORDERED_TAG) {
1839 atomic_dec(&dev->dev_ordered_sync);
1840 smp_mb__after_atomic_dec();
1842 dev->dev_cur_ordered_id++;
1843 pr_debug("Incremented dev_cur_ordered_id: %u for ORDERED:"
1844 " %u\n", dev->dev_cur_ordered_id, cmd->se_ordered_id);
1847 target_restart_delayed_cmds(dev);
1850 static void transport_complete_qf(struct se_cmd *cmd)
1852 int ret = 0;
1854 transport_complete_task_attr(cmd);
1856 if (cmd->se_cmd_flags & SCF_TRANSPORT_TASK_SENSE) {
1857 trace_target_cmd_complete(cmd);
1858 ret = cmd->se_tfo->queue_status(cmd);
1859 goto out;
1862 switch (cmd->data_direction) {
1863 case DMA_FROM_DEVICE:
1864 trace_target_cmd_complete(cmd);
1865 ret = cmd->se_tfo->queue_data_in(cmd);
1866 break;
1867 case DMA_TO_DEVICE:
1868 if (cmd->se_cmd_flags & SCF_BIDI) {
1869 ret = cmd->se_tfo->queue_data_in(cmd);
1870 if (ret < 0)
1871 break;
1873 /* Fall through for DMA_TO_DEVICE */
1874 case DMA_NONE:
1875 trace_target_cmd_complete(cmd);
1876 ret = cmd->se_tfo->queue_status(cmd);
1877 break;
1878 default:
1879 break;
1882 out:
1883 if (ret < 0) {
1884 transport_handle_queue_full(cmd, cmd->se_dev);
1885 return;
1887 transport_lun_remove_cmd(cmd);
1888 transport_cmd_check_stop_to_fabric(cmd);
1891 static void transport_handle_queue_full(
1892 struct se_cmd *cmd,
1893 struct se_device *dev)
1895 spin_lock_irq(&dev->qf_cmd_lock);
1896 list_add_tail(&cmd->se_qf_node, &cmd->se_dev->qf_cmd_list);
1897 atomic_inc(&dev->dev_qf_count);
1898 smp_mb__after_atomic_inc();
1899 spin_unlock_irq(&cmd->se_dev->qf_cmd_lock);
1901 schedule_work(&cmd->se_dev->qf_work_queue);
1904 static void target_complete_ok_work(struct work_struct *work)
1906 struct se_cmd *cmd = container_of(work, struct se_cmd, work);
1907 int ret;
1910 * Check if we need to move delayed/dormant tasks from cmds on the
1911 * delayed execution list after a HEAD_OF_QUEUE or ORDERED Task
1912 * Attribute.
1914 transport_complete_task_attr(cmd);
1917 * Check to schedule QUEUE_FULL work, or execute an existing
1918 * cmd->transport_qf_callback()
1920 if (atomic_read(&cmd->se_dev->dev_qf_count) != 0)
1921 schedule_work(&cmd->se_dev->qf_work_queue);
1924 * Check if we need to send a sense buffer from
1925 * the struct se_cmd in question.
1927 if (cmd->se_cmd_flags & SCF_TRANSPORT_TASK_SENSE) {
1928 WARN_ON(!cmd->scsi_status);
1929 ret = transport_send_check_condition_and_sense(
1930 cmd, 0, 1);
1931 if (ret == -EAGAIN || ret == -ENOMEM)
1932 goto queue_full;
1934 transport_lun_remove_cmd(cmd);
1935 transport_cmd_check_stop_to_fabric(cmd);
1936 return;
1939 * Check for a callback, used by amongst other things
1940 * XDWRITE_READ_10 and COMPARE_AND_WRITE emulation.
1942 if (cmd->transport_complete_callback) {
1943 sense_reason_t rc;
1944 bool caw = (cmd->se_cmd_flags & SCF_COMPARE_AND_WRITE);
1945 bool zero_dl = !(cmd->data_length);
1946 int post_ret = 0;
1948 rc = cmd->transport_complete_callback(cmd, true, &post_ret);
1949 if (!rc && !post_ret) {
1950 if (caw && zero_dl)
1951 goto queue_rsp;
1953 return;
1954 } else if (rc) {
1955 ret = transport_send_check_condition_and_sense(cmd,
1956 rc, 0);
1957 if (ret == -EAGAIN || ret == -ENOMEM)
1958 goto queue_full;
1960 transport_lun_remove_cmd(cmd);
1961 transport_cmd_check_stop_to_fabric(cmd);
1962 return;
1966 queue_rsp:
1967 switch (cmd->data_direction) {
1968 case DMA_FROM_DEVICE:
1969 spin_lock(&cmd->se_lun->lun_sep_lock);
1970 if (cmd->se_lun->lun_sep) {
1971 cmd->se_lun->lun_sep->sep_stats.tx_data_octets +=
1972 cmd->data_length;
1974 spin_unlock(&cmd->se_lun->lun_sep_lock);
1976 trace_target_cmd_complete(cmd);
1977 ret = cmd->se_tfo->queue_data_in(cmd);
1978 if (ret == -EAGAIN || ret == -ENOMEM)
1979 goto queue_full;
1980 break;
1981 case DMA_TO_DEVICE:
1982 spin_lock(&cmd->se_lun->lun_sep_lock);
1983 if (cmd->se_lun->lun_sep) {
1984 cmd->se_lun->lun_sep->sep_stats.rx_data_octets +=
1985 cmd->data_length;
1987 spin_unlock(&cmd->se_lun->lun_sep_lock);
1989 * Check if we need to send READ payload for BIDI-COMMAND
1991 if (cmd->se_cmd_flags & SCF_BIDI) {
1992 spin_lock(&cmd->se_lun->lun_sep_lock);
1993 if (cmd->se_lun->lun_sep) {
1994 cmd->se_lun->lun_sep->sep_stats.tx_data_octets +=
1995 cmd->data_length;
1997 spin_unlock(&cmd->se_lun->lun_sep_lock);
1998 ret = cmd->se_tfo->queue_data_in(cmd);
1999 if (ret == -EAGAIN || ret == -ENOMEM)
2000 goto queue_full;
2001 break;
2003 /* Fall through for DMA_TO_DEVICE */
2004 case DMA_NONE:
2005 trace_target_cmd_complete(cmd);
2006 ret = cmd->se_tfo->queue_status(cmd);
2007 if (ret == -EAGAIN || ret == -ENOMEM)
2008 goto queue_full;
2009 break;
2010 default:
2011 break;
2014 transport_lun_remove_cmd(cmd);
2015 transport_cmd_check_stop_to_fabric(cmd);
2016 return;
2018 queue_full:
2019 pr_debug("Handling complete_ok QUEUE_FULL: se_cmd: %p,"
2020 " data_direction: %d\n", cmd, cmd->data_direction);
2021 cmd->t_state = TRANSPORT_COMPLETE_QF_OK;
2022 transport_handle_queue_full(cmd, cmd->se_dev);
2025 static inline void transport_free_sgl(struct scatterlist *sgl, int nents)
2027 struct scatterlist *sg;
2028 int count;
2030 for_each_sg(sgl, sg, nents, count)
2031 __free_page(sg_page(sg));
2033 kfree(sgl);
2036 static inline void transport_reset_sgl_orig(struct se_cmd *cmd)
2039 * Check for saved t_data_sg that may be used for COMPARE_AND_WRITE
2040 * emulation, and free + reset pointers if necessary..
