mfd: wm8350-i2c: Make sure the i2c regmap functions are compiled
[linux/fpc-iii.git] / drivers / usb / host / xhci-ring.c
blob4bcea54f60cd9edae3996719982765c8a533beb7
1 /*
2 * xHCI host controller driver
4 * Copyright (C) 2008 Intel Corp.
6 * Author: Sarah Sharp
7 * Some code borrowed from the Linux EHCI driver.
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License version 2 as
11 * published by the Free Software Foundation.
13 * This program is distributed in the hope that it will be useful, but
14 * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
15 * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 * for more details.
18 * You should have received a copy of the GNU General Public License
19 * along with this program; if not, write to the Free Software Foundation,
20 * Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
24 * Ring initialization rules:
25 * 1. Each segment is initialized to zero, except for link TRBs.
26 * 2. Ring cycle state = 0. This represents Producer Cycle State (PCS) or
27 * Consumer Cycle State (CCS), depending on ring function.
28 * 3. Enqueue pointer = dequeue pointer = address of first TRB in the segment.
30 * Ring behavior rules:
31 * 1. A ring is empty if enqueue == dequeue. This means there will always be at
32 * least one free TRB in the ring. This is useful if you want to turn that
33 * into a link TRB and expand the ring.
34 * 2. When incrementing an enqueue or dequeue pointer, if the next TRB is a
35 * link TRB, then load the pointer with the address in the link TRB. If the
36 * link TRB had its toggle bit set, you may need to update the ring cycle
37 * state (see cycle bit rules). You may have to do this multiple times
38 * until you reach a non-link TRB.
39 * 3. A ring is full if enqueue++ (for the definition of increment above)
40 * equals the dequeue pointer.
42 * Cycle bit rules:
43 * 1. When a consumer increments a dequeue pointer and encounters a toggle bit
44 * in a link TRB, it must toggle the ring cycle state.
45 * 2. When a producer increments an enqueue pointer and encounters a toggle bit
46 * in a link TRB, it must toggle the ring cycle state.
48 * Producer rules:
49 * 1. Check if ring is full before you enqueue.
50 * 2. Write the ring cycle state to the cycle bit in the TRB you're enqueuing.
51 * Update enqueue pointer between each write (which may update the ring
52 * cycle state).
53 * 3. Notify consumer. If SW is producer, it rings the doorbell for command
54 * and endpoint rings. If HC is the producer for the event ring,
55 * and it generates an interrupt according to interrupt modulation rules.
57 * Consumer rules:
58 * 1. Check if TRB belongs to you. If the cycle bit == your ring cycle state,
59 * the TRB is owned by the consumer.
60 * 2. Update dequeue pointer (which may update the ring cycle state) and
61 * continue processing TRBs until you reach a TRB which is not owned by you.
62 * 3. Notify the producer. SW is the consumer for the event ring, and it
63 * updates event ring dequeue pointer. HC is the consumer for the command and
64 * endpoint rings; it generates events on the event ring for these.
67 #include <linux/scatterlist.h>
68 #include <linux/slab.h>
69 #include "xhci.h"
70 #include "xhci-trace.h"
72 static int handle_cmd_in_cmd_wait_list(struct xhci_hcd *xhci,
73 struct xhci_virt_device *virt_dev,
74 struct xhci_event_cmd *event);
77 * Returns zero if the TRB isn't in this segment, otherwise it returns the DMA
78 * address of the TRB.
80 dma_addr_t xhci_trb_virt_to_dma(struct xhci_segment *seg,
81 union xhci_trb *trb)
83 unsigned long segment_offset;
85 if (!seg || !trb || trb < seg->trbs)
86 return 0;
87 /* offset in TRBs */
88 segment_offset = trb - seg->trbs;
89 if (segment_offset >= TRBS_PER_SEGMENT)
90 return 0;
91 return seg->dma + (segment_offset * sizeof(*trb));
94 /* Does this link TRB point to the first segment in a ring,
95 * or was the previous TRB the last TRB on the last segment in the ERST?
97 static bool last_trb_on_last_seg(struct xhci_hcd *xhci, struct xhci_ring *ring,
98 struct xhci_segment *seg, union xhci_trb *trb)
100 if (ring == xhci->event_ring)
101 return (trb == &seg->trbs[TRBS_PER_SEGMENT]) &&
102 (seg->next == xhci->event_ring->first_seg);
103 else
104 return le32_to_cpu(trb->link.control) & LINK_TOGGLE;
107 /* Is this TRB a link TRB or was the last TRB the last TRB in this event ring
108 * segment? I.e. would the updated event TRB pointer step off the end of the
109 * event seg?
111 static int last_trb(struct xhci_hcd *xhci, struct xhci_ring *ring,
112 struct xhci_segment *seg, union xhci_trb *trb)
114 if (ring == xhci->event_ring)
115 return trb == &seg->trbs[TRBS_PER_SEGMENT];
116 else
117 return TRB_TYPE_LINK_LE32(trb->link.control);
120 static int enqueue_is_link_trb(struct xhci_ring *ring)
122 struct xhci_link_trb *link = &ring->enqueue->link;
123 return TRB_TYPE_LINK_LE32(link->control);
126 union xhci_trb *xhci_find_next_enqueue(struct xhci_ring *ring)
128 /* Enqueue pointer can be left pointing to the link TRB,
129 * we must handle that
131 if (TRB_TYPE_LINK_LE32(ring->enqueue->link.control))
132 return ring->enq_seg->next->trbs;
133 return ring->enqueue;
136 /* Updates trb to point to the next TRB in the ring, and updates seg if the next
137 * TRB is in a new segment. This does not skip over link TRBs, and it does not
138 * effect the ring dequeue or enqueue pointers.
140 static void next_trb(struct xhci_hcd *xhci,
141 struct xhci_ring *ring,
142 struct xhci_segment **seg,
143 union xhci_trb **trb)
145 if (last_trb(xhci, ring, *seg, *trb)) {
146 *seg = (*seg)->next;
147 *trb = ((*seg)->trbs);
148 } else {
149 (*trb)++;
154 * See Cycle bit rules. SW is the consumer for the event ring only.
155 * Don't make a ring full of link TRBs. That would be dumb and this would loop.
157 static void inc_deq(struct xhci_hcd *xhci, struct xhci_ring *ring)
159 unsigned long long addr;
161 ring->deq_updates++;
164 * If this is not event ring, and the dequeue pointer
165 * is not on a link TRB, there is one more usable TRB
167 if (ring->type != TYPE_EVENT &&
168 !last_trb(xhci, ring, ring->deq_seg, ring->dequeue))
169 ring->num_trbs_free++;
171 do {
173 * Update the dequeue pointer further if that was a link TRB or
174 * we're at the end of an event ring segment (which doesn't have
175 * link TRBS)
177 if (last_trb(xhci, ring, ring->deq_seg, ring->dequeue)) {
178 if (ring->type == TYPE_EVENT &&
179 last_trb_on_last_seg(xhci, ring,
180 ring->deq_seg, ring->dequeue)) {
181 ring->cycle_state = (ring->cycle_state ? 0 : 1);
183 ring->deq_seg = ring->deq_seg->next;
184 ring->dequeue = ring->deq_seg->trbs;
185 } else {
186 ring->dequeue++;
188 } while (last_trb(xhci, ring, ring->deq_seg, ring->dequeue));
190 addr = (unsigned long long) xhci_trb_virt_to_dma(ring->deq_seg, ring->dequeue);
194 * See Cycle bit rules. SW is the consumer for the event ring only.
195 * Don't make a ring full of link TRBs. That would be dumb and this would loop.
197 * If we've just enqueued a TRB that is in the middle of a TD (meaning the
198 * chain bit is set), then set the chain bit in all the following link TRBs.
199 * If we've enqueued the last TRB in a TD, make sure the following link TRBs
200 * have their chain bit cleared (so that each Link TRB is a separate TD).
202 * Section 6.4.4.1 of the 0.95 spec says link TRBs cannot have the chain bit
203 * set, but other sections talk about dealing with the chain bit set. This was
204 * fixed in the 0.96 specification errata, but we have to assume that all 0.95
205 * xHCI hardware can't handle the chain bit being cleared on a link TRB.
207 * @more_trbs_coming: Will you enqueue more TRBs before calling
208 * prepare_transfer()?
210 static void inc_enq(struct xhci_hcd *xhci, struct xhci_ring *ring,
211 bool more_trbs_coming)
213 u32 chain;
214 union xhci_trb *next;
215 unsigned long long addr;
217 chain = le32_to_cpu(ring->enqueue->generic.field[3]) & TRB_CHAIN;
218 /* If this is not event ring, there is one less usable TRB */
219 if (ring->type != TYPE_EVENT &&
220 !last_trb(xhci, ring, ring->enq_seg, ring->enqueue))
221 ring->num_trbs_free--;
222 next = ++(ring->enqueue);
224 ring->enq_updates++;
225 /* Update the dequeue pointer further if that was a link TRB or we're at
226 * the end of an event ring segment (which doesn't have link TRBS)
228 while (last_trb(xhci, ring, ring->enq_seg, next)) {
229 if (ring->type != TYPE_EVENT) {
231 * If the caller doesn't plan on enqueueing more
232 * TDs before ringing the doorbell, then we
233 * don't want to give the link TRB to the
234 * hardware just yet. We'll give the link TRB
235 * back in prepare_ring() just before we enqueue
236 * the TD at the top of the ring.
238 if (!chain && !more_trbs_coming)
239 break;
241 /* If we're not dealing with 0.95 hardware or
242 * isoc rings on AMD 0.96 host,
243 * carry over the chain bit of the previous TRB
244 * (which may mean the chain bit is cleared).
246 if (!(ring->type == TYPE_ISOC &&
247 (xhci->quirks & XHCI_AMD_0x96_HOST))
248 && !xhci_link_trb_quirk(xhci)) {
249 next->link.control &=
250 cpu_to_le32(~TRB_CHAIN);
251 next->link.control |=
252 cpu_to_le32(chain);
254 /* Give this link TRB to the hardware */
255 wmb();
256 next->link.control ^= cpu_to_le32(TRB_CYCLE);
258 /* Toggle the cycle bit after the last ring segment. */
259 if (last_trb_on_last_seg(xhci, ring, ring->enq_seg, next)) {
260 ring->cycle_state = (ring->cycle_state ? 0 : 1);
263 ring->enq_seg = ring->enq_seg->next;
264 ring->enqueue = ring->enq_seg->trbs;
265 next = ring->enqueue;
267 addr = (unsigned long long) xhci_trb_virt_to_dma(ring->enq_seg, ring->enqueue);
271 * Check to see if there's room to enqueue num_trbs on the ring and make sure
272 * enqueue pointer will not advance into dequeue segment. See rules above.
274 static inline int room_on_ring(struct xhci_hcd *xhci, struct xhci_ring *ring,
275 unsigned int num_trbs)
277 int num_trbs_in_deq_seg;
279 if (ring->num_trbs_free < num_trbs)
280 return 0;
282 if (ring->type != TYPE_COMMAND && ring->type != TYPE_EVENT) {
283 num_trbs_in_deq_seg = ring->dequeue - ring->deq_seg->trbs;
284 if (ring->num_trbs_free < num_trbs + num_trbs_in_deq_seg)
285 return 0;
288 return 1;
291 /* Ring the host controller doorbell after placing a command on the ring */
292 void xhci_ring_cmd_db(struct xhci_hcd *xhci)
294 if (!(xhci->cmd_ring_state & CMD_RING_STATE_RUNNING))
295 return;
297 xhci_dbg(xhci, "// Ding dong!\n");
298 xhci_writel(xhci, DB_VALUE_HOST, &xhci->dba->doorbell[0]);
299 /* Flush PCI posted writes */
300 xhci_readl(xhci, &xhci->dba->doorbell[0]);
303 static int xhci_abort_cmd_ring(struct xhci_hcd *xhci)
305 u64 temp_64;
306 int ret;
308 xhci_dbg(xhci, "Abort command ring\n");
310 if (!(xhci->cmd_ring_state & CMD_RING_STATE_RUNNING)) {
311 xhci_dbg(xhci, "The command ring isn't running, "
312 "Have the command ring been stopped?\n");
313 return 0;
316 temp_64 = xhci_read_64(xhci, &xhci->op_regs->cmd_ring);
317 if (!(temp_64 & CMD_RING_RUNNING)) {
318 xhci_dbg(xhci, "Command ring had been stopped\n");
319 return 0;
321 xhci->cmd_ring_state = CMD_RING_STATE_ABORTED;
322 xhci_write_64(xhci, temp_64 | CMD_RING_ABORT,
323 &xhci->op_regs->cmd_ring);
325 /* Section 4.6.1.2 of xHCI 1.0 spec says software should
326 * time the completion od all xHCI commands, including
327 * the Command Abort operation. If software doesn't see
328 * CRR negated in a timely manner (e.g. longer than 5
329 * seconds), then it should assume that the there are
330 * larger problems with the xHC and assert HCRST.
332 ret = xhci_handshake(xhci, &xhci->op_regs->cmd_ring,
333 CMD_RING_RUNNING, 0, 5 * 1000 * 1000);
334 if (ret < 0) {
335 xhci_err(xhci, "Stopped the command ring failed, "
336 "maybe the host is dead\n");
337 xhci->xhc_state |= XHCI_STATE_DYING;
338 xhci_quiesce(xhci);
339 xhci_halt(xhci);
340 return -ESHUTDOWN;
343 return 0;
346 static int xhci_queue_cd(struct xhci_hcd *xhci,
347 struct xhci_command *command,
348 union xhci_trb *cmd_trb)
350 struct xhci_cd *cd;
351 cd = kzalloc(sizeof(struct xhci_cd), GFP_ATOMIC);
352 if (!cd)
353 return -ENOMEM;
354 INIT_LIST_HEAD(&cd->cancel_cmd_list);
356 cd->command = command;
357 cd->cmd_trb = cmd_trb;
358 list_add_tail(&cd->cancel_cmd_list, &xhci->cancel_cmd_list);
360 return 0;
364 * Cancel the command which has issue.
366 * Some commands may hang due to waiting for acknowledgement from
367 * usb device. It is outside of the xHC's ability to control and
368 * will cause the command ring is blocked. When it occurs software
369 * should intervene to recover the command ring.
370 * See Section 4.6.1.1 and 4.6.1.2
372 int xhci_cancel_cmd(struct xhci_hcd *xhci, struct xhci_command *command,
373 union xhci_trb *cmd_trb)
375 int retval = 0;
376 unsigned long flags;
378 spin_lock_irqsave(&xhci->lock, flags);
380 if (xhci->xhc_state & XHCI_STATE_DYING) {
381 xhci_warn(xhci, "Abort the command ring,"
382 " but the xHCI is dead.\n");
383 retval = -ESHUTDOWN;
384 goto fail;
387 /* queue the cmd desriptor to cancel_cmd_list */
388 retval = xhci_queue_cd(xhci, command, cmd_trb);
389 if (retval) {
390 xhci_warn(xhci, "Queuing command descriptor failed.\n");
391 goto fail;
394 /* abort command ring */
395 retval = xhci_abort_cmd_ring(xhci);
396 if (retval) {
397 xhci_err(xhci, "Abort command ring failed\n");
398 if (unlikely(retval == -ESHUTDOWN)) {
399 spin_unlock_irqrestore(&xhci->lock, flags);
400 usb_hc_died(xhci_to_hcd(xhci)->primary_hcd);
401 xhci_dbg(xhci, "xHCI host controller is dead.\n");
402 return retval;
406 fail:
407 spin_unlock_irqrestore(&xhci->lock, flags);
408 return retval;
411 void xhci_ring_ep_doorbell(struct xhci_hcd *xhci,
412 unsigned int slot_id,
413 unsigned int ep_index,
414 unsigned int stream_id)
416 __le32 __iomem *db_addr = &xhci->dba->doorbell[slot_id];
417 struct xhci_virt_ep *ep = &xhci->devs[slot_id]->eps[ep_index];
418 unsigned int ep_state = ep->ep_state;
420 /* Don't ring the doorbell for this endpoint if there are pending
421 * cancellations because we don't want to interrupt processing.
422 * We don't want to restart any stream rings if there's a set dequeue
423 * pointer command pending because the device can choose to start any
424 * stream once the endpoint is on the HW schedule.
425 * FIXME - check all the stream rings for pending cancellations.
427 if ((ep_state & EP_HALT_PENDING) || (ep_state & SET_DEQ_PENDING) ||
428 (ep_state & EP_HALTED))
429 return;
430 xhci_writel(xhci, DB_VALUE(ep_index, stream_id), db_addr);
431 /* The CPU has better things to do at this point than wait for a
432 * write-posting flush. It'll get there soon enough.
436 /* Ring the doorbell for any rings with pending URBs */
437 static void ring_doorbell_for_active_rings(struct xhci_hcd *xhci,
438 unsigned int slot_id,
439 unsigned int ep_index)
441 unsigned int stream_id;
442 struct xhci_virt_ep *ep;
444 ep = &xhci->devs[slot_id]->eps[ep_index];
446 /* A ring has pending URBs if its TD list is not empty */
447 if (!(ep->ep_state & EP_HAS_STREAMS)) {
448 if (ep->ring && !(list_empty(&ep->ring->td_list)))
449 xhci_ring_ep_doorbell(xhci, slot_id, ep_index, 0);
450 return;
453 for (stream_id = 1; stream_id < ep->stream_info->num_streams;
454 stream_id++) {
455 struct xhci_stream_info *stream_info = ep->stream_info;
456 if (!list_empty(&stream_info->stream_rings[stream_id]->td_list))
457 xhci_ring_ep_doorbell(xhci, slot_id, ep_index,
458 stream_id);
463 * Find the segment that trb is in. Start searching in start_seg.
464 * If we must move past a segment that has a link TRB with a toggle cycle state
465 * bit set, then we will toggle the value pointed at by cycle_state.
467 static struct xhci_segment *find_trb_seg(
468 struct xhci_segment *start_seg,
469 union xhci_trb *trb, int *cycle_state)
471 struct xhci_segment *cur_seg = start_seg;
472 struct xhci_generic_trb *generic_trb;
474 while (cur_seg->trbs > trb ||
475 &cur_seg->trbs[TRBS_PER_SEGMENT - 1] < trb) {
476 generic_trb = &cur_seg->trbs[TRBS_PER_SEGMENT - 1].generic;
477 if (generic_trb->field[3] & cpu_to_le32(LINK_TOGGLE))
478 *cycle_state ^= 0x1;
479 cur_seg = cur_seg->next;
480 if (cur_seg == start_seg)
481 /* Looped over the entire list. Oops! */
482 return NULL;
484 return cur_seg;
488 static struct xhci_ring *xhci_triad_to_transfer_ring(struct xhci_hcd *xhci,
489 unsigned int slot_id, unsigned int ep_index,
490 unsigned int stream_id)
492 struct xhci_virt_ep *ep;
494 ep = &xhci->devs[slot_id]->eps[ep_index];
495 /* Common case: no streams */
496 if (!(ep->ep_state & EP_HAS_STREAMS))
497 return ep->ring;
499 if (stream_id == 0) {
500 xhci_warn(xhci,
501 "WARN: Slot ID %u, ep index %u has streams, "
502 "but URB has no stream ID.\n",
503 slot_id, ep_index);
504 return NULL;
507 if (stream_id < ep->stream_info->num_streams)
508 return ep->stream_info->stream_rings[stream_id];
510 xhci_warn(xhci,
511 "WARN: Slot ID %u, ep index %u has "
512 "stream IDs 1 to %u allocated, "
513 "but stream ID %u is requested.\n",
514 slot_id, ep_index,
515 ep->stream_info->num_streams - 1,
516 stream_id);
517 return NULL;
520 /* Get the right ring for the given URB.
521 * If the endpoint supports streams, boundary check the URB's stream ID.
522 * If the endpoint doesn't support streams, return the singular endpoint ring.
524 static struct xhci_ring *xhci_urb_to_transfer_ring(struct xhci_hcd *xhci,
525 struct urb *urb)
527 return xhci_triad_to_transfer_ring(xhci, urb->dev->slot_id,
528 xhci_get_endpoint_index(&urb->ep->desc), urb->stream_id);
532 * Move the xHC's endpoint ring dequeue pointer past cur_td.
533 * Record the new state of the xHC's endpoint ring dequeue segment,
534 * dequeue pointer, and new consumer cycle state in state.
535 * Update our internal representation of the ring's dequeue pointer.
537 * We do this in three jumps:
538 * - First we update our new ring state to be the same as when the xHC stopped.
539 * - Then we traverse the ring to find the segment that contains
540 * the last TRB in the TD. We toggle the xHC's new cycle state when we pass
541 * any link TRBs with the toggle cycle bit set.
542 * - Finally we move the dequeue state one TRB further, toggling the cycle bit
543 * if we've moved it past a link TRB with the toggle cycle bit set.
