mfd: wm8350-i2c: Make sure the i2c regmap functions are compiled
[linux/fpc-iii.git] / kernel / fork.c
blob360c1d46e842fd04bb6eca2b87f3a63b1b7f0e1b
1 /*
2 * linux/kernel/fork.c
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 */
7 /*
8 * 'fork.c' contains the help-routines for the 'fork' system call
9 * (see also entry.S and others).
10 * Fork is rather simple, once you get the hang of it, but the memory
11 * management can be a bitch. See 'mm/memory.c': 'copy_page_range()'
14 #include <linux/slab.h>
15 #include <linux/init.h>
16 #include <linux/unistd.h>
17 #include <linux/module.h>
18 #include <linux/vmalloc.h>
19 #include <linux/completion.h>
20 #include <linux/personality.h>
21 #include <linux/mempolicy.h>
22 #include <linux/sem.h>
23 #include <linux/file.h>
24 #include <linux/fdtable.h>
25 #include <linux/iocontext.h>
26 #include <linux/key.h>
27 #include <linux/binfmts.h>
28 #include <linux/mman.h>
29 #include <linux/mmu_notifier.h>
30 #include <linux/fs.h>
31 #include <linux/mm.h>
32 #include <linux/vmacache.h>
33 #include <linux/nsproxy.h>
34 #include <linux/capability.h>
35 #include <linux/cpu.h>
36 #include <linux/cgroup.h>
37 #include <linux/security.h>
38 #include <linux/hugetlb.h>
39 #include <linux/seccomp.h>
40 #include <linux/swap.h>
41 #include <linux/syscalls.h>
42 #include <linux/jiffies.h>
43 #include <linux/futex.h>
44 #include <linux/compat.h>
45 #include <linux/kthread.h>
46 #include <linux/task_io_accounting_ops.h>
47 #include <linux/rcupdate.h>
48 #include <linux/ptrace.h>
49 #include <linux/mount.h>
50 #include <linux/audit.h>
51 #include <linux/memcontrol.h>
52 #include <linux/ftrace.h>
53 #include <linux/proc_fs.h>
54 #include <linux/profile.h>
55 #include <linux/rmap.h>
56 #include <linux/ksm.h>
57 #include <linux/acct.h>
58 #include <linux/tsacct_kern.h>
59 #include <linux/cn_proc.h>
60 #include <linux/freezer.h>
61 #include <linux/delayacct.h>
62 #include <linux/taskstats_kern.h>
63 #include <linux/random.h>
64 #include <linux/tty.h>
65 #include <linux/blkdev.h>
66 #include <linux/fs_struct.h>
67 #include <linux/magic.h>
68 #include <linux/perf_event.h>
69 #include <linux/posix-timers.h>
70 #include <linux/user-return-notifier.h>
71 #include <linux/oom.h>
72 #include <linux/khugepaged.h>
73 #include <linux/signalfd.h>
74 #include <linux/uprobes.h>
75 #include <linux/aio.h>
77 #include <asm/pgtable.h>
78 #include <asm/pgalloc.h>
79 #include <asm/uaccess.h>
80 #include <asm/mmu_context.h>
81 #include <asm/cacheflush.h>
82 #include <asm/tlbflush.h>
84 #include <trace/events/sched.h>
86 #define CREATE_TRACE_POINTS
87 #include <trace/events/task.h>
90 * Protected counters by write_lock_irq(&tasklist_lock)
92 unsigned long total_forks; /* Handle normal Linux uptimes. */
93 int nr_threads; /* The idle threads do not count.. */
95 int max_threads; /* tunable limit on nr_threads */
97 DEFINE_PER_CPU(unsigned long, process_counts) = 0;
99 __cacheline_aligned DEFINE_RWLOCK(tasklist_lock); /* outer */
101 #ifdef CONFIG_PROVE_RCU
102 int lockdep_tasklist_lock_is_held(void)
104 return lockdep_is_held(&tasklist_lock);
106 EXPORT_SYMBOL_GPL(lockdep_tasklist_lock_is_held);
107 #endif /* #ifdef CONFIG_PROVE_RCU */
109 int nr_processes(void)
111 int cpu;
112 int total = 0;
114 for_each_possible_cpu(cpu)
115 total += per_cpu(process_counts, cpu);
117 return total;
120 void __weak arch_release_task_struct(struct task_struct *tsk)
124 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
125 static struct kmem_cache *task_struct_cachep;
127 static inline struct task_struct *alloc_task_struct_node(int node)
129 return kmem_cache_alloc_node(task_struct_cachep, GFP_KERNEL, node);
132 static inline void free_task_struct(struct task_struct *tsk)
134 kmem_cache_free(task_struct_cachep, tsk);
136 #endif
138 void __weak arch_release_thread_info(struct thread_info *ti)
142 #ifndef CONFIG_ARCH_THREAD_INFO_ALLOCATOR
145 * Allocate pages if THREAD_SIZE is >= PAGE_SIZE, otherwise use a
146 * kmemcache based allocator.
148 # if THREAD_SIZE >= PAGE_SIZE
149 static struct thread_info *alloc_thread_info_node(struct task_struct *tsk,
150 int node)
152 struct page *page = alloc_pages_node(node, THREADINFO_GFP_ACCOUNTED,
153 THREAD_SIZE_ORDER);
155 return page ? page_address(page) : NULL;
158 static inline void free_thread_info(struct thread_info *ti)
160 free_memcg_kmem_pages((unsigned long)ti, THREAD_SIZE_ORDER);
162 # else
163 static struct kmem_cache *thread_info_cache;
165 static struct thread_info *alloc_thread_info_node(struct task_struct *tsk,
166 int node)
168 return kmem_cache_alloc_node(thread_info_cache, THREADINFO_GFP, node);
171 static void free_thread_info(struct thread_info *ti)
173 kmem_cache_free(thread_info_cache, ti);
176 void thread_info_cache_init(void)
178 thread_info_cache = kmem_cache_create("thread_info", THREAD_SIZE,
179 THREAD_SIZE, 0, NULL);
180 BUG_ON(thread_info_cache == NULL);
182 # endif
183 #endif
185 /* SLAB cache for signal_struct structures (tsk->signal) */
186 static struct kmem_cache *signal_cachep;
188 /* SLAB cache for sighand_struct structures (tsk->sighand) */
189 struct kmem_cache *sighand_cachep;
191 /* SLAB cache for files_struct structures (tsk->files) */
192 struct kmem_cache *files_cachep;
194 /* SLAB cache for fs_struct structures (tsk->fs) */
195 struct kmem_cache *fs_cachep;
197 /* SLAB cache for vm_area_struct structures */
198 struct kmem_cache *vm_area_cachep;
200 /* SLAB cache for mm_struct structures (tsk->mm) */
201 static struct kmem_cache *mm_cachep;
203 static void account_kernel_stack(struct thread_info *ti, int account)
205 struct zone *zone = page_zone(virt_to_page(ti));
207 mod_zone_page_state(zone, NR_KERNEL_STACK, account);
210 void free_task(struct task_struct *tsk)
212 account_kernel_stack(tsk->stack, -1);
213 arch_release_thread_info(tsk->stack);
214 free_thread_info(tsk->stack);
215 rt_mutex_debug_task_free(tsk);
216 ftrace_graph_exit_task(tsk);
217 put_seccomp_filter(tsk);
218 arch_release_task_struct(tsk);
219 free_task_struct(tsk);
221 EXPORT_SYMBOL(free_task);
223 static inline void free_signal_struct(struct signal_struct *sig)
225 taskstats_tgid_free(sig);
226 sched_autogroup_exit(sig);
227 kmem_cache_free(signal_cachep, sig);
230 static inline void put_signal_struct(struct signal_struct *sig)
232 if (atomic_dec_and_test(&sig->sigcnt))
233 free_signal_struct(sig);
236 void __put_task_struct(struct task_struct *tsk)
238 WARN_ON(!tsk->exit_state);
239 WARN_ON(atomic_read(&tsk->usage));
240 WARN_ON(tsk == current);
242 security_task_free(tsk);
243 exit_creds(tsk);
244 delayacct_tsk_free(tsk);
245 put_signal_struct(tsk->signal);
247 if (!profile_handoff_task(tsk))
248 free_task(tsk);
250 EXPORT_SYMBOL_GPL(__put_task_struct);
252 void __init __weak arch_task_cache_init(void) { }
254 void __init fork_init(unsigned long mempages)
256 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
257 #ifndef ARCH_MIN_TASKALIGN
258 #define ARCH_MIN_TASKALIGN L1_CACHE_BYTES
259 #endif
260 /* create a slab on which task_structs can be allocated */
261 task_struct_cachep =
262 kmem_cache_create("task_struct", sizeof(struct task_struct),
263 ARCH_MIN_TASKALIGN, SLAB_PANIC | SLAB_NOTRACK, NULL);
264 #endif
266 /* do the arch specific task caches init */
267 arch_task_cache_init();
270 * The default maximum number of threads is set to a safe
271 * value: the thread structures can take up at most half
272 * of memory.
