mfd: wm8350-i2c: Make sure the i2c regmap functions are compiled
[linux/fpc-iii.git] / drivers / usb / host / oxu210hp-hcd.c
blob8fb603f337299f56ea4a92f50d06dc16bf124222
1 /*
2 * Copyright (c) 2008 Rodolfo Giometti <giometti@linux.it>
3 * Copyright (c) 2008 Eurotech S.p.A. <info@eurtech.it>
5 * This code is *strongly* based on EHCI-HCD code by David Brownell since
6 * the chip is a quasi-EHCI compatible.
8 * This program is free software; you can redistribute it and/or modify it
9 * under the terms of the GNU General Public License as published by the
10 * Free Software Foundation; either version 2 of the License, or (at your
11 * option) any later version.
13 * This program is distributed in the hope that it will be useful, but
14 * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
15 * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 * for more details.
18 * You should have received a copy of the GNU General Public License
19 * along with this program; if not, write to the Free Software Foundation,
20 * Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
23 #include <linux/module.h>
24 #include <linux/pci.h>
25 #include <linux/dmapool.h>
26 #include <linux/kernel.h>
27 #include <linux/delay.h>
28 #include <linux/ioport.h>
29 #include <linux/sched.h>
30 #include <linux/slab.h>
31 #include <linux/errno.h>
32 #include <linux/init.h>
33 #include <linux/timer.h>
34 #include <linux/list.h>
35 #include <linux/interrupt.h>
36 #include <linux/usb.h>
37 #include <linux/usb/hcd.h>
38 #include <linux/moduleparam.h>
39 #include <linux/dma-mapping.h>
40 #include <linux/io.h>
42 #include <asm/irq.h>
43 #include <asm/unaligned.h>
45 #include <linux/irq.h>
46 #include <linux/platform_device.h>
48 #include "oxu210hp.h"
50 #define DRIVER_VERSION "0.0.50"
53 * Main defines
56 #define oxu_dbg(oxu, fmt, args...) \
57 dev_dbg(oxu_to_hcd(oxu)->self.controller , fmt , ## args)
58 #define oxu_err(oxu, fmt, args...) \
59 dev_err(oxu_to_hcd(oxu)->self.controller , fmt , ## args)
60 #define oxu_info(oxu, fmt, args...) \
61 dev_info(oxu_to_hcd(oxu)->self.controller , fmt , ## args)
63 static inline struct usb_hcd *oxu_to_hcd(struct oxu_hcd *oxu)
65 return container_of((void *) oxu, struct usb_hcd, hcd_priv);
68 static inline struct oxu_hcd *hcd_to_oxu(struct usb_hcd *hcd)
70 return (struct oxu_hcd *) (hcd->hcd_priv);
74 * Debug stuff
77 #undef OXU_URB_TRACE
78 #undef OXU_VERBOSE_DEBUG
80 #ifdef OXU_VERBOSE_DEBUG
81 #define oxu_vdbg oxu_dbg
82 #else
83 #define oxu_vdbg(oxu, fmt, args...) /* Nop */
84 #endif
86 #ifdef DEBUG
88 static int __attribute__((__unused__))
89 dbg_status_buf(char *buf, unsigned len, const char *label, u32 status)
91 return scnprintf(buf, len, "%s%sstatus %04x%s%s%s%s%s%s%s%s%s%s",
92 label, label[0] ? " " : "", status,
93 (status & STS_ASS) ? " Async" : "",
94 (status & STS_PSS) ? " Periodic" : "",
95 (status & STS_RECL) ? " Recl" : "",
96 (status & STS_HALT) ? " Halt" : "",
97 (status & STS_IAA) ? " IAA" : "",
98 (status & STS_FATAL) ? " FATAL" : "",
99 (status & STS_FLR) ? " FLR" : "",
100 (status & STS_PCD) ? " PCD" : "",
101 (status & STS_ERR) ? " ERR" : "",
102 (status & STS_INT) ? " INT" : ""
106 static int __attribute__((__unused__))
107 dbg_intr_buf(char *buf, unsigned len, const char *label, u32 enable)
109 return scnprintf(buf, len, "%s%sintrenable %02x%s%s%s%s%s%s",
110 label, label[0] ? " " : "", enable,
111 (enable & STS_IAA) ? " IAA" : "",
112 (enable & STS_FATAL) ? " FATAL" : "",
113 (enable & STS_FLR) ? " FLR" : "",
114 (enable & STS_PCD) ? " PCD" : "",
115 (enable & STS_ERR) ? " ERR" : "",
116 (enable & STS_INT) ? " INT" : ""
120 static const char *const fls_strings[] =
121 { "1024", "512", "256", "??" };
123 static int dbg_command_buf(char *buf, unsigned len,
124 const char *label, u32 command)
126 return scnprintf(buf, len,
127 "%s%scommand %06x %s=%d ithresh=%d%s%s%s%s period=%s%s %s",
128 label, label[0] ? " " : "", command,
129 (command & CMD_PARK) ? "park" : "(park)",
130 CMD_PARK_CNT(command),
131 (command >> 16) & 0x3f,
132 (command & CMD_LRESET) ? " LReset" : "",
133 (command & CMD_IAAD) ? " IAAD" : "",
134 (command & CMD_ASE) ? " Async" : "",
135 (command & CMD_PSE) ? " Periodic" : "",
136 fls_strings[(command >> 2) & 0x3],
137 (command & CMD_RESET) ? " Reset" : "",
138 (command & CMD_RUN) ? "RUN" : "HALT"
142 static int dbg_port_buf(char *buf, unsigned len, const char *label,
143 int port, u32 status)
145 char *sig;
147 /* signaling state */
148 switch (status & (3 << 10)) {
149 case 0 << 10:
150 sig = "se0";
151 break;
152 case 1 << 10:
153 sig = "k"; /* low speed */
154 break;
155 case 2 << 10:
156 sig = "j";
157 break;
158 default:
159 sig = "?";
160 break;
163 return scnprintf(buf, len,
164 "%s%sport %d status %06x%s%s sig=%s%s%s%s%s%s%s%s%s%s",
165 label, label[0] ? " " : "", port, status,
166 (status & PORT_POWER) ? " POWER" : "",
167 (status & PORT_OWNER) ? " OWNER" : "",
168 sig,
169 (status & PORT_RESET) ? " RESET" : "",
170 (status & PORT_SUSPEND) ? " SUSPEND" : "",
171 (status & PORT_RESUME) ? " RESUME" : "",
172 (status & PORT_OCC) ? " OCC" : "",
173 (status & PORT_OC) ? " OC" : "",
174 (status & PORT_PEC) ? " PEC" : "",
175 (status & PORT_PE) ? " PE" : "",
176 (status & PORT_CSC) ? " CSC" : "",
177 (status & PORT_CONNECT) ? " CONNECT" : ""
181 #else
183 static inline int __attribute__((__unused__))
184 dbg_status_buf(char *buf, unsigned len, const char *label, u32 status)
185 { return 0; }
187 static inline int __attribute__((__unused__))
188 dbg_command_buf(char *buf, unsigned len, const char *label, u32 command)
189 { return 0; }
191 static inline int __attribute__((__unused__))
192 dbg_intr_buf(char *buf, unsigned len, const char *label, u32 enable)
193 { return 0; }
195 static inline int __attribute__((__unused__))
196 dbg_port_buf(char *buf, unsigned len, const char *label, int port, u32 status)
197 { return 0; }
199 #endif /* DEBUG */
201 /* functions have the "wrong" filename when they're output... */
202 #define dbg_status(oxu, label, status) { \
203 char _buf[80]; \
204 dbg_status_buf(_buf, sizeof _buf, label, status); \
205 oxu_dbg(oxu, "%s\n", _buf); \
208 #define dbg_cmd(oxu, label, command) { \
209 char _buf[80]; \
210 dbg_command_buf(_buf, sizeof _buf, label, command); \
211 oxu_dbg(oxu, "%s\n", _buf); \
214 #define dbg_port(oxu, label, port, status) { \
215 char _buf[80]; \
216 dbg_port_buf(_buf, sizeof _buf, label, port, status); \
217 oxu_dbg(oxu, "%s\n", _buf); \
221 * Module parameters
224 /* Initial IRQ latency: faster than hw default */
225 static int log2_irq_thresh; /* 0 to 6 */
226 module_param(log2_irq_thresh, int, S_IRUGO);
227 MODULE_PARM_DESC(log2_irq_thresh, "log2 IRQ latency, 1-64 microframes");
229 /* Initial park setting: slower than hw default */
230 static unsigned park;
231 module_param(park, uint, S_IRUGO);
232 MODULE_PARM_DESC(park, "park setting; 1-3 back-to-back async packets");
234 /* For flakey hardware, ignore overcurrent indicators */
235 static bool ignore_oc;
236 module_param(ignore_oc, bool, S_IRUGO);
237 MODULE_PARM_DESC(ignore_oc, "ignore bogus hardware overcurrent indications");
240 static void ehci_work(struct oxu_hcd *oxu);
241 static int oxu_hub_control(struct usb_hcd *hcd,
242 u16 typeReq, u16 wValue, u16 wIndex,
243 char *buf, u16 wLength);
246 * Local functions
249 /* Low level read/write registers functions */
250 static inline u32 oxu_readl(void *base, u32 reg)
252 return readl(base + reg);
255 static inline void oxu_writel(void *base, u32 reg, u32 val)
257 writel(val, base + reg);
260 static inline void timer_action_done(struct oxu_hcd *oxu,
261 enum ehci_timer_action action)
263 clear_bit(action, &oxu->actions);
266 static inline void timer_action(struct oxu_hcd *oxu,
267 enum ehci_timer_action action)
269 if (!test_and_set_bit(action, &oxu->actions)) {
270 unsigned long t;
272 switch (action) {
273 case TIMER_IAA_WATCHDOG:
274 t = EHCI_IAA_JIFFIES;
275 break;
276 case TIMER_IO_WATCHDOG:
277 t = EHCI_IO_JIFFIES;
278 break;
279 case TIMER_ASYNC_OFF:
280 t = EHCI_ASYNC_JIFFIES;
281 break;
282 case TIMER_ASYNC_SHRINK:
283 default:
284 t = EHCI_SHRINK_JIFFIES;
285 break;
287 t += jiffies;
288 /* all timings except IAA watchdog can be overridden.
289 * async queue SHRINK often precedes IAA. while it's ready
290 * to go OFF neither can matter, and afterwards the IO
291 * watchdog stops unless there's still periodic traffic.
293 if (action != TIMER_IAA_WATCHDOG
294 && t > oxu->watchdog.expires
295 && timer_pending(&oxu->watchdog))
296 return;
297 mod_timer(&oxu->watchdog, t);
302 * handshake - spin reading hc until handshake completes or fails
303 * @ptr: address of hc register to be read
304 * @mask: bits to look at in result of read
305 * @done: value of those bits when handshake succeeds
306 * @usec: timeout in microseconds
308 * Returns negative errno, or zero on success
310 * Success happens when the "mask" bits have the specified value (hardware
311 * handshake done). There are two failure modes: "usec" have passed (major
312 * hardware flakeout), or the register reads as all-ones (hardware removed).
314 * That last failure should_only happen in cases like physical cardbus eject
315 * before driver shutdown. But it also seems to be caused by bugs in cardbus
316 * bridge shutdown: shutting down the bridge before the devices using it.
318 static int handshake(struct oxu_hcd *oxu, void __iomem *ptr,
319 u32 mask, u32 done, int usec)
321 u32 result;
323 do {
324 result = readl(ptr);
325 if (result == ~(u32)0) /* card removed */
326 return -ENODEV;
327 result &= mask;
328 if (result == done)
329 return 0;
330 udelay(1);
331 usec--;
332 } while (usec > 0);
333 return -ETIMEDOUT;
336 /* Force HC to halt state from unknown (EHCI spec section 2.3) */
337 static int ehci_halt(struct oxu_hcd *oxu)
339 u32 temp = readl(&oxu->regs->status);
341 /* disable any irqs left enabled by previous code */
342 writel(0, &oxu->regs->intr_enable);
344 if ((temp & STS_HALT) != 0)
345 return 0;
347 temp = readl(&oxu->regs->command);
348 temp &= ~CMD_RUN;
349 writel(temp, &oxu->regs->command);
350 return handshake(oxu, &oxu->regs->status,
351 STS_HALT, STS_HALT, 16 * 125);
354 /* Put TDI/ARC silicon into EHCI mode */
355 static void tdi_reset(struct oxu_hcd *oxu)
357 u32 __iomem *reg_ptr;
358 u32 tmp;
360 reg_ptr = (u32 __iomem *)(((u8 __iomem *)oxu->regs) + 0x68);
361 tmp = readl(reg_ptr);
362 tmp |= 0x3;
363 writel(tmp, reg_ptr);
366 /* Reset a non-running (STS_HALT == 1) controller */
367 static int ehci_reset(struct oxu_hcd *oxu)
369 int retval;
370 u32 command = readl(&oxu->regs->command);
372 command |= CMD_RESET;
373 dbg_cmd(oxu, "reset", command);
374 writel(command, &oxu->regs->command);
375 oxu_to_hcd(oxu)->state = HC_STATE_HALT;
376 oxu->next_statechange = jiffies;
377 retval = handshake(oxu, &oxu->regs->command,
378 CMD_RESET, 0, 250 * 1000);
380 if (retval)
381 return retval;
383 tdi_reset(oxu);
385 return retval;
388 /* Idle the controller (from running) */
389 static void ehci_quiesce(struct oxu_hcd *oxu)
391 u32 temp;
393 #ifdef DEBUG
394 if (!HC_IS_RUNNING(oxu_to_hcd(oxu)->state))
395 BUG();
396 #endif
398 /* wait for any schedule enables/disables to take effect */
399 temp = readl(&oxu->regs->command) << 10;
400 temp &= STS_ASS | STS_PSS;
401 if (handshake(oxu, &oxu->regs->status, STS_ASS | STS_PSS,
402 temp, 16 * 125) != 0) {
403 oxu_to_hcd(oxu)->state = HC_STATE_HALT;
404 return;
407 /* then disable anything that's still active */
408 temp = readl(&oxu->regs->command);
409 temp &= ~(CMD_ASE | CMD_IAAD | CMD_PSE);
410 writel(temp, &oxu->regs->command);
412 /* hardware can take 16 microframes to turn off ... */
413 if (handshake(oxu, &oxu->regs->status, STS_ASS | STS_PSS,
414 0, 16 * 125) != 0) {
415 oxu_to_hcd(oxu)->state = HC_STATE_HALT;
416 return;
420 static int check_reset_complete(struct oxu_hcd *oxu, int index,
421 u32 __iomem *status_reg, int port_status)
423 if (!(port_status & PORT_CONNECT)) {
424 oxu->reset_done[index] = 0;
425 return port_status;
428 /* if reset finished and it's still not enabled -- handoff */
429 if (!(port_status & PORT_PE)) {
430 oxu_dbg(oxu, "Failed to enable port %d on root hub TT\n",
431 index+1);
432 return port_status;
433 } else
434 oxu_dbg(oxu, "port %d high speed\n", index + 1);
436 return port_status;
439 static void ehci_hub_descriptor(struct oxu_hcd *oxu,
440 struct usb_hub_descriptor *desc)
442 int ports = HCS_N_PORTS(oxu->hcs_params);
443 u16 temp;
445 desc->bDescriptorType = 0x29;
446 desc->bPwrOn2PwrGood = 10; /* oxu 1.0, 2.3.9 says 20ms max */
447 desc->bHubContrCurrent = 0;
449 desc->bNbrPorts = ports;
450 temp = 1 + (ports / 8);
451 desc->bDescLength = 7 + 2 * temp;
453 /* ports removable, and usb 1.0 legacy PortPwrCtrlMask */
454 memset(&desc->u.hs.DeviceRemovable[0], 0, temp);
455 memset(&desc->u.hs.DeviceRemovable[temp], 0xff, temp);
457 temp = 0x0008; /* per-port overcurrent reporting */
458 if (HCS_PPC(oxu->hcs_params))
459 temp |= 0x0001; /* per-port power control */
460 else
461 temp |= 0x0002; /* no power switching */
462 desc->wHubCharacteristics = (__force __u16)cpu_to_le16(temp);
466 /* Allocate an OXU210HP on-chip memory data buffer
468 * An on-chip memory data buffer is required for each OXU210HP USB transfer.
469 * Each transfer descriptor has one or more on-chip memory data buffers.
471 * Data buffers are allocated from a fix sized pool of data blocks.
472 * To minimise fragmentation and give reasonable memory utlisation,
473 * data buffers are allocated with sizes the power of 2 multiples of
474 * the block size, starting on an address a multiple of the allocated size.
476 * FIXME: callers of this function require a buffer to be allocated for
477 * len=0. This is a waste of on-chip memory and should be fix. Then this
478 * function should be changed to not allocate a buffer for len=0.
