4 * Copyright (C) 1991, 1992 Linus Torvalds
8 * 'fork.c' contains the help-routines for the 'fork' system call
9 * (see also entry.S and others).
10 * Fork is rather simple, once you get the hang of it, but the memory
11 * management can be a bitch. See 'mm/memory.c': 'copy_page_range()'
14 #include <linux/slab.h>
15 #include <linux/init.h>
16 #include <linux/unistd.h>
17 #include <linux/module.h>
18 #include <linux/vmalloc.h>
19 #include <linux/completion.h>
20 #include <linux/personality.h>
21 #include <linux/mempolicy.h>
22 #include <linux/sem.h>
23 #include <linux/file.h>
24 #include <linux/fdtable.h>
25 #include <linux/iocontext.h>
26 #include <linux/key.h>
27 #include <linux/binfmts.h>
28 #include <linux/mman.h>
29 #include <linux/mmu_notifier.h>
32 #include <linux/vmacache.h>
33 #include <linux/nsproxy.h>
34 #include <linux/capability.h>
35 #include <linux/cpu.h>
36 #include <linux/cgroup.h>
37 #include <linux/security.h>
38 #include <linux/hugetlb.h>
39 #include <linux/seccomp.h>
40 #include <linux/swap.h>
41 #include <linux/syscalls.h>
42 #include <linux/jiffies.h>
43 #include <linux/futex.h>
44 #include <linux/compat.h>
45 #include <linux/kthread.h>
46 #include <linux/task_io_accounting_ops.h>
47 #include <linux/rcupdate.h>
48 #include <linux/ptrace.h>
49 #include <linux/mount.h>
50 #include <linux/audit.h>
51 #include <linux/memcontrol.h>
52 #include <linux/ftrace.h>
53 #include <linux/proc_fs.h>
54 #include <linux/profile.h>
55 #include <linux/rmap.h>
56 #include <linux/ksm.h>
57 #include <linux/acct.h>
58 #include <linux/tsacct_kern.h>
59 #include <linux/cn_proc.h>
60 #include <linux/freezer.h>
61 #include <linux/delayacct.h>
62 #include <linux/taskstats_kern.h>
63 #include <linux/random.h>
64 #include <linux/tty.h>
65 #include <linux/blkdev.h>
66 #include <linux/fs_struct.h>
67 #include <linux/magic.h>
68 #include <linux/perf_event.h>
69 #include <linux/posix-timers.h>
70 #include <linux/user-return-notifier.h>
71 #include <linux/oom.h>
72 #include <linux/khugepaged.h>
73 #include <linux/signalfd.h>
74 #include <linux/uprobes.h>
75 #include <linux/aio.h>
77 #include <asm/pgtable.h>
78 #include <asm/pgalloc.h>
79 #include <asm/uaccess.h>
80 #include <asm/mmu_context.h>
81 #include <asm/cacheflush.h>
82 #include <asm/tlbflush.h>
84 #include <trace/events/sched.h>
86 #define CREATE_TRACE_POINTS
87 #include <trace/events/task.h>
90 * Protected counters by write_lock_irq(&tasklist_lock)
92 unsigned long total_forks
; /* Handle normal Linux uptimes. */
93 int nr_threads
; /* The idle threads do not count.. */
95 int max_threads
; /* tunable limit on nr_threads */
97 DEFINE_PER_CPU(unsigned long, process_counts
) = 0;
99 __cacheline_aligned
DEFINE_RWLOCK(tasklist_lock
); /* outer */
101 #ifdef CONFIG_PROVE_RCU
102 int lockdep_tasklist_lock_is_held(void)
104 return lockdep_is_held(&tasklist_lock
);
106 EXPORT_SYMBOL_GPL(lockdep_tasklist_lock_is_held
);
107 #endif /* #ifdef CONFIG_PROVE_RCU */
109 int nr_processes(void)
114 for_each_possible_cpu(cpu
)
115 total
+= per_cpu(process_counts
, cpu
);
120 void __weak
arch_release_task_struct(struct task_struct
*tsk
)
124 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
125 static struct kmem_cache
*task_struct_cachep
;
127 static inline struct task_struct
*alloc_task_struct_node(int node
)
129 return kmem_cache_alloc_node(task_struct_cachep
, GFP_KERNEL
, node
);
132 static inline void free_task_struct(struct task_struct
*tsk
)
134 kmem_cache_free(task_struct_cachep
, tsk
);
138 void __weak
arch_release_thread_info(struct thread_info
*ti
)
142 #ifndef CONFIG_ARCH_THREAD_INFO_ALLOCATOR
145 * Allocate pages if THREAD_SIZE is >= PAGE_SIZE, otherwise use a
146 * kmemcache based allocator.
148 # if THREAD_SIZE >= PAGE_SIZE
149 static struct thread_info
*alloc_thread_info_node(struct task_struct
*tsk
,
152 struct page
*page
= alloc_pages_node(node
, THREADINFO_GFP_ACCOUNTED
,
155 return page
? page_address(page
) : NULL
;
158 static inline void free_thread_info(struct thread_info
*ti
)
160 free_memcg_kmem_pages((unsigned long)ti
, THREAD_SIZE_ORDER
);
163 static struct kmem_cache
*thread_info_cache
;
165 static struct thread_info
*alloc_thread_info_node(struct task_struct
*tsk
,
168 return kmem_cache_alloc_node(thread_info_cache
, THREADINFO_GFP
, node
);
171 static void free_thread_info(struct thread_info
*ti
)
173 kmem_cache_free(thread_info_cache
, ti
);
176 void thread_info_cache_init(void)
178 thread_info_cache
= kmem_cache_create("thread_info", THREAD_SIZE
,
179 THREAD_SIZE
, 0, NULL
);
180 BUG_ON(thread_info_cache
== NULL
);
185 /* SLAB cache for signal_struct structures (tsk->signal) */
186 static struct kmem_cache
*signal_cachep
;
188 /* SLAB cache for sighand_struct structures (tsk->sighand) */
189 struct kmem_cache
*sighand_cachep
;
191 /* SLAB cache for files_struct structures (tsk->files) */
192 struct kmem_cache
*files_cachep
;
194 /* SLAB cache for fs_struct structures (tsk->fs) */
195 struct kmem_cache
*fs_cachep
;
197 /* SLAB cache for vm_area_struct structures */
198 struct kmem_cache
*vm_area_cachep
;
200 /* SLAB cache for mm_struct structures (tsk->mm) */
201 static struct kmem_cache
*mm_cachep
;
203 static void account_kernel_stack(struct thread_info
*ti
, int account
)
205 struct zone
*zone
= page_zone(virt_to_page(ti
));
207 mod_zone_page_state(zone