545 * Some of the uses of xhci_generic_trb are grotty, but if they're done
546 * with correct __le32 accesses they should work fine. Only users of this are
547 * in here.
549 void xhci_find_new_dequeue_state(struct xhci_hcd *xhci,
550 unsigned int slot_id, unsigned int ep_index,
551 unsigned int stream_id, struct xhci_td *cur_td,
552 struct xhci_dequeue_state *state)
554 struct xhci_virt_device *dev = xhci->devs[slot_id];
555 struct xhci_virt_ep *ep = &dev->eps[ep_index];
556 struct xhci_ring *ep_ring;
557 struct xhci_segment *new_seg;
558 union xhci_trb *new_deq;
559 dma_addr_t addr;
560 u64 hw_dequeue;
561 bool cycle_found = false;
562 bool td_last_trb_found = false;
564 ep_ring = xhci_triad_to_transfer_ring(xhci, slot_id,
565 ep_index, stream_id);
566 if (!ep_ring) {
567 xhci_warn(xhci, "WARN can't find new dequeue state "
568 "for invalid stream ID %u.\n",
569 stream_id);
570 return;
573 /* Dig out the cycle state saved by the xHC during the stop ep cmd */
574 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
575 "Finding endpoint context");
576 /* 4.6.9 the css flag is written to the stream context for streams */
577 if (ep->ep_state & EP_HAS_STREAMS) {
578 struct xhci_stream_ctx *ctx =
579 &ep->stream_info->stream_ctx_array[stream_id];
580 hw_dequeue = le64_to_cpu(ctx->stream_ring);
581 } else {
582 struct xhci_ep_ctx *ep_ctx
583 = xhci_get_ep_ctx(xhci, dev->out_ctx, ep_index);
584 hw_dequeue = le64_to_cpu(ep_ctx->deq);
587 new_seg = ep_ring->deq_seg;
588 new_deq = ep_ring->dequeue;
589 state->new_cycle_state = hw_dequeue & 0x1;
592 * We want to find the pointer, segment and cycle state of the new trb
593 * (the one after current TD's last_trb). We know the cycle state at
594 * hw_dequeue, so walk the ring until both hw_dequeue and last_trb are
595 * found.
597 do {
598 if (!cycle_found && xhci_trb_virt_to_dma(new_seg, new_deq)
599 == (dma_addr_t)(hw_dequeue & ~0xf)) {
600 cycle_found = true;
601 if (td_last_trb_found)
602 break;
604 if (new_deq == cur_td->last_trb)
605 td_last_trb_found = true;
607 if (cycle_found &&
608 TRB_TYPE_LINK_LE32(new_deq->generic.field[3]) &&
609 new_deq->generic.field[3] & cpu_to_le32(LINK_TOGGLE))
610 state->new_cycle_state ^= 0x1;
612 next_trb(xhci, ep_ring, &new_seg, &new_deq);
614 /* Search wrapped around, bail out */
615 if (new_deq == ep->ring->dequeue) {
616 xhci_err(xhci, "Error: Failed finding new dequeue state\n");
617 state->new_deq_seg = NULL;
618 state->new_deq_ptr = NULL;
619 return;
622 } while (!cycle_found || !td_last_trb_found);
624 state->new_deq_seg = new_seg;
625 state->new_deq_ptr = new_deq;
627 /* Don't update the ring cycle state for the producer (us). */
628 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
629 "Cycle state = 0x%x", state->new_cycle_state);
631 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
632 "New dequeue segment = %p (virtual)",
633 state->new_deq_seg);
634 addr = xhci_trb_virt_to_dma(state->new_deq_seg, state->new_deq_ptr);
635 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
636 "New dequeue pointer = 0x%llx (DMA)",
637 (unsigned long long) addr);
640 /* flip_cycle means flip the cycle bit of all but the first and last TRB.
641 * (The last TRB actually points to the ring enqueue pointer, which is not part
642 * of this TD.) This is used to remove partially enqueued isoc TDs from a ring.
644 static void td_to_noop(struct xhci_hcd *xhci, struct xhci_ring *ep_ring,
645 struct xhci_td *cur_td, bool flip_cycle)
647 struct xhci_segment *cur_seg;
648 union xhci_trb *cur_trb;
650 for (cur_seg = cur_td->start_seg, cur_trb = cur_td->first_trb;
651 true;
652 next_trb(xhci, ep_ring, &cur_seg, &cur_trb)) {
653 if (TRB_TYPE_LINK_LE32(cur_trb->generic.field[3])) {
654 /* Unchain any chained Link TRBs, but
655 * leave the pointers intact.
657 cur_trb->generic.field[3] &= cpu_to_le32(~TRB_CHAIN);
658 /* Flip the cycle bit (link TRBs can't be the first
659 * or last TRB).
661 if (flip_cycle)
662 cur_trb->generic.field[3] ^=
663 cpu_to_le32(TRB_CYCLE);
664 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
665 "Cancel (unchain) link TRB");
666 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
667 "Address = %p (0x%llx dma); "
668 "in seg %p (0x%llx dma)",
669 cur_trb,
670 (unsigned long long)xhci_trb_virt_to_dma(cur_seg, cur_trb),
671 cur_seg,
672 (unsigned long long)cur_seg->dma);
673 } else {
674 cur_trb->generic.field[0] = 0;
675 cur_trb->generic.field[1] = 0;
676 cur_trb->generic.field[2] = 0;
677 /* Preserve only the cycle bit of this TRB */
678 cur_trb->generic.field[3] &= cpu_to_le32(TRB_CYCLE);
679 /* Flip the cycle bit except on the first or last TRB */
680 if (flip_cycle && cur_trb != cur_td->first_trb &&
681 cur_trb != cur_td->last_trb)
682 cur_trb->generic.field[3] ^=
683 cpu_to_le32(TRB_CYCLE);
684 cur_trb->generic.field[3] |= cpu_to_le32(
685 TRB_TYPE(TRB_TR_NOOP));
686 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
687 "TRB to noop at offset 0x%llx",
688 (unsigned long long)
689 xhci_trb_virt_to_dma(cur_seg, cur_trb));
691 if (cur_trb == cur_td->last_trb)
692 break;
696 static int queue_set_tr_deq(struct xhci_hcd *xhci, int slot_id,
697 unsigned int ep_index, unsigned int stream_id,
698 struct xhci_segment *deq_seg,
699 union xhci_trb *deq_ptr, u32 cycle_state);
701 void xhci_queue_new_dequeue_state(struct xhci_hcd *xhci,
702 unsigned int slot_id, unsigned int ep_index,
703 unsigned int stream_id,
704 struct xhci_dequeue_state *deq_state)
706 struct xhci_virt_ep *ep = &xhci->devs[slot_id]->eps[ep_index];
708 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
709 "Set TR Deq Ptr cmd, new deq seg = %p (0x%llx dma), "
710 "new deq ptr = %p (0x%llx dma), new cycle = %u",
711 deq_state->new_deq_seg,
712 (unsigned long long)deq_state->new_deq_seg->dma,
713 deq_state->new_deq_ptr,
714 (unsigned long long)xhci_trb_virt_to_dma(deq_state->new_deq_seg, deq_state->new_deq_ptr),
715 deq_state->new_cycle_state);
716 queue_set_tr_deq(xhci, slot_id, ep_index, stream_id,
717 deq_state->new_deq_seg,
718 deq_state->new_deq_ptr,
719 (u32) deq_state->new_cycle_state);
720 /* Stop the TD queueing code from ringing the doorbell until
721 * this command completes. The HC won't set the dequeue pointer
722 * if the ring is running, and ringing the doorbell starts the
723 * ring running.
725 ep->ep_state |= SET_DEQ_PENDING;
728 static void xhci_stop_watchdog_timer_in_irq(struct xhci_hcd *xhci,
729 struct xhci_virt_ep *ep)
731 ep->ep_state &= ~EP_HALT_PENDING;
732 /* Can't del_timer_sync in interrupt, so we attempt to cancel. If the
733 * timer is running on another CPU, we don't decrement stop_cmds_pending
734 * (since we didn't successfully stop the watchdog timer).
736 if (del_timer(&ep->stop_cmd_timer))
737 ep->stop_cmds_pending--;
740 /* Must be called with xhci->lock held in interrupt context */
741 static void xhci_giveback_urb_in_irq(struct xhci_hcd *xhci,
742 struct xhci_td *cur_td, int status, char *adjective)
744 struct usb_hcd *hcd;
745 struct urb *urb;
746 struct urb_priv *urb_priv;
748 urb = cur_td->urb;
749 urb_priv = urb->hcpriv;
750 urb_priv->td_cnt++;
751 hcd = bus_to_hcd(urb->dev->bus);
753 /* Only giveback urb when this is the last td in urb */
754 if (urb_priv->td_cnt == urb_priv->length) {
755 if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS) {
756 xhci_to_hcd(xhci)->self.bandwidth_isoc_reqs--;
757 if (xhci_to_hcd(xhci)->self.bandwidth_isoc_reqs == 0) {
758 if (xhci->quirks & XHCI_AMD_PLL_FIX)
759 usb_amd_quirk_pll_enable();
762 usb_hcd_unlink_urb_from_ep(hcd, urb);
764 spin_unlock(&xhci->lock);
765 usb_hcd_giveback_urb(hcd, urb, status);
766 xhci_urb_free_priv(xhci, urb_priv);
767 spin_lock(&xhci->lock);
772 * When we get a command completion for a Stop Endpoint Command, we need to
773 * unlink any cancelled TDs from the ring. There are two ways to do that:
775 * 1. If the HW was in the middle of processing the TD that needs to be
776 * cancelled, then we must move the ring's dequeue pointer past the last TRB
777 * in the TD with a Set Dequeue Pointer Command.
778 * 2. Otherwise, we turn all the TRBs in the TD into No-op TRBs (with the chain
779 * bit cleared) so that the HW will skip over them.
781 static void handle_stopped_endpoint(struct xhci_hcd *xhci,
782 union xhci_trb *trb, struct xhci_event_cmd *event)
784 unsigned int slot_id;
785 unsigned int ep_index;
786 struct xhci_virt_device *virt_dev;
787 struct xhci_ring *ep_ring;
788 struct xhci_virt_ep *ep;
789 struct list_head *entry;
790 struct xhci_td *cur_td = NULL;
791 struct xhci_td *last_unlinked_td;
793 struct xhci_dequeue_state deq_state;
795 if (unlikely(TRB_TO_SUSPEND_PORT(
796 le32_to_cpu(xhci->cmd_ring->dequeue->generic.field[3])))) {
797 slot_id = TRB_TO_SLOT_ID(
798 le32_to_cpu(xhci->cmd_ring->dequeue->generic.field[3]));
799 virt_dev = xhci->devs[slot_id];
800 if (virt_dev)
801 handle_cmd_in_cmd_wait_list(xhci, virt_dev,
802 event);
803 else
804 xhci_warn(xhci, "Stop endpoint command "
805 "completion for disabled slot %u\n",
806 slot_id);
807 return;
810 memset(&deq_state, 0, sizeof(deq_state));
811 slot_id = TRB_TO_SLOT_ID(le32_to_cpu(trb->generic.field[3]));
812 ep_index = TRB_TO_EP_INDEX(le32_to_cpu(trb->generic.field[3]));
813 ep = &xhci->devs[slot_id]->eps[ep_index];
815 if (list_empty(&ep->cancelled_td_list)) {
816 xhci_stop_watchdog_timer_in_irq(xhci, ep);
817 ep->stopped_td = NULL;
818 ring_doorbell_for_active_rings(xhci, slot_id, ep_index);
819 return;
822 /* Fix up the ep ring first, so HW stops executing cancelled TDs.
823 * We have the xHCI lock, so nothing can modify this list until we drop
824 * it. We're also in the event handler, so we can't get re-interrupted
825 * if another Stop Endpoint command completes
827 list_for_each(entry, &ep->cancelled_td_list) {
828 cur_td = list_entry(entry, struct xhci_td, cancelled_td_list);
829 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
830 "Removing canceled TD starting at 0x%llx (dma).",
831 (unsigned long long)xhci_trb_virt_to_dma(
832 cur_td->start_seg, cur_td->first_trb));
833 ep_ring = xhci_urb_to_transfer_ring(xhci, cur_td->urb);
834 if (!ep_ring) {
835 /* This shouldn't happen unless a driver is mucking
836 * with the stream ID after submission. This will
837 * leave the TD on the hardware ring, and the hardware
838 * will try to execute it, and may access a buffer
839 * that has already been freed. In the best case, the
840 * hardware will execute it, and the event handler will
841 * ignore the completion event for that TD, since it was
842 * removed from the td_list for that endpoint. In
843 * short, don't muck with the stream ID after
844 * submission.
846 xhci_warn(xhci, "WARN Cancelled URB %p "
847 "has invalid stream ID %u.\n",
848 cur_td->urb,
849 cur_td->urb->stream_id);
850 goto remove_finished_td;
853 * If we stopped on the TD we need to cancel, then we have to
854 * move the xHC endpoint ring dequeue pointer past this TD.
856 if (cur_td == ep->stopped_td)
857 xhci_find_new_dequeue_state(xhci, slot_id, ep_index,
858 cur_td->urb->stream_id,
859 cur_td, &deq_state);
860 else
861 td_to_noop(xhci, ep_ring, cur_td, false);
862 remove_finished_td:
864 * The event handler won't see a completion for this TD anymore,
865 * so remove it from the endpoint ring's TD list. Keep it in
866 * the cancelled TD list for URB completion later.
868 list_del_init(&cur_td->td_list);
870 last_unlinked_td = cur_td;
871 xhci_stop_watchdog_timer_in_irq(xhci, ep);
873 /* If necessary, queue a Set Transfer Ring Dequeue Pointer command */
874 if (deq_state.new_deq_ptr && deq_state.new_deq_seg) {
875 xhci_queue_new_dequeue_state(xhci,
876 slot_id, ep_index,
877 ep->stopped_td->urb->stream_id,
878 &deq_state);
879 xhci_ring_cmd_db(xhci);
880 } else {
881 /* Otherwise ring the doorbell(s) to restart queued transfers */
882 ring_doorbell_for_active_rings(xhci, slot_id, ep_index);
885 /* Clear stopped_td if endpoint is not halted */
886 if (!(ep->ep_state & EP_HALTED))
887 ep->stopped_td = NULL;
890 * Drop the lock and complete the URBs in the cancelled TD list.
891 * New TDs to be cancelled might be added to the end of the list before
892 * we can complete all the URBs for the TDs we already unlinked.
893 * So stop when we've completed the URB for the last TD we unlinked.
895 do {
896 cur_td = list_entry(ep->cancelled_td_list.next,
897 struct xhci_td, cancelled_td_list);
898 list_del_init(&cur_td->cancelled_td_list);
900 /* Clean up the cancelled URB */
901 /* Doesn't matter what we pass for status, since the core will
902 * just overwrite it (because the URB has been unlinked).
904 xhci_giveback_urb_in_irq(xhci, cur_td, 0, "cancelled");
906 /* Stop processing the cancelled list if the watchdog timer is
907 * running.
909 if (xhci->xhc_state & XHCI_STATE_DYING)
910 return;
911 } while (cur_td != last_unlinked_td);
913 /* Return to the event handler with xhci->lock re-acquired */
916 /* Watchdog timer function for when a stop endpoint command fails to complete.
917 * In this case, we assume the host controller is broken or dying or dead. The
918 * host may still be completing some other events, so we have to be careful to
919 * let the event ring handler and the URB dequeueing/enqueueing functions know
920 * through xhci->state.
922 * The timer may also fire if the host takes a very long time to respond to the
923 * command, and the stop endpoint command completion handler cannot delete the
924 * timer before the timer function is called. Another endpoint cancellation may
925 * sneak in before the timer function can grab the lock, and that may queue
926 * another stop endpoint command and add the timer back. So we cannot use a
927 * simple flag to say whether there is a pending stop endpoint command for a
928 * particular endpoint.
930 * Instead we use a combination of that flag and a counter for the number of
931 * pending stop endpoint commands. If the timer is the tail end of the last
932 * stop endpoint command, and the endpoint's command is still pending, we assume
933 * the host is dying.
935 void xhci_stop_endpoint_command_watchdog(unsigned long arg)
937 struct xhci_hcd *xhci;
938 struct xhci_virt_ep *ep;
939 struct xhci_virt_ep *temp_ep;
940 struct xhci_ring *ring;
941 struct xhci_td *cur_td;
942 int ret, i, j;
943 unsigned long flags;
945 ep = (struct xhci_virt_ep *) arg;
946 xhci = ep->xhci;
948 spin_lock_irqsave(&xhci->lock, flags);
950 ep->stop_cmds_pending--;
951 if (xhci->xhc_state & XHCI_STATE_DYING) {
952 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
953 "Stop EP timer ran, but another timer marked "
954 "xHCI as DYING, exiting.");
955 spin_unlock_irqrestore(&xhci->lock, flags);
956 return;
958 if (!(ep->stop_cmds_pending == 0 && (ep->ep_state & EP_HALT_PENDING))) {
959 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
960 "Stop EP timer ran, but no command pending, "
961 "exiting.");
962 spin_unlock_irqrestore(&xhci->lock, flags);
963 return;
966 xhci_warn(xhci, "xHCI host not responding to stop endpoint command.\n");
967 xhci_warn(xhci, "Assuming host is dying, halting host.\n");
968 /* Oops, HC is dead or dying or at least not responding to the stop
969 * endpoint command.
971 xhci->xhc_state |= XHCI_STATE_DYING;
972 /* Disable interrupts from the host controller and start halting it */
973 xhci_quiesce(xhci);
974 spin_unlock_irqrestore(&xhci->lock, flags);
976 ret = xhci_halt(xhci);
978 spin_lock_irqsave(&xhci->lock, flags);
979 if (ret < 0) {
980 /* This is bad; the host is not responding to commands and it's
981 * not allowing itself to be halted. At least interrupts are
982 * disabled. If we call usb_hc_died(), it will attempt to
983 * disconnect all device drivers under this host. Those
984 * disconnect() methods will wait for all URBs to be unlinked,
985 * so we must complete them.
987 xhci_warn(xhci, "Non-responsive xHCI host is not halting.\n");
988 xhci_warn(xhci, "Completing active URBs anyway.\n");
989 /* We could turn all TDs on the rings to no-ops. This won't
990 * help if the host has cached part of the ring, and is slow if
991 * we want to preserve the cycle bit. Skip it and hope the host
992 * doesn't touch the memory.
995 for (i = 0; i < MAX_HC_SLOTS; i++) {
996 if (!xhci->devs[i])
997 continue;
998 for (j = 0; j < 31; j++) {
999 temp_ep = &xhci->devs[i]->eps[j];
1000 ring = temp_ep->ring;
1001 if (!ring)
1002 continue;
1003 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
1004 "Killing URBs for slot ID %u, "
1005 "ep index %u", i, j);
1006 while (!list_empty(&ring->td_list)) {
1007 cur_td = list_first_entry(&ring->td_list,
1008 struct xhci_td,
1009 td_list);
1010 list_del_init(&cur_td->td_list);
1011 if (!list_empty(&cur_td->cancelled_td_list))
1012 list_del_init(&cur_td->cancelled_td_list);
1013 xhci_giveback_urb_in_irq(xhci, cur_td,
1014 -ESHUTDOWN, "killed");
1016 while (!list_empty(&temp_ep->cancelled_td_list)) {
1017 cur_td = list_first_entry(
1018 &temp_ep->cancelled_td_list,
1019 struct xhci_td,
1020 cancelled_td_list);
1021 list_del_init(&cur_td->cancelled_td_list);
1022 xhci_giveback_urb_in_irq(xhci, cur_td,
1023 -ESHUTDOWN, "killed");
1027 spin_unlock_irqrestore(&xhci->lock, flags);
1028 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
1029 "Calling usb_hc_died()");
1030 usb_hc_died(xhci_to_hcd(xhci)->primary_hcd);
1031 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
1032 "xHCI host controller is dead.");
1036 static void update_ring_for_set_deq_completion(struct xhci_hcd *xhci,
1037 struct xhci_virt_device *dev,
1038 struct xhci_ring *ep_ring,
1039 unsigned int ep_index)
1041 union xhci_trb *dequeue_temp;
1042 int num_trbs_free_temp;
1043 bool revert = false;
1045 num_trbs_free_temp = ep_ring->num_trbs_free;
1046 dequeue_temp = ep_ring->dequeue;
1048 /* If we get two back-to-back stalls, and the first stalled transfer
1049 * ends just before a link TRB, the dequeue pointer will be left on
1050 * the link TRB by the code in the while loop. So we have to update
1051 * the dequeue pointer one segment further, or we'll jump off
1052 * the segment into la-la-land.