274 max_threads = mempages / (8 * THREAD_SIZE / PAGE_SIZE);
277 * we need to allow at least 20 threads to boot a system
279 if (max_threads < 20)
280 max_threads = 20;
282 init_task.signal->rlim[RLIMIT_NPROC].rlim_cur = max_threads/2;
283 init_task.signal->rlim[RLIMIT_NPROC].rlim_max = max_threads/2;
284 init_task.signal->rlim[RLIMIT_SIGPENDING] =
285 init_task.signal->rlim[RLIMIT_NPROC];
288 int __attribute__((weak)) arch_dup_task_struct(struct task_struct *dst,
289 struct task_struct *src)
291 *dst = *src;
292 return 0;
295 static struct task_struct *dup_task_struct(struct task_struct *orig)
297 struct task_struct *tsk;
298 struct thread_info *ti;
299 unsigned long *stackend;
300 int node = tsk_fork_get_node(orig);
301 int err;
303 tsk = alloc_task_struct_node(node);
304 if (!tsk)
305 return NULL;
307 ti = alloc_thread_info_node(tsk, node);
308 if (!ti)
309 goto free_tsk;
311 err = arch_dup_task_struct(tsk, orig);
312 if (err)
313 goto free_ti;
315 tsk->stack = ti;
317 setup_thread_stack(tsk, orig);
318 clear_user_return_notifier(tsk);
319 clear_tsk_need_resched(tsk);
320 stackend = end_of_stack(tsk);
321 *stackend = STACK_END_MAGIC; /* for overflow detection */
323 #ifdef CONFIG_CC_STACKPROTECTOR
324 tsk->stack_canary = get_random_int();
325 #endif
328 * One for us, one for whoever does the "release_task()" (usually
329 * parent)
331 atomic_set(&tsk->usage, 2);
332 #ifdef CONFIG_BLK_DEV_IO_TRACE
333 tsk->btrace_seq = 0;
334 #endif
335 tsk->splice_pipe = NULL;
336 tsk->task_frag.page = NULL;
338 account_kernel_stack(ti, 1);
340 return tsk;
342 free_ti:
343 free_thread_info(ti);
344 free_tsk:
345 free_task_struct(tsk);
346 return NULL;
349 #ifdef CONFIG_MMU
350 static int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm)
352 struct vm_area_struct *mpnt, *tmp, *prev, **pprev;
353 struct rb_node **rb_link, *rb_parent;
354 int retval;
355 unsigned long charge;
357 uprobe_start_dup_mmap();
358 down_write(&oldmm->mmap_sem);
359 flush_cache_dup_mm(oldmm);
360 uprobe_dup_mmap(oldmm, mm);
362 * Not linked in yet - no deadlock potential:
364 down_write_nested(&mm->mmap_sem, SINGLE_DEPTH_NESTING);
366 mm->locked_vm = 0;
367 mm->mmap = NULL;
368 mm->vmacache_seqnum = 0;
369 mm->map_count = 0;
370 cpumask_clear(mm_cpumask(mm));
371 mm->mm_rb = RB_ROOT;
372 rb_link = &mm->mm_rb.rb_node;
373 rb_parent = NULL;
374 pprev = &mm->mmap;
375 retval = ksm_fork(mm, oldmm);
376 if (retval)
377 goto out;
378 retval = khugepaged_fork(mm, oldmm);
379 if (retval)
380 goto out;
382 prev = NULL;
383 for (mpnt = oldmm->mmap; mpnt; mpnt = mpnt->vm_next) {
384 struct file *file;
386 if (mpnt->vm_flags & VM_DONTCOPY) {
387 vm_stat_account(mm, mpnt->vm_flags, mpnt->vm_file,
388 -vma_pages(mpnt));
389 continue;
391 charge = 0;
392 if (mpnt->vm_flags & VM_ACCOUNT) {
393 unsigned long len = vma_pages(mpnt);
395 if (security_vm_enough_memory_mm(oldmm, len)) /* sic */
396 goto fail_nomem;
397 charge = len;
399 tmp = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
400 if (!tmp)
401 goto fail_nomem;
402 *tmp = *mpnt;
403 INIT_LIST_HEAD(&tmp->anon_vma_chain);
404 retval = vma_dup_policy(mpnt, tmp);
405 if (retval)
406 goto fail_nomem_policy;
407 tmp->vm_mm = mm;
408 if (anon_vma_fork(tmp, mpnt))
409 goto fail_nomem_anon_vma_fork;
410 tmp->vm_flags &= ~VM_LOCKED;
411 tmp->vm_next = tmp->vm_prev = NULL;
412 file = tmp->vm_file;
413 if (file) {
414 struct inode *inode = file_inode(file);
415 struct address_space *mapping = file->f_mapping;
417 get_file(file);
418 if (tmp->vm_flags & VM_DENYWRITE)
419 atomic_dec(&inode->i_writecount);
420 mutex_lock(&mapping->i_mmap_mutex);
421 if (tmp->vm_flags & VM_SHARED)
422 mapping->i_mmap_writable++;
423 flush_dcache_mmap_lock(mapping);
424 /* insert tmp into the share list, just after mpnt */
425 if (unlikely(tmp->vm_flags & VM_NONLINEAR))
426 vma_nonlinear_insert(tmp,
427 &mapping->i_mmap_nonlinear);
428 else
429 vma_interval_tree_insert_after(tmp, mpnt,
430 &mapping->i_mmap);
431 flush_dcache_mmap_unlock(mapping);
432 mutex_unlock(&mapping->i_mmap_mutex);
436 * Clear hugetlb-related page reserves for children. This only
437 * affects MAP_PRIVATE mappings. Faults generated by the child
438 * are not guaranteed to succeed, even if read-only
440 if (is_vm_hugetlb_page(tmp))
441 reset_vma_resv_huge_pages(tmp);
444 * Link in the new vma and copy the page table entries.
