2 * xHCI host controller driver
4 * Copyright (C) 2008 Intel Corp.
7 * Some code borrowed from the Linux EHCI driver.
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License version 2 as
11 * published by the Free Software Foundation.
13 * This program is distributed in the hope that it will be useful, but
14 * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
15 * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
18 * You should have received a copy of the GNU General Public License
19 * along with this program; if not, write to the Free Software Foundation,
20 * Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
23 #include <linux/pci.h>
24 #include <linux/irq.h>
25 #include <linux/log2.h>
26 #include <linux/module.h>
27 #include <linux/moduleparam.h>
28 #include <linux/slab.h>
29 #include <linux/dmi.h>
30 #include <linux/dma-mapping.h>
33 #include "xhci-trace.h"
35 #define DRIVER_AUTHOR "Sarah Sharp"
36 #define DRIVER_DESC "'eXtensible' Host Controller (xHC) Driver"
38 #define PORT_WAKE_BITS (PORT_WKOC_E | PORT_WKDISC_E | PORT_WKCONN_E)
40 /* Some 0.95 hardware can't handle the chain bit on a Link TRB being cleared */
41 static int link_quirk
;
42 module_param(link_quirk
, int, S_IRUGO
| S_IWUSR
);
43 MODULE_PARM_DESC(link_quirk
, "Don't clear the chain bit on a link TRB");
45 /* TODO: copied from ehci-hcd.c - can this be refactored? */
47 * xhci_handshake - spin reading hc until handshake completes or fails
48 * @ptr: address of hc register to be read
49 * @mask: bits to look at in result of read
50 * @done: value of those bits when handshake succeeds
51 * @usec: timeout in microseconds
53 * Returns negative errno, or zero on success
55 * Success happens when the "mask" bits have the specified value (hardware
56 * handshake done). There are two failure modes: "usec" have passed (major
57 * hardware flakeout), or the register reads as all-ones (hardware removed).
59 int xhci_handshake(struct xhci_hcd
*xhci
, void __iomem
*ptr
,
60 u32 mask
, u32 done
, int usec
)
65 result
= xhci_readl(xhci
, ptr
);
66 if (result
== ~(u32
)0) /* card removed */
78 * Disable interrupts and begin the xHCI halting process.
80 void xhci_quiesce(struct xhci_hcd
*xhci
)
87 halted
= xhci_readl(xhci
, &xhci
->op_regs
->status
) & STS_HALT
;
91 cmd
= xhci_readl(xhci
, &xhci
->op_regs
->command
);
93 xhci_writel(xhci
, cmd
, &xhci
->op_regs
->command
);
97 * Force HC into halt state.
99 * Disable any IRQs and clear the run/stop bit.
100 * HC will complete any current and actively pipelined transactions, and
101 * should halt within 16 ms of the run/stop bit being cleared.
102 * Read HC Halted bit in the status register to see when the HC is finished.
104 int xhci_halt(struct xhci_hcd
*xhci
)
107 xhci_dbg_trace(xhci
, trace_xhci_dbg_init
, "// Halt the HC");
110 ret
= xhci_handshake(xhci
, &xhci
->op_regs
->status
,
111 STS_HALT
, STS_HALT
, XHCI_MAX_HALT_USEC
);
113 xhci
->xhc_state
|= XHCI_STATE_HALTED
;
114 xhci
->cmd_ring_state
= CMD_RING_STATE_STOPPED
;
116 xhci_warn(xhci
, "Host not halted after %u microseconds.\n",
122 * Set the run bit and wait for the host to be running.
124 static int xhci_start(struct xhci_hcd
*xhci
)
129 temp
= xhci_readl(xhci
, &xhci
->op_regs
->command
);
131 xhci_dbg_trace(xhci
, trace_xhci_dbg_init
, "// Turn on HC, cmd = 0x%x.",
133 xhci_writel(xhci
, temp
, &xhci
->op_regs
->command
);
136 * Wait for the HCHalted Status bit to be 0 to indicate the host is
139 ret
= xhci_handshake(xhci
, &xhci
->op_regs
->status
,
140 STS_HALT
, 0, XHCI_MAX_HALT_USEC
);
141 if (ret
== -ETIMEDOUT
)
142 xhci_err(xhci
, "Host took too long to start, "
143 "waited %u microseconds.\n",
146 xhci
->xhc_state
&= ~(XHCI_STATE_HALTED
| XHCI_STATE_DYING
);
154 * This resets pipelines, timers, counters, state machines, etc.
155 * Transactions will be terminated immediately, and operational registers
156 * will be set to their defaults.
158 int xhci_reset(struct xhci_hcd
*xhci
)
164 state
= xhci_readl(xhci
, &xhci
->op_regs
->status
);
165 if ((state
& STS_HALT
) == 0) {
166 xhci_warn(xhci
, "Host controller not halted, aborting reset.\n");
170 xhci_dbg_trace(xhci
, trace_xhci_dbg_init
, "// Reset the HC");
171 command
= xhci_readl(xhci
, &xhci
->op_regs
->command
);
172 command
|= CMD_RESET
;
173 xhci_writel(xhci
, command
, &xhci
->op_regs
->command
);
175 ret
= xhci_handshake(xhci
, &xhci
->op_regs
->command
,
176 CMD_RESET
, 0, 10 * 1000 * 1000);
180 xhci_dbg_trace(xhci
, trace_xhci_dbg_init
,
181 "Wait for controller to be ready for doorbell rings");
183 * xHCI cannot write to any doorbells or operational registers other
184 * than status until the "Controller Not Ready" flag is cleared.
186 ret
= xhci_handshake(xhci
, &xhci
->op_regs
->status
,
187 STS_CNR
, 0, 10 * 1000 * 1000);
189 for (i
= 0; i
< 2; ++i
) {
190 xhci
->bus_state
[i
].port_c_suspend
= 0;
191 xhci
->bus_state
[i
].suspended_ports
= 0;
192 xhci
->bus_state
[i
].resuming_ports
= 0;
199 static int xhci_free_msi(struct xhci_hcd
*xhci
)
203 if (!xhci
->msix_entries
)
206 for (i
= 0; i
< xhci
->msix_count
; i
++)
207 if (xhci
->msix_entries
[i
].vector
)
208 free_irq(xhci
->msix_entries
[i
].vector
,
216 static int xhci_setup_msi(struct xhci_hcd
*xhci
)
219 struct pci_dev
*pdev
= to_pci_dev(xhci_to_hcd(xhci
)->self
.controller
);
221 ret
= pci_enable_msi(pdev
);
223 xhci_dbg_trace(xhci
, trace_xhci_dbg_init
,
224 "failed to allocate MSI entry");
228 ret
= request_irq(pdev
->irq
, xhci_msi_irq
,
229 0, "xhci_hcd", xhci_to_hcd(xhci
));
231 xhci_dbg_trace(xhci
, trace_xhci_dbg_init
,
232 "disable MSI interrupt");
233 pci_disable_msi(pdev
);
241 * free all IRQs request
243 static void xhci_free_irq(struct xhci_hcd
*xhci
)
245 struct pci_dev
*pdev
= to_pci_dev(xhci_to_hcd(xhci
)->self
.controller
);
248 /* return if using legacy interrupt */
249 if (xhci_to_hcd(xhci
)->irq
> 0)
252 ret
= xhci_free_msi(xhci
);
256 free_irq(pdev
->irq
, xhci_to_hcd(xhci
));
264 static int xhci_setup_msix(struct xhci_hcd
*xhci
)
267 struct usb_hcd
*hcd
= xhci_to_hcd(xhci
);
268 struct pci_dev
*pdev
= to_pci_dev(hcd
->self
.controller
);
271 * calculate number of msi-x vectors supported.
272 * - HCS_MAX_INTRS: the max number of interrupts the host can handle,
273 * with max number of interrupters based on the xhci HCSPARAMS1.
274 * - num_online_cpus: maximum msi-x vectors per CPUs core.
275 * Add additional 1 vector to ensure always available interrupt.
277 xhci
->msix_count
= min(num_online_cpus() + 1,
278 HCS_MAX_INTRS(xhci
->hcs_params1
));
281 kmalloc((sizeof(struct msix_entry
))*xhci
->msix_count
,
283 if (!xhci
->msix_entries
) {
284 xhci_err(xhci
, "Failed to allocate MSI-X entries\n");
288 for (i
= 0; i
< xhci
->msix_count
; i
++) {
289 xhci
->msix_entries
[i
].entry
= i
;
290 xhci
->msix_entries
[i
].vector
= 0;
293 ret
= pci_enable_msix(pdev
, xhci
->msix_entries
, xhci
->msix_count
);
295 xhci_dbg_trace(xhci
, trace_xhci_dbg_init
,
296 "Failed to enable MSI-X");
300 for (i
= 0; i
< xhci
->msix_count
; i
++) {
301 ret
= request_irq(xhci
->msix_entries
[i
].vector
,
303 0, "xhci_hcd", xhci_to_hcd(xhci
));
308 hcd
->msix_enabled
= 1;
312 xhci_dbg_trace(xhci
, trace_xhci_dbg_init
, "disable MSI-X interrupt");
314 pci_disable_msix(pdev
);
316 kfree(xhci
->msix_entries
);
317 xhci
->msix_entries
= NULL
;
321 /* Free any IRQs and disable MSI-X */
322 static void xhci_cleanup_msix(struct xhci_hcd
*xhci
)
324 struct usb_hcd
*hcd
= xhci_to_hcd(xhci
);
325 struct pci_dev
*pdev
= to_pci_dev(hcd
->self
.controller
);
327 if (xhci
->quirks
& XHCI_PLAT
)
332 if (xhci
->msix_entries
) {
333 pci_disable_msix(pdev
);
334 kfree(xhci
->msix_entries
);
335 xhci
->msix_entries
= NULL
;
337 pci_disable_msi(pdev
);
340 hcd
->msix_enabled
= 0;
344 static void __maybe_unused
xhci_msix_sync_irqs(struct xhci_hcd
*xhci
)
348 if (xhci
->msix_entries
) {
349 for (i
= 0; i
< xhci
->msix_count
; i
++)
350 synchronize_irq(xhci
->msix_entries
[i
].vector
);
354 static int xhci_try_enable_msi(struct usb_hcd
*hcd
)
356 struct xhci_hcd
*xhci
= hcd_to_xhci(hcd
);
357 struct pci_dev
*pdev
;
360 /* The xhci platform device has set up IRQs through usb_add_hcd. */
361 if (xhci
->quirks
& XHCI_PLAT
)
364 pdev
= to_pci_dev(xhci_to_hcd(xhci
)->self
.controller
);
366 * Some Fresco Logic host controllers advertise MSI, but fail to
367 * generate interrupts. Don't even try to enable MSI.
369 if (xhci
->quirks
& XHCI_BROKEN_MSI
)
372 /* unregister the legacy interrupt */
374 free_irq(hcd
->irq
, hcd
);
377 ret
= xhci_setup_msix(xhci
);
379 /* fall back to msi*/
380 ret
= xhci_setup_msi(xhci
);
383 /* hcd->irq is 0, we have MSI */
387 xhci_err(xhci
, "No msi-x/msi found and no IRQ in BIOS\n");
392 /* fall back to legacy interrupt*/
393 ret
= request_irq(pdev
->irq
, &usb_hcd_irq
, IRQF_SHARED
,
394 hcd
->irq_descr
, hcd
);
396 xhci_err(xhci
, "request interrupt %d failed\n",
400 hcd
->irq
= pdev
->irq
;
406 static inline int xhci_try_enable_msi(struct usb_hcd
*hcd
)
411 static inline void xhci_cleanup_msix(struct xhci_hcd
*xhci
)
415 static inline void xhci_msix_sync_irqs(struct xhci_hcd
*xhci
)
421 static void compliance_mode_recovery(unsigned long arg
)
423 struct xhci_hcd
*xhci
;
428 xhci
= (struct xhci_hcd
*)arg
;
430 for (i
= 0; i
< xhci
->num_usb3_ports
; i
++) {
431 temp
= xhci_readl(xhci
, xhci
->usb3_ports
[i
]);
432 if ((temp
& PORT_PLS_MASK
) == USB_SS_PORT_LS_COMP_MOD
) {
434 * Compliance Mode Detected. Letting USB Core
435 * handle the Warm Reset
437 xhci_dbg_trace(xhci
, trace_xhci_dbg_quirks
,
438 "Compliance mode detected->port %d",
440 xhci_dbg_trace(xhci
, trace_xhci_dbg_quirks
,
441 "Attempting compliance mode recovery");
442 hcd
= xhci
->shared_hcd
;
444 if (hcd
->state
== HC_STATE_SUSPENDED
)
445 usb_hcd_resume_root_hub(hcd
);
447 usb_hcd_poll_rh_status(hcd
);
451 if (xhci
->port_status_u0
!= ((1 << xhci
->num_usb3_ports
)-1))
452 mod_timer(&xhci
->comp_mode_recovery_timer
,
453 jiffies
+ msecs_to_jiffies(COMP_MODE_RCVRY_MSECS
));
457 * Quirk to work around issue generated by the SN65LVPE502CP USB3.0 re-driver
458 * that causes ports behind that hardware to enter compliance mode sometimes.
459 * The quirk creates a timer that polls every 2 seconds the link state of
460 * each host controller's port and recovers it by issuing a Warm reset
461 * if Compliance mode is detected, otherwise the port will become "dead" (no
462 * device connections or disconnections will be detected anymore). Becasue no
463 * status event is generated when entering compliance mode (per xhci spec),
464 * this quirk is needed on systems that have the failing hardware installed.
466 static void compliance_mode_recovery_timer_init(struct xhci_hcd
*xhci
)
468 xhci
->port_status_u0
= 0;
469 init_timer(&xhci
->comp_mode_recovery_timer
);
471 xhci
->comp_mode_recovery_timer
.data
= (unsigned long) xhci
;
472 xhci
->comp_mode_recovery_timer
.function
= compliance_mode_recovery
;
473 xhci
->comp_mode_recovery_timer
.expires
= jiffies
+
474 msecs_to_jiffies(COMP_MODE_RCVRY_MSECS
);
476 set_timer_slack(&xhci
->comp_mode_recovery_timer
,
477 msecs_to_jiffies(COMP_MODE_RCVRY_MSECS
));
478 add_timer(&xhci
->comp_mode_recovery_timer
);
479 xhci_dbg_trace(xhci
, trace_xhci_dbg_quirks
,
480 "Compliance mode recovery timer initialized");
484 * This function identifies the systems that have installed the SN65LVPE502CP
485 * USB3.0 re-driver and that need the Compliance Mode Quirk.
487 * Vendor: Hewlett-Packard -> System Models: Z420, Z620 and Z820
489 bool xhci_compliance_mode_recovery_timer_quirk_check(void)
491 const char *dmi_product_name
, *dmi_sys_vendor
;
493 dmi_product_name
= dmi_get_system_info(DMI_PRODUCT_NAME
);
494 dmi_sys_vendor
= dmi_get_system_info(DMI_SYS_VENDOR
);
495 if (!dmi_product_name
|| !dmi_sys_vendor
)
498 if (!(strstr(dmi_sys_vendor
, "Hewlett-Packard")))
501 if (strstr(dmi_product_name
, "Z420") ||
502 strstr(dmi_product_name
, "Z620") ||
503 strstr(dmi_product_name
, "Z820") ||
504 strstr(dmi_product_name
, "Z1 Workstation"))
510 static int xhci_all_ports_seen_u0(struct xhci_hcd
*xhci
)
512 return (xhci
->port_status_u0
== ((1 << xhci
->num_usb3_ports
)-1));
517 * Initialize memory for HCD and xHC (one-time init).
519 * Program the PAGESIZE register, initialize the device context array, create
520 * device contexts (?), set up a command ring segment (or two?), create event
521 * ring (one for now).
523 int xhci_init(struct usb_hcd
*hcd
)
525 struct xhci_hcd
*xhci
= hcd_to_xhci(hcd
);
528 xhci_dbg_trace(xhci
, trace_xhci_dbg_init
, "xhci_init");
529 spin_lock_init(&xhci
->lock
);
530 if (xhci
->hci_version
== 0x95 && link_quirk
) {
531 xhci_dbg_trace(xhci
, trace_xhci_dbg_quirks
,
532 "QUIRK: Not clearing Link TRB chain bits.");
533 xhci
->quirks
|= XHCI_LINK_TRB_QUIRK
;
535 xhci_dbg_trace(xhci
, trace_xhci_dbg_init
,
536 "xHCI doesn't need link TRB QUIRK");
538 retval
= xhci_mem_init(xhci
, GFP_KERNEL
);
539 xhci_dbg_trace(xhci
, trace_xhci_dbg_init
, "Finished xhci_init");
541 /* Initializing Compliance Mode Recovery Data If Needed */
542 if (xhci_compliance_mode_recovery_timer_quirk_check()) {
543 xhci
->quirks
|= XHCI_COMP_MODE_QUIRK
;
544 compliance_mode_recovery_timer_init(xhci
);
550 /*-------------------------------------------------------------------------*/
553 static int xhci_run_finished(struct xhci_hcd
*xhci
)
555 if (xhci_start(xhci
)) {
559 xhci
->shared_hcd
->state
= HC_STATE_RUNNING
;
560 xhci
->cmd_ring_state
= CMD_RING_STATE_RUNNING
;
562 if (xhci
->quirks
& XHCI_NEC_HOST
)
563 xhci_ring_cmd_db(xhci
);
565 xhci_dbg_trace(xhci
, trace_xhci_dbg_init
,
566 "Finished xhci_run for USB3 roothub");
571 * Start the HC after it was halted.
573 * This function is called by the USB core when the HC driver is added.
574 * Its opposite is xhci_stop().
576 * xhci_init() must be called once before this function can be called.
577 * Reset the HC, enable device slot contexts, program DCBAAP, and
578 * set command ring pointer and event ring pointer.
580 * Setup MSI-X vectors and enable interrupts.
582 int xhci_run(struct usb_hcd
*hcd
)
587 struct xhci_hcd
*xhci
= hcd_to_xhci(hcd
);
589 /* Start the xHCI host controller running only after the USB 2.0 roothub
593 hcd
->uses_new_polling
= 1;
594 if (!usb_hcd_is_primary_hcd(hcd
))
595 return xhci_run_finished(xhci
);
597 xhci_dbg_trace(xhci
, trace_xhci_dbg_init
, "xhci_run");
599 ret
= xhci_try_enable_msi(hcd
);
603 xhci_dbg(xhci
, "Command ring memory map follows:\n");
604 xhci_debug_ring(xhci
, xhci
->cmd_ring
);
605 xhci_dbg_ring_ptrs(xhci
, xhci
->cmd_ring
);
606 xhci_dbg_cmd_ptrs(xhci
);
608 xhci_dbg(xhci
, "ERST memory map follows:\n");
609 xhci_dbg_erst(xhci
, &xhci
->erst
);
610 xhci_dbg(xhci
, "Event ring:\n");
611 xhci_debug_ring(xhci
, xhci
->event_ring
);
612 xhci_dbg_ring_ptrs(xhci
, xhci
->event_ring
);
613 temp_64
= xhci_read_64(xhci
, &xhci
->ir_set
->erst_dequeue
);
614 temp_64
&= ~ERST_PTR_MASK
;
615 xhci_dbg_trace(xhci
, trace_xhci_dbg_init
,
616 "ERST deq = 64'h%0lx", (long unsigned int) temp_64
);
618 xhci_dbg_trace(xhci
, trace_xhci_dbg_init
,
619 "// Set the interrupt modulation register");
620 temp
= xhci_readl(xhci
, &xhci
->ir_set
->irq_control
);
621 temp
&= ~ER_IRQ_INTERVAL_MASK
;
623 xhci_writel(xhci
, temp
, &xhci
->ir_set
->irq_control
);
625 /* Set the HCD state before we enable the irqs */
626 temp
= xhci_readl(xhci
, &xhci
->op_regs
->command
);
628 xhci_dbg_trace(xhci
, trace_xhci_dbg_init
,
629 "// Enable interrupts, cmd = 0x%x.", temp
);
630 xhci_writel(xhci
, temp
, &xhci
->op_regs
->command
);
632 temp
= xhci_readl(xhci
, &xhci
->ir_set
->irq_pending
);
633 xhci_dbg_trace(xhci
, trace_xhci_dbg_init
,
634 "// Enabling event ring interrupter %p by writing 0x%x to irq_pending",
635 xhci
->ir_set
, (unsigned int) ER_IRQ_ENABLE(temp
));
636 xhci_writel(xhci
, ER_IRQ_ENABLE(temp
),
637 &xhci
->ir_set
->irq_pending
);
638 xhci_print_ir_set(xhci
, 0);
640 if (xhci
->quirks
& XHCI_NEC_HOST
)
641 xhci_queue_vendor_command(xhci
, 0, 0, 0,
642 TRB_TYPE(TRB_NEC_GET_FW
));
644 xhci_dbg_trace(xhci
, trace_xhci_dbg_init
,
645 "Finished xhci_run for USB2 roothub");
649 static void xhci_only_stop_hcd(struct usb_hcd
*hcd
)
651 struct xhci_hcd
*xhci
= hcd_to_xhci(hcd
);
653 spin_lock_irq(&xhci
->lock
);
656 /* The shared_hcd is going to be deallocated shortly (the USB core only
657 * calls this function when allocation fails in usb_add_hcd(), or
658 * usb_remove_hcd() is called). So we need to unset xHCI's pointer.
660 xhci
->shared_hcd
= NULL
;
661 spin_unlock_irq(&xhci
->lock
);
667 * This function is called by the USB core when the HC driver is removed.
668 * Its opposite is xhci_run().
670 * Disable device contexts, disable IRQs, and quiesce the HC.
671 * Reset the HC, finish any completed transactions, and cleanup memory.
673 void xhci_stop(struct usb_hcd
*hcd
)
676 struct xhci_hcd
*xhci
= hcd_to_xhci(hcd
);
678 if (!usb_hcd_is_primary_hcd(hcd
)) {
679 xhci_only_stop_hcd(xhci
->shared_hcd
);
683 spin_lock_irq(&xhci
->lock
);
684 /* Make sure the xHC is halted for a USB3 roothub
685 * (xhci_stop() could be called as part of failed init).
689 spin_unlock_irq(&xhci
->lock
);
691 xhci_cleanup_msix(xhci
);
693 /* Deleting Compliance Mode Recovery Timer */
694 if ((xhci
->quirks
& XHCI_COMP_MODE_QUIRK
) &&
695 (!(xhci_all_ports_seen_u0(xhci
)))) {
696 del_timer_sync(&xhci
->comp_mode_recovery_timer
);
697 xhci_dbg_trace(xhci
, trace_xhci_dbg_quirks
,
698 "%s: compliance mode recovery timer deleted",
702 if (xhci
->quirks
& XHCI_AMD_PLL_FIX
)
705 xhci_dbg_trace(xhci
, trace_xhci_dbg_init
,
706 "// Disabling event ring interrupts");
707 temp
= xhci_readl(xhci
, &xhci
->op_regs
->status
);
708 xhci_writel(xhci
, temp
& ~STS_EINT
, &xhci
->op_regs
->status
);
709 temp
= xhci_readl(xhci
, &xhci
->ir_set
->irq_pending
);
710 xhci_writel(xhci
, ER_IRQ_DISABLE(temp
),
711 &xhci
->ir_set
->irq_pending
);
712 xhci_print_ir_set(xhci
, 0);
714 xhci_dbg_trace(xhci
, trace_xhci_dbg_init
, "cleaning up memory");
715 xhci_mem_cleanup(xhci
);
716 xhci_dbg_trace(xhci
, trace_xhci_dbg_init
,
717 "xhci_stop completed - status = %x",
718 xhci_readl(xhci
, &xhci
->op_regs
->status
));
722 * Shutdown HC (not bus-specific)
724 * This is called when the machine is rebooting or halting. We assume that the
725 * machine will be powered off, and the HC's internal state will be reset.
726 * Don't bother to free memory.
728 * This will only ever be called with the main usb_hcd (the USB3 roothub).