1054 if (last_trb(xhci, ep_ring, ep_ring->deq_seg, ep_ring->dequeue)) {
1055 ep_ring->deq_seg = ep_ring->deq_seg->next;
1056 ep_ring->dequeue = ep_ring->deq_seg->trbs;
1059 while (ep_ring->dequeue != dev->eps[ep_index].queued_deq_ptr) {
1060 /* We have more usable TRBs */
1061 ep_ring->num_trbs_free++;
1062 ep_ring->dequeue++;
1063 if (last_trb(xhci, ep_ring, ep_ring->deq_seg,
1064 ep_ring->dequeue)) {
1065 if (ep_ring->dequeue ==
1066 dev->eps[ep_index].queued_deq_ptr)
1067 break;
1068 ep_ring->deq_seg = ep_ring->deq_seg->next;
1069 ep_ring->dequeue = ep_ring->deq_seg->trbs;
1071 if (ep_ring->dequeue == dequeue_temp) {
1072 revert = true;
1073 break;
1077 if (revert) {
1078 xhci_dbg(xhci, "Unable to find new dequeue pointer\n");
1079 ep_ring->num_trbs_free = num_trbs_free_temp;
1084 * When we get a completion for a Set Transfer Ring Dequeue Pointer command,
1085 * we need to clear the set deq pending flag in the endpoint ring state, so that
1086 * the TD queueing code can ring the doorbell again. We also need to ring the
1087 * endpoint doorbell to restart the ring, but only if there aren't more
1088 * cancellations pending.
1090 static void handle_set_deq_completion(struct xhci_hcd *xhci,
1091 struct xhci_event_cmd *event,
1092 union xhci_trb *trb)
1094 unsigned int slot_id;
1095 unsigned int ep_index;
1096 unsigned int stream_id;
1097 struct xhci_ring *ep_ring;
1098 struct xhci_virt_device *dev;
1099 struct xhci_ep_ctx *ep_ctx;
1100 struct xhci_slot_ctx *slot_ctx;
1102 slot_id = TRB_TO_SLOT_ID(le32_to_cpu(trb->generic.field[3]));
1103 ep_index = TRB_TO_EP_INDEX(le32_to_cpu(trb->generic.field[3]));
1104 stream_id = TRB_TO_STREAM_ID(le32_to_cpu(trb->generic.field[2]));
1105 dev = xhci->devs[slot_id];
1107 ep_ring = xhci_stream_id_to_ring(dev, ep_index, stream_id);
1108 if (!ep_ring) {
1109 xhci_warn(xhci, "WARN Set TR deq ptr command for "
1110 "freed stream ID %u\n",
1111 stream_id);
1112 /* XXX: Harmless??? */
1113 dev->eps[ep_index].ep_state &= ~SET_DEQ_PENDING;
1114 return;
1117 ep_ctx = xhci_get_ep_ctx(xhci, dev->out_ctx, ep_index);
1118 slot_ctx = xhci_get_slot_ctx(xhci, dev->out_ctx);
1120 if (GET_COMP_CODE(le32_to_cpu(event->status)) != COMP_SUCCESS) {
1121 unsigned int ep_state;
1122 unsigned int slot_state;
1124 switch (GET_COMP_CODE(le32_to_cpu(event->status))) {
1125 case COMP_TRB_ERR:
1126 xhci_warn(xhci, "WARN Set TR Deq Ptr cmd invalid because "
1127 "of stream ID configuration\n");
1128 break;
1129 case COMP_CTX_STATE:
1130 xhci_warn(xhci, "WARN Set TR Deq Ptr cmd failed due "
1131 "to incorrect slot or ep state.\n");
1132 ep_state = le32_to_cpu(ep_ctx->ep_info);
1133 ep_state &= EP_STATE_MASK;
1134 slot_state = le32_to_cpu(slot_ctx->dev_state);
1135 slot_state = GET_SLOT_STATE(slot_state);
1136 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
1137 "Slot state = %u, EP state = %u",
1138 slot_state, ep_state);
1139 break;
1140 case COMP_EBADSLT:
1141 xhci_warn(xhci, "WARN Set TR Deq Ptr cmd failed because "
1142 "slot %u was not enabled.\n", slot_id);
1143 break;
1144 default:
1145 xhci_warn(xhci, "WARN Set TR Deq Ptr cmd with unknown "
1146 "completion code of %u.\n",
1147 GET_COMP_CODE(le32_to_cpu(event->status)));
1148 break;
1150 /* OK what do we do now? The endpoint state is hosed, and we
1151 * should never get to this point if the synchronization between
1152 * queueing, and endpoint state are correct. This might happen
1153 * if the device gets disconnected after we've finished
1154 * cancelling URBs, which might not be an error...
1156 } else {
1157 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
1158 "Successful Set TR Deq Ptr cmd, deq = @%08llx",
1159 le64_to_cpu(ep_ctx->deq));
1160 if (xhci_trb_virt_to_dma(dev->eps[ep_index].queued_deq_seg,
1161 dev->eps[ep_index].queued_deq_ptr) ==
1162 (le64_to_cpu(ep_ctx->deq) & ~(EP_CTX_CYCLE_MASK))) {
1163 /* Update the ring's dequeue segment and dequeue pointer
1164 * to reflect the new position.
1166 update_ring_for_set_deq_completion(xhci, dev,
1167 ep_ring, ep_index);
1168 } else {
1169 xhci_warn(xhci, "Mismatch between completed Set TR Deq "
1170 "Ptr command & xHCI internal state.\n");
1171 xhci_warn(xhci, "ep deq seg = %p, deq ptr = %p\n",
1172 dev->eps[ep_index].queued_deq_seg,
1173 dev->eps[ep_index].queued_deq_ptr);
1177 dev->eps[ep_index].ep_state &= ~SET_DEQ_PENDING;
1178 dev->eps[ep_index].queued_deq_seg = NULL;
1179 dev->eps[ep_index].queued_deq_ptr = NULL;
1180 /* Restart any rings with pending URBs */
1181 ring_doorbell_for_active_rings(xhci, slot_id, ep_index);
1184 static void handle_reset_ep_completion(struct xhci_hcd *xhci,
1185 struct xhci_event_cmd *event,
1186 union xhci_trb *trb)
1188 int slot_id;
1189 unsigned int ep_index;
1191 slot_id = TRB_TO_SLOT_ID(le32_to_cpu(trb->generic.field[3]));
1192 ep_index = TRB_TO_EP_INDEX(le32_to_cpu(trb->generic.field[3]));
1193 /* This command will only fail if the endpoint wasn't halted,
1194 * but we don't care.
1196 xhci_dbg_trace(xhci, trace_xhci_dbg_reset_ep,
1197 "Ignoring reset ep completion code of %u",
1198 GET_COMP_CODE(le32_to_cpu(event->status)));
1200 /* HW with the reset endpoint quirk needs to have a configure endpoint
1201 * command complete before the endpoint can be used. Queue that here
1202 * because the HW can't handle two commands being queued in a row.
1204 if (xhci->quirks & XHCI_RESET_EP_QUIRK) {
1205 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
1206 "Queueing configure endpoint command");
1207 xhci_queue_configure_endpoint(xhci,
1208 xhci->devs[slot_id]->in_ctx->dma, slot_id,
1209 false);
1210 xhci_ring_cmd_db(xhci);
1211 } else {
1212 /* Clear our internal halted state */
1213 xhci->devs[slot_id]->eps[ep_index].ep_state &= ~EP_HALTED;
1217 /* Complete the command and detele it from the devcie's command queue.
1219 static void xhci_complete_cmd_in_cmd_wait_list(struct xhci_hcd *xhci,
1220 struct xhci_command *command, u32 status)
1222 command->status = status;
1223 list_del(&command->cmd_list);
1224 if (command->completion)
1225 complete(command->completion);
1226 else
1227 xhci_free_command(xhci, command);
1231 /* Check to see if a command in the device's command queue matches this one.
1232 * Signal the completion or free the command, and return 1. Return 0 if the
1233 * completed command isn't at the head of the command list.
1235 static int handle_cmd_in_cmd_wait_list(struct xhci_hcd *xhci,
1236 struct xhci_virt_device *virt_dev,
1237 struct xhci_event_cmd *event)
1239 struct xhci_command *command;
1241 if (list_empty(&virt_dev->cmd_list))
1242 return 0;
1244 command = list_entry(virt_dev->cmd_list.next,
1245 struct xhci_command, cmd_list);
1246 if (xhci->cmd_ring->dequeue != command->command_trb)
1247 return 0;
1249 xhci_complete_cmd_in_cmd_wait_list(xhci, command,
1250 GET_COMP_CODE(le32_to_cpu(event->status)));
1251 return 1;
1255 * Finding the command trb need to be cancelled and modifying it to
1256 * NO OP command. And if the command is in device's command wait
1257 * list, finishing and freeing it.
1259 * If we can't find the command trb, we think it had already been
1260 * executed.
1262 static void xhci_cmd_to_noop(struct xhci_hcd *xhci, struct xhci_cd *cur_cd)
1264 struct xhci_segment *cur_seg;
1265 union xhci_trb *cmd_trb;
1266 u32 cycle_state;
1268 if (xhci->cmd_ring->dequeue == xhci->cmd_ring->enqueue)
1269 return;
1271 /* find the current segment of command ring */
1272 cur_seg = find_trb_seg(xhci->cmd_ring->first_seg,
1273 xhci->cmd_ring->dequeue, &cycle_state);
1275 if (!cur_seg) {
1276 xhci_warn(xhci, "Command ring mismatch, dequeue = %p %llx (dma)\n",
1277 xhci->cmd_ring->dequeue,
1278 (unsigned long long)
1279 xhci_trb_virt_to_dma(xhci->cmd_ring->deq_seg,
1280 xhci->cmd_ring->dequeue));
1281 xhci_debug_ring(xhci, xhci->cmd_ring);
1282 xhci_dbg_ring_ptrs(xhci, xhci->cmd_ring);
1283 return;
1286 /* find the command trb matched by cd from command ring */
1287 for (cmd_trb = xhci->cmd_ring->dequeue;
1288 cmd_trb != xhci->cmd_ring->enqueue;
1289 next_trb(xhci, xhci->cmd_ring, &cur_seg, &cmd_trb)) {
1290 /* If the trb is link trb, continue */
1291 if (TRB_TYPE_LINK_LE32(cmd_trb->generic.field[3]))
1292 continue;
1294 if (cur_cd->cmd_trb == cmd_trb) {
1296 /* If the command in device's command list, we should
1297 * finish it and free the command structure.
1299 if (cur_cd->command)
1300 xhci_complete_cmd_in_cmd_wait_list(xhci,
1301 cur_cd->command, COMP_CMD_STOP);
1303 /* get cycle state from the origin command trb */
1304 cycle_state = le32_to_cpu(cmd_trb->generic.field[3])
1305 & TRB_CYCLE;
1307 /* modify the command trb to NO OP command */
1308 cmd_trb->generic.field[0] = 0;
1309 cmd_trb->generic.field[1] = 0;
1310 cmd_trb->generic.field[2] = 0;
1311 cmd_trb->generic.field[3] = cpu_to_le32(
1312 TRB_TYPE(TRB_CMD_NOOP) | cycle_state);
1313 break;
1318 static void xhci_cancel_cmd_in_cd_list(struct xhci_hcd *xhci)
1320 struct xhci_cd *cur_cd, *next_cd;
1322 if (list_empty(&xhci->cancel_cmd_list))
1323 return;
1325 list_for_each_entry_safe(cur_cd, next_cd,
1326 &xhci->cancel_cmd_list, cancel_cmd_list) {
1327 xhci_cmd_to_noop(xhci, cur_cd);
1328 list_del(&cur_cd->cancel_cmd_list);
1329 kfree(cur_cd);
1334 * traversing the cancel_cmd_list. If the command descriptor according
1335 * to cmd_trb is found, the function free it and return 1, otherwise
1336 * return 0.
1338 static int xhci_search_cmd_trb_in_cd_list(struct xhci_hcd *xhci,
1339 union xhci_trb *cmd_trb)
1341 struct xhci_cd *cur_cd, *next_cd;
1343 if (list_empty(&xhci->cancel_cmd_list))
1344 return 0;
1346 list_for_each_entry_safe(cur_cd, next_cd,
1347 &xhci->cancel_cmd_list, cancel_cmd_list) {
1348 if (cur_cd->cmd_trb == cmd_trb) {
1349 if (cur_cd->command)
1350 xhci_complete_cmd_in_cmd_wait_list(xhci,
1351 cur_cd->command, COMP_CMD_STOP);
1352 list_del(&cur_cd->cancel_cmd_list);
1353 kfree(cur_cd);
1354 return 1;
1358 return 0;
1362 * If the cmd_trb_comp_code is COMP_CMD_ABORT, we just check whether the
1363 * trb pointed by the command ring dequeue pointer is the trb we want to
1364 * cancel or not. And if the cmd_trb_comp_code is COMP_CMD_STOP, we will
1365 * traverse the cancel_cmd_list to trun the all of the commands according
1366 * to command descriptor to NO-OP trb.
1368 static int handle_stopped_cmd_ring(struct xhci_hcd *xhci,
1369 int cmd_trb_comp_code)
1371 int cur_trb_is_good = 0;
1373 /* Searching the cmd trb pointed by the command ring dequeue
1374 * pointer in command descriptor list. If it is found, free it.
1376 cur_trb_is_good = xhci_search_cmd_trb_in_cd_list(xhci,
1377 xhci->cmd_ring->dequeue);
1379 if (cmd_trb_comp_code == COMP_CMD_ABORT)
1380 xhci->cmd_ring_state = CMD_RING_STATE_STOPPED;
1381 else if (cmd_trb_comp_code == COMP_CMD_STOP) {
1382 /* traversing the cancel_cmd_list and canceling
1383 * the command according to command descriptor
1385 xhci_cancel_cmd_in_cd_list(xhci);
1387 xhci->cmd_ring_state = CMD_RING_STATE_RUNNING;
1389 * ring command ring doorbell again to restart the
1390 * command ring
1392 if (xhci->cmd_ring->dequeue != xhci->cmd_ring->enqueue)
1393 xhci_ring_cmd_db(xhci);
1395 return cur_trb_is_good;
1398 static void handle_cmd_completion(struct xhci_hcd *xhci,
1399 struct xhci_event_cmd *event)
1401 int slot_id = TRB_TO_SLOT_ID(le32_to_cpu(event->flags));
1402 u64 cmd_dma;
1403 dma_addr_t cmd_dequeue_dma;
1404 struct xhci_input_control_ctx *ctrl_ctx;
1405 struct xhci_virt_device *virt_dev;
1406 unsigned int ep_index;
1407 struct xhci_ring *ep_ring;
1408 unsigned int ep_state;
1410 cmd_dma = le64_to_cpu(event->cmd_trb);
1411 cmd_dequeue_dma = xhci_trb_virt_to_dma(xhci->cmd_ring->deq_seg,
1412 xhci->cmd_ring->dequeue);
1413 /* Is the command ring deq ptr out of sync with the deq seg ptr? */
1414 if (cmd_dequeue_dma == 0) {
1415 xhci->error_bitmask |= 1 << 4;
1416 return;
1418 /* Does the DMA address match our internal dequeue pointer address? */
1419 if (cmd_dma != (u64) cmd_dequeue_dma) {
1420 xhci->error_bitmask |= 1 << 5;
1421 return;
1424 trace_xhci_cmd_completion(&xhci->cmd_ring->dequeue->generic,
1425 (struct xhci_generic_trb *) event);
1427 if ((GET_COMP_CODE(le32_to_cpu(event->status)) == COMP_CMD_ABORT) ||
1428 (GET_COMP_CODE(le32_to_cpu(event->status)) == COMP_CMD_STOP)) {
1429 /* If the return value is 0, we think the trb pointed by
1430 * command ring dequeue pointer is a good trb. The good
1431 * trb means we don't want to cancel the trb, but it have
1432 * been stopped by host. So we should handle it normally.
1433 * Otherwise, driver should invoke inc_deq() and return.
1435 if (handle_stopped_cmd_ring(xhci,
1436 GET_COMP_CODE(le32_to_cpu(event->status)))) {
1437 inc_deq(xhci, xhci->cmd_ring);
1438 return;
1440 /* There is no command to handle if we get a stop event when the
1441 * command ring is empty, event->cmd_trb points to the next
1442 * unset command
1444 if (xhci->cmd_ring->dequeue == xhci->cmd_ring->enqueue)
1445 return;
1448 switch (le32_to_cpu(xhci->cmd_ring->dequeue->generic.field[3])
1449 & TRB_TYPE_BITMASK) {
1450 case TRB_TYPE(TRB_ENABLE_SLOT):
1451 if (GET_COMP_CODE(le32_to_cpu(event->status)) == COMP_SUCCESS)
1452 xhci->slot_id = slot_id;
1453 else
1454 xhci->slot_id = 0;
1455 complete(&xhci->addr_dev);
1456 break;
1457 case TRB_TYPE(TRB_DISABLE_SLOT):
1458 if (xhci->devs[slot_id]) {
1459 if (xhci->quirks & XHCI_EP_LIMIT_QUIRK)
1460 /* Delete default control endpoint resources */
1461 xhci_free_device_endpoint_resources(xhci,
1462 xhci->devs[slot_id], true);
1463 xhci_free_virt_device(xhci, slot_id);
1465 break;
1466 case TRB_TYPE(TRB_CONFIG_EP):
1467 virt_dev = xhci->devs[slot_id];
1468 if (handle_cmd_in_cmd_wait_list(xhci, virt_dev, event))
1469 break;
1471 * Configure endpoint commands can come from the USB core
1472 * configuration or alt setting changes, or because the HW
1473 * needed an extra configure endpoint command after a reset
1474 * endpoint command or streams were being configured.
1475 * If the command was for a halted endpoint, the xHCI driver
1476 * is not waiting on the configure endpoint command.
1478 ctrl_ctx = xhci_get_input_control_ctx(xhci,
1479 virt_dev->in_ctx);
1480 if (!ctrl_ctx) {
1481 xhci_warn(xhci, "Could not get input context, bad type.\n");
1482 break;
1484 /* Input ctx add_flags are the endpoint index plus one */
1485 ep_index = xhci_last_valid_endpoint(le32_to_cpu(ctrl_ctx->add_flags)) - 1;
1486 /* A usb_set_interface() call directly after clearing a halted
1487 * condition may race on this quirky hardware. Not worth
1488 * worrying about, since this is prototype hardware. Not sure
1489 * if this will work for streams, but streams support was
1490 * untested on this prototype.
1492 if (xhci->quirks & XHCI_RESET_EP_QUIRK &&
1493 ep_index != (unsigned int) -1 &&
1494 le32_to_cpu(ctrl_ctx->add_flags) - SLOT_FLAG ==
1495 le32_to_cpu(ctrl_ctx->drop_flags)) {
1496 ep_ring = xhci->devs[slot_id]->eps[ep_index].ring;
1497 ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state;
1498 if (!(ep_state & EP_HALTED))
1499 goto bandwidth_change;
1500 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
1501 "Completed config ep cmd - "
1502 "last ep index = %d, state = %d",
1503 ep_index, ep_state);
1504 /* Clear internal halted state and restart ring(s) */
1505 xhci->devs[slot_id]->eps[ep_index].ep_state &=
1506 ~EP_HALTED;
1507 ring_doorbell_for_active_rings(xhci, slot_id, ep_index);
1508 break;
1510 bandwidth_change:
1511 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
1512 "Completed config ep cmd");
1513 xhci->devs[slot_id]->cmd_status =
1514 GET_COMP_CODE(le32_to_cpu(event->status));
1515 complete(&xhci->devs[slot_id]->cmd_completion);
1516 break;
1517 case TRB_TYPE(TRB_EVAL_CONTEXT):
1518 virt_dev = xhci->devs[slot_id];
1519 if (handle_cmd_in_cmd_wait_list(xhci, virt_dev, event))
1520 break;
1521 xhci->devs[slot_id]->cmd_status = GET_COMP_CODE(le32_to_cpu(event->status));
1522 complete(&xhci->devs[slot_id]->cmd_completion);
1523 break;
1524 case TRB_TYPE(TRB_ADDR_DEV):
1525 xhci->devs[slot_id]->cmd_status = GET_COMP_CODE(le32_to_cpu(event->status));
1526 complete(&xhci->addr_dev);
1527 break;
1528 case TRB_TYPE(TRB_STOP_RING):
1529 handle_stopped_endpoint(xhci, xhci->cmd_ring->dequeue, event);
1530 break;
1531 case TRB_TYPE(TRB_SET_DEQ):
1532 handle_set_deq_completion(xhci, event, xhci->cmd_ring->dequeue);
1533 break;
1534 case TRB_TYPE(TRB_CMD_NOOP):
1535 break;
1536 case TRB_TYPE(TRB_RESET_EP):
1537 handle_reset_ep_completion(xhci, event, xhci->cmd_ring->dequeue);
1538 break;
1539 case TRB_TYPE(TRB_RESET_DEV):
1540 xhci_dbg(xhci, "Completed reset device command.\n");
1541 slot_id = TRB_TO_SLOT_ID(
1542 le32_to_cpu(xhci->cmd_ring->dequeue->generic.field[3]));
1543 virt_dev = xhci->devs[slot_id];
1544 if (virt_dev)
1545 handle_cmd_in_cmd_wait_list(xhci, virt_dev, event);
1546 else
1547 xhci_warn(xhci, "Reset device command completion "
1548 "for disabled slot %u\n", slot_id);
1549 break;
1550 case TRB_TYPE(TRB_NEC_GET_FW):
1551 if (!(xhci->quirks & XHCI_NEC_HOST)) {
1552 xhci->error_bitmask |= 1 << 6;
1553 break;
1555 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
1556 "NEC firmware version %2x.%02x",
1557 NEC_FW_MAJOR(le32_to_cpu(event->status)),
1558 NEC_FW_MINOR(le32_to_cpu(event->status)));
1559 break;
1560 default:
1561 /* Skip over unknown commands on the event ring */
1562 xhci->error_bitmask |= 1 << 6;
1563 break;
1565 inc_deq(xhci, xhci->cmd_ring);
1568 static void handle_vendor_event(struct xhci_hcd *xhci,
1569 union xhci_trb *event)
1571 u32 trb_type;
1573 trb_type = TRB_FIELD_TO_TYPE(le32_to_cpu(event->generic.field[3]));
1574 xhci_dbg(xhci, "Vendor specific event TRB type = %u\n", trb_type);
1575 if (trb_type == TRB_NEC_CMD_COMP && (xhci->quirks & XHCI_NEC_HOST))
1576 handle_cmd_completion(xhci, &event->event_cmd);
1579 /* @port_id: the one-based port ID from the hardware (indexed from array of all
1580 * port registers -- USB 3.0 and USB 2.0).