446 *pprev = tmp;
447 pprev = &tmp->vm_next;
448 tmp->vm_prev = prev;
449 prev = tmp;
451 __vma_link_rb(mm, tmp, rb_link, rb_parent);
452 rb_link = &tmp->vm_rb.rb_right;
453 rb_parent = &tmp->vm_rb;
455 mm->map_count++;
456 retval = copy_page_range(mm, oldmm, mpnt);
458 if (tmp->vm_ops && tmp->vm_ops->open)
459 tmp->vm_ops->open(tmp);
461 if (retval)
462 goto out;
464 /* a new mm has just been created */
465 arch_dup_mmap(oldmm, mm);
466 retval = 0;
467 out:
468 up_write(&mm->mmap_sem);
469 flush_tlb_mm(oldmm);
470 up_write(&oldmm->mmap_sem);
471 uprobe_end_dup_mmap();
472 return retval;
473 fail_nomem_anon_vma_fork:
474 mpol_put(vma_policy(tmp));
475 fail_nomem_policy:
476 kmem_cache_free(vm_area_cachep, tmp);
477 fail_nomem:
478 retval = -ENOMEM;
479 vm_unacct_memory(charge);
480 goto out;
483 static inline int mm_alloc_pgd(struct mm_struct *mm)
485 mm->pgd = pgd_alloc(mm);
486 if (unlikely(!mm->pgd))
487 return -ENOMEM;
488 return 0;
491 static inline void mm_free_pgd(struct mm_struct *mm)
493 pgd_free(mm, mm->pgd);
495 #else
496 #define dup_mmap(mm, oldmm) (0)
497 #define mm_alloc_pgd(mm) (0)
498 #define mm_free_pgd(mm)
499 #endif /* CONFIG_MMU */
501 __cacheline_aligned_in_smp DEFINE_SPINLOCK(mmlist_lock);
503 #define allocate_mm() (kmem_cache_alloc(mm_cachep, GFP_KERNEL))
504 #define free_mm(mm) (kmem_cache_free(mm_cachep, (mm)))
506 static unsigned long default_dump_filter = MMF_DUMP_FILTER_DEFAULT;
508 static int __init coredump_filter_setup(char *s)
510 default_dump_filter =
511 (simple_strtoul(s, NULL, 0) << MMF_DUMP_FILTER_SHIFT) &
512 MMF_DUMP_FILTER_MASK;
513 return 1;
516 __setup("coredump_filter=", coredump_filter_setup);
518 #include <linux/init_task.h>
520 static void mm_init_aio(struct mm_struct *mm)
522 #ifdef CONFIG_AIO
523 spin_lock_init(&mm->ioctx_lock);
524 mm->ioctx_table = NULL;
525 #endif
528 static struct mm_struct *mm_init(struct mm_struct *mm, struct task_struct *p)
530 atomic_set(&mm->mm_users, 1);
531 atomic_set(&mm->mm_count, 1);
532 init_rwsem(&mm->mmap_sem);
533 INIT_LIST_HEAD(&mm->mmlist);
534 mm->flags = (current->mm) ?
535 (current->mm->flags & MMF_INIT_MASK) : default_dump_filter;
536 mm->core_state = NULL;
537 mm->nr_ptes = 0;
538 memset(&mm->rss_stat, 0, sizeof(mm->rss_stat));
539 spin_lock_init(&mm->page_table_lock);
540 mm_init_aio(mm);
541 mm_init_owner(mm, p);
542 clear_tlb_flush_pending(mm);
544 if (likely(!mm_alloc_pgd(mm))) {
545 mm->def_flags = 0;
546 mmu_notifier_mm_init(mm);
547 return mm;
550 free_mm(mm);
551 return NULL;
554 static void check_mm(struct mm_struct *mm)
556 int i;
558 for (i = 0; i < NR_MM_COUNTERS; i++) {
559 long x = atomic_long_read(&mm->rss_stat.count[i]);
561 if (unlikely(x))
562 printk(KERN_ALERT "BUG: Bad rss-counter state "
563 "mm:%p idx:%d val:%ld\n", mm, i, x);
566 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
567 VM_BUG_ON(mm->pmd_huge_pte);
568 #endif
572 * Allocate and initialize an mm_struct.
574 struct mm_struct *mm_alloc(void)
576 struct mm_struct *mm;
578 mm = allocate_mm();
579 if (!mm)
580 return NULL;
582 memset(mm, 0, sizeof(*mm));
583 mm_init_cpumask(mm);
584 return mm_init(mm, current);
588 * Called when the last reference to the mm
589 * is dropped: either by a lazy thread or by
590 * mmput. Free the page directory and the mm.
592 void __mmdrop(struct mm_struct *mm)
594 BUG_ON(mm == &init_mm);
595 mm_free_pgd(mm);
596 destroy_context(mm);
597 mmu_notifier_mm_destroy(mm);
598 check_mm(mm);
599 free_mm(mm);
601 EXPORT_SYMBOL_GPL(__mmdrop);
604 * Decrement the use count and release all resources for an mm.
606 void mmput(struct mm_struct *mm)
608 might_sleep();
610 if (atomic_dec_and_test(&mm->mm_users)) {
611 uprobe_clear_state(mm);
612 exit_aio(mm);
613 ksm_exit(mm);
614 khugepaged_exit(mm); /* must run before exit_mmap */
615 exit_mmap(mm);
616 set_mm_exe_file(mm, NULL);
617 if (!list_empty(&mm->mmlist)) {
618 spin_lock(&mmlist_lock);
619 list_del(&mm->mmlist);
620 spin_unlock(&mmlist_lock);
622 if (mm->binfmt)
623 module_put(mm->binfmt->module);
624 mmdrop(mm);
627 EXPORT_SYMBOL_GPL(mmput);
629 void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file)
631 if (new_exe_file)
632 get_file(new_exe_file);
633 if (mm->exe_file)
634 fput(mm->exe_file);
635 mm->exe_file = new_exe_file;
638 struct file *get_mm_exe_file(struct mm_struct *mm)
640 struct file *exe_file;
642 /* We need mmap_sem to protect against races with removal of exe_file */
643 down_read(&mm->mmap_sem);
644 exe_file = mm->exe_file;
645 if (exe_file)
646 get_file(exe_file);
647 up_read(&mm->mmap_sem);
648 return exe_file;
651 static void dup_mm_exe_file(struct mm_struct *oldmm, struct mm_struct *newmm)
653 /* It's safe to write the exe_file pointer without exe_file_lock because
654 * this is called during fork when the task is not yet in /proc */
655 newmm->exe_file = get_mm_exe_file(oldmm);
659 * get_task_mm - acquire a reference to the task's mm
661 * Returns %NULL if the task has no mm. Checks PF_KTHREAD (meaning
662 * this kernel workthread has transiently adopted a user mm with use_mm,
663 * to do its AIO) is not set and if so returns a reference to it, after
664 * bumping up the use count. User must release the mm via mmput()
665 * after use. Typically used by /proc and ptrace.
667 struct mm_struct *get_task_mm(struct task_struct *task)
669 struct mm_struct *mm;
671 task_lock(task);
672 mm = task->mm;
673 if (mm) {
674 if (task->flags & PF_KTHREAD)
675 mm = NULL;
676 else
677 atomic_inc(&mm->mm_users);
679 task_unlock(task);
680 return mm;
682 EXPORT_SYMBOL_GPL(get_task_mm);
684 struct mm_struct *mm_access(struct task_struct *task, unsigned int mode)
686 struct mm_struct *mm;
687 int err;
689 err = mutex_lock_killable(&task->signal->cred_guard_mutex);
690 if (err)
691 return ERR_PTR(err);
693 mm = get_task_mm(task);
694 if (mm && mm != current->mm &&
695 !ptrace_may_access(task, mode)) {
696 mmput(mm);
697 mm = ERR_PTR(-EACCES);
699 mutex_unlock(&task->signal->cred_guard_mutex);
701 return mm;
704 static void complete_vfork_done(struct task_struct *tsk)
706 struct completion *vfork;
708 task_lock(tsk);
709 vfork = tsk->vfork_done;
710 if (likely(vfork)) {
711 tsk->vfork_done = NULL;
712 complete(vfork);
714 task_unlock(tsk);
717 static int wait_for_vfork_done(struct task_struct *child,
718 struct completion *vfork)
720 int killed;
722 freezer_do_not_count();
723 killed = wait_for_completion_killable(vfork);
724 freezer_count();
726 if (killed) {
727 task_lock(child);
728 child->vfork_done = NULL;
729 task_unlock(child);
732 put_task_struct(child);
733 return killed;
736 /* Please note the differences between mmput and mm_release.
737 * mmput is called whenever we stop holding onto a mm_struct,
738 * error success whatever.
740 * mm_release is called after a mm_struct has been removed
741 * from the current process.
743 * This difference is important for error handling, when we
744 * only half set up a mm_struct for a new process and need to restore
745 * the old one. Because we mmput the new mm_struct before
746 * restoring the old one. . .
747 * Eric Biederman 10 January 1998
749 void mm_release(struct task_struct *tsk, struct mm_struct *mm)
751 /* Get rid of any futexes when releasing the mm */
752 #ifdef CONFIG_FUTEX
753 if (unlikely(tsk->robust_list)) {
754 exit_robust_list(tsk);
755 tsk->robust_list = NULL;
757 #ifdef CONFIG_COMPAT
758 if (unlikely(tsk->compat_robust_list)) {
759 compat_exit_robust_list(tsk);
760 tsk->compat_robust_list = NULL;
762 #endif
763 if (unlikely(!list_empty(&tsk->pi_state_list)))
764 exit_pi_state_list(tsk);
765 #endif
767 uprobe_free_utask(tsk);
769 /* Get rid of any cached register state */
770 deactivate_mm(tsk, mm);
773 * Signal userspace if we're not exiting with a core dump
774 * because we want to leave the value intact for debugging
775 * purposes.