2042 if (!cmd->t_data_sg_orig)
2043 return;
2045 kfree(cmd->t_data_sg);
2046 cmd->t_data_sg = cmd->t_data_sg_orig;
2047 cmd->t_data_sg_orig = NULL;
2048 cmd->t_data_nents = cmd->t_data_nents_orig;
2049 cmd->t_data_nents_orig = 0;
2052 static inline void transport_free_pages(struct se_cmd *cmd)
2054 if (cmd->se_cmd_flags & SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC) {
2056 * Release special case READ buffer payload required for
2057 * SG_TO_MEM_NOALLOC to function with COMPARE_AND_WRITE
2059 if (cmd->se_cmd_flags & SCF_COMPARE_AND_WRITE) {
2060 transport_free_sgl(cmd->t_bidi_data_sg,
2061 cmd->t_bidi_data_nents);
2062 cmd->t_bidi_data_sg = NULL;
2063 cmd->t_bidi_data_nents = 0;
2065 transport_reset_sgl_orig(cmd);
2066 return;
2068 transport_reset_sgl_orig(cmd);
2070 transport_free_sgl(cmd->t_data_sg, cmd->t_data_nents);
2071 cmd->t_data_sg = NULL;
2072 cmd->t_data_nents = 0;
2074 transport_free_sgl(cmd->t_bidi_data_sg, cmd->t_bidi_data_nents);
2075 cmd->t_bidi_data_sg = NULL;
2076 cmd->t_bidi_data_nents = 0;
2080 * transport_release_cmd - free a command
2081 * @cmd: command to free
2083 * This routine unconditionally frees a command, and reference counting
2084 * or list removal must be done in the caller.
2086 static int transport_release_cmd(struct se_cmd *cmd)
2088 BUG_ON(!cmd->se_tfo);
2090 if (cmd->se_cmd_flags & SCF_SCSI_TMR_CDB)
2091 core_tmr_release_req(cmd->se_tmr_req);
2092 if (cmd->t_task_cdb != cmd->__t_task_cdb)
2093 kfree(cmd->t_task_cdb);
2095 * If this cmd has been setup with target_get_sess_cmd(), drop
2096 * the kref and call ->release_cmd() in kref callback.
2098 return target_put_sess_cmd(cmd->se_sess, cmd);
2102 * transport_put_cmd - release a reference to a command
2103 * @cmd: command to release
2105 * This routine releases our reference to the command and frees it if possible.
2107 static int transport_put_cmd(struct se_cmd *cmd)
2109 transport_free_pages(cmd);
2110 return transport_release_cmd(cmd);
2113 void *transport_kmap_data_sg(struct se_cmd *cmd)
2115 struct scatterlist *sg = cmd->t_data_sg;
2116 struct page **pages;
2117 int i;
2120 * We need to take into account a possible offset here for fabrics like
2121 * tcm_loop who may be using a contig buffer from the SCSI midlayer for
2122 * control CDBs passed as SGLs via transport_generic_map_mem_to_cmd()
2124 if (!cmd->t_data_nents)
2125 return NULL;
2127 BUG_ON(!sg);
2128 if (cmd->t_data_nents == 1)
2129 return kmap(sg_page(sg)) + sg->offset;
2131 /* >1 page. use vmap */
2132 pages = kmalloc(sizeof(*pages) * cmd->t_data_nents, GFP_KERNEL);
2133 if (!pages)
2134 return NULL;
2136 /* convert sg[] to pages[] */
2137 for_each_sg(cmd->t_data_sg, sg, cmd->t_data_nents, i) {
2138 pages[i] = sg_page(sg);
2141 cmd->t_data_vmap = vmap(pages, cmd->t_data_nents, VM_MAP, PAGE_KERNEL);
2142 kfree(pages);
2143 if (!cmd->t_data_vmap)
2144 return NULL;
2146 return cmd->t_data_vmap + cmd->t_data_sg[0].offset;
2148 EXPORT_SYMBOL(transport_kmap_data_sg);
2150 void transport_kunmap_data_sg(struct se_cmd *cmd)
2152 if (!cmd->t_data_nents) {
2153 return;
2154 } else if (cmd->t_data_nents == 1) {
2155 kunmap(sg_page(cmd->t_data_sg));
2156 return;
2159 vunmap(cmd->t_data_vmap);
2160 cmd->t_data_vmap = NULL;
2162 EXPORT_SYMBOL(transport_kunmap_data_sg);
2165 target_alloc_sgl(struct scatterlist **sgl, unsigned int *nents, u32 length,
2166 bool zero_page)
2168 struct scatterlist *sg;
2169 struct page *page;
2170 gfp_t zero_flag = (zero_page) ? __GFP_ZERO : 0;
2171 unsigned int nent;
2172 int i = 0;
2174 nent = DIV_ROUND_UP(length, PAGE_SIZE);
2175 sg = kmalloc(sizeof(struct scatterlist) * nent, GFP_KERNEL);
2176 if (!sg)
2177 return -ENOMEM;
2179 sg_init_table(sg, nent);
2181 while (length) {
2182 u32 page_len = min_t(u32, length, PAGE_SIZE);
2183 page = alloc_page(GFP_KERNEL | zero_flag);
2184 if (!page)
2185 goto out;
2187 sg_set_page(&sg[i], page, page_len, 0);
2188 length -= page_len;
2189 i++;
2191 *sgl = sg;
2192 *nents = nent;
2193 return 0;
2195 out:
2196 while (i > 0) {
2197 i--;
2198 __free_page(sg_page(&sg[i]));
2200 kfree(sg);
2201 return -ENOMEM;
2205 * Allocate any required resources to execute the command. For writes we
2206 * might not have the payload yet, so notify the fabric via a call to
2207 * ->write_pending instead. Otherwise place it on the execution queue.