480 static int oxu_buf_alloc(struct oxu_hcd *oxu, struct ehci_qtd *qtd, int len)
482 int n_blocks; /* minium blocks needed to hold len */
483 int a_blocks; /* blocks allocated */
484 int i, j;
486 /* Don't allocte bigger than supported */
487 if (len > BUFFER_SIZE * BUFFER_NUM) {
488 oxu_err(oxu, "buffer too big (%d)\n", len);
489 return -ENOMEM;
492 spin_lock(&oxu->mem_lock);
494 /* Number of blocks needed to hold len */
495 n_blocks = (len + BUFFER_SIZE - 1) / BUFFER_SIZE;
497 /* Round the number of blocks up to the power of 2 */
498 for (a_blocks = 1; a_blocks < n_blocks; a_blocks <<= 1)
501 /* Find a suitable available data buffer */
502 for (i = 0; i < BUFFER_NUM;
503 i += max(a_blocks, (int)oxu->db_used[i])) {
505 /* Check all the required blocks are available */
506 for (j = 0; j < a_blocks; j++)
507 if (oxu->db_used[i + j])
508 break;
510 if (j != a_blocks)
511 continue;
513 /* Allocate blocks found! */
514 qtd->buffer = (void *) &oxu->mem->db_pool[i];
515 qtd->buffer_dma = virt_to_phys(qtd->buffer);
517 qtd->qtd_buffer_len = BUFFER_SIZE * a_blocks;
518 oxu->db_used[i] = a_blocks;
520 spin_unlock(&oxu->mem_lock);
522 return 0;
525 /* Failed */
527 spin_unlock(&oxu->mem_lock);
529 return -ENOMEM;
532 static void oxu_buf_free(struct oxu_hcd *oxu, struct ehci_qtd *qtd)
534 int index;
536 spin_lock(&oxu->mem_lock);
538 index = (qtd->buffer - (void *) &oxu->mem->db_pool[0])
539 / BUFFER_SIZE;
540 oxu->db_used[index] = 0;
541 qtd->qtd_buffer_len = 0;
542 qtd->buffer_dma = 0;
543 qtd->buffer = NULL;
545 spin_unlock(&oxu->mem_lock);
548 static inline void ehci_qtd_init(struct ehci_qtd *qtd, dma_addr_t dma)
550 memset(qtd, 0, sizeof *qtd);
551 qtd->qtd_dma = dma;
552 qtd->hw_token = cpu_to_le32(QTD_STS_HALT);
553 qtd->hw_next = EHCI_LIST_END;
554 qtd->hw_alt_next = EHCI_LIST_END;
555 INIT_LIST_HEAD(&qtd->qtd_list);
558 static inline void oxu_qtd_free(struct oxu_hcd *oxu, struct ehci_qtd *qtd)
560 int index;
562 if (qtd->buffer)
563 oxu_buf_free(oxu, qtd);
565 spin_lock(&oxu->mem_lock);
567 index = qtd - &oxu->mem->qtd_pool[0];
568 oxu->qtd_used[index] = 0;
570 spin_unlock(&oxu->mem_lock);
573 static struct ehci_qtd *ehci_qtd_alloc(struct oxu_hcd *oxu)
575 int i;
576 struct ehci_qtd *qtd = NULL;
578 spin_lock(&oxu->mem_lock);
580 for (i = 0; i < QTD_NUM; i++)
581 if (!oxu->qtd_used[i])
582 break;
584 if (i < QTD_NUM) {
585 qtd = (struct ehci_qtd *) &oxu->mem->qtd_pool[i];
586 memset(qtd, 0, sizeof *qtd);
588 qtd->hw_token = cpu_to_le32(QTD_STS_HALT);
589 qtd->hw_next = EHCI_LIST_END;
590 qtd->hw_alt_next = EHCI_LIST_END;
591 INIT_LIST_HEAD(&qtd->qtd_list);
593 qtd->qtd_dma = virt_to_phys(qtd);
595 oxu->qtd_used[i] = 1;
598 spin_unlock(&oxu->mem_lock);
600 return qtd;
603 static void oxu_qh_free(struct oxu_hcd *oxu, struct ehci_qh *qh)
605 int index;
607 spin_lock(&oxu->mem_lock);
609 index = qh - &oxu->mem->qh_pool[0];
610 oxu->qh_used[index] = 0;
612 spin_unlock(&oxu->mem_lock);
615 static void qh_destroy(struct kref *kref)
617 struct ehci_qh *qh = container_of(kref, struct ehci_qh, kref);
618 struct oxu_hcd *oxu = qh->oxu;
620 /* clean qtds first, and know this is not linked */
621 if (!list_empty(&qh->qtd_list) || qh->qh_next.ptr) {
622 oxu_dbg(oxu, "unused qh not empty!\n");
623 BUG();
625 if (qh->dummy)
626 oxu_qtd_free(oxu, qh->dummy);
627 oxu_qh_free(oxu, qh);
630 static struct ehci_qh *oxu_qh_alloc(struct oxu_hcd *oxu)
632 int i;
633 struct ehci_qh *qh = NULL;
635 spin_lock(&oxu->mem_lock);
637 for (i = 0; i < QHEAD_NUM; i++)
638 if (!oxu->qh_used[i])
639 break;
641 if (i < QHEAD_NUM) {
642 qh = (struct ehci_qh *) &oxu->mem->qh_pool[i];
643 memset(qh, 0, sizeof *qh);
645 kref_init(&qh->kref);
646 qh->oxu = oxu;
647 qh->qh_dma = virt_to_phys(qh);
648 INIT_LIST_HEAD(&qh->qtd_list);
650 /* dummy td enables safe urb queuing */
651 qh->dummy = ehci_qtd_alloc(oxu);
652 if (qh->dummy == NULL) {
653 oxu_dbg(oxu, "no dummy td\n");
654 oxu->qh_used[i] = 0;
655 qh = NULL;
656 goto unlock;
659 oxu->qh_used[i] = 1;
661 unlock:
662 spin_unlock(&oxu->mem_lock);
664 return qh;
667 /* to share a qh (cpu threads, or hc) */
668 static inline struct ehci_qh *qh_get(struct ehci_qh *qh)
670 kref_get(&qh->kref);
671 return qh;
674 static inline void qh_put(struct ehci_qh *qh)
676 kref_put(&qh->kref, qh_destroy);
679 static void oxu_murb_free(struct oxu_hcd *oxu, struct oxu_murb *murb)
681 int index;
683 spin_lock(&oxu->mem_lock);
685 index = murb - &oxu->murb_pool[0];
686 oxu->murb_used[index] = 0;
688 spin_unlock(&oxu->mem_lock);
691 static struct oxu_murb *oxu_murb_alloc(struct oxu_hcd *oxu)
694 int i;
695 struct oxu_murb *murb = NULL;
697 spin_lock(&oxu->mem_lock);
699 for (i = 0; i < MURB_NUM; i++)
700 if (!oxu->murb_used[i])
701 break;
703 if (i < MURB_NUM) {
704 murb = &(oxu->murb_pool)[i];
706 oxu->murb_used[i] = 1;
709 spin_unlock(&oxu->mem_lock);
711 return murb;
714 /* The queue heads and transfer descriptors are managed from pools tied
715 * to each of the "per device" structures.
716 * This is the initialisation and cleanup code.
718 static void ehci_mem_cleanup(struct oxu_hcd *oxu)
720 kfree(oxu->murb_pool);
721 oxu->murb_pool = NULL;
723 if (oxu->async)
724 qh_put(oxu->async);
725 oxu->async = NULL;
727 del_timer(&oxu->urb_timer);
729 oxu->periodic = NULL;
731 /* shadow periodic table */
732 kfree(oxu->pshadow);
733 oxu->pshadow = NULL;
736 /* Remember to add cleanup code (above) if you add anything here.
738 static int ehci_mem_init(struct oxu_hcd *oxu, gfp_t flags)
740 int i;
742 for (i = 0; i < oxu->periodic_size; i++)
743 oxu->mem->frame_list[i] = EHCI_LIST_END;
744 for (i = 0; i < QHEAD_NUM; i++)
745 oxu->qh_used[i] = 0;
746 for (i = 0; i < QTD_NUM; i++)
747 oxu->qtd_used[i] = 0;
749 oxu->murb_pool = kcalloc(MURB_NUM, sizeof(struct oxu_murb), flags);
750 if (!oxu->murb_pool)
751 goto fail;
753 for (i = 0; i < MURB_NUM; i++)
754 oxu->murb_used[i] = 0;
756 oxu->async = oxu_qh_alloc(oxu);
757 if (!oxu->async)
758 goto fail;
760 oxu->periodic = (__le32 *) &oxu->mem->frame_list;
761 oxu->periodic_dma = virt_to_phys(oxu->periodic);
763 for (i = 0; i < oxu->periodic_size; i++)
764 oxu->periodic[i] = EHCI_LIST_END;
766 /* software shadow of hardware table */
767 oxu->pshadow = kcalloc(oxu->periodic_size, sizeof(void *), flags);
768 if (oxu->pshadow != NULL)
769 return 0;
771 fail:
772 oxu_dbg(oxu, "couldn't init memory\n");
773 ehci_mem_cleanup(oxu);
774 return -ENOMEM;
777 /* Fill a qtd, returning how much of the buffer we were able to queue up.
779 static int qtd_fill(struct ehci_qtd *qtd, dma_addr_t buf, size_t len,
780 int token, int maxpacket)
782 int i, count;
783 u64 addr = buf;
785 /* one buffer entry per 4K ... first might be short or unaligned */
786 qtd->hw_buf[0] = cpu_to_le32((u32)addr);
787 qtd->hw_buf_hi[0] = cpu_to_le32((u32)(addr >> 32));
788 count = 0x1000 - (buf & 0x0fff); /* rest of that page */
789 if (likely(len < count)) /* ... iff needed */
790 count = len;
791 else {
792 buf += 0x1000;
793 buf &= ~0x0fff;
795 /* per-qtd limit: from 16K to 20K (best alignment) */
796 for (i = 1; count < len && i < 5; i++) {
797 addr = buf;
798 qtd->hw_buf[i] = cpu_to_le32((u32)addr);
799 qtd->hw_buf_hi[i] = cpu_to_le32((u32)(addr >> 32));
800 buf += 0x1000;
801 if ((count + 0x1000) < len)
802 count += 0x1000;
803 else
804 count = len;
807 /* short packets may only terminate transfers */
808 if (count != len)
809 count -= (count % maxpacket);
811 qtd->hw_token = cpu_to_le32((count << 16) | token);
812 qtd->length = count;
814 return count;
817 static inline void qh_update(struct oxu_hcd *oxu,
818 struct ehci_qh *qh, struct ehci_qtd *qtd)
820 /* writes to an active overlay are unsafe */
821 BUG_ON(qh->qh_state != QH_STATE_IDLE);
823 qh->hw_qtd_next = QTD_NEXT(qtd->qtd_dma);
824 qh->hw_alt_next = EHCI_LIST_END;
826 /* Except for control endpoints, we make hardware maintain data
827 * toggle (like OHCI) ... here (re)initialize the toggle in the QH,
828 * and set the pseudo-toggle in udev. Only usb_clear_halt() will
829 * ever clear it.
831 if (!(qh->hw_info1 & cpu_to_le32(1 << 14))) {
832 unsigned is_out, epnum;
834 is_out = !(qtd->hw_token & cpu_to_le32(1 << 8));
835 epnum = (le32_to_cpup(&qh->hw_info1) >> 8) & 0x0f;
836 if (unlikely(!usb_gettoggle(qh->dev, epnum, is_out))) {
837 qh->hw_token &= ~cpu_to_le32(QTD_TOGGLE);
838 usb_settoggle(qh->dev, epnum, is_out, 1);
842 /* HC must see latest qtd and qh data before we clear ACTIVE+HALT */
843 wmb();
844 qh->hw_token &= cpu_to_le32(QTD_TOGGLE | QTD_STS_PING);
847 /* If it weren't for a common silicon quirk (writing the dummy into the qh
848 * overlay, so qh->hw_token wrongly becomes inactive/halted), only fault
849 * recovery (including urb dequeue) would need software changes to a QH...
851 static void qh_refresh(struct oxu_hcd *oxu, struct ehci_qh *qh)
853 struct ehci_qtd *qtd;
855 if (list_empty(&qh->qtd_list))
856 qtd = qh->dummy;
857 else {
858 qtd = list_entry(qh->qtd_list.next,
859 struct ehci_qtd, qtd_list);
860 /* first qtd may already be partially processed */
861 if (cpu_to_le32(qtd->qtd_dma) == qh->hw_current)
862 qtd = NULL;
865 if (qtd)
866 qh_update(oxu, qh, qtd);
869 static void qtd_copy_status(struct oxu_hcd *oxu, struct urb *urb,
870 size_t length, u32 token)
872 /* count IN/OUT bytes, not SETUP (even short packets) */
873 if (likely(QTD_PID(token) != 2))
874 urb->actual_length += length - QTD_LENGTH(token);
876 /* don't modify error codes */
877 if (unlikely(urb->status != -EINPROGRESS))
878 return;
880 /* force cleanup after short read; not always an error */
881 if (unlikely(IS_SHORT_READ(token)))
882 urb->status = -EREMOTEIO;
884 /* serious "can't proceed" faults reported by the hardware */
885 if (token & QTD_STS_HALT) {
886 if (token & QTD_STS_BABBLE) {
887 /* FIXME "must" disable babbling device's port too */
888 urb->status = -EOVERFLOW;
889 } else if (token & QTD_STS_MMF) {
890 /* fs/ls interrupt xfer missed the complete-split */
891 urb->status = -EPROTO;
892 } else if (token & QTD_STS_DBE) {
893 urb->status = (QTD_PID(token) == 1) /* IN ? */
894 ? -ENOSR /* hc couldn't read data */
895 : -ECOMM; /* hc couldn't write data */
896 } else if (token & QTD_STS_XACT) {
897 /* timeout, bad crc, wrong PID, etc; retried */
898 if (QTD_CERR(token))
899 urb->status = -EPIPE;
900 else {
901 oxu_dbg(oxu, "devpath %s ep%d%s 3strikes\n",
902 urb->dev->devpath,
903 usb_pipeendpoint(urb->pipe),
904 usb_pipein(urb->pipe) ? "in" : "out");
905 urb->status = -EPROTO;
907 /* CERR nonzero + no errors + halt --> stall */
908 } else if (QTD_CERR(token))
909 urb->status = -EPIPE;
910 else /* unknown */
911 urb->status = -EPROTO;
913 oxu_vdbg(oxu, "dev%d ep%d%s qtd token %08x --> status %d\n",
914 usb_pipedevice(urb->pipe),
915 usb_pipeendpoint(urb->pipe),
916 usb_pipein(urb->pipe) ? "in" : "out",
917 token, urb->status);
921 static void ehci_urb_done(struct oxu_hcd *oxu, struct urb *urb)
922 __releases(oxu->lock)
923 __acquires(oxu->lock)
925 if (likely(urb->hcpriv != NULL)) {
926 struct ehci_qh *qh = (struct ehci_qh *) urb->hcpriv;
928 /* S-mask in a QH means it's an interrupt urb */
929 if ((qh->hw_info2 & cpu_to_le32(QH_SMASK)) != 0) {
931 /* ... update hc-wide periodic stats (for usbfs) */
932 oxu_to_hcd(oxu)->self.bandwidth_int_reqs--;
934 qh_put(qh);
937 urb->hcpriv = NULL;
938 switch (urb->status) {
939 case -EINPROGRESS: /* success */
940 urb->status = 0;
941 default: /* fault */
942 break;
943 case -EREMOTEIO: /* fault or normal */
944 if (!(urb->transfer_flags & URB_SHORT_NOT_OK))
945 urb->status = 0;
946 break;
947 case -ECONNRESET: /* canceled */
948 case -ENOENT:
949 break;
952 #ifdef OXU_URB_TRACE
953 oxu_dbg(oxu, "%s %s urb %p ep%d%s status %d len %d/%d\n",
954 __func__, urb->dev->devpath, urb,
955 usb_pipeendpoint(urb->pipe),
956 usb_pipein(urb->pipe) ? "in" : "out",
957 urb->status,
958 urb->actual_length, urb->transfer_buffer_length);
959 #endif
961 /* complete() can reenter this HCD */
962 spin_unlock(&oxu->lock);
963 usb_hcd_giveback_urb(oxu_to_hcd(oxu), urb, urb->status);
964 spin_lock(&oxu->lock);
967 static void start_unlink_async(struct oxu_hcd *oxu, struct ehci_qh *qh);
968 static void unlink_async(struct oxu_hcd *oxu, struct ehci_qh *qh);
970 static void intr_deschedule(struct oxu_hcd *oxu, struct ehci_qh *qh);
971 static int qh_schedule(struct oxu_hcd *oxu, struct ehci_qh *qh);
973 #define HALT_BIT cpu_to_le32(QTD_STS_HALT)
975 /* Process and free completed qtds for a qh, returning URBs to drivers.
976 * Chases up to qh->hw_current. Returns number of completions called,
977 * indicating how much "real" work we did.
979 static unsigned qh_completions(struct oxu_hcd *oxu, struct ehci_qh *qh)
981 struct ehci_qtd *last = NULL, *end = qh->dummy;
982 struct list_head *entry, *tmp;
983 int stopped;
984 unsigned count = 0;
985 int do_status = 0;
986 u8 state;
987 struct oxu_murb *murb = NULL;
989 if (unlikely(list_empty(&qh->qtd_list)))
990 return count;
992 /* completions (or tasks on other cpus) must never clobber HALT
993 * till we've gone through and cleaned everything up, even when
994 * they add urbs to this qh's queue or mark them for unlinking.
996 * NOTE: unlinking expects to be done in queue order.
998 state = qh->qh_state;
999 qh->qh_state = QH_STATE_COMPLETING;
1000 stopped = (state == QH_STATE_IDLE);
1002 /* remove de-activated QTDs from front of queue.
1003 * after faults (including short reads), cleanup this urb
1004 * then let the queue advance.
1005 * if queue is stopped, handles unlinks.