777 if (tsk->clear_child_tid) {
778 if (!(tsk->signal->flags & SIGNAL_GROUP_COREDUMP) &&
779 atomic_read(&mm->mm_users) > 1) {
781 * We don't check the error code - if userspace has
782 * not set up a proper pointer then tough luck.
784 put_user(0, tsk->clear_child_tid);
785 sys_futex(tsk->clear_child_tid, FUTEX_WAKE,
786 1, NULL, NULL, 0);
788 tsk->clear_child_tid = NULL;
792 * All done, finally we can wake up parent and return this mm to him.
793 * Also kthread_stop() uses this completion for synchronization.
795 if (tsk->vfork_done)
796 complete_vfork_done(tsk);
800 * Allocate a new mm structure and copy contents from the
801 * mm structure of the passed in task structure.
803 struct mm_struct *dup_mm(struct task_struct *tsk)
805 struct mm_struct *mm, *oldmm = current->mm;
806 int err;
808 if (!oldmm)
809 return NULL;
811 mm = allocate_mm();
812 if (!mm)
813 goto fail_nomem;
815 memcpy(mm, oldmm, sizeof(*mm));
816 mm_init_cpumask(mm);
818 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
819 mm->pmd_huge_pte = NULL;
820 #endif
821 #ifdef CONFIG_NUMA_BALANCING
822 mm->first_nid = NUMA_PTE_SCAN_INIT;
823 #endif
824 if (!mm_init(mm, tsk))
825 goto fail_nomem;
827 if (init_new_context(tsk, mm))
828 goto fail_nocontext;
830 dup_mm_exe_file(oldmm, mm);
832 err = dup_mmap(mm, oldmm);
833 if (err)
834 goto free_pt;
836 mm->hiwater_rss = get_mm_rss(mm);
837 mm->hiwater_vm = mm->total_vm;
839 if (mm->binfmt && !try_module_get(mm->binfmt->module))
840 goto free_pt;
842 return mm;
844 free_pt:
845 /* don't put binfmt in mmput, we haven't got module yet */
846 mm->binfmt = NULL;
847 mmput(mm);
849 fail_nomem:
850 return NULL;
852 fail_nocontext:
854 * If init_new_context() failed, we cannot use mmput() to free the mm
855 * because it calls destroy_context()
857 mm_free_pgd(mm);
858 free_mm(mm);
859 return NULL;
862 static int copy_mm(unsigned long clone_flags, struct task_struct *tsk)
864 struct mm_struct *mm, *oldmm;
865 int retval;
867 tsk->min_flt = tsk->maj_flt = 0;
868 tsk->nvcsw = tsk->nivcsw = 0;
869 #ifdef CONFIG_DETECT_HUNG_TASK
870 tsk->last_switch_count = tsk->nvcsw + tsk->nivcsw;
871 #endif
873 tsk->mm = NULL;
874 tsk->active_mm = NULL;
877 * Are we cloning a kernel thread?
879 * We need to steal a active VM for that..
881 oldmm = current->mm;
882 if (!oldmm)
883 return 0;
885 /* initialize the new vmacache entries */
886 vmacache_flush(tsk);
888 if (clone_flags & CLONE_VM) {
889 atomic_inc(&oldmm->mm_users);
890 mm = oldmm;
891 goto good_mm;
894 retval = -ENOMEM;
895 mm = dup_mm(tsk);
896 if (!mm)
897 goto fail_nomem;
899 good_mm:
900 tsk->mm = mm;
901 tsk->active_mm = mm;
902 return 0;
904 fail_nomem:
905 return retval;
908 static int copy_fs(unsigned long clone_flags, struct task_struct *tsk)
910 struct fs_struct *fs = current->fs;
911 if (clone_flags & CLONE_FS) {
912 /* tsk->fs is already what we want */
913 spin_lock(&fs->lock);
914 if (fs->in_exec) {
915 spin_unlock(&fs->lock);
916 return -EAGAIN;
918 fs->users++;
919 spin_unlock(&fs->lock);
920 return 0;
922 tsk->fs = copy_fs_struct(fs);
923 if (!tsk->fs)
924 return -ENOMEM;
925 return 0;
928 static int copy_files(unsigned long clone_flags, struct task_struct *tsk)
930 struct files_struct *oldf, *newf;
931 int error = 0;
934 * A background process may not have any files ...
936 oldf = current->files;
937 if (!oldf)
938 goto out;
940 if (clone_flags & CLONE_FILES) {
941 atomic_inc(&oldf->count);
942 goto out;
945 newf = dup_fd(oldf, &error);
946 if (!newf)
947 goto out;
949 tsk->files = newf;
950 error = 0;
951 out:
952 return error;
955 static int copy_io(unsigned long clone_flags, struct task_struct *tsk)
957 #ifdef CONFIG_BLOCK
958 struct io_context *ioc = current->io_context;
959 struct io_context *new_ioc;
961 if (!ioc)
962 return 0;
964 * Share io context with parent, if CLONE_IO is set
966 if (clone_flags & CLONE_IO) {
967 ioc_task_link(ioc);
968 tsk->io_context = ioc;
969 } else if (ioprio_valid(ioc->ioprio)) {
970 new_ioc = get_task_io_context(tsk, GFP_KERNEL, NUMA_NO_NODE);
971 if (unlikely(!new_ioc))
972 return -ENOMEM;
974 new_ioc->ioprio = ioc->ioprio;
975 put_io_context(new_ioc);
977 #endif
978 return 0;
981 static int copy_sighand(unsigned long clone_flags, struct task_struct *tsk)
983 struct sighand_struct *sig;
985 if (clone_flags & CLONE_SIGHAND) {
986 atomic_inc(&current->sighand->count);
987 return 0;
989 sig = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
990 rcu_assign_pointer(tsk->sighand, sig);
991 if (!sig)
992 return -ENOMEM;
993 atomic_set(&sig->count, 1);
994 memcpy(sig->action, current->sighand->action, sizeof(sig->action));
995 return 0;
998 void __cleanup_sighand(struct sighand_struct *sighand)
1000 if (atomic_dec_and_test(&sighand->count)) {
1001 signalfd_cleanup(sighand);
1002 kmem_cache_free(sighand_cachep, sighand);
1008 * Initialize POSIX timer handling for a thread group.