2209 sense_reason_t
2210 transport_generic_new_cmd(struct se_cmd *cmd)
2212 int ret = 0;
2213 bool zero_flag = !(cmd->se_cmd_flags & SCF_SCSI_DATA_CDB);
2216 * Determine is the TCM fabric module has already allocated physical
2217 * memory, and is directly calling transport_generic_map_mem_to_cmd()
2218 * beforehand.
2220 if (!(cmd->se_cmd_flags & SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC) &&
2221 cmd->data_length) {
2223 if ((cmd->se_cmd_flags & SCF_BIDI) ||
2224 (cmd->se_cmd_flags & SCF_COMPARE_AND_WRITE)) {
2225 u32 bidi_length;
2227 if (cmd->se_cmd_flags & SCF_COMPARE_AND_WRITE)
2228 bidi_length = cmd->t_task_nolb *
2229 cmd->se_dev->dev_attrib.block_size;
2230 else
2231 bidi_length = cmd->data_length;
2233 ret = target_alloc_sgl(&cmd->t_bidi_data_sg,
2234 &cmd->t_bidi_data_nents,
2235 bidi_length, zero_flag);
2236 if (ret < 0)
2237 return TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
2240 ret = target_alloc_sgl(&cmd->t_data_sg, &cmd->t_data_nents,
2241 cmd->data_length, zero_flag);
2242 if (ret < 0)
2243 return TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
2244 } else if ((cmd->se_cmd_flags & SCF_COMPARE_AND_WRITE) &&
2245 cmd->data_length) {
2247 * Special case for COMPARE_AND_WRITE with fabrics
2248 * using SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC.
2250 u32 caw_length = cmd->t_task_nolb *
2251 cmd->se_dev->dev_attrib.block_size;
2253 ret = target_alloc_sgl(&cmd->t_bidi_data_sg,
2254 &cmd->t_bidi_data_nents,
2255 caw_length, zero_flag);
2256 if (ret < 0)
2257 return TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
2260 * If this command is not a write we can execute it right here,
2261 * for write buffers we need to notify the fabric driver first
2262 * and let it call back once the write buffers are ready.
2264 target_add_to_state_list(cmd);
2265 if (cmd->data_direction != DMA_TO_DEVICE || cmd->data_length == 0) {
2266 target_execute_cmd(cmd);
2267 return 0;
2269 transport_cmd_check_stop(cmd, false, true);
2271 ret = cmd->se_tfo->write_pending(cmd);
2272 if (ret == -EAGAIN || ret == -ENOMEM)
2273 goto queue_full;
2275 /* fabric drivers should only return -EAGAIN or -ENOMEM as error */
2276 WARN_ON(ret);
2278 return (!ret) ? 0 : TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
2280 queue_full:
2281 pr_debug("Handling write_pending QUEUE__FULL: se_cmd: %p\n", cmd);
2282 cmd->t_state = TRANSPORT_COMPLETE_QF_WP;
2283 transport_handle_queue_full(cmd, cmd->se_dev);
2284 return 0;
2286 EXPORT_SYMBOL(transport_generic_new_cmd);
2288 static void transport_write_pending_qf(struct se_cmd *cmd)
2290 int ret;
2292 ret = cmd->se_tfo->write_pending(cmd);
2293 if (ret == -EAGAIN || ret == -ENOMEM) {
2294 pr_debug("Handling write_pending QUEUE__FULL: se_cmd: %p\n",
2295 cmd);
2296 transport_handle_queue_full(cmd, cmd->se_dev);
2300 int transport_generic_free_cmd(struct se_cmd *cmd, int wait_for_tasks)
2302 unsigned long flags;
2303 int ret = 0;
2305 if (!(cmd->se_cmd_flags & SCF_SE_LUN_CMD)) {
2306 if (wait_for_tasks && (cmd->se_cmd_flags & SCF_SCSI_TMR_CDB))
2307 transport_wait_for_tasks(cmd);
2309 ret = transport_release_cmd(cmd);
2310 } else {
2311 if (wait_for_tasks)
2312 transport_wait_for_tasks(cmd);
2314 * Handle WRITE failure case where transport_generic_new_cmd()
2315 * has already added se_cmd to state_list, but fabric has
2316 * failed command before I/O submission.
2318 if (cmd->state_active) {
2319 spin_lock_irqsave(&cmd->t_state_lock, flags);
2320 target_remove_from_state_list(cmd);
2321 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2324 if (cmd->se_lun)
2325 transport_lun_remove_cmd(cmd);
2327 ret = transport_put_cmd(cmd);
2329 return ret;
2331 EXPORT_SYMBOL(transport_generic_free_cmd);
2333 /* target_get_sess_cmd - Add command to active ->sess_cmd_list
2334 * @se_sess: session to reference
2335 * @se_cmd: command descriptor to add
2336 * @ack_kref: Signal that fabric will perform an ack target_put_sess_cmd()
2338 int target_get_sess_cmd(struct se_session *se_sess, struct se_cmd *se_cmd,
2339 bool ack_kref)
2341 unsigned long flags;
2342 int ret = 0;
2345 * Add a second kref if the fabric caller is expecting to handle
2346 * fabric acknowledgement that requires two target_put_sess_cmd()
2347 * invocations before se_cmd descriptor release.
