mfd: wm8350-i2c: Make sure the i2c regmap functions are compiled
[linux/fpc-iii.git] / drivers / tty / tty_io.c
blobb17df1000250393d762c01e73d1fefa81455a743
1 /*
2 * Copyright (C) 1991, 1992 Linus Torvalds
3 */
5 /*
6 * 'tty_io.c' gives an orthogonal feeling to tty's, be they consoles
7 * or rs-channels. It also implements echoing, cooked mode etc.
9 * Kill-line thanks to John T Kohl, who also corrected VMIN = VTIME = 0.
11 * Modified by Theodore Ts'o, 9/14/92, to dynamically allocate the
12 * tty_struct and tty_queue structures. Previously there was an array
13 * of 256 tty_struct's which was statically allocated, and the
14 * tty_queue structures were allocated at boot time. Both are now
15 * dynamically allocated only when the tty is open.
17 * Also restructured routines so that there is more of a separation
18 * between the high-level tty routines (tty_io.c and tty_ioctl.c) and
19 * the low-level tty routines (serial.c, pty.c, console.c). This
20 * makes for cleaner and more compact code. -TYT, 9/17/92
22 * Modified by Fred N. van Kempen, 01/29/93, to add line disciplines
23 * which can be dynamically activated and de-activated by the line
24 * discipline handling modules (like SLIP).
26 * NOTE: pay no attention to the line discipline code (yet); its
27 * interface is still subject to change in this version...
28 * -- TYT, 1/31/92
30 * Added functionality to the OPOST tty handling. No delays, but all
31 * other bits should be there.
32 * -- Nick Holloway <alfie@dcs.warwick.ac.uk>, 27th May 1993.
34 * Rewrote canonical mode and added more termios flags.
35 * -- julian@uhunix.uhcc.hawaii.edu (J. Cowley), 13Jan94
37 * Reorganized FASYNC support so mouse code can share it.
38 * -- ctm@ardi.com, 9Sep95
40 * New TIOCLINUX variants added.
41 * -- mj@k332.feld.cvut.cz, 19-Nov-95
43 * Restrict vt switching via ioctl()
44 * -- grif@cs.ucr.edu, 5-Dec-95
46 * Move console and virtual terminal code to more appropriate files,
47 * implement CONFIG_VT and generalize console device interface.
48 * -- Marko Kohtala <Marko.Kohtala@hut.fi>, March 97
50 * Rewrote tty_init_dev and tty_release_dev to eliminate races.
51 * -- Bill Hawes <whawes@star.net>, June 97
53 * Added devfs support.
54 * -- C. Scott Ananian <cananian@alumni.princeton.edu>, 13-Jan-1998
56 * Added support for a Unix98-style ptmx device.
57 * -- C. Scott Ananian <cananian@alumni.princeton.edu>, 14-Jan-1998
59 * Reduced memory usage for older ARM systems
60 * -- Russell King <rmk@arm.linux.org.uk>
62 * Move do_SAK() into process context. Less stack use in devfs functions.
63 * alloc_tty_struct() always uses kmalloc()
64 * -- Andrew Morton <andrewm@uow.edu.eu> 17Mar01
67 #include <linux/types.h>
68 #include <linux/major.h>
69 #include <linux/errno.h>
70 #include <linux/signal.h>
71 #include <linux/fcntl.h>
72 #include <linux/sched.h>
73 #include <linux/interrupt.h>
74 #include <linux/tty.h>
75 #include <linux/tty_driver.h>
76 #include <linux/tty_flip.h>
77 #include <linux/devpts_fs.h>
78 #include <linux/file.h>
79 #include <linux/fdtable.h>
80 #include <linux/console.h>
81 #include <linux/timer.h>
82 #include <linux/ctype.h>
83 #include <linux/kd.h>
84 #include <linux/mm.h>
85 #include <linux/string.h>
86 #include <linux/slab.h>
87 #include <linux/poll.h>
88 #include <linux/proc_fs.h>
89 #include <linux/init.h>
90 #include <linux/module.h>
91 #include <linux/device.h>
92 #include <linux/wait.h>
93 #include <linux/bitops.h>
94 #include <linux/delay.h>
95 #include <linux/seq_file.h>
96 #include <linux/serial.h>
97 #include <linux/ratelimit.h>
99 #include <linux/uaccess.h>
101 #include <linux/kbd_kern.h>
102 #include <linux/vt_kern.h>
103 #include <linux/selection.h>
105 #include <linux/kmod.h>
106 #include <linux/nsproxy.h>
108 #undef TTY_DEBUG_HANGUP
110 #define TTY_PARANOIA_CHECK 1
111 #define CHECK_TTY_COUNT 1
113 struct ktermios tty_std_termios = { /* for the benefit of tty drivers */
114 .c_iflag = ICRNL | IXON,
115 .c_oflag = OPOST | ONLCR,
116 .c_cflag = B38400 | CS8 | CREAD | HUPCL,
117 .c_lflag = ISIG | ICANON | ECHO | ECHOE | ECHOK |
118 ECHOCTL | ECHOKE | IEXTEN,
119 .c_cc = INIT_C_CC,
120 .c_ispeed = 38400,
121 .c_ospeed = 38400
124 EXPORT_SYMBOL(tty_std_termios);
126 /* This list gets poked at by procfs and various bits of boot up code. This
127 could do with some rationalisation such as pulling the tty proc function
128 into this file */
130 LIST_HEAD(tty_drivers); /* linked list of tty drivers */
132 /* Mutex to protect creating and releasing a tty. This is shared with
133 vt.c for deeply disgusting hack reasons */
134 DEFINE_MUTEX(tty_mutex);
135 EXPORT_SYMBOL(tty_mutex);
137 /* Spinlock to protect the tty->tty_files list */
138 DEFINE_SPINLOCK(tty_files_lock);
140 static ssize_t tty_read(struct file *, char __user *, size_t, loff_t *);
141 static ssize_t tty_write(struct file *, const char __user *, size_t, loff_t *);
142 ssize_t redirected_tty_write(struct file *, const char __user *,
143 size_t, loff_t *);
144 static unsigned int tty_poll(struct file *, poll_table *);
145 static int tty_open(struct inode *, struct file *);
146 long tty_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
147 #ifdef CONFIG_COMPAT
148 static long tty_compat_ioctl(struct file *file, unsigned int cmd,
149 unsigned long arg);
150 #else
151 #define tty_compat_ioctl NULL
152 #endif
153 static int __tty_fasync(int fd, struct file *filp, int on);
154 static int tty_fasync(int fd, struct file *filp, int on);
155 static void release_tty(struct tty_struct *tty, int idx);
156 static void __proc_set_tty(struct task_struct *tsk, struct tty_struct *tty);
157 static void proc_set_tty(struct task_struct *tsk, struct tty_struct *tty);
160 * alloc_tty_struct - allocate a tty object
162 * Return a new empty tty structure. The data fields have not
163 * been initialized in any way but has been zeroed
165 * Locking: none
168 struct tty_struct *alloc_tty_struct(void)
170 return kzalloc(sizeof(struct tty_struct), GFP_KERNEL);
174 * free_tty_struct - free a disused tty
175 * @tty: tty struct to free
177 * Free the write buffers, tty queue and tty memory itself.
179 * Locking: none. Must be called after tty is definitely unused
182 void free_tty_struct(struct tty_struct *tty)
184 if (!tty)
185 return;
186 if (tty->dev)
187 put_device(tty->dev);
188 kfree(tty->write_buf);
189 tty->magic = 0xDEADDEAD;
190 kfree(tty);
193 static inline struct tty_struct *file_tty(struct file *file)
195 return ((struct tty_file_private *)file->private_data)->tty;
198 int tty_alloc_file(struct file *file)
200 struct tty_file_private *priv;
202 priv = kmalloc(sizeof(*priv), GFP_KERNEL);
203 if (!priv)
204 return -ENOMEM;
206 file->private_data = priv;
208 return 0;
211 /* Associate a new file with the tty structure */
212 void tty_add_file(struct tty_struct *tty, struct file *file)
214 struct tty_file_private *priv = file->private_data;
216 priv->tty = tty;
217 priv->file = file;
219 spin_lock(&tty_files_lock);
220 list_add(&priv->list, &tty->tty_files);
221 spin_unlock(&tty_files_lock);
225 * tty_free_file - free file->private_data
227 * This shall be used only for fail path handling when tty_add_file was not
228 * called yet.
230 void tty_free_file(struct file *file)
232 struct tty_file_private *priv = file->private_data;
234 file->private_data = NULL;
235 kfree(priv);
238 /* Delete file from its tty */
239 static void tty_del_file(struct file *file)
241 struct tty_file_private *priv = file->private_data;
243 spin_lock(&tty_files_lock);
244 list_del(&priv->list);
245 spin_unlock(&tty_files_lock);
246 tty_free_file(file);
250 #define TTY_NUMBER(tty) ((tty)->index + (tty)->driver->name_base)
253 * tty_name - return tty naming
254 * @tty: tty structure
255 * @buf: buffer for output
257 * Convert a tty structure into a name. The name reflects the kernel
258 * naming policy and if udev is in use may not reflect user space
260 * Locking: none
263 char *tty_name(struct tty_struct *tty, char *buf)
265 if (!tty) /* Hmm. NULL pointer. That's fun. */
266 strcpy(buf, "NULL tty");
267 else
268 strcpy(buf, tty->name);
269 return buf;
272 EXPORT_SYMBOL(tty_name);
274 int tty_paranoia_check(struct tty_struct *tty, struct inode *inode,
275 const char *routine)
277 #ifdef TTY_PARANOIA_CHECK
278 if (!tty) {
279 printk(KERN_WARNING
280 "null TTY for (%d:%d) in %s\n",
281 imajor(inode), iminor(inode), routine);
282 return 1;
284 if (tty->magic != TTY_MAGIC) {
285 printk(KERN_WARNING
286 "bad magic number for tty struct (%d:%d) in %s\n",
287 imajor(inode), iminor(inode), routine);
288 return 1;
290 #endif
291 return 0;
294 static int check_tty_count(struct tty_struct *tty, const char *routine)
296 #ifdef CHECK_TTY_COUNT
297 struct list_head *p;
298 int count = 0;
300 spin_lock(&tty_files_lock);
301 list_for_each(p, &tty->tty_files) {
302 count++;
304 spin_unlock(&tty_files_lock);
305 if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
306 tty->driver->subtype == PTY_TYPE_SLAVE &&
307 tty->link && tty->link->count)
308 count++;
309 if (tty->count != count) {
310 printk(KERN_WARNING "Warning: dev (%s) tty->count(%d) "
311 "!= #fd's(%d) in %s\n",
312 tty->name, tty->count, count, routine);
313 return count;
315 #endif
316 return 0;
320 * get_tty_driver - find device of a tty
321 * @dev_t: device identifier
322 * @index: returns the index of the tty
324 * This routine returns a tty driver structure, given a device number
325 * and also passes back the index number.
327 * Locking: caller must hold tty_mutex
330 static struct tty_driver *get_tty_driver(dev_t device, int *index)
332 struct tty_driver *p;
334 list_for_each_entry(p, &tty_drivers, tty_drivers) {
335 dev_t base = MKDEV(p->major, p->minor_start);
336 if (device < base || device >= base + p->num)
337 continue;
338 *index = device - base;
339 return tty_driver_kref_get(p);
341 return NULL;
344 #ifdef CONFIG_CONSOLE_POLL
347 * tty_find_polling_driver - find device of a polled tty
348 * @name: name string to match
349 * @line: pointer to resulting tty line nr
351 * This routine returns a tty driver structure, given a name
352 * and the condition that the tty driver is capable of polled
353 * operation.
355 struct tty_driver *tty_find_polling_driver(char *name, int *line)
357 struct tty_driver *p, *res = NULL;
358 int tty_line = 0;
359 int len;
360 char *str, *stp;
362 for (str = name; *str; str++)
363 if ((*str >= '0' && *str <= '9') || *str == ',')
364 break;
365 if (!*str)
366 return NULL;
368 len = str - name;
369 tty_line = simple_strtoul(str, &str, 10);
371 mutex_lock(&tty_mutex);
372 /* Search through the tty devices to look for a match */
373 list_for_each_entry(p, &tty_drivers, tty_drivers) {
374 if (strncmp(name, p->name, len) != 0)
375 continue;
376 stp = str;
377 if (*stp == ',')
378 stp++;
379 if (*stp == '\0')
380 stp = NULL;
382 if (tty_line >= 0 && tty_line < p->num && p->ops &&
383 p->ops->poll_init && !p->ops->poll_init(p, tty_line, stp)) {
384 res = tty_driver_kref_get(p);
385 *line = tty_line;
386 break;
389 mutex_unlock(&tty_mutex);
391 return res;
393 EXPORT_SYMBOL_GPL(tty_find_polling_driver);
394 #endif
397 * tty_check_change - check for POSIX terminal changes
398 * @tty: tty to check
400 * If we try to write to, or set the state of, a terminal and we're
401 * not in the foreground, send a SIGTTOU. If the signal is blocked or
402 * ignored, go ahead and perform the operation. (POSIX 7.2)
404 * Locking: ctrl_lock
407 int tty_check_change(struct tty_struct *tty)
409 unsigned long flags;
410 int ret = 0;
412 if (current->signal->tty != tty)
413 return 0;
415 spin_lock_irqsave(&tty->ctrl_lock, flags);
417 if (!tty->pgrp) {
418 printk(KERN_WARNING "tty_check_change: tty->pgrp == NULL!\n");
419 goto out_unlock;
421 if (task_pgrp(current) == tty->pgrp)
422 goto out_unlock;
423 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
424 if (is_ignored(SIGTTOU))
425 goto out;
426 if (is_current_pgrp_orphaned()) {
427 ret = -EIO;
428 goto out;
430 kill_pgrp(task_pgrp(current), SIGTTOU, 1);
431 set_thread_flag(TIF_SIGPENDING);
432 ret = -ERESTARTSYS;
433 out:
434 return ret;
435 out_unlock:
436 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
437 return ret;
440 EXPORT_SYMBOL(tty_check_change);
442 static ssize_t hung_up_tty_read(struct file *file, char __user *buf,
443 size_t count, loff_t *ppos)
445 return 0;
448 static ssize_t hung_up_tty_write(struct file *file, const char __user *buf,
449 size_t count, loff_t *ppos)
451 return -EIO;
454 /* No kernel lock held - none needed ;) */
455 static unsigned int hung_up_tty_poll(struct file *filp, poll_table *wait)
457 return POLLIN | POLLOUT | POLLERR | POLLHUP | POLLRDNORM | POLLWRNORM;
460 static long hung_up_tty_ioctl(struct file *file, unsigned int cmd,
461 unsigned long arg)
463 return cmd == TIOCSPGRP ? -ENOTTY : -EIO;
466 static long hung_up_tty_compat_ioctl(struct file *file,
467 unsigned int cmd, unsigned long arg)
469 return cmd == TIOCSPGRP ? -ENOTTY : -EIO;
472 static const struct file_operations tty_fops = {
473 .llseek = no_llseek,
474 .read = tty_read,
475 .write = tty_write,
476 .poll = tty_poll,
477 .unlocked_ioctl = tty_ioctl,
478 .compat_ioctl = tty_compat_ioctl,
479 .open = tty_open,
480 .release = tty_release,
481 .fasync = tty_fasync,
484 static const struct file_operations console_fops = {
485 .llseek = no_llseek,
486 .read = tty_read,
487 .write = redirected_tty_write,
488 .poll = tty_poll,
489 .unlocked_ioctl = tty_ioctl,
490 .compat_ioctl = tty_compat_ioctl,
491 .open = tty_open,
492 .release = tty_release,
493 .fasync = tty_fasync,
496 static const struct file_operations hung_up_tty_fops = {
497 .llseek = no_llseek,
498 .read = hung_up_tty_read,
499 .write = hung_up_tty_write,
500 .poll = hung_up_tty_poll,
501 .unlocked_ioctl = hung_up_tty_ioctl,
502 .compat_ioctl = hung_up_tty_compat_ioctl,
503 .release = tty_release,
506 static DEFINE_SPINLOCK(redirect_lock);
507 static struct file *redirect;
510 * tty_wakeup - request more data
511 * @tty: terminal
513 * Internal and external helper for wakeups of tty. This function
514 * informs the line discipline if present that the driver is ready
515 * to receive more output data.