730 void xhci_shutdown(struct usb_hcd
*hcd
)
732 struct xhci_hcd
*xhci
= hcd_to_xhci(hcd
);
734 if (xhci
->quirks
& XHCI_SPURIOUS_REBOOT
)
735 usb_disable_xhci_ports(to_pci_dev(hcd
->self
.controller
));
737 spin_lock_irq(&xhci
->lock
);
739 /* Workaround for spurious wakeups at shutdown with HSW */
740 if (xhci
->quirks
& XHCI_SPURIOUS_WAKEUP
)
742 spin_unlock_irq(&xhci
->lock
);
744 xhci_cleanup_msix(xhci
);
746 xhci_dbg_trace(xhci
, trace_xhci_dbg_init
,
747 "xhci_shutdown completed - status = %x",
748 xhci_readl(xhci
, &xhci
->op_regs
->status
));
750 /* Yet another workaround for spurious wakeups at shutdown with HSW */
751 if (xhci
->quirks
& XHCI_SPURIOUS_WAKEUP
)
752 pci_set_power_state(to_pci_dev(hcd
->self
.controller
), PCI_D3hot
);
756 static void xhci_save_registers(struct xhci_hcd
*xhci
)
758 xhci
->s3
.command
= xhci_readl(xhci
, &xhci
->op_regs
->command
);
759 xhci
->s3
.dev_nt
= xhci_readl(xhci
, &xhci
->op_regs
->dev_notification
);
760 xhci
->s3
.dcbaa_ptr
= xhci_read_64(xhci
, &xhci
->op_regs
->dcbaa_ptr
);
761 xhci
->s3
.config_reg
= xhci_readl(xhci
, &xhci
->op_regs
->config_reg
);
762 xhci
->s3
.erst_size
= xhci_readl(xhci
, &xhci
->ir_set
->erst_size
);
763 xhci
->s3
.erst_base
= xhci_read_64(xhci
, &xhci
->ir_set
->erst_base
);
764 xhci
->s3
.erst_dequeue
= xhci_read_64(xhci
, &xhci
->ir_set
->erst_dequeue
);
765 xhci
->s3
.irq_pending
= xhci_readl(xhci
, &xhci
->ir_set
->irq_pending
);
766 xhci
->s3
.irq_control
= xhci_readl(xhci
, &xhci
->ir_set
->irq_control
);
769 static void xhci_restore_registers(struct xhci_hcd
*xhci
)
771 xhci_writel(xhci
, xhci
->s3
.command
, &xhci
->op_regs
->command
);
772 xhci_writel(xhci
, xhci
->s3
.dev_nt
, &xhci
->op_regs
->dev_notification
);
773 xhci_write_64(xhci
, xhci
->s3
.dcbaa_ptr
, &xhci
->op_regs
->dcbaa_ptr
);
774 xhci_writel(xhci
, xhci
->s3
.config_reg
, &xhci
->op_regs
->config_reg
);
775 xhci_writel(xhci
, xhci
->s3
.erst_size
, &xhci
->ir_set
->erst_size
);
776 xhci_write_64(xhci
, xhci
->s3
.erst_base
, &xhci
->ir_set
->erst_base
);
777 xhci_write_64(xhci
, xhci
->s3
.erst_dequeue
, &xhci
->ir_set
->erst_dequeue
);
778 xhci_writel(xhci
, xhci
->s3
.irq_pending
, &xhci
->ir_set
->irq_pending
);
779 xhci_writel(xhci
, xhci
->s3
.irq_control
, &xhci
->ir_set
->irq_control
);
782 static void xhci_set_cmd_ring_deq(struct xhci_hcd
*xhci
)
786 /* step 2: initialize command ring buffer */
787 val_64
= xhci_read_64(xhci
, &xhci
->op_regs
->cmd_ring
);
788 val_64
= (val_64
& (u64
) CMD_RING_RSVD_BITS
) |
789 (xhci_trb_virt_to_dma(xhci
->cmd_ring
->deq_seg
,
790 xhci
->cmd_ring
->dequeue
) &
791 (u64
) ~CMD_RING_RSVD_BITS
) |
792 xhci
->cmd_ring
->cycle_state
;
793 xhci_dbg_trace(xhci
, trace_xhci_dbg_init
,
794 "// Setting command ring address to 0x%llx",
795 (long unsigned long) val_64
);
796 xhci_write_64(xhci
, val_64
, &xhci
->op_regs
->cmd_ring
);
800 * The whole command ring must be cleared to zero when we suspend the host.
802 * The host doesn't save the command ring pointer in the suspend well, so we
803 * need to re-program it on resume. Unfortunately, the pointer must be 64-byte
804 * aligned, because of the reserved bits in the command ring dequeue pointer
805 * register. Therefore, we can't just set the dequeue pointer back in the
806 * middle of the ring (TRBs are 16-byte aligned).
808 static void xhci_clear_command_ring(struct xhci_hcd
*xhci
)
810 struct xhci_ring
*ring
;
811 struct xhci_segment
*seg
;
813 ring
= xhci
->cmd_ring
;
817 sizeof(union xhci_trb
) * (TRBS_PER_SEGMENT
- 1));
818 seg
->trbs
[TRBS_PER_SEGMENT
- 1].link
.control
&=
819 cpu_to_le32(~TRB_CYCLE
);
821 } while (seg
!= ring
->deq_seg
);
823 /* Reset the software enqueue and dequeue pointers */
824 ring
->deq_seg
= ring
->first_seg
;
825 ring
->dequeue
= ring
->first_seg
->trbs
;
826 ring
->enq_seg
= ring
->deq_seg
;
827 ring
->enqueue
= ring
->dequeue
;
829 ring
->num_trbs_free
= ring
->num_segs
* (TRBS_PER_SEGMENT
- 1) - 1;
831 * Ring is now zeroed, so the HW should look for change of ownership
832 * when the cycle bit is set to 1.
834 ring
->cycle_state
= 1;
837 * Reset the hardware dequeue pointer.
838 * Yes, this will need to be re-written after resume, but we're paranoid
839 * and want to make sure the hardware doesn't access bogus memory
840 * because, say, the BIOS or an SMI started the host without changing
841 * the command ring pointers.
843 xhci_set_cmd_ring_deq(xhci
);
846 static void xhci_disable_port_wake_on_bits(struct xhci_hcd
*xhci
)
849 __le32 __iomem
**port_array
;
853 spin_lock_irqsave(&xhci
->lock
, flags
);
855 /* disble usb3 ports Wake bits*/
856 port_index
= xhci
->num_usb3_ports
;
857 port_array
= xhci
->usb3_ports
;
858 while (port_index
--) {
859 t1
= readl(port_array
[port_index
]);
860 t1
= xhci_port_state_to_neutral(t1
);
861 t2
= t1
& ~PORT_WAKE_BITS
;
863 writel(t2
, port_array
[port_index
]);
866 /* disble usb2 ports Wake bits*/
867 port_index
= xhci
->num_usb2_ports
;
868 port_array
= xhci
->usb2_ports
;
869 while (port_index
--) {
870 t1
= readl(port_array
[port_index
]);
871 t1
= xhci_port_state_to_neutral(t1
);
872 t2
= t1
& ~PORT_WAKE_BITS
;
874 writel(t2
, port_array
[port_index
]);
877 spin_unlock_irqrestore(&xhci
->lock
, flags
);
881 * Stop HC (not bus-specific)
883 * This is called when the machine transition into S3/S4 mode.
886 int xhci_suspend(struct xhci_hcd
*xhci
, bool do_wakeup
)
889 unsigned int delay
= XHCI_MAX_HALT_USEC
;
890 struct usb_hcd
*hcd
= xhci_to_hcd(xhci
);
893 if (hcd
->state
!= HC_STATE_SUSPENDED
||
894 xhci
->shared_hcd
->state
!= HC_STATE_SUSPENDED
)
897 /* Clear root port wake on bits if wakeup not allowed. */
899 xhci_disable_port_wake_on_bits(xhci
);
901 /* Don't poll the roothubs on bus suspend. */
902 xhci_dbg(xhci
, "%s: stopping port polling.\n", __func__
);
903 clear_bit(HCD_FLAG_POLL_RH
, &hcd
->flags
);
904 del_timer_sync(&hcd
->rh_timer
);
906 spin_lock_irq(&xhci
->lock
);
907 clear_bit(HCD_FLAG_HW_ACCESSIBLE
, &hcd
->flags
);
908 clear_bit(HCD_FLAG_HW_ACCESSIBLE
, &xhci
->shared_hcd
->flags
);
909 /* step 1: stop endpoint */
910 /* skipped assuming that port suspend has done */
912 /* step 2: clear Run/Stop bit */
913 command
= xhci_readl(xhci
, &xhci
->op_regs
->command
);
915 xhci_writel(xhci
, command
, &xhci
->op_regs
->command
);
917 /* Some chips from Fresco Logic need an extraordinary delay */
918 delay
*= (xhci
->quirks
& XHCI_SLOW_SUSPEND
) ? 10 : 1;
920 if (xhci_handshake(xhci
, &xhci
->op_regs
->status
,
921 STS_HALT
, STS_HALT
, delay
)) {
922 xhci_warn(xhci
, "WARN: xHC CMD_RUN timeout\n");
923 spin_unlock_irq(&xhci
->lock
);
926 xhci_clear_command_ring(xhci
);
928 /* step 3: save registers */
929 xhci_save_registers(xhci
);
931 /* step 4: set CSS flag */
932 command
= xhci_readl(xhci
, &xhci
->op_regs
->command
);
934 xhci_writel(xhci
, command
, &xhci
->op_regs
->command
);
935 if (xhci_handshake(xhci
, &xhci
->op_regs
->status
,
936 STS_SAVE
, 0, 10 * 1000)) {
937 xhci_warn(xhci
, "WARN: xHC save state timeout\n");
938 spin_unlock_irq(&xhci
->lock
);
941 spin_unlock_irq(&xhci
->lock
);
944 * Deleting Compliance Mode Recovery Timer because the xHCI Host
945 * is about to be suspended.
947 if ((xhci
->quirks
& XHCI_COMP_MODE_QUIRK
) &&
948 (!(xhci_all_ports_seen_u0(xhci
)))) {
949 del_timer_sync(&xhci
->comp_mode_recovery_timer
);
950 xhci_dbg_trace(xhci
, trace_xhci_dbg_quirks
,
951 "%s: compliance mode recovery timer deleted",
955 /* step 5: remove core well power */
956 /* synchronize irq when using MSI-X */
957 xhci_msix_sync_irqs(xhci
);
963 * start xHC (not bus-specific)
965 * This is called when the machine transition from S3/S4 mode.
968 int xhci_resume(struct xhci_hcd
*xhci
, bool hibernated
)
970 u32 command
, temp
= 0, status
;
971 struct usb_hcd
*hcd
= xhci_to_hcd(xhci
);
972 struct usb_hcd
*secondary_hcd
;
974 bool comp_timer_running
= false;
976 /* Wait a bit if either of the roothubs need to settle from the
977 * transition into bus suspend.
979 if (time_before(jiffies
, xhci
->bus_state
[0].next_statechange
) ||
981 xhci
->bus_state
[1].next_statechange
))
984 set_bit(HCD_FLAG_HW_ACCESSIBLE
, &hcd
->flags
);
985 set_bit(HCD_FLAG_HW_ACCESSIBLE
, &xhci
->shared_hcd
->flags
);
987 spin_lock_irq(&xhci
->lock
);
988 if (xhci
->quirks
& XHCI_RESET_ON_RESUME
)
992 /* step 1: restore register */
993 xhci_restore_registers(xhci
);
994 /* step 2: initialize command ring buffer */
995 xhci_set_cmd_ring_deq(xhci
);
996 /* step 3: restore state and start state*/
997 /* step 3: set CRS flag */
998 command
= xhci_readl(xhci
, &xhci
->op_regs
->command
);
1000 xhci_writel(xhci
, command
, &xhci
->op_regs
->command
);
1001 if (xhci_handshake(xhci
, &xhci
->op_regs
->status
,
1002 STS_RESTORE
, 0, 10 * 1000)) {
1003 xhci_warn(xhci
, "WARN: xHC restore state timeout\n");
1004 spin_unlock_irq(&xhci
->lock
);
1007 temp
= xhci_readl(xhci
, &xhci
->op_regs
->status
);
1010 /* If restore operation fails, re-initialize the HC during resume */
1011 if ((temp
& STS_SRE
) || hibernated
) {
1013 if ((xhci
->quirks
& XHCI_COMP_MODE_QUIRK
) &&
1014 !(xhci_all_ports_seen_u0(xhci
))) {
1015 del_timer_sync(&xhci
->comp_mode_recovery_timer
);
1016 xhci_dbg_trace(xhci
, trace_xhci_dbg_quirks
,
1017 "Compliance Mode Recovery Timer deleted!");
1020 /* Let the USB core know _both_ roothubs lost power. */
1021 usb_root_hub_lost_power(xhci
->main_hcd
->self
.root_hub
);
1022 usb_root_hub_lost_power(xhci
->shared_hcd
->self
.root_hub
);
1024 xhci_dbg(xhci
, "Stop HCD\n");
1027 spin_unlock_irq(&xhci
->lock
);
1028 xhci_cleanup_msix(xhci
);
1030 xhci_dbg(xhci
, "// Disabling event ring interrupts\n");
1031 temp
= xhci_readl(xhci
, &xhci
->op_regs
->status
);
1032 xhci_writel(xhci
, temp
& ~STS_EINT
, &xhci
->op_regs
->status
);
1033 temp
= xhci_readl(xhci
, &xhci
->ir_set
->irq_pending
);
1034 xhci_writel(xhci
, ER_IRQ_DISABLE(temp
),
1035 &xhci
->ir_set
->irq_pending
);
1036 xhci_print_ir_set(xhci
, 0);
1038 xhci_dbg(xhci
, "cleaning up memory\n");
1039 xhci_mem_cleanup(xhci
);
1040 xhci_dbg(xhci
, "xhci_stop completed - status = %x\n",
1041 xhci_readl(xhci
, &xhci
->op_regs
->status
));
1043 /* USB core calls the PCI reinit and start functions twice:
1044 * first with the primary HCD, and then with the secondary HCD.
1045 * If we don't do the same, the host will never be started.
1047 if (!usb_hcd_is_primary_hcd(hcd
))
1048 secondary_hcd
= hcd
;
1050 secondary_hcd
= xhci
->shared_hcd
;
1052 xhci_dbg(xhci
, "Initialize the xhci_hcd\n");
1053 retval
= xhci_init(hcd
->primary_hcd
);
1056 comp_timer_running
= true;
1058 xhci_dbg(xhci
, "Start the primary HCD\n");
1059 retval
= xhci_run(hcd
->primary_hcd
);
1061 xhci_dbg(xhci
, "Start the secondary HCD\n");
1062 retval
= xhci_run(secondary_hcd
);
1064 hcd
->state
= HC_STATE_SUSPENDED
;
1065 xhci
->shared_hcd
->state
= HC_STATE_SUSPENDED
;
1069 /* step 4: set Run/Stop bit */
1070 command
= xhci_readl(xhci
, &xhci
->op_regs
->command
);
1072 xhci_writel(xhci
, command
, &xhci
->op_regs
->command
);
1073 xhci_handshake(xhci
, &xhci
->op_regs
->status
, STS_HALT
,
1076 /* step 5: walk topology and initialize portsc,
1077 * portpmsc and portli
1079 /* this is done in bus_resume */
1081 /* step 6: restart each of the previously
1082 * Running endpoints by ringing their doorbells
1085 spin_unlock_irq(&xhci
->lock
);
1089 /* Resume root hubs only when have pending events. */
1090 status
= readl(&xhci
->op_regs
->status
);
1091 if (status
& STS_EINT
) {
1092 usb_hcd_resume_root_hub(hcd
);
1093 usb_hcd_resume_root_hub(xhci
->shared_hcd
);
1098 * If system is subject to the Quirk, Compliance Mode Timer needs to
1099 * be re-initialized Always after a system resume. Ports are subject
1100 * to suffer the Compliance Mode issue again. It doesn't matter if
1101 * ports have entered previously to U0 before system's suspension.
1103 if ((xhci
->quirks
& XHCI_COMP_MODE_QUIRK
) && !comp_timer_running
)
1104 compliance_mode_recovery_timer_init(xhci
);
1106 /* Re-enable port polling. */
1107 xhci_dbg(xhci
, "%s: starting port polling.\n", __func__
);
1108 set_bit(HCD_FLAG_POLL_RH
, &hcd
->flags
);
1109 usb_hcd_poll_rh_status(hcd
);
1113 #endif /* CONFIG_PM */
1115 /*-------------------------------------------------------------------------*/
1118 * xhci_get_endpoint_index - Used for passing endpoint bitmasks between the core and
1119 * HCDs. Find the index for an endpoint given its descriptor. Use the return
1120 * value to right shift 1 for the bitmask.
1122 * Index = (epnum * 2) + direction - 1,
1123 * where direction = 0 for OUT, 1 for IN.
1124 * For control endpoints, the IN index is used (OUT index is unused), so
1125 * index = (epnum * 2) + direction - 1 = (epnum * 2) + 1 - 1 = (epnum * 2)
1127 unsigned int xhci_get_endpoint_index(struct usb_endpoint_descriptor
*desc
)
1130 if (usb_endpoint_xfer_control(desc
))
1131 index
= (unsigned int) (usb_endpoint_num(desc
)*2);
1133 index
= (unsigned int) (usb_endpoint_num(desc
)*2) +
1134 (usb_endpoint_dir_in(desc
) ? 1 : 0) - 1;
1138 /* The reverse operation to xhci_get_endpoint_index. Calculate the USB endpoint
1139 * address from the XHCI endpoint index.
1141 unsigned int xhci_get_endpoint_address(unsigned int ep_index
)
1143 unsigned int number
= DIV_ROUND_UP(ep_index
, 2);
1144 unsigned int direction
= ep_index
% 2 ? USB_DIR_OUT
: USB_DIR_IN
;
1145 return direction
| number
;
1148 /* Find the flag for this endpoint (for use in the control context). Use the
1149 * endpoint index to create a bitmask. The slot context is bit 0, endpoint 0 is
1152 unsigned int xhci_get_endpoint_flag(struct usb_endpoint_descriptor
*desc
)
1154 return 1 << (xhci_get_endpoint_index(desc
) + 1);
1157 /* Find the flag for this endpoint (for use in the control context). Use the
1158 * endpoint index to create a bitmask. The slot context is bit 0, endpoint 0 is
1161 unsigned int xhci_get_endpoint_flag_from_index(unsigned int ep_index
)
1163 return 1 << (ep_index
+ 1);
1166 /* Compute the last valid endpoint context index. Basically, this is the
1167 * endpoint index plus one. For slot contexts with more than valid endpoint,
1168 * we find the most significant bit set in the added contexts flags.
1169 * e.g. ep 1 IN (with epnum 0x81) => added_ctxs = 0b1000
1170 * fls(0b1000) = 4, but the endpoint context index is 3, so subtract one.
1172 unsigned int xhci_last_valid_endpoint(u32 added_ctxs
)
1174 return fls(added_ctxs
) - 1;
1177 /* Returns 1 if the arguments are OK;
1178 * returns 0 this is a root hub; returns -EINVAL for NULL pointers.
1180 static int xhci_check_args(struct usb_hcd
*hcd
, struct usb_device
*udev
,
1181 struct usb_host_endpoint
*ep
, int check_ep
, bool check_virt_dev
,
1183 struct xhci_hcd
*xhci
;
1184 struct xhci_virt_device
*virt_dev
;
1186 if (!hcd
|| (check_ep
&& !ep
) || !udev
) {
1187 pr_debug("xHCI %s called with invalid args\n", func
);
1190 if (!udev
->parent
) {
1191 pr_debug("xHCI %s called for root hub\n", func
);
1195 xhci
= hcd_to_xhci(hcd
);
1196 if (check_virt_dev
) {
1197 if (!udev
->slot_id
|| !xhci
->devs
[udev
->slot_id
]) {
1198 xhci_dbg(xhci
, "xHCI %s called with unaddressed device\n",
1203 virt_dev
= xhci
->devs
[udev
->slot_id
];
1204 if (virt_dev
->udev
!= udev
) {
1205 xhci_dbg(xhci
, "xHCI %s called with udev and "
1206 "virt_dev does not match\n", func
);
1211 if (xhci
->xhc_state
& XHCI_STATE_HALTED
)
1217 static int xhci_configure_endpoint(struct xhci_hcd
*xhci
,
1218 struct usb_device
*udev
, struct xhci_command
*command
,
1219 bool ctx_change
, bool must_succeed
);
1222 * Full speed devices may have a max packet size greater than 8 bytes, but the
1223 * USB core doesn't know that until it reads the first 8 bytes of the
1224 * descriptor. If the usb_device's max packet size changes after that point,
1225 * we need to issue an evaluate context command and wait on it.
1227 static int xhci_check_maxpacket(struct xhci_hcd
*xhci
, unsigned int slot_id
,
1228 unsigned int ep_index
, struct urb
*urb
)
1230 struct xhci_container_ctx
*in_ctx
;
1231 struct xhci_container_ctx
*out_ctx
;
1232 struct xhci_input_control_ctx
*ctrl_ctx
;
1233 struct xhci_ep_ctx
*ep_ctx
;
1234 int max_packet_size
;
1235 int hw_max_packet_size
;
1238 out_ctx
= xhci
->devs
[slot_id
]->out_ctx
;
1239 ep_ctx
= xhci_get_ep_ctx(xhci
, out_ctx
, ep_index
);
1240 hw_max_packet_size
= MAX_PACKET_DECODED(le32_to_cpu(ep_ctx
->ep_info2
));
1241 max_packet_size
= usb_endpoint_maxp(&urb
->dev
->ep0
.desc
);
1242 if (hw_max_packet_size
!= max_packet_size
) {
1243 xhci_dbg_trace(xhci
, trace_xhci_dbg_context_change
,
1244 "Max Packet Size for ep 0 changed.");
1245 xhci_dbg_trace(xhci
, trace_xhci_dbg_context_change
,
1246 "Max packet size in usb_device = %d",
1248 xhci_dbg_trace(xhci
, trace_xhci_dbg_context_change
,
1249 "Max packet size in xHCI HW = %d",
1250 hw_max_packet_size
);
1251 xhci_dbg_trace(xhci
, trace_xhci_dbg_context_change
,
1252 "Issuing evaluate context command.");
1254 /* Set up the input context flags for the command */
1255 /* FIXME: This won't work if a non-default control endpoint
1256 * changes max packet sizes.