2349 if (ack_kref == true) {
2350 kref_get(&se_cmd->cmd_kref);
2351 se_cmd->se_cmd_flags |= SCF_ACK_KREF;
2354 spin_lock_irqsave(&se_sess->sess_cmd_lock, flags);
2355 if (se_sess->sess_tearing_down) {
2356 ret = -ESHUTDOWN;
2357 goto out;
2359 list_add_tail(&se_cmd->se_cmd_list, &se_sess->sess_cmd_list);
2360 out:
2361 spin_unlock_irqrestore(&se_sess->sess_cmd_lock, flags);
2363 if (ret && ack_kref)
2364 target_put_sess_cmd(se_sess, se_cmd);
2366 return ret;
2368 EXPORT_SYMBOL(target_get_sess_cmd);
2370 static void target_release_cmd_kref(struct kref *kref)
2372 struct se_cmd *se_cmd = container_of(kref, struct se_cmd, cmd_kref);
2373 struct se_session *se_sess = se_cmd->se_sess;
2375 if (list_empty(&se_cmd->se_cmd_list)) {
2376 spin_unlock(&se_sess->sess_cmd_lock);
2377 se_cmd->se_tfo->release_cmd(se_cmd);
2378 return;
2380 if (se_sess->sess_tearing_down && se_cmd->cmd_wait_set) {
2381 spin_unlock(&se_sess->sess_cmd_lock);
2382 complete(&se_cmd->cmd_wait_comp);
2383 return;
2385 list_del(&se_cmd->se_cmd_list);
2386 spin_unlock(&se_sess->sess_cmd_lock);
2388 se_cmd->se_tfo->release_cmd(se_cmd);
2391 /* target_put_sess_cmd - Check for active I/O shutdown via kref_put
2392 * @se_sess: session to reference
2393 * @se_cmd: command descriptor to drop
2395 int target_put_sess_cmd(struct se_session *se_sess, struct se_cmd *se_cmd)
2397 if (!se_sess) {
2398 se_cmd->se_tfo->release_cmd(se_cmd);
2399 return 1;
2401 return kref_put_spinlock_irqsave(&se_cmd->cmd_kref, target_release_cmd_kref,
2402 &se_sess->sess_cmd_lock);
2404 EXPORT_SYMBOL(target_put_sess_cmd);
2406 /* target_sess_cmd_list_set_waiting - Flag all commands in
2407 * sess_cmd_list to complete cmd_wait_comp. Set
2408 * sess_tearing_down so no more commands are queued.
2409 * @se_sess: session to flag
2411 void target_sess_cmd_list_set_waiting(struct se_session *se_sess)
2413 struct se_cmd *se_cmd;
2414 unsigned long flags;
2416 spin_lock_irqsave(&se_sess->sess_cmd_lock, flags);
2417 if (se_sess->sess_tearing_down) {
2418 spin_unlock_irqrestore(&se_sess->sess_cmd_lock, flags);
2419 return;
2421 se_sess->sess_tearing_down = 1;
2422 list_splice_init(&se_sess->sess_cmd_list, &se_sess->sess_wait_list);
2424 list_for_each_entry(se_cmd, &se_sess->sess_wait_list, se_cmd_list)
2425 se_cmd->cmd_wait_set = 1;
2427 spin_unlock_irqrestore(&se_sess->sess_cmd_lock, flags);
2429 EXPORT_SYMBOL(target_sess_cmd_list_set_waiting);
2431 /* target_wait_for_sess_cmds - Wait for outstanding descriptors
2432 * @se_sess: session to wait for active I/O
2434 void target_wait_for_sess_cmds(struct se_session *se_sess)
2436 struct se_cmd *se_cmd, *tmp_cmd;
2437 unsigned long flags;
2439 list_for_each_entry_safe(se_cmd, tmp_cmd,
2440 &se_sess->sess_wait_list, se_cmd_list) {
2441 pr_debug("Waiting for se_cmd: %p t_state: %d, fabric state:"
2442 " %d\n", se_cmd, se_cmd->t_state,
2443 se_cmd->se_tfo->get_cmd_state(se_cmd));
2445 wait_for_completion(&se_cmd->cmd_wait_comp);
2446 pr_debug("After cmd_wait_comp: se_cmd: %p t_state: %d"
2447 " fabric state: %d\n", se_cmd, se_cmd->t_state,
2448 se_cmd->se_tfo->get_cmd_state(se_cmd));
2450 se_cmd->se_tfo->release_cmd(se_cmd);
2453 spin_lock_irqsave(&se_sess->sess_cmd_lock, flags);
2454 WARN_ON(!list_empty(&se_sess->sess_cmd_list));
2455 spin_unlock_irqrestore(&se_sess->sess_cmd_lock, flags);
2458 EXPORT_SYMBOL(target_wait_for_sess_cmds);
2460 /* transport_lun_wait_for_tasks():
2462 * Called from ConfigFS context to stop the passed struct se_cmd to allow
2463 * an struct se_lun to be successfully shutdown.
2465 static int transport_lun_wait_for_tasks(struct se_cmd *cmd, struct se_lun *lun)
2467 unsigned long flags;
2468 int ret = 0;
2471 * If the frontend has already requested this struct se_cmd to
2472 * be stopped, we can safely ignore this struct se_cmd.
2474 spin_lock_irqsave(&cmd->t_state_lock, flags);
2475 if (cmd->transport_state & CMD_T_STOP) {
2476 cmd->transport_state &= ~CMD_T_LUN_STOP;
2478 pr_debug("ConfigFS ITT[0x%08x] - CMD_T_STOP, skipping\n",
2479 cmd->se_tfo->get_task_tag(cmd));
2480 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2481 transport_cmd_check_stop(cmd, false, false);
2482 return -EPERM;
2484 cmd->transport_state |= CMD_T_LUN_FE_STOP;
2485 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2487 // XXX: audit task_flags checks.
2488 spin_lock_irqsave(&cmd->t_state_lock, flags);
2489 if ((cmd->transport_state & CMD_T_BUSY) &&
2490 (cmd->transport_state & CMD_T_SENT)) {
2491 if (!target_stop_cmd(cmd, &flags))
2492 ret++;
2494 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2496 pr_debug("ConfigFS: cmd: %p stop tasks ret:"
2497 " %d\n", cmd, ret);
2498 if (!ret) {
2499 pr_debug("ConfigFS: ITT[0x%08x] - stopping cmd....\n",
2500 cmd->se_tfo->get_task_tag(cmd));
2501 wait_for_completion(&cmd->transport_lun_stop_comp);
2502 pr_debug("ConfigFS: ITT[0x%08x] - stopped cmd....\n",
2503 cmd->se_tfo->get_task_tag(cmd));
2506 return 0;
2509 static void __transport_clear_lun_from_sessions(struct se_lun *lun)
2511 struct se_cmd *cmd = NULL;
2512 unsigned long lun_flags, cmd_flags;
2514 * Do exception processing and return CHECK_CONDITION status to the
2515 * Initiator Port.