518 void tty_wakeup(struct tty_struct *tty)
520 struct tty_ldisc *ld;
522 if (test_bit(TTY_DO_WRITE_WAKEUP, &tty->flags)) {
523 ld = tty_ldisc_ref(tty);
524 if (ld) {
525 if (ld->ops->write_wakeup)
526 ld->ops->write_wakeup(tty);
527 tty_ldisc_deref(ld);
530 wake_up_interruptible_poll(&tty->write_wait, POLLOUT);
533 EXPORT_SYMBOL_GPL(tty_wakeup);
536 * tty_signal_session_leader - sends SIGHUP to session leader
537 * @tty controlling tty
538 * @exit_session if non-zero, signal all foreground group processes
540 * Send SIGHUP and SIGCONT to the session leader and its process group.
541 * Optionally, signal all processes in the foreground process group.
543 * Returns the number of processes in the session with this tty
544 * as their controlling terminal. This value is used to drop
545 * tty references for those processes.
547 static int tty_signal_session_leader(struct tty_struct *tty, int exit_session)
549 struct task_struct *p;
550 int refs = 0;
551 struct pid *tty_pgrp = NULL;
553 read_lock(&tasklist_lock);
554 if (tty->session) {
555 do_each_pid_task(tty->session, PIDTYPE_SID, p) {
556 spin_lock_irq(&p->sighand->siglock);
557 if (p->signal->tty == tty) {
558 p->signal->tty = NULL;
559 /* We defer the dereferences outside fo
560 the tasklist lock */
561 refs++;
563 if (!p->signal->leader) {
564 spin_unlock_irq(&p->sighand->siglock);
565 continue;
567 __group_send_sig_info(SIGHUP, SEND_SIG_PRIV, p);
568 __group_send_sig_info(SIGCONT, SEND_SIG_PRIV, p);
569 put_pid(p->signal->tty_old_pgrp); /* A noop */
570 spin_lock(&tty->ctrl_lock);
571 tty_pgrp = get_pid(tty->pgrp);
572 if (tty->pgrp)
573 p->signal->tty_old_pgrp = get_pid(tty->pgrp);
574 spin_unlock(&tty->ctrl_lock);
575 spin_unlock_irq(&p->sighand->siglock);
576 } while_each_pid_task(tty->session, PIDTYPE_SID, p);
578 read_unlock(&tasklist_lock);
580 if (tty_pgrp) {
581 if (exit_session)
582 kill_pgrp(tty_pgrp, SIGHUP, exit_session);
583 put_pid(tty_pgrp);
586 return refs;
590 * __tty_hangup - actual handler for hangup events
591 * @work: tty device
593 * This can be called by a "kworker" kernel thread. That is process
594 * synchronous but doesn't hold any locks, so we need to make sure we
595 * have the appropriate locks for what we're doing.
597 * The hangup event clears any pending redirections onto the hung up
598 * device. It ensures future writes will error and it does the needed
599 * line discipline hangup and signal delivery. The tty object itself
600 * remains intact.
602 * Locking:
603 * BTM
604 * redirect lock for undoing redirection
605 * file list lock for manipulating list of ttys
606 * tty_ldiscs_lock from called functions
607 * termios_rwsem resetting termios data
608 * tasklist_lock to walk task list for hangup event
609 * ->siglock to protect ->signal/->sighand
611 static void __tty_hangup(struct tty_struct *tty, int exit_session)
613 struct file *cons_filp = NULL;
614 struct file *filp, *f = NULL;
615 struct tty_file_private *priv;
616 int closecount = 0, n;
617 int refs;
619 if (!tty)
620 return;
623 spin_lock(&redirect_lock);
624 if (redirect && file_tty(redirect) == tty) {
625 f = redirect;
626 redirect = NULL;
628 spin_unlock(&redirect_lock);
630 tty_lock(tty);
632 if (test_bit(TTY_HUPPED, &tty->flags)) {
633 tty_unlock(tty);
634 return;
637 /* some functions below drop BTM, so we need this bit */
638 set_bit(TTY_HUPPING, &tty->flags);
640 /* inuse_filps is protected by the single tty lock,
641 this really needs to change if we want to flush the
642 workqueue with the lock held */
643 check_tty_count(tty, "tty_hangup");
645 spin_lock(&tty_files_lock);
646 /* This breaks for file handles being sent over AF_UNIX sockets ? */
647 list_for_each_entry(priv, &tty->tty_files, list) {
648 filp = priv->file;
649 if (filp->f_op->write == redirected_tty_write)
650 cons_filp = filp;
651 if (filp->f_op->write != tty_write)
652 continue;
653 closecount++;
654 __tty_fasync(-1, filp, 0); /* can't block */
655 filp->f_op = &hung_up_tty_fops;
657 spin_unlock(&tty_files_lock);
659 refs = tty_signal_session_leader(tty, exit_session);
660 /* Account for the p->signal references we killed */
661 while (refs--)
662 tty_kref_put(tty);
665 * it drops BTM and thus races with reopen
666 * we protect the race by TTY_HUPPING
668 tty_ldisc_hangup(tty);
670 spin_lock_irq(&tty->ctrl_lock);
671 clear_bit(TTY_THROTTLED, &tty->flags);
672 clear_bit(TTY_DO_WRITE_WAKEUP, &tty->flags);
673 put_pid(tty->session);
674 put_pid(tty->pgrp);
675 tty->session = NULL;
676 tty->pgrp = NULL;
677 tty->ctrl_status = 0;
678 spin_unlock_irq(&tty->ctrl_lock);
681 * If one of the devices matches a console pointer, we
682 * cannot just call hangup() because that will cause
683 * tty->count and state->count to go out of sync.
684 * So we just call close() the right number of times.
686 if (cons_filp) {
687 if (tty->ops->close)
688 for (n = 0; n < closecount; n++)
689 tty->ops->close(tty, cons_filp);
690 } else if (tty->ops->hangup)
691 (tty->ops->hangup)(tty);
693 * We don't want to have driver/ldisc interactions beyond
694 * the ones we did here. The driver layer expects no
695 * calls after ->hangup() from the ldisc side. However we
696 * can't yet guarantee all that.
698 set_bit(TTY_HUPPED, &tty->flags);
699 clear_bit(TTY_HUPPING, &tty->flags);
701 tty_unlock(tty);
703 if (f)
704 fput(f);
707 static void do_tty_hangup(struct work_struct *work)
709 struct tty_struct *tty =
710 container_of(work, struct tty_struct, hangup_work);
712 __tty_hangup(tty, 0);
716 * tty_hangup - trigger a hangup event
717 * @tty: tty to hangup
719 * A carrier loss (virtual or otherwise) has occurred on this like
720 * schedule a hangup sequence to run after this event.
723 void tty_hangup(struct tty_struct *tty)
725 #ifdef TTY_DEBUG_HANGUP
726 char buf[64];
727 printk(KERN_DEBUG "%s hangup...\n", tty_name(tty, buf));
728 #endif
729 schedule_work(&tty->hangup_work);
732 EXPORT_SYMBOL(tty_hangup);
735 * tty_vhangup - process vhangup
736 * @tty: tty to hangup
738 * The user has asked via system call for the terminal to be hung up.
739 * We do this synchronously so that when the syscall returns the process
740 * is complete. That guarantee is necessary for security reasons.
743 void tty_vhangup(struct tty_struct *tty)
745 #ifdef TTY_DEBUG_HANGUP
746 char buf[64];
748 printk(KERN_DEBUG "%s vhangup...\n", tty_name(tty, buf));
749 #endif
750 __tty_hangup(tty, 0);
753 EXPORT_SYMBOL(tty_vhangup);
757 * tty_vhangup_self - process vhangup for own ctty
759 * Perform a vhangup on the current controlling tty
762 void tty_vhangup_self(void)
764 struct tty_struct *tty;
766 tty = get_current_tty();
767 if (tty) {
768 tty_vhangup(tty);
769 tty_kref_put(tty);
774 * tty_vhangup_session - hangup session leader exit
775 * @tty: tty to hangup
777 * The session leader is exiting and hanging up its controlling terminal.
778 * Every process in the foreground process group is signalled SIGHUP.
780 * We do this synchronously so that when the syscall returns the process
781 * is complete. That guarantee is necessary for security reasons.
784 static void tty_vhangup_session(struct tty_struct *tty)
786 #ifdef TTY_DEBUG_HANGUP
787 char buf[64];
789 printk(KERN_DEBUG "%s vhangup session...\n", tty_name(tty, buf));
790 #endif
791 __tty_hangup(tty, 1);
795 * tty_hung_up_p - was tty hung up
796 * @filp: file pointer of tty
798 * Return true if the tty has been subject to a vhangup or a carrier
799 * loss
802 int tty_hung_up_p(struct file *filp)
804 return (filp->f_op == &hung_up_tty_fops);
807 EXPORT_SYMBOL(tty_hung_up_p);
809 static void session_clear_tty(struct pid *session)
811 struct task_struct *p;
812 do_each_pid_task(session, PIDTYPE_SID, p) {
813 proc_clear_tty(p);
814 } while_each_pid_task(session, PIDTYPE_SID, p);
818 * disassociate_ctty - disconnect controlling tty
819 * @on_exit: true if exiting so need to "hang up" the session
821 * This function is typically called only by the session leader, when
822 * it wants to disassociate itself from its controlling tty.
824 * It performs the following functions:
825 * (1) Sends a SIGHUP and SIGCONT to the foreground process group
826 * (2) Clears the tty from being controlling the session
827 * (3) Clears the controlling tty for all processes in the
828 * session group.
830 * The argument on_exit is set to 1 if called when a process is
831 * exiting; it is 0 if called by the ioctl TIOCNOTTY.
833 * Locking:
834 * BTM is taken for hysterical raisins, and held when
835 * called from no_tty().
836 * tty_mutex is taken to protect tty
837 * ->siglock is taken to protect ->signal/->sighand
838 * tasklist_lock is taken to walk process list for sessions
839 * ->siglock is taken to protect ->signal/->sighand
842 void disassociate_ctty(int on_exit)
844 struct tty_struct *tty;
846 if (!current->signal->leader)
847 return;
849 tty = get_current_tty();
850 if (tty) {
851 if (on_exit && tty->driver->type != TTY_DRIVER_TYPE_PTY) {
852 tty_vhangup_session(tty);
853 } else {
854 struct pid *tty_pgrp = tty_get_pgrp(tty);
855 if (tty_pgrp) {
856 kill_pgrp(tty_pgrp, SIGHUP, on_exit);
857 if (!on_exit)
858 kill_pgrp(tty_pgrp, SIGCONT, on_exit);
859 put_pid(tty_pgrp);
862 tty_kref_put(tty);
864 } else if (on_exit) {
865 struct pid *old_pgrp;
866 spin_lock_irq(&current->sighand->siglock);
867 old_pgrp = current->signal->tty_old_pgrp;
868 current->signal->tty_old_pgrp = NULL;
869 spin_unlock_irq(&current->sighand->siglock);
870 if (old_pgrp) {
871 kill_pgrp(old_pgrp, SIGHUP, on_exit);
872 kill_pgrp(old_pgrp, SIGCONT, on_exit);
873 put_pid(old_pgrp);
875 return;
878 spin_lock_irq(&current->sighand->siglock);
879 put_pid(current->signal->tty_old_pgrp);
880 current->signal->tty_old_pgrp = NULL;
881 spin_unlock_irq(&current->sighand->siglock);
883 tty = get_current_tty();
884 if (tty) {
885 unsigned long flags;
886 spin_lock_irqsave(&tty->ctrl_lock, flags);
887 put_pid(tty->session);
888 put_pid(tty->pgrp);
889 tty->session = NULL;
890 tty->pgrp = NULL;
891 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
892 tty_kref_put(tty);
893 } else {
894 #ifdef TTY_DEBUG_HANGUP
895 printk(KERN_DEBUG "error attempted to write to tty [0x%p]"
896 " = NULL", tty);
897 #endif
900 /* Now clear signal->tty under the lock */
901 read_lock(&tasklist_lock);
902 session_clear_tty(task_session(current));
903 read_unlock(&tasklist_lock);
908 * no_tty - Ensure the current process does not have a controlling tty
910 void no_tty(void)
912 /* FIXME: Review locking here. The tty_lock never covered any race
913 between a new association and proc_clear_tty but possible we need
914 to protect against this anyway */
915 struct task_struct *tsk = current;
916 disassociate_ctty(0);
917 proc_clear_tty(tsk);
922 * stop_tty - propagate flow control
923 * @tty: tty to stop
925 * Perform flow control to the driver. For PTY/TTY pairs we
926 * must also propagate the TIOCKPKT status. May be called
927 * on an already stopped device and will not re-call the driver
928 * method.