, NR_KERNEL_STACK
, account
);
210 void free_task(struct task_struct
*tsk
)
212 account_kernel_stack(tsk
->stack
, -1);
213 arch_release_thread_info(tsk
->stack
);
214 free_thread_info(tsk
->stack
);
215 rt_mutex_debug_task_free(tsk
);
216 ftrace_graph_exit_task(tsk
);
217 put_seccomp_filter(tsk
);
218 arch_release_task_struct(tsk
);
219 free_task_struct(tsk
);
221 EXPORT_SYMBOL(free_task
);
223 static inline void free_signal_struct(struct signal_struct
*sig
)
225 taskstats_tgid_free(sig
);
226 sched_autogroup_exit(sig
);
227 kmem_cache_free(signal_cachep
, sig
);
230 static inline void put_signal_struct(struct signal_struct
*sig
)
232 if (atomic_dec_and_test(&sig
->sigcnt
))
233 free_signal_struct(sig
);
236 void __put_task_struct(struct task_struct
*tsk
)
238 WARN_ON(!tsk
->exit_state
);
239 WARN_ON(atomic_read(&tsk
->usage
));
240 WARN_ON(tsk
== current
);
242 security_task_free(tsk
);
244 delayacct_tsk_free(tsk
);
245 put_signal_struct(tsk
->signal
);
247 if (!profile_handoff_task(tsk
))
250 EXPORT_SYMBOL_GPL(__put_task_struct
);
252 void __init __weak
arch_task_cache_init(void) { }
254 void __init
fork_init(unsigned long mempages
)
256 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
257 #ifndef ARCH_MIN_TASKALIGN
258 #define ARCH_MIN_TASKALIGN L1_CACHE_BYTES
260 /* create a slab on which task_structs can be allocated */
262 kmem_cache_create("task_struct", sizeof(struct task_struct
),
263 ARCH_MIN_TASKALIGN
, SLAB_PANIC
| SLAB_NOTRACK
, NULL
);
266 /* do the arch specific task caches init */
267 arch_task_cache_init();
270 * The default maximum number of threads is set to a safe
271 * value: the thread structures can take up at most half
274 max_threads
= mempages
/ (8 * THREAD_SIZE
/ PAGE_SIZE
);
277 * we need to allow at least 20 threads to boot a system
279 if (max_threads
< 20)
282 init_task
.signal
->rlim
[RLIMIT_NPROC
].rlim_cur
= max_threads
/2;
283 init_task
.signal
->rlim
[RLIMIT_NPROC
].rlim_max
= max_threads
/2;
284 init_task
.signal
->rlim
[RLIMIT_SIGPENDING
] =
285 init_task
.signal
->rlim
[RLIMIT_NPROC
];
288 int __attribute__((weak
)) arch_dup_task_struct(struct task_struct
*dst
,
289 struct task_struct
*src
)
295 static struct task_struct
*dup_task_struct(struct task_struct
*orig
)
297 struct task_struct
*tsk
;
298 struct thread_info
*ti
;
299 unsigned long *stackend
;
300 int node
= tsk_fork_get_node(orig
);
303 tsk
= alloc_task_struct_node(node
);
307 ti
= alloc_thread_info_node(tsk
, node
);
311 err
= arch_dup_task_struct(tsk
, orig
);
317 setup_thread_stack(tsk
, orig
);
318 clear_user_return_notifier(tsk
);
319 clear_tsk_need_resched(tsk
);
320 stackend
= end_of_stack(tsk
);
321 *stackend
= STACK_END_MAGIC
; /* for overflow detection */
323 #ifdef CONFIG_CC_STACKPROTECTOR
324 tsk
->stack_canary
= get_random_int();
328 * One for us, one for whoever does the "release_task()" (usually
331 atomic_set(&tsk
->usage
, 2);
332 #ifdef CONFIG_BLK_DEV_IO_TRACE
335 tsk
->splice_pipe
= NULL
;
336 tsk
->task_frag
.page
= NULL
;
338 account_kernel_stack(ti
, 1);
343 free_thread_info(ti
);
345 free_task_struct(tsk
);
350 static int dup_mmap(struct mm_struct
*mm
, struct mm_struct
*oldmm
)
352 struct vm_area_struct
*mpnt
, *tmp
, *prev
, **pprev
;
353 struct rb_node
**rb_link
, *rb_parent
;
355 unsigned long charge
;
357 uprobe_start_dup_mmap();
358 down_write(&oldmm
->mmap_sem
);
359 flush_cache_dup_mm(oldmm
);
360 uprobe_dup_mmap(oldmm
, mm
);
362 * Not linked in yet - no deadlock potential:
364 down_write_nested(&mm
->mmap_sem
, SINGLE_DEPTH_NESTING
);
368 mm
->vmacache_seqnum
= 0;
370 cpumask_clear(mm_cpumask(mm
));
372 rb_link
= &mm
->mm_rb
.rb_node
;
375 retval
= ksm_fork(mm
, oldmm
);
378 retval
= khugepaged_fork(mm
, oldmm
);
383 for (mpnt
= oldmm
->mmap
; mpnt
; mpnt
= mpnt
->vm_next
) {
386 if (mpnt
->vm_flags
& VM_DONTCOPY
) {
387 vm_stat_account(mm
, mpnt
->vm_flags
, mpnt
->vm_file
,
392 if (mpnt
->vm_flags
& VM_ACCOUNT
) {
393 unsigned long len
= vma_pages(mpnt
);
395 if (security_vm_enough_memory_mm(oldmm
, len
)) /* sic */
399 tmp
= kmem_cache_alloc(vm_area_cachep
, GFP_KERNEL
);
403 INIT_LIST_HEAD(&tmp
->anon_vma_chain
);
404 retval
= vma_dup_policy(mpnt
, tmp
);
406 goto fail_nomem_policy
;
408 if (anon_vma_fork(tmp
, mpnt
))
409 goto fail_nomem_anon_vma_fork
;
410 tmp
->vm_flags
&= ~VM_LOCKED
;
411 tmp
->vm_next
= tmp
->vm_prev
= NULL
;
414 struct inode
*inode
= file_inode(file
);
415 struct address_space
*mapping
= file
->f_mapping
;
418 if (tmp
->vm_flags
& VM_DENYWRITE
)
419 atomic_dec(&inode
->i_writecount
);
420 mutex_lock(&mapping
->i_mmap_mutex
);
421 if (tmp
->vm_flags
& VM_SHARED
)
422 mapping
->i_mmap_writable
++;
423 flush_dcache_mmap_lock(mapping
);
424 /* insert tmp into the share list, just after mpnt */
425 if (unlikely(tmp
->vm_flags
& VM_NONLINEAR
))
426 vma_nonlinear_insert(tmp
,
427 &mapping
->i_mmap_nonlinear
);
429 vma_interval_tree_insert_after(tmp
, mpnt
,
431 flush_dcache_mmap_unlock(mapping
);
432 mutex_unlock(&mapping
->i_mmap_mutex
);
436 * Clear hugetlb-related page reserves for children. This only
437 * affects MAP_PRIVATE mappings. Faults generated by the child
438 * are not guaranteed to succeed, even if read-only
440 if (is_vm_hugetlb_page(tmp
))
441 reset_vma_resv_huge_pages(tmp
);
444 * Link in the new vma and copy the page table entries.