2517 spin_lock_irqsave(&lun->lun_cmd_lock, lun_flags);
2518 while (!list_empty(&lun->lun_cmd_list)) {
2519 cmd = list_first_entry(&lun->lun_cmd_list,
2520 struct se_cmd, se_lun_node);
2521 list_del_init(&cmd->se_lun_node);
2523 spin_lock(&cmd->t_state_lock);
2524 pr_debug("SE_LUN[%d] - Setting cmd->transport"
2525 "_lun_stop for ITT: 0x%08x\n",
2526 cmd->se_lun->unpacked_lun,
2527 cmd->se_tfo->get_task_tag(cmd));
2528 cmd->transport_state |= CMD_T_LUN_STOP;
2529 spin_unlock(&cmd->t_state_lock);
2531 spin_unlock_irqrestore(&lun->lun_cmd_lock, lun_flags);
2533 if (!cmd->se_lun) {
2534 pr_err("ITT: 0x%08x, [i,t]_state: %u/%u\n",
2535 cmd->se_tfo->get_task_tag(cmd),
2536 cmd->se_tfo->get_cmd_state(cmd), cmd->t_state);
2537 BUG();
2540 * If the Storage engine still owns the iscsi_cmd_t, determine
2541 * and/or stop its context.
2543 pr_debug("SE_LUN[%d] - ITT: 0x%08x before transport"
2544 "_lun_wait_for_tasks()\n", cmd->se_lun->unpacked_lun,
2545 cmd->se_tfo->get_task_tag(cmd));
2547 if (transport_lun_wait_for_tasks(cmd, cmd->se_lun) < 0) {
2548 spin_lock_irqsave(&lun->lun_cmd_lock, lun_flags);
2549 continue;
2552 pr_debug("SE_LUN[%d] - ITT: 0x%08x after transport_lun"
2553 "_wait_for_tasks(): SUCCESS\n",
2554 cmd->se_lun->unpacked_lun,
2555 cmd->se_tfo->get_task_tag(cmd));
2557 spin_lock_irqsave(&cmd->t_state_lock, cmd_flags);
2558 if (!(cmd->transport_state & CMD_T_DEV_ACTIVE)) {
2559 spin_unlock_irqrestore(&cmd->t_state_lock, cmd_flags);
2560 goto check_cond;
2562 cmd->transport_state &= ~CMD_T_DEV_ACTIVE;
2563 target_remove_from_state_list(cmd);
2564 spin_unlock_irqrestore(&cmd->t_state_lock, cmd_flags);
2567 * The Storage engine stopped this struct se_cmd before it was
2568 * send to the fabric frontend for delivery back to the
2569 * Initiator Node. Return this SCSI CDB back with an
2570 * CHECK_CONDITION status.
2572 check_cond:
2573 transport_send_check_condition_and_sense(cmd,
2574 TCM_NON_EXISTENT_LUN, 0);
2576 * If the fabric frontend is waiting for this iscsi_cmd_t to
2577 * be released, notify the waiting thread now that LU has
2578 * finished accessing it.
2580 spin_lock_irqsave(&cmd->t_state_lock, cmd_flags);
2581 if (cmd->transport_state & CMD_T_LUN_FE_STOP) {
2582 pr_debug("SE_LUN[%d] - Detected FE stop for"
2583 " struct se_cmd: %p ITT: 0x%08x\n",
2584 lun->unpacked_lun,
2585 cmd, cmd->se_tfo->get_task_tag(cmd));
2587 spin_unlock_irqrestore(&cmd->t_state_lock,
2588 cmd_flags);
2589 transport_cmd_check_stop(cmd, false, false);
2590 complete(&cmd->transport_lun_fe_stop_comp);
2591 spin_lock_irqsave(&lun->lun_cmd_lock, lun_flags);
2592 continue;
2594 pr_debug("SE_LUN[%d] - ITT: 0x%08x finished processing\n",
2595 lun->unpacked_lun, cmd->se_tfo->get_task_tag(cmd));
2597 spin_unlock_irqrestore(&cmd->t_state_lock, cmd_flags);
2598 spin_lock_irqsave(&lun->lun_cmd_lock, lun_flags);
2600 spin_unlock_irqrestore(&lun->lun_cmd_lock, lun_flags);
2603 static int transport_clear_lun_thread(void *p)
2605 struct se_lun *lun = p;
2607 __transport_clear_lun_from_sessions(lun);
2608 complete(&lun->lun_shutdown_comp);
2610 return 0;
2613 int transport_clear_lun_from_sessions(struct se_lun *lun)
2615 struct task_struct *kt;
2617 kt = kthread_run(transport_clear_lun_thread, lun,
2618 "tcm_cl_%u", lun->unpacked_lun);
2619 if (IS_ERR(kt)) {
2620 pr_err("Unable to start clear_lun thread\n");
2621 return PTR_ERR(kt);
2623 wait_for_completion(&lun->lun_shutdown_comp);
2625 return 0;
2629 * transport_wait_for_tasks - wait for completion to occur
2630 * @cmd: command to wait
2632 * Called from frontend fabric context to wait for storage engine
2633 * to pause and/or release frontend generated struct se_cmd.
2635 bool transport_wait_for_tasks(struct se_cmd *cmd)
2637 unsigned long flags;
2639 spin_lock_irqsave(&cmd->t_state_lock, flags);
2640 if (!(cmd->se_cmd_flags & SCF_SE_LUN_CMD) &&
2641 !(cmd->se_cmd_flags & SCF_SCSI_TMR_CDB)) {
2642 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2643 return false;
2646 if (!(cmd->se_cmd_flags & SCF_SUPPORTED_SAM_OPCODE) &&
2647 !(cmd->se_cmd_flags & SCF_SCSI_TMR_CDB)) {
2648 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2649 return false;
2652 * If we are already stopped due to an external event (ie: LUN shutdown)
2653 * sleep until the connection can have the passed struct se_cmd back.