930 * This functionality is used by both the line disciplines for
931 * halting incoming flow and by the driver. It may therefore be
932 * called from any context, may be under the tty atomic_write_lock
933 * but not always.
935 * Locking:
936 * Uses the tty control lock internally
939 void stop_tty(struct tty_struct *tty)
941 unsigned long flags;
942 spin_lock_irqsave(&tty->ctrl_lock, flags);
943 if (tty->stopped) {
944 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
945 return;
947 tty->stopped = 1;
948 if (tty->link && tty->link->packet) {
949 tty->ctrl_status &= ~TIOCPKT_START;
950 tty->ctrl_status |= TIOCPKT_STOP;
951 wake_up_interruptible_poll(&tty->link->read_wait, POLLIN);
953 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
954 if (tty->ops->stop)
955 (tty->ops->stop)(tty);
958 EXPORT_SYMBOL(stop_tty);
961 * start_tty - propagate flow control
962 * @tty: tty to start
964 * Start a tty that has been stopped if at all possible. Perform
965 * any necessary wakeups and propagate the TIOCPKT status. If this
966 * is the tty was previous stopped and is being started then the
967 * driver start method is invoked and the line discipline woken.
969 * Locking:
970 * ctrl_lock
973 void start_tty(struct tty_struct *tty)
975 unsigned long flags;
976 spin_lock_irqsave(&tty->ctrl_lock, flags);
977 if (!tty->stopped || tty->flow_stopped) {
978 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
979 return;
981 tty->stopped = 0;
982 if (tty->link && tty->link->packet) {
983 tty->ctrl_status &= ~TIOCPKT_STOP;
984 tty->ctrl_status |= TIOCPKT_START;
985 wake_up_interruptible_poll(&tty->link->read_wait, POLLIN);
987 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
988 if (tty->ops->start)
989 (tty->ops->start)(tty);
990 /* If we have a running line discipline it may need kicking */
991 tty_wakeup(tty);
994 EXPORT_SYMBOL(start_tty);
996 /* We limit tty time update visibility to every 8 seconds or so. */
997 static void tty_update_time(struct timespec *time)
999 unsigned long sec = get_seconds();
1000 if (abs(sec - time->tv_sec) & ~7)
1001 time->tv_sec = sec;
1005 * tty_read - read method for tty device files
1006 * @file: pointer to tty file
1007 * @buf: user buffer
1008 * @count: size of user buffer
1009 * @ppos: unused
1011 * Perform the read system call function on this terminal device. Checks
1012 * for hung up devices before calling the line discipline method.
1014 * Locking:
1015 * Locks the line discipline internally while needed. Multiple
1016 * read calls may be outstanding in parallel.
1019 static ssize_t tty_read(struct file *file, char __user *buf, size_t count,
1020 loff_t *ppos)
1022 int i;
1023 struct inode *inode = file_inode(file);
1024 struct tty_struct *tty = file_tty(file);
1025 struct tty_ldisc *ld;
1027 if (tty_paranoia_check(tty, inode, "tty_read"))
1028 return -EIO;
1029 if (!tty || (test_bit(TTY_IO_ERROR, &tty->flags)))
1030 return -EIO;
1032 /* We want to wait for the line discipline to sort out in this
1033 situation */
1034 ld = tty_ldisc_ref_wait(tty);
1035 if (ld->ops->read)
1036 i = (ld->ops->read)(tty, file, buf, count);
1037 else
1038 i = -EIO;
1039 tty_ldisc_deref(ld);
1041 if (i > 0)
1042 tty_update_time(&inode->i_atime);
1044 return i;
1047 void tty_write_unlock(struct tty_struct *tty)
1048 __releases(&tty->atomic_write_lock)
1050 mutex_unlock(&tty->atomic_write_lock);
1051 wake_up_interruptible_poll(&tty->write_wait, POLLOUT);
1054 int tty_write_lock(struct tty_struct *tty, int ndelay)
1055 __acquires(&tty->atomic_write_lock)
1057 if (!mutex_trylock(&tty->atomic_write_lock)) {
1058 if (ndelay)
1059 return -EAGAIN;
1060 if (mutex_lock_interruptible(&tty->atomic_write_lock))
1061 return -ERESTARTSYS;
1063 return 0;
1067 * Split writes up in sane blocksizes to avoid
1068 * denial-of-service type attacks
1070 static inline ssize_t do_tty_write(
1071 ssize_t (*write)(struct tty_struct *, struct file *, const unsigned char *, size_t),
1072 struct tty_struct *tty,
1073 struct file *file,
1074 const char __user *buf,
1075 size_t count)
1077 ssize_t ret, written = 0;
1078 unsigned int chunk;
1080 ret = tty_write_lock(tty, file->f_flags & O_NDELAY);
1081 if (ret < 0)
1082 return ret;
1085 * We chunk up writes into a temporary buffer. This
1086 * simplifies low-level drivers immensely, since they
1087 * don't have locking issues and user mode accesses.
1089 * But if TTY_NO_WRITE_SPLIT is set, we should use a
1090 * big chunk-size..
1092 * The default chunk-size is 2kB, because the NTTY
1093 * layer has problems with bigger chunks. It will
1094 * claim to be able to handle more characters than
1095 * it actually does.
1097 * FIXME: This can probably go away now except that 64K chunks
1098 * are too likely to fail unless switched to vmalloc...
1100 chunk = 2048;
1101 if (test_bit(TTY_NO_WRITE_SPLIT, &tty->flags))
1102 chunk = 65536;
1103 if (count < chunk)
1104 chunk = count;
1106 /* write_buf/write_cnt is protected by the atomic_write_lock mutex */
1107 if (tty->write_cnt < chunk) {
1108 unsigned char *buf_chunk;
1110 if (chunk < 1024)
1111 chunk = 1024;
1113 buf_chunk = kmalloc(chunk, GFP_KERNEL);
1114 if (!buf_chunk) {
1115 ret = -ENOMEM;
1116 goto out;
1118 kfree(tty->write_buf);
1119 tty->write_cnt = chunk;
1120 tty->write_buf = buf_chunk;
1123 /* Do the write .. */
1124 for (;;) {
1125 size_t size = count;
1126 if (size > chunk)
1127 size = chunk;
1128 ret = -EFAULT;
1129 if (copy_from_user(tty->write_buf, buf, size))
1130 break;
1131 ret = write(tty, file, tty->write_buf, size);
1132 if (ret <= 0)
1133 break;
1134 written += ret;
1135 buf += ret;
1136 count -= ret;
1137 if (!count)
1138 break;
1139 ret = -ERESTARTSYS;
1140 if (signal_pending(current))
1141 break;
1142 cond_resched();
1144 if (written) {
1145 tty_update_time(&file_inode(file)->i_mtime);
1146 ret = written;
1148 out:
1149 tty_write_unlock(tty);
1150 return ret;
1154 * tty_write_message - write a message to a certain tty, not just the console.
1155 * @tty: the destination tty_struct
1156 * @msg: the message to write
1158 * This is used for messages that need to be redirected to a specific tty.
1159 * We don't put it into the syslog queue right now maybe in the future if
1160 * really needed.
1162 * We must still hold the BTM and test the CLOSING flag for the moment.
1165 void tty_write_message(struct tty_struct *tty, char *msg)
1167 if (tty) {
1168 mutex_lock(&tty->atomic_write_lock);
1169 tty_lock(tty);
1170 if (tty->ops->write && !test_bit(TTY_CLOSING, &tty->flags)) {
1171 tty_unlock(tty);
1172 tty->ops->write(tty, msg, strlen(msg));
1173 } else
1174 tty_unlock(tty);
1175 tty_write_unlock(tty);
1177 return;
1182 * tty_write - write method for tty device file
1183 * @file: tty file pointer
1184 * @buf: user data to write
1185 * @count: bytes to write
1186 * @ppos: unused
1188 * Write data to a tty device via the line discipline.
1190 * Locking:
1191 * Locks the line discipline as required
1192 * Writes to the tty driver are serialized by the atomic_write_lock
1193 * and are then processed in chunks to the device. The line discipline
1194 * write method will not be invoked in parallel for each device.
1197 static ssize_t tty_write(struct file *file, const char __user *buf,
1198 size_t count, loff_t *ppos)
1200 struct tty_struct *tty = file_tty(file);
1201 struct tty_ldisc *ld;
1202 ssize_t ret;
1204 if (tty_paranoia_check(tty, file_inode(file), "tty_write"))
1205 return -EIO;
1206 if (!tty || !tty->ops->write ||
1207 (test_bit(TTY_IO_ERROR, &tty->flags)))
1208 return -EIO;
1209 /* Short term debug to catch buggy drivers */
1210 if (tty->ops->write_room == NULL)
1211 printk(KERN_ERR "tty driver %s lacks a write_room method.\n",
1212 tty->driver->name);
1213 ld = tty_ldisc_ref_wait(tty);
1214 if (!ld->ops->write)
1215 ret = -EIO;
1216 else
1217 ret = do_tty_write(ld->ops->write, tty, file, buf, count);
1218 tty_ldisc_deref(ld);
1219 return ret;
1222 ssize_t redirected_tty_write(struct file *file, const char __user *buf,
1223 size_t count, loff_t *ppos)
1225 struct file *p = NULL;
1227 spin_lock(&redirect_lock);
1228 if (redirect)
1229 p = get_file(redirect);
1230 spin_unlock(&redirect_lock);
1232 if (p) {
1233 ssize_t res;
1234 res = vfs_write(p, buf, count, &p->f_pos);
1235 fput(p);
1236 return res;
1238 return tty_write(file, buf, count, ppos);
1241 static char ptychar[] = "pqrstuvwxyzabcde";
1244 * pty_line_name - generate name for a pty
1245 * @driver: the tty driver in use
1246 * @index: the minor number
1247 * @p: output buffer of at least 6 bytes
1249 * Generate a name from a driver reference and write it to the output
1250 * buffer.
1252 * Locking: None
1254 static void pty_line_name(struct tty_driver *driver, int index, char *p)
1256 int i = index + driver->name_base;
1257 /* ->name is initialized to "ttyp", but "tty" is expected */
1258 sprintf(p, "%s%c%x",
1259 driver->subtype == PTY_TYPE_SLAVE ? "tty" : driver->name,
1260 ptychar[i >> 4 & 0xf], i & 0xf);
1264 * tty_line_name - generate name for a tty
1265 * @driver: the tty driver in use
1266 * @index: the minor number
1267 * @p: output buffer of at least 7 bytes
1269 * Generate a name from a driver reference and write it to the output
1270 * buffer.
1272 * Locking: None
1274 static ssize_t tty_line_name(struct tty_driver *driver, int index, char *p)
1276 if (driver->flags & TTY_DRIVER_UNNUMBERED_NODE)
1277 return sprintf(p, "%s", driver->name);
1278 else
1279 return sprintf(p, "%s%d", driver->name,
1280 index + driver->name_base);
1284 * tty_driver_lookup_tty() - find an existing tty, if any
1285 * @driver: the driver for the tty
1286 * @idx: the minor number
1288 * Return the tty, if found or ERR_PTR() otherwise.
1290 * Locking: tty_mutex must be held. If tty is found, the mutex must
1291 * be held until the 'fast-open' is also done. Will change once we
1292 * have refcounting in the driver and per driver locking
1294 static struct tty_struct *tty_driver_lookup_tty(struct tty_driver *driver,
1295 struct inode *inode, int idx)
1297 if (driver->ops->lookup)
1298 return driver->ops->lookup(driver, inode, idx);
1300 return driver->ttys[idx];
1304 * tty_init_termios - helper for termios setup
1305 * @tty: the tty to set up
1307 * Initialise the termios structures for this tty. Thus runs under
1308 * the tty_mutex currently so we can be relaxed about ordering.
1311 int tty_init_termios(struct tty_struct *tty)
1313 struct ktermios *tp;
1314 int idx = tty->index;
1316 if (tty->driver->flags & TTY_DRIVER_RESET_TERMIOS)
1317 tty->termios = tty->driver->init_termios;
1318 else {
1319 /* Check for lazy saved data */
1320 tp = tty->driver->termios[idx];
1321 if (tp != NULL)
1322 tty->termios = *tp;
1323 else
1324 tty->termios = tty->driver->init_termios;
1326 /* Compatibility until drivers always set this */
1327 tty->termios.c_ispeed = tty_termios_input_baud_rate(&tty->termios);
1328 tty->termios.c_ospeed = tty_termios_baud_rate(&tty->termios);
1329 return 0;
1331 EXPORT_SYMBOL_GPL(tty_init_termios);
1333 int tty_standard_install(struct tty_driver *driver, struct tty_struct *tty)
1335 int ret = tty_init_termios(tty);
1336 if (ret)
1337 return ret;
1339 tty_driver_kref_get(driver);
1340 tty->count++;
1341 driver->ttys[tty->index] = tty;
1342 return 0;
1344 EXPORT_SYMBOL_GPL(tty_standard_install);
1347 * tty_driver_install_tty() - install a tty entry in the driver
1348 * @driver: the driver for the tty
1349 * @tty: the tty
1351 * Install a tty object into the driver tables. The tty->index field
1352 * will be set by the time this is called. This method is responsible
1353 * for ensuring any need additional structures are allocated and
1354 * configured.
1356 * Locking: tty_mutex for now
1358 static int tty_driver_install_tty(struct tty_driver *driver,
1359 struct tty_struct *tty)
1361 return driver->ops->install ? driver->ops->install(driver, tty) :
1362 tty_standard_install(driver, tty);
1366 * tty_driver_remove_tty() - remove a tty from the driver tables
1367 * @driver: the driver for the tty
1368 * @idx: the minor number
1370 * Remvoe a tty object from the driver tables. The tty->index field
1371 * will be set by the time this is called.