447 pprev
= &tmp
->vm_next
;
451 __vma_link_rb(mm
, tmp
, rb_link
, rb_parent
);
452 rb_link
= &tmp
->vm_rb
.rb_right
;
453 rb_parent
= &tmp
->vm_rb
;
456 retval
= copy_page_range(mm
, oldmm
, mpnt
);
458 if (tmp
->vm_ops
&& tmp
->vm_ops
->open
)
459 tmp
->vm_ops
->open(tmp
);
464 /* a new mm has just been created */
465 arch_dup_mmap(oldmm
, mm
);
468 up_write(&mm
->mmap_sem
);
470 up_write(&oldmm
->mmap_sem
);
471 uprobe_end_dup_mmap();
473 fail_nomem_anon_vma_fork
:
474 mpol_put(vma_policy(tmp
));
476 kmem_cache_free(vm_area_cachep
, tmp
);
479 vm_unacct_memory(charge
);
483 static inline int mm_alloc_pgd(struct mm_struct
*mm
)
485 mm
->pgd
= pgd_alloc(mm
);
486 if (unlikely(!mm
->pgd
))
491 static inline void mm_free_pgd(struct mm_struct
*mm
)
493 pgd_free(mm
, mm
->pgd
);
496 #define dup_mmap(mm, oldmm) (0)
497 #define mm_alloc_pgd(mm) (0)
498 #define mm_free_pgd(mm)
499 #endif /* CONFIG_MMU */
501 __cacheline_aligned_in_smp
DEFINE_SPINLOCK(mmlist_lock
);
503 #define allocate_mm() (kmem_cache_alloc(mm_cachep, GFP_KERNEL))
504 #define free_mm(mm) (kmem_cache_free(mm_cachep, (mm)))
506 static unsigned long default_dump_filter
= MMF_DUMP_FILTER_DEFAULT
;
508 static int __init
coredump_filter_setup(char *s
)
510 default_dump_filter
=
511 (simple_strtoul(s
, NULL
, 0) << MMF_DUMP_FILTER_SHIFT
) &
512 MMF_DUMP_FILTER_MASK
;
516 __setup("coredump_filter=", coredump_filter_setup
);
518 #include <linux/init_task.h>
520 static void mm_init_aio(struct mm_struct
*mm
)
523 spin_lock_init(&mm
->ioctx_lock
);
524 mm
->ioctx_table
= NULL
;
528 static struct mm_struct
*mm_init(struct mm_struct
*mm
, struct task_struct
*p
)
530 atomic_set(&mm
->mm_users
, 1);
531 atomic_set(&mm
->mm_count
, 1);
532 init_rwsem(&mm
->mmap_sem
);
533 INIT_LIST_HEAD(&mm
->mmlist
);
534 mm
->flags
= (current
->mm
) ?
535 (current
->mm
->flags
& MMF_INIT_MASK
) : default_dump_filter
;
536 mm
->core_state
= NULL
;
538 memset(&mm
->rss_stat
, 0, sizeof(mm
->rss_stat
));
539 spin_lock_init(&mm
->page_table_lock
);
541 mm_init_owner(mm
, p
);
542 clear_tlb_flush_pending(mm
);
544 if (likely(!mm_alloc_pgd(mm
))) {
546 mmu_notifier_mm_init(mm
);
554 static void check_mm(struct mm_struct
*mm
)
558 for (i
= 0; i
< NR_MM_COUNTERS
; i
++) {
559 long x
= atomic_long_read(&mm
->rss_stat
.count
[i
]);
562 printk(KERN_ALERT
"BUG: Bad rss-counter state "
563 "mm:%p idx:%d val:%ld\n", mm
, i
, x
);
566 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
567 VM_BUG_ON(mm
->pmd_huge_pte
);
572 * Allocate and initialize an mm_struct.
574 struct mm_struct
*mm_alloc(void)
576 struct mm_struct
*mm
;
582 memset(mm
, 0, sizeof(*mm
));
584 return mm_init(mm
, current
);
588 * Called when the last reference to the mm
589 * is dropped: either by a lazy thread or by
590 * mmput. Free the page directory and the mm.
592 void __mmdrop(struct mm_struct
*mm
)
594 BUG_ON(mm
== &init_mm
);
597 mmu_notifier_mm_destroy(mm
);
601 EXPORT_SYMBOL_GPL(__mmdrop
);
604 * Decrement the use count and release all resources for an mm.
606 void mmput(struct mm_struct
*mm
)
610 if (atomic_dec_and_test(&mm
->mm_users
)) {
611 uprobe_clear_state(mm
);
614 khugepaged_exit(mm
); /* must run before exit_mmap */
616 set_mm_exe_file(mm
, NULL
);
617 if (!list_empty(&mm
->mmlist
)) {
618 spin_lock(&mmlist_lock
);
619 list_del(&mm
->mmlist
);
620 spin_unlock(&mmlist_lock
);
623 module_put(mm
->binfmt
->module
);
627 EXPORT_SYMBOL_GPL(mmput
);
629 void set_mm_exe_file(struct mm_struct
*mm
, struct file
*new_exe_file
)
632 get_file(new_exe_file
);
635 mm
->exe_file
= new_exe_file
;
638 struct file
*get_mm_exe_file(struct mm_struct
*mm
)
640 struct file
*exe_file
;
642 /* We need mmap_sem to protect against races with removal of exe_file */
643 down_read(&mm
->mmap_sem
);
644 exe_file
= mm
->exe_file
;
647 up_read(&mm
->mmap_sem
);
651 static void dup_mm_exe_file(struct mm_struct
*oldmm
, struct mm_struct
*newmm
)
653 /* It's safe to write the exe_file pointer without exe_file_lock because
654 * this is called during fork when the task is not yet in /proc */
655 newmm
->exe_file
= get_mm_exe_file(oldmm
);
659 * get_task_mm - acquire a reference to the task's mm
661 * Returns %NULL if the task has no mm. Checks PF_KTHREAD (meaning
662 * this kernel workthread has transiently adopted a user mm with use_mm,
663 * to do its AIO) is not set and if so returns a reference to it, after
664 * bumping up the use count. User must release the mm via mmput()
665 * after use. Typically used by /proc and ptrace.
667 struct mm_struct
*get_task_mm(struct task_struct
*task
)
669 struct mm_struct
*mm
;
674 if (task
->flags
& PF_KTHREAD
)
677 atomic_inc(&mm
->mm_users
);
682 EXPORT_SYMBOL_GPL(get_task_mm
);
684 struct mm_struct
*mm_access(struct task_struct
*task
, unsigned int mode
)
686 struct mm_struct
*mm
;
689 err
= mutex_lock_killable(&task
->signal
->cred_guard_mutex
);
693 mm
= get_task_mm(task
);
694 if (mm
&& mm
!= current
->mm
&&
695 !ptrace_may_access(task
, mode
)) {
697 mm
= ERR_PTR(-EACCES
);
699 mutex_unlock(&task
->signal
->cred_guard_mutex
);
704 static void complete_vfork_done(struct task_struct
*tsk
)
706 struct completion
*vfork
;
709 vfork
= tsk
->vfork_done
;
711 tsk
->vfork_done
= NULL
;
717 static int wait_for_vfork_done(struct task_struct
*child
,
718 struct completion
*vfork
)
722 freezer_do_not_count();
723 killed
= wait_for_completion_killable(vfork
);
728 child
->vfork_done
= NULL
;
732 put_task_struct(child
);
736 /* Please note the differences between mmput and mm_release.
737 * mmput is called whenever we stop holding onto a mm_struct,
738 * error success whatever.
740 * mm_release is called after a mm_struct has been removed
741 * from the current process.
743 * This difference is important for error handling, when we
744 * only half set up a mm_struct for a new process and need to restore
745 * the old one. Because we mmput the new mm_struct before
746 * restoring the old one. . .
747 * Eric Biederman 10 January 1998
749 void mm_release(struct task_struct
*tsk
, struct mm_struct
*mm
)
751 /* Get rid of any futexes when releasing the mm */
753 if (unlikely(tsk
->robust_list
)) {
754 exit_robust_list(tsk
);
755 tsk
->robust_list
= NULL
;
758 if (unlikely(tsk
->compat_robust_list
)) {
759 compat_exit_robust_list(tsk
);
760 tsk
->compat_robust_list
= NULL
;
763 if (unlikely(!list_empty(&tsk
->pi_state_list
)))
764 exit_pi_state_list(tsk
);
767 uprobe_free_utask(tsk
);
769 /* Get rid of any cached register state */
770 deactivate_mm(tsk
, mm
);
773 * Signal userspace if we're not exiting with a core dump
774 * because we want to leave the value intact for debugging
777 if (tsk
->clear_child_tid
) {
778 if (!(tsk
->signal
->flags
& SIGNAL_GROUP_COREDUMP
) &&
779 atomic_read(&mm
->mm_users
) > 1) {
781 * We don't check the error code - if userspace has
782 * not set up a proper pointer then tough luck.