2654 * The cmd->transport_lun_stopped_sem will be upped by
2655 * transport_clear_lun_from_sessions() once the ConfigFS context caller
2656 * has completed its operation on the struct se_cmd.
2658 if (cmd->transport_state & CMD_T_LUN_STOP) {
2659 pr_debug("wait_for_tasks: Stopping"
2660 " wait_for_completion(&cmd->t_tasktransport_lun_fe"
2661 "_stop_comp); for ITT: 0x%08x\n",
2662 cmd->se_tfo->get_task_tag(cmd));
2664 * There is a special case for WRITES where a FE exception +
2665 * LUN shutdown means ConfigFS context is still sleeping on
2666 * transport_lun_stop_comp in transport_lun_wait_for_tasks().
2667 * We go ahead and up transport_lun_stop_comp just to be sure
2668 * here.
2670 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2671 complete(&cmd->transport_lun_stop_comp);
2672 wait_for_completion(&cmd->transport_lun_fe_stop_comp);
2673 spin_lock_irqsave(&cmd->t_state_lock, flags);
2675 target_remove_from_state_list(cmd);
2677 * At this point, the frontend who was the originator of this
2678 * struct se_cmd, now owns the structure and can be released through
2679 * normal means below.
2681 pr_debug("wait_for_tasks: Stopped"
2682 " wait_for_completion(&cmd->t_tasktransport_lun_fe_"
2683 "stop_comp); for ITT: 0x%08x\n",
2684 cmd->se_tfo->get_task_tag(cmd));
2686 cmd->transport_state &= ~CMD_T_LUN_STOP;
2689 if (!(cmd->transport_state & CMD_T_ACTIVE)) {
2690 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2691 return false;
2694 cmd->transport_state |= CMD_T_STOP;
2696 pr_debug("wait_for_tasks: Stopping %p ITT: 0x%08x"
2697 " i_state: %d, t_state: %d, CMD_T_STOP\n",
2698 cmd, cmd->se_tfo->get_task_tag(cmd),
2699 cmd->se_tfo->get_cmd_state(cmd), cmd->t_state);
2701 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2703 wait_for_completion(&cmd->t_transport_stop_comp);
2705 spin_lock_irqsave(&cmd->t_state_lock, flags);
2706 cmd->transport_state &= ~(CMD_T_ACTIVE | CMD_T_STOP);
2708 pr_debug("wait_for_tasks: Stopped wait_for_completion("
2709 "&cmd->t_transport_stop_comp) for ITT: 0x%08x\n",
2710 cmd->se_tfo->get_task_tag(cmd));
2712 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2714 return true;
2716 EXPORT_SYMBOL(transport_wait_for_tasks);
2718 static int transport_get_sense_codes(
2719 struct se_cmd *cmd,
2720 u8 *asc,
2721 u8 *ascq)
2723 *asc = cmd->scsi_asc;
2724 *ascq = cmd->scsi_ascq;
2726 return 0;
2730 transport_send_check_condition_and_sense(struct se_cmd *cmd,
2731 sense_reason_t reason, int from_transport)
2733 unsigned char *buffer = cmd->sense_buffer;
2734 unsigned long flags;
2735 u8 asc = 0, ascq = 0;
2737 spin_lock_irqsave(&cmd->t_state_lock, flags);
2738 if (cmd->se_cmd_flags & SCF_SENT_CHECK_CONDITION) {
2739 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2740 return 0;
2742 cmd->se_cmd_flags |= SCF_SENT_CHECK_CONDITION;
2743 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2745 if (!reason && from_transport)
2746 goto after_reason;
2748 if (!from_transport)
2749 cmd->se_cmd_flags |= SCF_EMULATED_TASK_SENSE;
2752 * Actual SENSE DATA, see SPC-3 7.23.2 SPC_SENSE_KEY_OFFSET uses
2753 * SENSE KEY values from include/scsi/scsi.h
2755 switch (reason) {
2756 case TCM_NO_SENSE:
2757 /* CURRENT ERROR */
2758 buffer[0] = 0x70;
2759 buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10;
2760 /* Not Ready */
2761 buffer[SPC_SENSE_KEY_OFFSET] = NOT_READY;
2762 /* NO ADDITIONAL SENSE INFORMATION */
2763 buffer[SPC_ASC_KEY_OFFSET] = 0;
2764 buffer[SPC_ASCQ_KEY_OFFSET] = 0;
2765 break;
2766 case TCM_NON_EXISTENT_LUN:
2767 /* CURRENT ERROR */
2768 buffer[0] = 0x70;
2769 buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10;
2770 /* ILLEGAL REQUEST */
2771 buffer[SPC_SENSE_KEY_OFFSET] = ILLEGAL_REQUEST;
2772 /* LOGICAL UNIT NOT SUPPORTED */
2773 buffer[SPC_ASC_KEY_OFFSET] = 0x25;
2774 break;
2775 case TCM_UNSUPPORTED_SCSI_OPCODE:
2776 case TCM_SECTOR_COUNT_TOO_MANY:
2777 /* CURRENT ERROR */
2778 buffer[0] = 0x70;
2779 buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10;
2780 /* ILLEGAL REQUEST */
2781 buffer[SPC_SENSE_KEY_OFFSET] = ILLEGAL_REQUEST;
2782 /* INVALID COMMAND OPERATION CODE */
2783 buffer[SPC_ASC_KEY_OFFSET] = 0x20;
2784 break;
2785 case TCM_UNKNOWN_MODE_PAGE:
2786 /* CURRENT ERROR */
2787 buffer[0] = 0x70;
2788 buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10;
2789 /* ILLEGAL REQUEST */
2790 buffer[SPC_SENSE_KEY_OFFSET] = ILLEGAL_REQUEST;
2791 /* INVALID FIELD IN CDB */
2792 buffer[SPC_ASC_KEY_OFFSET] = 0x24;
2793 break;
2794 case TCM_CHECK_CONDITION_ABORT_CMD:
2795 /* CURRENT ERROR */
2796 buffer[0] = 0x70;
2797 buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10;
2798 /* ABORTED COMMAND */
2799 buffer[SPC_SENSE_KEY_OFFSET] = ABORTED_COMMAND;
2800 /* BUS DEVICE RESET FUNCTION OCCURRED */