1373 * Locking: tty_mutex for now
1375 void tty_driver_remove_tty(struct tty_driver *driver, struct tty_struct *tty)
1377 if (driver->ops->remove)
1378 driver->ops->remove(driver, tty);
1379 else
1380 driver->ttys[tty->index] = NULL;
1384 * tty_reopen() - fast re-open of an open tty
1385 * @tty - the tty to open
1387 * Return 0 on success, -errno on error.
1389 * Locking: tty_mutex must be held from the time the tty was found
1390 * till this open completes.
1392 static int tty_reopen(struct tty_struct *tty)
1394 struct tty_driver *driver = tty->driver;
1396 if (test_bit(TTY_CLOSING, &tty->flags) ||
1397 test_bit(TTY_HUPPING, &tty->flags))
1398 return -EIO;
1400 if (driver->type == TTY_DRIVER_TYPE_PTY &&
1401 driver->subtype == PTY_TYPE_MASTER) {
1403 * special case for PTY masters: only one open permitted,
1404 * and the slave side open count is incremented as well.
1406 if (tty->count)
1407 return -EIO;
1409 tty->link->count++;
1411 tty->count++;
1413 WARN_ON(!tty->ldisc);
1415 return 0;
1419 * tty_init_dev - initialise a tty device
1420 * @driver: tty driver we are opening a device on
1421 * @idx: device index
1422 * @ret_tty: returned tty structure
1424 * Prepare a tty device. This may not be a "new" clean device but
1425 * could also be an active device. The pty drivers require special
1426 * handling because of this.
1428 * Locking:
1429 * The function is called under the tty_mutex, which
1430 * protects us from the tty struct or driver itself going away.
1432 * On exit the tty device has the line discipline attached and
1433 * a reference count of 1. If a pair was created for pty/tty use
1434 * and the other was a pty master then it too has a reference count of 1.
1436 * WSH 06/09/97: Rewritten to remove races and properly clean up after a
1437 * failed open. The new code protects the open with a mutex, so it's
1438 * really quite straightforward. The mutex locking can probably be
1439 * relaxed for the (most common) case of reopening a tty.
1442 struct tty_struct *tty_init_dev(struct tty_driver *driver, int idx)
1444 struct tty_struct *tty;
1445 int retval;
1448 * First time open is complex, especially for PTY devices.
1449 * This code guarantees that either everything succeeds and the
1450 * TTY is ready for operation, or else the table slots are vacated
1451 * and the allocated memory released. (Except that the termios
1452 * and locked termios may be retained.)
1455 if (!try_module_get(driver->owner))
1456 return ERR_PTR(-ENODEV);
1458 tty = alloc_tty_struct();
1459 if (!tty) {
1460 retval = -ENOMEM;
1461 goto err_module_put;
1463 initialize_tty_struct(tty, driver, idx);
1465 tty_lock(tty);
1466 retval = tty_driver_install_tty(driver, tty);
1467 if (retval < 0)
1468 goto err_deinit_tty;
1470 if (!tty->port)
1471 tty->port = driver->ports[idx];
1473 WARN_RATELIMIT(!tty->port,
1474 "%s: %s driver does not set tty->port. This will crash the kernel later. Fix the driver!\n",
1475 __func__, tty->driver->name);
1477 tty->port->itty = tty;
1480 * Structures all installed ... call the ldisc open routines.
1481 * If we fail here just call release_tty to clean up. No need
1482 * to decrement the use counts, as release_tty doesn't care.
1484 retval = tty_ldisc_setup(tty, tty->link);
1485 if (retval)
1486 goto err_release_tty;
1487 /* Return the tty locked so that it cannot vanish under the caller */
1488 return tty;
1490 err_deinit_tty:
1491 tty_unlock(tty);
1492 deinitialize_tty_struct(tty);
1493 free_tty_struct(tty);
1494 err_module_put:
1495 module_put(driver->owner);
1496 return ERR_PTR(retval);
1498 /* call the tty release_tty routine to clean out this slot */
1499 err_release_tty:
1500 tty_unlock(tty);
1501 printk_ratelimited(KERN_INFO "tty_init_dev: ldisc open failed, "
1502 "clearing slot %d\n", idx);
1503 release_tty(tty, idx);
1504 return ERR_PTR(retval);
1507 void tty_free_termios(struct tty_struct *tty)
1509 struct ktermios *tp;
1510 int idx = tty->index;
1512 /* If the port is going to reset then it has no termios to save */
1513 if (tty->driver->flags & TTY_DRIVER_RESET_TERMIOS)
1514 return;
1516 /* Stash the termios data */
1517 tp = tty->driver->termios[idx];
1518 if (tp == NULL) {
1519 tp = kmalloc(sizeof(struct ktermios), GFP_KERNEL);
1520 if (tp == NULL) {
1521 pr_warn("tty: no memory to save termios state.\n");
1522 return;
1524 tty->driver->termios[idx] = tp;
1526 *tp = tty->termios;
1528 EXPORT_SYMBOL(tty_free_termios);
1531 * tty_flush_works - flush all works of a tty
1532 * @tty: tty device to flush works for
1534 * Sync flush all works belonging to @tty.
1536 static void tty_flush_works(struct tty_struct *tty)
1538 flush_work(&tty->SAK_work);
1539 flush_work(&tty->hangup_work);
1543 * release_one_tty - release tty structure memory
1544 * @kref: kref of tty we are obliterating
1546 * Releases memory associated with a tty structure, and clears out the
1547 * driver table slots. This function is called when a device is no longer
1548 * in use. It also gets called when setup of a device fails.
1550 * Locking:
1551 * takes the file list lock internally when working on the list
1552 * of ttys that the driver keeps.
1554 * This method gets called from a work queue so that the driver private
1555 * cleanup ops can sleep (needed for USB at least)
1557 static void release_one_tty(struct work_struct *work)
1559 struct tty_struct *tty =
1560 container_of(work, struct tty_struct, hangup_work);
1561 struct tty_driver *driver = tty->driver;
1563 if (tty->ops->cleanup)
1564 tty->ops->cleanup(tty);
1566 tty->magic = 0;
1567 tty_driver_kref_put(driver);
1568 module_put(driver->owner);
1570 spin_lock(&tty_files_lock);
1571 list_del_init(&tty->tty_files);
1572 spin_unlock(&tty_files_lock);
1574 put_pid(tty->pgrp);
1575 put_pid(tty->session);
1576 free_tty_struct(tty);
1579 static void queue_release_one_tty(struct kref *kref)
1581 struct tty_struct *tty = container_of(kref, struct tty_struct, kref);
1583 /* The hangup queue is now free so we can reuse it rather than
1584 waste a chunk of memory for each port */
1585 INIT_WORK(&tty->hangup_work, release_one_tty);
1586 schedule_work(&tty->hangup_work);
1590 * tty_kref_put - release a tty kref
1591 * @tty: tty device
1593 * Release a reference to a tty device and if need be let the kref
1594 * layer destruct the object for us
1597 void tty_kref_put(struct tty_struct *tty)
1599 if (tty)
1600 kref_put(&tty->kref, queue_release_one_tty);
1602 EXPORT_SYMBOL(tty_kref_put);
1605 * release_tty - release tty structure memory
1607 * Release both @tty and a possible linked partner (think pty pair),
1608 * and decrement the refcount of the backing module.
1610 * Locking:
1611 * tty_mutex
1612 * takes the file list lock internally when working on the list
1613 * of ttys that the driver keeps.
1616 static void release_tty(struct tty_struct *tty, int idx)
1618 /* This should always be true but check for the moment */
1619 WARN_ON(tty->index != idx);
1620 WARN_ON(!mutex_is_locked(&tty_mutex));
1621 if (tty->ops->shutdown)
1622 tty->ops->shutdown(tty);
1623 tty_free_termios(tty);
1624 tty_driver_remove_tty(tty->driver, tty);
1625 tty->port->itty = NULL;
1626 if (tty->link)
1627 tty->link->port->itty = NULL;
1628 cancel_work_sync(&tty->port->buf.work);
1630 if (tty->link)
1631 tty_kref_put(tty->link);
1632 tty_kref_put(tty);
1636 * tty_release_checks - check a tty before real release
1637 * @tty: tty to check
1638 * @o_tty: link of @tty (if any)
1639 * @idx: index of the tty
1641 * Performs some paranoid checking before true release of the @tty.
1642 * This is a no-op unless TTY_PARANOIA_CHECK is defined.
1644 static int tty_release_checks(struct tty_struct *tty, struct tty_struct *o_tty,
1645 int idx)
1647 #ifdef TTY_PARANOIA_CHECK
1648 if (idx < 0 || idx >= tty->driver->num) {
1649 printk(KERN_DEBUG "%s: bad idx when trying to free (%s)\n",
1650 __func__, tty->name);
1651 return -1;
1654 /* not much to check for devpts */
1655 if (tty->driver->flags & TTY_DRIVER_DEVPTS_MEM)
1656 return 0;
1658 if (tty != tty->driver->ttys[idx]) {
1659 printk(KERN_DEBUG "%s: driver.table[%d] not tty for (%s)\n",
1660 __func__, idx, tty->name);
1661 return -1;
1663 if (tty->driver->other) {
1664 if (o_tty != tty->driver->other->ttys[idx]) {
1665 printk(KERN_DEBUG "%s: other->table[%d] not o_tty for (%s)\n",
1666 __func__, idx, tty->name);
1667 return -1;
1669 if (o_tty->link != tty) {
1670 printk(KERN_DEBUG "%s: bad pty pointers\n", __func__);
1671 return -1;
1674 #endif
1675 return 0;
1679 * tty_release - vfs callback for close
1680 * @inode: inode of tty
1681 * @filp: file pointer for handle to tty
1683 * Called the last time each file handle is closed that references
1684 * this tty. There may however be several such references.
1686 * Locking:
1687 * Takes bkl. See tty_release_dev
1689 * Even releasing the tty structures is a tricky business.. We have
1690 * to be very careful that the structures are all released at the
1691 * same time, as interrupts might otherwise get the wrong pointers.
1693 * WSH 09/09/97: rewritten to avoid some nasty race conditions that could
1694 * lead to double frees or releasing memory still in use.
1697 int tty_release(struct inode *inode, struct file *filp)
1699 struct tty_struct *tty = file_tty(filp);
1700 struct tty_struct *o_tty;
1701 int pty_master, tty_closing, o_tty_closing, do_sleep;
1702 int idx;
1703 char buf[64];
1704 long timeout = 0;
1706 if (tty_paranoia_check(tty, inode, __func__))
1707 return 0;
1709 tty_lock(tty);
1710 check_tty_count(tty, __func__);
1712 __tty_fasync(-1, filp, 0);
1714 idx = tty->index;
1715 pty_master = (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
1716 tty->driver->subtype == PTY_TYPE_MASTER);
1717 /* Review: parallel close */
1718 o_tty = tty->link;
1720 if (tty_release_checks(tty, o_tty, idx)) {
1721 tty_unlock(tty);
1722 return 0;
1725 #ifdef TTY_DEBUG_HANGUP
1726 printk(KERN_DEBUG "%s: %s (tty count=%d)...\n", __func__,
1727 tty_name(tty, buf), tty->count);
1728 #endif
1730 if (tty->ops->close)
1731 tty->ops->close(tty, filp);
1733 tty_unlock(tty);
1735 * Sanity check: if tty->count is going to zero, there shouldn't be
1736 * any waiters on tty->read_wait or tty->write_wait. We test the
1737 * wait queues and kick everyone out _before_ actually starting to
1738 * close. This ensures that we won't block while releasing the tty
1739 * structure.
1741 * The test for the o_tty closing is necessary, since the master and
1742 * slave sides may close in any order. If the slave side closes out
1743 * first, its count will be one, since the master side holds an open.
1744 * Thus this test wouldn't be triggered at the time the slave closes,
1745 * so we do it now.
1747 * Note that it's possible for the tty to be opened again while we're
1748 * flushing out waiters. By recalculating the closing flags before
1749 * each iteration we avoid any problems.
1751 while (1) {
1752 /* Guard against races with tty->count changes elsewhere and
1753 opens on /dev/tty */
1755 mutex_lock(&tty_mutex);
1756 tty_lock_pair(tty, o_tty);
1757 tty_closing = tty->count <= 1;
1758 o_tty_closing = o_tty &&
1759 (o_tty->count <= (pty_master ? 1 : 0));
1760 do_sleep = 0;
1762 if (tty_closing) {
1763 if (waitqueue_active(&tty->read_wait)) {
1764 wake_up_poll(&tty->read_wait, POLLIN);
1765 do_sleep++;
1767 if (waitqueue_active(&tty->write_wait)) {
1768 wake_up_poll(&tty->write_wait, POLLOUT);
1769 do_sleep++;
1772 if (o_tty_closing) {
1773 if (waitqueue_active(&o_tty->read_wait)) {
1774 wake_up_poll(&o_tty->read_wait, POLLIN);
1775 do_sleep++;
1777 if (waitqueue_active(&o_tty->write_wait)) {
1778 wake_up_poll(&o_tty->write_wait, POLLOUT);
1779 do_sleep++;
1782 if (!do_sleep)
1783 break;
1785 printk(KERN_WARNING "%s: %s: read/write wait queue active!\n",
1786 __func__, tty_name(tty, buf));
1787 tty_unlock_pair(tty, o_tty);
1788 mutex_unlock(&tty_mutex);
1789 schedule_timeout_killable(timeout);
1790 if (timeout < 120 * HZ)
1791 timeout = 2 * timeout + 1;
1792 else
1793 timeout = MAX_SCHEDULE_TIMEOUT;
1797 * The closing flags are now consistent with the open counts on
1798 * both sides, and we've completed the last operation that could
1799 * block, so it's safe to proceed with closing.
1801 * We must *not* drop the tty_mutex until we ensure that a further
1802 * entry into tty_open can not pick up this tty.
1804 if (pty_master) {
1805 if (--o_tty->count < 0) {
1806 printk(KERN_WARNING "%s: bad pty slave count (%d) for %s\n",
1807 __func__, o_tty->count, tty_name(o_tty, buf));
1808 o_tty->count = 0;
1811 if (--tty->count < 0) {
1812 printk(KERN_WARNING "%s: bad tty->count (%d) for %s\n",
1813 __func__, tty->count, tty_name(tty, buf));
1814 tty->count = 0;
1818 * We've decremented tty->count, so we need to remove this file
1819 * descriptor off the tty->tty_files list; this serves two
1820 * purposes:
1821 * - check_tty_count sees the correct number of file descriptors
1822 * associated with this tty.