784 put_user(0, tsk
->clear_child_tid
);
785 sys_futex(tsk
->clear_child_tid
, FUTEX_WAKE
,
788 tsk
->clear_child_tid
= NULL
;
792 * All done, finally we can wake up parent and return this mm to him.
793 * Also kthread_stop() uses this completion for synchronization.
796 complete_vfork_done(tsk
);
800 * Allocate a new mm structure and copy contents from the
801 * mm structure of the passed in task structure.
803 struct mm_struct
*dup_mm(struct task_struct
*tsk
)
805 struct mm_struct
*mm
, *oldmm
= current
->mm
;
815 memcpy(mm
, oldmm
, sizeof(*mm
));
818 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
819 mm
->pmd_huge_pte
= NULL
;
821 #ifdef CONFIG_NUMA_BALANCING
822 mm
->first_nid
= NUMA_PTE_SCAN_INIT
;
824 if (!mm_init(mm
, tsk
))
827 if (init_new_context(tsk
, mm
))
830 dup_mm_exe_file(oldmm
, mm
);
832 err
= dup_mmap(mm
, oldmm
);
836 mm
->hiwater_rss
= get_mm_rss(mm
);
837 mm
->hiwater_vm
= mm
->total_vm
;
839 if (mm
->binfmt
&& !try_module_get(mm
->binfmt
->module
))
845 /* don't put binfmt in mmput, we haven't got module yet */
854 * If init_new_context() failed, we cannot use mmput() to free the mm
855 * because it calls destroy_context()
862 static int copy_mm(unsigned long clone_flags
, struct task_struct
*tsk
)
864 struct mm_struct
*mm
, *oldmm
;
867 tsk
->min_flt
= tsk
->maj_flt
= 0;
868 tsk
->nvcsw
= tsk
->nivcsw
= 0;
869 #ifdef CONFIG_DETECT_HUNG_TASK
870 tsk
->last_switch_count
= tsk
->nvcsw
+ tsk
->nivcsw
;
874 tsk
->active_mm
= NULL
;
877 * Are we cloning a kernel thread?
879 * We need to steal a active VM for that..
885 /* initialize the new vmacache entries */
888 if (clone_flags
& CLONE_VM
) {
889 atomic_inc(&oldmm
->mm_users
);
908 static int copy_fs(unsigned long clone_flags
, struct task_struct
*tsk
)
910 struct fs_struct
*fs
= current
->fs
;
911 if (clone_flags
& CLONE_FS
) {
912 /* tsk->fs is already what we want */
913 spin_lock(&fs
->lock
);
915 spin_unlock(&fs
->lock
);
919 spin_unlock(&fs
->lock
);
922 tsk
->fs
= copy_fs_struct(fs
);
928 static int copy_files(unsigned long clone_flags
, struct task_struct
*tsk
)
930 struct files_struct
*oldf
, *newf
;
934 * A background process may not have any files ...
936 oldf
= current
->files
;
940 if (clone_flags
& CLONE_FILES
) {
941 atomic_inc(&oldf
->count
);
945 newf
= dup_fd(oldf
, &error
);
955 static int copy_io(unsigned long clone_flags
, struct task_struct
*tsk
)
958 struct io_context
*ioc
= current
->io_context
;
959 struct io_context
*new_ioc
;
964 * Share io context with parent, if CLONE_IO is set
966 if (clone_flags
& CLONE_IO
) {
968 tsk
->io_context
= ioc
;
969 } else if (ioprio_valid(ioc
->ioprio
)) {
970 new_ioc
= get_task_io_context(tsk
, GFP_KERNEL
, NUMA_NO_NODE
);
971 if (unlikely(!new_ioc
))
974 new_ioc
->ioprio
= ioc
->ioprio
;
975 put_io_context(new_ioc
);
981 static int copy_sighand(unsigned long clone_flags
, struct task_struct
*tsk
)
983 struct sighand_struct
*sig
;
985 if (clone_flags
& CLONE_SIGHAND
) {
986 atomic_inc(¤t
->sighand
->count
);
989 sig
= kmem_cache_alloc(sighand_cachep
, GFP_KERNEL
);
990 rcu_assign_pointer(tsk
->sighand
, sig
);
993 atomic_set(&sig
->count
, 1);
994 memcpy(sig
->action
, current
->sighand
->action
, sizeof(sig
->action
));
998 void __cleanup_sighand(struct sighand_struct
*sighand
)
1000 if (atomic_dec_and_test(&sighand
->count
)) {
1001 signalfd_cleanup(sighand
);
1002 kmem_cache_free(sighand_cachep
, sighand
);
1008 * Initialize POSIX timer handling for a thread group.
1010 static void posix_cpu_timers_init_group(struct signal_struct
*sig
)
1012 unsigned long cpu_limit
;
1014 /* Thread group counters. */
1015 thread_group_cputime_init(sig
);
1017 cpu_limit
= ACCESS_ONCE(sig
->rlim
[RLIMIT_CPU
].rlim_cur
);
1018 if (cpu_limit
!= RLIM_INFINITY
) {
1019 sig
->cputime_expires
.prof_exp
= secs_to_cputime(cpu_limit
);
1020 sig
->cputimer
.running
= 1;
1023 /* The timer lists. */
1024 INIT_LIST_HEAD(&sig
->cpu_timers
[0]);
1025 INIT_LIST_HEAD(&sig
->cpu_timers
[1]);
1026 INIT_LIST_HEAD(&sig
->cpu_timers
[2]);
1029 static int copy_signal(unsigned long clone_flags
, struct task_struct
*tsk
)
1031 struct signal_struct
*sig
;
1033 if (clone_flags
& CLONE_THREAD
)
1036 sig
= kmem_cache_zalloc(signal_cachep
, GFP_KERNEL
);
1041 sig
->nr_threads
= 1;
1042 atomic_set(&sig
->live
, 1);
1043 atomic_set(&sig
->sigcnt
, 1);
1045 /* list_add(thread_node, thread_head) without INIT_LIST_HEAD() */
1046 sig
->thread_head
= (struct list_head
)LIST_HEAD_INIT(tsk
->thread_node
);
1047 tsk
->thread_node
= (struct list_head
)LIST_HEAD_INIT(sig
->thread_head
);
1049 init_waitqueue_head(&sig
->wait_chldexit
);
1050 sig
->curr_target
= tsk
;
1051 init_sigpending(&sig
->shared_pending
);
1052 INIT_LIST_HEAD(&sig
->posix_timers
);
1054 hrtimer_init(&sig
->real_timer
, CLOCK_MONOTONIC
, HRTIMER_MODE_REL
);
1055 sig
->real_timer
.function
= it_real_fn
;
1057 task_lock(current
->group_leader
);
1058 memcpy(sig
->rlim
, current
->signal
->rlim
, sizeof sig
->rlim
);
1059 task_unlock(current
->group_leader
);
1061 posix_cpu_timers_init_group(sig
);
1063 tty_audit_fork(sig
);
1064 sched_autogroup_fork(sig
);
1066 #ifdef CONFIG_CGROUPS
1067 init_rwsem(&sig
->group_rwsem
);
1070 sig
->oom_score_adj
= current
->signal
->oom_score_adj
;
1071 sig
->oom_score_adj_min
= current
->signal
->oom_score_adj_min
;
1073 sig
->has_child_subreaper
= current
->signal
->has_child_subreaper
||
1074 current
->signal
->is_child_subreaper
;
1076 mutex_init(&sig
->cred_guard_mutex
);
1081 static void copy_flags(unsigned long clone_flags
, struct task_struct
*p
)
1083 unsigned long new_flags
= p
->flags
;
1085 new_flags
&= ~(PF_SUPERPRIV
| PF_WQ_WORKER
);
1086 new_flags
|= PF_FORKNOEXEC
;
1087 p
->flags
= new_flags
;
1090 SYSCALL_DEFINE1(set_tid_address
, int __user
*, tidptr
)
1092 current
->clear_child_tid
= tidptr
;
1094 return task_pid_vnr(current
);
1097 static void rt_mutex_init_task(struct task_struct
*p
)
1099 raw_spin_lock_init(&p
->pi_lock
);
1100 #ifdef CONFIG_RT_MUTEXES
1101 plist_head_init(&p
->pi_waiters
);
1102 p
->pi_blocked_on
= NULL
;
1106 #ifdef CONFIG_MM_OWNER
1107 void mm_init_owner(struct mm_struct
*mm
, struct task_struct
*p
)
1111 #endif /* CONFIG_MM_OWNER */
1114 * Initialize POSIX timer handling for a single task.