1007 list_for_each_safe(entry, tmp, &qh->qtd_list) {
1008 struct ehci_qtd *qtd;
1009 struct urb *urb;
1010 u32 token = 0;
1012 qtd = list_entry(entry, struct ehci_qtd, qtd_list);
1013 urb = qtd->urb;
1015 /* Clean up any state from previous QTD ...*/
1016 if (last) {
1017 if (likely(last->urb != urb)) {
1018 if (last->urb->complete == NULL) {
1019 murb = (struct oxu_murb *) last->urb;
1020 last->urb = murb->main;
1021 if (murb->last) {
1022 ehci_urb_done(oxu, last->urb);
1023 count++;
1025 oxu_murb_free(oxu, murb);
1026 } else {
1027 ehci_urb_done(oxu, last->urb);
1028 count++;
1031 oxu_qtd_free(oxu, last);
1032 last = NULL;
1035 /* ignore urbs submitted during completions we reported */
1036 if (qtd == end)
1037 break;
1039 /* hardware copies qtd out of qh overlay */
1040 rmb();
1041 token = le32_to_cpu(qtd->hw_token);
1043 /* always clean up qtds the hc de-activated */
1044 if ((token & QTD_STS_ACTIVE) == 0) {
1046 if ((token & QTD_STS_HALT) != 0) {
1047 stopped = 1;
1049 /* magic dummy for some short reads; qh won't advance.
1050 * that silicon quirk can kick in with this dummy too.
1052 } else if (IS_SHORT_READ(token) &&
1053 !(qtd->hw_alt_next & EHCI_LIST_END)) {
1054 stopped = 1;
1055 goto halt;
1058 /* stop scanning when we reach qtds the hc is using */
1059 } else if (likely(!stopped &&
1060 HC_IS_RUNNING(oxu_to_hcd(oxu)->state))) {
1061 break;
1063 } else {
1064 stopped = 1;
1066 if (unlikely(!HC_IS_RUNNING(oxu_to_hcd(oxu)->state)))
1067 urb->status = -ESHUTDOWN;
1069 /* ignore active urbs unless some previous qtd
1070 * for the urb faulted (including short read) or
1071 * its urb was canceled. we may patch qh or qtds.
1073 if (likely(urb->status == -EINPROGRESS))
1074 continue;
1076 /* issue status after short control reads */
1077 if (unlikely(do_status != 0)
1078 && QTD_PID(token) == 0 /* OUT */) {
1079 do_status = 0;
1080 continue;
1083 /* token in overlay may be most current */
1084 if (state == QH_STATE_IDLE
1085 && cpu_to_le32(qtd->qtd_dma)
1086 == qh->hw_current)
1087 token = le32_to_cpu(qh->hw_token);
1089 /* force halt for unlinked or blocked qh, so we'll
1090 * patch the qh later and so that completions can't
1091 * activate it while we "know" it's stopped.
1093 if ((HALT_BIT & qh->hw_token) == 0) {
1094 halt:
1095 qh->hw_token |= HALT_BIT;
1096 wmb();
1100 /* Remove it from the queue */
1101 qtd_copy_status(oxu, urb->complete ?
1102 urb : ((struct oxu_murb *) urb)->main,
1103 qtd->length, token);
1104 if ((usb_pipein(qtd->urb->pipe)) &&
1105 (NULL != qtd->transfer_buffer))
1106 memcpy(qtd->transfer_buffer, qtd->buffer, qtd->length);
1107 do_status = (urb->status == -EREMOTEIO)
1108 && usb_pipecontrol(urb->pipe);
1110 if (stopped && qtd->qtd_list.prev != &qh->qtd_list) {
1111 last = list_entry(qtd->qtd_list.prev,
1112 struct ehci_qtd, qtd_list);
1113 last->hw_next = qtd->hw_next;
1115 list_del(&qtd->qtd_list);
1116 last = qtd;
1119 /* last urb's completion might still need calling */
1120 if (likely(last != NULL)) {
1121 if (last->urb->complete == NULL) {
1122 murb = (struct oxu_murb *) last->urb;
1123 last->urb = murb->main;
1124 if (murb->last) {
1125 ehci_urb_done(oxu, last->urb);
1126 count++;
1128 oxu_murb_free(oxu, murb);
1129 } else {
1130 ehci_urb_done(oxu, last->urb);
1131 count++;
1133 oxu_qtd_free(oxu, last);
1136 /* restore original state; caller must unlink or relink */
1137 qh->qh_state = state;
1139 /* be sure the hardware's done with the qh before refreshing
1140 * it after fault cleanup, or recovering from silicon wrongly
1141 * overlaying the dummy qtd (which reduces DMA chatter).
1143 if (stopped != 0 || qh->hw_qtd_next == EHCI_LIST_END) {
1144 switch (state) {
1145 case QH_STATE_IDLE:
1146 qh_refresh(oxu, qh);
1147 break;
1148 case QH_STATE_LINKED:
1149 /* should be rare for periodic transfers,
1150 * except maybe high bandwidth ...
1152 if ((cpu_to_le32(QH_SMASK)
1153 & qh->hw_info2) != 0) {
1154 intr_deschedule(oxu, qh);
1155 (void) qh_schedule(oxu, qh);
1156 } else
1157 unlink_async(oxu, qh);
1158 break;
1159 /* otherwise, unlink already started */
1163 return count;
1166 /* High bandwidth multiplier, as encoded in highspeed endpoint descriptors */
1167 #define hb_mult(wMaxPacketSize) (1 + (((wMaxPacketSize) >> 11) & 0x03))
1168 /* ... and packet size, for any kind of endpoint descriptor */
1169 #define max_packet(wMaxPacketSize) ((wMaxPacketSize) & 0x07ff)
1171 /* Reverse of qh_urb_transaction: free a list of TDs.
1172 * used for cleanup after errors, before HC sees an URB's TDs.
1174 static void qtd_list_free(struct oxu_hcd *oxu,
1175 struct urb *urb, struct list_head *qtd_list)
1177 struct list_head *entry, *temp;
1179 list_for_each_safe(entry, temp, qtd_list) {
1180 struct ehci_qtd *qtd;
1182 qtd = list_entry(entry, struct ehci_qtd, qtd_list);
1183 list_del(&qtd->qtd_list);
1184 oxu_qtd_free(oxu, qtd);
1188 /* Create a list of filled qtds for this URB; won't link into qh.
1190 static struct list_head *qh_urb_transaction(struct oxu_hcd *oxu,
1191 struct urb *urb,
1192 struct list_head *head,
1193 gfp_t flags)
1195 struct ehci_qtd *qtd, *qtd_prev;
1196 dma_addr_t buf;
1197 int len, maxpacket;
1198 int is_input;
1199 u32 token;
1200 void *transfer_buf = NULL;
1201 int ret;
1204 * URBs map to sequences of QTDs: one logical transaction
1206 qtd = ehci_qtd_alloc(oxu);
1207 if (unlikely(!qtd))
1208 return NULL;
1209 list_add_tail(&qtd->qtd_list, head);
1210 qtd->urb = urb;
1212 token = QTD_STS_ACTIVE;
1213 token |= (EHCI_TUNE_CERR << 10);
1214 /* for split transactions, SplitXState initialized to zero */
1216 len = urb->transfer_buffer_length;
1217 is_input = usb_pipein(urb->pipe);
1218 if (!urb->transfer_buffer && urb->transfer_buffer_length && is_input)
1219 urb->transfer_buffer = phys_to_virt(urb->transfer_dma);
1221 if (usb_pipecontrol(urb->pipe)) {
1222 /* SETUP pid */
1223 ret = oxu_buf_alloc(oxu, qtd, sizeof(struct usb_ctrlrequest));
1224 if (ret)
1225 goto cleanup;
1227 qtd_fill(qtd, qtd->buffer_dma, sizeof(struct usb_ctrlrequest),
1228 token | (2 /* "setup" */ << 8), 8);
1229 memcpy(qtd->buffer, qtd->urb->setup_packet,
1230 sizeof(struct usb_ctrlrequest));
1232 /* ... and always at least one more pid */
1233 token ^= QTD_TOGGLE;
1234 qtd_prev = qtd;
1235 qtd = ehci_qtd_alloc(oxu);
1236 if (unlikely(!qtd))
1237 goto cleanup;
1238 qtd->urb = urb;
1239 qtd_prev->hw_next = QTD_NEXT(qtd->qtd_dma);
1240 list_add_tail(&qtd->qtd_list, head);
1242 /* for zero length DATA stages, STATUS is always IN */
1243 if (len == 0)
1244 token |= (1 /* "in" */ << 8);
1248 * Data transfer stage: buffer setup
1251 ret = oxu_buf_alloc(oxu, qtd, len);
1252 if (ret)
1253 goto cleanup;
1255 buf = qtd->buffer_dma;
1256 transfer_buf = urb->transfer_buffer;
1258 if (!is_input)
1259 memcpy(qtd->buffer, qtd->urb->transfer_buffer, len);
1261 if (is_input)
1262 token |= (1 /* "in" */ << 8);
1263 /* else it's already initted to "out" pid (0 << 8) */
1265 maxpacket = max_packet(usb_maxpacket(urb->dev, urb->pipe, !is_input));
1268 * buffer gets wrapped in one or more qtds;
1269 * last one may be "short" (including zero len)
1270 * and may serve as a control status ack
1272 for (;;) {
1273 int this_qtd_len;
1275 this_qtd_len = qtd_fill(qtd, buf, len, token, maxpacket);
1276 qtd->transfer_buffer = transfer_buf;
1277 len -= this_qtd_len;
1278 buf += this_qtd_len;
1279 transfer_buf += this_qtd_len;
1280 if (is_input)
1281 qtd->hw_alt_next = oxu->async->hw_alt_next;
1283 /* qh makes control packets use qtd toggle; maybe switch it */
1284 if ((maxpacket & (this_qtd_len + (maxpacket - 1))) == 0)
1285 token ^= QTD_TOGGLE;
1287 if (likely(len <= 0))
1288 break;
1290 qtd_prev = qtd;
1291 qtd = ehci_qtd_alloc(oxu);
1292 if (unlikely(!qtd))
1293 goto cleanup;
1294 if (likely(len > 0)) {
1295 ret = oxu_buf_alloc(oxu, qtd, len);
1296 if (ret)
1297 goto cleanup;
1299 qtd->urb = urb;
1300 qtd_prev->hw_next = QTD_NEXT(qtd->qtd_dma);
1301 list_add_tail(&qtd->qtd_list, head);
1304 /* unless the bulk/interrupt caller wants a chance to clean
1305 * up after short reads, hc should advance qh past this urb
1307 if (likely((urb->transfer_flags & URB_SHORT_NOT_OK) == 0
1308 || usb_pipecontrol(urb->pipe)))
1309 qtd->hw_alt_next = EHCI_LIST_END;
1312 * control requests may need a terminating data "status" ack;
1313 * bulk ones may need a terminating short packet (zero length).
1315 if (likely(urb->transfer_buffer_length != 0)) {
1316 int one_more = 0;
1318 if (usb_pipecontrol(urb->pipe)) {
1319 one_more = 1;
1320 token ^= 0x0100; /* "in" <--> "out" */
1321 token |= QTD_TOGGLE; /* force DATA1 */
1322 } else if (usb_pipebulk(urb->pipe)
1323 && (urb->transfer_flags & URB_ZERO_PACKET)
1324 && !(urb->transfer_buffer_length % maxpacket)) {
1325 one_more = 1;
1327 if (one_more) {
1328 qtd_prev = qtd;
1329 qtd = ehci_qtd_alloc(oxu);
1330 if (unlikely(!qtd))
1331 goto cleanup;
1332 qtd->urb = urb;
1333 qtd_prev->hw_next = QTD_NEXT(qtd->qtd_dma);
1334 list_add_tail(&qtd->qtd_list, head);
1336 /* never any data in such packets */
1337 qtd_fill(qtd, 0, 0, token, 0);
1341 /* by default, enable interrupt on urb completion */
1342 qtd->hw_token |= cpu_to_le32(QTD_IOC);
1343 return head;
1345 cleanup:
1346 qtd_list_free(oxu, urb, head);
1347 return NULL;
1350 /* Each QH holds a qtd list; a QH is used for everything except iso.
1352 * For interrupt urbs, the scheduler must set the microframe scheduling
1353 * mask(s) each time the QH gets scheduled. For highspeed, that's
1354 * just one microframe in the s-mask. For split interrupt transactions
1355 * there are additional complications: c-mask, maybe FSTNs.
1357 static struct ehci_qh *qh_make(struct oxu_hcd *oxu,
1358 struct urb *urb, gfp_t flags)
1360 struct ehci_qh *qh = oxu_qh_alloc(oxu);
1361 u32 info1 = 0, info2 = 0;
1362 int is_input, type;
1363 int maxp = 0;
1365 if (!qh)
1366 return qh;
1369 * init endpoint/device data for this QH
1371 info1 |= usb_pipeendpoint(urb->pipe) << 8;
1372 info1 |= usb_pipedevice(urb->pipe) << 0;
1374 is_input = usb_pipein(urb->pipe);
1375 type = usb_pipetype(urb->pipe);
1376 maxp = usb_maxpacket(urb->dev, urb->pipe, !is_input);
1378 /* Compute interrupt scheduling parameters just once, and save.
1379 * - allowing for high bandwidth, how many nsec/uframe are used?
1380 * - split transactions need a second CSPLIT uframe; same question
1381 * - splits also need a schedule gap (for full/low speed I/O)
1382 * - qh has a polling interval
1384 * For control/bulk requests, the HC or TT handles these.
1386 if (type == PIPE_INTERRUPT) {
1387 qh->usecs = NS_TO_US(usb_calc_bus_time(USB_SPEED_HIGH,
1388 is_input, 0,
1389 hb_mult(maxp) * max_packet(maxp)));
1390 qh->start = NO_FRAME;
1392 if (urb->dev->speed == USB_SPEED_HIGH) {
1393 qh->c_usecs = 0;
1394 qh->gap_uf = 0;
1396 qh->period = urb->interval >> 3;
1397 if (qh->period == 0 && urb->interval != 1) {
1398 /* NOTE interval 2 or 4 uframes could work.
1399 * But interval 1 scheduling is simpler, and
1400 * includes high bandwidth.
1402 oxu_dbg(oxu, "intr period %d uframes, NYET!\n",
1403 urb->interval);
1404 goto done;
1406 } else {
1407 struct usb_tt *tt = urb->dev->tt;
1408 int think_time;
1410 /* gap is f(FS/LS transfer times) */
1411 qh->gap_uf = 1 + usb_calc_bus_time(urb->dev->speed,
1412 is_input, 0, maxp) / (125 * 1000);
1414 /* FIXME this just approximates SPLIT/CSPLIT times */
1415 if (is_input) { /* SPLIT, gap, CSPLIT+DATA */
1416 qh->c_usecs = qh->usecs + HS_USECS(0);
1417 qh->usecs = HS_USECS(1);
1418 } else { /* SPLIT+DATA, gap, CSPLIT */
1419 qh->usecs += HS_USECS(1);
1420 qh->c_usecs = HS_USECS(0);
1423 think_time = tt ? tt->think_time : 0;
1424 qh->tt_usecs = NS_TO_US(think_time +
1425 usb_calc_bus_time(urb->dev->speed,
1426 is_input, 0, max_packet(maxp)));
1427 qh->period = urb->interval;
1431 /* support for tt scheduling, and access to toggles */
1432 qh->dev = urb->dev;
1434 /* using TT? */
1435 switch (urb->dev->speed) {
1436 case USB_SPEED_LOW:
1437 info1 |= (1 << 12); /* EPS "low" */
1438 /* FALL THROUGH */
1440 case USB_SPEED_FULL:
1441 /* EPS 0 means "full" */
1442 if (type != PIPE_INTERRUPT)
1443 info1 |= (EHCI_TUNE_RL_TT << 28);
1444 if (type == PIPE_CONTROL) {
1445 info1 |= (1 << 27); /* for TT */
1446 info1 |= 1 << 14; /* toggle from qtd */
1448 info1 |= maxp << 16;
1450 info2 |= (EHCI_TUNE_MULT_TT << 30);
1451 info2 |= urb->dev->ttport << 23;
1453 /* NOTE: if (PIPE_INTERRUPT) { scheduler sets c-mask } */
1455 break;
1457 case USB_SPEED_HIGH: /* no TT involved */
1458 info1 |= (2 << 12); /* EPS "high" */
1459 if (type == PIPE_CONTROL) {
1460 info1 |= (EHCI_TUNE_RL_HS << 28);
1461 info1 |= 64 << 16; /* usb2 fixed maxpacket */
1462 info1 |= 1 << 14; /* toggle from qtd */
1463 info2 |= (EHCI_TUNE_MULT_HS << 30);
1464 } else if (type == PIPE_BULK) {
1465 info1 |= (EHCI_TUNE_RL_HS << 28);
1466 info1 |= 512 << 16; /* usb2 fixed maxpacket */
1467 info2 |= (EHCI_TUNE_MULT_HS << 30);
1468 } else { /* PIPE_INTERRUPT */
1469 info1 |= max_packet(maxp) << 16;
1470 info2 |= hb_mult(maxp) << 30;
1472 break;
1473 default:
1474 oxu_dbg(oxu, "bogus dev %p speed %d\n", urb->dev, urb->dev->speed);
1475 done:
1476 qh_put(qh);
1477 return NULL;
1480 /* NOTE: if (PIPE_INTERRUPT) { scheduler sets s-mask } */
1482 /* init as live, toggle clear, advance to dummy */
1483 qh->qh_state = QH_STATE_IDLE;
1484 qh->hw_info1 = cpu_to_le32(info1);
1485 qh->hw_info2 = cpu_to_le32(info2);
1486 usb_settoggle(urb->dev, usb_pipeendpoint(urb->pipe), !is_input, 1);
1487 qh_refresh(oxu, qh);
1488 return qh;
1491 /* Move qh (and its qtds) onto async queue; maybe enable queue.