1823 * - do_tty_hangup no longer sees this file descriptor as
1824 * something that needs to be handled for hangups.
1826 tty_del_file(filp);
1829 * Perform some housekeeping before deciding whether to return.
1831 * Set the TTY_CLOSING flag if this was the last open. In the
1832 * case of a pty we may have to wait around for the other side
1833 * to close, and TTY_CLOSING makes sure we can't be reopened.
1835 if (tty_closing)
1836 set_bit(TTY_CLOSING, &tty->flags);
1837 if (o_tty_closing)
1838 set_bit(TTY_CLOSING, &o_tty->flags);
1841 * If _either_ side is closing, make sure there aren't any
1842 * processes that still think tty or o_tty is their controlling
1843 * tty.
1845 if (tty_closing || o_tty_closing) {
1846 read_lock(&tasklist_lock);
1847 session_clear_tty(tty->session);
1848 if (o_tty)
1849 session_clear_tty(o_tty->session);
1850 read_unlock(&tasklist_lock);
1853 mutex_unlock(&tty_mutex);
1854 tty_unlock_pair(tty, o_tty);
1855 /* At this point the TTY_CLOSING flag should ensure a dead tty
1856 cannot be re-opened by a racing opener */
1858 /* check whether both sides are closing ... */
1859 if (!tty_closing || (o_tty && !o_tty_closing))
1860 return 0;
1862 #ifdef TTY_DEBUG_HANGUP
1863 printk(KERN_DEBUG "%s: %s: final close\n", __func__, tty_name(tty, buf));
1864 #endif
1866 * Ask the line discipline code to release its structures
1868 tty_ldisc_release(tty, o_tty);
1870 /* Wait for pending work before tty destruction commmences */
1871 tty_flush_works(tty);
1872 if (o_tty)
1873 tty_flush_works(o_tty);
1875 #ifdef TTY_DEBUG_HANGUP
1876 printk(KERN_DEBUG "%s: %s: freeing structure...\n", __func__, tty_name(tty, buf));
1877 #endif
1879 * The release_tty function takes care of the details of clearing
1880 * the slots and preserving the termios structure. The tty_unlock_pair
1881 * should be safe as we keep a kref while the tty is locked (so the
1882 * unlock never unlocks a freed tty).
1884 mutex_lock(&tty_mutex);
1885 release_tty(tty, idx);
1886 mutex_unlock(&tty_mutex);
1888 return 0;
1892 * tty_open_current_tty - get tty of current task for open
1893 * @device: device number
1894 * @filp: file pointer to tty
1895 * @return: tty of the current task iff @device is /dev/tty
1897 * We cannot return driver and index like for the other nodes because
1898 * devpts will not work then. It expects inodes to be from devpts FS.
1900 * We need to move to returning a refcounted object from all the lookup
1901 * paths including this one.
1903 static struct tty_struct *tty_open_current_tty(dev_t device, struct file *filp)
1905 struct tty_struct *tty;
1907 if (device != MKDEV(TTYAUX_MAJOR, 0))
1908 return NULL;
1910 tty = get_current_tty();
1911 if (!tty)
1912 return ERR_PTR(-ENXIO);
1914 filp->f_flags |= O_NONBLOCK; /* Don't let /dev/tty block */
1915 /* noctty = 1; */
1916 tty_kref_put(tty);
1917 /* FIXME: we put a reference and return a TTY! */
1918 /* This is only safe because the caller holds tty_mutex */
1919 return tty;
1923 * tty_lookup_driver - lookup a tty driver for a given device file
1924 * @device: device number
1925 * @filp: file pointer to tty
1926 * @noctty: set if the device should not become a controlling tty
1927 * @index: index for the device in the @return driver
1928 * @return: driver for this inode (with increased refcount)
1930 * If @return is not erroneous, the caller is responsible to decrement the
1931 * refcount by tty_driver_kref_put.
1933 * Locking: tty_mutex protects get_tty_driver
1935 static struct tty_driver *tty_lookup_driver(dev_t device, struct file *filp,
1936 int *noctty, int *index)
1938 struct tty_driver *driver;
1940 switch (device) {
1941 #ifdef CONFIG_VT
1942 case MKDEV(TTY_MAJOR, 0): {
1943 extern struct tty_driver *console_driver;
1944 driver = tty_driver_kref_get(console_driver);
1945 *index = fg_console;
1946 *noctty = 1;
1947 break;
1949 #endif
1950 case MKDEV(TTYAUX_MAJOR, 1): {
1951 struct tty_driver *console_driver = console_device(index);
1952 if (console_driver) {
1953 driver = tty_driver_kref_get(console_driver);
1954 if (driver) {
1955 /* Don't let /dev/console block */
1956 filp->f_flags |= O_NONBLOCK;
1957 *noctty = 1;
1958 break;
1961 return ERR_PTR(-ENODEV);
1963 default:
1964 driver = get_tty_driver(device, index);
1965 if (!driver)
1966 return ERR_PTR(-ENODEV);
1967 break;
1969 return driver;
1973 * tty_open - open a tty device
1974 * @inode: inode of device file
1975 * @filp: file pointer to tty
1977 * tty_open and tty_release keep up the tty count that contains the
1978 * number of opens done on a tty. We cannot use the inode-count, as
1979 * different inodes might point to the same tty.
1981 * Open-counting is needed for pty masters, as well as for keeping
1982 * track of serial lines: DTR is dropped when the last close happens.
1983 * (This is not done solely through tty->count, now. - Ted 1/27/92)
1985 * The termios state of a pty is reset on first open so that
1986 * settings don't persist across reuse.
1988 * Locking: tty_mutex protects tty, tty_lookup_driver and tty_init_dev.
1989 * tty->count should protect the rest.
1990 * ->siglock protects ->signal/->sighand
1992 * Note: the tty_unlock/lock cases without a ref are only safe due to
1993 * tty_mutex
1996 static int tty_open(struct inode *inode, struct file *filp)
1998 struct tty_struct *tty;
1999 int noctty, retval;
2000 struct tty_driver *driver = NULL;
2001 int index;
2002 dev_t device = inode->i_rdev;
2003 unsigned saved_flags = filp->f_flags;
2005 nonseekable_open(inode, filp);
2007 retry_open:
2008 retval = tty_alloc_file(filp);
2009 if (retval)
2010 return -ENOMEM;
2012 noctty = filp->f_flags & O_NOCTTY;
2013 index = -1;
2014 retval = 0;
2016 mutex_lock(&tty_mutex);
2017 /* This is protected by the tty_mutex */
2018 tty = tty_open_current_tty(device, filp);
2019 if (IS_ERR(tty)) {
2020 retval = PTR_ERR(tty);
2021 goto err_unlock;
2022 } else if (!tty) {
2023 driver = tty_lookup_driver(device, filp, &noctty, &index);
2024 if (IS_ERR(driver)) {
2025 retval = PTR_ERR(driver);
2026 goto err_unlock;
2029 /* check whether we're reopening an existing tty */
2030 tty = tty_driver_lookup_tty(driver, inode, index);
2031 if (IS_ERR(tty)) {
2032 retval = PTR_ERR(tty);
2033 goto err_unlock;
2037 if (tty) {
2038 tty_lock(tty);
2039 retval = tty_reopen(tty);
2040 if (retval < 0) {
2041 tty_unlock(tty);
2042 tty = ERR_PTR(retval);
2044 } else /* Returns with the tty_lock held for now */
2045 tty = tty_init_dev(driver, index);
2047 mutex_unlock(&tty_mutex);
2048 if (driver)
2049 tty_driver_kref_put(driver);
2050 if (IS_ERR(tty)) {
2051 retval = PTR_ERR(tty);
2052 goto err_file;
2055 tty_add_file(tty, filp);
2057 check_tty_count(tty, __func__);
2058 if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
2059 tty->driver->subtype == PTY_TYPE_MASTER)
2060 noctty = 1;
2061 #ifdef TTY_DEBUG_HANGUP
2062 printk(KERN_DEBUG "%s: opening %s...\n", __func__, tty->name);
2063 #endif
2064 if (tty->ops->open)
2065 retval = tty->ops->open(tty, filp);
2066 else
2067 retval = -ENODEV;
2068 filp->f_flags = saved_flags;
2070 if (!retval && test_bit(TTY_EXCLUSIVE, &tty->flags) &&
2071 !capable(CAP_SYS_ADMIN))
2072 retval = -EBUSY;
2074 if (retval) {
2075 #ifdef TTY_DEBUG_HANGUP
2076 printk(KERN_DEBUG "%s: error %d in opening %s...\n", __func__,
2077 retval, tty->name);
2078 #endif
2079 tty_unlock(tty); /* need to call tty_release without BTM */
2080 tty_release(inode, filp);
2081 if (retval != -ERESTARTSYS)
2082 return retval;
2084 if (signal_pending(current))
2085 return retval;
2087 schedule();
2089 * Need to reset f_op in case a hangup happened.
2091 if (filp->f_op == &hung_up_tty_fops)
2092 filp->f_op = &tty_fops;
2093 goto retry_open;
2095 clear_bit(TTY_HUPPED, &tty->flags);
2096 tty_unlock(tty);
2099 mutex_lock(&tty_mutex);
2100 tty_lock(tty);
2101 spin_lock_irq(&current->sighand->siglock);
2102 if (!noctty &&
2103 current->signal->leader &&
2104 !current->signal->tty &&
2105 tty->session == NULL)
2106 __proc_set_tty(current, tty);
2107 spin_unlock_irq(&current->sighand->siglock);
2108 tty_unlock(tty);
2109 mutex_unlock(&tty_mutex);
2110 return 0;
2111 err_unlock:
2112 mutex_unlock(&tty_mutex);
2113 /* after locks to avoid deadlock */
2114 if (!IS_ERR_OR_NULL(driver))
2115 tty_driver_kref_put(driver);
2116 err_file:
2117 tty_free_file(filp);
2118 return retval;
2124 * tty_poll - check tty status
2125 * @filp: file being polled
2126 * @wait: poll wait structures to update
2128 * Call the line discipline polling method to obtain the poll
2129 * status of the device.
2131 * Locking: locks called line discipline but ldisc poll method
2132 * may be re-entered freely by other callers.
2135 static unsigned int tty_poll(struct file *filp, poll_table *wait)
2137 struct tty_struct *tty = file_tty(filp);
2138 struct tty_ldisc *ld;
2139 int ret = 0;
2141 if (tty_paranoia_check(tty, file_inode(filp), "tty_poll"))
2142 return 0;
2144 ld = tty_ldisc_ref_wait(tty);
2145 if (ld->ops->poll)
2146 ret = (ld->ops->poll)(tty, filp, wait);
2147 tty_ldisc_deref(ld);
2148 return ret;
2151 static int __tty_fasync(int fd, struct file *filp, int on)
2153 struct tty_struct *tty = file_tty(filp);
2154 struct tty_ldisc *ldisc;
2155 unsigned long flags;
2156 int retval = 0;
2158 if (tty_paranoia_check(tty, file_inode(filp), "tty_fasync"))
2159 goto out;
2161 retval = fasync_helper(fd, filp, on, &tty->fasync);
2162 if (retval <= 0)
2163 goto out;
2165 ldisc = tty_ldisc_ref(tty);
2166 if (ldisc) {
2167 if (ldisc->ops->fasync)
2168 ldisc->ops->fasync(tty, on);
2169 tty_ldisc_deref(ldisc);
2172 if (on) {
2173 enum pid_type type;
2174 struct pid *pid;
2176 spin_lock_irqsave(&tty->ctrl_lock, flags);
2177 if (tty->pgrp) {
2178 pid = tty->pgrp;
2179 type = PIDTYPE_PGID;
2180 } else {
2181 pid = task_pid(current);
2182 type = PIDTYPE_PID;
2184 get_pid(pid);
2185 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
2186 retval = __f_setown(filp, pid, type, 0);
2187 put_pid(pid);
2189 out:
2190 return retval;
2193 static int tty_fasync(int fd, struct file *filp, int on)
2195 struct tty_struct *tty = file_tty(filp);
2196 int retval;
2198 tty_lock(tty);
2199 retval = __tty_fasync(fd, filp, on);
2200 tty_unlock(tty);
2202 return retval;
2206 * tiocsti - fake input character
2207 * @tty: tty to fake input into
2208 * @p: pointer to character
2210 * Fake input to a tty device. Does the necessary locking and
2211 * input management.
2213 * FIXME: does not honour flow control ??
2215 * Locking:
2216 * Called functions take tty_ldiscs_lock
2217 * current->signal->tty check is safe without locks
2219 * FIXME: may race normal receive processing
2222 static int tiocsti(struct tty_struct *tty, char __user *p)
2224 char ch, mbz = 0;
2225 struct tty_ldisc *ld;
2227 if ((current->signal->tty != tty) && !capable(CAP_SYS_ADMIN))
2228 return -EPERM;
2229 if (get_user(ch, p))
2230 return -EFAULT;
2231 tty_audit_tiocsti(tty, ch);
2232 ld = tty_ldisc_ref_wait(tty);
2233 ld->ops->receive_buf(tty, &ch, &mbz, 1);
2234 tty_ldisc_deref(ld);
2235 return 0;
2239 * tiocgwinsz - implement window query ioctl
2240 * @tty; tty
2241 * @arg: user buffer for result
2243 * Copies the kernel idea of the window size into the user buffer.
2245 * Locking: tty->winsize_mutex is taken to ensure the winsize data
2246 * is consistent.
2249 static int tiocgwinsz(struct tty_struct *tty, struct winsize __user *arg)
2251 int err;
2253 mutex_lock(&tty->winsize_mutex);
2254 err = copy_to_user(arg, &tty->winsize, sizeof(*arg));
2255 mutex_unlock(&tty->winsize_mutex);
2257 return err ? -EFAULT: 0;
2261 * tty_do_resize - resize event
2262 * @tty: tty being resized
2263 * @rows: rows (character)
2264 * @cols: cols (character)
2266 * Update the termios variables and send the necessary signals to
2267 * peform a terminal resize correctly
2270 int tty_do_resize(struct tty_struct *tty, struct winsize *ws)
2272 struct pid *pgrp;
2273 unsigned long flags;
2275 /* Lock the tty */
2276 mutex_lock(&tty->winsize_mutex);
2277 if (!memcmp(ws, &tty->winsize, sizeof(*ws)))
2278 goto done;
2279 /* Get the PID values and reference them so we can
2280 avoid holding the tty ctrl lock while sending signals */
2281 spin_lock_irqsave(&tty->ctrl_lock, flags);
2282 pgrp = get_pid(tty->pgrp);
2283 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
2285 if (pgrp)
2286 kill_pgrp(pgrp, SIGWINCH, 1);
2287 put_pid(pgrp);
2289 tty->winsize = *ws;
2290 done:
2291 mutex_unlock(&tty->winsize_mutex);
2292 return 0;
2294 EXPORT_SYMBOL(tty_do_resize);
2297 * tiocswinsz - implement window size set ioctl
2298 * @tty; tty side of tty
2299 * @arg: user buffer for result
2301 * Copies the user idea of the window size to the kernel. Traditionally
2302 * this is just advisory information but for the Linux console it
2303 * actually has driver level meaning and triggers a VC resize.