1010 static void posix_cpu_timers_init_group(struct signal_struct *sig)
1012 unsigned long cpu_limit;
1014 /* Thread group counters. */
1015 thread_group_cputime_init(sig);
1017 cpu_limit = ACCESS_ONCE(sig->rlim[RLIMIT_CPU].rlim_cur);
1018 if (cpu_limit != RLIM_INFINITY) {
1019 sig->cputime_expires.prof_exp = secs_to_cputime(cpu_limit);
1020 sig->cputimer.running = 1;
1023 /* The timer lists. */
1024 INIT_LIST_HEAD(&sig->cpu_timers[0]);
1025 INIT_LIST_HEAD(&sig->cpu_timers[1]);
1026 INIT_LIST_HEAD(&sig->cpu_timers[2]);
1029 static int copy_signal(unsigned long clone_flags, struct task_struct *tsk)
1031 struct signal_struct *sig;
1033 if (clone_flags & CLONE_THREAD)
1034 return 0;
1036 sig = kmem_cache_zalloc(signal_cachep, GFP_KERNEL);
1037 tsk->signal = sig;
1038 if (!sig)
1039 return -ENOMEM;
1041 sig->nr_threads = 1;
1042 atomic_set(&sig->live, 1);
1043 atomic_set(&sig->sigcnt, 1);
1045 /* list_add(thread_node, thread_head) without INIT_LIST_HEAD() */
1046 sig->thread_head = (struct list_head)LIST_HEAD_INIT(tsk->thread_node);
1047 tsk->thread_node = (struct list_head)LIST_HEAD_INIT(sig->thread_head);
1049 init_waitqueue_head(&sig->wait_chldexit);
1050 sig->curr_target = tsk;
1051 init_sigpending(&sig->shared_pending);
1052 INIT_LIST_HEAD(&sig->posix_timers);
1054 hrtimer_init(&sig->real_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1055 sig->real_timer.function = it_real_fn;
1057 task_lock(current->group_leader);
1058 memcpy(sig->rlim, current->signal->rlim, sizeof sig->rlim);
1059 task_unlock(current->group_leader);
1061 posix_cpu_timers_init_group(sig);
1063 tty_audit_fork(sig);
1064 sched_autogroup_fork(sig);
1066 #ifdef CONFIG_CGROUPS
1067 init_rwsem(&sig->group_rwsem);
1068 #endif
1070 sig->oom_score_adj = current->signal->oom_score_adj;
1071 sig->oom_score_adj_min = current->signal->oom_score_adj_min;
1073 sig->has_child_subreaper = current->signal->has_child_subreaper ||
1074 current->signal->is_child_subreaper;
1076 mutex_init(&sig->cred_guard_mutex);
1078 return 0;
1081 static void copy_flags(unsigned long clone_flags, struct task_struct *p)
1083 unsigned long new_flags = p->flags;
1085 new_flags &= ~(PF_SUPERPRIV | PF_WQ_WORKER);
1086 new_flags |= PF_FORKNOEXEC;
1087 p->flags = new_flags;
1090 SYSCALL_DEFINE1(set_tid_address, int __user *, tidptr)
1092 current->clear_child_tid = tidptr;
1094 return task_pid_vnr(current);
1097 static void rt_mutex_init_task(struct task_struct *p)
1099 raw_spin_lock_init(&p->pi_lock);
1100 #ifdef CONFIG_RT_MUTEXES
1101 plist_head_init(&p->pi_waiters);
1102 p->pi_blocked_on = NULL;
1103 #endif
1106 #ifdef CONFIG_MM_OWNER
1107 void mm_init_owner(struct mm_struct *mm, struct task_struct *p)
1109 mm->owner = p;
1111 #endif /* CONFIG_MM_OWNER */
1114 * Initialize POSIX timer handling for a single task.
1116 static void posix_cpu_timers_init(struct task_struct *tsk)
1118 tsk->cputime_expires.prof_exp = 0;
1119 tsk->cputime_expires.virt_exp = 0;
1120 tsk->cputime_expires.sched_exp = 0;
1121 INIT_LIST_HEAD(&tsk->cpu_timers[0]);
1122 INIT_LIST_HEAD(&tsk->cpu_timers[1]);
1123 INIT_LIST_HEAD(&tsk->cpu_timers[2]);
1126 static inline void
1127 init_task_pid(struct task_struct *task, enum pid_type type, struct pid *pid)
1129 task->pids[type].pid = pid;
1133 * This creates a new process as a copy of the old one,
1134 * but does not actually start it yet.
1136 * It copies the registers, and all the appropriate
1137 * parts of the process environment (as per the clone
1138 * flags). The actual kick-off is left to the caller.
1140 static struct task_struct *copy_process(unsigned long clone_flags,
1141 unsigned long stack_start,
1142 unsigned long stack_size,
1143 int __user *child_tidptr,
1144 struct pid *pid,
1145 int trace)
1147 int retval;
1148 struct task_struct *p;
1150 if ((clone_flags & (CLONE_NEWNS|CLONE_FS)) == (CLONE_NEWNS|CLONE_FS))
1151 return ERR_PTR(-EINVAL);
1153 if ((clone_flags & (CLONE_NEWUSER|CLONE_FS)) == (CLONE_NEWUSER|CLONE_FS))
1154 return ERR_PTR(-EINVAL);
1157 * Thread groups must share signals as well, and detached threads
1158 * can only be started up within the thread group.
1160 if ((clone_flags & CLONE_THREAD) && !(clone_flags & CLONE_SIGHAND))
1161 return ERR_PTR(-EINVAL);
1164 * Shared signal handlers imply shared VM. By way of the above,
1165 * thread groups also imply shared VM. Blocking this case allows
1166 * for various simplifications in other code.
1168 if ((clone_flags & CLONE_SIGHAND) && !(clone_flags & CLONE_VM))
1169 return ERR_PTR(-EINVAL);
1172 * Siblings of global init remain as zombies on exit since they are
1173 * not reaped by their parent (swapper). To solve this and to avoid
1174 * multi-rooted process trees, prevent global and container-inits
1175 * from creating siblings.
1177 if ((clone_flags & CLONE_PARENT) &&
1178 current->signal->flags & SIGNAL_UNKILLABLE)
1179 return ERR_PTR(-EINVAL);
1182 * If the new process will be in a different pid or user namespace
1183 * do not allow it to share a thread group or signal handlers or
1184 * parent with the forking task.
1186 if (clone_flags & CLONE_SIGHAND) {
1187 if ((clone_flags & (CLONE_NEWUSER | CLONE_NEWPID)) ||
1188 (task_active_pid_ns(current) !=
1189 current->nsproxy->pid_ns_for_children))
1190 return ERR_PTR(-EINVAL);
1193 retval = security_task_create(clone_flags);
1194 if (retval)
1195 goto fork_out;
1197 retval = -ENOMEM;
1198 p = dup_task_struct(current);
1199 if (!p)
1200 goto fork_out;
1202 ftrace_graph_init_task(p);
1203 get_seccomp_filter(p);
1205 rt_mutex_init_task(p);
1207 #ifdef CONFIG_PROVE_LOCKING
1208 DEBUG_LOCKS_WARN_ON(!p->hardirqs_enabled);
1209 DEBUG_LOCKS_WARN_ON(!p->softirqs_enabled);
1210 #endif
1211 retval = -EAGAIN;
1212 if (atomic_read(&p->real_cred->user->processes) >=
1213 task_rlimit(p, RLIMIT_NPROC)) {
1214 if (p->real_cred->user != INIT_USER &&
1215 !capable(CAP_SYS_RESOURCE) && !capable(CAP_SYS_ADMIN))
1216 goto bad_fork_free;
1218 current->flags &= ~PF_NPROC_EXCEEDED;
1220 retval = copy_creds(p, clone_flags);
1221 if (retval < 0)
1222 goto bad_fork_free;
1225 * If multiple threads are within copy_process(), then this check
1226 * triggers too late. This doesn't hurt, the check is only there
1227 * to stop root fork bombs.