1116 static void posix_cpu_timers_init(struct task_struct
*tsk
)
1118 tsk
->cputime_expires
.prof_exp
= 0;
1119 tsk
->cputime_expires
.virt_exp
= 0;
1120 tsk
->cputime_expires
.sched_exp
= 0;
1121 INIT_LIST_HEAD(&tsk
->cpu_timers
[0]);
1122 INIT_LIST_HEAD(&tsk
->cpu_timers
[1]);
1123 INIT_LIST_HEAD(&tsk
->cpu_timers
[2]);
1127 init_task_pid(struct task_struct
*task
, enum pid_type type
, struct pid
*pid
)
1129 task
->pids
[type
].pid
= pid
;
1133 * This creates a new process as a copy of the old one,
1134 * but does not actually start it yet.
1136 * It copies the registers, and all the appropriate
1137 * parts of the process environment (as per the clone
1138 * flags). The actual kick-off is left to the caller.
1140 static struct task_struct
*copy_process(unsigned long clone_flags
,
1141 unsigned long stack_start
,
1142 unsigned long stack_size
,
1143 int __user
*child_tidptr
,
1148 struct task_struct
*p
;
1150 if ((clone_flags
& (CLONE_NEWNS
|CLONE_FS
)) == (CLONE_NEWNS
|CLONE_FS
))
1151 return ERR_PTR(-EINVAL
);
1153 if ((clone_flags
& (CLONE_NEWUSER
|CLONE_FS
)) == (CLONE_NEWUSER
|CLONE_FS
))
1154 return ERR_PTR(-EINVAL
);
1157 * Thread groups must share signals as well, and detached threads
1158 * can only be started up within the thread group.
1160 if ((clone_flags
& CLONE_THREAD
) && !(clone_flags
& CLONE_SIGHAND
))
1161 return ERR_PTR(-EINVAL
);
1164 * Shared signal handlers imply shared VM. By way of the above,
1165 * thread groups also imply shared VM. Blocking this case allows
1166 * for various simplifications in other code.
1168 if ((clone_flags
& CLONE_SIGHAND
) && !(clone_flags
& CLONE_VM
))
1169 return ERR_PTR(-EINVAL
);
1172 * Siblings of global init remain as zombies on exit since they are
1173 * not reaped by their parent (swapper). To solve this and to avoid
1174 * multi-rooted process trees, prevent global and container-inits
1175 * from creating siblings.
1177 if ((clone_flags
& CLONE_PARENT
) &&
1178 current
->signal
->flags
& SIGNAL_UNKILLABLE
)
1179 return ERR_PTR(-EINVAL
);
1182 * If the new process will be in a different pid or user namespace
1183 * do not allow it to share a thread group or signal handlers or
1184 * parent with the forking task.
1186 if (clone_flags
& CLONE_SIGHAND
) {
1187 if ((clone_flags
& (CLONE_NEWUSER
| CLONE_NEWPID
)) ||
1188 (task_active_pid_ns(current
) !=
1189 current
->nsproxy
->pid_ns_for_children
))
1190 return ERR_PTR(-EINVAL
);
1193 retval
= security_task_create(clone_flags
);
1198 p
= dup_task_struct(current
);
1202 ftrace_graph_init_task(p
);
1203 get_seccomp_filter(p
);
1205 rt_mutex_init_task(p
);
1207 #ifdef CONFIG_PROVE_LOCKING
1208 DEBUG_LOCKS_WARN_ON(!p
->hardirqs_enabled
);
1209 DEBUG_LOCKS_WARN_ON(!p
->softirqs_enabled
);
1212 if (atomic_read(&p
->real_cred
->user
->processes
) >=
1213 task_rlimit(p
, RLIMIT_NPROC
)) {
1214 if (p
->real_cred
->user
!= INIT_USER
&&
1215 !capable(CAP_SYS_RESOURCE
) && !capable(CAP_SYS_ADMIN
))
1218 current
->flags
&= ~PF_NPROC_EXCEEDED
;
1220 retval
= copy_creds(p
, clone_flags
);
1225 * If multiple threads are within copy_process(), then this check
1226 * triggers too late. This doesn't hurt, the check is only there
1227 * to stop root fork bombs.