1493 static void qh_link_async(struct oxu_hcd *oxu, struct ehci_qh *qh)
1495 __le32 dma = QH_NEXT(qh->qh_dma);
1496 struct ehci_qh *head;
1498 /* (re)start the async schedule? */
1499 head = oxu->async;
1500 timer_action_done(oxu, TIMER_ASYNC_OFF);
1501 if (!head->qh_next.qh) {
1502 u32 cmd = readl(&oxu->regs->command);
1504 if (!(cmd & CMD_ASE)) {
1505 /* in case a clear of CMD_ASE didn't take yet */
1506 (void)handshake(oxu, &oxu->regs->status,
1507 STS_ASS, 0, 150);
1508 cmd |= CMD_ASE | CMD_RUN;
1509 writel(cmd, &oxu->regs->command);
1510 oxu_to_hcd(oxu)->state = HC_STATE_RUNNING;
1511 /* posted write need not be known to HC yet ... */
1515 /* clear halt and/or toggle; and maybe recover from silicon quirk */
1516 if (qh->qh_state == QH_STATE_IDLE)
1517 qh_refresh(oxu, qh);
1519 /* splice right after start */
1520 qh->qh_next = head->qh_next;
1521 qh->hw_next = head->hw_next;
1522 wmb();
1524 head->qh_next.qh = qh;
1525 head->hw_next = dma;
1527 qh->qh_state = QH_STATE_LINKED;
1528 /* qtd completions reported later by interrupt */
1531 #define QH_ADDR_MASK cpu_to_le32(0x7f)
1534 * For control/bulk/interrupt, return QH with these TDs appended.
1535 * Allocates and initializes the QH if necessary.
1536 * Returns null if it can't allocate a QH it needs to.
1537 * If the QH has TDs (urbs) already, that's great.
1539 static struct ehci_qh *qh_append_tds(struct oxu_hcd *oxu,
1540 struct urb *urb, struct list_head *qtd_list,
1541 int epnum, void **ptr)
1543 struct ehci_qh *qh = NULL;
1545 qh = (struct ehci_qh *) *ptr;
1546 if (unlikely(qh == NULL)) {
1547 /* can't sleep here, we have oxu->lock... */
1548 qh = qh_make(oxu, urb, GFP_ATOMIC);
1549 *ptr = qh;
1551 if (likely(qh != NULL)) {
1552 struct ehci_qtd *qtd;
1554 if (unlikely(list_empty(qtd_list)))
1555 qtd = NULL;
1556 else
1557 qtd = list_entry(qtd_list->next, struct ehci_qtd,
1558 qtd_list);
1560 /* control qh may need patching ... */
1561 if (unlikely(epnum == 0)) {
1563 /* usb_reset_device() briefly reverts to address 0 */
1564 if (usb_pipedevice(urb->pipe) == 0)
1565 qh->hw_info1 &= ~QH_ADDR_MASK;
1568 /* just one way to queue requests: swap with the dummy qtd.
1569 * only hc or qh_refresh() ever modify the overlay.
1571 if (likely(qtd != NULL)) {
1572 struct ehci_qtd *dummy;
1573 dma_addr_t dma;
1574 __le32 token;
1576 /* to avoid racing the HC, use the dummy td instead of
1577 * the first td of our list (becomes new dummy). both
1578 * tds stay deactivated until we're done, when the
1579 * HC is allowed to fetch the old dummy (4.10.2).
1581 token = qtd->hw_token;
1582 qtd->hw_token = HALT_BIT;
1583 wmb();
1584 dummy = qh->dummy;
1586 dma = dummy->qtd_dma;
1587 *dummy = *qtd;
1588 dummy->qtd_dma = dma;
1590 list_del(&qtd->qtd_list);
1591 list_add(&dummy->qtd_list, qtd_list);
1592 list_splice(qtd_list, qh->qtd_list.prev);
1594 ehci_qtd_init(qtd, qtd->qtd_dma);
1595 qh->dummy = qtd;
1597 /* hc must see the new dummy at list end */
1598 dma = qtd->qtd_dma;
1599 qtd = list_entry(qh->qtd_list.prev,
1600 struct ehci_qtd, qtd_list);
1601 qtd->hw_next = QTD_NEXT(dma);
1603 /* let the hc process these next qtds */
1604 dummy->hw_token = (token & ~(0x80));
1605 wmb();
1606 dummy->hw_token = token;
1608 urb->hcpriv = qh_get(qh);
1611 return qh;
1614 static int submit_async(struct oxu_hcd *oxu, struct urb *urb,
1615 struct list_head *qtd_list, gfp_t mem_flags)
1617 struct ehci_qtd *qtd;
1618 int epnum;
1619 unsigned long flags;
1620 struct ehci_qh *qh = NULL;
1621 int rc = 0;
1623 qtd = list_entry(qtd_list->next, struct ehci_qtd, qtd_list);
1624 epnum = urb->ep->desc.bEndpointAddress;
1626 #ifdef OXU_URB_TRACE
1627 oxu_dbg(oxu, "%s %s urb %p ep%d%s len %d, qtd %p [qh %p]\n",
1628 __func__, urb->dev->devpath, urb,
1629 epnum & 0x0f, (epnum & USB_DIR_IN) ? "in" : "out",
1630 urb->transfer_buffer_length,
1631 qtd, urb->ep->hcpriv);
1632 #endif
1634 spin_lock_irqsave(&oxu->lock, flags);
1635 if (unlikely(!HCD_HW_ACCESSIBLE(oxu_to_hcd(oxu)))) {
1636 rc = -ESHUTDOWN;
1637 goto done;
1640 qh = qh_append_tds(oxu, urb, qtd_list, epnum, &urb->ep->hcpriv);
1641 if (unlikely(qh == NULL)) {
1642 rc = -ENOMEM;
1643 goto done;
1646 /* Control/bulk operations through TTs don't need scheduling,
1647 * the HC and TT handle it when the TT has a buffer ready.
1649 if (likely(qh->qh_state == QH_STATE_IDLE))
1650 qh_link_async(oxu, qh_get(qh));
1651 done:
1652 spin_unlock_irqrestore(&oxu->lock, flags);
1653 if (unlikely(qh == NULL))
1654 qtd_list_free(oxu, urb, qtd_list);
1655 return rc;
1658 /* The async qh for the qtds being reclaimed are now unlinked from the HC */
1660 static void end_unlink_async(struct oxu_hcd *oxu)
1662 struct ehci_qh *qh = oxu->reclaim;
1663 struct ehci_qh *next;
1665 timer_action_done(oxu, TIMER_IAA_WATCHDOG);
1667 qh->qh_state = QH_STATE_IDLE;
1668 qh->qh_next.qh = NULL;
1669 qh_put(qh); /* refcount from reclaim */
1671 /* other unlink(s) may be pending (in QH_STATE_UNLINK_WAIT) */
1672 next = qh->reclaim;
1673 oxu->reclaim = next;
1674 oxu->reclaim_ready = 0;
1675 qh->reclaim = NULL;
1677 qh_completions(oxu, qh);
1679 if (!list_empty(&qh->qtd_list)
1680 && HC_IS_RUNNING(oxu_to_hcd(oxu)->state))
1681 qh_link_async(oxu, qh);
1682 else {
1683 qh_put(qh); /* refcount from async list */
1685 /* it's not free to turn the async schedule on/off; leave it
1686 * active but idle for a while once it empties.
1688 if (HC_IS_RUNNING(oxu_to_hcd(oxu)->state)
1689 && oxu->async->qh_next.qh == NULL)
1690 timer_action(oxu, TIMER_ASYNC_OFF);
1693 if (next) {
1694 oxu->reclaim = NULL;
1695 start_unlink_async(oxu, next);
1699 /* makes sure the async qh will become idle */
1700 /* caller must own oxu->lock */
1702 static void start_unlink_async(struct oxu_hcd *oxu, struct ehci_qh *qh)
1704 int cmd = readl(&oxu->regs->command);
1705 struct ehci_qh *prev;
1707 #ifdef DEBUG
1708 assert_spin_locked(&oxu->lock);
1709 if (oxu->reclaim || (qh->qh_state != QH_STATE_LINKED
1710 && qh->qh_state != QH_STATE_UNLINK_WAIT))
1711 BUG();
1712 #endif
1714 /* stop async schedule right now? */
1715 if (unlikely(qh == oxu->async)) {
1716 /* can't get here without STS_ASS set */
1717 if (oxu_to_hcd(oxu)->state != HC_STATE_HALT
1718 && !oxu->reclaim) {
1719 /* ... and CMD_IAAD clear */
1720 writel(cmd & ~CMD_ASE, &oxu->regs->command);
1721 wmb();
1722 /* handshake later, if we need to */
1723 timer_action_done(oxu, TIMER_ASYNC_OFF);
1725 return;
1728 qh->qh_state = QH_STATE_UNLINK;
1729 oxu->reclaim = qh = qh_get(qh);
1731 prev = oxu->async;
1732 while (prev->qh_next.qh != qh)
1733 prev = prev->qh_next.qh;
1735 prev->hw_next = qh->hw_next;
1736 prev->qh_next = qh->qh_next;
1737 wmb();
1739 if (unlikely(oxu_to_hcd(oxu)->state == HC_STATE_HALT)) {
1740 /* if (unlikely(qh->reclaim != 0))
1741 * this will recurse, probably not much
1743 end_unlink_async(oxu);
1744 return;
1747 oxu->reclaim_ready = 0;
1748 cmd |= CMD_IAAD;
1749 writel(cmd, &oxu->regs->command);
1750 (void) readl(&oxu->regs->command);
1751 timer_action(oxu, TIMER_IAA_WATCHDOG);
1754 static void scan_async(struct oxu_hcd *oxu)
1756 struct ehci_qh *qh;
1757 enum ehci_timer_action action = TIMER_IO_WATCHDOG;
1759 if (!++(oxu->stamp))
1760 oxu->stamp++;
1761 timer_action_done(oxu, TIMER_ASYNC_SHRINK);
1762 rescan:
1763 qh = oxu->async->qh_next.qh;
1764 if (likely(qh != NULL)) {
1765 do {
1766 /* clean any finished work for this qh */
1767 if (!list_empty(&qh->qtd_list)
1768 && qh->stamp != oxu->stamp) {
1769 int temp;
1771 /* unlinks could happen here; completion
1772 * reporting drops the lock. rescan using
1773 * the latest schedule, but don't rescan
1774 * qhs we already finished (no looping).
1776 qh = qh_get(qh);
1777 qh->stamp = oxu->stamp;
1778 temp = qh_completions(oxu, qh);
1779 qh_put(qh);
1780 if (temp != 0)
1781 goto rescan;
1784 /* unlink idle entries, reducing HC PCI usage as well
1785 * as HCD schedule-scanning costs. delay for any qh
1786 * we just scanned, there's a not-unusual case that it
1787 * doesn't stay idle for long.
1788 * (plus, avoids some kind of re-activation race.)
1790 if (list_empty(&qh->qtd_list)) {
1791 if (qh->stamp == oxu->stamp)
1792 action = TIMER_ASYNC_SHRINK;
1793 else if (!oxu->reclaim
1794 && qh->qh_state == QH_STATE_LINKED)
1795 start_unlink_async(oxu, qh);
1798 qh = qh->qh_next.qh;
1799 } while (qh);
1801 if (action == TIMER_ASYNC_SHRINK)
1802 timer_action(oxu, TIMER_ASYNC_SHRINK);
1806 * periodic_next_shadow - return "next" pointer on shadow list
1807 * @periodic: host pointer to qh/itd/sitd
1808 * @tag: hardware tag for type of this record
1810 static union ehci_shadow *periodic_next_shadow(union ehci_shadow *periodic,
1811 __le32 tag)
1813 switch (tag) {
1814 default:
1815 case Q_TYPE_QH:
1816 return &periodic->qh->qh_next;
1820 /* caller must hold oxu->lock */
1821 static void periodic_unlink(struct oxu_hcd *oxu, unsigned frame, void *ptr)
1823 union ehci_shadow *prev_p = &oxu->pshadow[frame];
1824 __le32 *hw_p = &oxu->periodic[frame];
1825 union ehci_shadow here = *prev_p;
1827 /* find predecessor of "ptr"; hw and shadow lists are in sync */
1828 while (here.ptr && here.ptr != ptr) {
1829 prev_p = periodic_next_shadow(prev_p, Q_NEXT_TYPE(*hw_p));
1830 hw_p = here.hw_next;
1831 here = *prev_p;
1833 /* an interrupt entry (at list end) could have been shared */
1834 if (!here.ptr)
1835 return;
1837 /* update shadow and hardware lists ... the old "next" pointers
1838 * from ptr may still be in use, the caller updates them.
1840 *prev_p = *periodic_next_shadow(&here, Q_NEXT_TYPE(*hw_p));
1841 *hw_p = *here.hw_next;
1844 /* how many of the uframe's 125 usecs are allocated? */
1845 static unsigned short periodic_usecs(struct oxu_hcd *oxu,
1846 unsigned frame, unsigned uframe)
1848 __le32 *hw_p = &oxu->periodic[frame];
1849 union ehci_shadow *q = &oxu->pshadow[frame];
1850 unsigned usecs = 0;
1852 while (q->ptr) {
1853 switch (Q_NEXT_TYPE(*hw_p)) {
1854 case Q_TYPE_QH:
1855 default:
1856 /* is it in the S-mask? */
1857 if (q->qh->hw_info2 & cpu_to_le32(1 << uframe))
1858 usecs += q->qh->usecs;
1859 /* ... or C-mask? */
1860 if (q->qh->hw_info2 & cpu_to_le32(1 << (8 + uframe)))
1861 usecs += q->qh->c_usecs;
1862 hw_p = &q->qh->hw_next;
1863 q = &q->qh->qh_next;
1864 break;
1867 #ifdef DEBUG
1868 if (usecs > 100)
1869 oxu_err(oxu, "uframe %d sched overrun: %d usecs\n",
1870 frame * 8 + uframe, usecs);
1871 #endif
1872 return usecs;
1875 static int enable_periodic(struct oxu_hcd *oxu)
1877 u32 cmd;
1878 int status;
1880 /* did clearing PSE did take effect yet?
1881 * takes effect only at frame boundaries...
1883 status = handshake(oxu, &oxu->regs->status, STS_PSS, 0, 9 * 125);
1884 if (status != 0) {
1885 oxu_to_hcd(oxu)->state = HC_STATE_HALT;
1886 usb_hc_died(oxu_to_hcd(oxu));
1887 return status;
1890 cmd = readl(&oxu->regs->command) | CMD_PSE;
1891 writel(cmd, &oxu->regs->command);
1892 /* posted write ... PSS happens later */
1893 oxu_to_hcd(oxu)->state = HC_STATE_RUNNING;
1895 /* make sure ehci_work scans these */
1896 oxu->next_uframe = readl(&oxu->regs->frame_index)
1897 % (oxu->periodic_size << 3);
1898 return 0;
1901 static int disable_periodic(struct oxu_hcd *oxu)
1903 u32 cmd;
1904 int status;
1906 /* did setting PSE not take effect yet?
1907 * takes effect only at frame boundaries...
1909 status = handshake(oxu, &oxu->regs->status, STS_PSS, STS_PSS, 9 * 125);
1910 if (status != 0) {
1911 oxu_to_hcd(oxu)->state = HC_STATE_HALT;
1912 usb_hc_died(oxu_to_hcd(oxu));
1913 return status;
1916 cmd = readl(&oxu->regs->command) & ~CMD_PSE;
1917 writel(cmd, &oxu->regs->command);
1918 /* posted write ... */
1920 oxu->next_uframe = -1;
1921 return 0;
1924 /* periodic schedule slots have iso tds (normal or split) first, then a
1925 * sparse tree for active interrupt transfers.
1927 * this just links in a qh; caller guarantees uframe masks are set right.
1928 * no FSTN support (yet; oxu 0.96+)
1930 static int qh_link_periodic(struct oxu_hcd *oxu, struct ehci_qh *qh)
1932 unsigned i;
1933 unsigned period = qh->period;
1935 dev_dbg(&qh->dev->dev,
1936 "link qh%d-%04x/%p start %d [%d/%d us]\n",
1937 period, le32_to_cpup(&qh->hw_info2) & (QH_CMASK | QH_SMASK),
1938 qh, qh->start, qh->usecs, qh->c_usecs);
1940 /* high bandwidth, or otherwise every microframe */
1941 if (period == 0)
1942 period = 1;
1944 for (i = qh->start; i < oxu->periodic_size; i += period) {
1945 union ehci_shadow *prev = &oxu->pshadow[i];
1946 __le32 *hw_p = &oxu->periodic[i];
1947 union ehci_shadow here = *prev;
1948 __le32 type = 0;
1950 /* skip the iso nodes at list head */
1951 while (here.ptr) {
1952 type = Q_NEXT_TYPE(*hw_p);
1953 if (type == Q_TYPE_QH)
1954 break;
1955 prev = periodic_next_shadow(prev, type);
1956 hw_p = &here.qh->hw_next;
1957 here = *prev;
1960 /* sorting each branch by period (slow-->fast)
1961 * enables sharing interior tree nodes
1963 while (here.ptr && qh != here.qh) {
1964 if (qh->period > here.qh->period)
1965 break;
1966 prev = &here.qh->qh_next;
1967 hw_p = &here.qh->hw_next;
1968 here = *prev;
1970 /* link in this qh, unless some earlier pass did that */
1971 if (qh != here.qh) {
1972 qh->qh_next = here;
1973 if (here.qh)
1974 qh->hw_next = *hw_p;
1975 wmb();
1976 prev->qh = qh;
1977 *hw_p = QH_NEXT(qh->qh_dma);
1980 qh->qh_state = QH_STATE_LINKED;
1981 qh_get(qh);
1983 /* update per-qh bandwidth for usbfs */
1984 oxu_to_hcd(oxu)->self.bandwidth_allocated += qh->period
1985 ? ((qh->usecs + qh->c_usecs) / qh->period)
1986 : (qh->usecs * 8);
1988 /* maybe enable periodic schedule processing */
1989 if (!oxu->periodic_sched++)
1990 return enable_periodic(oxu);
1992 return 0;
1995 static void qh_unlink_periodic(struct oxu_hcd *oxu, struct ehci_qh *qh)
1997 unsigned i;
1998 unsigned period;
2000 /* FIXME:
2001 * IF this isn't high speed
2002 * and this qh is active in the current uframe
2003 * (and overlay token SplitXstate is false?)