1258 in_ctx
= xhci
->devs
[slot_id
]->in_ctx
;
1259 ctrl_ctx
= xhci_get_input_control_ctx(xhci
, in_ctx
);
1261 xhci_warn(xhci
, "%s: Could not get input context, bad type.\n",
1265 /* Set up the modified control endpoint 0 */
1266 xhci_endpoint_copy(xhci
, xhci
->devs
[slot_id
]->in_ctx
,
1267 xhci
->devs
[slot_id
]->out_ctx
, ep_index
);
1269 ep_ctx
= xhci_get_ep_ctx(xhci
, in_ctx
, ep_index
);
1270 ep_ctx
->ep_info2
&= cpu_to_le32(~MAX_PACKET_MASK
);
1271 ep_ctx
->ep_info2
|= cpu_to_le32(MAX_PACKET(max_packet_size
));
1273 ctrl_ctx
->add_flags
= cpu_to_le32(EP0_FLAG
);
1274 ctrl_ctx
->drop_flags
= 0;
1276 xhci_dbg(xhci
, "Slot %d input context\n", slot_id
);
1277 xhci_dbg_ctx(xhci
, in_ctx
, ep_index
);
1278 xhci_dbg(xhci
, "Slot %d output context\n", slot_id
);
1279 xhci_dbg_ctx(xhci
, out_ctx
, ep_index
);
1281 ret
= xhci_configure_endpoint(xhci
, urb
->dev
, NULL
,
1284 /* Clean up the input context for later use by bandwidth
1287 ctrl_ctx
->add_flags
= cpu_to_le32(SLOT_FLAG
);
1293 * non-error returns are a promise to giveback() the urb later
1294 * we drop ownership so next owner (or urb unlink) can get it
1296 int xhci_urb_enqueue(struct usb_hcd
*hcd
, struct urb
*urb
, gfp_t mem_flags
)
1298 struct xhci_hcd
*xhci
= hcd_to_xhci(hcd
);
1299 struct xhci_td
*buffer
;
1300 unsigned long flags
;
1302 unsigned int slot_id
, ep_index
;
1303 struct urb_priv
*urb_priv
;
1306 if (!urb
|| xhci_check_args(hcd
, urb
->dev
, urb
->ep
,
1307 true, true, __func__
) <= 0)
1310 slot_id
= urb
->dev
->slot_id
;
1311 ep_index
= xhci_get_endpoint_index(&urb
->ep
->desc
);
1313 if (!HCD_HW_ACCESSIBLE(hcd
)) {
1314 if (!in_interrupt())
1315 xhci_dbg(xhci
, "urb submitted during PCI suspend\n");
1320 if (usb_endpoint_xfer_isoc(&urb
->ep
->desc
))
1321 size
= urb
->number_of_packets
;
1322 else if (usb_endpoint_is_bulk_out(&urb
->ep
->desc
) &&
1323 urb
->transfer_buffer_length
> 0 &&
1324 urb
->transfer_flags
& URB_ZERO_PACKET
&&
1325 !(urb
->transfer_buffer_length
% usb_endpoint_maxp(&urb
->ep
->desc
)))
1330 urb_priv
= kzalloc(sizeof(struct urb_priv
) +
1331 size
* sizeof(struct xhci_td
*), mem_flags
);
1335 buffer
= kzalloc(size
* sizeof(struct xhci_td
), mem_flags
);
1341 for (i
= 0; i
< size
; i
++) {
1342 urb_priv
->td
[i
] = buffer
;
1346 urb_priv
->length
= size
;
1347 urb_priv
->td_cnt
= 0;
1348 urb
->hcpriv
= urb_priv
;
1350 if (usb_endpoint_xfer_control(&urb
->ep
->desc
)) {
1351 /* Check to see if the max packet size for the default control
1352 * endpoint changed during FS device enumeration
1354 if (urb
->dev
->speed
== USB_SPEED_FULL
) {
1355 ret
= xhci_check_maxpacket(xhci
, slot_id
,
1358 xhci_urb_free_priv(xhci
, urb_priv
);
1364 /* We have a spinlock and interrupts disabled, so we must pass
1365 * atomic context to this function, which may allocate memory.
1367 spin_lock_irqsave(&xhci
->lock
, flags
);
1368 if (xhci
->xhc_state
& XHCI_STATE_DYING
)
1370 ret
= xhci_queue_ctrl_tx(xhci
, GFP_ATOMIC
, urb
,
1374 spin_unlock_irqrestore(&xhci
->lock
, flags
);
1375 } else if (usb_endpoint_xfer_bulk(&urb
->ep
->desc
)) {
1376 spin_lock_irqsave(&xhci
->lock
, flags
);
1377 if (xhci
->xhc_state
& XHCI_STATE_DYING
)
1379 if (xhci
->devs
[slot_id
]->eps
[ep_index
].ep_state
&
1380 EP_GETTING_STREAMS
) {
1381 xhci_warn(xhci
, "WARN: Can't enqueue URB while bulk ep "
1382 "is transitioning to using streams.\n");
1384 } else if (xhci
->devs
[slot_id
]->eps
[ep_index
].ep_state
&
1385 EP_GETTING_NO_STREAMS
) {
1386 xhci_warn(xhci
, "WARN: Can't enqueue URB while bulk ep "
1387 "is transitioning to "
1388 "not having streams.\n");
1391 ret
= xhci_queue_bulk_tx(xhci
, GFP_ATOMIC
, urb
,
1396 spin_unlock_irqrestore(&xhci
->lock
, flags
);
1397 } else if (usb_endpoint_xfer_int(&urb
->ep
->desc
)) {
1398 spin_lock_irqsave(&xhci
->lock
, flags
);
1399 if (xhci
->xhc_state
& XHCI_STATE_DYING
)
1401 ret
= xhci_queue_intr_tx(xhci
, GFP_ATOMIC
, urb
,
1405 spin_unlock_irqrestore(&xhci
->lock
, flags
);
1407 spin_lock_irqsave(&xhci
->lock
, flags
);
1408 if (xhci
->xhc_state
& XHCI_STATE_DYING
)
1410 ret
= xhci_queue_isoc_tx_prepare(xhci
, GFP_ATOMIC
, urb
,
1414 spin_unlock_irqrestore(&xhci
->lock
, flags
);
1419 xhci_dbg(xhci
, "Ep 0x%x: URB %p submitted for "
1420 "non-responsive xHCI host.\n",
1421 urb
->ep
->desc
.bEndpointAddress
, urb
);
1424 xhci_urb_free_priv(xhci
, urb_priv
);
1426 spin_unlock_irqrestore(&xhci
->lock
, flags
);
1430 /* Get the right ring for the given URB.
1431 * If the endpoint supports streams, boundary check the URB's stream ID.
1432 * If the endpoint doesn't support streams, return the singular endpoint ring.
1434 static struct xhci_ring
*xhci_urb_to_transfer_ring(struct xhci_hcd
*xhci
,
1437 unsigned int slot_id
;
1438 unsigned int ep_index
;
1439 unsigned int stream_id
;
1440 struct xhci_virt_ep
*ep
;
1442 slot_id
= urb
->dev
->slot_id
;
1443 ep_index
= xhci_get_endpoint_index(&urb
->ep
->desc
);
1444 stream_id
= urb
->stream_id
;
1445 ep
= &xhci
->devs
[slot_id
]->eps
[ep_index
];
1446 /* Common case: no streams */
1447 if (!(ep
->ep_state
& EP_HAS_STREAMS
))
1450 if (stream_id
== 0) {
1452 "WARN: Slot ID %u, ep index %u has streams, "
1453 "but URB has no stream ID.\n",
1458 if (stream_id
< ep
->stream_info
->num_streams
)
1459 return ep
->stream_info
->stream_rings
[stream_id
];
1462 "WARN: Slot ID %u, ep index %u has "
1463 "stream IDs 1 to %u allocated, "
1464 "but stream ID %u is requested.\n",
1466 ep
->stream_info
->num_streams
- 1,
1472 * Remove the URB's TD from the endpoint ring. This may cause the HC to stop
1473 * USB transfers, potentially stopping in the middle of a TRB buffer. The HC
1474 * should pick up where it left off in the TD, unless a Set Transfer Ring
1475 * Dequeue Pointer is issued.
1477 * The TRBs that make up the buffers for the canceled URB will be "removed" from
1478 * the ring. Since the ring is a contiguous structure, they can't be physically
1479 * removed. Instead, there are two options:
1481 * 1) If the HC is in the middle of processing the URB to be canceled, we
1482 * simply move the ring's dequeue pointer past those TRBs using the Set
1483 * Transfer Ring Dequeue Pointer command. This will be the common case,
1484 * when drivers timeout on the last submitted URB and attempt to cancel.
1486 * 2) If the HC is in the middle of a different TD, we turn the TRBs into a
1487 * series of 1-TRB transfer no-op TDs. (No-ops shouldn't be chained.) The
1488 * HC will need to invalidate the any TRBs it has cached after the stop
1489 * endpoint command, as noted in the xHCI 0.95 errata.
1491 * 3) The TD may have completed by the time the Stop Endpoint Command
1492 * completes, so software needs to handle that case too.
1494 * This function should protect against the TD enqueueing code ringing the
1495 * doorbell while this code is waiting for a Stop Endpoint command to complete.
1496 * It also needs to account for multiple cancellations on happening at the same
1497 * time for the same endpoint.
1499 * Note that this function can be called in any context, or so says
1500 * usb_hcd_unlink_urb()
1502 int xhci_urb_dequeue(struct usb_hcd
*hcd
, struct urb
*urb
, int status
)
1504 unsigned long flags
;
1507 struct xhci_hcd
*xhci
;
1508 struct urb_priv
*urb_priv
;
1510 unsigned int ep_index
;
1511 struct xhci_ring
*ep_ring
;
1512 struct xhci_virt_ep
*ep
;
1514 xhci
= hcd_to_xhci(hcd
);
1515 spin_lock_irqsave(&xhci
->lock
, flags
);
1516 /* Make sure the URB hasn't completed or been unlinked already */
1517 ret
= usb_hcd_check_unlink_urb(hcd
, urb
, status
);
1518 if (ret
|| !urb
->hcpriv
)
1520 temp
= xhci_readl(xhci
, &xhci
->op_regs
->status
);
1521 if (temp
== 0xffffffff || (xhci
->xhc_state
& XHCI_STATE_HALTED
)) {
1522 xhci_dbg_trace(xhci
, trace_xhci_dbg_cancel_urb
,
1523 "HW died, freeing TD.");
1524 urb_priv
= urb
->hcpriv
;
1525 for (i
= urb_priv
->td_cnt
;
1526 i
< urb_priv
->length
&& xhci
->devs
[urb
->dev
->slot_id
];
1528 td
= urb_priv
->td
[i
];
1529 if (!list_empty(&td
->td_list
))
1530 list_del_init(&td
->td_list
);
1531 if (!list_empty(&td
->cancelled_td_list
))
1532 list_del_init(&td
->cancelled_td_list
);
1535 usb_hcd_unlink_urb_from_ep(hcd
, urb
);
1536 spin_unlock_irqrestore(&xhci
->lock
, flags
);
1537 usb_hcd_giveback_urb(hcd
, urb
, -ESHUTDOWN
);
1538 xhci_urb_free_priv(xhci
, urb_priv
);
1541 if ((xhci
->xhc_state
& XHCI_STATE_DYING
) ||
1542 (xhci
->xhc_state
& XHCI_STATE_HALTED
)) {
1543 xhci_dbg_trace(xhci
, trace_xhci_dbg_cancel_urb
,
1544 "Ep 0x%x: URB %p to be canceled on "
1545 "non-responsive xHCI host.",
1546 urb
->ep
->desc
.bEndpointAddress
, urb
);
1547 /* Let the stop endpoint command watchdog timer (which set this
1548 * state) finish cleaning up the endpoint TD lists. We must
1549 * have caught it in the middle of dropping a lock and giving
1555 ep_index
= xhci_get_endpoint_index(&urb
->ep
->desc
);
1556 ep
= &xhci
->devs
[urb
->dev
->slot_id
]->eps
[ep_index
];
1557 ep_ring
= xhci_urb_to_transfer_ring(xhci
, urb
);
1563 urb_priv
= urb
->hcpriv
;
1564 i
= urb_priv
->td_cnt
;
1565 if (i
< urb_priv
->length
)
1566 xhci_dbg_trace(xhci
, trace_xhci_dbg_cancel_urb
,
1567 "Cancel URB %p, dev %s, ep 0x%x, "
1568 "starting at offset 0x%llx",
1569 urb
, urb
->dev
->devpath
,
1570 urb
->ep
->desc
.bEndpointAddress
,
1571 (unsigned long long) xhci_trb_virt_to_dma(
1572 urb_priv
->td
[i
]->start_seg
,
1573 urb_priv
->td
[i
]->first_trb
));
1575 for (; i
< urb_priv
->length
; i
++) {
1576 td
= urb_priv
->td
[i
];
1577 list_add_tail(&td
->cancelled_td_list
, &ep
->cancelled_td_list
);
1580 /* Queue a stop endpoint command, but only if this is
1581 * the first cancellation to be handled.
1583 if (!(ep
->ep_state
& EP_HALT_PENDING
)) {
1584 ep
->ep_state
|= EP_HALT_PENDING
;
1585 ep
->stop_cmds_pending
++;
1586 ep
->stop_cmd_timer
.expires
= jiffies
+
1587 XHCI_STOP_EP_CMD_TIMEOUT
* HZ
;
1588 add_timer(&ep
->stop_cmd_timer
);
1589 xhci_queue_stop_endpoint(xhci
, urb
->dev
->slot_id
, ep_index
, 0);
1590 xhci_ring_cmd_db(xhci
);
1593 spin_unlock_irqrestore(&xhci
->lock
, flags
);
1597 /* Drop an endpoint from a new bandwidth configuration for this device.
1598 * Only one call to this function is allowed per endpoint before
1599 * check_bandwidth() or reset_bandwidth() must be called.
1600 * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will
1601 * add the endpoint to the schedule with possibly new parameters denoted by a
1602 * different endpoint descriptor in usb_host_endpoint.
1603 * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is
1606 * The USB core will not allow URBs to be queued to an endpoint that is being
1607 * disabled, so there's no need for mutual exclusion to protect
1608 * the xhci->devs[slot_id] structure.
1610 int xhci_drop_endpoint(struct usb_hcd
*hcd
, struct usb_device
*udev
,
1611 struct usb_host_endpoint
*ep
)
1613 struct xhci_hcd
*xhci
;
1614 struct xhci_container_ctx
*in_ctx
, *out_ctx
;
1615 struct xhci_input_control_ctx
*ctrl_ctx
;
1616 struct xhci_slot_ctx
*slot_ctx
;
1617 unsigned int last_ctx
;
1618 unsigned int ep_index
;
1619 struct xhci_ep_ctx
*ep_ctx
;
1621 u32 new_add_flags
, new_drop_flags
, new_slot_info
;
1624 ret
= xhci_check_args(hcd
, udev
, ep
, 1, true, __func__
);
1627 xhci
= hcd_to_xhci(hcd
);
1628 if (xhci
->xhc_state
& XHCI_STATE_DYING
)
1631 xhci_dbg(xhci
, "%s called for udev %p\n", __func__
, udev
);
1632 drop_flag
= xhci_get_endpoint_flag(&ep
->desc
);
1633 if (drop_flag
== SLOT_FLAG
|| drop_flag
== EP0_FLAG
) {
1634 xhci_dbg(xhci
, "xHCI %s - can't drop slot or ep 0 %#x\n",
1635 __func__
, drop_flag
);
1639 in_ctx
= xhci
->devs
[udev
->slot_id
]->in_ctx
;
1640 out_ctx
= xhci
->devs
[udev
->slot_id
]->out_ctx
;
1641 ctrl_ctx
= xhci_get_input_control_ctx(xhci
, in_ctx
);
1643 xhci_warn(xhci
, "%s: Could not get input context, bad type.\n",
1648 ep_index
= xhci_get_endpoint_index(&ep
->desc
);
1649 ep_ctx
= xhci_get_ep_ctx(xhci
, out_ctx
, ep_index
);
1650 /* If the HC already knows the endpoint is disabled,
1651 * or the HCD has noted it is disabled, ignore this request
1653 if (((ep_ctx
->ep_info
& cpu_to_le32(EP_STATE_MASK
)) ==
1654 cpu_to_le32(EP_STATE_DISABLED
)) ||
1655 le32_to_cpu(ctrl_ctx
->drop_flags
) &
1656 xhci_get_endpoint_flag(&ep
->desc
)) {
1657 xhci_warn(xhci
, "xHCI %s called with disabled ep %p\n",
1662 ctrl_ctx
->drop_flags
|= cpu_to_le32(drop_flag
);
1663 new_drop_flags
= le32_to_cpu(ctrl_ctx
->drop_flags
);
1665 ctrl_ctx
->add_flags
&= cpu_to_le32(~drop_flag
);
1666 new_add_flags
= le32_to_cpu(ctrl_ctx
->add_flags
);
1668 last_ctx
= xhci_last_valid_endpoint(le32_to_cpu(ctrl_ctx
->add_flags
));
1669 slot_ctx
= xhci_get_slot_ctx(xhci
, in_ctx
);
1670 /* Update the last valid endpoint context, if we deleted the last one */
1671 if ((le32_to_cpu(slot_ctx
->dev_info
) & LAST_CTX_MASK
) >
1672 LAST_CTX(last_ctx
)) {
1673 slot_ctx
->dev_info
&= cpu_to_le32(~LAST_CTX_MASK
);
1674 slot_ctx
->dev_info
|= cpu_to_le32(LAST_CTX(last_ctx
));
1676 new_slot_info
= le32_to_cpu(slot_ctx
->dev_info
);
1678 xhci_endpoint_zero(xhci
, xhci
->devs
[udev
->slot_id
], ep
);
1680 xhci_dbg(xhci
, "drop ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x, new slot info = %#x\n",
1681 (unsigned int) ep
->desc
.bEndpointAddress
,
1683 (unsigned int) new_drop_flags
,
1684 (unsigned int) new_add_flags
,
1685 (unsigned int) new_slot_info
);
1689 /* Add an endpoint to a new possible bandwidth configuration for this device.
1690 * Only one call to this function is allowed per endpoint before
1691 * check_bandwidth() or reset_bandwidth() must be called.
1692 * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will
1693 * add the endpoint to the schedule with possibly new parameters denoted by a
1694 * different endpoint descriptor in usb_host_endpoint.
1695 * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is
1698 * The USB core will not allow URBs to be queued to an endpoint until the
1699 * configuration or alt setting is installed in the device, so there's no need
1700 * for mutual exclusion to protect the xhci->devs[slot_id] structure.
1702 int xhci_add_endpoint(struct usb_hcd
*hcd
, struct usb_device
*udev
,
1703 struct usb_host_endpoint
*ep
)
1705 struct xhci_hcd
*xhci
;
1706 struct xhci_container_ctx
*in_ctx
, *out_ctx
;
1707 unsigned int ep_index
;
1708 struct xhci_slot_ctx
*slot_ctx
;
1709 struct xhci_input_control_ctx
*ctrl_ctx
;
1711 unsigned int last_ctx
;
1712 u32 new_add_flags
, new_drop_flags
, new_slot_info
;
1713 struct xhci_virt_device
*virt_dev
;
1716 ret
= xhci_check_args(hcd
, udev
, ep
, 1, true, __func__
);
1718 /* So we won't queue a reset ep command for a root hub */
1722 xhci
= hcd_to_xhci(hcd
);
1723 if (xhci
->xhc_state
& XHCI_STATE_DYING
)
1726 added_ctxs
= xhci_get_endpoint_flag(&ep
->desc
);
1727 last_ctx
= xhci_last_valid_endpoint(added_ctxs
);
1728 if (added_ctxs
== SLOT_FLAG
|| added_ctxs
== EP0_FLAG
) {
1729 /* FIXME when we have to issue an evaluate endpoint command to
1730 * deal with ep0 max packet size changing once we get the
1733 xhci_dbg(xhci
, "xHCI %s - can't add slot or ep 0 %#x\n",
1734 __func__
, added_ctxs
);
1738 virt_dev
= xhci
->devs
[udev
->slot_id
];
1739 in_ctx
= virt_dev
->in_ctx
;
1740 out_ctx
= virt_dev
->out_ctx
;
1741 ctrl_ctx
= xhci_get_input_control_ctx(xhci
, in_ctx
);
1743 xhci_warn(xhci
, "%s: Could not get input context, bad type.\n",
1748 ep_index
= xhci_get_endpoint_index(&ep
->desc
);
1749 /* If this endpoint is already in use, and the upper layers are trying
1750 * to add it again without dropping it, reject the addition.
1752 if (virt_dev
->eps
[ep_index
].ring
&&
1753 !(le32_to_cpu(ctrl_ctx
->drop_flags
) &
1754 xhci_get_endpoint_flag(&ep
->desc
))) {
1755 xhci_warn(xhci
, "Trying to add endpoint 0x%x "
1756 "without dropping it.\n",
1757 (unsigned int) ep
->desc
.bEndpointAddress
);
1761 /* If the HCD has already noted the endpoint is enabled,
1762 * ignore this request.
1764 if (le32_to_cpu(ctrl_ctx
->add_flags
) &
1765 xhci_get_endpoint_flag(&ep
->desc
)) {
1766 xhci_warn(xhci
, "xHCI %s called with enabled ep %p\n",
1772 * Configuration and alternate setting changes must be done in
1773 * process context, not interrupt context (or so documenation
1774 * for usb_set_interface() and usb_set_configuration() claim).
1776 if (xhci_endpoint_init(xhci
, virt_dev
, udev
, ep
, GFP_NOIO
) < 0) {
1777 dev_dbg(&udev
->dev
, "%s - could not initialize ep %#x\n",
1778 __func__
, ep
->desc
.bEndpointAddress
);
1782 ctrl_ctx
->add_flags
|= cpu_to_le32(added_ctxs
);
1783 new_add_flags
= le32_to_cpu(ctrl_ctx
->add_flags
);
1785 /* If xhci_endpoint_disable() was called for this endpoint, but the
1786 * xHC hasn't been notified yet through the check_bandwidth() call,
1787 * this re-adds a new state for the endpoint from the new endpoint
1788 * descriptors. We must drop and re-add this endpoint, so we leave the
1791 new_drop_flags
= le32_to_cpu(ctrl_ctx
->drop_flags
);
1793 slot_ctx
= xhci_get_slot_ctx(xhci
, in_ctx
);
1794 /* Update the last valid endpoint context, if we just added one past */
1795 if ((le32_to_cpu(slot_ctx
->dev_info
) & LAST_CTX_MASK
) <
1796 LAST_CTX(last_ctx
)) {
1797 slot_ctx
->dev_info
&= cpu_to_le32(~LAST_CTX_MASK
);
1798 slot_ctx
->dev_info
|= cpu_to_le32(LAST_CTX(last_ctx
));
1800 new_slot_info
= le32_to_cpu(slot_ctx
->dev_info
);
1802 /* Store the usb_device pointer for later use */
1805 xhci_dbg(xhci
, "add ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x, new slot info = %#x\n",
1806 (unsigned int) ep
->desc
.bEndpointAddress
,
1808 (unsigned int) new_drop_flags
,
1809 (unsigned int) new_add_flags
,
1810 (unsigned int) new_slot_info
);
1814 static void xhci_zero_in_ctx(struct xhci_hcd
*xhci
, struct xhci_virt_device
*virt_dev
)
1816 struct xhci_input_control_ctx
*ctrl_ctx
;
1817 struct xhci_ep_ctx
*ep_ctx
;
1818 struct xhci_slot_ctx
*slot_ctx
;
1821 ctrl_ctx
= xhci_get_input_control_ctx(xhci
, virt_dev
->in_ctx
);
1823 xhci_warn(xhci
, "%s: Could not get input context, bad type.\n",
1828 /* When a device's add flag and drop flag are zero, any subsequent
1829 * configure endpoint command will leave that endpoint's state
1830 * untouched. Make sure we don't leave any old state in the input
1831 * endpoint contexts.
1833 ctrl_ctx
->drop_flags
= 0;
1834 ctrl_ctx
->add_flags
= 0;
1835 slot_ctx
= xhci_get_slot_ctx(xhci
, virt_dev
->in_ctx
);
1836 slot_ctx
->dev_info
&= cpu_to_le32(~LAST_CTX_MASK
);
1837 /* Endpoint 0 is always valid */
1838 slot_ctx
->dev_info
|= cpu_to_le32(LAST_CTX(1));
1839 for (i
= 1; i
< 31; ++i
) {
1840 ep_ctx
= xhci_get_ep_ctx(xhci
, virt_dev
->in_ctx
, i
);
1841 ep_ctx
->ep_info
= 0;
1842 ep_ctx
->ep_info2
= 0;
1844 ep_ctx
->tx_info
= 0;
1848 static int xhci_configure_endpoint_result(struct xhci_hcd
*xhci
,
1849 struct usb_device
*udev
, u32
*cmd_status
)
1853 switch (*cmd_status
) {
1855 dev_warn(&udev
->dev
, "Not enough host controller resources "
1856 "for new device state.\n");
1858 /* FIXME: can we allocate more resources for the HC? */
1861 case COMP_2ND_BW_ERR
:
1862 dev_warn(&udev
->dev
, "Not enough bandwidth "
1863 "for new device state.\n");
1865 /* FIXME: can we go back to the old state? */
1868 /* the HCD set up something wrong */
1869 dev_warn(&udev
->dev
, "ERROR: Endpoint drop flag = 0, "
1871 "and endpoint is not disabled.\n");
1875 dev_warn(&udev
->dev
, "ERROR: Incompatible device for endpoint "
1876 "configure command.\n");
1880 xhci_dbg_trace(xhci
, trace_xhci_dbg_context_change
,
1881 "Successful Endpoint Configure command");
1885 xhci_err(xhci
, "ERROR: unexpected command completion "
1886 "code 0x%x.\n", *cmd_status
);
1893 static int xhci_evaluate_context_result(struct xhci_hcd
*xhci
,
1894 struct usb_device
*udev
, u32
*cmd_status
)
1897 struct xhci_virt_device
*virt_dev
= xhci
->devs
[udev
->slot_id
];
1899 switch (*cmd_status
) {
1901 dev_warn(&udev
->dev
, "WARN: xHCI driver setup invalid evaluate "
1902 "context command.\n");
1906 dev_warn(&udev
->dev
, "WARN: slot not enabled for"
1907 "evaluate context command.\n");
1910 case COMP_CTX_STATE
:
1911 dev_warn(&udev
->dev
, "WARN: invalid context state for "
1912 "evaluate context command.\n");
1913 xhci_dbg_ctx(xhci
, virt_dev
->out_ctx
, 1);
1917 dev_warn(&udev
->dev
, "ERROR: Incompatible device for evaluate "
1918 "context command.\n");
1922 /* Max Exit Latency too large error */
1923 dev_warn(&udev
->dev
, "WARN: Max Exit Latency too large\n");
1927 xhci_dbg_trace(xhci
, trace_xhci_dbg_context_change
,
1928 "Successful evaluate context command");
1932 xhci_err(xhci
, "ERROR: unexpected command completion "
1933 "code 0x%x.\n", *cmd_status
);
1940 static u32
xhci_count_num_new_endpoints(struct xhci_hcd
*xhci
,
1941 struct xhci_input_control_ctx
*ctrl_ctx
)
1943 u32 valid_add_flags
;
1944 u32 valid_drop_flags
;
1946 /* Ignore the slot flag (bit 0), and the default control endpoint flag
1947 * (bit 1). The default control endpoint is added during the Address
1948 * Device command and is never removed until the slot is disabled.