1230 if (nr_threads
>= max_threads
)
1231 goto bad_fork_cleanup_count
;
1233 if (!try_module_get(task_thread_info(p
)->exec_domain
->module
))
1234 goto bad_fork_cleanup_count
;
1237 delayacct_tsk_init(p
); /* Must remain after dup_task_struct() */
1238 copy_flags(clone_flags
, p
);
1239 INIT_LIST_HEAD(&p
->children
);
1240 INIT_LIST_HEAD(&p
->sibling
);
1241 rcu_copy_process(p
);
1242 p
->vfork_done
= NULL
;
1243 spin_lock_init(&p
->alloc_lock
);
1245 init_sigpending(&p
->pending
);
1247 p
->utime
= p
->stime
= p
->gtime
= 0;
1248 p
->utimescaled
= p
->stimescaled
= 0;
1249 #ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
1250 p
->prev_cputime
.utime
= p
->prev_cputime
.stime
= 0;
1252 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
1253 seqlock_init(&p
->vtime_seqlock
);
1255 p
->vtime_snap_whence
= VTIME_SLEEPING
;
1258 #if defined(SPLIT_RSS_COUNTING)
1259 memset(&p
->rss_stat
, 0, sizeof(p
->rss_stat
));
1262 p
->default_timer_slack_ns
= current
->timer_slack_ns
;
1264 task_io_accounting_init(&p
->ioac
);
1265 acct_clear_integrals(p
);
1267 posix_cpu_timers_init(p
);
1269 do_posix_clock_monotonic_gettime(&p
->start_time
);
1270 p
->real_start_time
= p
->start_time
;
1271 monotonic_to_bootbased(&p
->real_start_time
);
1272 p
->io_context
= NULL
;
1273 p
->audit_context
= NULL
;
1274 if (clone_flags
& CLONE_THREAD
)
1275 threadgroup_change_begin(current
);
1278 p
->mempolicy
= mpol_dup(p
->mempolicy
);
1279 if (IS_ERR(p
->mempolicy
)) {
1280 retval
= PTR_ERR(p
->mempolicy
);
1281 p
->mempolicy
= NULL
;
1282 goto bad_fork_cleanup_cgroup
;
1284 mpol_fix_fork_child_flag(p
);
1286 #ifdef CONFIG_CPUSETS
1287 p
->cpuset_mem_spread_rotor
= NUMA_NO_NODE
;
1288 p
->cpuset_slab_spread_rotor
= NUMA_NO_NODE
;
1289 seqcount_init(&p
->mems_allowed_seq
);
1291 #ifdef CONFIG_TRACE_IRQFLAGS
1293 p
->hardirqs_enabled
= 0;
1294 p
->hardirq_enable_ip
= 0;
1295 p
->hardirq_enable_event
= 0;
1296 p
->hardirq_disable_ip
= _THIS_IP_
;
1297 p
->hardirq_disable_event
= 0;
1298 p
->softirqs_enabled
= 1;
1299 p
->softirq_enable_ip
= _THIS_IP_
;
1300 p
->softirq_enable_event
= 0;
1301 p
->softirq_disable_ip
= 0;
1302 p
->softirq_disable_event
= 0;
1303 p
->hardirq_context
= 0;
1304 p
->softirq_context
= 0;
1306 #ifdef CONFIG_LOCKDEP
1307 p
->lockdep_depth
= 0; /* no locks held yet */
1308 p
->curr_chain_key
= 0;
1309 p
->lockdep_recursion
= 0;
1312 #ifdef CONFIG_DEBUG_MUTEXES
1313 p
->blocked_on
= NULL
; /* not blocked yet */
1316 p
->memcg_batch
.do_batch
= 0;
1317 p
->memcg_batch
.memcg
= NULL
;
1319 #ifdef CONFIG_BCACHE
1320 p
->sequential_io
= 0;
1321 p
->sequential_io_avg
= 0;
1324 /* Perform scheduler related setup. Assign this task to a CPU. */
1327 retval
= perf_event_init_task(p
);
1329 goto bad_fork_cleanup_policy
;
1330 retval
= audit_alloc(p
);
1332 goto bad_fork_cleanup_perf
;
1333 /* copy all the process information */
1334 retval
= copy_semundo(clone_flags
, p
);
1336 goto bad_fork_cleanup_audit
;
1337 retval
= copy_files(clone_flags
, p
);
1339 goto bad_fork_cleanup_semundo
;
1340 retval
= copy_fs(clone_flags
, p
);
1342 goto bad_fork_cleanup_files
;
1343 retval
= copy_sighand(clone_flags
, p
);
1345 goto bad_fork_cleanup_fs
;
1346 retval
= copy_signal(clone_flags
, p
);
1348 goto bad_fork_cleanup_sighand
;
1349 retval
= copy_mm(clone_flags
, p
);
1351 goto bad_fork_cleanup_signal
;
1352 retval
= copy_namespaces(clone_flags
, p
);
1354 goto bad_fork_cleanup_mm
;
1355 retval
= copy_io(clone_flags
, p
);
1357 goto bad_fork_cleanup_namespaces
;
1358 retval
= copy_thread(clone_flags
, stack_start
, stack_size
, p
);
1360 goto bad_fork_cleanup_io
;
1362 if (pid
!= &init_struct_pid
) {
1363 pid
= alloc_pid(p
->nsproxy
->pid_ns_for_children
);
1365 retval
= PTR_ERR(pid
);
1366 goto bad_fork_cleanup_io
;
1370 p
->set_child_tid
= (clone_flags
& CLONE_CHILD_SETTID
) ? child_tidptr
: NULL
;
1372 * Clear TID on mm_release()?
1374 p
->clear_child_tid
= (clone_flags
& CLONE_CHILD_CLEARTID
) ? child_tidptr
: NULL
;
1379 p
->robust_list
= NULL
;
1380 #ifdef CONFIG_COMPAT
1381 p
->compat_robust_list
= NULL
;
1383 INIT_LIST_HEAD(&p
->pi_state_list
);
1384 p
->pi_state_cache
= NULL
;
1386 uprobe_copy_process(p
);
1388 * sigaltstack should be cleared when sharing the same VM
1390 if ((clone_flags
& (CLONE_VM
|CLONE_VFORK
)) == CLONE_VM
)
1391 p
->sas_ss_sp
= p
->sas_ss_size
= 0;
1394 * Syscall tracing and stepping should be turned off in the
1395 * child regardless of CLONE_PTRACE.
1397 user_disable_single_step(p
);
1398 clear_tsk_thread_flag(p
, TIF_SYSCALL_TRACE
);
1399 #ifdef TIF_SYSCALL_EMU
1400 clear_tsk_thread_flag(p
, TIF_SYSCALL_EMU
);
1402 clear_all_latency_tracing(p
);
1404 /* ok, now we should be set up.. */
1405 p
->pid
= pid_nr(pid
);
1406 if (clone_flags
& CLONE_THREAD
) {
1407 p
->exit_signal
= -1;
1408 p
->group_leader
= current
->group_leader
;
1409 p
->tgid
= current
->tgid
;
1411 if (clone_flags
& CLONE_PARENT
)
1412 p
->exit_signal
= current
->group_leader
->exit_signal
;
1414 p
->exit_signal
= (clone_flags
& CSIGNAL
);
1415 p
->group_leader
= p
;
1419 p
->pdeath_signal
= 0;
1423 p
->nr_dirtied_pause
= 128 >> (PAGE_SHIFT
- 10);
1424 p
->dirty_paused_when
= 0;
1426 INIT_LIST_HEAD(&p
->thread_group
);
1427 p
->task_works
= NULL
;
1430 * Make it visible to the rest of the system, but dont wake it up yet.
1431 * Need tasklist lock for parent etc handling!
1433 write_lock_irq(&tasklist_lock
);
1435 /* CLONE_PARENT re-uses the old parent */
1436 if (clone_flags
& (CLONE_PARENT
|CLONE_THREAD
)) {
1437 p
->real_parent
= current
->real_parent
;
1438 p
->parent_exec_id
= current
->parent_exec_id
;
1440 p
->real_parent
= current
;
1441 p
->parent_exec_id
= current
->self_exec_id
;
1444 spin_lock(¤t
->sighand
->siglock
);
1447 * Process group and session signals need to be delivered to just the
1448 * parent before the fork or both the parent and the child after the
1449 * fork. Restart if a signal comes in before we add the new process to
1450 * it's process group.
1451 * A fatal signal pending means that current will exit, so the new
1452 * thread can't slip out of an OOM kill (or normal SIGKILL).