1582 * Returns a zero-based port number, which is suitable for indexing into each of
1583 * the split roothubs' port arrays and bus state arrays.
1584 * Add one to it in order to call xhci_find_slot_id_by_port.
1586 static unsigned int find_faked_portnum_from_hw_portnum(struct usb_hcd *hcd,
1587 struct xhci_hcd *xhci, u32 port_id)
1589 unsigned int i;
1590 unsigned int num_similar_speed_ports = 0;
1592 /* port_id from the hardware is 1-based, but port_array[], usb3_ports[],
1593 * and usb2_ports are 0-based indexes. Count the number of similar
1594 * speed ports, up to 1 port before this port.
1596 for (i = 0; i < (port_id - 1); i++) {
1597 u8 port_speed = xhci->port_array[i];
1600 * Skip ports that don't have known speeds, or have duplicate
1601 * Extended Capabilities port speed entries.
1603 if (port_speed == 0 || port_speed == DUPLICATE_ENTRY)
1604 continue;
1607 * USB 3.0 ports are always under a USB 3.0 hub. USB 2.0 and
1608 * 1.1 ports are under the USB 2.0 hub. If the port speed
1609 * matches the device speed, it's a similar speed port.
1611 if ((port_speed == 0x03) == (hcd->speed == HCD_USB3))
1612 num_similar_speed_ports++;
1614 return num_similar_speed_ports;
1617 static void handle_device_notification(struct xhci_hcd *xhci,
1618 union xhci_trb *event)
1620 u32 slot_id;
1621 struct usb_device *udev;
1623 slot_id = TRB_TO_SLOT_ID(event->generic.field[3]);
1624 if (!xhci->devs[slot_id]) {
1625 xhci_warn(xhci, "Device Notification event for "
1626 "unused slot %u\n", slot_id);
1627 return;
1630 xhci_dbg(xhci, "Device Wake Notification event for slot ID %u\n",
1631 slot_id);
1632 udev = xhci->devs[slot_id]->udev;
1633 if (udev && udev->parent)
1634 usb_wakeup_notification(udev->parent, udev->portnum);
1637 static void handle_port_status(struct xhci_hcd *xhci,
1638 union xhci_trb *event)
1640 struct usb_hcd *hcd;
1641 u32 port_id;
1642 u32 temp, temp1;
1643 int max_ports;
1644 int slot_id;
1645 unsigned int faked_port_index;
1646 u8 major_revision;
1647 struct xhci_bus_state *bus_state;
1648 __le32 __iomem **port_array;
1649 bool bogus_port_status = false;
1651 /* Port status change events always have a successful completion code */
1652 if (GET_COMP_CODE(le32_to_cpu(event->generic.field[2])) != COMP_SUCCESS) {
1653 xhci_warn(xhci, "WARN: xHC returned failed port status event\n");
1654 xhci->error_bitmask |= 1 << 8;
1656 port_id = GET_PORT_ID(le32_to_cpu(event->generic.field[0]));
1657 xhci_dbg(xhci, "Port Status Change Event for port %d\n", port_id);
1659 max_ports = HCS_MAX_PORTS(xhci->hcs_params1);
1660 if ((port_id <= 0) || (port_id > max_ports)) {
1661 xhci_warn(xhci, "Invalid port id %d\n", port_id);
1662 inc_deq(xhci, xhci->event_ring);
1663 return;
1666 /* Figure out which usb_hcd this port is attached to:
1667 * is it a USB 3.0 port or a USB 2.0/1.1 port?
1669 major_revision = xhci->port_array[port_id - 1];
1671 /* Find the right roothub. */
1672 hcd = xhci_to_hcd(xhci);
1673 if ((major_revision == 0x03) != (hcd->speed == HCD_USB3))
1674 hcd = xhci->shared_hcd;
1676 if (major_revision == 0) {
1677 xhci_warn(xhci, "Event for port %u not in "
1678 "Extended Capabilities, ignoring.\n",
1679 port_id);
1680 bogus_port_status = true;
1681 goto cleanup;
1683 if (major_revision == DUPLICATE_ENTRY) {
1684 xhci_warn(xhci, "Event for port %u duplicated in"
1685 "Extended Capabilities, ignoring.\n",
1686 port_id);
1687 bogus_port_status = true;
1688 goto cleanup;
1692 * Hardware port IDs reported by a Port Status Change Event include USB
1693 * 3.0 and USB 2.0 ports. We want to check if the port has reported a
1694 * resume event, but we first need to translate the hardware port ID
1695 * into the index into the ports on the correct split roothub, and the
1696 * correct bus_state structure.
1698 bus_state = &xhci->bus_state[hcd_index(hcd)];
1699 if (hcd->speed == HCD_USB3)
1700 port_array = xhci->usb3_ports;
1701 else
1702 port_array = xhci->usb2_ports;
1703 /* Find the faked port hub number */
1704 faked_port_index = find_faked_portnum_from_hw_portnum(hcd, xhci,
1705 port_id);
1707 temp = xhci_readl(xhci, port_array[faked_port_index]);
1708 if (hcd->state == HC_STATE_SUSPENDED) {
1709 xhci_dbg(xhci, "resume root hub\n");
1710 usb_hcd_resume_root_hub(hcd);
1713 if (hcd->speed == HCD_USB3 && (temp & PORT_PLS_MASK) == XDEV_INACTIVE)
1714 bus_state->port_remote_wakeup &= ~(1 << faked_port_index);
1716 if ((temp & PORT_PLC) && (temp & PORT_PLS_MASK) == XDEV_RESUME) {
1717 xhci_dbg(xhci, "port resume event for port %d\n", port_id);
1719 temp1 = xhci_readl(xhci, &xhci->op_regs->command);
1720 if (!(temp1 & CMD_RUN)) {
1721 xhci_warn(xhci, "xHC is not running.\n");
1722 goto cleanup;
1725 if (DEV_SUPERSPEED(temp)) {
1726 xhci_dbg(xhci, "remote wake SS port %d\n", port_id);
1727 /* Set a flag to say the port signaled remote wakeup,
1728 * so we can tell the difference between the end of
1729 * device and host initiated resume.
1731 bus_state->port_remote_wakeup |= 1 << faked_port_index;
1732 xhci_test_and_clear_bit(xhci, port_array,
1733 faked_port_index, PORT_PLC);
1734 xhci_set_link_state(xhci, port_array, faked_port_index,
1735 XDEV_U0);
1736 /* Need to wait until the next link state change
1737 * indicates the device is actually in U0.
1739 bogus_port_status = true;
1740 goto cleanup;
1741 } else if (!test_bit(faked_port_index,
1742 &bus_state->resuming_ports)) {
1743 xhci_dbg(xhci, "resume HS port %d\n", port_id);
1744 bus_state->resume_done[faked_port_index] = jiffies +
1745 msecs_to_jiffies(USB_RESUME_TIMEOUT);
1746 set_bit(faked_port_index, &bus_state->resuming_ports);
1747 mod_timer(&hcd->rh_timer,
1748 bus_state->resume_done[faked_port_index]);
1749 /* Do the rest in GetPortStatus */
1753 if ((temp & PORT_PLC) && (temp & PORT_PLS_MASK) == XDEV_U0 &&
1754 DEV_SUPERSPEED(temp)) {
1755 xhci_dbg(xhci, "resume SS port %d finished\n", port_id);
1756 /* We've just brought the device into U0 through either the
1757 * Resume state after a device remote wakeup, or through the
1758 * U3Exit state after a host-initiated resume. If it's a device
1759 * initiated remote wake, don't pass up the link state change,
1760 * so the roothub behavior is consistent with external
1761 * USB 3.0 hub behavior.
1763 slot_id = xhci_find_slot_id_by_port(hcd, xhci,
1764 faked_port_index + 1);
1765 if (slot_id && xhci->devs[slot_id])
1766 xhci_ring_device(xhci, slot_id);
1767 if (bus_state->port_remote_wakeup & (1 << faked_port_index)) {
1768 bus_state->port_remote_wakeup &=
1769 ~(1 << faked_port_index);
1770 xhci_test_and_clear_bit(xhci, port_array,
1771 faked_port_index, PORT_PLC);
1772 usb_wakeup_notification(hcd->self.root_hub,
1773 faked_port_index + 1);
1774 bogus_port_status = true;
1775 goto cleanup;
1780 * Check to see if xhci-hub.c is waiting on RExit to U0 transition (or
1781 * RExit to a disconnect state). If so, let the the driver know it's
1782 * out of the RExit state.
1784 if (!DEV_SUPERSPEED(temp) &&
1785 test_and_clear_bit(faked_port_index,
1786 &bus_state->rexit_ports)) {
1787 complete(&bus_state->rexit_done[faked_port_index]);
1788 bogus_port_status = true;
1789 goto cleanup;
1792 if (hcd->speed != HCD_USB3)
1793 xhci_test_and_clear_bit(xhci, port_array, faked_port_index,
1794 PORT_PLC);
1796 cleanup:
1797 /* Update event ring dequeue pointer before dropping the lock */
1798 inc_deq(xhci, xhci->event_ring);
1800 /* Don't make the USB core poll the roothub if we got a bad port status
1801 * change event. Besides, at that point we can't tell which roothub
1802 * (USB 2.0 or USB 3.0) to kick.
1804 if (bogus_port_status)
1805 return;
1808 * xHCI port-status-change events occur when the "or" of all the
1809 * status-change bits in the portsc register changes from 0 to 1.
1810 * New status changes won't cause an event if any other change
1811 * bits are still set. When an event occurs, switch over to
1812 * polling to avoid losing status changes.
1814 xhci_dbg(xhci, "%s: starting port polling.\n", __func__);
1815 set_bit(HCD_FLAG_POLL_RH, &hcd->flags);
1816 spin_unlock(&xhci->lock);
1817 /* Pass this up to the core */
1818 usb_hcd_poll_rh_status(hcd);
1819 spin_lock(&xhci->lock);
1823 * This TD is defined by the TRBs starting at start_trb in start_seg and ending
1824 * at end_trb, which may be in another segment. If the suspect DMA address is a
1825 * TRB in this TD, this function returns that TRB's segment. Otherwise it
1826 * returns 0.
1828 struct xhci_segment *trb_in_td(struct xhci_segment *start_seg,
1829 union xhci_trb *start_trb,
1830 union xhci_trb *end_trb,
1831 dma_addr_t suspect_dma)
1833 dma_addr_t start_dma;
1834 dma_addr_t end_seg_dma;
1835 dma_addr_t end_trb_dma;
1836 struct xhci_segment *cur_seg;
1838 start_dma = xhci_trb_virt_to_dma(start_seg, start_trb);
1839 cur_seg = start_seg;
1841 do {
1842 if (start_dma == 0)
1843 return NULL;
1844 /* We may get an event for a Link TRB in the middle of a TD */
1845 end_seg_dma = xhci_trb_virt_to_dma(cur_seg,
1846 &cur_seg->trbs[TRBS_PER_SEGMENT - 1]);
1847 /* If the end TRB isn't in this segment, this is set to 0 */
1848 end_trb_dma = xhci_trb_virt_to_dma(cur_seg, end_trb);
1850 if (end_trb_dma > 0) {
1851 /* The end TRB is in this segment, so suspect should be here */
1852 if (start_dma <= end_trb_dma) {
1853 if (suspect_dma >= start_dma && suspect_dma <= end_trb_dma)
1854 return cur_seg;
1855 } else {
1856 /* Case for one segment with
1857 * a TD wrapped around to the top
1859 if ((suspect_dma >= start_dma &&
1860 suspect_dma <= end_seg_dma) ||
1861 (suspect_dma >= cur_seg->dma &&
1862 suspect_dma <= end_trb_dma))
1863 return cur_seg;
1865 return NULL;
1866 } else {
1867 /* Might still be somewhere in this segment */
1868 if (suspect_dma >= start_dma && suspect_dma <= end_seg_dma)
1869 return cur_seg;
1871 cur_seg = cur_seg->next;
1872 start_dma = xhci_trb_virt_to_dma(cur_seg, &cur_seg->trbs[0]);
1873 } while (cur_seg != start_seg);
1875 return NULL;
1878 static void xhci_cleanup_halted_endpoint(struct xhci_hcd *xhci,
1879 unsigned int slot_id, unsigned int ep_index,
1880 unsigned int stream_id,
1881 struct xhci_td *td, union xhci_trb *event_trb)
1883 struct xhci_virt_ep *ep = &xhci->devs[slot_id]->eps[ep_index];
1884 ep->ep_state |= EP_HALTED;
1885 ep->stopped_td = td;
1886 ep->stopped_stream = stream_id;
1888 xhci_queue_reset_ep(xhci, slot_id, ep_index);
1889 xhci_cleanup_stalled_ring(xhci, td->urb->dev, ep_index);
1891 ep->stopped_td = NULL;
1892 ep->stopped_stream = 0;
1894 xhci_ring_cmd_db(xhci);
1897 /* Check if an error has halted the endpoint ring. The class driver will
1898 * cleanup the halt for a non-default control endpoint if we indicate a stall.
1899 * However, a babble and other errors also halt the endpoint ring, and the class
1900 * driver won't clear the halt in that case, so we need to issue a Set Transfer
1901 * Ring Dequeue Pointer command manually.
1903 static int xhci_requires_manual_halt_cleanup(struct xhci_hcd *xhci,
1904 struct xhci_ep_ctx *ep_ctx,
1905 unsigned int trb_comp_code)
1907 /* TRB completion codes that may require a manual halt cleanup */
1908 if (trb_comp_code == COMP_TX_ERR ||
1909 trb_comp_code == COMP_BABBLE ||
1910 trb_comp_code == COMP_SPLIT_ERR)
1911 /* The 0.96 spec says a babbling control endpoint
1912 * is not halted. The 0.96 spec says it is. Some HW
1913 * claims to be 0.95 compliant, but it halts the control
1914 * endpoint anyway. Check if a babble halted the
1915 * endpoint.
1917 if ((ep_ctx->ep_info & cpu_to_le32(EP_STATE_MASK)) ==
1918 cpu_to_le32(EP_STATE_HALTED))
1919 return 1;
1921 return 0;
1924 int xhci_is_vendor_info_code(struct xhci_hcd *xhci, unsigned int trb_comp_code)
1926 if (trb_comp_code >= 224 && trb_comp_code <= 255) {
1927 /* Vendor defined "informational" completion code,
1928 * treat as not-an-error.
1930 xhci_dbg(xhci, "Vendor defined info completion code %u\n",
1931 trb_comp_code);
1932 xhci_dbg(xhci, "Treating code as success.\n");
1933 return 1;
1935 return 0;
1939 * Finish the td processing, remove the td from td list;
1940 * Return 1 if the urb can be given back.
1942 static int finish_td(struct xhci_hcd *xhci, struct xhci_td *td,
1943 union xhci_trb *event_trb, struct xhci_transfer_event *event,
1944 struct xhci_virt_ep *ep, int *status, bool skip)
1946 struct xhci_virt_device *xdev;
1947 struct xhci_ring *ep_ring;
1948 unsigned int slot_id;
1949 int ep_index;
1950 struct urb *urb = NULL;
1951 struct xhci_ep_ctx *ep_ctx;
1952 int ret = 0;
1953 struct urb_priv *urb_priv;
1954 u32 trb_comp_code;
1956 slot_id = TRB_TO_SLOT_ID(le32_to_cpu(event->flags));
1957 xdev = xhci->devs[slot_id];
1958 ep_index = TRB_TO_EP_ID(le32_to_cpu(event->flags)) - 1;
1959 ep_ring = xhci_dma_to_transfer_ring(ep, le64_to_cpu(event->buffer));
1960 ep_ctx = xhci_get_ep_ctx(xhci, xdev->out_ctx, ep_index);
1961 trb_comp_code = GET_COMP_CODE(le32_to_cpu(event->transfer_len));
1963 if (skip)
1964 goto td_cleanup;
1966 if (trb_comp_code == COMP_STOP_INVAL ||
1967 trb_comp_code == COMP_STOP) {
1968 /* The Endpoint Stop Command completion will take care of any
1969 * stopped TDs. A stopped TD may be restarted, so don't update
1970 * the ring dequeue pointer or take this TD off any lists yet.
1972 ep->stopped_td = td;
1973 return 0;
1974 } else {
1975 if (trb_comp_code == COMP_STALL ||
1976 xhci_requires_manual_halt_cleanup(xhci, ep_ctx,
1977 trb_comp_code)) {
1978 /* Issue a reset endpoint command to clear the host side
1979 * halt, followed by a set dequeue command to move the
1980 * dequeue pointer past the TD.
1981 * The class driver clears the device side halt later.
1983 xhci_cleanup_halted_endpoint(xhci,
1984 slot_id, ep_index, ep_ring->stream_id,
1985 td, event_trb);
1986 } else {
1987 /* Update ring dequeue pointer */
1988 while (ep_ring->dequeue != td->last_trb)
1989 inc_deq(xhci, ep_ring);
1990 inc_deq(xhci, ep_ring);
1993 td_cleanup:
1994 /* Clean up the endpoint's TD list */
1995 urb = td->urb;
1996 urb_priv = urb->hcpriv;
1998 /* Do one last check of the actual transfer length.
1999 * If the host controller said we transferred more data than
2000 * the buffer length, urb->actual_length will be a very big
2001 * number (since it's unsigned). Play it safe and say we didn't
2002 * transfer anything.
2004 if (urb->actual_length > urb->transfer_buffer_length) {
2005 xhci_warn(xhci, "URB transfer length is wrong, "
2006 "xHC issue? req. len = %u, "
2007 "act. len = %u\n",
2008 urb->transfer_buffer_length,
2009 urb->actual_length);
2010 urb->actual_length = 0;
2011 if (td->urb->transfer_flags & URB_SHORT_NOT_OK)
2012 *status = -EREMOTEIO;
2013 else
2014 *status = 0;
2016 list_del_init(&td->td_list);
2017 /* Was this TD slated to be cancelled but completed anyway? */
2018 if (!list_empty(&td->cancelled_td_list))
2019 list_del_init(&td->cancelled_td_list);
2021 urb_priv->td_cnt++;
2022 /* Giveback the urb when all the tds are completed */
2023 if (urb_priv->td_cnt == urb_priv->length) {
2024 ret = 1;
2025 if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS) {
2026 xhci_to_hcd(xhci)->self.bandwidth_isoc_reqs--;
2027 if (xhci_to_hcd(xhci)->self.bandwidth_isoc_reqs
2028 == 0) {
2029 if (xhci->quirks & XHCI_AMD_PLL_FIX)
2030 usb_amd_quirk_pll_enable();
2036 return ret;
2040 * Process control tds, update urb status and actual_length.