1950 valid_add_flags
= ctrl_ctx
->add_flags
>> 2;
1951 valid_drop_flags
= ctrl_ctx
->drop_flags
>> 2;
1953 /* Use hweight32 to count the number of ones in the add flags, or
1954 * number of endpoints added. Don't count endpoints that are changed
1955 * (both added and dropped).
1957 return hweight32(valid_add_flags
) -
1958 hweight32(valid_add_flags
& valid_drop_flags
);
1961 static unsigned int xhci_count_num_dropped_endpoints(struct xhci_hcd
*xhci
,
1962 struct xhci_input_control_ctx
*ctrl_ctx
)
1964 u32 valid_add_flags
;
1965 u32 valid_drop_flags
;
1967 valid_add_flags
= ctrl_ctx
->add_flags
>> 2;
1968 valid_drop_flags
= ctrl_ctx
->drop_flags
>> 2;
1970 return hweight32(valid_drop_flags
) -
1971 hweight32(valid_add_flags
& valid_drop_flags
);
1975 * We need to reserve the new number of endpoints before the configure endpoint
1976 * command completes. We can't subtract the dropped endpoints from the number
1977 * of active endpoints until the command completes because we can oversubscribe
1978 * the host in this case:
1980 * - the first configure endpoint command drops more endpoints than it adds
1981 * - a second configure endpoint command that adds more endpoints is queued
1982 * - the first configure endpoint command fails, so the config is unchanged
1983 * - the second command may succeed, even though there isn't enough resources
1985 * Must be called with xhci->lock held.
1987 static int xhci_reserve_host_resources(struct xhci_hcd
*xhci
,
1988 struct xhci_input_control_ctx
*ctrl_ctx
)
1992 added_eps
= xhci_count_num_new_endpoints(xhci
, ctrl_ctx
);
1993 if (xhci
->num_active_eps
+ added_eps
> xhci
->limit_active_eps
) {
1994 xhci_dbg_trace(xhci
, trace_xhci_dbg_quirks
,
1995 "Not enough ep ctxs: "
1996 "%u active, need to add %u, limit is %u.",
1997 xhci
->num_active_eps
, added_eps
,
1998 xhci
->limit_active_eps
);
2001 xhci
->num_active_eps
+= added_eps
;
2002 xhci_dbg_trace(xhci
, trace_xhci_dbg_quirks
,
2003 "Adding %u ep ctxs, %u now active.", added_eps
,
2004 xhci
->num_active_eps
);
2009 * The configure endpoint was failed by the xHC for some other reason, so we
2010 * need to revert the resources that failed configuration would have used.
2012 * Must be called with xhci->lock held.
2014 static void xhci_free_host_resources(struct xhci_hcd
*xhci
,
2015 struct xhci_input_control_ctx
*ctrl_ctx
)
2019 num_failed_eps
= xhci_count_num_new_endpoints(xhci
, ctrl_ctx
);
2020 xhci
->num_active_eps
-= num_failed_eps
;
2021 xhci_dbg_trace(xhci
, trace_xhci_dbg_quirks
,
2022 "Removing %u failed ep ctxs, %u now active.",
2024 xhci
->num_active_eps
);
2028 * Now that the command has completed, clean up the active endpoint count by
2029 * subtracting out the endpoints that were dropped (but not changed).
2031 * Must be called with xhci->lock held.
2033 static void xhci_finish_resource_reservation(struct xhci_hcd
*xhci
,
2034 struct xhci_input_control_ctx
*ctrl_ctx
)
2036 u32 num_dropped_eps
;
2038 num_dropped_eps
= xhci_count_num_dropped_endpoints(xhci
, ctrl_ctx
);
2039 xhci
->num_active_eps
-= num_dropped_eps
;
2040 if (num_dropped_eps
)
2041 xhci_dbg_trace(xhci
, trace_xhci_dbg_quirks
,
2042 "Removing %u dropped ep ctxs, %u now active.",
2044 xhci
->num_active_eps
);
2047 static unsigned int xhci_get_block_size(struct usb_device
*udev
)
2049 switch (udev
->speed
) {
2051 case USB_SPEED_FULL
:
2053 case USB_SPEED_HIGH
:
2055 case USB_SPEED_SUPER
:
2056 case USB_SPEED_SUPER_PLUS
:
2058 case USB_SPEED_UNKNOWN
:
2059 case USB_SPEED_WIRELESS
:
2061 /* Should never happen */
2067 xhci_get_largest_overhead(struct xhci_interval_bw
*interval_bw
)
2069 if (interval_bw
->overhead
[LS_OVERHEAD_TYPE
])
2071 if (interval_bw
->overhead
[FS_OVERHEAD_TYPE
])
2076 /* If we are changing a LS/FS device under a HS hub,
2077 * make sure (if we are activating a new TT) that the HS bus has enough
2078 * bandwidth for this new TT.
2080 static int xhci_check_tt_bw_table(struct xhci_hcd
*xhci
,
2081 struct xhci_virt_device
*virt_dev
,
2084 struct xhci_interval_bw_table
*bw_table
;
2085 struct xhci_tt_bw_info
*tt_info
;
2087 /* Find the bandwidth table for the root port this TT is attached to. */
2088 bw_table
= &xhci
->rh_bw
[virt_dev
->real_port
- 1].bw_table
;
2089 tt_info
= virt_dev
->tt_info
;
2090 /* If this TT already had active endpoints, the bandwidth for this TT
2091 * has already been added. Removing all periodic endpoints (and thus
2092 * making the TT enactive) will only decrease the bandwidth used.
2096 if (old_active_eps
== 0 && tt_info
->active_eps
!= 0) {
2097 if (bw_table
->bw_used
+ TT_HS_OVERHEAD
> HS_BW_LIMIT
)
2101 /* Not sure why we would have no new active endpoints...
2103 * Maybe because of an Evaluate Context change for a hub update or a
2104 * control endpoint 0 max packet size change?
2105 * FIXME: skip the bandwidth calculation in that case.
2110 static int xhci_check_ss_bw(struct xhci_hcd
*xhci
,
2111 struct xhci_virt_device
*virt_dev
)
2113 unsigned int bw_reserved
;
2115 bw_reserved
= DIV_ROUND_UP(SS_BW_RESERVED
*SS_BW_LIMIT_IN
, 100);
2116 if (virt_dev
->bw_table
->ss_bw_in
> (SS_BW_LIMIT_IN
- bw_reserved
))
2119 bw_reserved
= DIV_ROUND_UP(SS_BW_RESERVED
*SS_BW_LIMIT_OUT
, 100);
2120 if (virt_dev
->bw_table
->ss_bw_out
> (SS_BW_LIMIT_OUT
- bw_reserved
))
2127 * This algorithm is a very conservative estimate of the worst-case scheduling
2128 * scenario for any one interval. The hardware dynamically schedules the
2129 * packets, so we can't tell which microframe could be the limiting factor in
2130 * the bandwidth scheduling. This only takes into account periodic endpoints.
2132 * Obviously, we can't solve an NP complete problem to find the minimum worst
2133 * case scenario. Instead, we come up with an estimate that is no less than
2134 * the worst case bandwidth used for any one microframe, but may be an
2137 * We walk the requirements for each endpoint by interval, starting with the
2138 * smallest interval, and place packets in the schedule where there is only one
2139 * possible way to schedule packets for that interval. In order to simplify
2140 * this algorithm, we record the largest max packet size for each interval, and
2141 * assume all packets will be that size.
2143 * For interval 0, we obviously must schedule all packets for each interval.
2144 * The bandwidth for interval 0 is just the amount of data to be transmitted
2145 * (the sum of all max ESIT payload sizes, plus any overhead per packet times
2146 * the number of packets).
2148 * For interval 1, we have two possible microframes to schedule those packets
2149 * in. For this algorithm, if we can schedule the same number of packets for
2150 * each possible scheduling opportunity (each microframe), we will do so. The
2151 * remaining number of packets will be saved to be transmitted in the gaps in
2152 * the next interval's scheduling sequence.
2154 * As we move those remaining packets to be scheduled with interval 2 packets,
2155 * we have to double the number of remaining packets to transmit. This is
2156 * because the intervals are actually powers of 2, and we would be transmitting
2157 * the previous interval's packets twice in this interval. We also have to be
2158 * sure that when we look at the largest max packet size for this interval, we
2159 * also look at the largest max packet size for the remaining packets and take
2160 * the greater of the two.
2162 * The algorithm continues to evenly distribute packets in each scheduling
2163 * opportunity, and push the remaining packets out, until we get to the last
2164 * interval. Then those packets and their associated overhead are just added
2165 * to the bandwidth used.
2167 static int xhci_check_bw_table(struct xhci_hcd
*xhci
,
2168 struct xhci_virt_device
*virt_dev
,
2171 unsigned int bw_reserved
;
2172 unsigned int max_bandwidth
;
2173 unsigned int bw_used
;
2174 unsigned int block_size
;
2175 struct xhci_interval_bw_table
*bw_table
;
2176 unsigned int packet_size
= 0;
2177 unsigned int overhead
= 0;
2178 unsigned int packets_transmitted
= 0;
2179 unsigned int packets_remaining
= 0;
2182 if (virt_dev
->udev
->speed
>= USB_SPEED_SUPER
)
2183 return xhci_check_ss_bw(xhci
, virt_dev
);
2185 if (virt_dev
->udev
->speed
== USB_SPEED_HIGH
) {
2186 max_bandwidth
= HS_BW_LIMIT
;
2187 /* Convert percent of bus BW reserved to blocks reserved */
2188 bw_reserved
= DIV_ROUND_UP(HS_BW_RESERVED
* max_bandwidth
, 100);
2190 max_bandwidth
= FS_BW_LIMIT
;
2191 bw_reserved
= DIV_ROUND_UP(FS_BW_RESERVED
* max_bandwidth
, 100);
2194 bw_table
= virt_dev
->bw_table
;
2195 /* We need to translate the max packet size and max ESIT payloads into
2196 * the units the hardware uses.
2198 block_size
= xhci_get_block_size(virt_dev
->udev
);
2200 /* If we are manipulating a LS/FS device under a HS hub, double check
2201 * that the HS bus has enough bandwidth if we are activing a new TT.
2203 if (virt_dev
->tt_info
) {
2204 xhci_dbg_trace(xhci
, trace_xhci_dbg_quirks
,
2205 "Recalculating BW for rootport %u",
2206 virt_dev
->real_port
);
2207 if (xhci_check_tt_bw_table(xhci
, virt_dev
, old_active_eps
)) {
2208 xhci_warn(xhci
, "Not enough bandwidth on HS bus for "
2209 "newly activated TT.\n");
2212 xhci_dbg_trace(xhci
, trace_xhci_dbg_quirks
,
2213 "Recalculating BW for TT slot %u port %u",
2214 virt_dev
->tt_info
->slot_id
,
2215 virt_dev
->tt_info
->ttport
);
2217 xhci_dbg_trace(xhci
, trace_xhci_dbg_quirks
,
2218 "Recalculating BW for rootport %u",
2219 virt_dev
->real_port
);
2222 /* Add in how much bandwidth will be used for interval zero, or the
2223 * rounded max ESIT payload + number of packets * largest overhead.
2225 bw_used
= DIV_ROUND_UP(bw_table
->interval0_esit_payload
, block_size
) +
2226 bw_table
->interval_bw
[0].num_packets
*
2227 xhci_get_largest_overhead(&bw_table
->interval_bw
[0]);
2229 for (i
= 1; i
< XHCI_MAX_INTERVAL
; i
++) {
2230 unsigned int bw_added
;
2231 unsigned int largest_mps
;
2232 unsigned int interval_overhead
;
2235 * How many packets could we transmit in this interval?
2236 * If packets didn't fit in the previous interval, we will need
2237 * to transmit that many packets twice within this interval.
2239 packets_remaining
= 2 * packets_remaining
+
2240 bw_table
->interval_bw
[i
].num_packets
;
2242 /* Find the largest max packet size of this or the previous
2245 if (list_empty(&bw_table
->interval_bw
[i
].endpoints
))
2248 struct xhci_virt_ep
*virt_ep
;
2249 struct list_head
*ep_entry
;
2251 ep_entry
= bw_table
->interval_bw
[i
].endpoints
.next
;
2252 virt_ep
= list_entry(ep_entry
,
2253 struct xhci_virt_ep
, bw_endpoint_list
);
2254 /* Convert to blocks, rounding up */
2255 largest_mps
= DIV_ROUND_UP(
2256 virt_ep
->bw_info
.max_packet_size
,
2259 if (largest_mps
> packet_size
)
2260 packet_size
= largest_mps
;
2262 /* Use the larger overhead of this or the previous interval. */
2263 interval_overhead
= xhci_get_largest_overhead(
2264 &bw_table
->interval_bw
[i
]);
2265 if (interval_overhead
> overhead
)
2266 overhead
= interval_overhead
;
2268 /* How many packets can we evenly distribute across
2269 * (1 << (i + 1)) possible scheduling opportunities?
2271 packets_transmitted
= packets_remaining
>> (i
+ 1);
2273 /* Add in the bandwidth used for those scheduled packets */
2274 bw_added
= packets_transmitted
* (overhead
+ packet_size
);
2276 /* How many packets do we have remaining to transmit? */
2277 packets_remaining
= packets_remaining
% (1 << (i
+ 1));
2279 /* What largest max packet size should those packets have? */
2280 /* If we've transmitted all packets, don't carry over the
2281 * largest packet size.
2283 if (packets_remaining
== 0) {
2286 } else if (packets_transmitted
> 0) {
2287 /* Otherwise if we do have remaining packets, and we've
2288 * scheduled some packets in this interval, take the
2289 * largest max packet size from endpoints with this
2292 packet_size
= largest_mps
;
2293 overhead
= interval_overhead
;
2295 /* Otherwise carry over packet_size and overhead from the last
2296 * time we had a remainder.
2298 bw_used
+= bw_added
;
2299 if (bw_used
> max_bandwidth
) {
2300 xhci_warn(xhci
, "Not enough bandwidth. "
2301 "Proposed: %u, Max: %u\n",
2302 bw_used
, max_bandwidth
);
2307 * Ok, we know we have some packets left over after even-handedly
2308 * scheduling interval 15. We don't know which microframes they will
2309 * fit into, so we over-schedule and say they will be scheduled every
2312 if (packets_remaining
> 0)
2313 bw_used
+= overhead
+ packet_size
;
2315 if (!virt_dev
->tt_info
&& virt_dev
->udev
->speed
== USB_SPEED_HIGH
) {
2316 unsigned int port_index
= virt_dev
->real_port
- 1;
2318 /* OK, we're manipulating a HS device attached to a
2319 * root port bandwidth domain. Include the number of active TTs
2320 * in the bandwidth used.
2322 bw_used
+= TT_HS_OVERHEAD
*
2323 xhci
->rh_bw
[port_index
].num_active_tts
;
2326 xhci_dbg_trace(xhci
, trace_xhci_dbg_quirks
,
2327 "Final bandwidth: %u, Limit: %u, Reserved: %u, "
2328 "Available: %u " "percent",
2329 bw_used
, max_bandwidth
, bw_reserved
,
2330 (max_bandwidth
- bw_used
- bw_reserved
) * 100 /
2333 bw_used
+= bw_reserved
;
2334 if (bw_used
> max_bandwidth
) {
2335 xhci_warn(xhci
, "Not enough bandwidth. Proposed: %u, Max: %u\n",
2336 bw_used
, max_bandwidth
);
2340 bw_table
->bw_used
= bw_used
;
2344 static bool xhci_is_async_ep(unsigned int ep_type
)
2346 return (ep_type
!= ISOC_OUT_EP
&& ep_type
!= INT_OUT_EP
&&
2347 ep_type
!= ISOC_IN_EP
&&
2348 ep_type
!= INT_IN_EP
);
2351 static bool xhci_is_sync_in_ep(unsigned int ep_type
)
2353 return (ep_type
== ISOC_IN_EP
|| ep_type
== INT_IN_EP
);
2356 static unsigned int xhci_get_ss_bw_consumed(struct xhci_bw_info
*ep_bw
)
2358 unsigned int mps
= DIV_ROUND_UP(ep_bw
->max_packet_size
, SS_BLOCK
);
2360 if (ep_bw
->ep_interval
== 0)
2361 return SS_OVERHEAD_BURST
+
2362 (ep_bw
->mult
* ep_bw
->num_packets
*
2363 (SS_OVERHEAD
+ mps
));
2364 return DIV_ROUND_UP(ep_bw
->mult
* ep_bw
->num_packets
*
2365 (SS_OVERHEAD
+ mps
+ SS_OVERHEAD_BURST
),
2366 1 << ep_bw
->ep_interval
);
2370 void xhci_drop_ep_from_interval_table(struct xhci_hcd
*xhci
,
2371 struct xhci_bw_info
*ep_bw
,
2372 struct xhci_interval_bw_table
*bw_table
,
2373 struct usb_device
*udev
,
2374 struct xhci_virt_ep
*virt_ep
,
2375 struct xhci_tt_bw_info
*tt_info
)
2377 struct xhci_interval_bw
*interval_bw
;
2378 int normalized_interval
;
2380 if (xhci_is_async_ep(ep_bw
->type
))
2383 if (udev
->speed
>= USB_SPEED_SUPER
) {
2384 if (xhci_is_sync_in_ep(ep_bw
->type
))
2385 xhci
->devs
[udev
->slot_id
]->bw_table
->ss_bw_in
-=
2386 xhci_get_ss_bw_consumed(ep_bw
);
2388 xhci
->devs
[udev
->slot_id
]->bw_table
->ss_bw_out
-=
2389 xhci_get_ss_bw_consumed(ep_bw
);
2393 /* SuperSpeed endpoints never get added to intervals in the table, so
2394 * this check is only valid for HS/FS/LS devices.
2396 if (list_empty(&virt_ep
->bw_endpoint_list
))
2398 /* For LS/FS devices, we need to translate the interval expressed in
2399 * microframes to frames.
2401 if (udev
->speed
== USB_SPEED_HIGH
)
2402 normalized_interval
= ep_bw
->ep_interval
;
2404 normalized_interval
= ep_bw
->ep_interval
- 3;
2406 if (normalized_interval
== 0)
2407 bw_table
->interval0_esit_payload
-= ep_bw
->max_esit_payload
;
2408 interval_bw
= &bw_table
->interval_bw
[normalized_interval
];
2409 interval_bw
->num_packets
-= ep_bw
->num_packets
;
2410 switch (udev
->speed
) {
2412 interval_bw
->overhead
[LS_OVERHEAD_TYPE
] -= 1;
2414 case USB_SPEED_FULL
:
2415 interval_bw
->overhead
[FS_OVERHEAD_TYPE
] -= 1;
2417 case USB_SPEED_HIGH
:
2418 interval_bw
->overhead
[HS_OVERHEAD_TYPE
] -= 1;
2420 case USB_SPEED_SUPER
:
2421 case USB_SPEED_SUPER_PLUS
:
2422 case USB_SPEED_UNKNOWN
:
2423 case USB_SPEED_WIRELESS
:
2424 /* Should never happen because only LS/FS/HS endpoints will get
2425 * added to the endpoint list.
2430 tt_info
->active_eps
-= 1;
2431 list_del_init(&virt_ep
->bw_endpoint_list
);
2434 static void xhci_add_ep_to_interval_table(struct xhci_hcd
*xhci
,
2435 struct xhci_bw_info
*ep_bw
,
2436 struct xhci_interval_bw_table
*bw_table
,
2437 struct usb_device
*udev
,
2438 struct xhci_virt_ep
*virt_ep
,
2439 struct xhci_tt_bw_info
*tt_info
)
2441 struct xhci_interval_bw
*interval_bw
;
2442 struct xhci_virt_ep
*smaller_ep
;
2443 int normalized_interval
;
2445 if (xhci_is_async_ep(ep_bw
->type
))
2448 if (udev
->speed
== USB_SPEED_SUPER
) {
2449 if (xhci_is_sync_in_ep(ep_bw
->type
))
2450 xhci
->devs
[udev
->slot_id
]->bw_table
->ss_bw_in
+=
2451 xhci_get_ss_bw_consumed(ep_bw
);
2453 xhci
->devs
[udev
->slot_id
]->bw_table
->ss_bw_out
+=
2454 xhci_get_ss_bw_consumed(ep_bw
);
2458 /* For LS/FS devices, we need to translate the interval expressed in
2459 * microframes to frames.
2461 if (udev
->speed
== USB_SPEED_HIGH
)
2462 normalized_interval
= ep_bw
->ep_interval
;
2464 normalized_interval
= ep_bw
->ep_interval
- 3;
2466 if (normalized_interval
== 0)
2467 bw_table
->interval0_esit_payload
+= ep_bw
->max_esit_payload
;
2468 interval_bw
= &bw_table
->interval_bw
[normalized_interval
];
2469 interval_bw
->num_packets
+= ep_bw
->num_packets
;
2470 switch (udev
->speed
) {
2472 interval_bw
->overhead
[LS_OVERHEAD_TYPE
] += 1;
2474 case USB_SPEED_FULL
:
2475 interval_bw
->overhead
[FS_OVERHEAD_TYPE
] += 1;
2477 case USB_SPEED_HIGH
:
2478 interval_bw
->overhead
[HS_OVERHEAD_TYPE
] += 1;
2480 case USB_SPEED_SUPER
:
2481 case USB_SPEED_SUPER_PLUS
:
2482 case USB_SPEED_UNKNOWN
:
2483 case USB_SPEED_WIRELESS
:
2484 /* Should never happen because only LS/FS/HS endpoints will get
2485 * added to the endpoint list.