2004 * THEN
2005 * qh->hw_info1 |= cpu_to_le32(1 << 7 "ignore");
2008 /* high bandwidth, or otherwise part of every microframe */
2009 period = qh->period;
2010 if (period == 0)
2011 period = 1;
2013 for (i = qh->start; i < oxu->periodic_size; i += period)
2014 periodic_unlink(oxu, i, qh);
2016 /* update per-qh bandwidth for usbfs */
2017 oxu_to_hcd(oxu)->self.bandwidth_allocated -= qh->period
2018 ? ((qh->usecs + qh->c_usecs) / qh->period)
2019 : (qh->usecs * 8);
2021 dev_dbg(&qh->dev->dev,
2022 "unlink qh%d-%04x/%p start %d [%d/%d us]\n",
2023 qh->period,
2024 le32_to_cpup(&qh->hw_info2) & (QH_CMASK | QH_SMASK),
2025 qh, qh->start, qh->usecs, qh->c_usecs);
2027 /* qh->qh_next still "live" to HC */
2028 qh->qh_state = QH_STATE_UNLINK;
2029 qh->qh_next.ptr = NULL;
2030 qh_put(qh);
2032 /* maybe turn off periodic schedule */
2033 oxu->periodic_sched--;
2034 if (!oxu->periodic_sched)
2035 (void) disable_periodic(oxu);
2038 static void intr_deschedule(struct oxu_hcd *oxu, struct ehci_qh *qh)
2040 unsigned wait;
2042 qh_unlink_periodic(oxu, qh);
2044 /* simple/paranoid: always delay, expecting the HC needs to read
2045 * qh->hw_next or finish a writeback after SPLIT/CSPLIT ... and
2046 * expect khubd to clean up after any CSPLITs we won't issue.
2047 * active high speed queues may need bigger delays...
2049 if (list_empty(&qh->qtd_list)
2050 || (cpu_to_le32(QH_CMASK) & qh->hw_info2) != 0)
2051 wait = 2;
2052 else
2053 wait = 55; /* worst case: 3 * 1024 */
2055 udelay(wait);
2056 qh->qh_state = QH_STATE_IDLE;
2057 qh->hw_next = EHCI_LIST_END;
2058 wmb();
2061 static int check_period(struct oxu_hcd *oxu,
2062 unsigned frame, unsigned uframe,
2063 unsigned period, unsigned usecs)
2065 int claimed;
2067 /* complete split running into next frame?
2068 * given FSTN support, we could sometimes check...
2070 if (uframe >= 8)
2071 return 0;
2074 * 80% periodic == 100 usec/uframe available
2075 * convert "usecs we need" to "max already claimed"
2077 usecs = 100 - usecs;
2079 /* we "know" 2 and 4 uframe intervals were rejected; so
2080 * for period 0, check _every_ microframe in the schedule.
2082 if (unlikely(period == 0)) {
2083 do {
2084 for (uframe = 0; uframe < 7; uframe++) {
2085 claimed = periodic_usecs(oxu, frame, uframe);
2086 if (claimed > usecs)
2087 return 0;
2089 } while ((frame += 1) < oxu->periodic_size);
2091 /* just check the specified uframe, at that period */
2092 } else {
2093 do {
2094 claimed = periodic_usecs(oxu, frame, uframe);
2095 if (claimed > usecs)
2096 return 0;
2097 } while ((frame += period) < oxu->periodic_size);
2100 return 1;
2103 static int check_intr_schedule(struct oxu_hcd *oxu,
2104 unsigned frame, unsigned uframe,
2105 const struct ehci_qh *qh, __le32 *c_maskp)
2107 int retval = -ENOSPC;
2109 if (qh->c_usecs && uframe >= 6) /* FSTN territory? */
2110 goto done;
2112 if (!check_period(oxu, frame, uframe, qh->period, qh->usecs))
2113 goto done;
2114 if (!qh->c_usecs) {
2115 retval = 0;
2116 *c_maskp = 0;
2117 goto done;
2120 done:
2121 return retval;
2124 /* "first fit" scheduling policy used the first time through,
2125 * or when the previous schedule slot can't be re-used.
2127 static int qh_schedule(struct oxu_hcd *oxu, struct ehci_qh *qh)
2129 int status;
2130 unsigned uframe;
2131 __le32 c_mask;
2132 unsigned frame; /* 0..(qh->period - 1), or NO_FRAME */
2134 qh_refresh(oxu, qh);
2135 qh->hw_next = EHCI_LIST_END;
2136 frame = qh->start;
2138 /* reuse the previous schedule slots, if we can */
2139 if (frame < qh->period) {
2140 uframe = ffs(le32_to_cpup(&qh->hw_info2) & QH_SMASK);
2141 status = check_intr_schedule(oxu, frame, --uframe,
2142 qh, &c_mask);
2143 } else {
2144 uframe = 0;
2145 c_mask = 0;
2146 status = -ENOSPC;
2149 /* else scan the schedule to find a group of slots such that all
2150 * uframes have enough periodic bandwidth available.
2152 if (status) {
2153 /* "normal" case, uframing flexible except with splits */
2154 if (qh->period) {
2155 frame = qh->period - 1;
2156 do {
2157 for (uframe = 0; uframe < 8; uframe++) {
2158 status = check_intr_schedule(oxu,
2159 frame, uframe, qh,
2160 &c_mask);
2161 if (status == 0)
2162 break;
2164 } while (status && frame--);
2166 /* qh->period == 0 means every uframe */
2167 } else {
2168 frame = 0;
2169 status = check_intr_schedule(oxu, 0, 0, qh, &c_mask);
2171 if (status)
2172 goto done;
2173 qh->start = frame;
2175 /* reset S-frame and (maybe) C-frame masks */
2176 qh->hw_info2 &= cpu_to_le32(~(QH_CMASK | QH_SMASK));
2177 qh->hw_info2 |= qh->period
2178 ? cpu_to_le32(1 << uframe)
2179 : cpu_to_le32(QH_SMASK);
2180 qh->hw_info2 |= c_mask;
2181 } else
2182 oxu_dbg(oxu, "reused qh %p schedule\n", qh);
2184 /* stuff into the periodic schedule */
2185 status = qh_link_periodic(oxu, qh);
2186 done:
2187 return status;
2190 static int intr_submit(struct oxu_hcd *oxu, struct urb *urb,
2191 struct list_head *qtd_list, gfp_t mem_flags)
2193 unsigned epnum;
2194 unsigned long flags;
2195 struct ehci_qh *qh;
2196 int status = 0;
2197 struct list_head empty;
2199 /* get endpoint and transfer/schedule data */
2200 epnum = urb->ep->desc.bEndpointAddress;
2202 spin_lock_irqsave(&oxu->lock, flags);
2204 if (unlikely(!HCD_HW_ACCESSIBLE(oxu_to_hcd(oxu)))) {
2205 status = -ESHUTDOWN;
2206 goto done;
2209 /* get qh and force any scheduling errors */
2210 INIT_LIST_HEAD(&empty);
2211 qh = qh_append_tds(oxu, urb, &empty, epnum, &urb->ep->hcpriv);
2212 if (qh == NULL) {
2213 status = -ENOMEM;
2214 goto done;
2216 if (qh->qh_state == QH_STATE_IDLE) {
2217 status = qh_schedule(oxu, qh);
2218 if (status != 0)
2219 goto done;
2222 /* then queue the urb's tds to the qh */
2223 qh = qh_append_tds(oxu, urb, qtd_list, epnum, &urb->ep->hcpriv);
2224 BUG_ON(qh == NULL);
2226 /* ... update usbfs periodic stats */
2227 oxu_to_hcd(oxu)->self.bandwidth_int_reqs++;
2229 done:
2230 spin_unlock_irqrestore(&oxu->lock, flags);
2231 if (status)
2232 qtd_list_free(oxu, urb, qtd_list);
2234 return status;
2237 static inline int itd_submit(struct oxu_hcd *oxu, struct urb *urb,
2238 gfp_t mem_flags)
2240 oxu_dbg(oxu, "iso support is missing!\n");
2241 return -ENOSYS;
2244 static inline int sitd_submit(struct oxu_hcd *oxu, struct urb *urb,
2245 gfp_t mem_flags)
2247 oxu_dbg(oxu, "split iso support is missing!\n");
2248 return -ENOSYS;
2251 static void scan_periodic(struct oxu_hcd *oxu)
2253 unsigned frame, clock, now_uframe, mod;
2254 unsigned modified;
2256 mod = oxu->periodic_size << 3;
2259 * When running, scan from last scan point up to "now"
2260 * else clean up by scanning everything that's left.
2261 * Touches as few pages as possible: cache-friendly.
2263 now_uframe = oxu->next_uframe;
2264 if (HC_IS_RUNNING(oxu_to_hcd(oxu)->state))
2265 clock = readl(&oxu->regs->frame_index);
2266 else
2267 clock = now_uframe + mod - 1;
2268 clock %= mod;
2270 for (;;) {
2271 union ehci_shadow q, *q_p;
2272 __le32 type, *hw_p;
2273 unsigned uframes;
2275 /* don't scan past the live uframe */
2276 frame = now_uframe >> 3;
2277 if (frame == (clock >> 3))
2278 uframes = now_uframe & 0x07;
2279 else {
2280 /* safe to scan the whole frame at once */
2281 now_uframe |= 0x07;
2282 uframes = 8;
2285 restart:
2286 /* scan each element in frame's queue for completions */
2287 q_p = &oxu->pshadow[frame];
2288 hw_p = &oxu->periodic[frame];
2289 q.ptr = q_p->ptr;
2290 type = Q_NEXT_TYPE(*hw_p);
2291 modified = 0;
2293 while (q.ptr != NULL) {
2294 union ehci_shadow temp;
2295 int live;
2297 live = HC_IS_RUNNING(oxu_to_hcd(oxu)->state);
2298 switch (type) {
2299 case Q_TYPE_QH:
2300 /* handle any completions */
2301 temp.qh = qh_get(q.qh);
2302 type = Q_NEXT_TYPE(q.qh->hw_next);
2303 q = q.qh->qh_next;
2304 modified = qh_completions(oxu, temp.qh);
2305 if (unlikely(list_empty(&temp.qh->qtd_list)))
2306 intr_deschedule(oxu, temp.qh);
2307 qh_put(temp.qh);
2308 break;
2309 default:
2310 oxu_dbg(oxu, "corrupt type %d frame %d shadow %p\n",
2311 type, frame, q.ptr);
2312 q.ptr = NULL;
2315 /* assume completion callbacks modify the queue */
2316 if (unlikely(modified))
2317 goto restart;
2320 /* Stop when we catch up to the HC */
2322 /* FIXME: this assumes we won't get lapped when
2323 * latencies climb; that should be rare, but...
2324 * detect it, and just go all the way around.
2325 * FLR might help detect this case, so long as latencies
2326 * don't exceed periodic_size msec (default 1.024 sec).
2329 /* FIXME: likewise assumes HC doesn't halt mid-scan */
2331 if (now_uframe == clock) {
2332 unsigned now;
2334 if (!HC_IS_RUNNING(oxu_to_hcd(oxu)->state))
2335 break;
2336 oxu->next_uframe = now_uframe;
2337 now = readl(&oxu->regs->frame_index) % mod;
2338 if (now_uframe == now)
2339 break;
2341 /* rescan the rest of this frame, then ... */
2342 clock = now;
2343 } else {
2344 now_uframe++;
2345 now_uframe %= mod;
2350 /* On some systems, leaving remote wakeup enabled prevents system shutdown.
2351 * The firmware seems to think that powering off is a wakeup event!
2352 * This routine turns off remote wakeup and everything else, on all ports.
2354 static void ehci_turn_off_all_ports(struct oxu_hcd *oxu)
2356 int port = HCS_N_PORTS(oxu->hcs_params);
2358 while (port--)
2359 writel(PORT_RWC_BITS, &oxu->regs->port_status[port]);
2362 static void ehci_port_power(struct oxu_hcd *oxu, int is_on)
2364 unsigned port;
2366 if (!HCS_PPC(oxu->hcs_params))
2367 return;
2369 oxu_dbg(oxu, "...power%s ports...\n", is_on ? "up" : "down");
2370 for (port = HCS_N_PORTS(oxu->hcs_params); port > 0; )
2371 (void) oxu_hub_control(oxu_to_hcd(oxu),
2372 is_on ? SetPortFeature : ClearPortFeature,
2373 USB_PORT_FEAT_POWER,
2374 port--, NULL, 0);
2375 msleep(20);
2378 /* Called from some interrupts, timers, and so on.
2379 * It calls driver completion functions, after dropping oxu->lock.
2381 static void ehci_work(struct oxu_hcd *oxu)
2383 timer_action_done(oxu, TIMER_IO_WATCHDOG);
2384 if (oxu->reclaim_ready)
2385 end_unlink_async(oxu);
2387 /* another CPU may drop oxu->lock during a schedule scan while
2388 * it reports urb completions. this flag guards against bogus
2389 * attempts at re-entrant schedule scanning.
2391 if (oxu->scanning)
2392 return;
2393 oxu->scanning = 1;
2394 scan_async(oxu);
2395 if (oxu->next_uframe != -1)
2396 scan_periodic(oxu);
2397 oxu->scanning = 0;
2399 /* the IO watchdog guards against hardware or driver bugs that
2400 * misplace IRQs, and should let us run completely without IRQs.
2401 * such lossage has been observed on both VT6202 and VT8235.
2403 if (HC_IS_RUNNING(oxu_to_hcd(oxu)->state) &&
2404 (oxu->async->qh_next.ptr != NULL ||
2405 oxu->periodic_sched != 0))
2406 timer_action(oxu, TIMER_IO_WATCHDOG);
2409 static void unlink_async(struct oxu_hcd *oxu, struct ehci_qh *qh)
2411 /* if we need to use IAA and it's busy, defer */
2412 if (qh->qh_state == QH_STATE_LINKED
2413 && oxu->reclaim
2414 && HC_IS_RUNNING(oxu_to_hcd(oxu)->state)) {
2415 struct ehci_qh *last;
2417 for (last = oxu->reclaim;
2418 last->reclaim;
2419 last = last->reclaim)
2420 continue;
2421 qh->qh_state = QH_STATE_UNLINK_WAIT;
2422 last->reclaim = qh;
2424 /* bypass IAA if the hc can't care */
2425 } else if (!HC_IS_RUNNING(oxu_to_hcd(oxu)->state) && oxu->reclaim)
2426 end_unlink_async(oxu);
2428 /* something else might have unlinked the qh by now */
2429 if (qh->qh_state == QH_STATE_LINKED)
2430 start_unlink_async(oxu, qh);
2434 * USB host controller methods
2437 static irqreturn_t oxu210_hcd_irq(struct usb_hcd *hcd)
2439 struct oxu_hcd *oxu = hcd_to_oxu(hcd);
2440 u32 status, pcd_status = 0;
2441 int bh;
2443 spin_lock(&oxu->lock);
2445 status = readl(&oxu->regs->status);
2447 /* e.g. cardbus physical eject */
2448 if (status == ~(u32) 0) {
2449 oxu_dbg(oxu, "device removed\n");
2450 goto dead;
2453 /* Shared IRQ? */
2454 status &= INTR_MASK;
2455 if (!status || unlikely(hcd->state == HC_STATE_HALT)) {
2456 spin_unlock(&oxu->lock);
2457 return IRQ_NONE;
2460 /* clear (just) interrupts */
2461 writel(status, &oxu->regs->status);
2462 readl(&oxu->regs->command); /* unblock posted write */
2463 bh = 0;
2465 #ifdef OXU_VERBOSE_DEBUG
2466 /* unrequested/ignored: Frame List Rollover */
2467 dbg_status(oxu, "irq", status);
2468 #endif
2470 /* INT, ERR, and IAA interrupt rates can be throttled */
2472 /* normal [4.15.1.2] or error [4.15.1.1] completion */
2473 if (likely((status & (STS_INT|STS_ERR)) != 0))
2474 bh = 1;
2476 /* complete the unlinking of some qh [4.15.2.3] */
2477 if (status & STS_IAA) {
2478 oxu->reclaim_ready = 1;
2479 bh = 1;
2482 /* remote wakeup [4.3.1] */
2483 if (status & STS_PCD) {
2484 unsigned i = HCS_N_PORTS(oxu->hcs_params);
2485 pcd_status = status;
2487 /* resume root hub? */
2488 if (!(readl(&oxu->regs->command) & CMD_RUN))
2489 usb_hcd_resume_root_hub(hcd);
2491 while (i--) {
2492 int pstatus = readl(&oxu->regs->port_status[i]);
2494 if (pstatus & PORT_OWNER)
2495 continue;
2496 if (!(pstatus & PORT_RESUME)
2497 || oxu->reset_done[i] != 0)
2498 continue;
2500 /* start USB_RESUME_TIMEOUT resume signaling from this
2501 * port, and make hub_wq collect PORT_STAT_C_SUSPEND to
2502 * stop that signaling.