2305 * Locking:
2306 * Driver dependent. The default do_resize method takes the
2307 * tty termios mutex and ctrl_lock. The console takes its own lock
2308 * then calls into the default method.
2311 static int tiocswinsz(struct tty_struct *tty, struct winsize __user *arg)
2313 struct winsize tmp_ws;
2314 if (copy_from_user(&tmp_ws, arg, sizeof(*arg)))
2315 return -EFAULT;
2317 if (tty->ops->resize)
2318 return tty->ops->resize(tty, &tmp_ws);
2319 else
2320 return tty_do_resize(tty, &tmp_ws);
2324 * tioccons - allow admin to move logical console
2325 * @file: the file to become console
2327 * Allow the administrator to move the redirected console device
2329 * Locking: uses redirect_lock to guard the redirect information
2332 static int tioccons(struct file *file)
2334 if (!capable(CAP_SYS_ADMIN))
2335 return -EPERM;
2336 if (file->f_op->write == redirected_tty_write) {
2337 struct file *f;
2338 spin_lock(&redirect_lock);
2339 f = redirect;
2340 redirect = NULL;
2341 spin_unlock(&redirect_lock);
2342 if (f)
2343 fput(f);
2344 return 0;
2346 spin_lock(&redirect_lock);
2347 if (redirect) {
2348 spin_unlock(&redirect_lock);
2349 return -EBUSY;
2351 redirect = get_file(file);
2352 spin_unlock(&redirect_lock);
2353 return 0;
2357 * fionbio - non blocking ioctl
2358 * @file: file to set blocking value
2359 * @p: user parameter
2361 * Historical tty interfaces had a blocking control ioctl before
2362 * the generic functionality existed. This piece of history is preserved
2363 * in the expected tty API of posix OS's.
2365 * Locking: none, the open file handle ensures it won't go away.
2368 static int fionbio(struct file *file, int __user *p)
2370 int nonblock;
2372 if (get_user(nonblock, p))
2373 return -EFAULT;
2375 spin_lock(&file->f_lock);
2376 if (nonblock)
2377 file->f_flags |= O_NONBLOCK;
2378 else
2379 file->f_flags &= ~O_NONBLOCK;
2380 spin_unlock(&file->f_lock);
2381 return 0;
2385 * tiocsctty - set controlling tty
2386 * @tty: tty structure
2387 * @arg: user argument
2389 * This ioctl is used to manage job control. It permits a session
2390 * leader to set this tty as the controlling tty for the session.
2392 * Locking:
2393 * Takes tty_mutex() to protect tty instance
2394 * Takes tasklist_lock internally to walk sessions
2395 * Takes ->siglock() when updating signal->tty
2398 static int tiocsctty(struct tty_struct *tty, int arg)
2400 int ret = 0;
2401 if (current->signal->leader && (task_session(current) == tty->session))
2402 return ret;
2404 mutex_lock(&tty_mutex);
2406 * The process must be a session leader and
2407 * not have a controlling tty already.
2409 if (!current->signal->leader || current->signal->tty) {
2410 ret = -EPERM;
2411 goto unlock;
2414 if (tty->session) {
2416 * This tty is already the controlling
2417 * tty for another session group!
2419 if (arg == 1 && capable(CAP_SYS_ADMIN)) {
2421 * Steal it away
2423 read_lock(&tasklist_lock);
2424 session_clear_tty(tty->session);
2425 read_unlock(&tasklist_lock);
2426 } else {
2427 ret = -EPERM;
2428 goto unlock;
2431 proc_set_tty(current, tty);
2432 unlock:
2433 mutex_unlock(&tty_mutex);
2434 return ret;
2438 * tty_get_pgrp - return a ref counted pgrp pid
2439 * @tty: tty to read
2441 * Returns a refcounted instance of the pid struct for the process
2442 * group controlling the tty.
2445 struct pid *tty_get_pgrp(struct tty_struct *tty)
2447 unsigned long flags;
2448 struct pid *pgrp;
2450 spin_lock_irqsave(&tty->ctrl_lock, flags);
2451 pgrp = get_pid(tty->pgrp);
2452 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
2454 return pgrp;
2456 EXPORT_SYMBOL_GPL(tty_get_pgrp);
2459 * tiocgpgrp - get process group
2460 * @tty: tty passed by user
2461 * @real_tty: tty side of the tty passed by the user if a pty else the tty
2462 * @p: returned pid
2464 * Obtain the process group of the tty. If there is no process group
2465 * return an error.
2467 * Locking: none. Reference to current->signal->tty is safe.
2470 static int tiocgpgrp(struct tty_struct *tty, struct tty_struct *real_tty, pid_t __user *p)
2472 struct pid *pid;
2473 int ret;
2475 * (tty == real_tty) is a cheap way of
2476 * testing if the tty is NOT a master pty.
2478 if (tty == real_tty && current->signal->tty != real_tty)
2479 return -ENOTTY;
2480 pid = tty_get_pgrp(real_tty);
2481 ret = put_user(pid_vnr(pid), p);
2482 put_pid(pid);
2483 return ret;
2487 * tiocspgrp - attempt to set process group
2488 * @tty: tty passed by user
2489 * @real_tty: tty side device matching tty passed by user
2490 * @p: pid pointer
2492 * Set the process group of the tty to the session passed. Only
2493 * permitted where the tty session is our session.
2495 * Locking: RCU, ctrl lock
2498 static int tiocspgrp(struct tty_struct *tty, struct tty_struct *real_tty, pid_t __user *p)
2500 struct pid *pgrp;
2501 pid_t pgrp_nr;
2502 int retval = tty_check_change(real_tty);
2503 unsigned long flags;
2505 if (retval == -EIO)
2506 return -ENOTTY;
2507 if (retval)
2508 return retval;
2509 if (!current->signal->tty ||
2510 (current->signal->tty != real_tty) ||
2511 (real_tty->session != task_session(current)))
2512 return -ENOTTY;
2513 if (get_user(pgrp_nr, p))
2514 return -EFAULT;
2515 if (pgrp_nr < 0)
2516 return -EINVAL;
2517 rcu_read_lock();
2518 pgrp = find_vpid(pgrp_nr);
2519 retval = -ESRCH;
2520 if (!pgrp)
2521 goto out_unlock;
2522 retval = -EPERM;
2523 if (session_of_pgrp(pgrp) != task_session(current))
2524 goto out_unlock;
2525 retval = 0;
2526 spin_lock_irqsave(&tty->ctrl_lock, flags);
2527 put_pid(real_tty->pgrp);
2528 real_tty->pgrp = get_pid(pgrp);
2529 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
2530 out_unlock:
2531 rcu_read_unlock();
2532 return retval;
2536 * tiocgsid - get session id
2537 * @tty: tty passed by user
2538 * @real_tty: tty side of the tty passed by the user if a pty else the tty
2539 * @p: pointer to returned session id
2541 * Obtain the session id of the tty. If there is no session
2542 * return an error.
2544 * Locking: none. Reference to current->signal->tty is safe.
2547 static int tiocgsid(struct tty_struct *tty, struct tty_struct *real_tty, pid_t __user *p)
2550 * (tty == real_tty) is a cheap way of
2551 * testing if the tty is NOT a master pty.
2553 if (tty == real_tty && current->signal->tty != real_tty)
2554 return -ENOTTY;
2555 if (!real_tty->session)
2556 return -ENOTTY;
2557 return put_user(pid_vnr(real_tty->session), p);
2561 * tiocsetd - set line discipline
2562 * @tty: tty device
2563 * @p: pointer to user data
2565 * Set the line discipline according to user request.
2567 * Locking: see tty_set_ldisc, this function is just a helper
2570 static int tiocsetd(struct tty_struct *tty, int __user *p)
2572 int ldisc;
2573 int ret;
2575 if (get_user(ldisc, p))
2576 return -EFAULT;
2578 ret = tty_set_ldisc(tty, ldisc);
2580 return ret;
2584 * tiocgetd - get line discipline
2585 * @tty: tty device
2586 * @p: pointer to user data
2588 * Retrieves the line discipline id directly from the ldisc.
2590 * Locking: waits for ldisc reference (in case the line discipline
2591 * is changing or the tty is being hungup)
2594 static int tiocgetd(struct tty_struct *tty, int __user *p)
2596 struct tty_ldisc *ld;
2597 int ret;
2599 ld = tty_ldisc_ref_wait(tty);
2600 ret = put_user(ld->ops->num, p);
2601 tty_ldisc_deref(ld);
2602 return ret;
2606 * send_break - performed time break
2607 * @tty: device to break on
2608 * @duration: timeout in mS
2610 * Perform a timed break on hardware that lacks its own driver level
2611 * timed break functionality.
2613 * Locking:
2614 * atomic_write_lock serializes
2618 static int send_break(struct tty_struct *tty, unsigned int duration)
2620 int retval;
2622 if (tty->ops->break_ctl == NULL)
2623 return 0;
2625 if (tty->driver->flags & TTY_DRIVER_HARDWARE_BREAK)
2626 retval = tty->ops->break_ctl(tty, duration);
2627 else {
2628 /* Do the work ourselves */
2629 if (tty_write_lock(tty, 0) < 0)
2630 return -EINTR;
2631 retval = tty->ops->break_ctl(tty, -1);
2632 if (retval)
2633 goto out;
2634 if (!signal_pending(current))
2635 msleep_interruptible(duration);
2636 retval = tty->ops->break_ctl(tty, 0);
2637 out:
2638 tty_write_unlock(tty);
2639 if (signal_pending(current))
2640 retval = -EINTR;
2642 return retval;
2646 * tty_tiocmget - get modem status
2647 * @tty: tty device
2648 * @file: user file pointer
2649 * @p: pointer to result
2651 * Obtain the modem status bits from the tty driver if the feature
2652 * is supported. Return -EINVAL if it is not available.
2654 * Locking: none (up to the driver)
2657 static int tty_tiocmget(struct tty_struct *tty, int __user *p)
2659 int retval = -EINVAL;
2661 if (tty->ops->tiocmget) {
2662 retval = tty->ops->tiocmget(tty);
2664 if (retval >= 0)
2665 retval = put_user(retval, p);
2667 return retval;
2671 * tty_tiocmset - set modem status
2672 * @tty: tty device
2673 * @cmd: command - clear bits, set bits or set all
2674 * @p: pointer to desired bits
2676 * Set the modem status bits from the tty driver if the feature
2677 * is supported. Return -EINVAL if it is not available.
2679 * Locking: none (up to the driver)
2682 static int tty_tiocmset(struct tty_struct *tty, unsigned int cmd,
2683 unsigned __user *p)
2685 int retval;
2686 unsigned int set, clear, val;
2688 if (tty->ops->tiocmset == NULL)
2689 return -EINVAL;
2691 retval = get_user(val, p);
2692 if (retval)
2693 return retval;
2694 set = clear = 0;
2695 switch (cmd) {
2696 case TIOCMBIS:
2697 set = val;
2698 break;
2699 case TIOCMBIC:
2700 clear = val;
2701 break;
2702 case TIOCMSET:
2703 set = val;
2704 clear = ~val;
2705 break;
2707 set &= TIOCM_DTR|TIOCM_RTS|TIOCM_OUT1|TIOCM_OUT2|TIOCM_LOOP;
2708 clear &= TIOCM_DTR|TIOCM_RTS|TIOCM_OUT1|TIOCM_OUT2|TIOCM_LOOP;
2709 return tty->ops->tiocmset(tty, set, clear);
2712 static int tty_tiocgicount(struct tty_struct *tty, void __user *arg)
2714 int retval = -EINVAL;
2715 struct serial_icounter_struct icount;
2716 memset(&icount, 0, sizeof(icount));
2717 if (tty->ops->get_icount)
2718 retval = tty->ops->get_icount(tty, &icount);
2719 if (retval != 0)
2720 return retval;
2721 if (copy_to_user(arg, &icount, sizeof(icount)))
2722 return -EFAULT;
2723 return 0;
2726 struct tty_struct *tty_pair_get_tty(struct tty_struct *tty)
2728 if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
2729 tty->driver->subtype == PTY_TYPE_MASTER)
2730 tty = tty->link;
2731 return tty;
2733 EXPORT_SYMBOL(tty_pair_get_tty);
2735 struct tty_struct *tty_pair_get_pty(struct tty_struct *tty)
2737 if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
2738 tty->driver->subtype == PTY_TYPE_MASTER)
2739 return tty;
2740 return tty->link;
2742 EXPORT_SYMBOL(tty_pair_get_pty);
2745 * Split this up, as gcc can choke on it otherwise..
2747 long tty_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
2749 struct tty_struct *tty = file_tty(file);
2750 struct tty_struct *real_tty;
2751 void __user *p = (void __user *)arg;
2752 int retval;
2753 struct tty_ldisc *ld;
2755 if (tty_paranoia_check(tty, file_inode(file), "tty_ioctl"))
2756 return -EINVAL;
2758 real_tty = tty_pair_get_tty(tty);
2761 * Factor out some common prep work
2763 switch (cmd) {
2764 case TIOCSETD:
2765 case TIOCSBRK:
2766 case TIOCCBRK:
2767 case TCSBRK:
2768 case TCSBRKP:
2769 retval = tty_check_change(tty);
2770 if (retval)
2771 return retval;
2772 if (cmd != TIOCCBRK) {
2773 tty_wait_until_sent(tty, 0);
2774 if (signal_pending(current))
2775 return -EINTR;
2777 break;
2781 * Now do the stuff.