2491 tt_info
->active_eps
+= 1;
2492 /* Insert the endpoint into the list, largest max packet size first. */
2493 list_for_each_entry(smaller_ep
, &interval_bw
->endpoints
,
2495 if (ep_bw
->max_packet_size
>=
2496 smaller_ep
->bw_info
.max_packet_size
) {
2497 /* Add the new ep before the smaller endpoint */
2498 list_add_tail(&virt_ep
->bw_endpoint_list
,
2499 &smaller_ep
->bw_endpoint_list
);
2503 /* Add the new endpoint at the end of the list. */
2504 list_add_tail(&virt_ep
->bw_endpoint_list
,
2505 &interval_bw
->endpoints
);
2508 void xhci_update_tt_active_eps(struct xhci_hcd
*xhci
,
2509 struct xhci_virt_device
*virt_dev
,
2512 struct xhci_root_port_bw_info
*rh_bw_info
;
2513 if (!virt_dev
->tt_info
)
2516 rh_bw_info
= &xhci
->rh_bw
[virt_dev
->real_port
- 1];
2517 if (old_active_eps
== 0 &&
2518 virt_dev
->tt_info
->active_eps
!= 0) {
2519 rh_bw_info
->num_active_tts
+= 1;
2520 rh_bw_info
->bw_table
.bw_used
+= TT_HS_OVERHEAD
;
2521 } else if (old_active_eps
!= 0 &&
2522 virt_dev
->tt_info
->active_eps
== 0) {
2523 rh_bw_info
->num_active_tts
-= 1;
2524 rh_bw_info
->bw_table
.bw_used
-= TT_HS_OVERHEAD
;
2528 static int xhci_reserve_bandwidth(struct xhci_hcd
*xhci
,
2529 struct xhci_virt_device
*virt_dev
,
2530 struct xhci_container_ctx
*in_ctx
)
2532 struct xhci_bw_info ep_bw_info
[31];
2534 struct xhci_input_control_ctx
*ctrl_ctx
;
2535 int old_active_eps
= 0;
2537 if (virt_dev
->tt_info
)
2538 old_active_eps
= virt_dev
->tt_info
->active_eps
;
2540 ctrl_ctx
= xhci_get_input_control_ctx(xhci
, in_ctx
);
2542 xhci_warn(xhci
, "%s: Could not get input context, bad type.\n",
2547 for (i
= 0; i
< 31; i
++) {
2548 if (!EP_IS_ADDED(ctrl_ctx
, i
) && !EP_IS_DROPPED(ctrl_ctx
, i
))
2551 /* Make a copy of the BW info in case we need to revert this */
2552 memcpy(&ep_bw_info
[i
], &virt_dev
->eps
[i
].bw_info
,
2553 sizeof(ep_bw_info
[i
]));
2554 /* Drop the endpoint from the interval table if the endpoint is
2555 * being dropped or changed.
2557 if (EP_IS_DROPPED(ctrl_ctx
, i
))
2558 xhci_drop_ep_from_interval_table(xhci
,
2559 &virt_dev
->eps
[i
].bw_info
,
2565 /* Overwrite the information stored in the endpoints' bw_info */
2566 xhci_update_bw_info(xhci
, virt_dev
->in_ctx
, ctrl_ctx
, virt_dev
);
2567 for (i
= 0; i
< 31; i
++) {
2568 /* Add any changed or added endpoints to the interval table */
2569 if (EP_IS_ADDED(ctrl_ctx
, i
))
2570 xhci_add_ep_to_interval_table(xhci
,
2571 &virt_dev
->eps
[i
].bw_info
,
2578 if (!xhci_check_bw_table(xhci
, virt_dev
, old_active_eps
)) {
2579 /* Ok, this fits in the bandwidth we have.
2580 * Update the number of active TTs.
2582 xhci_update_tt_active_eps(xhci
, virt_dev
, old_active_eps
);
2586 /* We don't have enough bandwidth for this, revert the stored info. */
2587 for (i
= 0; i
< 31; i
++) {
2588 if (!EP_IS_ADDED(ctrl_ctx
, i
) && !EP_IS_DROPPED(ctrl_ctx
, i
))
2591 /* Drop the new copies of any added or changed endpoints from
2592 * the interval table.
2594 if (EP_IS_ADDED(ctrl_ctx
, i
)) {
2595 xhci_drop_ep_from_interval_table(xhci
,
2596 &virt_dev
->eps
[i
].bw_info
,
2602 /* Revert the endpoint back to its old information */
2603 memcpy(&virt_dev
->eps
[i
].bw_info
, &ep_bw_info
[i
],
2604 sizeof(ep_bw_info
[i
]));
2605 /* Add any changed or dropped endpoints back into the table */
2606 if (EP_IS_DROPPED(ctrl_ctx
, i
))
2607 xhci_add_ep_to_interval_table(xhci
,
2608 &virt_dev
->eps
[i
].bw_info
,
2618 /* Issue a configure endpoint command or evaluate context command
2619 * and wait for it to finish.
2621 static int xhci_configure_endpoint(struct xhci_hcd
*xhci
,
2622 struct usb_device
*udev
,
2623 struct xhci_command
*command
,
2624 bool ctx_change
, bool must_succeed
)
2628 unsigned long flags
;
2629 struct xhci_container_ctx
*in_ctx
;
2630 struct xhci_input_control_ctx
*ctrl_ctx
;
2631 struct completion
*cmd_completion
;
2633 struct xhci_virt_device
*virt_dev
;
2634 union xhci_trb
*cmd_trb
;
2636 spin_lock_irqsave(&xhci
->lock
, flags
);
2637 virt_dev
= xhci
->devs
[udev
->slot_id
];
2640 in_ctx
= command
->in_ctx
;
2642 in_ctx
= virt_dev
->in_ctx
;
2643 ctrl_ctx
= xhci_get_input_control_ctx(xhci
, in_ctx
);
2645 spin_unlock_irqrestore(&xhci
->lock
, flags
);
2646 xhci_warn(xhci
, "%s: Could not get input context, bad type.\n",
2651 if ((xhci
->quirks
& XHCI_EP_LIMIT_QUIRK
) &&
2652 xhci_reserve_host_resources(xhci
, ctrl_ctx
)) {
2653 spin_unlock_irqrestore(&xhci
->lock
, flags
);
2654 xhci_warn(xhci
, "Not enough host resources, "
2655 "active endpoint contexts = %u\n",
2656 xhci
->num_active_eps
);
2659 if ((xhci
->quirks
& XHCI_SW_BW_CHECKING
) &&
2660 xhci_reserve_bandwidth(xhci
, virt_dev
, in_ctx
)) {
2661 if ((xhci
->quirks
& XHCI_EP_LIMIT_QUIRK
))
2662 xhci_free_host_resources(xhci
, ctrl_ctx
);
2663 spin_unlock_irqrestore(&xhci
->lock
, flags
);
2664 xhci_warn(xhci
, "Not enough bandwidth\n");
2669 cmd_completion
= command
->completion
;
2670 cmd_status
= &command
->status
;
2671 command
->command_trb
= xhci_find_next_enqueue(xhci
->cmd_ring
);
2672 list_add_tail(&command
->cmd_list
, &virt_dev
->cmd_list
);
2674 cmd_completion
= &virt_dev
->cmd_completion
;
2675 cmd_status
= &virt_dev
->cmd_status
;
2677 init_completion(cmd_completion
);
2679 cmd_trb
= xhci_find_next_enqueue(xhci
->cmd_ring
);
2681 ret
= xhci_queue_configure_endpoint(xhci
, in_ctx
->dma
,
2682 udev
->slot_id
, must_succeed
);
2684 ret
= xhci_queue_evaluate_context(xhci
, in_ctx
->dma
,
2685 udev
->slot_id
, must_succeed
);
2688 list_del(&command
->cmd_list
);
2689 if ((xhci
->quirks
& XHCI_EP_LIMIT_QUIRK
))
2690 xhci_free_host_resources(xhci
, ctrl_ctx
);
2691 spin_unlock_irqrestore(&xhci
->lock
, flags
);
2692 xhci_dbg_trace(xhci
, trace_xhci_dbg_context_change
,
2693 "FIXME allocate a new ring segment");
2696 xhci_ring_cmd_db(xhci
);
2697 spin_unlock_irqrestore(&xhci
->lock
, flags
);
2699 /* Wait for the configure endpoint command to complete */
2700 timeleft
= wait_for_completion_interruptible_timeout(
2702 XHCI_CMD_DEFAULT_TIMEOUT
);
2703 if (timeleft
<= 0) {
2704 xhci_warn(xhci
, "%s while waiting for %s command\n",
2705 timeleft
== 0 ? "Timeout" : "Signal",
2707 "configure endpoint" :
2708 "evaluate context");
2709 /* cancel the configure endpoint command */
2710 ret
= xhci_cancel_cmd(xhci
, command
, cmd_trb
);
2717 ret
= xhci_configure_endpoint_result(xhci
, udev
, cmd_status
);
2719 ret
= xhci_evaluate_context_result(xhci
, udev
, cmd_status
);
2721 if ((xhci
->quirks
& XHCI_EP_LIMIT_QUIRK
)) {
2722 spin_lock_irqsave(&xhci
->lock
, flags
);
2723 /* If the command failed, remove the reserved resources.
2724 * Otherwise, clean up the estimate to include dropped eps.
2727 xhci_free_host_resources(xhci
, ctrl_ctx
);
2729 xhci_finish_resource_reservation(xhci
, ctrl_ctx
);
2730 spin_unlock_irqrestore(&xhci
->lock
, flags
);
2735 /* Called after one or more calls to xhci_add_endpoint() or
2736 * xhci_drop_endpoint(). If this call fails, the USB core is expected
2737 * to call xhci_reset_bandwidth().
2739 * Since we are in the middle of changing either configuration or
2740 * installing a new alt setting, the USB core won't allow URBs to be
2741 * enqueued for any endpoint on the old config or interface. Nothing
2742 * else should be touching the xhci->devs[slot_id] structure, so we
2743 * don't need to take the xhci->lock for manipulating that.
2745 int xhci_check_bandwidth(struct usb_hcd
*hcd
, struct usb_device
*udev
)
2749 struct xhci_hcd
*xhci
;
2750 struct xhci_virt_device
*virt_dev
;
2751 struct xhci_input_control_ctx
*ctrl_ctx
;
2752 struct xhci_slot_ctx
*slot_ctx
;
2754 ret
= xhci_check_args(hcd
, udev
, NULL
, 0, true, __func__
);
2757 xhci
= hcd_to_xhci(hcd
);
2758 if (xhci
->xhc_state
& XHCI_STATE_DYING
)
2761 xhci_dbg(xhci
, "%s called for udev %p\n", __func__
, udev
);
2762 virt_dev
= xhci
->devs
[udev
->slot_id
];
2764 /* See section 4.6.6 - A0 = 1; A1 = D0 = D1 = 0 */
2765 ctrl_ctx
= xhci_get_input_control_ctx(xhci
, virt_dev
->in_ctx
);
2767 xhci_warn(xhci
, "%s: Could not get input context, bad type.\n",
2771 ctrl_ctx
->add_flags
|= cpu_to_le32(SLOT_FLAG
);
2772 ctrl_ctx
->add_flags
&= cpu_to_le32(~EP0_FLAG
);
2773 ctrl_ctx
->drop_flags
&= cpu_to_le32(~(SLOT_FLAG
| EP0_FLAG
));
2775 /* Don't issue the command if there's no endpoints to update. */
2776 if (ctrl_ctx
->add_flags
== cpu_to_le32(SLOT_FLAG
) &&
2777 ctrl_ctx
->drop_flags
== 0)
2780 xhci_dbg(xhci
, "New Input Control Context:\n");
2781 slot_ctx
= xhci_get_slot_ctx(xhci
, virt_dev
->in_ctx
);
2782 xhci_dbg_ctx(xhci
, virt_dev
->in_ctx
,
2783 LAST_CTX_TO_EP_NUM(le32_to_cpu(slot_ctx
->dev_info
)));
2785 ret
= xhci_configure_endpoint(xhci
, udev
, NULL
,
2788 /* Callee should call reset_bandwidth() */
2792 xhci_dbg(xhci
, "Output context after successful config ep cmd:\n");
2793 xhci_dbg_ctx(xhci
, virt_dev
->out_ctx
,
2794 LAST_CTX_TO_EP_NUM(le32_to_cpu(slot_ctx
->dev_info
)));
2796 /* Free any rings that were dropped, but not changed. */
2797 for (i
= 1; i
< 31; ++i
) {
2798 if ((le32_to_cpu(ctrl_ctx
->drop_flags
) & (1 << (i
+ 1))) &&
2799 !(le32_to_cpu(ctrl_ctx
->add_flags
) & (1 << (i
+ 1))))
2800 xhci_free_or_cache_endpoint_ring(xhci
, virt_dev
, i
);
2802 xhci_zero_in_ctx(xhci
, virt_dev
);
2804 * Install any rings for completely new endpoints or changed endpoints,
2805 * and free or cache any old rings from changed endpoints.
2807 for (i
= 1; i
< 31; ++i
) {
2808 if (!virt_dev
->eps
[i
].new_ring
)
2810 /* Only cache or free the old ring if it exists.
2811 * It may not if this is the first add of an endpoint.
2813 if (virt_dev
->eps
[i
].ring
) {
2814 xhci_free_or_cache_endpoint_ring(xhci
, virt_dev
, i
);
2816 virt_dev
->eps
[i
].ring
= virt_dev
->eps
[i
].new_ring
;
2817 virt_dev
->eps
[i
].new_ring
= NULL
;
2823 void xhci_reset_bandwidth(struct usb_hcd
*hcd
, struct usb_device
*udev
)
2825 struct xhci_hcd
*xhci
;
2826 struct xhci_virt_device
*virt_dev
;
2829 ret
= xhci_check_args(hcd
, udev
, NULL
, 0, true, __func__
);
2832 xhci
= hcd_to_xhci(hcd
);
2834 xhci_dbg(xhci
, "%s called for udev %p\n", __func__
, udev
);
2835 virt_dev
= xhci
->devs
[udev
->slot_id
];
2836 /* Free any rings allocated for added endpoints */
2837 for (i
= 0; i
< 31; ++i
) {
2838 if (virt_dev
->eps
[i
].new_ring
) {
2839 xhci_ring_free(xhci
, virt_dev
->eps
[i
].new_ring
);
2840 virt_dev
->eps
[i
].new_ring
= NULL
;
2843 xhci_zero_in_ctx(xhci
, virt_dev
);
2846 static void xhci_setup_input_ctx_for_config_ep(struct xhci_hcd
*xhci
,
2847 struct xhci_container_ctx
*in_ctx
,
2848 struct xhci_container_ctx
*out_ctx
,
2849 struct xhci_input_control_ctx
*ctrl_ctx
,
2850 u32 add_flags
, u32 drop_flags
)
2852 ctrl_ctx
->add_flags
= cpu_to_le32(add_flags
);
2853 ctrl_ctx
->drop_flags
= cpu_to_le32(drop_flags
);
2854 xhci_slot_copy(xhci
, in_ctx
, out_ctx
);
2855 ctrl_ctx
->add_flags
|= cpu_to_le32(SLOT_FLAG
);
2857 xhci_dbg(xhci
, "Input Context:\n");
2858 xhci_dbg_ctx(xhci
, in_ctx
, xhci_last_valid_endpoint(add_flags
));
2861 static void xhci_setup_input_ctx_for_quirk(struct xhci_hcd
*xhci
,
2862 unsigned int slot_id
, unsigned int ep_index
,
2863 struct xhci_dequeue_state
*deq_state
)
2865 struct xhci_input_control_ctx
*ctrl_ctx
;
2866 struct xhci_container_ctx
*in_ctx
;
2867 struct xhci_ep_ctx
*ep_ctx
;
2871 in_ctx
= xhci
->devs
[slot_id
]->in_ctx
;
2872 ctrl_ctx
= xhci_get_input_control_ctx(xhci
, in_ctx
);
2874 xhci_warn(xhci
, "%s: Could not get input context, bad type.\n",
2879 xhci_endpoint_copy(xhci
, xhci
->devs
[slot_id
]->in_ctx
,
2880 xhci
->devs
[slot_id
]->out_ctx
, ep_index
);
2881 ep_ctx
= xhci_get_ep_ctx(xhci
, in_ctx
, ep_index
);
2882 addr
= xhci_trb_virt_to_dma(deq_state
->new_deq_seg
,
2883 deq_state
->new_deq_ptr
);
2885 xhci_warn(xhci
, "WARN Cannot submit config ep after "
2886 "reset ep command\n");
2887 xhci_warn(xhci
, "WARN deq seg = %p, deq ptr = %p\n",
2888 deq_state
->new_deq_seg
,
2889 deq_state
->new_deq_ptr
);
2892 ep_ctx
->deq
= cpu_to_le64(addr
| deq_state
->new_cycle_state
);
2894 added_ctxs
= xhci_get_endpoint_flag_from_index(ep_index
);
2895 xhci_setup_input_ctx_for_config_ep(xhci
, xhci
->devs
[slot_id
]->in_ctx
,
2896 xhci
->devs
[slot_id
]->out_ctx
, ctrl_ctx
,
2897 added_ctxs
, added_ctxs
);
2900 void xhci_cleanup_stalled_ring(struct xhci_hcd
*xhci
,
2901 struct usb_device
*udev
, unsigned int ep_index
)
2903 struct xhci_dequeue_state deq_state
;
2904 struct xhci_virt_ep
*ep
;
2906 xhci_dbg_trace(xhci
, trace_xhci_dbg_reset_ep
,
2907 "Cleaning up stalled endpoint ring");
2908 ep
= &xhci
->devs
[udev
->slot_id
]->eps
[ep_index
];
2909 /* We need to move the HW's dequeue pointer past this TD,
2910 * or it will attempt to resend it on the next doorbell ring.
2912 xhci_find_new_dequeue_state(xhci
, udev
->slot_id
,
2913 ep_index
, ep
->stopped_stream
, ep
->stopped_td
,
2916 if (!deq_state
.new_deq_ptr
|| !deq_state
.new_deq_seg
)
2919 /* HW with the reset endpoint quirk will use the saved dequeue state to
2920 * issue a configure endpoint command later.
2922 if (!(xhci
->quirks
& XHCI_RESET_EP_QUIRK
)) {
2923 xhci_dbg_trace(xhci
, trace_xhci_dbg_reset_ep
,
2924 "Queueing new dequeue state");
2925 xhci_queue_new_dequeue_state(xhci
, udev
->slot_id
,
2926 ep_index
, ep
->stopped_stream
, &deq_state
);
2928 /* Better hope no one uses the input context between now and the
2929 * reset endpoint completion!
2930 * XXX: No idea how this hardware will react when stream rings
2933 xhci_dbg_trace(xhci
, trace_xhci_dbg_quirks
,
2934 "Setting up input context for "
2935 "configure endpoint command");
2936 xhci_setup_input_ctx_for_quirk(xhci
, udev
->slot_id
,
2937 ep_index
, &deq_state
);
2941 /* Called when clearing halted device. The core should have sent the control
2942 * message to clear the device halt condition. The host side of the halt should
2943 * already be cleared with a reset endpoint command issued when the STALL tx
2944 * event was received.
2946 * Context: in_interrupt
2949 void xhci_endpoint_reset(struct usb_hcd
*hcd
,
2950 struct usb_host_endpoint
*ep
)
2952 struct xhci_hcd
*xhci
;
2954 xhci
= hcd_to_xhci(hcd
);
2957 * We might need to implement the config ep cmd in xhci 4.8.1 note:
2958 * The Reset Endpoint Command may only be issued to endpoints in the
2959 * Halted state. If software wishes reset the Data Toggle or Sequence
2960 * Number of an endpoint that isn't in the Halted state, then software
2961 * may issue a Configure Endpoint Command with the Drop and Add bits set
2962 * for the target endpoint. that is in the Stopped state.
2965 /* For now just print debug to follow the situation */
2966 xhci_dbg(xhci
, "Endpoint 0x%x ep reset callback called\n",
2967 ep
->desc
.bEndpointAddress
);
2970 static int xhci_check_streams_endpoint(struct xhci_hcd
*xhci
,
2971 struct usb_device
*udev
, struct usb_host_endpoint
*ep
,
2972 unsigned int slot_id
)
2975 unsigned int ep_index
;
2976 unsigned int ep_state
;
2980 ret
= xhci_check_args(xhci_to_hcd(xhci
), udev
, ep
, 1, true, __func__
);
2983 if (ep
->ss_ep_comp
.bmAttributes
== 0) {
2984 xhci_warn(xhci
, "WARN: SuperSpeed Endpoint Companion"
2985 " descriptor for ep 0x%x does not support streams\n",
2986 ep
->desc
.bEndpointAddress
);
2990 ep_index
= xhci_get_endpoint_index(&ep
->desc
);
2991 ep_state
= xhci
->devs
[slot_id
]->eps
[ep_index
].ep_state
;
2992 if (ep_state
& EP_HAS_STREAMS
||
2993 ep_state
& EP_GETTING_STREAMS
) {
2994 xhci_warn(xhci
, "WARN: SuperSpeed bulk endpoint 0x%x "
2995 "already has streams set up.\n",
2996 ep
->desc
.bEndpointAddress
);
2997 xhci_warn(xhci
, "Send email to xHCI maintainer and ask for "
2998 "dynamic stream context array reallocation.\n");
3001 if (!list_empty(&xhci
->devs
[slot_id
]->eps
[ep_index
].ring
->td_list
)) {
3002 xhci_warn(xhci
, "Cannot setup streams for SuperSpeed bulk "
3003 "endpoint 0x%x; URBs are pending.\n",
3004 ep
->desc
.bEndpointAddress
);
3010 static void xhci_calculate_streams_entries(struct xhci_hcd
*xhci
,
3011 unsigned int *num_streams
, unsigned int *num_stream_ctxs
)
3013 unsigned int max_streams
;
3015 /* The stream context array size must be a power of two */
3016 *num_stream_ctxs
= roundup_pow_of_two(*num_streams
);
3018 * Find out how many primary stream array entries the host controller
3019 * supports. Later we may use secondary stream arrays (similar to 2nd
3020 * level page entries), but that's an optional feature for xHCI host
3021 * controllers. xHCs must support at least 4 stream IDs.
3023 max_streams
= HCC_MAX_PSA(xhci
->hcc_params
);
3024 if (*num_stream_ctxs
> max_streams
) {
3025 xhci_dbg(xhci
, "xHCI HW only supports %u stream ctx entries.\n",
3027 *num_stream_ctxs
= max_streams
;
3028 *num_streams
= max_streams
;
3032 /* Returns an error code if one of the endpoint already has streams.
3033 * This does not change any data structures, it only checks and gathers
3036 static int xhci_calculate_streams_and_bitmask(struct xhci_hcd
*xhci
,
3037 struct usb_device
*udev
,
3038 struct usb_host_endpoint
**eps
, unsigned int num_eps
,
3039 unsigned int *num_streams
, u32
*changed_ep_bitmask
)
3041 unsigned int max_streams
;
3042 unsigned int endpoint_flag
;
3046 for (i
= 0; i
< num_eps
; i
++) {
3047 ret
= xhci_check_streams_endpoint(xhci
, udev
,
3048 eps
[i
], udev
->slot_id
);
3052 max_streams
= usb_ss_max_streams(&eps
[i
]->ss_ep_comp
);
3053 if (max_streams
< (*num_streams
- 1)) {
3054 xhci_dbg(xhci
, "Ep 0x%x only supports %u stream IDs.\n",
3055 eps
[i
]->desc
.bEndpointAddress
,
3057 *num_streams
= max_streams
+1;
3060 endpoint_flag
= xhci_get_endpoint_flag(&eps
[i
]->desc
);
3061 if (*changed_ep_bitmask
& endpoint_flag
)
3063 *changed_ep_bitmask
|= endpoint_flag
;
3068 static u32
xhci_calculate_no_streams_bitmask(struct xhci_hcd
*xhci
,
3069 struct usb_device
*udev
,
3070 struct usb_host_endpoint
**eps
, unsigned int num_eps
)
3072 u32 changed_ep_bitmask
= 0;
3073 unsigned int slot_id
;
3074 unsigned int ep_index
;
3075 unsigned int ep_state
;
3078 slot_id
= udev
->slot_id
;
3079 if (!xhci
->devs
[slot_id
])
3082 for (i
= 0; i
< num_eps
; i
++) {
3083 ep_index
= xhci_get_endpoint_index(&eps
[i
]->desc
);
3084 ep_state
= xhci
->devs
[slot_id
]->eps
[ep_index
].ep_state
;
3085 /* Are streams already being freed for the endpoint? */
3086 if (ep_state
& EP_GETTING_NO_STREAMS
) {
3087 xhci_warn(xhci
, "WARN Can't disable streams for "
3089 "streams are being disabled already\n",
3090 eps
[i
]->desc
.bEndpointAddress
);
3093 /* Are there actually any streams to free? */
3094 if (!(ep_state
& EP_HAS_STREAMS
) &&
3095 !(ep_state
& EP_GETTING_STREAMS
)) {
3096 xhci_warn(xhci
, "WARN Can't disable streams for "
3098 "streams are already disabled!\n",
3099 eps
[i
]->desc
.bEndpointAddress
);
3100 xhci_warn(xhci
, "WARN xhci_free_streams() called "
3101 "with non-streams endpoint\n");
3104 changed_ep_bitmask
|= xhci_get_endpoint_flag(&eps
[i
]->desc
);
3106 return changed_ep_bitmask
;
3110 * The USB device drivers use this function (though the HCD interface in USB
3111 * core) to prepare a set of bulk endpoints to use streams. Streams are used to
3112 * coordinate mass storage command queueing across multiple endpoints (basically
3113 * a stream ID == a task ID).