2042 static int process_ctrl_td(struct xhci_hcd *xhci, struct xhci_td *td,
2043 union xhci_trb *event_trb, struct xhci_transfer_event *event,
2044 struct xhci_virt_ep *ep, int *status)
2046 struct xhci_virt_device *xdev;
2047 struct xhci_ring *ep_ring;
2048 unsigned int slot_id;
2049 int ep_index;
2050 struct xhci_ep_ctx *ep_ctx;
2051 u32 trb_comp_code;
2053 slot_id = TRB_TO_SLOT_ID(le32_to_cpu(event->flags));
2054 xdev = xhci->devs[slot_id];
2055 ep_index = TRB_TO_EP_ID(le32_to_cpu(event->flags)) - 1;
2056 ep_ring = xhci_dma_to_transfer_ring(ep, le64_to_cpu(event->buffer));
2057 ep_ctx = xhci_get_ep_ctx(xhci, xdev->out_ctx, ep_index);
2058 trb_comp_code = GET_COMP_CODE(le32_to_cpu(event->transfer_len));
2060 switch (trb_comp_code) {
2061 case COMP_SUCCESS:
2062 if (event_trb == ep_ring->dequeue) {
2063 xhci_warn(xhci, "WARN: Success on ctrl setup TRB "
2064 "without IOC set??\n");
2065 *status = -ESHUTDOWN;
2066 } else if (event_trb != td->last_trb) {
2067 xhci_warn(xhci, "WARN: Success on ctrl data TRB "
2068 "without IOC set??\n");
2069 *status = -ESHUTDOWN;
2070 } else {
2071 *status = 0;
2073 break;
2074 case COMP_SHORT_TX:
2075 if (td->urb->transfer_flags & URB_SHORT_NOT_OK)
2076 *status = -EREMOTEIO;
2077 else
2078 *status = 0;
2079 break;
2080 case COMP_STOP_INVAL:
2081 case COMP_STOP:
2082 return finish_td(xhci, td, event_trb, event, ep, status, false);
2083 default:
2084 if (!xhci_requires_manual_halt_cleanup(xhci,
2085 ep_ctx, trb_comp_code))
2086 break;
2087 xhci_dbg(xhci, "TRB error code %u, "
2088 "halted endpoint index = %u\n",
2089 trb_comp_code, ep_index);
2090 /* else fall through */
2091 case COMP_STALL:
2092 /* Did we transfer part of the data (middle) phase? */
2093 if (event_trb != ep_ring->dequeue &&
2094 event_trb != td->last_trb)
2095 td->urb->actual_length =
2096 td->urb->transfer_buffer_length -
2097 EVENT_TRB_LEN(le32_to_cpu(event->transfer_len));
2098 else
2099 td->urb->actual_length = 0;
2101 return finish_td(xhci, td, event_trb, event, ep, status, false);
2104 * Did we transfer any data, despite the errors that might have
2105 * happened? I.e. did we get past the setup stage?
2107 if (event_trb != ep_ring->dequeue) {
2108 /* The event was for the status stage */
2109 if (event_trb == td->last_trb) {
2110 if (td->urb_length_set) {
2111 /* Don't overwrite a previously set error code
2113 if ((*status == -EINPROGRESS || *status == 0) &&
2114 (td->urb->transfer_flags
2115 & URB_SHORT_NOT_OK))
2116 /* Did we already see a short data
2117 * stage? */
2118 *status = -EREMOTEIO;
2119 } else {
2120 td->urb->actual_length =
2121 td->urb->transfer_buffer_length;
2123 } else {
2125 * Maybe the event was for the data stage? If so, update
2126 * already the actual_length of the URB and flag it as
2127 * set, so that it is not overwritten in the event for
2128 * the last TRB.
2130 td->urb_length_set = true;
2131 td->urb->actual_length =
2132 td->urb->transfer_buffer_length -
2133 EVENT_TRB_LEN(le32_to_cpu(event->transfer_len));
2134 xhci_dbg(xhci, "Waiting for status "
2135 "stage event\n");
2136 return 0;
2140 return finish_td(xhci, td, event_trb, event, ep, status, false);
2144 * Process isochronous tds, update urb packet status and actual_length.
2146 static int process_isoc_td(struct xhci_hcd *xhci, struct xhci_td *td,
2147 union xhci_trb *event_trb, struct xhci_transfer_event *event,
2148 struct xhci_virt_ep *ep, int *status)
2150 struct xhci_ring *ep_ring;
2151 struct urb_priv *urb_priv;
2152 int idx;
2153 int len = 0;
2154 union xhci_trb *cur_trb;
2155 struct xhci_segment *cur_seg;
2156 struct usb_iso_packet_descriptor *frame;
2157 u32 trb_comp_code;
2158 bool skip_td = false;
2160 ep_ring = xhci_dma_to_transfer_ring(ep, le64_to_cpu(event->buffer));
2161 trb_comp_code = GET_COMP_CODE(le32_to_cpu(event->transfer_len));
2162 urb_priv = td->urb->hcpriv;
2163 idx = urb_priv->td_cnt;
2164 frame = &td->urb->iso_frame_desc[idx];
2166 /* handle completion code */
2167 switch (trb_comp_code) {
2168 case COMP_SUCCESS:
2169 if (EVENT_TRB_LEN(le32_to_cpu(event->transfer_len)) == 0) {
2170 frame->status = 0;
2171 break;
2173 if ((xhci->quirks & XHCI_TRUST_TX_LENGTH))
2174 trb_comp_code = COMP_SHORT_TX;
2175 case COMP_SHORT_TX:
2176 frame->status = td->urb->transfer_flags & URB_SHORT_NOT_OK ?
2177 -EREMOTEIO : 0;
2178 break;
2179 case COMP_BW_OVER:
2180 frame->status = -ECOMM;
2181 skip_td = true;
2182 break;
2183 case COMP_BUFF_OVER:
2184 case COMP_BABBLE:
2185 frame->status = -EOVERFLOW;
2186 skip_td = true;
2187 break;
2188 case COMP_DEV_ERR:
2189 case COMP_STALL:
2190 frame->status = -EPROTO;
2191 skip_td = true;
2192 break;
2193 case COMP_TX_ERR:
2194 frame->status = -EPROTO;
2195 if (event_trb != td->last_trb)
2196 return 0;
2197 skip_td = true;
2198 break;
2199 case COMP_STOP:
2200 case COMP_STOP_INVAL:
2201 break;
2202 default:
2203 frame->status = -1;
2204 break;
2207 if (trb_comp_code == COMP_SUCCESS || skip_td) {
2208 frame->actual_length = frame->length;
2209 td->urb->actual_length += frame->length;
2210 } else {
2211 for (cur_trb = ep_ring->dequeue,
2212 cur_seg = ep_ring->deq_seg; cur_trb != event_trb;
2213 next_trb(xhci, ep_ring, &cur_seg, &cur_trb)) {
2214 if (!TRB_TYPE_NOOP_LE32(cur_trb->generic.field[3]) &&
2215 !TRB_TYPE_LINK_LE32(cur_trb->generic.field[3]))
2216 len += TRB_LEN(le32_to_cpu(cur_trb->generic.field[2]));
2218 len += TRB_LEN(le32_to_cpu(cur_trb->generic.field[2])) -
2219 EVENT_TRB_LEN(le32_to_cpu(event->transfer_len));
2221 if (trb_comp_code != COMP_STOP_INVAL) {
2222 frame->actual_length = len;
2223 td->urb->actual_length += len;
2227 return finish_td(xhci, td, event_trb, event, ep, status, false);
2230 static int skip_isoc_td(struct xhci_hcd *xhci, struct xhci_td *td,
2231 struct xhci_transfer_event *event,
2232 struct xhci_virt_ep *ep, int *status)
2234 struct xhci_ring *ep_ring;
2235 struct urb_priv *urb_priv;
2236 struct usb_iso_packet_descriptor *frame;
2237 int idx;
2239 ep_ring = xhci_dma_to_transfer_ring(ep, le64_to_cpu(event->buffer));
2240 urb_priv = td->urb->hcpriv;
2241 idx = urb_priv->td_cnt;
2242 frame = &td->urb->iso_frame_desc[idx];
2244 /* The transfer is partly done. */
2245 frame->status = -EXDEV;
2247 /* calc actual length */
2248 frame->actual_length = 0;
2250 /* Update ring dequeue pointer */
2251 while (ep_ring->dequeue != td->last_trb)
2252 inc_deq(xhci, ep_ring);
2253 inc_deq(xhci, ep_ring);
2255 return finish_td(xhci, td, NULL, event, ep, status, true);
2259 * Process bulk and interrupt tds, update urb status and actual_length.
2261 static int process_bulk_intr_td(struct xhci_hcd *xhci, struct xhci_td *td,
2262 union xhci_trb *event_trb, struct xhci_transfer_event *event,
2263 struct xhci_virt_ep *ep, int *status)
2265 struct xhci_ring *ep_ring;
2266 union xhci_trb *cur_trb;
2267 struct xhci_segment *cur_seg;
2268 u32 trb_comp_code;
2270 ep_ring = xhci_dma_to_transfer_ring(ep, le64_to_cpu(event->buffer));
2271 trb_comp_code = GET_COMP_CODE(le32_to_cpu(event->transfer_len));
2273 switch (trb_comp_code) {
2274 case COMP_SUCCESS:
2275 /* Double check that the HW transferred everything. */
2276 if (event_trb != td->last_trb ||
2277 EVENT_TRB_LEN(le32_to_cpu(event->transfer_len)) != 0) {
2278 xhci_warn(xhci, "WARN Successful completion "
2279 "on short TX\n");
2280 if (td->urb->transfer_flags & URB_SHORT_NOT_OK)
2281 *status = -EREMOTEIO;
2282 else
2283 *status = 0;
2284 if ((xhci->quirks & XHCI_TRUST_TX_LENGTH))
2285 trb_comp_code = COMP_SHORT_TX;
2286 } else {
2287 *status = 0;
2289 break;
2290 case COMP_SHORT_TX:
2291 if (td->urb->transfer_flags & URB_SHORT_NOT_OK)
2292 *status = -EREMOTEIO;
2293 else
2294 *status = 0;
2295 break;
2296 default:
2297 /* Others already handled above */
2298 break;
2300 if (trb_comp_code == COMP_SHORT_TX)
2301 xhci_dbg(xhci, "ep %#x - asked for %d bytes, "
2302 "%d bytes untransferred\n",
2303 td->urb->ep->desc.bEndpointAddress,
2304 td->urb->transfer_buffer_length,
2305 EVENT_TRB_LEN(le32_to_cpu(event->transfer_len)));
2306 /* Fast path - was this the last TRB in the TD for this URB? */
2307 if (event_trb == td->last_trb) {
2308 if (EVENT_TRB_LEN(le32_to_cpu(event->transfer_len)) != 0) {
2309 td->urb->actual_length =
2310 td->urb->transfer_buffer_length -
2311 EVENT_TRB_LEN(le32_to_cpu(event->transfer_len));
2312 if (td->urb->transfer_buffer_length <
2313 td->urb->actual_length) {
2314 xhci_warn(xhci, "HC gave bad length "
2315 "of %d bytes left\n",
2316 EVENT_TRB_LEN(le32_to_cpu(event->transfer_len)));
2317 td->urb->actual_length = 0;
2318 if (td->urb->transfer_flags & URB_SHORT_NOT_OK)
2319 *status = -EREMOTEIO;
2320 else
2321 *status = 0;
2323 /* Don't overwrite a previously set error code */
2324 if (*status == -EINPROGRESS) {
2325 if (td->urb->transfer_flags & URB_SHORT_NOT_OK)
2326 *status = -EREMOTEIO;
2327 else
2328 *status = 0;
2330 } else {
2331 td->urb->actual_length =
2332 td->urb->transfer_buffer_length;
2333 /* Ignore a short packet completion if the
2334 * untransferred length was zero.
2336 if (*status == -EREMOTEIO)
2337 *status = 0;
2339 } else {
2340 /* Slow path - walk the list, starting from the dequeue
2341 * pointer, to get the actual length transferred.
2343 td->urb->actual_length = 0;
2344 for (cur_trb = ep_ring->dequeue, cur_seg = ep_ring->deq_seg;
2345 cur_trb != event_trb;
2346 next_trb(xhci, ep_ring, &cur_seg, &cur_trb)) {
2347 if (!TRB_TYPE_NOOP_LE32(cur_trb->generic.field[3]) &&
2348 !TRB_TYPE_LINK_LE32(cur_trb->generic.field[3]))
2349 td->urb->actual_length +=
2350 TRB_LEN(le32_to_cpu(cur_trb->generic.field[2]));
2352 /* If the ring didn't stop on a Link or No-op TRB, add
2353 * in the actual bytes transferred from the Normal TRB
2355 if (trb_comp_code != COMP_STOP_INVAL)
2356 td->urb->actual_length +=
2357 TRB_LEN(le32_to_cpu(cur_trb->generic.field[2])) -
2358 EVENT_TRB_LEN(le32_to_cpu(event->transfer_len));
2361 return finish_td(xhci, td, event_trb, event, ep, status, false);
2365 * If this function returns an error condition, it means it got a Transfer
2366 * event with a corrupted Slot ID, Endpoint ID, or TRB DMA address.
2367 * At this point, the host controller is probably hosed and should be reset.
2369 static int handle_tx_event(struct xhci_hcd *xhci,
2370 struct xhci_transfer_event *event)
2371 __releases(&xhci->lock)
2372 __acquires(&xhci->lock)
2374 struct xhci_virt_device *xdev;
2375 struct xhci_virt_ep *ep;
2376 struct xhci_ring *ep_ring;
2377 unsigned int slot_id;
2378 int ep_index;
2379 struct xhci_td *td = NULL;
2380 dma_addr_t event_dma;
2381 struct xhci_segment *event_seg;
2382 union xhci_trb *event_trb;
2383 struct urb *urb = NULL;
2384 int status = -EINPROGRESS;
2385 struct urb_priv *urb_priv;
2386 struct xhci_ep_ctx *ep_ctx;
2387 struct list_head *tmp;
2388 u32 trb_comp_code;
2389 int ret = 0;
2390 int td_num = 0;
2391 bool handling_skipped_tds = false;
2393 slot_id = TRB_TO_SLOT_ID(le32_to_cpu(event->flags));
2394 xdev = xhci->devs[slot_id];
2395 if (!xdev) {
2396 xhci_err(xhci, "ERROR Transfer event pointed to bad slot\n");
2397 xhci_err(xhci, "@%016llx %08x %08x %08x %08x\n",
2398 (unsigned long long) xhci_trb_virt_to_dma(
2399 xhci->event_ring->deq_seg,
2400 xhci->event_ring->dequeue),
2401 lower_32_bits(le64_to_cpu(event->buffer)),
2402 upper_32_bits(le64_to_cpu(event->buffer)),
2403 le32_to_cpu(event->transfer_len),
2404 le32_to_cpu(event->flags));
2405 xhci_dbg(xhci, "Event ring:\n");
2406 xhci_debug_segment(xhci, xhci->event_ring->deq_seg);
2407 return -ENODEV;
2410 /* Endpoint ID is 1 based, our index is zero based */
2411 ep_index = TRB_TO_EP_ID(le32_to_cpu(event->flags)) - 1;
2412 ep = &xdev->eps[ep_index];
2413 ep_ring = xhci_dma_to_transfer_ring(ep, le64_to_cpu(event->buffer));
2414 ep_ctx = xhci_get_ep_ctx(xhci, xdev->out_ctx, ep_index);
2415 if (!ep_ring ||
2416 (le32_to_cpu(ep_ctx->ep_info) & EP_STATE_MASK) ==
2417 EP_STATE_DISABLED) {
2418 xhci_err(xhci, "ERROR Transfer event for disabled endpoint "
2419 "or incorrect stream ring\n");
2420 xhci_err(xhci, "@%016llx %08x %08x %08x %08x\n",
2421 (unsigned long long) xhci_trb_virt_to_dma(
2422 xhci->event_ring->deq_seg,
2423 xhci->event_ring->dequeue),
2424 lower_32_bits(le64_to_cpu(event->buffer)),
2425 upper_32_bits(le64_to_cpu(event->buffer)),
2426 le32_to_cpu(event->transfer_len),
2427 le32_to_cpu(event->flags));
2428 xhci_dbg(xhci, "Event ring:\n");
2429 xhci_debug_segment(xhci, xhci->event_ring->deq_seg);
2430 return -ENODEV;
2433 /* Count current td numbers if ep->skip is set */
2434 if (ep->skip) {
2435 list_for_each(tmp, &ep_ring->td_list)
2436 td_num++;
2439 event_dma = le64_to_cpu(event->buffer);
2440 trb_comp_code = GET_COMP_CODE(le32_to_cpu(event->transfer_len));
2441 /* Look for common error cases */
2442 switch (trb_comp_code) {
2443 /* Skip codes that require special handling depending on
2444 * transfer type
2446 case COMP_SUCCESS:
2447 if (EVENT_TRB_LEN(le32_to_cpu(event->transfer_len)) == 0)
2448 break;
2449 if (xhci->quirks & XHCI_TRUST_TX_LENGTH)
2450 trb_comp_code = COMP_SHORT_TX;
2451 else
2452 xhci_warn_ratelimited(xhci,
2453 "WARN Successful completion on short TX: needs XHCI_TRUST_TX_LENGTH quirk?\n");
2454 case COMP_SHORT_TX:
2455 break;
2456 case COMP_STOP:
2457 xhci_dbg(xhci, "Stopped on Transfer TRB\n");
2458 break;
2459 case COMP_STOP_INVAL:
2460 xhci_dbg(xhci, "Stopped on No-op or Link TRB\n");
2461 break;
2462 case COMP_STALL:
2463 xhci_dbg(xhci, "Stalled endpoint\n");
2464 ep->ep_state |= EP_HALTED;
2465 status = -EPIPE;
2466 break;
2467 case COMP_TRB_ERR:
2468 xhci_warn(xhci, "WARN: TRB error on endpoint\n");
2469 status = -EILSEQ;
2470 break;
2471 case COMP_SPLIT_ERR:
2472 case COMP_TX_ERR:
2473 xhci_dbg(xhci, "Transfer error on endpoint\n");
2474 status = -EPROTO;
2475 break;
2476 case COMP_BABBLE:
2477 xhci_dbg(xhci, "Babble error on endpoint\n");
2478 status = -EOVERFLOW;
2479 break;
2480 case COMP_DB_ERR:
2481 xhci_warn(xhci, "WARN: HC couldn't access mem fast enough\n");
2482 status = -ENOSR;
2483 break;
2484 case COMP_BW_OVER:
2485 xhci_warn(xhci, "WARN: bandwidth overrun event on endpoint\n");
2486 break;
2487 case COMP_BUFF_OVER:
2488 xhci_warn(xhci, "WARN: buffer overrun event on endpoint\n");
2489 break;
2490 case COMP_UNDERRUN:
2492 * When the Isoch ring is empty, the xHC will generate
2493 * a Ring Overrun Event for IN Isoch endpoint or Ring
2494 * Underrun Event for OUT Isoch endpoint.
2496 xhci_dbg(xhci, "underrun event on endpoint\n");
2497 if (!list_empty(&ep_ring->td_list))
2498 xhci_dbg(xhci, "Underrun Event for slot %d ep %d "
2499 "still with TDs queued?\n",
2500 TRB_TO_SLOT_ID(le32_to_cpu(event->flags)),
2501 ep_index);
2502 goto cleanup;
2503 case COMP_OVERRUN:
2504 xhci_dbg(xhci, "overrun event on endpoint\n");
2505 if (!list_empty(&ep_ring->td_list))
2506 xhci_dbg(xhci, "Overrun Event for slot %d ep %d "
2507 "still with TDs queued?\n",
2508 TRB_TO_SLOT_ID(le32_to_cpu(event->flags)),
2509 ep_index);
2510 goto cleanup;
2511 case COMP_DEV_ERR:
2512 xhci_warn(xhci, "WARN: detect an incompatible device");
2513 status = -EPROTO;
2514 break;
2515 case COMP_MISSED_INT:
2517 * When encounter missed service error, one or more isoc tds
2518 * may be missed by xHC.
2519 * Set skip flag of the ep_ring; Complete the missed tds as
2520 * short transfer when process the ep_ring next time.
2522 ep->skip = true;
2523 xhci_dbg(xhci, "Miss service interval error, set skip flag\n");
2524 goto cleanup;
2525 case COMP_PING_ERR:
2526 ep->skip = true;
2527 xhci_dbg(xhci, "No Ping response error, Skip one Isoc TD\n");
2528 goto cleanup;
2529 default:
2530 if (xhci_is_vendor_info_code(xhci, trb_comp_code)) {
2531 status = 0;
2532 break;
2534 xhci_warn(xhci, "ERROR Unknown event condition, HC probably "
2535 "busted\n");
2536 goto cleanup;
2539 do {
2540 /* This TRB should be in the TD at the head of this ring's
2541 * TD list.
2543 if (list_empty(&ep_ring->td_list)) {
2545 * A stopped endpoint may generate an extra completion
2546 * event if the device was suspended. Don't print
2547 * warnings.