2783 switch (cmd) {
2784 case TIOCSTI:
2785 return tiocsti(tty, p);
2786 case TIOCGWINSZ:
2787 return tiocgwinsz(real_tty, p);
2788 case TIOCSWINSZ:
2789 return tiocswinsz(real_tty, p);
2790 case TIOCCONS:
2791 return real_tty != tty ? -EINVAL : tioccons(file);
2792 case FIONBIO:
2793 return fionbio(file, p);
2794 case TIOCEXCL:
2795 set_bit(TTY_EXCLUSIVE, &tty->flags);
2796 return 0;
2797 case TIOCNXCL:
2798 clear_bit(TTY_EXCLUSIVE, &tty->flags);
2799 return 0;
2800 case TIOCGEXCL:
2802 int excl = test_bit(TTY_EXCLUSIVE, &tty->flags);
2803 return put_user(excl, (int __user *)p);
2805 case TIOCNOTTY:
2806 if (current->signal->tty != tty)
2807 return -ENOTTY;
2808 no_tty();
2809 return 0;
2810 case TIOCSCTTY:
2811 return tiocsctty(tty, arg);
2812 case TIOCGPGRP:
2813 return tiocgpgrp(tty, real_tty, p);
2814 case TIOCSPGRP:
2815 return tiocspgrp(tty, real_tty, p);
2816 case TIOCGSID:
2817 return tiocgsid(tty, real_tty, p);
2818 case TIOCGETD:
2819 return tiocgetd(tty, p);
2820 case TIOCSETD:
2821 return tiocsetd(tty, p);
2822 case TIOCVHANGUP:
2823 if (!capable(CAP_SYS_ADMIN))
2824 return -EPERM;
2825 tty_vhangup(tty);
2826 return 0;
2827 case TIOCGDEV:
2829 unsigned int ret = new_encode_dev(tty_devnum(real_tty));
2830 return put_user(ret, (unsigned int __user *)p);
2833 * Break handling
2835 case TIOCSBRK: /* Turn break on, unconditionally */
2836 if (tty->ops->break_ctl)
2837 return tty->ops->break_ctl(tty, -1);
2838 return 0;
2839 case TIOCCBRK: /* Turn break off, unconditionally */
2840 if (tty->ops->break_ctl)
2841 return tty->ops->break_ctl(tty, 0);
2842 return 0;
2843 case TCSBRK: /* SVID version: non-zero arg --> no break */
2844 /* non-zero arg means wait for all output data
2845 * to be sent (performed above) but don't send break.
2846 * This is used by the tcdrain() termios function.
2848 if (!arg)
2849 return send_break(tty, 250);
2850 return 0;
2851 case TCSBRKP: /* support for POSIX tcsendbreak() */
2852 return send_break(tty, arg ? arg*100 : 250);
2854 case TIOCMGET:
2855 return tty_tiocmget(tty, p);
2856 case TIOCMSET:
2857 case TIOCMBIC:
2858 case TIOCMBIS:
2859 return tty_tiocmset(tty, cmd, p);
2860 case TIOCGICOUNT:
2861 retval = tty_tiocgicount(tty, p);
2862 /* For the moment allow fall through to the old method */
2863 if (retval != -EINVAL)
2864 return retval;
2865 break;
2866 case TCFLSH:
2867 switch (arg) {
2868 case TCIFLUSH:
2869 case TCIOFLUSH:
2870 /* flush tty buffer and allow ldisc to process ioctl */
2871 tty_buffer_flush(tty);
2872 break;
2874 break;
2876 if (tty->ops->ioctl) {
2877 retval = (tty->ops->ioctl)(tty, cmd, arg);
2878 if (retval != -ENOIOCTLCMD)
2879 return retval;
2881 ld = tty_ldisc_ref_wait(tty);
2882 retval = -EINVAL;
2883 if (ld->ops->ioctl) {
2884 retval = ld->ops->ioctl(tty, file, cmd, arg);
2885 if (retval == -ENOIOCTLCMD)
2886 retval = -ENOTTY;
2888 tty_ldisc_deref(ld);
2889 return retval;
2892 #ifdef CONFIG_COMPAT
2893 static long tty_compat_ioctl(struct file *file, unsigned int cmd,
2894 unsigned long arg)
2896 struct tty_struct *tty = file_tty(file);
2897 struct tty_ldisc *ld;
2898 int retval = -ENOIOCTLCMD;
2900 if (tty_paranoia_check(tty, file_inode(file), "tty_ioctl"))
2901 return -EINVAL;
2903 if (tty->ops->compat_ioctl) {
2904 retval = (tty->ops->compat_ioctl)(tty, cmd, arg);
2905 if (retval != -ENOIOCTLCMD)
2906 return retval;
2909 ld = tty_ldisc_ref_wait(tty);
2910 if (ld->ops->compat_ioctl)
2911 retval = ld->ops->compat_ioctl(tty, file, cmd, arg);
2912 else
2913 retval = n_tty_compat_ioctl_helper(tty, file, cmd, arg);
2914 tty_ldisc_deref(ld);
2916 return retval;
2918 #endif
2920 static int this_tty(const void *t, struct file *file, unsigned fd)
2922 if (likely(file->f_op->read != tty_read))
2923 return 0;
2924 return file_tty(file) != t ? 0 : fd + 1;
2928 * This implements the "Secure Attention Key" --- the idea is to
2929 * prevent trojan horses by killing all processes associated with this
2930 * tty when the user hits the "Secure Attention Key". Required for
2931 * super-paranoid applications --- see the Orange Book for more details.
2933 * This code could be nicer; ideally it should send a HUP, wait a few
2934 * seconds, then send a INT, and then a KILL signal. But you then
2935 * have to coordinate with the init process, since all processes associated
2936 * with the current tty must be dead before the new getty is allowed
2937 * to spawn.
2939 * Now, if it would be correct ;-/ The current code has a nasty hole -
2940 * it doesn't catch files in flight. We may send the descriptor to ourselves
2941 * via AF_UNIX socket, close it and later fetch from socket. FIXME.
2943 * Nasty bug: do_SAK is being called in interrupt context. This can
2944 * deadlock. We punt it up to process context. AKPM - 16Mar2001
2946 void __do_SAK(struct tty_struct *tty)
2948 #ifdef TTY_SOFT_SAK
2949 tty_hangup(tty);
2950 #else
2951 struct task_struct *g, *p;
2952 struct pid *session;
2953 int i;
2955 if (!tty)
2956 return;
2957 session = tty->session;
2959 tty_ldisc_flush(tty);
2961 tty_driver_flush_buffer(tty);
2963 read_lock(&tasklist_lock);
2964 /* Kill the entire session */
2965 do_each_pid_task(session, PIDTYPE_SID, p) {
2966 printk(KERN_NOTICE "SAK: killed process %d"
2967 " (%s): task_session(p)==tty->session\n",
2968 task_pid_nr(p), p->comm);
2969 send_sig(SIGKILL, p, 1);
2970 } while_each_pid_task(session, PIDTYPE_SID, p);
2971 /* Now kill any processes that happen to have the
2972 * tty open.
2974 do_each_thread(g, p) {
2975 if (p->signal->tty == tty) {
2976 printk(KERN_NOTICE "SAK: killed process %d"
2977 " (%s): task_session(p)==tty->session\n",
2978 task_pid_nr(p), p->comm);
2979 send_sig(SIGKILL, p, 1);
2980 continue;
2982 task_lock(p);
2983 i = iterate_fd(p->files, 0, this_tty, tty);
2984 if (i != 0) {
2985 printk(KERN_NOTICE "SAK: killed process %d"
2986 " (%s): fd#%d opened to the tty\n",
2987 task_pid_nr(p), p->comm, i - 1);
2988 force_sig(SIGKILL, p);
2990 task_unlock(p);
2991 } while_each_thread(g, p);
2992 read_unlock(&tasklist_lock);
2993 #endif
2996 static void do_SAK_work(struct work_struct *work)
2998 struct tty_struct *tty =
2999 container_of(work, struct tty_struct, SAK_work);
3000 __do_SAK(tty);
3004 * The tq handling here is a little racy - tty->SAK_work may already be queued.
3005 * Fortunately we don't need to worry, because if ->SAK_work is already queued,
3006 * the values which we write to it will be identical to the values which it
3007 * already has. --akpm
3009 void do_SAK(struct tty_struct *tty)
3011 if (!tty)
3012 return;
3013 schedule_work(&tty->SAK_work);
3016 EXPORT_SYMBOL(do_SAK);
3018 static int dev_match_devt(struct device *dev, const void *data)
3020 const dev_t *devt = data;
3021 return dev->devt == *devt;
3024 /* Must put_device() after it's unused! */
3025 static struct device *tty_get_device(struct tty_struct *tty)
3027 dev_t devt = tty_devnum(tty);
3028 return class_find_device(tty_class, NULL, &devt, dev_match_devt);
3033 * initialize_tty_struct
3034 * @tty: tty to initialize
3036 * This subroutine initializes a tty structure that has been newly
3037 * allocated.
3039 * Locking: none - tty in question must not be exposed at this point
3042 void initialize_tty_struct(struct tty_struct *tty,
3043 struct tty_driver *driver, int idx)
3045 memset(tty, 0, sizeof(struct tty_struct));
3046 kref_init(&tty->kref);
3047 tty->magic = TTY_MAGIC;
3048 tty_ldisc_init(tty);
3049 tty->session = NULL;
3050 tty->pgrp = NULL;
3051 mutex_init(&tty->legacy_mutex);
3052 mutex_init(&tty->throttle_mutex);
3053 init_rwsem(&tty->termios_rwsem);
3054 mutex_init(&tty->winsize_mutex);
3055 init_ldsem(&tty->ldisc_sem);
3056 init_waitqueue_head(&tty->write_wait);
3057 init_waitqueue_head(&tty->read_wait);
3058 INIT_WORK(&tty->hangup_work, do_tty_hangup);
3059 mutex_init(&tty->atomic_write_lock);
3060 spin_lock_init(&tty->ctrl_lock);
3061 INIT_LIST_HEAD(&tty->tty_files);
3062 INIT_WORK(&tty->SAK_work, do_SAK_work);
3064 tty->driver = driver;
3065 tty->ops = driver->ops;
3066 tty->index = idx;
3067 tty_line_name(driver, idx, tty->name);
3068 tty->dev = tty_get_device(tty);
3072 * deinitialize_tty_struct
3073 * @tty: tty to deinitialize
3075 * This subroutine deinitializes a tty structure that has been newly
3076 * allocated but tty_release cannot be called on that yet.
3078 * Locking: none - tty in question must not be exposed at this point
3080 void deinitialize_tty_struct(struct tty_struct *tty)
3082 tty_ldisc_deinit(tty);
3086 * tty_put_char - write one character to a tty
3087 * @tty: tty
3088 * @ch: character
3090 * Write one byte to the tty using the provided put_char method
3091 * if present. Returns the number of characters successfully output.
3093 * Note: the specific put_char operation in the driver layer may go
3094 * away soon. Don't call it directly, use this method
3097 int tty_put_char(struct tty_struct *tty, unsigned char ch)
3099 if (tty->ops->put_char)
3100 return tty->ops->put_char(tty, ch);
3101 return tty->ops->write(tty, &ch, 1);
3103 EXPORT_SYMBOL_GPL(tty_put_char);
3105 struct class *tty_class;
3107 static int tty_cdev_add(struct tty_driver *driver, dev_t dev,
3108 unsigned int index, unsigned int count)
3110 /* init here, since reused cdevs cause crashes */
3111 cdev_init(&driver->cdevs[index], &tty_fops);
3112 driver->cdevs[index].owner = driver->owner;
3113 return cdev_add(&driver->cdevs[index], dev, count);
3117 * tty_register_device - register a tty device
3118 * @driver: the tty driver that describes the tty device
3119 * @index: the index in the tty driver for this tty device
3120 * @device: a struct device that is associated with this tty device.
3121 * This field is optional, if there is no known struct device
3122 * for this tty device it can be set to NULL safely.
3124 * Returns a pointer to the struct device for this tty device
3125 * (or ERR_PTR(-EFOO) on error).
3127 * This call is required to be made to register an individual tty device
3128 * if the tty driver's flags have the TTY_DRIVER_DYNAMIC_DEV bit set. If
3129 * that bit is not set, this function should not be called by a tty
3130 * driver.
3132 * Locking: ??
3135 struct device *tty_register_device(struct tty_driver *driver, unsigned index,
3136 struct device *device)
3138 return tty_register_device_attr(driver, index, device, NULL, NULL);
3140 EXPORT_SYMBOL(tty_register_device);
3142 static void tty_device_create_release(struct device *dev)
3144 pr_debug("device: '%s': %s\n", dev_name(dev), __func__);
3145 kfree(dev);
3149 * tty_register_device_attr - register a tty device
3150 * @driver: the tty driver that describes the tty device
3151 * @index: the index in the tty driver for this tty device
3152 * @device: a struct device that is associated with this tty device.
3153 * This field is optional, if there is no known struct device
3154 * for this tty device it can be set to NULL safely.
3155 * @drvdata: Driver data to be set to device.
3156 * @attr_grp: Attribute group to be set on device.
3158 * Returns a pointer to the struct device for this tty device
3159 * (or ERR_PTR(-EFOO) on error).
3161 * This call is required to be made to register an individual tty device
3162 * if the tty driver's flags have the TTY_DRIVER_DYNAMIC_DEV bit set. If
3163 * that bit is not set, this function should not be called by a tty
3164 * driver.
3166 * Locking: ??