3115 * Setting up streams involves allocating the same size stream context array
3116 * for each endpoint and issuing a configure endpoint command for all endpoints.
3118 * Don't allow the call to succeed if one endpoint only supports one stream
3119 * (which means it doesn't support streams at all).
3121 * Drivers may get less stream IDs than they asked for, if the host controller
3122 * hardware or endpoints claim they can't support the number of requested
3125 int xhci_alloc_streams(struct usb_hcd
*hcd
, struct usb_device
*udev
,
3126 struct usb_host_endpoint
**eps
, unsigned int num_eps
,
3127 unsigned int num_streams
, gfp_t mem_flags
)
3130 struct xhci_hcd
*xhci
;
3131 struct xhci_virt_device
*vdev
;
3132 struct xhci_command
*config_cmd
;
3133 struct xhci_input_control_ctx
*ctrl_ctx
;
3134 unsigned int ep_index
;
3135 unsigned int num_stream_ctxs
;
3136 unsigned long flags
;
3137 u32 changed_ep_bitmask
= 0;
3142 /* Add one to the number of streams requested to account for
3143 * stream 0 that is reserved for xHCI usage.
3146 xhci
= hcd_to_xhci(hcd
);
3147 xhci_dbg(xhci
, "Driver wants %u stream IDs (including stream 0).\n",
3150 config_cmd
= xhci_alloc_command(xhci
, true, true, mem_flags
);
3152 xhci_dbg(xhci
, "Could not allocate xHCI command structure.\n");
3155 ctrl_ctx
= xhci_get_input_control_ctx(xhci
, config_cmd
->in_ctx
);
3157 xhci_warn(xhci
, "%s: Could not get input context, bad type.\n",
3159 xhci_free_command(xhci
, config_cmd
);
3163 /* Check to make sure all endpoints are not already configured for
3164 * streams. While we're at it, find the maximum number of streams that
3165 * all the endpoints will support and check for duplicate endpoints.
3167 spin_lock_irqsave(&xhci
->lock
, flags
);
3168 ret
= xhci_calculate_streams_and_bitmask(xhci
, udev
, eps
,
3169 num_eps
, &num_streams
, &changed_ep_bitmask
);
3171 xhci_free_command(xhci
, config_cmd
);
3172 spin_unlock_irqrestore(&xhci
->lock
, flags
);
3175 if (num_streams
<= 1) {
3176 xhci_warn(xhci
, "WARN: endpoints can't handle "
3177 "more than one stream.\n");
3178 xhci_free_command(xhci
, config_cmd
);
3179 spin_unlock_irqrestore(&xhci
->lock
, flags
);
3182 vdev
= xhci
->devs
[udev
->slot_id
];
3183 /* Mark each endpoint as being in transition, so
3184 * xhci_urb_enqueue() will reject all URBs.
3186 for (i
= 0; i
< num_eps
; i
++) {
3187 ep_index
= xhci_get_endpoint_index(&eps
[i
]->desc
);
3188 vdev
->eps
[ep_index
].ep_state
|= EP_GETTING_STREAMS
;
3190 spin_unlock_irqrestore(&xhci
->lock
, flags
);
3192 /* Setup internal data structures and allocate HW data structures for
3193 * streams (but don't install the HW structures in the input context
3194 * until we're sure all memory allocation succeeded).
3196 xhci_calculate_streams_entries(xhci
, &num_streams
, &num_stream_ctxs
);
3197 xhci_dbg(xhci
, "Need %u stream ctx entries for %u stream IDs.\n",
3198 num_stream_ctxs
, num_streams
);
3200 for (i
= 0; i
< num_eps
; i
++) {
3201 ep_index
= xhci_get_endpoint_index(&eps
[i
]->desc
);
3202 vdev
->eps
[ep_index
].stream_info
= xhci_alloc_stream_info(xhci
,
3204 num_streams
, mem_flags
);
3205 if (!vdev
->eps
[ep_index
].stream_info
)
3207 /* Set maxPstreams in endpoint context and update deq ptr to
3208 * point to stream context array. FIXME
3212 /* Set up the input context for a configure endpoint command. */
3213 for (i
= 0; i
< num_eps
; i
++) {
3214 struct xhci_ep_ctx
*ep_ctx
;
3216 ep_index
= xhci_get_endpoint_index(&eps
[i
]->desc
);
3217 ep_ctx
= xhci_get_ep_ctx(xhci
, config_cmd
->in_ctx
, ep_index
);
3219 xhci_endpoint_copy(xhci
, config_cmd
->in_ctx
,
3220 vdev
->out_ctx
, ep_index
);
3221 xhci_setup_streams_ep_input_ctx(xhci
, ep_ctx
,
3222 vdev
->eps
[ep_index
].stream_info
);
3224 /* Tell the HW to drop its old copy of the endpoint context info
3225 * and add the updated copy from the input context.
3227 xhci_setup_input_ctx_for_config_ep(xhci
, config_cmd
->in_ctx
,
3228 vdev
->out_ctx
, ctrl_ctx
,
3229 changed_ep_bitmask
, changed_ep_bitmask
);
3231 /* Issue and wait for the configure endpoint command */
3232 ret
= xhci_configure_endpoint(xhci
, udev
, config_cmd
,
3235 /* xHC rejected the configure endpoint command for some reason, so we
3236 * leave the old ring intact and free our internal streams data
3242 spin_lock_irqsave(&xhci
->lock
, flags
);
3243 for (i
= 0; i
< num_eps
; i
++) {
3244 ep_index
= xhci_get_endpoint_index(&eps
[i
]->desc
);
3245 vdev
->eps
[ep_index
].ep_state
&= ~EP_GETTING_STREAMS
;
3246 xhci_dbg(xhci
, "Slot %u ep ctx %u now has streams.\n",
3247 udev
->slot_id
, ep_index
);
3248 vdev
->eps
[ep_index
].ep_state
|= EP_HAS_STREAMS
;
3250 xhci_free_command(xhci
, config_cmd
);
3251 spin_unlock_irqrestore(&xhci
->lock
, flags
);
3253 /* Subtract 1 for stream 0, which drivers can't use */
3254 return num_streams
- 1;
3257 /* If it didn't work, free the streams! */
3258 for (i
= 0; i
< num_eps
; i
++) {
3259 ep_index
= xhci_get_endpoint_index(&eps
[i
]->desc
);
3260 xhci_free_stream_info(xhci
, vdev
->eps
[ep_index
].stream_info
);
3261 vdev
->eps
[ep_index
].stream_info
= NULL
;
3262 /* FIXME Unset maxPstreams in endpoint context and
3263 * update deq ptr to point to normal string ring.
3265 vdev
->eps
[ep_index
].ep_state
&= ~EP_GETTING_STREAMS
;
3266 vdev
->eps
[ep_index
].ep_state
&= ~EP_HAS_STREAMS
;
3267 xhci_endpoint_zero(xhci
, vdev
, eps
[i
]);
3269 xhci_free_command(xhci
, config_cmd
);
3273 /* Transition the endpoint from using streams to being a "normal" endpoint
3276 * Modify the endpoint context state, submit a configure endpoint command,
3277 * and free all endpoint rings for streams if that completes successfully.
3279 int xhci_free_streams(struct usb_hcd
*hcd
, struct usb_device
*udev
,
3280 struct usb_host_endpoint
**eps
, unsigned int num_eps
,
3284 struct xhci_hcd
*xhci
;
3285 struct xhci_virt_device
*vdev
;
3286 struct xhci_command
*command
;
3287 struct xhci_input_control_ctx
*ctrl_ctx
;
3288 unsigned int ep_index
;
3289 unsigned long flags
;
3290 u32 changed_ep_bitmask
;
3292 xhci
= hcd_to_xhci(hcd
);
3293 vdev
= xhci
->devs
[udev
->slot_id
];
3295 /* Set up a configure endpoint command to remove the streams rings */
3296 spin_lock_irqsave(&xhci
->lock
, flags
);
3297 changed_ep_bitmask
= xhci_calculate_no_streams_bitmask(xhci
,
3298 udev
, eps
, num_eps
);
3299 if (changed_ep_bitmask
== 0) {
3300 spin_unlock_irqrestore(&xhci
->lock
, flags
);
3304 /* Use the xhci_command structure from the first endpoint. We may have
3305 * allocated too many, but the driver may call xhci_free_streams() for
3306 * each endpoint it grouped into one call to xhci_alloc_streams().
3308 ep_index
= xhci_get_endpoint_index(&eps
[0]->desc
);
3309 command
= vdev
->eps
[ep_index
].stream_info
->free_streams_command
;
3310 ctrl_ctx
= xhci_get_input_control_ctx(xhci
, command
->in_ctx
);
3312 spin_unlock_irqrestore(&xhci
->lock
, flags
);
3313 xhci_warn(xhci
, "%s: Could not get input context, bad type.\n",
3318 for (i
= 0; i
< num_eps
; i
++) {
3319 struct xhci_ep_ctx
*ep_ctx
;
3321 ep_index
= xhci_get_endpoint_index(&eps
[i
]->desc
);
3322 ep_ctx
= xhci_get_ep_ctx(xhci
, command
->in_ctx
, ep_index
);
3323 xhci
->devs
[udev
->slot_id
]->eps
[ep_index
].ep_state
|=
3324 EP_GETTING_NO_STREAMS
;
3326 xhci_endpoint_copy(xhci
, command
->in_ctx
,
3327 vdev
->out_ctx
, ep_index
);
3328 xhci_setup_no_streams_ep_input_ctx(xhci
, ep_ctx
,
3329 &vdev
->eps
[ep_index
]);
3331 xhci_setup_input_ctx_for_config_ep(xhci
, command
->in_ctx
,
3332 vdev
->out_ctx
, ctrl_ctx
,
3333 changed_ep_bitmask
, changed_ep_bitmask
);
3334 spin_unlock_irqrestore(&xhci
->lock
, flags
);
3336 /* Issue and wait for the configure endpoint command,
3337 * which must succeed.
3339 ret
= xhci_configure_endpoint(xhci
, udev
, command
,
3342 /* xHC rejected the configure endpoint command for some reason, so we
3343 * leave the streams rings intact.
3348 spin_lock_irqsave(&xhci
->lock
, flags
);
3349 for (i
= 0; i
< num_eps
; i
++) {
3350 ep_index
= xhci_get_endpoint_index(&eps
[i
]->desc
);
3351 xhci_free_stream_info(xhci
, vdev
->eps
[ep_index
].stream_info
);
3352 vdev
->eps
[ep_index
].stream_info
= NULL
;
3353 /* FIXME Unset maxPstreams in endpoint context and
3354 * update deq ptr to point to normal string ring.
3356 vdev
->eps
[ep_index
].ep_state
&= ~EP_GETTING_NO_STREAMS
;
3357 vdev
->eps
[ep_index
].ep_state
&= ~EP_HAS_STREAMS
;
3359 spin_unlock_irqrestore(&xhci
->lock
, flags
);
3365 * Deletes endpoint resources for endpoints that were active before a Reset
3366 * Device command, or a Disable Slot command. The Reset Device command leaves
3367 * the control endpoint intact, whereas the Disable Slot command deletes it.
3369 * Must be called with xhci->lock held.
3371 void xhci_free_device_endpoint_resources(struct xhci_hcd
*xhci
,
3372 struct xhci_virt_device
*virt_dev
, bool drop_control_ep
)
3375 unsigned int num_dropped_eps
= 0;
3376 unsigned int drop_flags
= 0;
3378 for (i
= (drop_control_ep
? 0 : 1); i
< 31; i
++) {
3379 if (virt_dev
->eps
[i
].ring
) {
3380 drop_flags
|= 1 << i
;
3384 xhci
->num_active_eps
-= num_dropped_eps
;
3385 if (num_dropped_eps
)
3386 xhci_dbg_trace(xhci
, trace_xhci_dbg_quirks
,
3387 "Dropped %u ep ctxs, flags = 0x%x, "
3389 num_dropped_eps
, drop_flags
,
3390 xhci
->num_active_eps
);
3394 * This submits a Reset Device Command, which will set the device state to 0,
3395 * set the device address to 0, and disable all the endpoints except the default
3396 * control endpoint. The USB core should come back and call
3397 * xhci_address_device(), and then re-set up the configuration. If this is
3398 * called because of a usb_reset_and_verify_device(), then the old alternate
3399 * settings will be re-installed through the normal bandwidth allocation
3402 * Wait for the Reset Device command to finish. Remove all structures
3403 * associated with the endpoints that were disabled. Clear the input device
3404 * structure? Cache the rings? Reset the control endpoint 0 max packet size?
3406 * If the virt_dev to be reset does not exist or does not match the udev,
3407 * it means the device is lost, possibly due to the xHC restore error and
3408 * re-initialization during S3/S4. In this case, call xhci_alloc_dev() to
3409 * re-allocate the device.
3411 int xhci_discover_or_reset_device(struct usb_hcd
*hcd
, struct usb_device
*udev
)
3414 unsigned long flags
;
3415 struct xhci_hcd
*xhci
;
3416 unsigned int slot_id
;
3417 struct xhci_virt_device
*virt_dev
;
3418 struct xhci_command
*reset_device_cmd
;
3420 int last_freed_endpoint
;
3421 struct xhci_slot_ctx
*slot_ctx
;
3422 int old_active_eps
= 0;
3424 ret
= xhci_check_args(hcd
, udev
, NULL
, 0, false, __func__
);
3427 xhci
= hcd_to_xhci(hcd
);
3428 slot_id
= udev
->slot_id
;
3429 virt_dev
= xhci
->devs
[slot_id
];
3431 xhci_dbg(xhci
, "The device to be reset with slot ID %u does "
3432 "not exist. Re-allocate the device\n", slot_id
);
3433 ret
= xhci_alloc_dev(hcd
, udev
);
3440 if (virt_dev
->tt_info
)
3441 old_active_eps
= virt_dev
->tt_info
->active_eps
;
3443 if (virt_dev
->udev
!= udev
) {
3444 /* If the virt_dev and the udev does not match, this virt_dev
3445 * may belong to another udev.
3446 * Re-allocate the device.
3448 xhci_dbg(xhci
, "The device to be reset with slot ID %u does "
3449 "not match the udev. Re-allocate the device\n",
3451 ret
= xhci_alloc_dev(hcd
, udev
);
3458 /* If device is not setup, there is no point in resetting it */
3459 slot_ctx
= xhci_get_slot_ctx(xhci
, virt_dev
->out_ctx
);
3460 if (GET_SLOT_STATE(le32_to_cpu(slot_ctx
->dev_state
)) ==
3461 SLOT_STATE_DISABLED
)
3464 xhci_dbg(xhci
, "Resetting device with slot ID %u\n", slot_id
);
3465 /* Allocate the command structure that holds the struct completion.
3466 * Assume we're in process context, since the normal device reset
3467 * process has to wait for the device anyway. Storage devices are
3468 * reset as part of error handling, so use GFP_NOIO instead of
3471 reset_device_cmd
= xhci_alloc_command(xhci
, false, true, GFP_NOIO
);
3472 if (!reset_device_cmd
) {
3473 xhci_dbg(xhci
, "Couldn't allocate command structure.\n");
3477 /* Attempt to submit the Reset Device command to the command ring */
3478 spin_lock_irqsave(&xhci
->lock
, flags
);
3479 reset_device_cmd
->command_trb
= xhci_find_next_enqueue(xhci
->cmd_ring
);
3481 list_add_tail(&reset_device_cmd
->cmd_list
, &virt_dev
->cmd_list
);
3482 ret
= xhci_queue_reset_device(xhci
, slot_id
);
3484 xhci_dbg(xhci
, "FIXME: allocate a command ring segment\n");
3485 list_del(&reset_device_cmd
->cmd_list
);
3486 spin_unlock_irqrestore(&xhci
->lock
, flags
);
3487 goto command_cleanup
;
3489 xhci_ring_cmd_db(xhci
);
3490 spin_unlock_irqrestore(&xhci
->lock
, flags
);
3492 /* Wait for the Reset Device command to finish */
3493 timeleft
= wait_for_completion_interruptible_timeout(
3494 reset_device_cmd
->completion
,
3495 USB_CTRL_SET_TIMEOUT
);
3496 if (timeleft
<= 0) {
3497 xhci_warn(xhci
, "%s while waiting for reset device command\n",
3498 timeleft
== 0 ? "Timeout" : "Signal");
3499 spin_lock_irqsave(&xhci
->lock
, flags
);
3500 /* The timeout might have raced with the event ring handler, so
3501 * only delete from the list if the item isn't poisoned.
3503 if (reset_device_cmd
->cmd_list
.next
!= LIST_POISON1
)
3504 list_del(&reset_device_cmd
->cmd_list
);
3505 spin_unlock_irqrestore(&xhci
->lock
, flags
);
3507 goto command_cleanup
;
3510 /* The Reset Device command can't fail, according to the 0.95/0.96 spec,
3511 * unless we tried to reset a slot ID that wasn't enabled,
3512 * or the device wasn't in the addressed or configured state.
3514 ret
= reset_device_cmd
->status
;
3516 case COMP_EBADSLT
: /* 0.95 completion code for bad slot ID */
3517 case COMP_CTX_STATE
: /* 0.96 completion code for same thing */
3518 xhci_dbg(xhci
, "Can't reset device (slot ID %u) in %s state\n",
3520 xhci_get_slot_state(xhci
, virt_dev
->out_ctx
));
3521 xhci_dbg(xhci
, "Not freeing device rings.\n");
3522 /* Don't treat this as an error. May change my mind later. */
3524 goto command_cleanup
;
3526 xhci_dbg(xhci
, "Successful reset device command.\n");
3529 if (xhci_is_vendor_info_code(xhci
, ret
))
3531 xhci_warn(xhci
, "Unknown completion code %u for "
3532 "reset device command.\n", ret
);
3534 goto command_cleanup
;
3537 /* Free up host controller endpoint resources */
3538 if ((xhci
->quirks
& XHCI_EP_LIMIT_QUIRK
)) {
3539 spin_lock_irqsave(&xhci
->lock
, flags
);
3540 /* Don't delete the default control endpoint resources */
3541 xhci_free_device_endpoint_resources(xhci
, virt_dev
, false);
3542 spin_unlock_irqrestore(&xhci
->lock
, flags
);
3545 /* Everything but endpoint 0 is disabled, so free or cache the rings. */
3546 last_freed_endpoint
= 1;
3547 for (i
= 1; i
< 31; ++i
) {
3548 struct xhci_virt_ep
*ep
= &virt_dev
->eps
[i
];
3550 if (ep
->ep_state
& EP_HAS_STREAMS
) {
3551 xhci_free_stream_info(xhci
, ep
->stream_info
);
3552 ep
->stream_info
= NULL
;
3553 ep
->ep_state
&= ~EP_HAS_STREAMS
;
3557 xhci_free_or_cache_endpoint_ring(xhci
, virt_dev
, i
);
3558 last_freed_endpoint
= i
;
3560 if (!list_empty(&virt_dev
->eps
[i
].bw_endpoint_list
))
3561 xhci_drop_ep_from_interval_table(xhci
,
3562 &virt_dev
->eps
[i
].bw_info
,
3567 xhci_clear_endpoint_bw_info(&virt_dev
->eps
[i
].bw_info
);
3569 /* If necessary, update the number of active TTs on this root port */
3570 xhci_update_tt_active_eps(xhci
, virt_dev
, old_active_eps
);
3572 xhci_dbg(xhci
, "Output context after successful reset device cmd:\n");
3573 xhci_dbg_ctx(xhci
, virt_dev
->out_ctx
, last_freed_endpoint
);
3577 xhci_free_command(xhci
, reset_device_cmd
);
3582 * At this point, the struct usb_device is about to go away, the device has
3583 * disconnected, and all traffic has been stopped and the endpoints have been
3584 * disabled. Free any HC data structures associated with that device.
3586 void xhci_free_dev(struct usb_hcd
*hcd
, struct usb_device
*udev
)
3588 struct xhci_hcd
*xhci
= hcd_to_xhci(hcd
);
3589 struct xhci_virt_device
*virt_dev
;
3590 unsigned long flags
;
3594 #ifndef CONFIG_USB_DEFAULT_PERSIST
3596 * We called pm_runtime_get_noresume when the device was attached.
3597 * Decrement the counter here to allow controller to runtime suspend
3598 * if no devices remain.
3600 if (xhci
->quirks
& XHCI_RESET_ON_RESUME
)
3601 pm_runtime_put_noidle(hcd
->self
.controller
);
3604 ret
= xhci_check_args(hcd
, udev
, NULL
, 0, true, __func__
);
3605 /* If the host is halted due to driver unload, we still need to free the
3608 if (ret
<= 0 && ret
!= -ENODEV
)
3611 virt_dev
= xhci
->devs
[udev
->slot_id
];
3613 /* Stop any wayward timer functions (which may grab the lock) */
3614 for (i
= 0; i
< 31; ++i
) {
3615 virt_dev
->eps
[i
].ep_state
&= ~EP_HALT_PENDING
;
3616 del_timer_sync(&virt_dev
->eps
[i
].stop_cmd_timer
);
3619 if (udev
->usb2_hw_lpm_enabled
) {
3620 xhci_set_usb2_hardware_lpm(hcd
, udev
, 0);
3621 udev
->usb2_hw_lpm_enabled
= 0;
3624 spin_lock_irqsave(&xhci
->lock
, flags
);
3625 /* Don't disable the slot if the host controller is dead. */
3626 state
= xhci_readl(xhci
, &xhci
->op_regs
->status
);
3627 if (state
== 0xffffffff || (xhci
->xhc_state
& XHCI_STATE_DYING
) ||
3628 (xhci
->xhc_state
& XHCI_STATE_HALTED
)) {
3629 xhci_free_virt_device(xhci
, udev
->slot_id
);
3630 spin_unlock_irqrestore(&xhci
->lock
, flags
);
3634 if (xhci_queue_slot_control(xhci
, TRB_DISABLE_SLOT
, udev
->slot_id
)) {
3635 spin_unlock_irqrestore(&xhci
->lock
, flags
);
3636 xhci_dbg(xhci
, "FIXME: allocate a command ring segment\n");
3639 xhci_ring_cmd_db(xhci
);
3640 spin_unlock_irqrestore(&xhci
->lock
, flags
);
3642 * Event command completion handler will free any data structures
3643 * associated with the slot. XXX Can free sleep?
3648 * Checks if we have enough host controller resources for the default control
3651 * Must be called with xhci->lock held.
3653 static int xhci_reserve_host_control_ep_resources(struct xhci_hcd
*xhci
)
3655 if (xhci
->num_active_eps
+ 1 > xhci
->limit_active_eps
) {
3656 xhci_dbg_trace(xhci
, trace_xhci_dbg_quirks
,
3657 "Not enough ep ctxs: "
3658 "%u active, need to add 1, limit is %u.",
3659 xhci
->num_active_eps
, xhci
->limit_active_eps
);
3662 xhci
->num_active_eps
+= 1;
3663 xhci_dbg_trace(xhci
, trace_xhci_dbg_quirks
,
3664 "Adding 1 ep ctx, %u now active.",
3665 xhci
->num_active_eps
);
3671 * Returns 0 if the xHC ran out of device slots, the Enable Slot command
3672 * timed out, or allocating memory failed. Returns 1 on success.