2549 if (!(trb_comp_code == COMP_STOP ||
2550 trb_comp_code == COMP_STOP_INVAL)) {
2551 xhci_warn(xhci, "WARN Event TRB for slot %d ep %d with no TDs queued?\n",
2552 TRB_TO_SLOT_ID(le32_to_cpu(event->flags)),
2553 ep_index);
2554 xhci_dbg(xhci, "Event TRB with TRB type ID %u\n",
2555 (le32_to_cpu(event->flags) &
2556 TRB_TYPE_BITMASK)>>10);
2557 xhci_print_trb_offsets(xhci, (union xhci_trb *) event);
2559 if (ep->skip) {
2560 ep->skip = false;
2561 xhci_dbg(xhci, "td_list is empty while skip "
2562 "flag set. Clear skip flag.\n");
2564 ret = 0;
2565 goto cleanup;
2568 /* We've skipped all the TDs on the ep ring when ep->skip set */
2569 if (ep->skip && td_num == 0) {
2570 ep->skip = false;
2571 xhci_dbg(xhci, "All tds on the ep_ring skipped. "
2572 "Clear skip flag.\n");
2573 ret = 0;
2574 goto cleanup;
2577 td = list_entry(ep_ring->td_list.next, struct xhci_td, td_list);
2578 if (ep->skip)
2579 td_num--;
2581 /* Is this a TRB in the currently executing TD? */
2582 event_seg = trb_in_td(ep_ring->deq_seg, ep_ring->dequeue,
2583 td->last_trb, event_dma);
2586 * Skip the Force Stopped Event. The event_trb(event_dma) of FSE
2587 * is not in the current TD pointed by ep_ring->dequeue because
2588 * that the hardware dequeue pointer still at the previous TRB
2589 * of the current TD. The previous TRB maybe a Link TD or the
2590 * last TRB of the previous TD. The command completion handle
2591 * will take care the rest.
2593 if (!event_seg && (trb_comp_code == COMP_STOP ||
2594 trb_comp_code == COMP_STOP_INVAL)) {
2595 ret = 0;
2596 goto cleanup;
2599 if (!event_seg) {
2600 if (!ep->skip ||
2601 !usb_endpoint_xfer_isoc(&td->urb->ep->desc)) {
2602 /* Some host controllers give a spurious
2603 * successful event after a short transfer.
2604 * Ignore it.
2606 if ((xhci->quirks & XHCI_SPURIOUS_SUCCESS) &&
2607 ep_ring->last_td_was_short) {
2608 ep_ring->last_td_was_short = false;
2609 ret = 0;
2610 goto cleanup;
2612 /* HC is busted, give up! */
2613 xhci_err(xhci,
2614 "ERROR Transfer event TRB DMA ptr not "
2615 "part of current TD\n");
2616 return -ESHUTDOWN;
2619 ret = skip_isoc_td(xhci, td, event, ep, &status);
2620 goto cleanup;
2622 if (trb_comp_code == COMP_SHORT_TX)
2623 ep_ring->last_td_was_short = true;
2624 else
2625 ep_ring->last_td_was_short = false;
2627 if (ep->skip) {
2628 xhci_dbg(xhci, "Found td. Clear skip flag.\n");
2629 ep->skip = false;
2632 event_trb = &event_seg->trbs[(event_dma - event_seg->dma) /
2633 sizeof(*event_trb)];
2635 * No-op TRB should not trigger interrupts.
2636 * If event_trb is a no-op TRB, it means the
2637 * corresponding TD has been cancelled. Just ignore
2638 * the TD.
2640 if (TRB_TYPE_NOOP_LE32(event_trb->generic.field[3])) {
2641 xhci_dbg(xhci,
2642 "event_trb is a no-op TRB. Skip it\n");
2643 goto cleanup;
2646 /* Now update the urb's actual_length and give back to
2647 * the core
2649 if (usb_endpoint_xfer_control(&td->urb->ep->desc))
2650 ret = process_ctrl_td(xhci, td, event_trb, event, ep,
2651 &status);
2652 else if (usb_endpoint_xfer_isoc(&td->urb->ep->desc))
2653 ret = process_isoc_td(xhci, td, event_trb, event, ep,
2654 &status);
2655 else
2656 ret = process_bulk_intr_td(xhci, td, event_trb, event,
2657 ep, &status);
2659 cleanup:
2662 handling_skipped_tds = ep->skip &&
2663 trb_comp_code != COMP_MISSED_INT &&
2664 trb_comp_code != COMP_PING_ERR;
2667 * Do not update event ring dequeue pointer if we're in a loop
2668 * processing missed tds.
2670 if (!handling_skipped_tds)
2671 inc_deq(xhci, xhci->event_ring);
2673 if (ret) {
2674 urb = td->urb;
2675 urb_priv = urb->hcpriv;
2677 xhci_urb_free_priv(xhci, urb_priv);
2679 usb_hcd_unlink_urb_from_ep(bus_to_hcd(urb->dev->bus), urb);
2680 if ((urb->actual_length != urb->transfer_buffer_length &&
2681 (urb->transfer_flags &
2682 URB_SHORT_NOT_OK)) ||
2683 (status != 0 &&
2684 !usb_endpoint_xfer_isoc(&urb->ep->desc)))
2685 xhci_dbg(xhci, "Giveback URB %p, len = %d, "
2686 "expected = %d, status = %d\n",
2687 urb, urb->actual_length,
2688 urb->transfer_buffer_length,
2689 status);
2690 spin_unlock(&xhci->lock);
2691 /* EHCI, UHCI, and OHCI always unconditionally set the
2692 * urb->status of an isochronous endpoint to 0.
2694 if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS)
2695 status = 0;
2696 usb_hcd_giveback_urb(bus_to_hcd(urb->dev->bus), urb, status);
2697 spin_lock(&xhci->lock);
2701 * If ep->skip is set, it means there are missed tds on the
2702 * endpoint ring need to take care of.
2703 * Process them as short transfer until reach the td pointed by
2704 * the event.
2706 } while (handling_skipped_tds);
2708 return 0;
2712 * This function handles all OS-owned events on the event ring. It may drop
2713 * xhci->lock between event processing (e.g. to pass up port status changes).
2714 * Returns >0 for "possibly more events to process" (caller should call again),
2715 * otherwise 0 if done. In future, <0 returns should indicate error code.
2717 static int xhci_handle_event(struct xhci_hcd *xhci)
2719 union xhci_trb *event;
2720 int update_ptrs = 1;
2721 int ret;
2723 if (!xhci->event_ring || !xhci->event_ring->dequeue) {
2724 xhci->error_bitmask |= 1 << 1;
2725 return 0;
2728 event = xhci->event_ring->dequeue;
2729 /* Does the HC or OS own the TRB? */
2730 if ((le32_to_cpu(event->event_cmd.flags) & TRB_CYCLE) !=
2731 xhci->event_ring->cycle_state) {
2732 xhci->error_bitmask |= 1 << 2;
2733 return 0;
2737 * Barrier between reading the TRB_CYCLE (valid) flag above and any
2738 * speculative reads of the event's flags/data below.
2740 rmb();
2741 /* FIXME: Handle more event types. */
2742 switch ((le32_to_cpu(event->event_cmd.flags) & TRB_TYPE_BITMASK)) {
2743 case TRB_TYPE(TRB_COMPLETION):
2744 handle_cmd_completion(xhci, &event->event_cmd);
2745 break;
2746 case TRB_TYPE(TRB_PORT_STATUS):
2747 handle_port_status(xhci, event);
2748 update_ptrs = 0;
2749 break;
2750 case TRB_TYPE(TRB_TRANSFER):
2751 ret = handle_tx_event(xhci, &event->trans_event);
2752 if (ret < 0)
2753 xhci->error_bitmask |= 1 << 9;
2754 else
2755 update_ptrs = 0;
2756 break;
2757 case TRB_TYPE(TRB_DEV_NOTE):
2758 handle_device_notification(xhci, event);
2759 break;
2760 default:
2761 if ((le32_to_cpu(event->event_cmd.flags) & TRB_TYPE_BITMASK) >=
2762 TRB_TYPE(48))
2763 handle_vendor_event(xhci, event);
2764 else
2765 xhci->error_bitmask |= 1 << 3;
2767 /* Any of the above functions may drop and re-acquire the lock, so check
2768 * to make sure a watchdog timer didn't mark the host as non-responsive.
2770 if (xhci->xhc_state & XHCI_STATE_DYING) {
2771 xhci_dbg(xhci, "xHCI host dying, returning from "
2772 "event handler.\n");
2773 return 0;
2776 if (update_ptrs)
2777 /* Update SW event ring dequeue pointer */
2778 inc_deq(xhci, xhci->event_ring);
2780 /* Are there more items on the event ring? Caller will call us again to
2781 * check.
2783 return 1;
2787 * xHCI spec says we can get an interrupt, and if the HC has an error condition,
2788 * we might get bad data out of the event ring. Section 4.10.2.7 has a list of
2789 * indicators of an event TRB error, but we check the status *first* to be safe.
2791 irqreturn_t xhci_irq(struct usb_hcd *hcd)
2793 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
2794 u32 status;
2795 u64 temp_64;
2796 union xhci_trb *event_ring_deq;
2797 dma_addr_t deq;
2799 spin_lock(&xhci->lock);
2800 /* Check if the xHC generated the interrupt, or the irq is shared */
2801 status = xhci_readl(xhci, &xhci->op_regs->status);
2802 if (status == 0xffffffff)
2803 goto hw_died;
2805 if (!(status & STS_EINT)) {
2806 spin_unlock(&xhci->lock);
2807 return IRQ_NONE;
2809 if (status & STS_FATAL) {
2810 xhci_warn(xhci, "WARNING: Host System Error\n");
2811 xhci_halt(xhci);
2812 hw_died:
2813 spin_unlock(&xhci->lock);
2814 return IRQ_HANDLED;
2818 * Clear the op reg interrupt status first,
2819 * so we can receive interrupts from other MSI-X interrupters.
2820 * Write 1 to clear the interrupt status.
2822 status |= STS_EINT;
2823 xhci_writel(xhci, status, &xhci->op_regs->status);
2824 /* FIXME when MSI-X is supported and there are multiple vectors */
2825 /* Clear the MSI-X event interrupt status */
2827 if (hcd->irq) {
2828 u32 irq_pending;
2829 /* Acknowledge the PCI interrupt */
2830 irq_pending = xhci_readl(xhci, &xhci->ir_set->irq_pending);
2831 irq_pending |= IMAN_IP;
2832 xhci_writel(xhci, irq_pending, &xhci->ir_set->irq_pending);
2835 if (xhci->xhc_state & XHCI_STATE_DYING) {
2836 xhci_dbg(xhci, "xHCI dying, ignoring interrupt. "
2837 "Shouldn't IRQs be disabled?\n");
2838 /* Clear the event handler busy flag (RW1C);
2839 * the event ring should be empty.
2841 temp_64 = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
2842 xhci_write_64(xhci, temp_64 | ERST_EHB,
2843 &xhci->ir_set->erst_dequeue);
2844 spin_unlock(&xhci->lock);
2846 return IRQ_HANDLED;
2849 event_ring_deq = xhci->event_ring->dequeue;
2850 /* FIXME this should be a delayed service routine
2851 * that clears the EHB.
2853 while (xhci_handle_event(xhci) > 0) {}
2855 temp_64 = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
2856 /* If necessary, update the HW's version of the event ring deq ptr. */
2857 if (event_ring_deq != xhci->event_ring->dequeue) {
2858 deq = xhci_trb_virt_to_dma(xhci->event_ring->deq_seg,
2859 xhci->event_ring->dequeue);
2860 if (deq == 0)
2861 xhci_warn(xhci, "WARN something wrong with SW event "
2862 "ring dequeue ptr.\n");
2863 /* Update HC event ring dequeue pointer */
2864 temp_64 &= ERST_PTR_MASK;
2865 temp_64 |= ((u64) deq & (u64) ~ERST_PTR_MASK);
2868 /* Clear the event handler busy flag (RW1C); event ring is empty. */
2869 temp_64 |= ERST_EHB;
2870 xhci_write_64(xhci, temp_64, &xhci->ir_set->erst_dequeue);
2872 spin_unlock(&xhci->lock);
2874 return IRQ_HANDLED;
2877 irqreturn_t xhci_msi_irq(int irq, void *hcd)
2879 return xhci_irq(hcd);
2882 /**** Endpoint Ring Operations ****/
2885 * Generic function for queueing a TRB on a ring.
2886 * The caller must have checked to make sure there's room on the ring.
2888 * @more_trbs_coming: Will you enqueue more TRBs before calling
2889 * prepare_transfer()?
2891 static void queue_trb(struct xhci_hcd *xhci, struct xhci_ring *ring,
2892 bool more_trbs_coming,
2893 u32 field1, u32 field2, u32 field3, u32 field4)
2895 struct xhci_generic_trb *trb;
2897 trb = &ring->enqueue->generic;
2898 trb->field[0] = cpu_to_le32(field1);
2899 trb->field[1] = cpu_to_le32(field2);
2900 trb->field[2] = cpu_to_le32(field3);
2901 trb->field[3] = cpu_to_le32(field4);
2902 inc_enq(xhci, ring, more_trbs_coming);
2906 * Does various checks on the endpoint ring, and makes it ready to queue num_trbs.
2907 * FIXME allocate segments if the ring is full.
2909 static int prepare_ring(struct xhci_hcd *xhci, struct xhci_ring *ep_ring,
2910 u32 ep_state, unsigned int num_trbs, gfp_t mem_flags)
2912 unsigned int num_trbs_needed;
2914 /* Make sure the endpoint has been added to xHC schedule */
2915 switch (ep_state) {
2916 case EP_STATE_DISABLED:
2918 * USB core changed config/interfaces without notifying us,
2919 * or hardware is reporting the wrong state.
2921 xhci_warn(xhci, "WARN urb submitted to disabled ep\n");
2922 return -ENOENT;
2923 case EP_STATE_ERROR:
2924 xhci_warn(xhci, "WARN waiting for error on ep to be cleared\n");
2925 /* FIXME event handling code for error needs to clear it */
2926 /* XXX not sure if this should be -ENOENT or not */
2927 return -EINVAL;
2928 case EP_STATE_HALTED:
2929 xhci_dbg(xhci, "WARN halted endpoint, queueing URB anyway.\n");
2930 case EP_STATE_STOPPED:
2931 case EP_STATE_RUNNING:
2932 break;
2933 default:
2934 xhci_err(xhci, "ERROR unknown endpoint state for ep\n");
2936 * FIXME issue Configure Endpoint command to try to get the HC
2937 * back into a known state.
2939 return -EINVAL;
2942 while (1) {
2943 if (room_on_ring(xhci, ep_ring, num_trbs))
2944 break;
2946 if (ep_ring == xhci->cmd_ring) {
2947 xhci_err(xhci, "Do not support expand command ring\n");
2948 return -ENOMEM;
2951 xhci_dbg_trace(xhci, trace_xhci_dbg_ring_expansion,
2952 "ERROR no room on ep ring, try ring expansion");
2953 num_trbs_needed = num_trbs - ep_ring->num_trbs_free;
2954 if (xhci_ring_expansion(xhci, ep_ring, num_trbs_needed,
2955 mem_flags)) {
2956 xhci_err(xhci, "Ring expansion failed\n");
2957 return -ENOMEM;
2961 if (enqueue_is_link_trb(ep_ring)) {
2962 struct xhci_ring *ring = ep_ring;
2963 union xhci_trb *next;
2965 next = ring->enqueue;
2967 while (last_trb(xhci, ring, ring->enq_seg, next)) {
2968 /* If we're not dealing with 0.95 hardware or isoc rings
2969 * on AMD 0.96 host, clear the chain bit.
2971 if (!xhci_link_trb_quirk(xhci) &&
2972 !(ring->type == TYPE_ISOC &&
2973 (xhci->quirks & XHCI_AMD_0x96_HOST)))
2974 next->link.control &= cpu_to_le32(~TRB_CHAIN);
2975 else
2976 next->link.control |= cpu_to_le32(TRB_CHAIN);
2978 wmb();
2979 next->link.control ^= cpu_to_le32(TRB_CYCLE);
2981 /* Toggle the cycle bit after the last ring segment. */
2982 if (last_trb_on_last_seg(xhci, ring, ring->enq_seg, next)) {
2983 ring->cycle_state = (ring->cycle_state ? 0 : 1);
2985 ring->enq_seg = ring->enq_seg->next;
2986 ring->enqueue = ring->enq_seg->trbs;
2987 next = ring->enqueue;
2991 return 0;
2994 static int prepare_transfer(struct xhci_hcd *xhci,
2995 struct xhci_virt_device *xdev,
2996 unsigned int ep_index,
2997 unsigned int stream_id,
2998 unsigned int num_trbs,
2999 struct urb *urb,
3000 unsigned int td_index,
3001 gfp_t mem_flags)
3003 int ret;
3004 struct urb_priv *urb_priv;
3005 struct xhci_td *td;
3006 struct xhci_ring *ep_ring;
3007 struct xhci_ep_ctx *ep_ctx = xhci_get_ep_ctx(xhci, xdev->out_ctx, ep_index);
3009 ep_ring = xhci_stream_id_to_ring(xdev, ep_index, stream_id);
3010 if (!ep_ring) {
3011 xhci_dbg(xhci, "Can't prepare ring for bad stream ID %u\n",
3012 stream_id);
3013 return -EINVAL;
3016 ret = prepare_ring(xhci, ep_ring,
3017 le32_to_cpu(ep_ctx->ep_info) & EP_STATE_MASK,
3018 num_trbs, mem_flags);
3019 if (ret)
3020 return ret;
3022 urb_priv = urb->hcpriv;
3023 td = urb_priv->td[td_index];
3025 INIT_LIST_HEAD(&td->td_list);
3026 INIT_LIST_HEAD(&td->cancelled_td_list);
3028 if (td_index == 0) {
3029 ret = usb_hcd_link_urb_to_ep(bus_to_hcd(urb->dev->bus), urb);
3030 if (unlikely(ret))
3031 return ret;
3034 td->urb = urb;
3035 /* Add this TD to the tail of the endpoint ring's TD list */
3036 list_add_tail(&td->td_list, &ep_ring->td_list);
3037 td->start_seg = ep_ring->enq_seg;
3038 td->first_trb = ep_ring->enqueue;
3040 urb_priv->td[td_index] = td;
3042 return 0;
3045 static unsigned int count_sg_trbs_needed(struct xhci_hcd *xhci, struct urb *urb)
3047 int num_sgs, num_trbs, running_total, temp, i;
3048 struct scatterlist *sg;
3050 sg = NULL;
3051 num_sgs = urb->num_mapped_sgs;
3052 temp = urb->transfer_buffer_length;
3054 num_trbs = 0;
3055 for_each_sg(urb->sg, sg, num_sgs, i) {
3056 unsigned int len = sg_dma_len(sg);
3058 /* Scatter gather list entries may cross 64KB boundaries */
3059 running_total = TRB_MAX_BUFF_SIZE -
3060 (sg_dma_address(sg) & (TRB_MAX_BUFF_SIZE - 1));
3061 running_total &= TRB_MAX_BUFF_SIZE - 1;
3062 if (running_total != 0)
3063 num_trbs++;
3065 /* How many more 64KB chunks to transfer, how many more TRBs? */
3066 while (running_total < sg_dma_len(sg) && running_total < temp) {
3067 num_trbs++;
3068 running_total += TRB_MAX_BUFF_SIZE;
3070 len = min_t(int, len, temp);
3071 temp -= len;
3072 if (temp == 0)
3073 break;
3075 return num_trbs;
3078 static void check_trb_math(struct urb *urb, int num_trbs, int running_total)
3080 if (num_trbs != 0)
3081 dev_err(&urb->dev->dev, "%s - ep %#x - Miscalculated number of "
3082 "TRBs, %d left\n", __func__,
3083 urb->ep->desc.bEndpointAddress, num_trbs);
3084 if (running_total != urb->transfer_buffer_length)
3085 dev_err(&urb->dev->dev, "%s - ep %#x - Miscalculated tx length, "
3086 "queued %#x (%d), asked for %#x (%d)\n",
3087 __func__,
3088 urb->ep->desc.bEndpointAddress,
3089 running_total, running_total,
3090 urb->transfer_buffer_length,
3091 urb->transfer_buffer_length);
3094 static void giveback_first_trb(struct xhci_hcd *xhci, int slot_id,
3095 unsigned int ep_index, unsigned int stream_id, int start_cycle,
3096 struct xhci_generic_trb *start_trb)
3099 * Pass all the TRBs to the hardware at once and make sure this write
3100 * isn't reordered.