2801 buffer[SPC_ASC_KEY_OFFSET] = 0x29;
2802 buffer[SPC_ASCQ_KEY_OFFSET] = 0x03;
2803 break;
2804 case TCM_INCORRECT_AMOUNT_OF_DATA:
2805 /* CURRENT ERROR */
2806 buffer[0] = 0x70;
2807 buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10;
2808 /* ABORTED COMMAND */
2809 buffer[SPC_SENSE_KEY_OFFSET] = ABORTED_COMMAND;
2810 /* WRITE ERROR */
2811 buffer[SPC_ASC_KEY_OFFSET] = 0x0c;
2812 /* NOT ENOUGH UNSOLICITED DATA */
2813 buffer[SPC_ASCQ_KEY_OFFSET] = 0x0d;
2814 break;
2815 case TCM_INVALID_CDB_FIELD:
2816 /* CURRENT ERROR */
2817 buffer[0] = 0x70;
2818 buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10;
2819 /* ILLEGAL REQUEST */
2820 buffer[SPC_SENSE_KEY_OFFSET] = ILLEGAL_REQUEST;
2821 /* INVALID FIELD IN CDB */
2822 buffer[SPC_ASC_KEY_OFFSET] = 0x24;
2823 break;
2824 case TCM_INVALID_PARAMETER_LIST:
2825 /* CURRENT ERROR */
2826 buffer[0] = 0x70;
2827 buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10;
2828 /* ILLEGAL REQUEST */
2829 buffer[SPC_SENSE_KEY_OFFSET] = ILLEGAL_REQUEST;
2830 /* INVALID FIELD IN PARAMETER LIST */
2831 buffer[SPC_ASC_KEY_OFFSET] = 0x26;
2832 break;
2833 case TCM_PARAMETER_LIST_LENGTH_ERROR:
2834 /* CURRENT ERROR */
2835 buffer[0] = 0x70;
2836 buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10;
2837 /* ILLEGAL REQUEST */
2838 buffer[SPC_SENSE_KEY_OFFSET] = ILLEGAL_REQUEST;
2839 /* PARAMETER LIST LENGTH ERROR */
2840 buffer[SPC_ASC_KEY_OFFSET] = 0x1a;
2841 break;
2842 case TCM_UNEXPECTED_UNSOLICITED_DATA:
2843 /* CURRENT ERROR */
2844 buffer[0] = 0x70;
2845 buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10;
2846 /* ABORTED COMMAND */
2847 buffer[SPC_SENSE_KEY_OFFSET] = ABORTED_COMMAND;
2848 /* WRITE ERROR */
2849 buffer[SPC_ASC_KEY_OFFSET] = 0x0c;
2850 /* UNEXPECTED_UNSOLICITED_DATA */
2851 buffer[SPC_ASCQ_KEY_OFFSET] = 0x0c;
2852 break;
2853 case TCM_SERVICE_CRC_ERROR:
2854 /* CURRENT ERROR */
2855 buffer[0] = 0x70;
2856 buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10;
2857 /* ABORTED COMMAND */
2858 buffer[SPC_SENSE_KEY_OFFSET] = ABORTED_COMMAND;
2859 /* PROTOCOL SERVICE CRC ERROR */
2860 buffer[SPC_ASC_KEY_OFFSET] = 0x47;
2861 /* N/A */
2862 buffer[SPC_ASCQ_KEY_OFFSET] = 0x05;
2863 break;
2864 case TCM_SNACK_REJECTED:
2865 /* CURRENT ERROR */
2866 buffer[0] = 0x70;
2867 buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10;
2868 /* ABORTED COMMAND */
2869 buffer[SPC_SENSE_KEY_OFFSET] = ABORTED_COMMAND;
2870 /* READ ERROR */
2871 buffer[SPC_ASC_KEY_OFFSET] = 0x11;
2872 /* FAILED RETRANSMISSION REQUEST */
2873 buffer[SPC_ASCQ_KEY_OFFSET] = 0x13;
2874 break;
2875 case TCM_WRITE_PROTECTED:
2876 /* CURRENT ERROR */
2877 buffer[0] = 0x70;
2878 buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10;
2879 /* DATA PROTECT */
2880 buffer[SPC_SENSE_KEY_OFFSET] = DATA_PROTECT;
2881 /* WRITE PROTECTED */
2882 buffer[SPC_ASC_KEY_OFFSET] = 0x27;
2883 break;
2884 case TCM_ADDRESS_OUT_OF_RANGE:
2885 /* CURRENT ERROR */
2886 buffer[0] = 0x70;
2887 buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10;
2888 /* ILLEGAL REQUEST */
2889 buffer[SPC_SENSE_KEY_OFFSET] = ILLEGAL_REQUEST;
2890 /* LOGICAL BLOCK ADDRESS OUT OF RANGE */
2891 buffer[SPC_ASC_KEY_OFFSET] = 0x21;
2892 break;
2893 case TCM_CHECK_CONDITION_UNIT_ATTENTION:
2894 /* CURRENT ERROR */
2895 buffer[0] = 0x70;
2896 buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10;
2897 /* UNIT ATTENTION */
2898 buffer[SPC_SENSE_KEY_OFFSET] = UNIT_ATTENTION;
2899 core_scsi3_ua_for_check_condition(cmd, &asc, &ascq);
2900 buffer[SPC_ASC_KEY_OFFSET] = asc;
2901 buffer[SPC_ASCQ_KEY_OFFSET] = ascq;
2902 break;
2903 case TCM_CHECK_CONDITION_NOT_READY:
2904 /* CURRENT ERROR */
2905 buffer[0] = 0x70;
2906 buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10;
2907 /* Not Ready */
2908 buffer[SPC_SENSE_KEY_OFFSET] = NOT_READY;
2909 transport_get_sense_codes(cmd, &asc, &ascq);
2910 buffer[SPC_ASC_KEY_OFFSET] = asc;
2911 buffer[SPC_ASCQ_KEY_OFFSET] = ascq;
2912 break;
2913 case TCM_MISCOMPARE_VERIFY:
2914 /* CURRENT ERROR */
2915 buffer[0] = 0x70;
2916 buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10;
2917 buffer[SPC_SENSE_KEY_OFFSET] = MISCOMPARE;
2918 /* MISCOMPARE DURING VERIFY OPERATION */
2919 buffer[SPC_ASC_KEY_OFFSET] = 0x1d;
2920 buffer[SPC_ASCQ_KEY_OFFSET] = 0x00;
2921 break;
2922 case TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE:
2923 default:
2924 /* CURRENT ERROR */
2925 buffer[0] = 0x70;
2926 buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10;
2928 * Returning ILLEGAL REQUEST would cause immediate IO errors on
2929 * Solaris initiators. Returning NOT READY instead means the
2930 * operations will be retried a finite number of times and we
2931 * can survive intermittent errors.