1229 retval = -EAGAIN;
1230 if (nr_threads >= max_threads)
1231 goto bad_fork_cleanup_count;
1233 if (!try_module_get(task_thread_info(p)->exec_domain->module))
1234 goto bad_fork_cleanup_count;
1236 p->did_exec = 0;
1237 delayacct_tsk_init(p); /* Must remain after dup_task_struct() */
1238 copy_flags(clone_flags, p);
1239 INIT_LIST_HEAD(&p->children);
1240 INIT_LIST_HEAD(&p->sibling);
1241 rcu_copy_process(p);
1242 p->vfork_done = NULL;
1243 spin_lock_init(&p->alloc_lock);
1245 init_sigpending(&p->pending);
1247 p->utime = p->stime = p->gtime = 0;
1248 p->utimescaled = p->stimescaled = 0;
1249 #ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
1250 p->prev_cputime.utime = p->prev_cputime.stime = 0;
1251 #endif
1252 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
1253 seqlock_init(&p->vtime_seqlock);
1254 p->vtime_snap = 0;
1255 p->vtime_snap_whence = VTIME_SLEEPING;
1256 #endif
1258 #if defined(SPLIT_RSS_COUNTING)
1259 memset(&p->rss_stat, 0, sizeof(p->rss_stat));
1260 #endif
1262 p->default_timer_slack_ns = current->timer_slack_ns;
1264 task_io_accounting_init(&p->ioac);
1265 acct_clear_integrals(p);
1267 posix_cpu_timers_init(p);
1269 do_posix_clock_monotonic_gettime(&p->start_time);
1270 p->real_start_time = p->start_time;
1271 monotonic_to_bootbased(&p->real_start_time);
1272 p->io_context = NULL;
1273 p->audit_context = NULL;
1274 if (clone_flags & CLONE_THREAD)
1275 threadgroup_change_begin(current);
1276 cgroup_fork(p);
1277 #ifdef CONFIG_NUMA
1278 p->mempolicy = mpol_dup(p->mempolicy);
1279 if (IS_ERR(p->mempolicy)) {
1280 retval = PTR_ERR(p->mempolicy);
1281 p->mempolicy = NULL;
1282 goto bad_fork_cleanup_cgroup;
1284 mpol_fix_fork_child_flag(p);
1285 #endif
1286 #ifdef CONFIG_CPUSETS
1287 p->cpuset_mem_spread_rotor = NUMA_NO_NODE;
1288 p->cpuset_slab_spread_rotor = NUMA_NO_NODE;
1289 seqcount_init(&p->mems_allowed_seq);
1290 #endif
1291 #ifdef CONFIG_TRACE_IRQFLAGS
1292 p->irq_events = 0;
1293 p->hardirqs_enabled = 0;
1294 p->hardirq_enable_ip = 0;
1295 p->hardirq_enable_event = 0;
1296 p->hardirq_disable_ip = _THIS_IP_;
1297 p->hardirq_disable_event = 0;
1298 p->softirqs_enabled = 1;
1299 p->softirq_enable_ip = _THIS_IP_;
1300 p->softirq_enable_event = 0;
1301 p->softirq_disable_ip = 0;
1302 p->softirq_disable_event = 0;
1303 p->hardirq_context = 0;
1304 p->softirq_context = 0;
1305 #endif
1306 #ifdef CONFIG_LOCKDEP
1307 p->lockdep_depth = 0; /* no locks held yet */
1308 p->curr_chain_key = 0;
1309 p->lockdep_recursion = 0;
1310 #endif
1312 #ifdef CONFIG_DEBUG_MUTEXES
1313 p->blocked_on = NULL; /* not blocked yet */
1314 #endif
1315 #ifdef CONFIG_MEMCG
1316 p->memcg_batch.do_batch = 0;
1317 p->memcg_batch.memcg = NULL;
1318 #endif
1319 #ifdef CONFIG_BCACHE
1320 p->sequential_io = 0;
1321 p->sequential_io_avg = 0;
1322 #endif
1324 /* Perform scheduler related setup. Assign this task to a CPU. */
1325 sched_fork(p);
1327 retval = perf_event_init_task(p);
1328 if (retval)
1329 goto bad_fork_cleanup_policy;
1330 retval = audit_alloc(p);
1331 if (retval)
1332 goto bad_fork_cleanup_perf;
1333 /* copy all the process information */
1334 retval = copy_semundo(clone_flags, p);
1335 if (retval)
1336 goto bad_fork_cleanup_audit;
1337 retval = copy_files(clone_flags, p);
1338 if (retval)
1339 goto bad_fork_cleanup_semundo;
1340 retval = copy_fs(clone_flags, p);
1341 if (retval)
1342 goto bad_fork_cleanup_files;
1343 retval = copy_sighand(clone_flags, p);
1344 if (retval)
1345 goto bad_fork_cleanup_fs;
1346 retval = copy_signal(clone_flags, p);
1347 if (retval)
1348 goto bad_fork_cleanup_sighand;
1349 retval = copy_mm(clone_flags, p);
1350 if (retval)
1351 goto bad_fork_cleanup_signal;
1352 retval = copy_namespaces(clone_flags, p);
1353 if (retval)
1354 goto bad_fork_cleanup_mm;
1355 retval = copy_io(clone_flags, p);
1356 if (retval)
1357 goto bad_fork_cleanup_namespaces;
1358 retval = copy_thread(clone_flags, stack_start, stack_size, p);
1359 if (retval)
1360 goto bad_fork_cleanup_io;
1362 if (pid != &init_struct_pid) {
1363 pid = alloc_pid(p->nsproxy->pid_ns_for_children);
1364 if (IS_ERR(pid)) {
1365 retval = PTR_ERR(pid);
1366 goto bad_fork_cleanup_io;
1370 p->set_child_tid = (clone_flags & CLONE_CHILD_SETTID) ? child_tidptr : NULL;
1372 * Clear TID on mm_release()?
1374 p->clear_child_tid = (clone_flags & CLONE_CHILD_CLEARTID) ? child_tidptr : NULL;
1375 #ifdef CONFIG_BLOCK
1376 p->plug = NULL;
1377 #endif
1378 #ifdef CONFIG_FUTEX
1379 p->robust_list = NULL;
1380 #ifdef CONFIG_COMPAT
1381 p->compat_robust_list = NULL;
1382 #endif
1383 INIT_LIST_HEAD(&p->pi_state_list);
1384 p->pi_state_cache = NULL;
1385 #endif
1386 uprobe_copy_process(p);
1388 * sigaltstack should be cleared when sharing the same VM
1390 if ((clone_flags & (CLONE_VM|CLONE_VFORK)) == CLONE_VM)
1391 p->sas_ss_sp = p->sas_ss_size = 0;
1394 * Syscall tracing and stepping should be turned off in the
1395 * child regardless of CLONE_PTRACE.
1397 user_disable_single_step(p);
1398 clear_tsk_thread_flag(p, TIF_SYSCALL_TRACE);
1399 #ifdef TIF_SYSCALL_EMU
1400 clear_tsk_thread_flag(p, TIF_SYSCALL_EMU);
1401 #endif
1402 clear_all_latency_tracing(p);
1404 /* ok, now we should be set up.. */
1405 p->pid = pid_nr(pid);
1406 if (clone_flags & CLONE_THREAD) {
1407 p->exit_signal = -1;
1408 p->group_leader = current->group_leader;
1409 p->tgid = current->tgid;
1410 } else {
1411 if (clone_flags & CLONE_PARENT)
1412 p->exit_signal = current->group_leader->exit_signal;
1413 else
1414 p->exit_signal = (clone_flags & CSIGNAL);
1415 p->group_leader = p;
1416 p->tgid = p->pid;
1419 p->pdeath_signal = 0;
1420 p->exit_state = 0;
1422 p->nr_dirtied = 0;
1423 p->nr_dirtied_pause = 128 >> (PAGE_SHIFT - 10);
1424 p->dirty_paused_when = 0;
1426 INIT_LIST_HEAD(&p->thread_group);
1427 p->task_works = NULL;
1430 * Make it visible to the rest of the system, but dont wake it up yet.
1431 * Need tasklist lock for parent etc handling!
1433 write_lock_irq(&tasklist_lock);
1435 /* CLONE_PARENT re-uses the old parent */
1436 if (clone_flags & (CLONE_PARENT|CLONE_THREAD)) {
1437 p->real_parent = current->real_parent;
1438 p->parent_exec_id = current->parent_exec_id;
1439 } else {
1440 p->real_parent = current;
1441 p->parent_exec_id = current->self_exec_id;
1444 spin_lock(&current->sighand->siglock);
1447 * Process group and session signals need to be delivered to just the
1448 * parent before the fork or both the parent and the child after the
1449 * fork. Restart if a signal comes in before we add the new process to
1450 * it's process group.
1451 * A fatal signal pending means that current will exit, so the new
1452 * thread can't slip out of an OOM kill (or normal SIGKILL).