3102 wmb();
3103 if (start_cycle)
3104 start_trb->field[3] |= cpu_to_le32(start_cycle);
3105 else
3106 start_trb->field[3] &= cpu_to_le32(~TRB_CYCLE);
3107 xhci_ring_ep_doorbell(xhci, slot_id, ep_index, stream_id);
3111 * xHCI uses normal TRBs for both bulk and interrupt. When the interrupt
3112 * endpoint is to be serviced, the xHC will consume (at most) one TD. A TD
3113 * (comprised of sg list entries) can take several service intervals to
3114 * transmit.
3116 int xhci_queue_intr_tx(struct xhci_hcd *xhci, gfp_t mem_flags,
3117 struct urb *urb, int slot_id, unsigned int ep_index)
3119 struct xhci_ep_ctx *ep_ctx = xhci_get_ep_ctx(xhci,
3120 xhci->devs[slot_id]->out_ctx, ep_index);
3121 int xhci_interval;
3122 int ep_interval;
3124 xhci_interval = EP_INTERVAL_TO_UFRAMES(le32_to_cpu(ep_ctx->ep_info));
3125 ep_interval = urb->interval;
3126 /* Convert to microframes */
3127 if (urb->dev->speed == USB_SPEED_LOW ||
3128 urb->dev->speed == USB_SPEED_FULL)
3129 ep_interval *= 8;
3130 /* FIXME change this to a warning and a suggestion to use the new API
3131 * to set the polling interval (once the API is added).
3133 if (xhci_interval != ep_interval) {
3134 dev_dbg_ratelimited(&urb->dev->dev,
3135 "Driver uses different interval (%d microframe%s) than xHCI (%d microframe%s)\n",
3136 ep_interval, ep_interval == 1 ? "" : "s",
3137 xhci_interval, xhci_interval == 1 ? "" : "s");
3138 urb->interval = xhci_interval;
3139 /* Convert back to frames for LS/FS devices */
3140 if (urb->dev->speed == USB_SPEED_LOW ||
3141 urb->dev->speed == USB_SPEED_FULL)
3142 urb->interval /= 8;
3144 return xhci_queue_bulk_tx(xhci, mem_flags, urb, slot_id, ep_index);
3148 * The TD size is the number of bytes remaining in the TD (including this TRB),
3149 * right shifted by 10.
3150 * It must fit in bits 21:17, so it can't be bigger than 31.
3152 static u32 xhci_td_remainder(unsigned int remainder)
3154 u32 max = (1 << (21 - 17 + 1)) - 1;
3156 if ((remainder >> 10) >= max)
3157 return max << 17;
3158 else
3159 return (remainder >> 10) << 17;
3163 * For xHCI 1.0 host controllers, TD size is the number of max packet sized
3164 * packets remaining in the TD (*not* including this TRB).
3166 * Total TD packet count = total_packet_count =
3167 * DIV_ROUND_UP(TD size in bytes / wMaxPacketSize)
3169 * Packets transferred up to and including this TRB = packets_transferred =
3170 * rounddown(total bytes transferred including this TRB / wMaxPacketSize)
3172 * TD size = total_packet_count - packets_transferred
3174 * It must fit in bits 21:17, so it can't be bigger than 31.
3175 * The last TRB in a TD must have the TD size set to zero.
3177 static u32 xhci_v1_0_td_remainder(int running_total, int trb_buff_len,
3178 unsigned int total_packet_count, struct urb *urb,
3179 unsigned int num_trbs_left)
3181 int packets_transferred;
3183 /* One TRB with a zero-length data packet. */
3184 if (num_trbs_left == 0 || (running_total == 0 && trb_buff_len == 0))
3185 return 0;
3187 /* All the TRB queueing functions don't count the current TRB in
3188 * running_total.
3190 packets_transferred = (running_total + trb_buff_len) /
3191 GET_MAX_PACKET(usb_endpoint_maxp(&urb->ep->desc));
3193 if ((total_packet_count - packets_transferred) > 31)
3194 return 31 << 17;
3195 return (total_packet_count - packets_transferred) << 17;
3198 static int queue_bulk_sg_tx(struct xhci_hcd *xhci, gfp_t mem_flags,
3199 struct urb *urb, int slot_id, unsigned int ep_index)
3201 struct xhci_ring *ep_ring;
3202 unsigned int num_trbs;
3203 struct urb_priv *urb_priv;
3204 struct xhci_td *td;
3205 struct scatterlist *sg;
3206 int num_sgs;
3207 int trb_buff_len, this_sg_len, running_total, ret;
3208 unsigned int total_packet_count;
3209 bool zero_length_needed;
3210 bool first_trb;
3211 int last_trb_num;
3212 u64 addr;
3213 bool more_trbs_coming;
3215 struct xhci_generic_trb *start_trb;
3216 int start_cycle;
3218 ep_ring = xhci_urb_to_transfer_ring(xhci, urb);
3219 if (!ep_ring)
3220 return -EINVAL;
3222 num_trbs = count_sg_trbs_needed(xhci, urb);
3223 num_sgs = urb->num_mapped_sgs;
3224 total_packet_count = DIV_ROUND_UP(urb->transfer_buffer_length,
3225 usb_endpoint_maxp(&urb->ep->desc));
3227 ret = prepare_transfer(xhci, xhci->devs[slot_id],
3228 ep_index, urb->stream_id,
3229 num_trbs, urb, 0, mem_flags);
3230 if (ret < 0)
3231 return ret;
3233 urb_priv = urb->hcpriv;
3235 /* Deal with URB_ZERO_PACKET - need one more td/trb */
3236 zero_length_needed = urb->transfer_flags & URB_ZERO_PACKET &&
3237 urb_priv->length == 2;
3238 if (zero_length_needed) {
3239 num_trbs++;
3240 xhci_dbg(xhci, "Creating zero length td.\n");
3241 ret = prepare_transfer(xhci, xhci->devs[slot_id],
3242 ep_index, urb->stream_id,
3243 1, urb, 1, mem_flags);
3244 if (ret < 0)
3245 return ret;
3248 td = urb_priv->td[0];
3251 * Don't give the first TRB to the hardware (by toggling the cycle bit)
3252 * until we've finished creating all the other TRBs. The ring's cycle
3253 * state may change as we enqueue the other TRBs, so save it too.
3255 start_trb = &ep_ring->enqueue->generic;
3256 start_cycle = ep_ring->cycle_state;
3258 running_total = 0;
3260 * How much data is in the first TRB?
3262 * There are three forces at work for TRB buffer pointers and lengths:
3263 * 1. We don't want to walk off the end of this sg-list entry buffer.
3264 * 2. The transfer length that the driver requested may be smaller than
3265 * the amount of memory allocated for this scatter-gather list.
3266 * 3. TRBs buffers can't cross 64KB boundaries.
3268 sg = urb->sg;
3269 addr = (u64) sg_dma_address(sg);
3270 this_sg_len = sg_dma_len(sg);
3271 trb_buff_len = TRB_MAX_BUFF_SIZE - (addr & (TRB_MAX_BUFF_SIZE - 1));
3272 trb_buff_len = min_t(int, trb_buff_len, this_sg_len);
3273 if (trb_buff_len > urb->transfer_buffer_length)
3274 trb_buff_len = urb->transfer_buffer_length;
3276 first_trb = true;
3277 last_trb_num = zero_length_needed ? 2 : 1;
3278 /* Queue the first TRB, even if it's zero-length */
3279 do {
3280 u32 field = 0;
3281 u32 length_field = 0;
3282 u32 remainder = 0;
3284 /* Don't change the cycle bit of the first TRB until later */
3285 if (first_trb) {
3286 first_trb = false;
3287 if (start_cycle == 0)
3288 field |= 0x1;
3289 } else
3290 field |= ep_ring->cycle_state;
3292 /* Chain all the TRBs together; clear the chain bit in the last
3293 * TRB to indicate it's the last TRB in the chain.
3295 if (num_trbs > last_trb_num) {
3296 field |= TRB_CHAIN;
3297 } else if (num_trbs == last_trb_num) {
3298 td->last_trb = ep_ring->enqueue;
3299 field |= TRB_IOC;
3300 } else if (zero_length_needed && num_trbs == 1) {
3301 trb_buff_len = 0;
3302 urb_priv->td[1]->last_trb = ep_ring->enqueue;
3303 field |= TRB_IOC;
3306 /* Only set interrupt on short packet for IN endpoints */
3307 if (usb_urb_dir_in(urb))
3308 field |= TRB_ISP;
3310 if (TRB_MAX_BUFF_SIZE -
3311 (addr & (TRB_MAX_BUFF_SIZE - 1)) < trb_buff_len) {
3312 xhci_warn(xhci, "WARN: sg dma xfer crosses 64KB boundaries!\n");
3313 xhci_dbg(xhci, "Next boundary at %#x, end dma = %#x\n",
3314 (unsigned int) (addr + TRB_MAX_BUFF_SIZE) & ~(TRB_MAX_BUFF_SIZE - 1),
3315 (unsigned int) addr + trb_buff_len);
3318 /* Set the TRB length, TD size, and interrupter fields. */
3319 if (xhci->hci_version < 0x100) {
3320 remainder = xhci_td_remainder(
3321 urb->transfer_buffer_length -
3322 running_total);
3323 } else {
3324 remainder = xhci_v1_0_td_remainder(running_total,
3325 trb_buff_len, total_packet_count, urb,
3326 num_trbs - 1);
3328 length_field = TRB_LEN(trb_buff_len) |
3329 remainder |
3330 TRB_INTR_TARGET(0);
3332 if (num_trbs > 1)
3333 more_trbs_coming = true;
3334 else
3335 more_trbs_coming = false;
3336 queue_trb(xhci, ep_ring, more_trbs_coming,
3337 lower_32_bits(addr),
3338 upper_32_bits(addr),
3339 length_field,
3340 field | TRB_TYPE(TRB_NORMAL));
3341 --num_trbs;
3342 running_total += trb_buff_len;
3344 /* Calculate length for next transfer --
3345 * Are we done queueing all the TRBs for this sg entry?
3347 this_sg_len -= trb_buff_len;
3348 if (this_sg_len == 0) {
3349 --num_sgs;
3350 if (num_sgs == 0)
3351 break;
3352 sg = sg_next(sg);
3353 addr = (u64) sg_dma_address(sg);
3354 this_sg_len = sg_dma_len(sg);
3355 } else {
3356 addr += trb_buff_len;
3359 trb_buff_len = TRB_MAX_BUFF_SIZE -
3360 (addr & (TRB_MAX_BUFF_SIZE - 1));
3361 trb_buff_len = min_t(int, trb_buff_len, this_sg_len);
3362 if (running_total + trb_buff_len > urb->transfer_buffer_length)
3363 trb_buff_len =
3364 urb->transfer_buffer_length - running_total;
3365 } while (num_trbs > 0);
3367 check_trb_math(urb, num_trbs, running_total);
3368 giveback_first_trb(xhci, slot_id, ep_index, urb->stream_id,
3369 start_cycle, start_trb);
3370 return 0;
3373 /* This is very similar to what ehci-q.c qtd_fill() does */
3374 int xhci_queue_bulk_tx(struct xhci_hcd *xhci, gfp_t mem_flags,
3375 struct urb *urb, int slot_id, unsigned int ep_index)
3377 struct xhci_ring *ep_ring;
3378 struct urb_priv *urb_priv;
3379 struct xhci_td *td;
3380 int num_trbs;
3381 struct xhci_generic_trb *start_trb;
3382 bool first_trb;
3383 int last_trb_num;
3384 bool more_trbs_coming;
3385 bool zero_length_needed;
3386 int start_cycle;
3387 u32 field, length_field;
3389 int running_total, trb_buff_len, ret;
3390 unsigned int total_packet_count;
3391 u64 addr;
3393 if (urb->num_sgs)
3394 return queue_bulk_sg_tx(xhci, mem_flags, urb, slot_id, ep_index);
3396 ep_ring = xhci_urb_to_transfer_ring(xhci, urb);
3397 if (!ep_ring)
3398 return -EINVAL;
3400 num_trbs = 0;
3401 /* How much data is (potentially) left before the 64KB boundary? */
3402 running_total = TRB_MAX_BUFF_SIZE -
3403 (urb->transfer_dma & (TRB_MAX_BUFF_SIZE - 1));
3404 running_total &= TRB_MAX_BUFF_SIZE - 1;
3406 /* If there's some data on this 64KB chunk, or we have to send a
3407 * zero-length transfer, we need at least one TRB
3409 if (running_total != 0 || urb->transfer_buffer_length == 0)
3410 num_trbs++;
3411 /* How many more 64KB chunks to transfer, how many more TRBs? */
3412 while (running_total < urb->transfer_buffer_length) {
3413 num_trbs++;
3414 running_total += TRB_MAX_BUFF_SIZE;
3417 ret = prepare_transfer(xhci, xhci->devs[slot_id],
3418 ep_index, urb->stream_id,
3419 num_trbs, urb, 0, mem_flags);
3420 if (ret < 0)
3421 return ret;
3423 urb_priv = urb->hcpriv;
3425 /* Deal with URB_ZERO_PACKET - need one more td/trb */
3426 zero_length_needed = urb->transfer_flags & URB_ZERO_PACKET &&
3427 urb_priv->length == 2;
3428 if (zero_length_needed) {
3429 num_trbs++;
3430 xhci_dbg(xhci, "Creating zero length td.\n");
3431 ret = prepare_transfer(xhci, xhci->devs[slot_id],
3432 ep_index, urb->stream_id,
3433 1, urb, 1, mem_flags);
3434 if (ret < 0)
3435 return ret;
3438 td = urb_priv->td[0];
3441 * Don't give the first TRB to the hardware (by toggling the cycle bit)
3442 * until we've finished creating all the other TRBs. The ring's cycle
3443 * state may change as we enqueue the other TRBs, so save it too.
3445 start_trb = &ep_ring->enqueue->generic;
3446 start_cycle = ep_ring->cycle_state;
3448 running_total = 0;
3449 total_packet_count = DIV_ROUND_UP(urb->transfer_buffer_length,
3450 usb_endpoint_maxp(&urb->ep->desc));
3451 /* How much data is in the first TRB? */
3452 addr = (u64) urb->transfer_dma;
3453 trb_buff_len = TRB_MAX_BUFF_SIZE -
3454 (urb->transfer_dma & (TRB_MAX_BUFF_SIZE - 1));
3455 if (trb_buff_len > urb->transfer_buffer_length)
3456 trb_buff_len = urb->transfer_buffer_length;
3458 first_trb = true;
3459 last_trb_num = zero_length_needed ? 2 : 1;
3460 /* Queue the first TRB, even if it's zero-length */
3461 do {
3462 u32 remainder = 0;
3463 field = 0;
3465 /* Don't change the cycle bit of the first TRB until later */
3466 if (first_trb) {
3467 first_trb = false;
3468 if (start_cycle == 0)
3469 field |= 0x1;
3470 } else
3471 field |= ep_ring->cycle_state;
3473 /* Chain all the TRBs together; clear the chain bit in the last
3474 * TRB to indicate it's the last TRB in the chain.
3476 if (num_trbs > last_trb_num) {
3477 field |= TRB_CHAIN;
3478 } else if (num_trbs == last_trb_num) {
3479 td->last_trb = ep_ring->enqueue;
3480 field |= TRB_IOC;
3481 } else if (zero_length_needed && num_trbs == 1) {
3482 trb_buff_len = 0;
3483 urb_priv->td[1]->last_trb = ep_ring->enqueue;
3484 field |= TRB_IOC;
3487 /* Only set interrupt on short packet for IN endpoints */
3488 if (usb_urb_dir_in(urb))
3489 field |= TRB_ISP;
3491 /* Set the TRB length, TD size, and interrupter fields. */
3492 if (xhci->hci_version < 0x100) {
3493 remainder = xhci_td_remainder(
3494 urb->transfer_buffer_length -
3495 running_total);
3496 } else {
3497 remainder = xhci_v1_0_td_remainder(running_total,
3498 trb_buff_len, total_packet_count, urb,
3499 num_trbs - 1);
3501 length_field = TRB_LEN(trb_buff_len) |
3502 remainder |
3503 TRB_INTR_TARGET(0);
3505 if (num_trbs > 1)
3506 more_trbs_coming = true;
3507 else
3508 more_trbs_coming = false;
3509 queue_trb(xhci, ep_ring, more_trbs_coming,
3510 lower_32_bits(addr),
3511 upper_32_bits(addr),
3512 length_field,
3513 field | TRB_TYPE(TRB_NORMAL));
3514 --num_trbs;
3515 running_total += trb_buff_len;
3517 /* Calculate length for next transfer */
3518 addr += trb_buff_len;
3519 trb_buff_len = urb->transfer_buffer_length - running_total;
3520 if (trb_buff_len > TRB_MAX_BUFF_SIZE)
3521 trb_buff_len = TRB_MAX_BUFF_SIZE;
3522 } while (num_trbs > 0);
3524 check_trb_math(urb, num_trbs, running_total);
3525 giveback_first_trb(xhci, slot_id, ep_index, urb->stream_id,
3526 start_cycle, start_trb);
3527 return 0;
3530 /* Caller must have locked xhci->lock */
3531 int xhci_queue_ctrl_tx(struct xhci_hcd *xhci, gfp_t mem_flags,
3532 struct urb *urb, int slot_id, unsigned int ep_index)
3534 struct xhci_ring *ep_ring;
3535 int num_trbs;
3536 int ret;
3537 struct usb_ctrlrequest *setup;
3538 struct xhci_generic_trb *start_trb;
3539 int start_cycle;
3540 u32 field, length_field;
3541 struct urb_priv *urb_priv;
3542 struct xhci_td *td;
3544 ep_ring = xhci_urb_to_transfer_ring(xhci, urb);
3545 if (!ep_ring)
3546 return -EINVAL;
3549 * Need to copy setup packet into setup TRB, so we can't use the setup
3550 * DMA address.
3552 if (!urb->setup_packet)
3553 return -EINVAL;
3555 /* 1 TRB for setup, 1 for status */
3556 num_trbs = 2;
3558 * Don't need to check if we need additional event data and normal TRBs,
3559 * since data in control transfers will never get bigger than 16MB
3560 * XXX: can we get a buffer that crosses 64KB boundaries?
3562 if (urb->transfer_buffer_length > 0)
3563 num_trbs++;
3564 ret = prepare_transfer(xhci, xhci->devs[slot_id],
3565 ep_index, urb->stream_id,
3566 num_trbs, urb, 0, mem_flags);
3567 if (ret < 0)
3568 return ret;
3570 urb_priv = urb->hcpriv;
3571 td = urb_priv->td[0];
3574 * Don't give the first TRB to the hardware (by toggling the cycle bit)
3575 * until we've finished creating all the other TRBs. The ring's cycle
3576 * state may change as we enqueue the other TRBs, so save it too.
3578 start_trb = &ep_ring->enqueue->generic;
3579 start_cycle = ep_ring->cycle_state;
3581 /* Queue setup TRB - see section 6.4.1.2.1 */
3582 /* FIXME better way to translate setup_packet into two u32 fields? */
3583 setup = (struct usb_ctrlrequest *) urb->setup_packet;
3584 field = 0;
3585 field |= TRB_IDT | TRB_TYPE(TRB_SETUP);
3586 if (start_cycle == 0)
3587 field |= 0x1;
3589 /* xHCI 1.0/1.1 6.4.1.2.1: Transfer Type field */
3590 if (xhci->hci_version >= 0x100) {
3591 if (urb->transfer_buffer_length > 0) {
3592 if (setup->bRequestType & USB_DIR_IN)
3593 field |= TRB_TX_TYPE(TRB_DATA_IN);
3594 else
3595 field |= TRB_TX_TYPE(TRB_DATA_OUT);
3599 queue_trb(xhci, ep_ring, true,
3600 setup->bRequestType | setup->bRequest << 8 | le16_to_cpu(setup->wValue) << 16,
3601 le16_to_cpu(setup->wIndex) | le16_to_cpu(setup->wLength) << 16,
3602 TRB_LEN(8) | TRB_INTR_TARGET(0),
3603 /* Immediate data in pointer */
3604 field);
3606 /* If there's data, queue data TRBs */
3607 /* Only set interrupt on short packet for IN endpoints */
3608 if (usb_urb_dir_in(urb))
3609 field = TRB_ISP | TRB_TYPE(TRB_DATA);
3610 else
3611 field = TRB_TYPE(TRB_DATA);
3613 length_field = TRB_LEN(urb->transfer_buffer_length) |
3614 xhci_td_remainder(urb->transfer_buffer_length) |
3615 TRB_INTR_TARGET(0);
3616 if (urb->transfer_buffer_length > 0) {
3617 if (setup->bRequestType & USB_DIR_IN)
3618 field |= TRB_DIR_IN;
3619 queue_trb(xhci, ep_ring, true,
3620 lower_32_bits(urb->transfer_dma),
3621 upper_32_bits(urb->transfer_dma),
3622 length_field,
3623 field | ep_ring->cycle_state);
3626 /* Save the DMA address of the last TRB in the TD */
3627 td->last_trb = ep_ring->enqueue;
3629 /* Queue status TRB - see Table 7 and sections 4.11.2.2 and 6.4.1.2.3 */
3630 /* If the device sent data, the status stage is an OUT transfer */
3631 if (urb->transfer_buffer_length > 0 && setup->bRequestType & USB_DIR_IN)
3632 field = 0;
3633 else
3634 field = TRB_DIR_IN;
3635 queue_trb(xhci, ep_ring, false,
3638 TRB_INTR_TARGET(0),
3639 /* Event on completion */
3640 field | TRB_IOC | TRB_TYPE(TRB_STATUS) | ep_ring->cycle_state);
3642 giveback_first_trb(xhci, slot_id, ep_index, 0,
3643 start_cycle, start_trb);
3644 return 0;
3647 static int count_isoc_trbs_needed(struct xhci_hcd *xhci,
3648 struct urb *urb, int i)
3650 int num_trbs = 0;
3651 u64 addr, td_len;
3653 addr = (u64) (urb->transfer_dma + urb->iso_frame_desc[i].offset);
3654 td_len = urb->iso_frame_desc[i].length;
3656 num_trbs = DIV_ROUND_UP(td_len + (addr & (TRB_MAX_BUFF_SIZE - 1)),
3657 TRB_MAX_BUFF_SIZE);
3658 if (num_trbs == 0)
3659 num_trbs++;
3661 return num_trbs;
3665 * The transfer burst count field of the isochronous TRB defines the number of
3666 * bursts that are required to move all packets in this TD. Only SuperSpeed
3667 * devices can burst up to bMaxBurst number of packets per service interval.