2504 oxu->reset_done[i] = jiffies +
2505 msecs_to_jiffies(USB_RESUME_TIMEOUT);
2506 oxu_dbg(oxu, "port %d remote wakeup\n", i + 1);
2507 mod_timer(&hcd->rh_timer, oxu->reset_done[i]);
2511 /* PCI errors [4.15.2.4] */
2512 if (unlikely((status & STS_FATAL) != 0)) {
2513 /* bogus "fatal" IRQs appear on some chips... why? */
2514 status = readl(&oxu->regs->status);
2515 dbg_cmd(oxu, "fatal", readl(&oxu->regs->command));
2516 dbg_status(oxu, "fatal", status);
2517 if (status & STS_HALT) {
2518 oxu_err(oxu, "fatal error\n");
2519 dead:
2520 ehci_reset(oxu);
2521 writel(0, &oxu->regs->configured_flag);
2522 usb_hc_died(hcd);
2523 /* generic layer kills/unlinks all urbs, then
2524 * uses oxu_stop to clean up the rest
2526 bh = 1;
2530 if (bh)
2531 ehci_work(oxu);
2532 spin_unlock(&oxu->lock);
2533 if (pcd_status & STS_PCD)
2534 usb_hcd_poll_rh_status(hcd);
2535 return IRQ_HANDLED;
2538 static irqreturn_t oxu_irq(struct usb_hcd *hcd)
2540 struct oxu_hcd *oxu = hcd_to_oxu(hcd);
2541 int ret = IRQ_HANDLED;
2543 u32 status = oxu_readl(hcd->regs, OXU_CHIPIRQSTATUS);
2544 u32 enable = oxu_readl(hcd->regs, OXU_CHIPIRQEN_SET);
2546 /* Disable all interrupt */
2547 oxu_writel(hcd->regs, OXU_CHIPIRQEN_CLR, enable);
2549 if ((oxu->is_otg && (status & OXU_USBOTGI)) ||
2550 (!oxu->is_otg && (status & OXU_USBSPHI)))
2551 oxu210_hcd_irq(hcd);
2552 else
2553 ret = IRQ_NONE;
2555 /* Enable all interrupt back */
2556 oxu_writel(hcd->regs, OXU_CHIPIRQEN_SET, enable);
2558 return ret;
2561 static void oxu_watchdog(unsigned long param)
2563 struct oxu_hcd *oxu = (struct oxu_hcd *) param;
2564 unsigned long flags;
2566 spin_lock_irqsave(&oxu->lock, flags);
2568 /* lost IAA irqs wedge things badly; seen with a vt8235 */
2569 if (oxu->reclaim) {
2570 u32 status = readl(&oxu->regs->status);
2571 if (status & STS_IAA) {
2572 oxu_vdbg(oxu, "lost IAA\n");
2573 writel(STS_IAA, &oxu->regs->status);
2574 oxu->reclaim_ready = 1;
2578 /* stop async processing after it's idled a bit */
2579 if (test_bit(TIMER_ASYNC_OFF, &oxu->actions))
2580 start_unlink_async(oxu, oxu->async);
2582 /* oxu could run by timer, without IRQs ... */
2583 ehci_work(oxu);
2585 spin_unlock_irqrestore(&oxu->lock, flags);
2588 /* One-time init, only for memory state.
2590 static int oxu_hcd_init(struct usb_hcd *hcd)
2592 struct oxu_hcd *oxu = hcd_to_oxu(hcd);
2593 u32 temp;
2594 int retval;
2595 u32 hcc_params;
2597 spin_lock_init(&oxu->lock);
2599 init_timer(&oxu->watchdog);
2600 oxu->watchdog.function = oxu_watchdog;
2601 oxu->watchdog.data = (unsigned long) oxu;
2604 * hw default: 1K periodic list heads, one per frame.
2605 * periodic_size can shrink by USBCMD update if hcc_params allows.
2607 oxu->periodic_size = DEFAULT_I_TDPS;
2608 retval = ehci_mem_init(oxu, GFP_KERNEL);
2609 if (retval < 0)
2610 return retval;
2612 /* controllers may cache some of the periodic schedule ... */
2613 hcc_params = readl(&oxu->caps->hcc_params);
2614 if (HCC_ISOC_CACHE(hcc_params)) /* full frame cache */
2615 oxu->i_thresh = 8;
2616 else /* N microframes cached */
2617 oxu->i_thresh = 2 + HCC_ISOC_THRES(hcc_params);
2619 oxu->reclaim = NULL;
2620 oxu->reclaim_ready = 0;
2621 oxu->next_uframe = -1;
2624 * dedicate a qh for the async ring head, since we couldn't unlink
2625 * a 'real' qh without stopping the async schedule [4.8]. use it
2626 * as the 'reclamation list head' too.
2627 * its dummy is used in hw_alt_next of many tds, to prevent the qh
2628 * from automatically advancing to the next td after short reads.
2630 oxu->async->qh_next.qh = NULL;
2631 oxu->async->hw_next = QH_NEXT(oxu->async->qh_dma);
2632 oxu->async->hw_info1 = cpu_to_le32(QH_HEAD);
2633 oxu->async->hw_token = cpu_to_le32(QTD_STS_HALT);
2634 oxu->async->hw_qtd_next = EHCI_LIST_END;
2635 oxu->async->qh_state = QH_STATE_LINKED;
2636 oxu->async->hw_alt_next = QTD_NEXT(oxu->async->dummy->qtd_dma);
2638 /* clear interrupt enables, set irq latency */
2639 if (log2_irq_thresh < 0 || log2_irq_thresh > 6)
2640 log2_irq_thresh = 0;
2641 temp = 1 << (16 + log2_irq_thresh);
2642 if (HCC_CANPARK(hcc_params)) {
2643 /* HW default park == 3, on hardware that supports it (like
2644 * NVidia and ALI silicon), maximizes throughput on the async
2645 * schedule by avoiding QH fetches between transfers.
2647 * With fast usb storage devices and NForce2, "park" seems to
2648 * make problems: throughput reduction (!), data errors...
2650 if (park) {
2651 park = min(park, (unsigned) 3);
2652 temp |= CMD_PARK;
2653 temp |= park << 8;
2655 oxu_dbg(oxu, "park %d\n", park);
2657 if (HCC_PGM_FRAMELISTLEN(hcc_params)) {
2658 /* periodic schedule size can be smaller than default */
2659 temp &= ~(3 << 2);
2660 temp |= (EHCI_TUNE_FLS << 2);
2662 oxu->command = temp;
2664 return 0;
2667 /* Called during probe() after chip reset completes.
2669 static int oxu_reset(struct usb_hcd *hcd)
2671 struct oxu_hcd *oxu = hcd_to_oxu(hcd);
2672 int ret;
2674 spin_lock_init(&oxu->mem_lock);
2675 INIT_LIST_HEAD(&oxu->urb_list);
2676 oxu->urb_len = 0;
2678 /* FIMXE */
2679 hcd->self.controller->dma_mask = NULL;
2681 if (oxu->is_otg) {
2682 oxu->caps = hcd->regs + OXU_OTG_CAP_OFFSET;
2683 oxu->regs = hcd->regs + OXU_OTG_CAP_OFFSET + \
2684 HC_LENGTH(readl(&oxu->caps->hc_capbase));
2686 oxu->mem = hcd->regs + OXU_SPH_MEM;
2687 } else {
2688 oxu->caps = hcd->regs + OXU_SPH_CAP_OFFSET;
2689 oxu->regs = hcd->regs + OXU_SPH_CAP_OFFSET + \
2690 HC_LENGTH(readl(&oxu->caps->hc_capbase));
2692 oxu->mem = hcd->regs + OXU_OTG_MEM;
2695 oxu->hcs_params = readl(&oxu->caps->hcs_params);
2696 oxu->sbrn = 0x20;
2698 ret = oxu_hcd_init(hcd);
2699 if (ret)
2700 return ret;
2702 return 0;
2705 static int oxu_run(struct usb_hcd *hcd)
2707 struct oxu_hcd *oxu = hcd_to_oxu(hcd);
2708 int retval;
2709 u32 temp, hcc_params;
2711 hcd->uses_new_polling = 1;
2713 /* EHCI spec section 4.1 */
2714 retval = ehci_reset(oxu);
2715 if (retval != 0) {
2716 ehci_mem_cleanup(oxu);
2717 return retval;
2719 writel(oxu->periodic_dma, &oxu->regs->frame_list);
2720 writel((u32) oxu->async->qh_dma, &oxu->regs->async_next);
2722 /* hcc_params controls whether oxu->regs->segment must (!!!)
2723 * be used; it constrains QH/ITD/SITD and QTD locations.
2724 * pci_pool consistent memory always uses segment zero.
2725 * streaming mappings for I/O buffers, like pci_map_single(),
2726 * can return segments above 4GB, if the device allows.
2728 * NOTE: the dma mask is visible through dma_supported(), so
2729 * drivers can pass this info along ... like NETIF_F_HIGHDMA,
2730 * Scsi_Host.highmem_io, and so forth. It's readonly to all
2731 * host side drivers though.
2733 hcc_params = readl(&oxu->caps->hcc_params);
2734 if (HCC_64BIT_ADDR(hcc_params))
2735 writel(0, &oxu->regs->segment);
2737 oxu->command &= ~(CMD_LRESET | CMD_IAAD | CMD_PSE |
2738 CMD_ASE | CMD_RESET);
2739 oxu->command |= CMD_RUN;
2740 writel(oxu->command, &oxu->regs->command);
2741 dbg_cmd(oxu, "init", oxu->command);
2744 * Start, enabling full USB 2.0 functionality ... usb 1.1 devices
2745 * are explicitly handed to companion controller(s), so no TT is
2746 * involved with the root hub. (Except where one is integrated,
2747 * and there's no companion controller unless maybe for USB OTG.)
2749 hcd->state = HC_STATE_RUNNING;
2750 writel(FLAG_CF, &oxu->regs->configured_flag);
2751 readl(&oxu->regs->command); /* unblock posted writes */
2753 temp = HC_VERSION(readl(&oxu->caps->hc_capbase));
2754 oxu_info(oxu, "USB %x.%x started, quasi-EHCI %x.%02x, driver %s%s\n",
2755 ((oxu->sbrn & 0xf0)>>4), (oxu->sbrn & 0x0f),
2756 temp >> 8, temp & 0xff, DRIVER_VERSION,
2757 ignore_oc ? ", overcurrent ignored" : "");
2759 writel(INTR_MASK, &oxu->regs->intr_enable); /* Turn On Interrupts */
2761 return 0;
2764 static void oxu_stop(struct usb_hcd *hcd)
2766 struct oxu_hcd *oxu = hcd_to_oxu(hcd);
2768 /* Turn off port power on all root hub ports. */
2769 ehci_port_power(oxu, 0);
2771 /* no more interrupts ... */
2772 del_timer_sync(&oxu->watchdog);
2774 spin_lock_irq(&oxu->lock);
2775 if (HC_IS_RUNNING(hcd->state))
2776 ehci_quiesce(oxu);
2778 ehci_reset(oxu);
2779 writel(0, &oxu->regs->intr_enable);
2780 spin_unlock_irq(&oxu->lock);
2782 /* let companion controllers work when we aren't */
2783 writel(0, &oxu->regs->configured_flag);
2785 /* root hub is shut down separately (first, when possible) */
2786 spin_lock_irq(&oxu->lock);
2787 if (oxu->async)
2788 ehci_work(oxu);
2789 spin_unlock_irq(&oxu->lock);
2790 ehci_mem_cleanup(oxu);
2792 dbg_status(oxu, "oxu_stop completed", readl(&oxu->regs->status));
2795 /* Kick in for silicon on any bus (not just pci, etc).
2796 * This forcibly disables dma and IRQs, helping kexec and other cases
2797 * where the next system software may expect clean state.
2799 static void oxu_shutdown(struct usb_hcd *hcd)
2801 struct oxu_hcd *oxu = hcd_to_oxu(hcd);
2803 (void) ehci_halt(oxu);
2804 ehci_turn_off_all_ports(oxu);
2806 /* make BIOS/etc use companion controller during reboot */
2807 writel(0, &oxu->regs->configured_flag);
2809 /* unblock posted writes */
2810 readl(&oxu->regs->configured_flag);
2813 /* Non-error returns are a promise to giveback() the urb later
2814 * we drop ownership so next owner (or urb unlink) can get it
2816 * urb + dev is in hcd.self.controller.urb_list
2817 * we're queueing TDs onto software and hardware lists
2819 * hcd-specific init for hcpriv hasn't been done yet
2821 * NOTE: control, bulk, and interrupt share the same code to append TDs
2822 * to a (possibly active) QH, and the same QH scanning code.
2824 static int __oxu_urb_enqueue(struct usb_hcd *hcd, struct urb *urb,
2825 gfp_t mem_flags)
2827 struct oxu_hcd *oxu = hcd_to_oxu(hcd);
2828 struct list_head qtd_list;
2830 INIT_LIST_HEAD(&qtd_list);
2832 switch (usb_pipetype(urb->pipe)) {
2833 case PIPE_CONTROL:
2834 case PIPE_BULK:
2835 default:
2836 if (!qh_urb_transaction(oxu, urb, &qtd_list, mem_flags))
2837 return -ENOMEM;
2838 return submit_async(oxu, urb, &qtd_list, mem_flags);
2840 case PIPE_INTERRUPT:
2841 if (!qh_urb_transaction(oxu, urb, &qtd_list, mem_flags))
2842 return -ENOMEM;
2843 return intr_submit(oxu, urb, &qtd_list, mem_flags);
2845 case PIPE_ISOCHRONOUS:
2846 if (urb->dev->speed == USB_SPEED_HIGH)
2847 return itd_submit(oxu, urb, mem_flags);
2848 else
2849 return sitd_submit(oxu, urb, mem_flags);
2853 /* This function is responsible for breaking URBs with big data size
2854 * into smaller size and processing small urbs in sequence.
2856 static int oxu_urb_enqueue(struct usb_hcd *hcd, struct urb *urb,
2857 gfp_t mem_flags)
2859 struct oxu_hcd *oxu = hcd_to_oxu(hcd);
2860 int num, rem;
2861 int transfer_buffer_length;
2862 void *transfer_buffer;
2863 struct urb *murb;
2864 int i, ret;
2866 /* If not bulk pipe just enqueue the URB */
2867 if (!usb_pipebulk(urb->pipe))
2868 return __oxu_urb_enqueue(hcd, urb, mem_flags);
2870 /* Otherwise we should verify the USB transfer buffer size! */
2871 transfer_buffer = urb->transfer_buffer;
2872 transfer_buffer_length = urb->transfer_buffer_length;
2874 num = urb->transfer_buffer_length / 4096;
2875 rem = urb->transfer_buffer_length % 4096;
2876 if (rem != 0)
2877 num++;
2879 /* If URB is smaller than 4096 bytes just enqueue it! */
2880 if (num == 1)
2881 return __oxu_urb_enqueue(hcd, urb, mem_flags);
2883 /* Ok, we have more job to do! :) */
2885 for (i = 0; i < num - 1; i++) {
2886 /* Get free micro URB poll till a free urb is received */
2888 do {
2889 murb = (struct urb *) oxu_murb_alloc(oxu);
2890 if (!murb)
2891 schedule();
2892 } while (!murb);
2894 /* Coping the urb */
2895 memcpy(murb, urb, sizeof(struct urb));
2897 murb->transfer_buffer_length = 4096;
2898 murb->transfer_buffer = transfer_buffer + i * 4096;
2900 /* Null pointer for the encodes that this is a micro urb */
2901 murb->complete = NULL;
2903 ((struct oxu_murb *) murb)->main = urb;
2904 ((struct oxu_murb *) murb)->last = 0;
2906 /* This loop is to guarantee urb to be processed when there's
2907 * not enough resources at a particular time by retrying.
2909 do {
2910 ret = __oxu_urb_enqueue(hcd, murb, mem_flags);
2911 if (ret)
2912 schedule();
2913 } while (ret);
2916 /* Last urb requires special handling */
2918 /* Get free micro URB poll till a free urb is received */
2919 do {
2920 murb = (struct urb *) oxu_murb_alloc(oxu);
2921 if (!murb)
2922 schedule();
2923 } while (!murb);
2925 /* Coping the urb */
2926 memcpy(murb, urb, sizeof(struct urb));
2928 murb->transfer_buffer_length = rem > 0 ? rem : 4096;
2929 murb->transfer_buffer = transfer_buffer + (num - 1) * 4096;
2931 /* Null pointer for the encodes that this is a micro urb */
2932 murb->complete = NULL;
2934 ((struct oxu_murb *) murb)->main = urb;
2935 ((struct oxu_murb *) murb)->last = 1;
2937 do {
2938 ret = __oxu_urb_enqueue(hcd, murb, mem_flags);
2939 if (ret)
2940 schedule();
2941 } while (ret);
2943 return ret;
2946 /* Remove from hardware lists.
2947 * Completions normally happen asynchronously
2949 static int oxu_urb_dequeue(struct usb_hcd *hcd, struct urb *urb, int status)
2951 struct oxu_hcd *oxu = hcd_to_oxu(hcd);
2952 struct ehci_qh *qh;
2953 unsigned long flags;
2955 spin_lock_irqsave(&oxu->lock, flags);
2956 switch (usb_pipetype(urb->pipe)) {
2957 case PIPE_CONTROL:
2958 case PIPE_BULK:
2959 default:
2960 qh = (struct ehci_qh *) urb->hcpriv;
2961 if (!qh)
2962 break;
2963 unlink_async(oxu, qh);
2964 break;
2966 case PIPE_INTERRUPT:
2967 qh = (struct ehci_qh *) urb->hcpriv;
2968 if (!qh)
2969 break;
2970 switch (qh->qh_state) {
2971 case QH_STATE_LINKED:
2972 intr_deschedule(oxu, qh);
2973 /* FALL THROUGH */
2974 case QH_STATE_IDLE:
2975 qh_completions(oxu, qh);
2976 break;
2977 default:
2978 oxu_dbg(oxu, "bogus qh %p state %d\n",
2979 qh, qh->qh_state);
2980 goto done;
2983 /* reschedule QH iff another request is queued */
2984 if (!list_empty(&qh->qtd_list)
2985 && HC_IS_RUNNING(hcd->state)) {
2986 int status;
2988 status = qh_schedule(oxu, qh);
2989 spin_unlock_irqrestore(&oxu->lock, flags);
2991 if (status != 0) {
2992 /* shouldn't happen often, but ...