1454 recalc_sigpending();
1455 if (signal_pending(current
)) {
1456 spin_unlock(¤t
->sighand
->siglock
);
1457 write_unlock_irq(&tasklist_lock
);
1458 retval
= -ERESTARTNOINTR
;
1459 goto bad_fork_free_pid
;
1462 if (likely(p
->pid
)) {
1463 ptrace_init_task(p
, (clone_flags
& CLONE_PTRACE
) || trace
);
1465 init_task_pid(p
, PIDTYPE_PID
, pid
);
1466 if (thread_group_leader(p
)) {
1467 init_task_pid(p
, PIDTYPE_PGID
, task_pgrp(current
));
1468 init_task_pid(p
, PIDTYPE_SID
, task_session(current
));
1470 if (is_child_reaper(pid
)) {
1471 ns_of_pid(pid
)->child_reaper
= p
;
1472 p
->signal
->flags
|= SIGNAL_UNKILLABLE
;
1475 p
->signal
->leader_pid
= pid
;
1476 p
->signal
->tty
= tty_kref_get(current
->signal
->tty
);
1477 list_add_tail(&p
->sibling
, &p
->real_parent
->children
);
1478 list_add_tail_rcu(&p
->tasks
, &init_task
.tasks
);
1479 attach_pid(p
, PIDTYPE_PGID
);
1480 attach_pid(p
, PIDTYPE_SID
);
1481 __this_cpu_inc(process_counts
);
1483 current
->signal
->nr_threads
++;
1484 atomic_inc(¤t
->signal
->live
);
1485 atomic_inc(¤t
->signal
->sigcnt
);
1486 list_add_tail_rcu(&p
->thread_group
,
1487 &p
->group_leader
->thread_group
);
1488 list_add_tail_rcu(&p
->thread_node
,
1489 &p
->signal
->thread_head
);
1491 attach_pid(p
, PIDTYPE_PID
);
1496 spin_unlock(¤t
->sighand
->siglock
);
1497 syscall_tracepoint_update(p
);
1498 write_unlock_irq(&tasklist_lock
);
1500 proc_fork_connector(p
);
1501 cgroup_post_fork(p
);
1502 if (clone_flags
& CLONE_THREAD
)
1503 threadgroup_change_end(current
);
1506 trace_task_newtask(p
, clone_flags
);
1511 if (pid
!= &init_struct_pid
)
1513 bad_fork_cleanup_io
:
1516 bad_fork_cleanup_namespaces
:
1517 exit_task_namespaces(p
);
1518 bad_fork_cleanup_mm
:
1521 bad_fork_cleanup_signal
:
1522 if (!(clone_flags
& CLONE_THREAD
))
1523 free_signal_struct(p
->signal
);
1524 bad_fork_cleanup_sighand
:
1525 __cleanup_sighand(p
->sighand
);
1526 bad_fork_cleanup_fs
:
1527 exit_fs(p
); /* blocking */
1528 bad_fork_cleanup_files
:
1529 exit_files(p
); /* blocking */
1530 bad_fork_cleanup_semundo
:
1532 bad_fork_cleanup_audit
:
1534 bad_fork_cleanup_perf
:
1535 perf_event_free_task(p
);
1536 bad_fork_cleanup_policy
:
1538 mpol_put(p
->mempolicy
);
1539 bad_fork_cleanup_cgroup
:
1541 if (clone_flags
& CLONE_THREAD
)
1542 threadgroup_change_end(current
);
1544 delayacct_tsk_free(p
);
1545 module_put(task_thread_info(p
)->exec_domain
->module
);
1546 bad_fork_cleanup_count
:
1547 atomic_dec(&p
->cred
->user
->processes
);
1552 return ERR_PTR(retval
);
1555 static inline void init_idle_pids(struct pid_link
*links
)
1559 for (type
= PIDTYPE_PID
; type
< PIDTYPE_MAX
; ++type
) {
1560 INIT_HLIST_NODE(&links
[type
].node
); /* not really needed */
1561 links
[type
].pid
= &init_struct_pid
;
1565 struct task_struct
*fork_idle(int cpu
)
1567 struct task_struct
*task
;
1568 task
= copy_process(CLONE_VM
, 0, 0, NULL
, &init_struct_pid
, 0);
1569 if (!IS_ERR(task
)) {
1570 init_idle_pids(task
->pids
);
1571 init_idle(task
, cpu
);
1578 * Ok, this is the main fork-routine.
1580 * It copies the process, and if successful kick-starts
1581 * it and waits for it to finish using the VM if required.
1583 long do_fork(unsigned long clone_flags
,
1584 unsigned long stack_start
,
1585 unsigned long stack_size
,
1586 int __user
*parent_tidptr
,
1587 int __user
*child_tidptr
)
1589 struct task_struct
*p
;
1594 * Determine whether and which event to report to ptracer. When
1595 * called from kernel_thread or CLONE_UNTRACED is explicitly
1596 * requested, no event is reported; otherwise, report if the event
1597 * for the type of forking is enabled.
1599 if (!(clone_flags
& CLONE_UNTRACED
)) {
1600 if (clone_flags
& CLONE_VFORK
)
1601 trace
= PTRACE_EVENT_VFORK
;
1602 else if ((clone_flags
& CSIGNAL
) != SIGCHLD
)
1603 trace
= PTRACE_EVENT_CLONE
;
1605 trace
= PTRACE_EVENT_FORK
;
1607 if (likely(!ptrace_event_enabled(current
, trace
)))
1611 p
= copy_process(clone_flags
, stack_start
, stack_size
,
1612 child_tidptr
, NULL
, trace
);
1614 * Do this prior waking up the new thread - the thread pointer
1615 * might get invalid after that point, if the thread exits quickly.
1618 struct completion vfork
;
1621 trace_sched_process_fork(current
, p
);
1623 pid
= get_task_pid(p
, PIDTYPE_PID
);
1626 if (clone_flags
& CLONE_PARENT_SETTID
)
1627 put_user(nr
, parent_tidptr
);
1629 if (clone_flags
& CLONE_VFORK
) {
1630 p
->vfork_done
= &vfork
;
1631 init_completion(&vfork
);
1635 wake_up_new_task(p
);
1637 /* forking complete and child started to run, tell ptracer */
1638 if (unlikely(trace
))
1639 ptrace_event_pid(trace
, pid
);
1641 if (clone_flags
& CLONE_VFORK
) {
1642 if (!wait_for_vfork_done(p
, &vfork
))
1643 ptrace_event_pid(PTRACE_EVENT_VFORK_DONE
, pid
);
1654 * Create a kernel thread.
1656 pid_t
kernel_thread(int (*fn
)(void *), void *arg
, unsigned long flags
)
1658 return do_fork(flags
|CLONE_VM
|CLONE_UNTRACED
, (unsigned long)fn
,
1659 (unsigned long)arg
, NULL
, NULL
);
1662 #ifdef __ARCH_WANT_SYS_FORK
1663 SYSCALL_DEFINE0(fork
)
1666 return do_fork(SIGCHLD
, 0, 0, NULL
, NULL
);
1668 /* can not support in nommu mode */
1674 #ifdef __ARCH_WANT_SYS_VFORK
1675 SYSCALL_DEFINE0(vfork
)
1677 return do_fork(CLONE_VFORK
| CLONE_VM
| SIGCHLD
, 0,
1682 #ifdef __ARCH_WANT_SYS_CLONE
1683 #ifdef CONFIG_CLONE_BACKWARDS
1684 SYSCALL_DEFINE5(clone
, unsigned long, clone_flags
, unsigned long, newsp
,
1685 int __user
*, parent_tidptr
,
1687 int __user
*, child_tidptr
)
1688 #elif defined(CONFIG_CLONE_BACKWARDS2)
1689 SYSCALL_DEFINE5(clone
, unsigned long, newsp
, unsigned long, clone_flags
,
1690 int __user
*, parent_tidptr
,
1691 int __user
*, child_tidptr
,
1693 #elif defined(CONFIG_CLONE_BACKWARDS3)
1694 SYSCALL_DEFINE6(clone
, unsigned long, clone_flags
, unsigned long, newsp
,
1696 int __user
*, parent_tidptr
,
1697 int __user
*, child_tidptr
,
1700 SYSCALL_DEFINE5(clone
, unsigned long, clone_flags
, unsigned long, newsp
,
1701 int __user
*, parent_tidptr
,
1702 int __user
*, child_tidptr
,
1706 return do_fork(clone_flags
, newsp
, 0, parent_tidptr
, child_tidptr
);
1710 #ifndef ARCH_MIN_MMSTRUCT_ALIGN
1711 #define ARCH_MIN_MMSTRUCT_ALIGN 0
1714 static void sighand_ctor(void *data
)
1716 struct sighand_struct
*sighand
= data
;
1718 spin_lock_init(&sighand
->siglock
);
1719 init_waitqueue_head(&sighand
->signalfd_wqh
);
1722 void __init
proc_caches_init(void)
1724 sighand_cachep
= kmem_cache_create("sighand_cache",
1725 sizeof(struct sighand_struct
), 0,
1726 SLAB_HWCACHE_ALIGN
|SLAB_PANIC
|SLAB_DESTROY_BY_RCU
|
1727 SLAB_NOTRACK
, sighand_ctor
);
1728 signal_cachep
= kmem_cache_create("signal_cache",
1729 sizeof(struct signal_struct
), 0,
1730 SLAB_HWCACHE_ALIGN
|SLAB_PANIC
|SLAB_NOTRACK
, NULL
);
1731 files_cachep
= kmem_cache_create("files_cache",
1732 sizeof(struct files_struct
), 0,
1733 SLAB_HWCACHE_ALIGN
|SLAB_PANIC
|SLAB_NOTRACK
, NULL
);
1734 fs_cachep
= kmem_cache_create("fs_cache",
1735 sizeof(struct fs_struct
), 0,
1736 SLAB_HWCACHE_ALIGN
|SLAB_PANIC
|SLAB_NOTRACK
, NULL
);
1738 * FIXME! The "sizeof(struct mm_struct)" currently includes the
1739 * whole struct cpumask for the OFFSTACK case. We could change
1740 * this to *only* allocate as much of it as required by the
1741 * maximum number of CPU's we can ever have. The cpumask_allocation
1742 * is at the end of the structure, exactly for that reason.