3674 int xhci_alloc_dev(struct usb_hcd
*hcd
, struct usb_device
*udev
)
3676 struct xhci_hcd
*xhci
= hcd_to_xhci(hcd
);
3677 unsigned long flags
;
3680 union xhci_trb
*cmd_trb
;
3682 spin_lock_irqsave(&xhci
->lock
, flags
);
3683 cmd_trb
= xhci_find_next_enqueue(xhci
->cmd_ring
);
3684 ret
= xhci_queue_slot_control(xhci
, TRB_ENABLE_SLOT
, 0);
3686 spin_unlock_irqrestore(&xhci
->lock
, flags
);
3687 xhci_dbg(xhci
, "FIXME: allocate a command ring segment\n");
3690 xhci_ring_cmd_db(xhci
);
3691 spin_unlock_irqrestore(&xhci
->lock
, flags
);
3693 /* XXX: how much time for xHC slot assignment? */
3694 timeleft
= wait_for_completion_interruptible_timeout(&xhci
->addr_dev
,
3695 XHCI_CMD_DEFAULT_TIMEOUT
);
3696 if (timeleft
<= 0) {
3697 xhci_warn(xhci
, "%s while waiting for a slot\n",
3698 timeleft
== 0 ? "Timeout" : "Signal");
3699 /* cancel the enable slot request */
3700 return xhci_cancel_cmd(xhci
, NULL
, cmd_trb
);
3703 if (!xhci
->slot_id
) {
3704 xhci_err(xhci
, "Error while assigning device slot ID\n");
3708 if ((xhci
->quirks
& XHCI_EP_LIMIT_QUIRK
)) {
3709 spin_lock_irqsave(&xhci
->lock
, flags
);
3710 ret
= xhci_reserve_host_control_ep_resources(xhci
);
3712 spin_unlock_irqrestore(&xhci
->lock
, flags
);
3713 xhci_warn(xhci
, "Not enough host resources, "
3714 "active endpoint contexts = %u\n",
3715 xhci
->num_active_eps
);
3718 spin_unlock_irqrestore(&xhci
->lock
, flags
);
3720 /* Use GFP_NOIO, since this function can be called from
3721 * xhci_discover_or_reset_device(), which may be called as part of
3722 * mass storage driver error handling.
3724 if (!xhci_alloc_virt_device(xhci
, xhci
->slot_id
, udev
, GFP_NOIO
)) {
3725 xhci_warn(xhci
, "Could not allocate xHCI USB device data structures\n");
3728 udev
->slot_id
= xhci
->slot_id
;
3730 #ifndef CONFIG_USB_DEFAULT_PERSIST
3732 * If resetting upon resume, we can't put the controller into runtime
3733 * suspend if there is a device attached.
3735 if (xhci
->quirks
& XHCI_RESET_ON_RESUME
)
3736 pm_runtime_get_noresume(hcd
->self
.controller
);
3739 /* Is this a LS or FS device under a HS hub? */
3740 /* Hub or peripherial? */
3744 /* Disable slot, if we can do it without mem alloc */
3745 spin_lock_irqsave(&xhci
->lock
, flags
);
3746 if (!xhci_queue_slot_control(xhci
, TRB_DISABLE_SLOT
, udev
->slot_id
))
3747 xhci_ring_cmd_db(xhci
);
3748 spin_unlock_irqrestore(&xhci
->lock
, flags
);
3753 * Issue an Address Device command (which will issue a SetAddress request to
3755 * We should be protected by the usb_address0_mutex in khubd's hub_port_init, so
3756 * we should only issue and wait on one address command at the same time.
3758 * We add one to the device address issued by the hardware because the USB core
3759 * uses address 1 for the root hubs (even though they're not really devices).
3761 int xhci_address_device(struct usb_hcd
*hcd
, struct usb_device
*udev
)
3763 unsigned long flags
;
3765 struct xhci_virt_device
*virt_dev
;
3767 struct xhci_hcd
*xhci
= hcd_to_xhci(hcd
);
3768 struct xhci_slot_ctx
*slot_ctx
;
3769 struct xhci_input_control_ctx
*ctrl_ctx
;
3771 union xhci_trb
*cmd_trb
;
3773 if (!udev
->slot_id
) {
3774 xhci_dbg_trace(xhci
, trace_xhci_dbg_address
,
3775 "Bad Slot ID %d", udev
->slot_id
);
3779 virt_dev
= xhci
->devs
[udev
->slot_id
];
3781 if (WARN_ON(!virt_dev
)) {
3783 * In plug/unplug torture test with an NEC controller,
3784 * a zero-dereference was observed once due to virt_dev = 0.
3785 * Print useful debug rather than crash if it is observed again!
3787 xhci_warn(xhci
, "Virt dev invalid for slot_id 0x%x!\n",
3792 slot_ctx
= xhci_get_slot_ctx(xhci
, virt_dev
->in_ctx
);
3793 ctrl_ctx
= xhci_get_input_control_ctx(xhci
, virt_dev
->in_ctx
);
3795 xhci_warn(xhci
, "%s: Could not get input context, bad type.\n",
3800 * If this is the first Set Address since device plug-in or
3801 * virt_device realloaction after a resume with an xHCI power loss,
3802 * then set up the slot context.
3804 if (!slot_ctx
->dev_info
)
3805 xhci_setup_addressable_virt_dev(xhci
, udev
);
3806 /* Otherwise, update the control endpoint ring enqueue pointer. */
3808 xhci_copy_ep0_dequeue_into_input_ctx(xhci
, udev
);
3809 ctrl_ctx
->add_flags
= cpu_to_le32(SLOT_FLAG
| EP0_FLAG
);
3810 ctrl_ctx
->drop_flags
= 0;
3812 xhci_dbg(xhci
, "Slot ID %d Input Context:\n", udev
->slot_id
);
3813 xhci_dbg_ctx(xhci
, virt_dev
->in_ctx
, 2);
3814 trace_xhci_address_ctx(xhci
, virt_dev
->in_ctx
,
3815 slot_ctx
->dev_info
>> 27);
3817 spin_lock_irqsave(&xhci
->lock
, flags
);
3818 cmd_trb
= xhci_find_next_enqueue(xhci
->cmd_ring
);
3819 ret
= xhci_queue_address_device(xhci
, virt_dev
->in_ctx
->dma
,
3822 spin_unlock_irqrestore(&xhci
->lock
, flags
);
3823 xhci_dbg_trace(xhci
, trace_xhci_dbg_address
,
3824 "FIXME: allocate a command ring segment");
3827 xhci_ring_cmd_db(xhci
);
3828 spin_unlock_irqrestore(&xhci
->lock
, flags
);
3830 /* ctrl tx can take up to 5 sec; XXX: need more time for xHC? */
3831 timeleft
= wait_for_completion_interruptible_timeout(&xhci
->addr_dev
,
3832 XHCI_CMD_DEFAULT_TIMEOUT
);
3833 /* FIXME: From section 4.3.4: "Software shall be responsible for timing
3834 * the SetAddress() "recovery interval" required by USB and aborting the
3835 * command on a timeout.
3837 if (timeleft
<= 0) {
3838 xhci_warn(xhci
, "%s while waiting for address device command\n",
3839 timeleft
== 0 ? "Timeout" : "Signal");
3840 /* cancel the address device command */
3841 ret
= xhci_cancel_cmd(xhci
, NULL
, cmd_trb
);
3847 switch (virt_dev
->cmd_status
) {
3848 case COMP_CTX_STATE
:
3850 xhci_err(xhci
, "Setup ERROR: address device command for slot %d.\n",
3855 dev_warn(&udev
->dev
, "Device not responding to set address.\n");
3859 dev_warn(&udev
->dev
, "ERROR: Incompatible device for address "
3860 "device command.\n");
3864 xhci_dbg_trace(xhci
, trace_xhci_dbg_address
,
3865 "Successful Address Device command");
3868 xhci_err(xhci
, "ERROR: unexpected command completion "
3869 "code 0x%x.\n", virt_dev
->cmd_status
);
3870 xhci_dbg(xhci
, "Slot ID %d Output Context:\n", udev
->slot_id
);
3871 xhci_dbg_ctx(xhci
, virt_dev
->out_ctx
, 2);
3872 trace_xhci_address_ctx(xhci
, virt_dev
->out_ctx
, 1);
3879 temp_64
= xhci_read_64(xhci
, &xhci
->op_regs
->dcbaa_ptr
);
3880 xhci_dbg_trace(xhci
, trace_xhci_dbg_address
,
3881 "Op regs DCBAA ptr = %#016llx", temp_64
);
3882 xhci_dbg_trace(xhci
, trace_xhci_dbg_address
,
3883 "Slot ID %d dcbaa entry @%p = %#016llx",
3885 &xhci
->dcbaa
->dev_context_ptrs
[udev
->slot_id
],
3886 (unsigned long long)
3887 le64_to_cpu(xhci
->dcbaa
->dev_context_ptrs
[udev
->slot_id
]));
3888 xhci_dbg_trace(xhci
, trace_xhci_dbg_address
,
3889 "Output Context DMA address = %#08llx",
3890 (unsigned long long)virt_dev
->out_ctx
->dma
);
3891 xhci_dbg(xhci
, "Slot ID %d Input Context:\n", udev
->slot_id
);
3892 xhci_dbg_ctx(xhci
, virt_dev
->in_ctx
, 2);
3893 trace_xhci_address_ctx(xhci
, virt_dev
->in_ctx
,
3894 slot_ctx
->dev_info
>> 27);
3895 xhci_dbg(xhci
, "Slot ID %d Output Context:\n", udev
->slot_id
);
3896 xhci_dbg_ctx(xhci
, virt_dev
->out_ctx
, 2);
3898 * USB core uses address 1 for the roothubs, so we add one to the
3899 * address given back to us by the HC.
3901 slot_ctx
= xhci_get_slot_ctx(xhci
, virt_dev
->out_ctx
);
3902 trace_xhci_address_ctx(xhci
, virt_dev
->out_ctx
,
3903 slot_ctx
->dev_info
>> 27);
3904 /* Use kernel assigned address for devices; store xHC assigned
3905 * address locally. */
3906 virt_dev
->address
= (le32_to_cpu(slot_ctx
->dev_state
) & DEV_ADDR_MASK
)
3908 /* Zero the input context control for later use */
3909 ctrl_ctx
->add_flags
= 0;
3910 ctrl_ctx
->drop_flags
= 0;
3912 xhci_dbg_trace(xhci
, trace_xhci_dbg_address
,
3913 "Internal device address = %d", virt_dev
->address
);
3919 * Transfer the port index into real index in the HW port status
3920 * registers. Caculate offset between the port's PORTSC register
3921 * and port status base. Divide the number of per port register
3922 * to get the real index. The raw port number bases 1.
3924 int xhci_find_raw_port_number(struct usb_hcd
*hcd
, int port1
)
3926 struct xhci_hcd
*xhci
= hcd_to_xhci(hcd
);
3927 __le32 __iomem
*base_addr
= &xhci
->op_regs
->port_status_base
;
3928 __le32 __iomem
*addr
;
3931 if (hcd
->speed
!= HCD_USB3
)
3932 addr
= xhci
->usb2_ports
[port1
- 1];
3934 addr
= xhci
->usb3_ports
[port1
- 1];
3936 raw_port
= (addr
- base_addr
)/NUM_PORT_REGS
+ 1;
3941 * Issue an Evaluate Context command to change the Maximum Exit Latency in the
3942 * slot context. If that succeeds, store the new MEL in the xhci_virt_device.
3944 static int __maybe_unused
xhci_change_max_exit_latency(struct xhci_hcd
*xhci
,
3945 struct usb_device
*udev
, u16 max_exit_latency
)
3947 struct xhci_virt_device
*virt_dev
;
3948 struct xhci_command
*command
;
3949 struct xhci_input_control_ctx
*ctrl_ctx
;
3950 struct xhci_slot_ctx
*slot_ctx
;
3951 unsigned long flags
;
3954 spin_lock_irqsave(&xhci
->lock
, flags
);
3956 virt_dev
= xhci
->devs
[udev
->slot_id
];
3959 * virt_dev might not exists yet if xHC resumed from hibernate (S4) and
3960 * xHC was re-initialized. Exit latency will be set later after
3961 * hub_port_finish_reset() is done and xhci->devs[] are re-allocated
3964 if (!virt_dev
|| max_exit_latency
== virt_dev
->current_mel
) {
3965 spin_unlock_irqrestore(&xhci
->lock
, flags
);
3969 /* Attempt to issue an Evaluate Context command to change the MEL. */
3970 command
= xhci
->lpm_command
;
3971 ctrl_ctx
= xhci_get_input_control_ctx(xhci
, command
->in_ctx
);
3973 spin_unlock_irqrestore(&xhci
->lock
, flags
);
3974 xhci_warn(xhci
, "%s: Could not get input context, bad type.\n",
3979 xhci_slot_copy(xhci
, command
->in_ctx
, virt_dev
->out_ctx
);
3980 spin_unlock_irqrestore(&xhci
->lock
, flags
);
3982 ctrl_ctx
->add_flags
|= cpu_to_le32(SLOT_FLAG
);
3983 slot_ctx
= xhci_get_slot_ctx(xhci
, command
->in_ctx
);
3984 slot_ctx
->dev_info2
&= cpu_to_le32(~((u32
) MAX_EXIT
));
3985 slot_ctx
->dev_info2
|= cpu_to_le32(max_exit_latency
);
3987 xhci_dbg_trace(xhci
, trace_xhci_dbg_context_change
,
3988 "Set up evaluate context for LPM MEL change.");
3989 xhci_dbg(xhci
, "Slot %u Input Context:\n", udev
->slot_id
);
3990 xhci_dbg_ctx(xhci
, command
->in_ctx
, 0);
3992 /* Issue and wait for the evaluate context command. */
3993 ret
= xhci_configure_endpoint(xhci
, udev
, command
,
3995 xhci_dbg(xhci
, "Slot %u Output Context:\n", udev
->slot_id
);
3996 xhci_dbg_ctx(xhci
, virt_dev
->out_ctx
, 0);
3999 spin_lock_irqsave(&xhci
->lock
, flags
);
4000 virt_dev
->current_mel
= max_exit_latency
;
4001 spin_unlock_irqrestore(&xhci
->lock
, flags
);
4006 #ifdef CONFIG_PM_RUNTIME
4008 /* BESL to HIRD Encoding array for USB2 LPM */
4009 static int xhci_besl_encoding
[16] = {125, 150, 200, 300, 400, 500, 1000, 2000,
4010 3000, 4000, 5000, 6000, 7000, 8000, 9000, 10000};
4012 /* Calculate HIRD/BESL for USB2 PORTPMSC*/
4013 static int xhci_calculate_hird_besl(struct xhci_hcd
*xhci
,
4014 struct usb_device
*udev
)
4016 int u2del
, besl
, besl_host
;
4017 int besl_device
= 0;
4020 u2del
= HCS_U2_LATENCY(xhci
->hcs_params3
);
4021 field
= le32_to_cpu(udev
->bos
->ext_cap
->bmAttributes
);
4023 if (field
& USB_BESL_SUPPORT
) {
4024 for (besl_host
= 0; besl_host
< 16; besl_host
++) {
4025 if (xhci_besl_encoding
[besl_host
] >= u2del
)
4028 /* Use baseline BESL value as default */
4029 if (field
& USB_BESL_BASELINE_VALID
)
4030 besl_device
= USB_GET_BESL_BASELINE(field
);
4031 else if (field
& USB_BESL_DEEP_VALID
)
4032 besl_device
= USB_GET_BESL_DEEP(field
);
4037 besl_host
= (u2del
- 51) / 75 + 1;
4040 besl
= besl_host
+ besl_device
;
4047 /* Calculate BESLD, L1 timeout and HIRDM for USB2 PORTHLPMC */
4048 static int xhci_calculate_usb2_hw_lpm_params(struct usb_device
*udev
)
4055 field
= le32_to_cpu(udev
->bos
->ext_cap
->bmAttributes
);
4057 /* xHCI l1 is set in steps of 256us, xHCI 1.0 section 5.4.11.2 */
4058 l1
= udev
->l1_params
.timeout
/ 256;
4060 /* device has preferred BESLD */
4061 if (field
& USB_BESL_DEEP_VALID
) {
4062 besld
= USB_GET_BESL_DEEP(field
);
4066 return PORT_BESLD(besld
) | PORT_L1_TIMEOUT(l1
) | PORT_HIRDM(hirdm
);
4069 int xhci_set_usb2_hardware_lpm(struct usb_hcd
*hcd
,
4070 struct usb_device
*udev
, int enable
)
4072 struct xhci_hcd
*xhci
= hcd_to_xhci(hcd
);
4073 __le32 __iomem
**port_array
;
4074 __le32 __iomem
*pm_addr
, *hlpm_addr
;
4075 u32 pm_val
, hlpm_val
, field
;
4076 unsigned int port_num
;
4077 unsigned long flags
;
4078 int hird
, exit_latency
;
4081 if (hcd
->speed
== HCD_USB3
|| !xhci
->hw_lpm_support
||
4085 if (!udev
->parent
|| udev
->parent
->parent
||
4086 udev
->descriptor
.bDeviceClass
== USB_CLASS_HUB
)
4089 if (udev
->usb2_hw_lpm_capable
!= 1)
4092 spin_lock_irqsave(&xhci
->lock
, flags
);
4094 port_array
= xhci
->usb2_ports
;
4095 port_num
= udev
->portnum
- 1;
4096 pm_addr
= port_array
[port_num
] + PORTPMSC
;
4097 pm_val
= xhci_readl(xhci
, pm_addr
);
4098 hlpm_addr
= port_array
[port_num
] + PORTHLPMC
;
4099 field
= le32_to_cpu(udev
->bos
->ext_cap
->bmAttributes
);
4101 xhci_dbg(xhci
, "%s port %d USB2 hardware LPM\n",
4102 enable
? "enable" : "disable", port_num
);
4105 /* Host supports BESL timeout instead of HIRD */
4106 if (udev
->usb2_hw_lpm_besl_capable
) {
4107 /* if device doesn't have a preferred BESL value use a
4108 * default one which works with mixed HIRD and BESL
4109 * systems. See XHCI_DEFAULT_BESL definition in xhci.h
4111 if ((field
& USB_BESL_SUPPORT
) &&
4112 (field
& USB_BESL_BASELINE_VALID
))
4113 hird
= USB_GET_BESL_BASELINE(field
);
4115 hird
= udev
->l1_params
.besl
;
4117 exit_latency
= xhci_besl_encoding
[hird
];
4118 spin_unlock_irqrestore(&xhci
->lock
, flags
);
4120 /* USB 3.0 code dedicate one xhci->lpm_command->in_ctx
4121 * input context for link powermanagement evaluate
4122 * context commands. It is protected by hcd->bandwidth
4123 * mutex and is shared by all devices. We need to set
4124 * the max ext latency in USB 2 BESL LPM as well, so
4125 * use the same mutex and xhci_change_max_exit_latency()
4127 mutex_lock(hcd
->bandwidth_mutex
);
4128 ret
= xhci_change_max_exit_latency(xhci
, udev
,
4130 mutex_unlock(hcd
->bandwidth_mutex
);
4134 spin_lock_irqsave(&xhci
->lock
, flags
);
4136 hlpm_val
= xhci_calculate_usb2_hw_lpm_params(udev
);
4137 xhci_writel(xhci
, hlpm_val
, hlpm_addr
);
4139 xhci_readl(xhci
, hlpm_addr
);
4141 hird
= xhci_calculate_hird_besl(xhci
, udev
);
4144 pm_val
&= ~PORT_HIRD_MASK
;
4145 pm_val
|= PORT_HIRD(hird
) | PORT_RWE
| PORT_L1DS(udev
->slot_id
);
4146 xhci_writel(xhci
, pm_val
, pm_addr
);
4147 pm_val
= xhci_readl(xhci
, pm_addr
);
4149 xhci_writel(xhci
, pm_val
, pm_addr
);
4151 xhci_readl(xhci
, pm_addr
);
4153 pm_val
&= ~(PORT_HLE
| PORT_RWE
| PORT_HIRD_MASK
| PORT_L1DS_MASK
);
4154 xhci_writel(xhci
, pm_val
, pm_addr
);
4156 xhci_readl(xhci
, pm_addr
);
4157 if (udev
->usb2_hw_lpm_besl_capable
) {
4158 spin_unlock_irqrestore(&xhci
->lock
, flags
);
4159 mutex_lock(hcd
->bandwidth_mutex
);
4160 xhci_change_max_exit_latency(xhci
, udev
, 0);
4161 mutex_unlock(hcd
->bandwidth_mutex
);
4166 spin_unlock_irqrestore(&xhci
->lock
, flags
);
4170 /* check if a usb2 port supports a given extened capability protocol
4171 * only USB2 ports extended protocol capability values are cached.
4172 * Return 1 if capability is supported
4174 static int xhci_check_usb2_port_capability(struct xhci_hcd
*xhci
, int port
,
4175 unsigned capability
)
4177 u32 port_offset
, port_count
;
4180 for (i
= 0; i
< xhci
->num_ext_caps
; i
++) {
4181 if (xhci
->ext_caps
[i
] & capability
) {
4182 /* port offsets starts at 1 */
4183 port_offset
= XHCI_EXT_PORT_OFF(xhci
->ext_caps
[i
]) - 1;
4184 port_count
= XHCI_EXT_PORT_COUNT(xhci
->ext_caps
[i
]);
4185 if (port
>= port_offset
&&
4186 port
< port_offset
+ port_count
)
4193 int xhci_update_device(struct usb_hcd
*hcd
, struct usb_device
*udev
)
4195 struct xhci_hcd
*xhci
= hcd_to_xhci(hcd
);
4196 int portnum
= udev
->portnum
- 1;
4198 if (hcd
->speed
== HCD_USB3
|| !xhci
->sw_lpm_support
||
4202 /* we only support lpm for non-hub device connected to root hub yet */
4203 if (!udev
->parent
|| udev
->parent
->parent
||
4204 udev
->descriptor
.bDeviceClass
== USB_CLASS_HUB
)
4207 if (xhci
->hw_lpm_support
== 1 &&
4208 xhci_check_usb2_port_capability(
4209 xhci
, portnum
, XHCI_HLC
)) {
4210 udev
->usb2_hw_lpm_capable
= 1;
4211 udev
->l1_params
.timeout
= XHCI_L1_TIMEOUT
;
4212 udev
->l1_params
.besl
= XHCI_DEFAULT_BESL
;
4213 if (xhci_check_usb2_port_capability(xhci
, portnum
,
4215 udev
->usb2_hw_lpm_besl_capable
= 1;
4223 int xhci_set_usb2_hardware_lpm(struct usb_hcd
*hcd
,
4224 struct usb_device
*udev
, int enable
)
4229 int xhci_update_device(struct usb_hcd
*hcd
, struct usb_device
*udev
)
4234 #endif /* CONFIG_PM_RUNTIME */
4236 /*---------------------- USB 3.0 Link PM functions ------------------------*/
4239 /* Service interval in nanoseconds = 2^(bInterval - 1) * 125us * 1000ns / 1us */
4240 static unsigned long long xhci_service_interval_to_ns(
4241 struct usb_endpoint_descriptor
*desc
)
4243 return (1ULL << (desc
->bInterval
- 1)) * 125 * 1000;
4246 static u16
xhci_get_timeout_no_hub_lpm(struct usb_device
*udev
,
4247 enum usb3_link_state state
)
4249 unsigned long long sel
;
4250 unsigned long long pel
;
4251 unsigned int max_sel_pel
;
4256 /* Convert SEL and PEL stored in nanoseconds to microseconds */
4257 sel
= DIV_ROUND_UP(udev
->u1_params
.sel
, 1000);
4258 pel
= DIV_ROUND_UP(udev
->u1_params
.pel
, 1000);
4259 max_sel_pel
= USB3_LPM_MAX_U1_SEL_PEL
;
4263 sel
= DIV_ROUND_UP(udev
->u2_params
.sel
, 1000);
4264 pel
= DIV_ROUND_UP(udev
->u2_params
.pel
, 1000);
4265 max_sel_pel
= USB3_LPM_MAX_U2_SEL_PEL
;
4269 dev_warn(&udev
->dev
, "%s: Can't get timeout for non-U1 or U2 state.\n",
4271 return USB3_LPM_DISABLED
;
4274 if (sel
<= max_sel_pel
&& pel
<= max_sel_pel
)
4275 return USB3_LPM_DEVICE_INITIATED
;
4277 if (sel
> max_sel_pel
)
4278 dev_dbg(&udev
->dev
, "Device-initiated %s disabled "
4279 "due to long SEL %llu ms\n",
4282 dev_dbg(&udev
->dev
, "Device-initiated %s disabled "
4283 "due to long PEL %llu ms\n",
4285 return USB3_LPM_DISABLED
;
4288 /* Returns the hub-encoded U1 timeout value.