2993 * FIXME kill those tds' urbs
2995 dev_err(hcd->self.controller,
2996 "can't reschedule qh %p, err %d\n", qh,
2997 status);
2999 return status;
3001 break;
3003 done:
3004 spin_unlock_irqrestore(&oxu->lock, flags);
3005 return 0;
3008 /* Bulk qh holds the data toggle */
3009 static void oxu_endpoint_disable(struct usb_hcd *hcd,
3010 struct usb_host_endpoint *ep)
3012 struct oxu_hcd *oxu = hcd_to_oxu(hcd);
3013 unsigned long flags;
3014 struct ehci_qh *qh, *tmp;
3016 /* ASSERT: any requests/urbs are being unlinked */
3017 /* ASSERT: nobody can be submitting urbs for this any more */
3019 rescan:
3020 spin_lock_irqsave(&oxu->lock, flags);
3021 qh = ep->hcpriv;
3022 if (!qh)
3023 goto done;
3025 /* endpoints can be iso streams. for now, we don't
3026 * accelerate iso completions ... so spin a while.
3028 if (qh->hw_info1 == 0) {
3029 oxu_vdbg(oxu, "iso delay\n");
3030 goto idle_timeout;
3033 if (!HC_IS_RUNNING(hcd->state))
3034 qh->qh_state = QH_STATE_IDLE;
3035 switch (qh->qh_state) {
3036 case QH_STATE_LINKED:
3037 for (tmp = oxu->async->qh_next.qh;
3038 tmp && tmp != qh;
3039 tmp = tmp->qh_next.qh)
3040 continue;
3041 /* periodic qh self-unlinks on empty */
3042 if (!tmp)
3043 goto nogood;
3044 unlink_async(oxu, qh);
3045 /* FALL THROUGH */
3046 case QH_STATE_UNLINK: /* wait for hw to finish? */
3047 idle_timeout:
3048 spin_unlock_irqrestore(&oxu->lock, flags);
3049 schedule_timeout_uninterruptible(1);
3050 goto rescan;
3051 case QH_STATE_IDLE: /* fully unlinked */
3052 if (list_empty(&qh->qtd_list)) {
3053 qh_put(qh);
3054 break;
3056 /* else FALL THROUGH */
3057 default:
3058 nogood:
3059 /* caller was supposed to have unlinked any requests;
3060 * that's not our job. just leak this memory.
3062 oxu_err(oxu, "qh %p (#%02x) state %d%s\n",
3063 qh, ep->desc.bEndpointAddress, qh->qh_state,
3064 list_empty(&qh->qtd_list) ? "" : "(has tds)");
3065 break;
3067 ep->hcpriv = NULL;
3068 done:
3069 spin_unlock_irqrestore(&oxu->lock, flags);
3072 static int oxu_get_frame(struct usb_hcd *hcd)
3074 struct oxu_hcd *oxu = hcd_to_oxu(hcd);
3076 return (readl(&oxu->regs->frame_index) >> 3) %
3077 oxu->periodic_size;
3080 /* Build "status change" packet (one or two bytes) from HC registers */
3081 static int oxu_hub_status_data(struct usb_hcd *hcd, char *buf)
3083 struct oxu_hcd *oxu = hcd_to_oxu(hcd);
3084 u32 temp, mask, status = 0;
3085 int ports, i, retval = 1;
3086 unsigned long flags;
3088 /* if !PM_RUNTIME, root hub timers won't get shut down ... */
3089 if (!HC_IS_RUNNING(hcd->state))
3090 return 0;
3092 /* init status to no-changes */
3093 buf[0] = 0;
3094 ports = HCS_N_PORTS(oxu->hcs_params);
3095 if (ports > 7) {
3096 buf[1] = 0;
3097 retval++;
3100 /* Some boards (mostly VIA?) report bogus overcurrent indications,
3101 * causing massive log spam unless we completely ignore them. It
3102 * may be relevant that VIA VT8235 controllers, where PORT_POWER is
3103 * always set, seem to clear PORT_OCC and PORT_CSC when writing to
3104 * PORT_POWER; that's surprising, but maybe within-spec.
3106 if (!ignore_oc)
3107 mask = PORT_CSC | PORT_PEC | PORT_OCC;
3108 else
3109 mask = PORT_CSC | PORT_PEC;
3111 /* no hub change reports (bit 0) for now (power, ...) */
3113 /* port N changes (bit N)? */
3114 spin_lock_irqsave(&oxu->lock, flags);
3115 for (i = 0; i < ports; i++) {
3116 temp = readl(&oxu->regs->port_status[i]);
3119 * Return status information even for ports with OWNER set.
3120 * Otherwise khubd wouldn't see the disconnect event when a
3121 * high-speed device is switched over to the companion
3122 * controller by the user.
3125 if (!(temp & PORT_CONNECT))
3126 oxu->reset_done[i] = 0;
3127 if ((temp & mask) != 0 || ((temp & PORT_RESUME) != 0 &&
3128 time_after_eq(jiffies, oxu->reset_done[i]))) {
3129 if (i < 7)
3130 buf[0] |= 1 << (i + 1);
3131 else
3132 buf[1] |= 1 << (i - 7);
3133 status = STS_PCD;
3136 /* FIXME autosuspend idle root hubs */
3137 spin_unlock_irqrestore(&oxu->lock, flags);
3138 return status ? retval : 0;
3141 /* Returns the speed of a device attached to a port on the root hub. */
3142 static inline unsigned int oxu_port_speed(struct oxu_hcd *oxu,
3143 unsigned int portsc)
3145 switch ((portsc >> 26) & 3) {
3146 case 0:
3147 return 0;
3148 case 1:
3149 return USB_PORT_STAT_LOW_SPEED;
3150 case 2:
3151 default:
3152 return USB_PORT_STAT_HIGH_SPEED;
3156 #define PORT_WAKE_BITS (PORT_WKOC_E|PORT_WKDISC_E|PORT_WKCONN_E)
3157 static int oxu_hub_control(struct usb_hcd *hcd, u16 typeReq,
3158 u16 wValue, u16 wIndex, char *buf, u16 wLength)
3160 struct oxu_hcd *oxu = hcd_to_oxu(hcd);
3161 int ports = HCS_N_PORTS(oxu->hcs_params);
3162 u32 __iomem *status_reg = &oxu->regs->port_status[wIndex - 1];
3163 u32 temp, status;
3164 unsigned long flags;
3165 int retval = 0;
3166 unsigned selector;
3169 * FIXME: support SetPortFeatures USB_PORT_FEAT_INDICATOR.
3170 * HCS_INDICATOR may say we can change LEDs to off/amber/green.
3171 * (track current state ourselves) ... blink for diagnostics,
3172 * power, "this is the one", etc. EHCI spec supports this.
3175 spin_lock_irqsave(&oxu->lock, flags);
3176 switch (typeReq) {
3177 case ClearHubFeature:
3178 switch (wValue) {
3179 case C_HUB_LOCAL_POWER:
3180 case C_HUB_OVER_CURRENT:
3181 /* no hub-wide feature/status flags */
3182 break;
3183 default:
3184 goto error;
3186 break;
3187 case ClearPortFeature:
3188 if (!wIndex || wIndex > ports)
3189 goto error;
3190 wIndex--;
3191 temp = readl(status_reg);
3194 * Even if OWNER is set, so the port is owned by the
3195 * companion controller, khubd needs to be able to clear
3196 * the port-change status bits (especially
3197 * USB_PORT_STAT_C_CONNECTION).
3200 switch (wValue) {
3201 case USB_PORT_FEAT_ENABLE:
3202 writel(temp & ~PORT_PE, status_reg);
3203 break;
3204 case USB_PORT_FEAT_C_ENABLE:
3205 writel((temp & ~PORT_RWC_BITS) | PORT_PEC, status_reg);
3206 break;
3207 case USB_PORT_FEAT_SUSPEND:
3208 if (temp & PORT_RESET)
3209 goto error;
3210 if (temp & PORT_SUSPEND) {
3211 if ((temp & PORT_PE) == 0)
3212 goto error;
3213 /* resume signaling for 20 msec */
3214 temp &= ~(PORT_RWC_BITS | PORT_WAKE_BITS);
3215 writel(temp | PORT_RESUME, status_reg);
3216 oxu->reset_done[wIndex] = jiffies
3217 + msecs_to_jiffies(20);
3219 break;
3220 case USB_PORT_FEAT_C_SUSPEND:
3221 /* we auto-clear this feature */
3222 break;
3223 case USB_PORT_FEAT_POWER:
3224 if (HCS_PPC(oxu->hcs_params))
3225 writel(temp & ~(PORT_RWC_BITS | PORT_POWER),
3226 status_reg);
3227 break;
3228 case USB_PORT_FEAT_C_CONNECTION:
3229 writel((temp & ~PORT_RWC_BITS) | PORT_CSC, status_reg);
3230 break;
3231 case USB_PORT_FEAT_C_OVER_CURRENT:
3232 writel((temp & ~PORT_RWC_BITS) | PORT_OCC, status_reg);
3233 break;
3234 case USB_PORT_FEAT_C_RESET:
3235 /* GetPortStatus clears reset */
3236 break;
3237 default:
3238 goto error;
3240 readl(&oxu->regs->command); /* unblock posted write */
3241 break;
3242 case GetHubDescriptor:
3243 ehci_hub_descriptor(oxu, (struct usb_hub_descriptor *)
3244 buf);
3245 break;
3246 case GetHubStatus:
3247 /* no hub-wide feature/status flags */
3248 memset(buf, 0, 4);
3249 break;
3250 case GetPortStatus:
3251 if (!wIndex || wIndex > ports)
3252 goto error;
3253 wIndex--;
3254 status = 0;
3255 temp = readl(status_reg);
3257 /* wPortChange bits */
3258 if (temp & PORT_CSC)
3259 status |= USB_PORT_STAT_C_CONNECTION << 16;
3260 if (temp & PORT_PEC)
3261 status |= USB_PORT_STAT_C_ENABLE << 16;
3262 if ((temp & PORT_OCC) && !ignore_oc)
3263 status |= USB_PORT_STAT_C_OVERCURRENT << 16;
3265 /* whoever resumes must GetPortStatus to complete it!! */
3266 if (temp & PORT_RESUME) {
3268 /* Remote Wakeup received? */
3269 if (!oxu->reset_done[wIndex]) {
3270 /* resume signaling for 20 msec */
3271 oxu->reset_done[wIndex] = jiffies
3272 + msecs_to_jiffies(20);
3273 /* check the port again */
3274 mod_timer(&oxu_to_hcd(oxu)->rh_timer,
3275 oxu->reset_done[wIndex]);
3278 /* resume completed? */
3279 else if (time_after_eq(jiffies,
3280 oxu->reset_done[wIndex])) {
3281 status |= USB_PORT_STAT_C_SUSPEND << 16;
3282 oxu->reset_done[wIndex] = 0;
3284 /* stop resume signaling */
3285 temp = readl(status_reg);
3286 writel(temp & ~(PORT_RWC_BITS | PORT_RESUME),
3287 status_reg);
3288 retval = handshake(oxu, status_reg,
3289 PORT_RESUME, 0, 2000 /* 2msec */);
3290 if (retval != 0) {
3291 oxu_err(oxu,
3292 "port %d resume error %d\n",
3293 wIndex + 1, retval);
3294 goto error;
3296 temp &= ~(PORT_SUSPEND|PORT_RESUME|(3<<10));
3300 /* whoever resets must GetPortStatus to complete it!! */
3301 if ((temp & PORT_RESET)
3302 && time_after_eq(jiffies,
3303 oxu->reset_done[wIndex])) {
3304 status |= USB_PORT_STAT_C_RESET << 16;
3305 oxu->reset_done[wIndex] = 0;
3307 /* force reset to complete */
3308 writel(temp & ~(PORT_RWC_BITS | PORT_RESET),
3309 status_reg);
3310 /* REVISIT: some hardware needs 550+ usec to clear
3311 * this bit; seems too long to spin routinely...
3313 retval = handshake(oxu, status_reg,
3314 PORT_RESET, 0, 750);
3315 if (retval != 0) {
3316 oxu_err(oxu, "port %d reset error %d\n",
3317 wIndex + 1, retval);
3318 goto error;
3321 /* see what we found out */
3322 temp = check_reset_complete(oxu, wIndex, status_reg,
3323 readl(status_reg));
3326 /* transfer dedicated ports to the companion hc */
3327 if ((temp & PORT_CONNECT) &&
3328 test_bit(wIndex, &oxu->companion_ports)) {
3329 temp &= ~PORT_RWC_BITS;
3330 temp |= PORT_OWNER;
3331 writel(temp, status_reg);
3332 oxu_dbg(oxu, "port %d --> companion\n", wIndex + 1);
3333 temp = readl(status_reg);
3337 * Even if OWNER is set, there's no harm letting khubd
3338 * see the wPortStatus values (they should all be 0 except
3339 * for PORT_POWER anyway).
3342 if (temp & PORT_CONNECT) {
3343 status |= USB_PORT_STAT_CONNECTION;
3344 /* status may be from integrated TT */
3345 status |= oxu_port_speed(oxu, temp);
3347 if (temp & PORT_PE)
3348 status |= USB_PORT_STAT_ENABLE;
3349 if (temp & (PORT_SUSPEND|PORT_RESUME))
3350 status |= USB_PORT_STAT_SUSPEND;
3351 if (temp & PORT_OC)
3352 status |= USB_PORT_STAT_OVERCURRENT;
3353 if (temp & PORT_RESET)
3354 status |= USB_PORT_STAT_RESET;
3355 if (temp & PORT_POWER)
3356 status |= USB_PORT_STAT_POWER;
3358 #ifndef OXU_VERBOSE_DEBUG
3359 if (status & ~0xffff) /* only if wPortChange is interesting */
3360 #endif
3361 dbg_port(oxu, "GetStatus", wIndex + 1, temp);
3362 put_unaligned(cpu_to_le32(status), (__le32 *) buf);
3363 break;
3364 case SetHubFeature:
3365 switch (wValue) {
3366 case C_HUB_LOCAL_POWER:
3367 case C_HUB_OVER_CURRENT:
3368 /* no hub-wide feature/status flags */
3369 break;
3370 default:
3371 goto error;
3373 break;
3374 case SetPortFeature:
3375 selector = wIndex >> 8;
3376 wIndex &= 0xff;
3377 if (!wIndex || wIndex > ports)
3378 goto error;
3379 wIndex--;
3380 temp = readl(status_reg);
3381 if (temp & PORT_OWNER)
3382 break;
3384 temp &= ~PORT_RWC_BITS;
3385 switch (wValue) {
3386 case USB_PORT_FEAT_SUSPEND:
3387 if ((temp & PORT_PE) == 0
3388 || (temp & PORT_RESET) != 0)
3389 goto error;
3390 if (device_may_wakeup(&hcd->self.root_hub->dev))
3391 temp |= PORT_WAKE_BITS;
3392 writel(temp | PORT_SUSPEND, status_reg);
3393 break;
3394 case USB_PORT_FEAT_POWER:
3395 if (HCS_PPC(oxu->hcs_params))
3396 writel(temp | PORT_POWER, status_reg);
3397 break;
3398 case USB_PORT_FEAT_RESET:
3399 if (temp & PORT_RESUME)
3400 goto error;
3401 /* line status bits may report this as low speed,
3402 * which can be fine if this root hub has a
3403 * transaction translator built in.
3405 oxu_vdbg(oxu, "port %d reset\n", wIndex + 1);
3406 temp |= PORT_RESET;
3407 temp &= ~PORT_PE;
3410 * caller must wait, then call GetPortStatus
3411 * usb 2.0 spec says 50 ms resets on root
3413 oxu->reset_done[wIndex] = jiffies
3414 + msecs_to_jiffies(50);
3415 writel(temp, status_reg);
3416 break;
3418 /* For downstream facing ports (these): one hub port is put
3419 * into test mode according to USB2 11.24.2.13, then the hub
3420 * must be reset (which for root hub now means rmmod+modprobe,
3421 * or else system reboot). See EHCI 2.3.9 and 4.14 for info
3422 * about the EHCI-specific stuff.
3424 case USB_PORT_FEAT_TEST:
3425 if (!selector || selector > 5)
3426 goto error;
3427 ehci_quiesce(oxu);
3428 ehci_halt(oxu);
3429 temp |= selector << 16;
3430 writel(temp, status_reg);
3431 break;
3433 default:
3434 goto error;
3436 readl(&oxu->regs->command); /* unblock posted writes */
3437 break;
3439 default:
3440 error:
3441 /* "stall" on error */
3442 retval = -EPIPE;
3444 spin_unlock_irqrestore(&oxu->lock, flags);
3445 return retval;
3448 #ifdef CONFIG_PM
3450 static int oxu_bus_suspend(struct usb_hcd *hcd)
3452 struct oxu_hcd *oxu = hcd_to_oxu(hcd);
3453 int port;
3454 int mask;
3456 oxu_dbg(oxu, "suspend root hub\n");
3458 if (time_before(jiffies, oxu->next_statechange))
3459 msleep(5);
3461 port = HCS_N_PORTS(oxu->hcs_params);
3462 spin_lock_irq(&oxu->lock);
3464 /* stop schedules, clean any completed work */
3465 if (HC_IS_RUNNING(hcd->state)) {
3466 ehci_quiesce(oxu);
3467 hcd->state = HC_STATE_QUIESCING;
3469 oxu->command = readl(&oxu->regs->command);
3470 if (oxu->reclaim)
3471 oxu->reclaim_ready = 1;
3472 ehci_work(oxu);
3474 /* Unlike other USB host controller types, EHCI doesn't have
3475 * any notion of "global" or bus-wide suspend. The driver has
3476 * to manually suspend all the active unsuspended ports, and
3477 * then manually resume them in the bus_resume() routine.