3168 struct device *tty_register_device_attr(struct tty_driver *driver,
3169 unsigned index, struct device *device,
3170 void *drvdata,
3171 const struct attribute_group **attr_grp)
3173 char name[64];
3174 dev_t devt = MKDEV(driver->major, driver->minor_start) + index;
3175 struct device *dev = NULL;
3176 int retval = -ENODEV;
3177 bool cdev = false;
3179 if (index >= driver->num) {
3180 printk(KERN_ERR "Attempt to register invalid tty line number "
3181 " (%d).\n", index);
3182 return ERR_PTR(-EINVAL);
3185 if (driver->type == TTY_DRIVER_TYPE_PTY)
3186 pty_line_name(driver, index, name);
3187 else
3188 tty_line_name(driver, index, name);
3190 if (!(driver->flags & TTY_DRIVER_DYNAMIC_ALLOC)) {
3191 retval = tty_cdev_add(driver, devt, index, 1);
3192 if (retval)
3193 goto error;
3194 cdev = true;
3197 dev = kzalloc(sizeof(*dev), GFP_KERNEL);
3198 if (!dev) {
3199 retval = -ENOMEM;
3200 goto error;
3203 dev->devt = devt;
3204 dev->class = tty_class;
3205 dev->parent = device;
3206 dev->release = tty_device_create_release;
3207 dev_set_name(dev, "%s", name);
3208 dev->groups = attr_grp;
3209 dev_set_drvdata(dev, drvdata);
3211 retval = device_register(dev);
3212 if (retval)
3213 goto error;
3215 return dev;
3217 error:
3218 put_device(dev);
3219 if (cdev)
3220 cdev_del(&driver->cdevs[index]);
3221 return ERR_PTR(retval);
3223 EXPORT_SYMBOL_GPL(tty_register_device_attr);
3226 * tty_unregister_device - unregister a tty device
3227 * @driver: the tty driver that describes the tty device
3228 * @index: the index in the tty driver for this tty device
3230 * If a tty device is registered with a call to tty_register_device() then
3231 * this function must be called when the tty device is gone.
3233 * Locking: ??
3236 void tty_unregister_device(struct tty_driver *driver, unsigned index)
3238 device_destroy(tty_class,
3239 MKDEV(driver->major, driver->minor_start) + index);
3240 if (!(driver->flags & TTY_DRIVER_DYNAMIC_ALLOC))
3241 cdev_del(&driver->cdevs[index]);
3243 EXPORT_SYMBOL(tty_unregister_device);
3246 * __tty_alloc_driver -- allocate tty driver
3247 * @lines: count of lines this driver can handle at most
3248 * @owner: module which is repsonsible for this driver
3249 * @flags: some of TTY_DRIVER_* flags, will be set in driver->flags
3251 * This should not be called directly, some of the provided macros should be
3252 * used instead. Use IS_ERR and friends on @retval.
3254 struct tty_driver *__tty_alloc_driver(unsigned int lines, struct module *owner,
3255 unsigned long flags)
3257 struct tty_driver *driver;
3258 unsigned int cdevs = 1;
3259 int err;
3261 if (!lines || (flags & TTY_DRIVER_UNNUMBERED_NODE && lines > 1))
3262 return ERR_PTR(-EINVAL);
3264 driver = kzalloc(sizeof(struct tty_driver), GFP_KERNEL);
3265 if (!driver)
3266 return ERR_PTR(-ENOMEM);
3268 kref_init(&driver->kref);
3269 driver->magic = TTY_DRIVER_MAGIC;
3270 driver->num = lines;
3271 driver->owner = owner;
3272 driver->flags = flags;
3274 if (!(flags & TTY_DRIVER_DEVPTS_MEM)) {
3275 driver->ttys = kcalloc(lines, sizeof(*driver->ttys),
3276 GFP_KERNEL);
3277 driver->termios = kcalloc(lines, sizeof(*driver->termios),
3278 GFP_KERNEL);
3279 if (!driver->ttys || !driver->termios) {
3280 err = -ENOMEM;
3281 goto err_free_all;
3285 if (!(flags & TTY_DRIVER_DYNAMIC_ALLOC)) {
3286 driver->ports = kcalloc(lines, sizeof(*driver->ports),
3287 GFP_KERNEL);
3288 if (!driver->ports) {
3289 err = -ENOMEM;
3290 goto err_free_all;
3292 cdevs = lines;
3295 driver->cdevs = kcalloc(cdevs, sizeof(*driver->cdevs), GFP_KERNEL);
3296 if (!driver->cdevs) {
3297 err = -ENOMEM;
3298 goto err_free_all;
3301 return driver;
3302 err_free_all:
3303 kfree(driver->ports);
3304 kfree(driver->ttys);
3305 kfree(driver->termios);
3306 kfree(driver);
3307 return ERR_PTR(err);
3309 EXPORT_SYMBOL(__tty_alloc_driver);
3311 static void destruct_tty_driver(struct kref *kref)
3313 struct tty_driver *driver = container_of(kref, struct tty_driver, kref);
3314 int i;
3315 struct ktermios *tp;
3317 if (driver->flags & TTY_DRIVER_INSTALLED) {
3319 * Free the termios and termios_locked structures because
3320 * we don't want to get memory leaks when modular tty
3321 * drivers are removed from the kernel.
3323 for (i = 0; i < driver->num; i++) {
3324 tp = driver->termios[i];
3325 if (tp) {
3326 driver->termios[i] = NULL;
3327 kfree(tp);
3329 if (!(driver->flags & TTY_DRIVER_DYNAMIC_DEV))
3330 tty_unregister_device(driver, i);
3332 proc_tty_unregister_driver(driver);
3333 if (driver->flags & TTY_DRIVER_DYNAMIC_ALLOC)
3334 cdev_del(&driver->cdevs[0]);
3336 kfree(driver->cdevs);
3337 kfree(driver->ports);
3338 kfree(driver->termios);
3339 kfree(driver->ttys);
3340 kfree(driver);
3343 void tty_driver_kref_put(struct tty_driver *driver)
3345 kref_put(&driver->kref, destruct_tty_driver);
3347 EXPORT_SYMBOL(tty_driver_kref_put);
3349 void tty_set_operations(struct tty_driver *driver,
3350 const struct tty_operations *op)
3352 driver->ops = op;
3354 EXPORT_SYMBOL(tty_set_operations);
3356 void put_tty_driver(struct tty_driver *d)
3358 tty_driver_kref_put(d);
3360 EXPORT_SYMBOL(put_tty_driver);
3363 * Called by a tty driver to register itself.
3365 int tty_register_driver(struct tty_driver *driver)
3367 int error;
3368 int i;
3369 dev_t dev;
3370 struct device *d;
3372 if (!driver->major) {
3373 error = alloc_chrdev_region(&dev, driver->minor_start,
3374 driver->num, driver->name);
3375 if (!error) {
3376 driver->major = MAJOR(dev);
3377 driver->minor_start = MINOR(dev);
3379 } else {
3380 dev = MKDEV(driver->major, driver->minor_start);
3381 error = register_chrdev_region(dev, driver->num, driver->name);
3383 if (error < 0)
3384 goto err;
3386 if (driver->flags & TTY_DRIVER_DYNAMIC_ALLOC) {
3387 error = tty_cdev_add(driver, dev, 0, driver->num);
3388 if (error)
3389 goto err_unreg_char;
3392 mutex_lock(&tty_mutex);
3393 list_add(&driver->tty_drivers, &tty_drivers);
3394 mutex_unlock(&tty_mutex);
3396 if (!(driver->flags & TTY_DRIVER_DYNAMIC_DEV)) {
3397 for (i = 0; i < driver->num; i++) {
3398 d = tty_register_device(driver, i, NULL);
3399 if (IS_ERR(d)) {
3400 error = PTR_ERR(d);
3401 goto err_unreg_devs;
3405 proc_tty_register_driver(driver);
3406 driver->flags |= TTY_DRIVER_INSTALLED;
3407 return 0;
3409 err_unreg_devs:
3410 for (i--; i >= 0; i--)
3411 tty_unregister_device(driver, i);
3413 mutex_lock(&tty_mutex);
3414 list_del(&driver->tty_drivers);
3415 mutex_unlock(&tty_mutex);
3417 err_unreg_char:
3418 unregister_chrdev_region(dev, driver->num);
3419 err:
3420 return error;
3422 EXPORT_SYMBOL(tty_register_driver);
3425 * Called by a tty driver to unregister itself.
3427 int tty_unregister_driver(struct tty_driver *driver)
3429 #if 0
3430 /* FIXME */
3431 if (driver->refcount)
3432 return -EBUSY;
3433 #endif
3434 unregister_chrdev_region(MKDEV(driver->major, driver->minor_start),
3435 driver->num);
3436 mutex_lock(&tty_mutex);
3437 list_del(&driver->tty_drivers);
3438 mutex_unlock(&tty_mutex);
3439 return 0;
3442 EXPORT_SYMBOL(tty_unregister_driver);
3444 dev_t tty_devnum(struct tty_struct *tty)
3446 return MKDEV(tty->driver->major, tty->driver->minor_start) + tty->index;
3448 EXPORT_SYMBOL(tty_devnum);
3450 void proc_clear_tty(struct task_struct *p)
3452 unsigned long flags;
3453 struct tty_struct *tty;
3454 spin_lock_irqsave(&p->sighand->siglock, flags);
3455 tty = p->signal->tty;
3456 p->signal->tty = NULL;
3457 spin_unlock_irqrestore(&p->sighand->siglock, flags);
3458 tty_kref_put(tty);
3461 /* Called under the sighand lock */
3463 static void __proc_set_tty(struct task_struct *tsk, struct tty_struct *tty)
3465 if (tty) {
3466 unsigned long flags;
3467 /* We should not have a session or pgrp to put here but.... */
3468 spin_lock_irqsave(&tty->ctrl_lock, flags);
3469 put_pid(tty->session);
3470 put_pid(tty->pgrp);
3471 tty->pgrp = get_pid(task_pgrp(tsk));
3472 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
3473 tty->session = get_pid(task_session(tsk));
3474 if (tsk->signal->tty) {
3475 printk(KERN_DEBUG "tty not NULL!!\n");
3476 tty_kref_put(tsk->signal->tty);
3479 put_pid(tsk->signal->tty_old_pgrp);
3480 tsk->signal->tty = tty_kref_get(tty);
3481 tsk->signal->tty_old_pgrp = NULL;
3484 static void proc_set_tty(struct task_struct *tsk, struct tty_struct *tty)
3486 spin_lock_irq(&tsk->sighand->siglock);
3487 __proc_set_tty(tsk, tty);
3488 spin_unlock_irq(&tsk->sighand->siglock);
3491 struct tty_struct *get_current_tty(void)
3493 struct tty_struct *tty;
3494 unsigned long flags;
3496 spin_lock_irqsave(&current->sighand->siglock, flags);
3497 tty = tty_kref_get(current->signal->tty);
3498 spin_unlock_irqrestore(&current->sighand->siglock, flags);
3499 return tty;
3501 EXPORT_SYMBOL_GPL(get_current_tty);
3503 void tty_default_fops(struct file_operations *fops)
3505 *fops = tty_fops;
3509 * Initialize the console device. This is called *early*, so
3510 * we can't necessarily depend on lots of kernel help here.
3511 * Just do some early initializations, and do the complex setup
3512 * later.
3514 void __init console_init(void)
3516 initcall_t *call;
3518 /* Setup the default TTY line discipline. */
3519 tty_ldisc_begin();
3522 * set up the console device so that later boot sequences can
3523 * inform about problems etc..
3525 call = __con_initcall_start;
3526 while (call < __con_initcall_end) {
3527 (*call)();
3528 call++;
3532 static char *tty_devnode(struct device *dev, umode_t *mode)
3534 if (!mode)
3535 return NULL;
3536 if (dev->devt == MKDEV(TTYAUX_MAJOR, 0) ||
3537 dev->devt == MKDEV(TTYAUX_MAJOR, 2))
3538 *mode = 0666;
3539 return NULL;
3542 static int __init tty_class_init(void)
3544 tty_class = class_create(THIS_MODULE, "tty");
3545 if (IS_ERR(tty_class))
3546 return PTR_ERR(tty_class);
3547 tty_class->devnode = tty_devnode;
3548 return 0;
3551 postcore_initcall(tty_class_init);
3553 /* 3/2004 jmc: why do these devices exist? */
3554 static struct cdev tty_cdev, console_cdev;
3556 static ssize_t show_cons_active(struct device *dev,
3557 struct device_attribute *attr, char *buf)
3559 struct console *cs[16];
3560 int i = 0;
3561 struct console *c;
3562 ssize_t count = 0;
3564 console_lock();
3565 for_each_console(c) {
3566 if (!c->device)
3567 continue;
3568 if (!c->write)
3569 continue;
3570 if ((c->flags & CON_ENABLED) == 0)
3571 continue;
3572 cs[i++] = c;
3573 if (i >= ARRAY_SIZE(cs))
3574 break;
3576 while (i--) {
3577 int index = cs[i]->index;
3578 struct tty_driver *drv = cs[i]->device(cs[i], &index);
3580 /* don't resolve tty0 as some programs depend on it */
3581 if (drv && (cs[i]->index > 0 || drv->major != TTY_MAJOR))
3582 count += tty_line_name(drv, index, buf + count);
3583 else
3584 count += sprintf(buf + count, "%s%d",
3585 cs[i]->name, cs[i]->index);
3587 count += sprintf(buf + count, "%c", i ? ' ':'\n');
3589 console_unlock();
3591 return count;
3593 static DEVICE_ATTR(active, S_IRUGO, show_cons_active, NULL);
3595 static struct device *consdev;
3597 void console_sysfs_notify(void)
3599 if (consdev)
3600 sysfs_notify(&consdev->kobj, NULL, "active");
3604 * Ok, now we can initialize the rest of the tty devices and can count
3605 * on memory allocations, interrupts etc..
3607 int __init tty_init(void)
3609 cdev_init(&tty_cdev, &tty_fops);
3610 if (cdev_add(&tty_cdev, MKDEV(TTYAUX_MAJOR, 0), 1) ||
3611 register_chrdev_region(MKDEV(TTYAUX_MAJOR, 0), 1, "/dev/tty") < 0)
3612 panic("Couldn't register /dev/tty driver\n");
3613 device_create(tty_class, NULL, MKDEV(TTYAUX_MAJOR, 0), NULL, "tty");
3615 cdev_init(&console_cdev, &console_fops);
3616 if (cdev_add(&console_cdev, MKDEV(TTYAUX_MAJOR, 1), 1) ||
3617 register_chrdev_region(MKDEV(TTYAUX_MAJOR, 1), 1, "/dev/console") < 0)
3618 panic("Couldn't register /dev/console driver\n");
3619 consdev = device_create(tty_class, NULL, MKDEV(TTYAUX_MAJOR, 1), NULL,
3620 "console");
3621 if (IS_ERR(consdev))
3622 consdev = NULL;
3623 else
3624 WARN_ON(device_create_file(consdev, &dev_attr_active) < 0);
3626 #ifdef CONFIG_VT
3627 vty_init(&console_fops);
3628 #endif
3629 return 0;