4289 * The U1 timeout should be the maximum of the following values:
4290 * - For control endpoints, U1 system exit latency (SEL) * 3
4291 * - For bulk endpoints, U1 SEL * 5
4292 * - For interrupt endpoints:
4293 * - Notification EPs, U1 SEL * 3
4294 * - Periodic EPs, max(105% of bInterval, U1 SEL * 2)
4295 * - For isochronous endpoints, max(105% of bInterval, U1 SEL * 2)
4297 static u16
xhci_calculate_intel_u1_timeout(struct usb_device
*udev
,
4298 struct usb_endpoint_descriptor
*desc
)
4300 unsigned long long timeout_ns
;
4304 ep_type
= usb_endpoint_type(desc
);
4306 case USB_ENDPOINT_XFER_CONTROL
:
4307 timeout_ns
= udev
->u1_params
.sel
* 3;
4309 case USB_ENDPOINT_XFER_BULK
:
4310 timeout_ns
= udev
->u1_params
.sel
* 5;
4312 case USB_ENDPOINT_XFER_INT
:
4313 intr_type
= usb_endpoint_interrupt_type(desc
);
4314 if (intr_type
== USB_ENDPOINT_INTR_NOTIFICATION
) {
4315 timeout_ns
= udev
->u1_params
.sel
* 3;
4318 /* Otherwise the calculation is the same as isoc eps */
4319 case USB_ENDPOINT_XFER_ISOC
:
4320 timeout_ns
= xhci_service_interval_to_ns(desc
);
4321 timeout_ns
= DIV_ROUND_UP_ULL(timeout_ns
* 105, 100);
4322 if (timeout_ns
< udev
->u1_params
.sel
* 2)
4323 timeout_ns
= udev
->u1_params
.sel
* 2;
4329 /* The U1 timeout is encoded in 1us intervals. */
4330 timeout_ns
= DIV_ROUND_UP_ULL(timeout_ns
, 1000);
4331 /* Don't return a timeout of zero, because that's USB3_LPM_DISABLED. */
4332 if (timeout_ns
== USB3_LPM_DISABLED
)
4335 /* If the necessary timeout value is bigger than what we can set in the
4336 * USB 3.0 hub, we have to disable hub-initiated U1.
4338 if (timeout_ns
<= USB3_LPM_U1_MAX_TIMEOUT
)
4340 dev_dbg(&udev
->dev
, "Hub-initiated U1 disabled "
4341 "due to long timeout %llu ms\n", timeout_ns
);
4342 return xhci_get_timeout_no_hub_lpm(udev
, USB3_LPM_U1
);
4345 /* Returns the hub-encoded U2 timeout value.
4346 * The U2 timeout should be the maximum of:
4347 * - 10 ms (to avoid the bandwidth impact on the scheduler)
4348 * - largest bInterval of any active periodic endpoint (to avoid going
4349 * into lower power link states between intervals).
4350 * - the U2 Exit Latency of the device
4352 static u16
xhci_calculate_intel_u2_timeout(struct usb_device
*udev
,
4353 struct usb_endpoint_descriptor
*desc
)
4355 unsigned long long timeout_ns
;
4356 unsigned long long u2_del_ns
;
4358 timeout_ns
= 10 * 1000 * 1000;
4360 if ((usb_endpoint_xfer_int(desc
) || usb_endpoint_xfer_isoc(desc
)) &&
4361 (xhci_service_interval_to_ns(desc
) > timeout_ns
))
4362 timeout_ns
= xhci_service_interval_to_ns(desc
);
4364 u2_del_ns
= le16_to_cpu(udev
->bos
->ss_cap
->bU2DevExitLat
) * 1000ULL;
4365 if (u2_del_ns
> timeout_ns
)
4366 timeout_ns
= u2_del_ns
;
4368 /* The U2 timeout is encoded in 256us intervals */
4369 timeout_ns
= DIV_ROUND_UP_ULL(timeout_ns
, 256 * 1000);
4370 /* If the necessary timeout value is bigger than what we can set in the
4371 * USB 3.0 hub, we have to disable hub-initiated U2.
4373 if (timeout_ns
<= USB3_LPM_U2_MAX_TIMEOUT
)
4375 dev_dbg(&udev
->dev
, "Hub-initiated U2 disabled "
4376 "due to long timeout %llu ms\n", timeout_ns
);
4377 return xhci_get_timeout_no_hub_lpm(udev
, USB3_LPM_U2
);
4380 static u16
xhci_call_host_update_timeout_for_endpoint(struct xhci_hcd
*xhci
,
4381 struct usb_device
*udev
,
4382 struct usb_endpoint_descriptor
*desc
,
4383 enum usb3_link_state state
,
4386 if (state
== USB3_LPM_U1
) {
4387 if (xhci
->quirks
& XHCI_INTEL_HOST
)
4388 return xhci_calculate_intel_u1_timeout(udev
, desc
);
4390 if (xhci
->quirks
& XHCI_INTEL_HOST
)
4391 return xhci_calculate_intel_u2_timeout(udev
, desc
);
4394 return USB3_LPM_DISABLED
;
4397 static int xhci_update_timeout_for_endpoint(struct xhci_hcd
*xhci
,
4398 struct usb_device
*udev
,
4399 struct usb_endpoint_descriptor
*desc
,
4400 enum usb3_link_state state
,
4405 alt_timeout
= xhci_call_host_update_timeout_for_endpoint(xhci
, udev
,
4406 desc
, state
, timeout
);
4408 /* If we found we can't enable hub-initiated LPM, or
4409 * the U1 or U2 exit latency was too high to allow
4410 * device-initiated LPM as well, just stop searching.
4412 if (alt_timeout
== USB3_LPM_DISABLED
||
4413 alt_timeout
== USB3_LPM_DEVICE_INITIATED
) {
4414 *timeout
= alt_timeout
;
4417 if (alt_timeout
> *timeout
)
4418 *timeout
= alt_timeout
;
4422 static int xhci_update_timeout_for_interface(struct xhci_hcd
*xhci
,
4423 struct usb_device
*udev
,
4424 struct usb_host_interface
*alt
,
4425 enum usb3_link_state state
,
4430 for (j
= 0; j
< alt
->desc
.bNumEndpoints
; j
++) {
4431 if (xhci_update_timeout_for_endpoint(xhci
, udev
,
4432 &alt
->endpoint
[j
].desc
, state
, timeout
))
4439 static int xhci_check_intel_tier_policy(struct usb_device
*udev
,
4440 enum usb3_link_state state
)
4442 struct usb_device
*parent
;
4443 unsigned int num_hubs
;
4445 if (state
== USB3_LPM_U2
)
4448 /* Don't enable U1 if the device is on a 2nd tier hub or lower. */
4449 for (parent
= udev
->parent
, num_hubs
= 0; parent
->parent
;
4450 parent
= parent
->parent
)
4456 dev_dbg(&udev
->dev
, "Disabling U1 link state for device"
4457 " below second-tier hub.\n");
4458 dev_dbg(&udev
->dev
, "Plug device into first-tier hub "
4459 "to decrease power consumption.\n");
4463 static int xhci_check_tier_policy(struct xhci_hcd
*xhci
,
4464 struct usb_device
*udev
,
4465 enum usb3_link_state state
)
4467 if (xhci
->quirks
& XHCI_INTEL_HOST
)
4468 return xhci_check_intel_tier_policy(udev
, state
);
4472 /* Returns the U1 or U2 timeout that should be enabled.
4473 * If the tier check or timeout setting functions return with a non-zero exit
4474 * code, that means the timeout value has been finalized and we shouldn't look
4475 * at any more endpoints.
4477 static u16
xhci_calculate_lpm_timeout(struct usb_hcd
*hcd
,
4478 struct usb_device
*udev
, enum usb3_link_state state
)
4480 struct xhci_hcd
*xhci
= hcd_to_xhci(hcd
);
4481 struct usb_host_config
*config
;
4484 u16 timeout
= USB3_LPM_DISABLED
;
4486 if (state
== USB3_LPM_U1
)
4488 else if (state
== USB3_LPM_U2
)
4491 dev_warn(&udev
->dev
, "Can't enable unknown link state %i\n",
4496 if (xhci_check_tier_policy(xhci
, udev
, state
) < 0)
4499 /* Gather some information about the currently installed configuration
4500 * and alternate interface settings.
4502 if (xhci_update_timeout_for_endpoint(xhci
, udev
, &udev
->ep0
.desc
,
4506 config
= udev
->actconfig
;
4510 for (i
= 0; i
< USB_MAXINTERFACES
; i
++) {
4511 struct usb_driver
*driver
;
4512 struct usb_interface
*intf
= config
->interface
[i
];
4517 /* Check if any currently bound drivers want hub-initiated LPM
4520 if (intf
->dev
.driver
) {
4521 driver
= to_usb_driver(intf
->dev
.driver
);
4522 if (driver
&& driver
->disable_hub_initiated_lpm
) {
4523 dev_dbg(&udev
->dev
, "Hub-initiated %s disabled "
4524 "at request of driver %s\n",
4525 state_name
, driver
->name
);
4526 return xhci_get_timeout_no_hub_lpm(udev
, state
);
4530 /* Not sure how this could happen... */
4531 if (!intf
->cur_altsetting
)
4534 if (xhci_update_timeout_for_interface(xhci
, udev
,
4535 intf
->cur_altsetting
,
4542 static int calculate_max_exit_latency(struct usb_device
*udev
,
4543 enum usb3_link_state state_changed
,
4544 u16 hub_encoded_timeout
)
4546 unsigned long long u1_mel_us
= 0;
4547 unsigned long long u2_mel_us
= 0;
4548 unsigned long long mel_us
= 0;
4554 disabling_u1
= (state_changed
== USB3_LPM_U1
&&
4555 hub_encoded_timeout
== USB3_LPM_DISABLED
);
4556 disabling_u2
= (state_changed
== USB3_LPM_U2
&&
4557 hub_encoded_timeout
== USB3_LPM_DISABLED
);
4559 enabling_u1
= (state_changed
== USB3_LPM_U1
&&
4560 hub_encoded_timeout
!= USB3_LPM_DISABLED
);
4561 enabling_u2
= (state_changed
== USB3_LPM_U2
&&
4562 hub_encoded_timeout
!= USB3_LPM_DISABLED
);
4564 /* If U1 was already enabled and we're not disabling it,
4565 * or we're going to enable U1, account for the U1 max exit latency.
4567 if ((udev
->u1_params
.timeout
!= USB3_LPM_DISABLED
&& !disabling_u1
) ||
4569 u1_mel_us
= DIV_ROUND_UP(udev
->u1_params
.mel
, 1000);
4570 if ((udev
->u2_params
.timeout
!= USB3_LPM_DISABLED
&& !disabling_u2
) ||
4572 u2_mel_us
= DIV_ROUND_UP(udev
->u2_params
.mel
, 1000);
4574 if (u1_mel_us
> u2_mel_us
)
4578 /* xHCI host controller max exit latency field is only 16 bits wide. */
4579 if (mel_us
> MAX_EXIT
) {
4580 dev_warn(&udev
->dev
, "Link PM max exit latency of %lluus "
4581 "is too big.\n", mel_us
);
4587 /* Returns the USB3 hub-encoded value for the U1/U2 timeout. */
4588 int xhci_enable_usb3_lpm_timeout(struct usb_hcd
*hcd
,
4589 struct usb_device
*udev
, enum usb3_link_state state
)
4591 struct xhci_hcd
*xhci
;
4592 u16 hub_encoded_timeout
;
4596 xhci
= hcd_to_xhci(hcd
);
4597 /* The LPM timeout values are pretty host-controller specific, so don't
4598 * enable hub-initiated timeouts unless the vendor has provided
4599 * information about their timeout algorithm.
4601 if (!xhci
|| !(xhci
->quirks
& XHCI_LPM_SUPPORT
) ||
4602 !xhci
->devs
[udev
->slot_id
])
4603 return USB3_LPM_DISABLED
;
4605 hub_encoded_timeout
= xhci_calculate_lpm_timeout(hcd
, udev
, state
);
4606 mel
= calculate_max_exit_latency(udev
, state
, hub_encoded_timeout
);
4608 /* Max Exit Latency is too big, disable LPM. */
4609 hub_encoded_timeout
= USB3_LPM_DISABLED
;
4613 ret
= xhci_change_max_exit_latency(xhci
, udev
, mel
);
4616 return hub_encoded_timeout
;
4619 int xhci_disable_usb3_lpm_timeout(struct usb_hcd
*hcd
,
4620 struct usb_device
*udev
, enum usb3_link_state state
)
4622 struct xhci_hcd
*xhci
;
4626 xhci
= hcd_to_xhci(hcd
);
4627 if (!xhci
|| !(xhci
->quirks
& XHCI_LPM_SUPPORT
) ||
4628 !xhci
->devs
[udev
->slot_id
])
4631 mel
= calculate_max_exit_latency(udev
, state
, USB3_LPM_DISABLED
);
4632 ret
= xhci_change_max_exit_latency(xhci
, udev
, mel
);
4637 #else /* CONFIG_PM */
4639 int xhci_enable_usb3_lpm_timeout(struct usb_hcd
*hcd
,
4640 struct usb_device
*udev
, enum usb3_link_state state
)
4642 return USB3_LPM_DISABLED
;
4645 int xhci_disable_usb3_lpm_timeout(struct usb_hcd
*hcd
,
4646 struct usb_device
*udev
, enum usb3_link_state state
)
4650 #endif /* CONFIG_PM */
4652 /*-------------------------------------------------------------------------*/
4654 /* Once a hub descriptor is fetched for a device, we need to update the xHC's
4655 * internal data structures for the device.
4657 int xhci_update_hub_device(struct usb_hcd
*hcd
, struct usb_device
*hdev
,
4658 struct usb_tt
*tt
, gfp_t mem_flags
)
4660 struct xhci_hcd
*xhci
= hcd_to_xhci(hcd
);
4661 struct xhci_virt_device
*vdev
;
4662 struct xhci_command
*config_cmd
;
4663 struct xhci_input_control_ctx
*ctrl_ctx
;
4664 struct xhci_slot_ctx
*slot_ctx
;
4665 unsigned long flags
;
4666 unsigned think_time
;
4669 /* Ignore root hubs */
4673 vdev
= xhci
->devs
[hdev
->slot_id
];
4675 xhci_warn(xhci
, "Cannot update hub desc for unknown device.\n");
4678 config_cmd
= xhci_alloc_command(xhci
, true, true, mem_flags
);
4680 xhci_dbg(xhci
, "Could not allocate xHCI command structure.\n");
4683 ctrl_ctx
= xhci_get_input_control_ctx(xhci
, config_cmd
->in_ctx
);
4685 xhci_warn(xhci
, "%s: Could not get input context, bad type.\n",
4687 xhci_free_command(xhci
, config_cmd
);
4691 spin_lock_irqsave(&xhci
->lock
, flags
);
4692 if (hdev
->speed
== USB_SPEED_HIGH
&&
4693 xhci_alloc_tt_info(xhci
, vdev
, hdev
, tt
, GFP_ATOMIC
)) {
4694 xhci_dbg(xhci
, "Could not allocate xHCI TT structure.\n");
4695 xhci_free_command(xhci
, config_cmd
);
4696 spin_unlock_irqrestore(&xhci
->lock
, flags
);
4700 xhci_slot_copy(xhci
, config_cmd
->in_ctx
, vdev
->out_ctx
);
4701 ctrl_ctx
->add_flags
|= cpu_to_le32(SLOT_FLAG
);
4702 slot_ctx
= xhci_get_slot_ctx(xhci
, config_cmd
->in_ctx
);
4703 slot_ctx
->dev_info
|= cpu_to_le32(DEV_HUB
);
4705 * refer to section 6.2.2: MTT should be 0 for full speed hub,
4706 * but it may be already set to 1 when setup an xHCI virtual
4707 * device, so clear it anyway.
4710 slot_ctx
->dev_info
|= cpu_to_le32(DEV_MTT
);
4711 else if (hdev
->speed
== USB_SPEED_FULL
)
4712 slot_ctx
->dev_info
&= cpu_to_le32(~DEV_MTT
);
4714 if (xhci
->hci_version
> 0x95) {
4715 xhci_dbg(xhci
, "xHCI version %x needs hub "
4716 "TT think time and number of ports\n",
4717 (unsigned int) xhci
->hci_version
);
4718 slot_ctx
->dev_info2
|= cpu_to_le32(XHCI_MAX_PORTS(hdev
->maxchild
));
4719 /* Set TT think time - convert from ns to FS bit times.
4720 * 0 = 8 FS bit times, 1 = 16 FS bit times,
4721 * 2 = 24 FS bit times, 3 = 32 FS bit times.
4723 * xHCI 1.0: this field shall be 0 if the device is not a
4726 think_time
= tt
->think_time
;
4727 if (think_time
!= 0)
4728 think_time
= (think_time
/ 666) - 1;
4729 if (xhci
->hci_version
< 0x100 || hdev
->speed
== USB_SPEED_HIGH
)
4730 slot_ctx
->tt_info
|=
4731 cpu_to_le32(TT_THINK_TIME(think_time
));
4733 xhci_dbg(xhci
, "xHCI version %x doesn't need hub "
4734 "TT think time or number of ports\n",
4735 (unsigned int) xhci
->hci_version
);
4737 slot_ctx
->dev_state
= 0;
4738 spin_unlock_irqrestore(&xhci
->lock
, flags
);
4740 xhci_dbg(xhci
, "Set up %s for hub device.\n",
4741 (xhci
->hci_version
> 0x95) ?
4742 "configure endpoint" : "evaluate context");
4743 xhci_dbg(xhci
, "Slot %u Input Context:\n", hdev
->slot_id
);
4744 xhci_dbg_ctx(xhci
, config_cmd
->in_ctx
, 0);
4746 /* Issue and wait for the configure endpoint or
4747 * evaluate context command.
4749 if (xhci
->hci_version
> 0x95)
4750 ret
= xhci_configure_endpoint(xhci
, hdev
, config_cmd
,
4753 ret
= xhci_configure_endpoint(xhci
, hdev
, config_cmd
,
4756 xhci_dbg(xhci
, "Slot %u Output Context:\n", hdev
->slot_id
);
4757 xhci_dbg_ctx(xhci
, vdev
->out_ctx
, 0);
4759 xhci_free_command(xhci
, config_cmd
);
4763 int xhci_get_frame(struct usb_hcd
*hcd
)
4765 struct xhci_hcd
*xhci
= hcd_to_xhci(hcd
);
4766 /* EHCI mods by the periodic size. Why? */
4767 return xhci_readl(xhci
, &xhci
->run_regs
->microframe_index
) >> 3;
4770 int xhci_gen_setup(struct usb_hcd
*hcd
, xhci_get_quirks_t get_quirks
)
4772 struct xhci_hcd
*xhci
;
4773 struct device
*dev
= hcd
->self
.controller
;
4776 /* Accept arbitrarily long scatter-gather lists */
4777 hcd
->self
.sg_tablesize
= ~0;
4779 /* support to build packet from discontinuous buffers */
4780 hcd
->self
.no_sg_constraint
= 1;
4782 /* XHCI controllers don't stop the ep queue on short packets :| */
4783 hcd
->self
.no_stop_on_short
= 1;
4785 if (usb_hcd_is_primary_hcd(hcd
)) {
4786 xhci
= kzalloc(sizeof(struct xhci_hcd
), GFP_KERNEL
);
4789 *((struct xhci_hcd
**) hcd
->hcd_priv
) = xhci
;
4790 xhci
->main_hcd
= hcd
;
4791 /* Mark the first roothub as being USB 2.0.
4792 * The xHCI driver will register the USB 3.0 roothub.
4794 hcd
->speed
= HCD_USB2
;
4795 hcd
->self
.root_hub
->speed
= USB_SPEED_HIGH
;
4797 * USB 2.0 roothub under xHCI has an integrated TT,
4798 * (rate matching hub) as opposed to having an OHCI/UHCI
4799 * companion controller.
4803 /* xHCI private pointer was set in xhci_pci_probe for the second
4804 * registered roothub.
4809 xhci
->cap_regs
= hcd
->regs
;
4810 xhci
->op_regs
= hcd
->regs
+
4811 HC_LENGTH(xhci_readl(xhci
, &xhci
->cap_regs
->hc_capbase
));
4812 xhci
->run_regs
= hcd
->regs
+
4813 (xhci_readl(xhci
, &xhci
->cap_regs
->run_regs_off
) & RTSOFF_MASK
);
4814 /* Cache read-only capability registers */
4815 xhci
->hcs_params1
= xhci_readl(xhci
, &xhci
->cap_regs
->hcs_params1
);
4816 xhci
->hcs_params2
= xhci_readl(xhci
, &xhci
->cap_regs
->hcs_params2
);
4817 xhci
->hcs_params3
= xhci_readl(xhci
, &xhci
->cap_regs
->hcs_params3
);
4818 xhci
->hcc_params
= xhci_readl(xhci
, &xhci
->cap_regs
->hc_capbase
);
4819 xhci
->hci_version
= HC_VERSION(xhci
->hcc_params
);
4820 xhci
->hcc_params
= xhci_readl(xhci
, &xhci
->cap_regs
->hcc_params
);
4821 xhci_print_registers(xhci
);
4823 get_quirks(dev
, xhci
);
4825 /* In xhci controllers which follow xhci 1.0 spec gives a spurious
4826 * success event after a short transfer. This quirk will ignore such
4829 if (xhci
->hci_version
> 0x96)
4830 xhci
->quirks
|= XHCI_SPURIOUS_SUCCESS
;
4832 /* Make sure the HC is halted. */
4833 retval
= xhci_halt(xhci
);
4837 xhci_dbg(xhci
, "Resetting HCD\n");
4838 /* Reset the internal HC memory state and registers. */
4839 retval
= xhci_reset(xhci
);
4842 xhci_dbg(xhci
, "Reset complete\n");
4844 /* Set dma_mask and coherent_dma_mask to 64-bits,
4845 * if xHC supports 64-bit addressing */
4846 if (HCC_64BIT_ADDR(xhci
->hcc_params
) &&
4847 !dma_set_mask(dev
, DMA_BIT_MASK(64))) {
4848 xhci_dbg(xhci
, "Enabling 64-bit DMA addresses.\n");
4849 dma_set_coherent_mask(dev
, DMA_BIT_MASK(64));
4852 xhci_dbg(xhci
, "Calling HCD init\n");
4853 /* Initialize HCD and host controller data structures. */
4854 retval
= xhci_init(hcd
);
4857 xhci_dbg(xhci
, "Called HCD init\n");
4864 MODULE_DESCRIPTION(DRIVER_DESC
);
4865 MODULE_AUTHOR(DRIVER_AUTHOR
);
4866 MODULE_LICENSE("GPL");
4868 static int __init
xhci_hcd_init(void)
4875 retval
= xhci_register_pci();
4877 pr_debug("Problem registering PCI driver.\n");
4880 retval
= xhci_register_plat();
4882 pr_debug("Problem registering platform driver.\n");
4886 * Check the compiler generated sizes of structures that must be laid
4887 * out in specific ways for hardware access.
4889 BUILD_BUG_ON(sizeof(struct xhci_doorbell_array
) != 256*32/8);
4890 BUILD_BUG_ON(sizeof(struct xhci_slot_ctx
) != 8*32/8);
4891 BUILD_BUG_ON(sizeof(struct xhci_ep_ctx
) != 8*32/8);
4892 /* xhci_device_control has eight fields, and also
4893 * embeds one xhci_slot_ctx and 31 xhci_ep_ctx
4895 BUILD_BUG_ON(sizeof(struct xhci_stream_ctx
) != 4*32/8);
4896 BUILD_BUG_ON(sizeof(union xhci_trb
) != 4*32/8);
4897 BUILD_BUG_ON(sizeof(struct xhci_erst_entry
) != 4*32/8);
4898 BUILD_BUG_ON(sizeof(struct xhci_cap_regs
) != 7*32/8);
4899 BUILD_BUG_ON(sizeof(struct xhci_intr_reg
) != 8*32/8);
4900 /* xhci_run_regs has eight fields and embeds 128 xhci_intr_regs */
4901 BUILD_BUG_ON(sizeof(struct xhci_run_regs
) != (8+8*128)*32/8);
4905 xhci_unregister_pci();
4908 module_init(xhci_hcd_init
);
4910 static void __exit
xhci_hcd_cleanup(void)
4912 xhci_unregister_pci();
4913 xhci_unregister_plat();
4915 module_exit(xhci_hcd_cleanup
);