1744 mm_cachep
= kmem_cache_create("mm_struct",
1745 sizeof(struct mm_struct
), ARCH_MIN_MMSTRUCT_ALIGN
,
1746 SLAB_HWCACHE_ALIGN
|SLAB_PANIC
|SLAB_NOTRACK
, NULL
);
1747 vm_area_cachep
= KMEM_CACHE(vm_area_struct
, SLAB_PANIC
);
1749 nsproxy_cache_init();
1753 * Check constraints on flags passed to the unshare system call.
1755 static int check_unshare_flags(unsigned long unshare_flags
)
1757 if (unshare_flags
& ~(CLONE_THREAD
|CLONE_FS
|CLONE_NEWNS
|CLONE_SIGHAND
|
1758 CLONE_VM
|CLONE_FILES
|CLONE_SYSVSEM
|
1759 CLONE_NEWUTS
|CLONE_NEWIPC
|CLONE_NEWNET
|
1760 CLONE_NEWUSER
|CLONE_NEWPID
))
1763 * Not implemented, but pretend it works if there is nothing
1764 * to unshare. Note that unsharing the address space or the
1765 * signal handlers also need to unshare the signal queues (aka
1768 if (unshare_flags
& (CLONE_THREAD
| CLONE_SIGHAND
| CLONE_VM
)) {
1769 if (!thread_group_empty(current
))
1772 if (unshare_flags
& (CLONE_SIGHAND
| CLONE_VM
)) {
1773 if (atomic_read(¤t
->sighand
->count
) > 1)
1776 if (unshare_flags
& CLONE_VM
) {
1777 if (!current_is_single_threaded())
1785 * Unshare the filesystem structure if it is being shared
1787 static int unshare_fs(unsigned long unshare_flags
, struct fs_struct
**new_fsp
)
1789 struct fs_struct
*fs
= current
->fs
;
1791 if (!(unshare_flags
& CLONE_FS
) || !fs
)
1794 /* don't need lock here; in the worst case we'll do useless copy */
1798 *new_fsp
= copy_fs_struct(fs
);
1806 * Unshare file descriptor table if it is being shared
1808 static int unshare_fd(unsigned long unshare_flags
, struct files_struct
**new_fdp
)
1810 struct files_struct
*fd
= current
->files
;
1813 if ((unshare_flags
& CLONE_FILES
) &&
1814 (fd
&& atomic_read(&fd
->count
) > 1)) {
1815 *new_fdp
= dup_fd(fd
, &error
);
1824 * unshare allows a process to 'unshare' part of the process
1825 * context which was originally shared using clone. copy_*
1826 * functions used by do_fork() cannot be used here directly
1827 * because they modify an inactive task_struct that is being
1828 * constructed. Here we are modifying the current, active,
1831 SYSCALL_DEFINE1(unshare
, unsigned long, unshare_flags
)
1833 struct fs_struct
*fs
, *new_fs
= NULL
;
1834 struct files_struct
*fd
, *new_fd
= NULL
;
1835 struct cred
*new_cred
= NULL
;
1836 struct nsproxy
*new_nsproxy
= NULL
;
1841 * If unsharing a user namespace must also unshare the thread.
1843 if (unshare_flags
& CLONE_NEWUSER
)
1844 unshare_flags
|= CLONE_THREAD
| CLONE_FS
;
1846 * If unsharing vm, must also unshare signal handlers.
1848 if (unshare_flags
& CLONE_VM
)
1849 unshare_flags
|= CLONE_SIGHAND
;
1851 * If unsharing a signal handlers, must also unshare the signal queues.
1853 if (unshare_flags
& CLONE_SIGHAND
)
1854 unshare_flags
|= CLONE_THREAD
;
1856 * If unsharing namespace, must also unshare filesystem information.
1858 if (unshare_flags
& CLONE_NEWNS
)
1859 unshare_flags
|= CLONE_FS
;
1861 err
= check_unshare_flags(unshare_flags
);
1863 goto bad_unshare_out
;
1865 * CLONE_NEWIPC must also detach from the undolist: after switching
1866 * to a new ipc namespace, the semaphore arrays from the old
1867 * namespace are unreachable.
1869 if (unshare_flags
& (CLONE_NEWIPC
|CLONE_SYSVSEM
))
1871 err
= unshare_fs(unshare_flags
, &new_fs
);
1873 goto bad_unshare_out
;
1874 err
= unshare_fd(unshare_flags
, &new_fd
);
1876 goto bad_unshare_cleanup_fs
;
1877 err
= unshare_userns(unshare_flags
, &new_cred
);
1879 goto bad_unshare_cleanup_fd
;
1880 err
= unshare_nsproxy_namespaces(unshare_flags
, &new_nsproxy
,
1883 goto bad_unshare_cleanup_cred
;
1885 if (new_fs
|| new_fd
|| do_sysvsem
|| new_cred
|| new_nsproxy
) {
1888 * CLONE_SYSVSEM is equivalent to sys_exit().
1894 switch_task_namespaces(current
, new_nsproxy
);
1900 spin_lock(&fs
->lock
);
1901 current
->fs
= new_fs
;
1906 spin_unlock(&fs
->lock
);
1910 fd
= current
->files
;
1911 current
->files
= new_fd
;
1915 task_unlock(current
);
1918 /* Install the new user namespace */
1919 commit_creds(new_cred
);
1924 bad_unshare_cleanup_cred
:
1927 bad_unshare_cleanup_fd
:
1929 put_files_struct(new_fd
);
1931 bad_unshare_cleanup_fs
:
1933 free_fs_struct(new_fs
);
1940 * Helper to unshare the files of the current task.
1941 * We don't want to expose copy_files internals to
1942 * the exec layer of the kernel.
1945 int unshare_files(struct files_struct
**displaced
)
1947 struct task_struct
*task
= current
;
1948 struct files_struct
*copy
= NULL
;
1951 error
= unshare_fd(CLONE_FILES
, ©
);
1952 if (error
|| !copy
) {
1956 *displaced
= task
->files
;