1454 recalc_sigpending();
1455 if (signal_pending(current)) {
1456 spin_unlock(&current->sighand->siglock);
1457 write_unlock_irq(&tasklist_lock);
1458 retval = -ERESTARTNOINTR;
1459 goto bad_fork_free_pid;
1462 if (likely(p->pid)) {
1463 ptrace_init_task(p, (clone_flags & CLONE_PTRACE) || trace);
1465 init_task_pid(p, PIDTYPE_PID, pid);
1466 if (thread_group_leader(p)) {
1467 init_task_pid(p, PIDTYPE_PGID, task_pgrp(current));
1468 init_task_pid(p, PIDTYPE_SID, task_session(current));
1470 if (is_child_reaper(pid)) {
1471 ns_of_pid(pid)->child_reaper = p;
1472 p->signal->flags |= SIGNAL_UNKILLABLE;
1475 p->signal->leader_pid = pid;
1476 p->signal->tty = tty_kref_get(current->signal->tty);
1477 list_add_tail(&p->sibling, &p->real_parent->children);
1478 list_add_tail_rcu(&p->tasks, &init_task.tasks);
1479 attach_pid(p, PIDTYPE_PGID);
1480 attach_pid(p, PIDTYPE_SID);
1481 __this_cpu_inc(process_counts);
1482 } else {
1483 current->signal->nr_threads++;
1484 atomic_inc(&current->signal->live);
1485 atomic_inc(&current->signal->sigcnt);
1486 list_add_tail_rcu(&p->thread_group,
1487 &p->group_leader->thread_group);
1488 list_add_tail_rcu(&p->thread_node,
1489 &p->signal->thread_head);
1491 attach_pid(p, PIDTYPE_PID);
1492 nr_threads++;
1495 total_forks++;
1496 spin_unlock(&current->sighand->siglock);
1497 syscall_tracepoint_update(p);
1498 write_unlock_irq(&tasklist_lock);
1500 proc_fork_connector(p);
1501 cgroup_post_fork(p);
1502 if (clone_flags & CLONE_THREAD)
1503 threadgroup_change_end(current);
1504 perf_event_fork(p);
1506 trace_task_newtask(p, clone_flags);
1508 return p;
1510 bad_fork_free_pid:
1511 if (pid != &init_struct_pid)
1512 free_pid(pid);
1513 bad_fork_cleanup_io:
1514 if (p->io_context)
1515 exit_io_context(p);
1516 bad_fork_cleanup_namespaces:
1517 exit_task_namespaces(p);
1518 bad_fork_cleanup_mm:
1519 if (p->mm)
1520 mmput(p->mm);
1521 bad_fork_cleanup_signal:
1522 if (!(clone_flags & CLONE_THREAD))
1523 free_signal_struct(p->signal);
1524 bad_fork_cleanup_sighand:
1525 __cleanup_sighand(p->sighand);
1526 bad_fork_cleanup_fs:
1527 exit_fs(p); /* blocking */
1528 bad_fork_cleanup_files:
1529 exit_files(p); /* blocking */
1530 bad_fork_cleanup_semundo:
1531 exit_sem(p);
1532 bad_fork_cleanup_audit:
1533 audit_free(p);
1534 bad_fork_cleanup_perf:
1535 perf_event_free_task(p);
1536 bad_fork_cleanup_policy:
1537 #ifdef CONFIG_NUMA
1538 mpol_put(p->mempolicy);
1539 bad_fork_cleanup_cgroup:
1540 #endif
1541 if (clone_flags & CLONE_THREAD)
1542 threadgroup_change_end(current);
1543 cgroup_exit(p, 0);
1544 delayacct_tsk_free(p);
1545 module_put(task_thread_info(p)->exec_domain->module);
1546 bad_fork_cleanup_count:
1547 atomic_dec(&p->cred->user->processes);
1548 exit_creds(p);
1549 bad_fork_free:
1550 free_task(p);
1551 fork_out:
1552 return ERR_PTR(retval);
1555 static inline void init_idle_pids(struct pid_link *links)
1557 enum pid_type type;
1559 for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type) {
1560 INIT_HLIST_NODE(&links[type].node); /* not really needed */
1561 links[type].pid = &init_struct_pid;
1565 struct task_struct *fork_idle(int cpu)
1567 struct task_struct *task;
1568 task = copy_process(CLONE_VM, 0, 0, NULL, &init_struct_pid, 0);
1569 if (!IS_ERR(task)) {
1570 init_idle_pids(task->pids);
1571 init_idle(task, cpu);
1574 return task;
1578 * Ok, this is the main fork-routine.
1580 * It copies the process, and if successful kick-starts
1581 * it and waits for it to finish using the VM if required.
1583 long do_fork(unsigned long clone_flags,
1584 unsigned long stack_start,
1585 unsigned long stack_size,
1586 int __user *parent_tidptr,
1587 int __user *child_tidptr)
1589 struct task_struct *p;
1590 int trace = 0;
1591 long nr;
1594 * Determine whether and which event to report to ptracer. When
1595 * called from kernel_thread or CLONE_UNTRACED is explicitly
1596 * requested, no event is reported; otherwise, report if the event
1597 * for the type of forking is enabled.
1599 if (!(clone_flags & CLONE_UNTRACED)) {
1600 if (clone_flags & CLONE_VFORK)
1601 trace = PTRACE_EVENT_VFORK;
1602 else if ((clone_flags & CSIGNAL) != SIGCHLD)
1603 trace = PTRACE_EVENT_CLONE;
1604 else
1605 trace = PTRACE_EVENT_FORK;
1607 if (likely(!ptrace_event_enabled(current, trace)))
1608 trace = 0;
1611 p = copy_process(clone_flags, stack_start, stack_size,
1612 child_tidptr, NULL, trace);
1614 * Do this prior waking up the new thread - the thread pointer
1615 * might get invalid after that point, if the thread exits quickly.
1617 if (!IS_ERR(p)) {
1618 struct completion vfork;
1619 struct pid *pid;
1621 trace_sched_process_fork(current, p);
1623 pid = get_task_pid(p, PIDTYPE_PID);
1624 nr = pid_vnr(pid);
1626 if (clone_flags & CLONE_PARENT_SETTID)
1627 put_user(nr, parent_tidptr);
1629 if (clone_flags & CLONE_VFORK) {
1630 p->vfork_done = &vfork;
1631 init_completion(&vfork);
1632 get_task_struct(p);
1635 wake_up_new_task(p);
1637 /* forking complete and child started to run, tell ptracer */
1638 if (unlikely(trace))
1639 ptrace_event_pid(trace, pid);
1641 if (clone_flags & CLONE_VFORK) {
1642 if (!wait_for_vfork_done(p, &vfork))
1643 ptrace_event_pid(PTRACE_EVENT_VFORK_DONE, pid);
1646 put_pid(pid);
1647 } else {
1648 nr = PTR_ERR(p);
1650 return nr;
1654 * Create a kernel thread.
1656 pid_t kernel_thread(int (*fn)(void *), void *arg, unsigned long flags)
1658 return do_fork(flags|CLONE_VM|CLONE_UNTRACED, (unsigned long)fn,
1659 (unsigned long)arg, NULL, NULL);
1662 #ifdef __ARCH_WANT_SYS_FORK
1663 SYSCALL_DEFINE0(fork)
1665 #ifdef CONFIG_MMU
1666 return do_fork(SIGCHLD, 0, 0, NULL, NULL);
1667 #else
1668 /* can not support in nommu mode */
1669 return(-EINVAL);
1670 #endif
1672 #endif
1674 #ifdef __ARCH_WANT_SYS_VFORK
1675 SYSCALL_DEFINE0(vfork)
1677 return do_fork(CLONE_VFORK | CLONE_VM | SIGCHLD, 0,
1678 0, NULL, NULL);
1680 #endif
1682 #ifdef __ARCH_WANT_SYS_CLONE
1683 #ifdef CONFIG_CLONE_BACKWARDS
1684 SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp,
1685 int __user *, parent_tidptr,
1686 int, tls_val,
1687 int __user *, child_tidptr)
1688 #elif defined(CONFIG_CLONE_BACKWARDS2)
1689 SYSCALL_DEFINE5(clone, unsigned long, newsp, unsigned long, clone_flags,
1690 int __user *, parent_tidptr,
1691 int __user *, child_tidptr,
1692 int, tls_val)
1693 #elif defined(CONFIG_CLONE_BACKWARDS3)
1694 SYSCALL_DEFINE6(clone, unsigned long, clone_flags, unsigned long, newsp,
1695 int, stack_size,
1696 int __user *, parent_tidptr,
1697 int __user *, child_tidptr,
1698 int, tls_val)
1699 #else
1700 SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp,
1701 int __user *, parent_tidptr,
1702 int __user *, child_tidptr,
1703 int, tls_val)
1704 #endif
1706 return do_fork(clone_flags, newsp, 0, parent_tidptr, child_tidptr);
1708 #endif
1710 #ifndef ARCH_MIN_MMSTRUCT_ALIGN
1711 #define ARCH_MIN_MMSTRUCT_ALIGN 0
1712 #endif
1714 static void sighand_ctor(void *data)
1716 struct sighand_struct *sighand = data;
1718 spin_lock_init(&sighand->siglock);
1719 init_waitqueue_head(&sighand->signalfd_wqh);
1722 void __init proc_caches_init(void)
1724 sighand_cachep = kmem_cache_create("sighand_cache",
1725 sizeof(struct sighand_struct), 0,
1726 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_DESTROY_BY_RCU|
1727 SLAB_NOTRACK, sighand_ctor);
1728 signal_cachep = kmem_cache_create("signal_cache",
1729 sizeof(struct signal_struct), 0,
1730 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL);
1731 files_cachep = kmem_cache_create("files_cache",
1732 sizeof(struct files_struct), 0,
1733 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL);
1734 fs_cachep = kmem_cache_create("fs_cache",
1735 sizeof(struct fs_struct), 0,
1736 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL);
1738 * FIXME! The "sizeof(struct mm_struct)" currently includes the
1739 * whole struct cpumask for the OFFSTACK case. We could change
1740 * this to *only* allocate as much of it as required by the
1741 * maximum number of CPU's we can ever have. The cpumask_allocation
1742 * is at the end of the structure, exactly for that reason.