3479 oxu->bus_suspended = 0;
3480 while (port--) {
3481 u32 __iomem *reg = &oxu->regs->port_status[port];
3482 u32 t1 = readl(reg) & ~PORT_RWC_BITS;
3483 u32 t2 = t1;
3485 /* keep track of which ports we suspend */
3486 if ((t1 & PORT_PE) && !(t1 & PORT_OWNER) &&
3487 !(t1 & PORT_SUSPEND)) {
3488 t2 |= PORT_SUSPEND;
3489 set_bit(port, &oxu->bus_suspended);
3492 /* enable remote wakeup on all ports */
3493 if (device_may_wakeup(&hcd->self.root_hub->dev))
3494 t2 |= PORT_WKOC_E|PORT_WKDISC_E|PORT_WKCONN_E;
3495 else
3496 t2 &= ~(PORT_WKOC_E|PORT_WKDISC_E|PORT_WKCONN_E);
3498 if (t1 != t2) {
3499 oxu_vdbg(oxu, "port %d, %08x -> %08x\n",
3500 port + 1, t1, t2);
3501 writel(t2, reg);
3505 /* turn off now-idle HC */
3506 del_timer_sync(&oxu->watchdog);
3507 ehci_halt(oxu);
3508 hcd->state = HC_STATE_SUSPENDED;
3510 /* allow remote wakeup */
3511 mask = INTR_MASK;
3512 if (!device_may_wakeup(&hcd->self.root_hub->dev))
3513 mask &= ~STS_PCD;
3514 writel(mask, &oxu->regs->intr_enable);
3515 readl(&oxu->regs->intr_enable);
3517 oxu->next_statechange = jiffies + msecs_to_jiffies(10);
3518 spin_unlock_irq(&oxu->lock);
3519 return 0;
3522 /* Caller has locked the root hub, and should reset/reinit on error */
3523 static int oxu_bus_resume(struct usb_hcd *hcd)
3525 struct oxu_hcd *oxu = hcd_to_oxu(hcd);
3526 u32 temp;
3527 int i;
3529 if (time_before(jiffies, oxu->next_statechange))
3530 msleep(5);
3531 spin_lock_irq(&oxu->lock);
3533 /* Ideally and we've got a real resume here, and no port's power
3534 * was lost. (For PCI, that means Vaux was maintained.) But we
3535 * could instead be restoring a swsusp snapshot -- so that BIOS was
3536 * the last user of the controller, not reset/pm hardware keeping
3537 * state we gave to it.
3539 temp = readl(&oxu->regs->intr_enable);
3540 oxu_dbg(oxu, "resume root hub%s\n", temp ? "" : " after power loss");
3542 /* at least some APM implementations will try to deliver
3543 * IRQs right away, so delay them until we're ready.
3545 writel(0, &oxu->regs->intr_enable);
3547 /* re-init operational registers */
3548 writel(0, &oxu->regs->segment);
3549 writel(oxu->periodic_dma, &oxu->regs->frame_list);
3550 writel((u32) oxu->async->qh_dma, &oxu->regs->async_next);
3552 /* restore CMD_RUN, framelist size, and irq threshold */
3553 writel(oxu->command, &oxu->regs->command);
3555 /* Some controller/firmware combinations need a delay during which
3556 * they set up the port statuses. See Bugzilla #8190. */
3557 mdelay(8);
3559 /* manually resume the ports we suspended during bus_suspend() */
3560 i = HCS_N_PORTS(oxu->hcs_params);
3561 while (i--) {
3562 temp = readl(&oxu->regs->port_status[i]);
3563 temp &= ~(PORT_RWC_BITS
3564 | PORT_WKOC_E | PORT_WKDISC_E | PORT_WKCONN_E);
3565 if (test_bit(i, &oxu->bus_suspended) && (temp & PORT_SUSPEND)) {
3566 oxu->reset_done[i] = jiffies + msecs_to_jiffies(20);
3567 temp |= PORT_RESUME;
3569 writel(temp, &oxu->regs->port_status[i]);
3571 i = HCS_N_PORTS(oxu->hcs_params);
3572 mdelay(20);
3573 while (i--) {
3574 temp = readl(&oxu->regs->port_status[i]);
3575 if (test_bit(i, &oxu->bus_suspended) && (temp & PORT_SUSPEND)) {
3576 temp &= ~(PORT_RWC_BITS | PORT_RESUME);
3577 writel(temp, &oxu->regs->port_status[i]);
3578 oxu_vdbg(oxu, "resumed port %d\n", i + 1);
3581 (void) readl(&oxu->regs->command);
3583 /* maybe re-activate the schedule(s) */
3584 temp = 0;
3585 if (oxu->async->qh_next.qh)
3586 temp |= CMD_ASE;
3587 if (oxu->periodic_sched)
3588 temp |= CMD_PSE;
3589 if (temp) {
3590 oxu->command |= temp;
3591 writel(oxu->command, &oxu->regs->command);
3594 oxu->next_statechange = jiffies + msecs_to_jiffies(5);
3595 hcd->state = HC_STATE_RUNNING;
3597 /* Now we can safely re-enable irqs */
3598 writel(INTR_MASK, &oxu->regs->intr_enable);
3600 spin_unlock_irq(&oxu->lock);
3601 return 0;
3604 #else
3606 static int oxu_bus_suspend(struct usb_hcd *hcd)
3608 return 0;
3611 static int oxu_bus_resume(struct usb_hcd *hcd)
3613 return 0;
3616 #endif /* CONFIG_PM */
3618 static const struct hc_driver oxu_hc_driver = {
3619 .description = "oxu210hp_hcd",
3620 .product_desc = "oxu210hp HCD",
3621 .hcd_priv_size = sizeof(struct oxu_hcd),
3624 * Generic hardware linkage
3626 .irq = oxu_irq,
3627 .flags = HCD_MEMORY | HCD_USB2,
3630 * Basic lifecycle operations
3632 .reset = oxu_reset,
3633 .start = oxu_run,
3634 .stop = oxu_stop,
3635 .shutdown = oxu_shutdown,
3638 * Managing i/o requests and associated device resources
3640 .urb_enqueue = oxu_urb_enqueue,
3641 .urb_dequeue = oxu_urb_dequeue,
3642 .endpoint_disable = oxu_endpoint_disable,
3645 * Scheduling support
3647 .get_frame_number = oxu_get_frame,
3650 * Root hub support
3652 .hub_status_data = oxu_hub_status_data,
3653 .hub_control = oxu_hub_control,
3654 .bus_suspend = oxu_bus_suspend,
3655 .bus_resume = oxu_bus_resume,
3659 * Module stuff
3662 static void oxu_configuration(struct platform_device *pdev, void *base)
3664 u32 tmp;
3666 /* Initialize top level registers.
3667 * First write ever
3669 oxu_writel(base, OXU_HOSTIFCONFIG, 0x0000037D);
3670 oxu_writel(base, OXU_SOFTRESET, OXU_SRESET);
3671 oxu_writel(base, OXU_HOSTIFCONFIG, 0x0000037D);
3673 tmp = oxu_readl(base, OXU_PIOBURSTREADCTRL);
3674 oxu_writel(base, OXU_PIOBURSTREADCTRL, tmp | 0x0040);
3676 oxu_writel(base, OXU_ASO, OXU_SPHPOEN | OXU_OVRCCURPUPDEN |
3677 OXU_COMPARATOR | OXU_ASO_OP);
3679 tmp = oxu_readl(base, OXU_CLKCTRL_SET);
3680 oxu_writel(base, OXU_CLKCTRL_SET, tmp | OXU_SYSCLKEN | OXU_USBOTGCLKEN);
3682 /* Clear all top interrupt enable */
3683 oxu_writel(base, OXU_CHIPIRQEN_CLR, 0xff);
3685 /* Clear all top interrupt status */
3686 oxu_writel(base, OXU_CHIPIRQSTATUS, 0xff);
3688 /* Enable all needed top interrupt except OTG SPH core */
3689 oxu_writel(base, OXU_CHIPIRQEN_SET, OXU_USBSPHLPWUI | OXU_USBOTGLPWUI);
3692 static int oxu_verify_id(struct platform_device *pdev, void *base)
3694 u32 id;
3695 static const char * const bo[] = {
3696 "reserved",
3697 "128-pin LQFP",
3698 "84-pin TFBGA",
3699 "reserved",
3702 /* Read controller signature register to find a match */
3703 id = oxu_readl(base, OXU_DEVICEID);
3704 dev_info(&pdev->dev, "device ID %x\n", id);
3705 if ((id & OXU_REV_MASK) != (OXU_REV_2100 << OXU_REV_SHIFT))
3706 return -1;
3708 dev_info(&pdev->dev, "found device %x %s (%04x:%04x)\n",
3709 id >> OXU_REV_SHIFT,
3710 bo[(id & OXU_BO_MASK) >> OXU_BO_SHIFT],
3711 (id & OXU_MAJ_REV_MASK) >> OXU_MAJ_REV_SHIFT,
3712 (id & OXU_MIN_REV_MASK) >> OXU_MIN_REV_SHIFT);
3714 return 0;
3717 static const struct hc_driver oxu_hc_driver;
3718 static struct usb_hcd *oxu_create(struct platform_device *pdev,
3719 unsigned long memstart, unsigned long memlen,
3720 void *base, int irq, int otg)
3722 struct device *dev = &pdev->dev;
3724 struct usb_hcd *hcd;
3725 struct oxu_hcd *oxu;
3726 int ret;
3728 /* Set endian mode and host mode */
3729 oxu_writel(base + (otg ? OXU_OTG_CORE_OFFSET : OXU_SPH_CORE_OFFSET),
3730 OXU_USBMODE,
3731 OXU_CM_HOST_ONLY | OXU_ES_LITTLE | OXU_VBPS);
3733 hcd = usb_create_hcd(&oxu_hc_driver, dev,
3734 otg ? "oxu210hp_otg" : "oxu210hp_sph");
3735 if (!hcd)
3736 return ERR_PTR(-ENOMEM);
3738 hcd->rsrc_start = memstart;
3739 hcd->rsrc_len = memlen;
3740 hcd->regs = base;
3741 hcd->irq = irq;
3742 hcd->state = HC_STATE_HALT;
3744 oxu = hcd_to_oxu(hcd);
3745 oxu->is_otg = otg;
3747 ret = usb_add_hcd(hcd, irq, IRQF_SHARED);
3748 if (ret < 0)
3749 return ERR_PTR(ret);
3751 return hcd;
3754 static int oxu_init(struct platform_device *pdev,
3755 unsigned long memstart, unsigned long memlen,
3756 void *base, int irq)
3758 struct oxu_info *info = platform_get_drvdata(pdev);
3759 struct usb_hcd *hcd;
3760 int ret;
3762 /* First time configuration at start up */
3763 oxu_configuration(pdev, base);
3765 ret = oxu_verify_id(pdev, base);
3766 if (ret) {
3767 dev_err(&pdev->dev, "no devices found!\n");
3768 return -ENODEV;
3771 /* Create the OTG controller */
3772 hcd = oxu_create(pdev, memstart, memlen, base, irq, 1);
3773 if (IS_ERR(hcd)) {
3774 dev_err(&pdev->dev, "cannot create OTG controller!\n");
3775 ret = PTR_ERR(hcd);
3776 goto error_create_otg;
3778 info->hcd[0] = hcd;
3780 /* Create the SPH host controller */
3781 hcd = oxu_create(pdev, memstart, memlen, base, irq, 0);
3782 if (IS_ERR(hcd)) {
3783 dev_err(&pdev->dev, "cannot create SPH controller!\n");
3784 ret = PTR_ERR(hcd);
3785 goto error_create_sph;
3787 info->hcd[1] = hcd;
3789 oxu_writel(base, OXU_CHIPIRQEN_SET,
3790 oxu_readl(base, OXU_CHIPIRQEN_SET) | 3);
3792 return 0;
3794 error_create_sph:
3795 usb_remove_hcd(info->hcd[0]);
3796 usb_put_hcd(info->hcd[0]);
3798 error_create_otg:
3799 return ret;
3802 static int oxu_drv_probe(struct platform_device *pdev)
3804 struct resource *res;
3805 void *base;
3806 unsigned long memstart, memlen;
3807 int irq, ret;
3808 struct oxu_info *info;
3810 if (usb_disabled())
3811 return -ENODEV;
3814 * Get the platform resources
3816 res = platform_get_resource(pdev, IORESOURCE_IRQ, 0);
3817 if (!res) {
3818 dev_err(&pdev->dev,
3819 "no IRQ! Check %s setup!\n", dev_name(&pdev->dev));
3820 return -ENODEV;
3822 irq = res->start;
3823 dev_dbg(&pdev->dev, "IRQ resource %d\n", irq);
3825 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
3826 if (!res) {
3827 dev_err(&pdev->dev, "no registers address! Check %s setup!\n",
3828 dev_name(&pdev->dev));
3829 return -ENODEV;
3831 memstart = res->start;
3832 memlen = resource_size(res);
3833 dev_dbg(&pdev->dev, "MEM resource %lx-%lx\n", memstart, memlen);
3834 if (!request_mem_region(memstart, memlen,
3835 oxu_hc_driver.description)) {
3836 dev_dbg(&pdev->dev, "memory area already in use\n");
3837 return -EBUSY;
3840 ret = irq_set_irq_type(irq, IRQF_TRIGGER_FALLING);
3841 if (ret) {
3842 dev_err(&pdev->dev, "error setting irq type\n");
3843 ret = -EFAULT;
3844 goto error_set_irq_type;
3847 base = ioremap(memstart, memlen);
3848 if (!base) {
3849 dev_dbg(&pdev->dev, "error mapping memory\n");
3850 ret = -EFAULT;
3851 goto error_ioremap;
3854 /* Allocate a driver data struct to hold useful info for both
3855 * SPH & OTG devices
3857 info = kzalloc(sizeof(struct oxu_info), GFP_KERNEL);
3858 if (!info) {
3859 dev_dbg(&pdev->dev, "error allocating memory\n");
3860 ret = -EFAULT;
3861 goto error_alloc;
3863 platform_set_drvdata(pdev, info);
3865 ret = oxu_init(pdev, memstart, memlen, base, irq);
3866 if (ret < 0) {
3867 dev_dbg(&pdev->dev, "cannot init USB devices\n");
3868 goto error_init;
3871 dev_info(&pdev->dev, "devices enabled and running\n");
3872 platform_set_drvdata(pdev, info);
3874 return 0;
3876 error_init:
3877 kfree(info);
3879 error_alloc:
3880 iounmap(base);
3882 error_set_irq_type:
3883 error_ioremap:
3884 release_mem_region(memstart, memlen);
3886 dev_err(&pdev->dev, "init %s fail, %d\n", dev_name(&pdev->dev), ret);
3887 return ret;
3890 static void oxu_remove(struct platform_device *pdev, struct usb_hcd *hcd)
3892 usb_remove_hcd(hcd);
3893 usb_put_hcd(hcd);
3896 static int oxu_drv_remove(struct platform_device *pdev)
3898 struct oxu_info *info = platform_get_drvdata(pdev);
3899 unsigned long memstart = info->hcd[0]->rsrc_start,
3900 memlen = info->hcd[0]->rsrc_len;
3901 void *base = info->hcd[0]->regs;
3903 oxu_remove(pdev, info->hcd[0]);
3904 oxu_remove(pdev, info->hcd[1]);
3906 iounmap(base);
3907 release_mem_region(memstart, memlen);
3909 kfree(info);
3911 return 0;
3914 static void oxu_drv_shutdown(struct platform_device *pdev)
3916 oxu_drv_remove(pdev);
3919 #if 0
3920 /* FIXME: TODO */
3921 static int oxu_drv_suspend(struct device *dev)
3923 struct platform_device *pdev = to_platform_device(dev);
3924 struct usb_hcd *hcd = dev_get_drvdata(dev);
3926 return 0;
3929 static int oxu_drv_resume(struct device *dev)
3931 struct platform_device *pdev = to_platform_device(dev);
3932 struct usb_hcd *hcd = dev_get_drvdata(dev);
3934 return 0;
3936 #else
3937 #define oxu_drv_suspend NULL
3938 #define oxu_drv_resume NULL
3939 #endif
3941 static struct platform_driver oxu_driver = {
3942 .probe = oxu_drv_probe,
3943 .remove = oxu_drv_remove,
3944 .shutdown = oxu_drv_shutdown,
3945 .suspend = oxu_drv_suspend,
3946 .resume = oxu_drv_resume,
3947 .driver = {
3948 .name = "oxu210hp-hcd",
3949 .bus = &platform_bus_type
3953 module_platform_driver(oxu_driver);
3955 MODULE_DESCRIPTION("Oxford OXU210HP HCD driver - ver. " DRIVER_VERSION);
3956 MODULE_AUTHOR("Rodolfo Giometti <giometti@linux.it>");
3957 MODULE_LICENSE("GPL");