3668 * This field is zero based, meaning a value of zero in the field means one
3669 * burst. Basically, for everything but SuperSpeed devices, this field will be
3670 * zero. Only xHCI 1.0 host controllers support this field.
3672 static unsigned int xhci_get_burst_count(struct xhci_hcd *xhci,
3673 struct usb_device *udev,
3674 struct urb *urb, unsigned int total_packet_count)
3676 unsigned int max_burst;
3678 if (xhci->hci_version < 0x100 || udev->speed < USB_SPEED_SUPER)
3679 return 0;
3681 max_burst = urb->ep->ss_ep_comp.bMaxBurst;
3682 return DIV_ROUND_UP(total_packet_count, max_burst + 1) - 1;
3686 * Returns the number of packets in the last "burst" of packets. This field is
3687 * valid for all speeds of devices. USB 2.0 devices can only do one "burst", so
3688 * the last burst packet count is equal to the total number of packets in the
3689 * TD. SuperSpeed endpoints can have up to 3 bursts. All but the last burst
3690 * must contain (bMaxBurst + 1) number of packets, but the last burst can
3691 * contain 1 to (bMaxBurst + 1) packets.
3693 static unsigned int xhci_get_last_burst_packet_count(struct xhci_hcd *xhci,
3694 struct usb_device *udev,
3695 struct urb *urb, unsigned int total_packet_count)
3697 unsigned int max_burst;
3698 unsigned int residue;
3700 if (xhci->hci_version < 0x100)
3701 return 0;
3703 switch (udev->speed) {
3704 case USB_SPEED_SUPER_PLUS:
3705 case USB_SPEED_SUPER:
3706 /* bMaxBurst is zero based: 0 means 1 packet per burst */
3707 max_burst = urb->ep->ss_ep_comp.bMaxBurst;
3708 residue = total_packet_count % (max_burst + 1);
3709 /* If residue is zero, the last burst contains (max_burst + 1)
3710 * number of packets, but the TLBPC field is zero-based.
3712 if (residue == 0)
3713 return max_burst;
3714 return residue - 1;
3715 default:
3716 if (total_packet_count == 0)
3717 return 0;
3718 return total_packet_count - 1;
3722 /* This is for isoc transfer */
3723 static int xhci_queue_isoc_tx(struct xhci_hcd *xhci, gfp_t mem_flags,
3724 struct urb *urb, int slot_id, unsigned int ep_index)
3726 struct xhci_ring *ep_ring;
3727 struct urb_priv *urb_priv;
3728 struct xhci_td *td;
3729 int num_tds, trbs_per_td;
3730 struct xhci_generic_trb *start_trb;
3731 bool first_trb;
3732 int start_cycle;
3733 u32 field, length_field;
3734 int running_total, trb_buff_len, td_len, td_remain_len, ret;
3735 u64 start_addr, addr;
3736 int i, j;
3737 bool more_trbs_coming;
3739 ep_ring = xhci->devs[slot_id]->eps[ep_index].ring;
3741 num_tds = urb->number_of_packets;
3742 if (num_tds < 1) {
3743 xhci_dbg(xhci, "Isoc URB with zero packets?\n");
3744 return -EINVAL;
3747 start_addr = (u64) urb->transfer_dma;
3748 start_trb = &ep_ring->enqueue->generic;
3749 start_cycle = ep_ring->cycle_state;
3751 urb_priv = urb->hcpriv;
3752 /* Queue the first TRB, even if it's zero-length */
3753 for (i = 0; i < num_tds; i++) {
3754 unsigned int total_packet_count;
3755 unsigned int burst_count;
3756 unsigned int residue;
3758 first_trb = true;
3759 running_total = 0;
3760 addr = start_addr + urb->iso_frame_desc[i].offset;
3761 td_len = urb->iso_frame_desc[i].length;
3762 td_remain_len = td_len;
3763 total_packet_count = DIV_ROUND_UP(td_len,
3764 GET_MAX_PACKET(
3765 usb_endpoint_maxp(&urb->ep->desc)));
3766 /* A zero-length transfer still involves at least one packet. */
3767 if (total_packet_count == 0)
3768 total_packet_count++;
3769 burst_count = xhci_get_burst_count(xhci, urb->dev, urb,
3770 total_packet_count);
3771 residue = xhci_get_last_burst_packet_count(xhci,
3772 urb->dev, urb, total_packet_count);
3774 trbs_per_td = count_isoc_trbs_needed(xhci, urb, i);
3776 ret = prepare_transfer(xhci, xhci->devs[slot_id], ep_index,
3777 urb->stream_id, trbs_per_td, urb, i, mem_flags);
3778 if (ret < 0) {
3779 if (i == 0)
3780 return ret;
3781 goto cleanup;
3784 td = urb_priv->td[i];
3785 for (j = 0; j < trbs_per_td; j++) {
3786 u32 remainder = 0;
3787 field = 0;
3789 if (first_trb) {
3790 field = TRB_TBC(burst_count) |
3791 TRB_TLBPC(residue);
3792 /* Queue the isoc TRB */
3793 field |= TRB_TYPE(TRB_ISOC);
3794 /* Assume URB_ISO_ASAP is set */
3795 field |= TRB_SIA;
3796 if (i == 0) {
3797 if (start_cycle == 0)
3798 field |= 0x1;
3799 } else
3800 field |= ep_ring->cycle_state;
3801 first_trb = false;
3802 } else {
3803 /* Queue other normal TRBs */
3804 field |= TRB_TYPE(TRB_NORMAL);
3805 field |= ep_ring->cycle_state;
3808 /* Only set interrupt on short packet for IN EPs */
3809 if (usb_urb_dir_in(urb))
3810 field |= TRB_ISP;
3812 /* Chain all the TRBs together; clear the chain bit in
3813 * the last TRB to indicate it's the last TRB in the
3814 * chain.
3816 if (j < trbs_per_td - 1) {
3817 field |= TRB_CHAIN;
3818 more_trbs_coming = true;
3819 } else {
3820 td->last_trb = ep_ring->enqueue;
3821 field |= TRB_IOC;
3822 if (xhci->hci_version == 0x100 &&
3823 !(xhci->quirks &
3824 XHCI_AVOID_BEI)) {
3825 /* Set BEI bit except for the last td */
3826 if (i < num_tds - 1)
3827 field |= TRB_BEI;
3829 more_trbs_coming = false;
3832 /* Calculate TRB length */
3833 trb_buff_len = TRB_MAX_BUFF_SIZE -
3834 (addr & ((1 << TRB_MAX_BUFF_SHIFT) - 1));
3835 if (trb_buff_len > td_remain_len)
3836 trb_buff_len = td_remain_len;
3838 /* Set the TRB length, TD size, & interrupter fields. */
3839 if (xhci->hci_version < 0x100) {
3840 remainder = xhci_td_remainder(
3841 td_len - running_total);
3842 } else {
3843 remainder = xhci_v1_0_td_remainder(
3844 running_total, trb_buff_len,
3845 total_packet_count, urb,
3846 (trbs_per_td - j - 1));
3848 length_field = TRB_LEN(trb_buff_len) |
3849 remainder |
3850 TRB_INTR_TARGET(0);
3852 queue_trb(xhci, ep_ring, more_trbs_coming,
3853 lower_32_bits(addr),
3854 upper_32_bits(addr),
3855 length_field,
3856 field);
3857 running_total += trb_buff_len;
3859 addr += trb_buff_len;
3860 td_remain_len -= trb_buff_len;
3863 /* Check TD length */
3864 if (running_total != td_len) {
3865 xhci_err(xhci, "ISOC TD length unmatch\n");
3866 ret = -EINVAL;
3867 goto cleanup;
3871 if (xhci_to_hcd(xhci)->self.bandwidth_isoc_reqs == 0) {
3872 if (xhci->quirks & XHCI_AMD_PLL_FIX)
3873 usb_amd_quirk_pll_disable();
3875 xhci_to_hcd(xhci)->self.bandwidth_isoc_reqs++;
3877 giveback_first_trb(xhci, slot_id, ep_index, urb->stream_id,
3878 start_cycle, start_trb);
3879 return 0;
3880 cleanup:
3881 /* Clean up a partially enqueued isoc transfer. */
3883 for (i--; i >= 0; i--)
3884 list_del_init(&urb_priv->td[i]->td_list);
3886 /* Use the first TD as a temporary variable to turn the TDs we've queued
3887 * into No-ops with a software-owned cycle bit. That way the hardware
3888 * won't accidentally start executing bogus TDs when we partially
3889 * overwrite them. td->first_trb and td->start_seg are already set.
3891 urb_priv->td[0]->last_trb = ep_ring->enqueue;
3892 /* Every TRB except the first & last will have its cycle bit flipped. */
3893 td_to_noop(xhci, ep_ring, urb_priv->td[0], true);
3895 /* Reset the ring enqueue back to the first TRB and its cycle bit. */
3896 ep_ring->enqueue = urb_priv->td[0]->first_trb;
3897 ep_ring->enq_seg = urb_priv->td[0]->start_seg;
3898 ep_ring->cycle_state = start_cycle;
3899 ep_ring->num_trbs_free = ep_ring->num_trbs_free_temp;
3900 usb_hcd_unlink_urb_from_ep(bus_to_hcd(urb->dev->bus), urb);
3901 return ret;
3905 * Check transfer ring to guarantee there is enough room for the urb.
3906 * Update ISO URB start_frame and interval.
3907 * Update interval as xhci_queue_intr_tx does. Just use xhci frame_index to
3908 * update the urb->start_frame by now.
3909 * Always assume URB_ISO_ASAP set, and NEVER use urb->start_frame as input.
3911 int xhci_queue_isoc_tx_prepare(struct xhci_hcd *xhci, gfp_t mem_flags,
3912 struct urb *urb, int slot_id, unsigned int ep_index)
3914 struct xhci_virt_device *xdev;
3915 struct xhci_ring *ep_ring;
3916 struct xhci_ep_ctx *ep_ctx;
3917 int start_frame;
3918 int xhci_interval;
3919 int ep_interval;
3920 int num_tds, num_trbs, i;
3921 int ret;
3923 xdev = xhci->devs[slot_id];
3924 ep_ring = xdev->eps[ep_index].ring;
3925 ep_ctx = xhci_get_ep_ctx(xhci, xdev->out_ctx, ep_index);
3927 num_trbs = 0;
3928 num_tds = urb->number_of_packets;
3929 for (i = 0; i < num_tds; i++)
3930 num_trbs += count_isoc_trbs_needed(xhci, urb, i);
3932 /* Check the ring to guarantee there is enough room for the whole urb.
3933 * Do not insert any td of the urb to the ring if the check failed.
3935 ret = prepare_ring(xhci, ep_ring, le32_to_cpu(ep_ctx->ep_info) & EP_STATE_MASK,
3936 num_trbs, mem_flags);
3937 if (ret)
3938 return ret;
3940 start_frame = xhci_readl(xhci, &xhci->run_regs->microframe_index);
3941 start_frame &= 0x3fff;
3943 urb->start_frame = start_frame;
3944 if (urb->dev->speed == USB_SPEED_LOW ||
3945 urb->dev->speed == USB_SPEED_FULL)
3946 urb->start_frame >>= 3;
3948 xhci_interval = EP_INTERVAL_TO_UFRAMES(le32_to_cpu(ep_ctx->ep_info));
3949 ep_interval = urb->interval;
3950 /* Convert to microframes */
3951 if (urb->dev->speed == USB_SPEED_LOW ||
3952 urb->dev->speed == USB_SPEED_FULL)
3953 ep_interval *= 8;
3954 /* FIXME change this to a warning and a suggestion to use the new API
3955 * to set the polling interval (once the API is added).
3957 if (xhci_interval != ep_interval) {
3958 dev_dbg_ratelimited(&urb->dev->dev,
3959 "Driver uses different interval (%d microframe%s) than xHCI (%d microframe%s)\n",
3960 ep_interval, ep_interval == 1 ? "" : "s",
3961 xhci_interval, xhci_interval == 1 ? "" : "s");
3962 urb->interval = xhci_interval;
3963 /* Convert back to frames for LS/FS devices */
3964 if (urb->dev->speed == USB_SPEED_LOW ||
3965 urb->dev->speed == USB_SPEED_FULL)
3966 urb->interval /= 8;
3968 ep_ring->num_trbs_free_temp = ep_ring->num_trbs_free;
3970 return xhci_queue_isoc_tx(xhci, mem_flags, urb, slot_id, ep_index);
3973 /**** Command Ring Operations ****/
3975 /* Generic function for queueing a command TRB on the command ring.
3976 * Check to make sure there's room on the command ring for one command TRB.
3977 * Also check that there's room reserved for commands that must not fail.
3978 * If this is a command that must not fail, meaning command_must_succeed = TRUE,
3979 * then only check for the number of reserved spots.
3980 * Don't decrement xhci->cmd_ring_reserved_trbs after we've queued the TRB
3981 * because the command event handler may want to resubmit a failed command.
3983 static int queue_command(struct xhci_hcd *xhci, u32 field1, u32 field2,
3984 u32 field3, u32 field4, bool command_must_succeed)
3986 int reserved_trbs = xhci->cmd_ring_reserved_trbs;
3987 int ret;
3989 if (!command_must_succeed)
3990 reserved_trbs++;
3992 ret = prepare_ring(xhci, xhci->cmd_ring, EP_STATE_RUNNING,
3993 reserved_trbs, GFP_ATOMIC);
3994 if (ret < 0) {
3995 xhci_err(xhci, "ERR: No room for command on command ring\n");
3996 if (command_must_succeed)
3997 xhci_err(xhci, "ERR: Reserved TRB counting for "
3998 "unfailable commands failed.\n");
3999 return ret;
4001 queue_trb(xhci, xhci->cmd_ring, false, field1, field2, field3,
4002 field4 | xhci->cmd_ring->cycle_state);
4003 return 0;
4006 /* Queue a slot enable or disable request on the command ring */
4007 int xhci_queue_slot_control(struct xhci_hcd *xhci, u32 trb_type, u32 slot_id)
4009 return queue_command(xhci, 0, 0, 0,
4010 TRB_TYPE(trb_type) | SLOT_ID_FOR_TRB(slot_id), false);
4013 /* Queue an address device command TRB */
4014 int xhci_queue_address_device(struct xhci_hcd *xhci, dma_addr_t in_ctx_ptr,
4015 u32 slot_id)
4017 return queue_command(xhci, lower_32_bits(in_ctx_ptr),
4018 upper_32_bits(in_ctx_ptr), 0,
4019 TRB_TYPE(TRB_ADDR_DEV) | SLOT_ID_FOR_TRB(slot_id),
4020 false);
4023 int xhci_queue_vendor_command(struct xhci_hcd *xhci,
4024 u32 field1, u32 field2, u32 field3, u32 field4)
4026 return queue_command(xhci, field1, field2, field3, field4, false);
4029 /* Queue a reset device command TRB */
4030 int xhci_queue_reset_device(struct xhci_hcd *xhci, u32 slot_id)
4032 return queue_command(xhci, 0, 0, 0,
4033 TRB_TYPE(TRB_RESET_DEV) | SLOT_ID_FOR_TRB(slot_id),
4034 false);
4037 /* Queue a configure endpoint command TRB */
4038 int xhci_queue_configure_endpoint(struct xhci_hcd *xhci, dma_addr_t in_ctx_ptr,
4039 u32 slot_id, bool command_must_succeed)
4041 return queue_command(xhci, lower_32_bits(in_ctx_ptr),
4042 upper_32_bits(in_ctx_ptr), 0,
4043 TRB_TYPE(TRB_CONFIG_EP) | SLOT_ID_FOR_TRB(slot_id),
4044 command_must_succeed);
4047 /* Queue an evaluate context command TRB */
4048 int xhci_queue_evaluate_context(struct xhci_hcd *xhci, dma_addr_t in_ctx_ptr,
4049 u32 slot_id, bool command_must_succeed)
4051 return queue_command(xhci, lower_32_bits(in_ctx_ptr),
4052 upper_32_bits(in_ctx_ptr), 0,
4053 TRB_TYPE(TRB_EVAL_CONTEXT) | SLOT_ID_FOR_TRB(slot_id),
4054 command_must_succeed);
4058 * Suspend is set to indicate "Stop Endpoint Command" is being issued to stop
4059 * activity on an endpoint that is about to be suspended.
4061 int xhci_queue_stop_endpoint(struct xhci_hcd *xhci, int slot_id,
4062 unsigned int ep_index, int suspend)
4064 u32 trb_slot_id = SLOT_ID_FOR_TRB(slot_id);
4065 u32 trb_ep_index = EP_ID_FOR_TRB(ep_index);
4066 u32 type = TRB_TYPE(TRB_STOP_RING);
4067 u32 trb_suspend = SUSPEND_PORT_FOR_TRB(suspend);
4069 return queue_command(xhci, 0, 0, 0,
4070 trb_slot_id | trb_ep_index | type | trb_suspend, false);
4073 /* Set Transfer Ring Dequeue Pointer command.
4074 * This should not be used for endpoints that have streams enabled.
4076 static int queue_set_tr_deq(struct xhci_hcd *xhci, int slot_id,
4077 unsigned int ep_index, unsigned int stream_id,
4078 struct xhci_segment *deq_seg,
4079 union xhci_trb *deq_ptr, u32 cycle_state)
4081 dma_addr_t addr;
4082 u32 trb_slot_id = SLOT_ID_FOR_TRB(slot_id);
4083 u32 trb_ep_index = EP_ID_FOR_TRB(ep_index);
4084 u32 trb_stream_id = STREAM_ID_FOR_TRB(stream_id);
4085 u32 type = TRB_TYPE(TRB_SET_DEQ);
4086 struct xhci_virt_ep *ep;
4088 addr = xhci_trb_virt_to_dma(deq_seg, deq_ptr);
4089 if (addr == 0) {
4090 xhci_warn(xhci, "WARN Cannot submit Set TR Deq Ptr\n");
4091 xhci_warn(xhci, "WARN deq seg = %p, deq pt = %p\n",
4092 deq_seg, deq_ptr);
4093 return 0;
4095 ep = &xhci->devs[slot_id]->eps[ep_index];
4096 if ((ep->ep_state & SET_DEQ_PENDING)) {
4097 xhci_warn(xhci, "WARN Cannot submit Set TR Deq Ptr\n");
4098 xhci_warn(xhci, "A Set TR Deq Ptr command is pending.\n");
4099 return 0;
4101 ep->queued_deq_seg = deq_seg;
4102 ep->queued_deq_ptr = deq_ptr;
4103 return queue_command(xhci, lower_32_bits(addr) | cycle_state,
4104 upper_32_bits(addr), trb_stream_id,
4105 trb_slot_id | trb_ep_index | type, false);
4108 int xhci_queue_reset_ep(struct xhci_hcd *xhci, int slot_id,
4109 unsigned int ep_index)
4111 u32 trb_slot_id = SLOT_ID_FOR_TRB(slot_id);
4112 u32 trb_ep_index = EP_ID_FOR_TRB(ep_index);
4113 u32 type = TRB_TYPE(TRB_RESET_EP);
4115 return queue_command(xhci, 0, 0, 0, trb_slot_id | trb_ep_index | type,
4116 false);