1744 mm_cachep = kmem_cache_create("mm_struct",
1745 sizeof(struct mm_struct), ARCH_MIN_MMSTRUCT_ALIGN,
1746 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL);
1747 vm_area_cachep = KMEM_CACHE(vm_area_struct, SLAB_PANIC);
1748 mmap_init();
1749 nsproxy_cache_init();
1753 * Check constraints on flags passed to the unshare system call.
1755 static int check_unshare_flags(unsigned long unshare_flags)
1757 if (unshare_flags & ~(CLONE_THREAD|CLONE_FS|CLONE_NEWNS|CLONE_SIGHAND|
1758 CLONE_VM|CLONE_FILES|CLONE_SYSVSEM|
1759 CLONE_NEWUTS|CLONE_NEWIPC|CLONE_NEWNET|
1760 CLONE_NEWUSER|CLONE_NEWPID))
1761 return -EINVAL;
1763 * Not implemented, but pretend it works if there is nothing
1764 * to unshare. Note that unsharing the address space or the
1765 * signal handlers also need to unshare the signal queues (aka
1766 * CLONE_THREAD).
1768 if (unshare_flags & (CLONE_THREAD | CLONE_SIGHAND | CLONE_VM)) {
1769 if (!thread_group_empty(current))
1770 return -EINVAL;
1772 if (unshare_flags & (CLONE_SIGHAND | CLONE_VM)) {
1773 if (atomic_read(&current->sighand->count) > 1)
1774 return -EINVAL;
1776 if (unshare_flags & CLONE_VM) {
1777 if (!current_is_single_threaded())
1778 return -EINVAL;
1781 return 0;
1785 * Unshare the filesystem structure if it is being shared
1787 static int unshare_fs(unsigned long unshare_flags, struct fs_struct **new_fsp)
1789 struct fs_struct *fs = current->fs;
1791 if (!(unshare_flags & CLONE_FS) || !fs)
1792 return 0;
1794 /* don't need lock here; in the worst case we'll do useless copy */
1795 if (fs->users == 1)
1796 return 0;
1798 *new_fsp = copy_fs_struct(fs);
1799 if (!*new_fsp)
1800 return -ENOMEM;
1802 return 0;
1806 * Unshare file descriptor table if it is being shared
1808 static int unshare_fd(unsigned long unshare_flags, struct files_struct **new_fdp)
1810 struct files_struct *fd = current->files;
1811 int error = 0;
1813 if ((unshare_flags & CLONE_FILES) &&
1814 (fd && atomic_read(&fd->count) > 1)) {
1815 *new_fdp = dup_fd(fd, &error);
1816 if (!*new_fdp)
1817 return error;
1820 return 0;
1824 * unshare allows a process to 'unshare' part of the process
1825 * context which was originally shared using clone. copy_*
1826 * functions used by do_fork() cannot be used here directly
1827 * because they modify an inactive task_struct that is being
1828 * constructed. Here we are modifying the current, active,
1829 * task_struct.
1831 SYSCALL_DEFINE1(unshare, unsigned long, unshare_flags)
1833 struct fs_struct *fs, *new_fs = NULL;
1834 struct files_struct *fd, *new_fd = NULL;
1835 struct cred *new_cred = NULL;
1836 struct nsproxy *new_nsproxy = NULL;
1837 int do_sysvsem = 0;
1838 int err;
1841 * If unsharing a user namespace must also unshare the thread.
1843 if (unshare_flags & CLONE_NEWUSER)
1844 unshare_flags |= CLONE_THREAD | CLONE_FS;
1846 * If unsharing vm, must also unshare signal handlers.
1848 if (unshare_flags & CLONE_VM)
1849 unshare_flags |= CLONE_SIGHAND;
1851 * If unsharing a signal handlers, must also unshare the signal queues.
1853 if (unshare_flags & CLONE_SIGHAND)
1854 unshare_flags |= CLONE_THREAD;
1856 * If unsharing namespace, must also unshare filesystem information.
1858 if (unshare_flags & CLONE_NEWNS)
1859 unshare_flags |= CLONE_FS;
1861 err = check_unshare_flags(unshare_flags);
1862 if (err)
1863 goto bad_unshare_out;
1865 * CLONE_NEWIPC must also detach from the undolist: after switching
1866 * to a new ipc namespace, the semaphore arrays from the old
1867 * namespace are unreachable.
1869 if (unshare_flags & (CLONE_NEWIPC|CLONE_SYSVSEM))
1870 do_sysvsem = 1;
1871 err = unshare_fs(unshare_flags, &new_fs);
1872 if (err)
1873 goto bad_unshare_out;
1874 err = unshare_fd(unshare_flags, &new_fd);
1875 if (err)
1876 goto bad_unshare_cleanup_fs;
1877 err = unshare_userns(unshare_flags, &new_cred);
1878 if (err)
1879 goto bad_unshare_cleanup_fd;
1880 err = unshare_nsproxy_namespaces(unshare_flags, &new_nsproxy,
1881 new_cred, new_fs);
1882 if (err)
1883 goto bad_unshare_cleanup_cred;
1885 if (new_fs || new_fd || do_sysvsem || new_cred || new_nsproxy) {
1886 if (do_sysvsem) {
1888 * CLONE_SYSVSEM is equivalent to sys_exit().
1890 exit_sem(current);
1893 if (new_nsproxy)
1894 switch_task_namespaces(current, new_nsproxy);
1896 task_lock(current);
1898 if (new_fs) {
1899 fs = current->fs;
1900 spin_lock(&fs->lock);
1901 current->fs = new_fs;
1902 if (--fs->users)
1903 new_fs = NULL;
1904 else
1905 new_fs = fs;
1906 spin_unlock(&fs->lock);
1909 if (new_fd) {
1910 fd = current->files;
1911 current->files = new_fd;
1912 new_fd = fd;
1915 task_unlock(current);
1917 if (new_cred) {
1918 /* Install the new user namespace */
1919 commit_creds(new_cred);
1920 new_cred = NULL;
1924 bad_unshare_cleanup_cred:
1925 if (new_cred)
1926 put_cred(new_cred);
1927 bad_unshare_cleanup_fd:
1928 if (new_fd)
1929 put_files_struct(new_fd);
1931 bad_unshare_cleanup_fs:
1932 if (new_fs)
1933 free_fs_struct(new_fs);
1935 bad_unshare_out:
1936 return err;
1940 * Helper to unshare the files of the current task.
1941 * We don't want to expose copy_files internals to
1942 * the exec layer of the kernel.
1945 int unshare_files(struct files_struct **displaced)
1947 struct task_struct *task = current;
1948 struct files_struct *copy = NULL;
1949 int error;
1951 error = unshare_fd(CLONE_FILES, &copy);
1952 if (error || !copy) {
1953 *displaced = NULL;
1954 return error;
1956 *displaced = task->files;
1957 task_lock(task);
1958 task->files = copy;
1959 task_unlock(task);
1960 return 0;