2933 buffer[SPC_SENSE_KEY_OFFSET] = NOT_READY;
2934 /* LOGICAL UNIT COMMUNICATION FAILURE */
2935 buffer[SPC_ASC_KEY_OFFSET] = 0x08;
2936 break;
2939 * This code uses linux/include/scsi/scsi.h SAM status codes!
2941 cmd->scsi_status = SAM_STAT_CHECK_CONDITION;
2943 * Automatically padded, this value is encoded in the fabric's
2944 * data_length response PDU containing the SCSI defined sense data.
2946 cmd->scsi_sense_length = TRANSPORT_SENSE_BUFFER;
2948 after_reason:
2949 trace_target_cmd_complete(cmd);
2950 return cmd->se_tfo->queue_status(cmd);
2952 EXPORT_SYMBOL(transport_send_check_condition_and_sense);
2954 int transport_check_aborted_status(struct se_cmd *cmd, int send_status)
2956 if (!(cmd->transport_state & CMD_T_ABORTED))
2957 return 0;
2959 if (!send_status || (cmd->se_cmd_flags & SCF_SENT_DELAYED_TAS))
2960 return 1;
2962 pr_debug("Sending delayed SAM_STAT_TASK_ABORTED status for CDB: 0x%02x ITT: 0x%08x\n",
2963 cmd->t_task_cdb[0], cmd->se_tfo->get_task_tag(cmd));
2965 cmd->se_cmd_flags |= SCF_SENT_DELAYED_TAS;
2966 cmd->scsi_status = SAM_STAT_TASK_ABORTED;
2967 trace_target_cmd_complete(cmd);
2968 cmd->se_tfo->queue_status(cmd);
2970 return 1;
2972 EXPORT_SYMBOL(transport_check_aborted_status);
2974 void transport_send_task_abort(struct se_cmd *cmd)
2976 unsigned long flags;
2978 spin_lock_irqsave(&cmd->t_state_lock, flags);
2979 if (cmd->se_cmd_flags & (SCF_SENT_CHECK_CONDITION | SCF_SENT_DELAYED_TAS)) {
2980 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2981 return;
2983 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2986 * If there are still expected incoming fabric WRITEs, we wait
2987 * until until they have completed before sending a TASK_ABORTED
2988 * response. This response with TASK_ABORTED status will be
2989 * queued back to fabric module by transport_check_aborted_status().
2991 if (cmd->data_direction == DMA_TO_DEVICE) {
2992 if (cmd->se_tfo->write_pending_status(cmd) != 0) {
2993 cmd->transport_state |= CMD_T_ABORTED;
2994 smp_mb__after_atomic_inc();
2995 return;
2998 cmd->scsi_status = SAM_STAT_TASK_ABORTED;
3000 transport_lun_remove_cmd(cmd);
3002 pr_debug("Setting SAM_STAT_TASK_ABORTED status for CDB: 0x%02x,"
3003 " ITT: 0x%08x\n", cmd->t_task_cdb[0],
3004 cmd->se_tfo->get_task_tag(cmd));
3006 trace_target_cmd_complete(cmd);
3007 cmd->se_tfo->queue_status(cmd);
3010 static void target_tmr_work(struct work_struct *work)
3012 struct se_cmd *cmd = container_of(work, struct se_cmd, work);
3013 struct se_device *dev = cmd->se_dev;
3014 struct se_tmr_req *tmr = cmd->se_tmr_req;
3015 int ret;
3017 switch (tmr->function) {
3018 case TMR_ABORT_TASK:
3019 core_tmr_abort_task(dev, tmr, cmd->se_sess);
3020 break;
3021 case TMR_ABORT_TASK_SET:
3022 case TMR_CLEAR_ACA:
3023 case TMR_CLEAR_TASK_SET:
3024 tmr->response = TMR_TASK_MGMT_FUNCTION_NOT_SUPPORTED;
3025 break;
3026 case TMR_LUN_RESET:
3027 ret = core_tmr_lun_reset(dev, tmr, NULL, NULL);
3028 tmr->response = (!ret) ? TMR_FUNCTION_COMPLETE :
3029 TMR_FUNCTION_REJECTED;
3030 break;
3031 case TMR_TARGET_WARM_RESET:
3032 tmr->response = TMR_FUNCTION_REJECTED;
3033 break;
3034 case TMR_TARGET_COLD_RESET:
3035 tmr->response = TMR_FUNCTION_REJECTED;
3036 break;
3037 default:
3038 pr_err("Uknown TMR function: 0x%02x.\n",
3039 tmr->function);
3040 tmr->response = TMR_FUNCTION_REJECTED;
3041 break;
3044 cmd->t_state = TRANSPORT_ISTATE_PROCESSING;
3045 cmd->se_tfo->queue_tm_rsp(cmd);
3047 transport_cmd_check_stop_to_fabric(cmd);
3050 int transport_generic_handle_tmr(
3051 struct se_cmd *cmd)
3053 unsigned long flags;
3055 spin_lock_irqsave(&cmd->t_state_lock, flags);
3056 cmd->transport_state |= CMD_T_ACTIVE;
3057 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3059 INIT_WORK(&cmd->work, target_tmr_work);
3060 queue_work(cmd->se_dev->tmr_wq, &cmd->work);
3061 return 0;
3063 EXPORT_SYMBOL(transport_generic_handle_tmr);