mfd: wm8350-i2c: Make sure the i2c regmap functions are compiled
[linux/fpc-iii.git] / net / ipv4 / tcp_input.c
blob9eef76176704187829a9f826f4a9c1dd0cfae192
1 /*
2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
6 * Implementation of the Transmission Control Protocol(TCP).
8 * Authors: Ross Biro
9 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10 * Mark Evans, <evansmp@uhura.aston.ac.uk>
11 * Corey Minyard <wf-rch!minyard@relay.EU.net>
12 * Florian La Roche, <flla@stud.uni-sb.de>
13 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
14 * Linus Torvalds, <torvalds@cs.helsinki.fi>
15 * Alan Cox, <gw4pts@gw4pts.ampr.org>
16 * Matthew Dillon, <dillon@apollo.west.oic.com>
17 * Arnt Gulbrandsen, <agulbra@nvg.unit.no>
18 * Jorge Cwik, <jorge@laser.satlink.net>
22 * Changes:
23 * Pedro Roque : Fast Retransmit/Recovery.
24 * Two receive queues.
25 * Retransmit queue handled by TCP.
26 * Better retransmit timer handling.
27 * New congestion avoidance.
28 * Header prediction.
29 * Variable renaming.
31 * Eric : Fast Retransmit.
32 * Randy Scott : MSS option defines.
33 * Eric Schenk : Fixes to slow start algorithm.
34 * Eric Schenk : Yet another double ACK bug.
35 * Eric Schenk : Delayed ACK bug fixes.
36 * Eric Schenk : Floyd style fast retrans war avoidance.
37 * David S. Miller : Don't allow zero congestion window.
38 * Eric Schenk : Fix retransmitter so that it sends
39 * next packet on ack of previous packet.
40 * Andi Kleen : Moved open_request checking here
41 * and process RSTs for open_requests.
42 * Andi Kleen : Better prune_queue, and other fixes.
43 * Andrey Savochkin: Fix RTT measurements in the presence of
44 * timestamps.
45 * Andrey Savochkin: Check sequence numbers correctly when
46 * removing SACKs due to in sequence incoming
47 * data segments.
48 * Andi Kleen: Make sure we never ack data there is not
49 * enough room for. Also make this condition
50 * a fatal error if it might still happen.
51 * Andi Kleen: Add tcp_measure_rcv_mss to make
52 * connections with MSS<min(MTU,ann. MSS)
53 * work without delayed acks.
54 * Andi Kleen: Process packets with PSH set in the
55 * fast path.
56 * J Hadi Salim: ECN support
57 * Andrei Gurtov,
58 * Pasi Sarolahti,
59 * Panu Kuhlberg: Experimental audit of TCP (re)transmission
60 * engine. Lots of bugs are found.
61 * Pasi Sarolahti: F-RTO for dealing with spurious RTOs
64 #define pr_fmt(fmt) "TCP: " fmt
66 #include <linux/mm.h>
67 #include <linux/slab.h>
68 #include <linux/module.h>
69 #include <linux/sysctl.h>
70 #include <linux/kernel.h>
71 #include <net/dst.h>
72 #include <net/tcp.h>
73 #include <net/inet_common.h>
74 #include <linux/ipsec.h>
75 #include <asm/unaligned.h>
76 #include <net/netdma.h>
78 int sysctl_tcp_timestamps __read_mostly = 1;
79 int sysctl_tcp_window_scaling __read_mostly = 1;
80 int sysctl_tcp_sack __read_mostly = 1;
81 int sysctl_tcp_fack __read_mostly = 1;
82 int sysctl_tcp_reordering __read_mostly = TCP_FASTRETRANS_THRESH;
83 EXPORT_SYMBOL(sysctl_tcp_reordering);
84 int sysctl_tcp_dsack __read_mostly = 1;
85 int sysctl_tcp_app_win __read_mostly = 31;
86 int sysctl_tcp_adv_win_scale __read_mostly = 1;
87 EXPORT_SYMBOL(sysctl_tcp_adv_win_scale);
89 /* rfc5961 challenge ack rate limiting */
90 int sysctl_tcp_challenge_ack_limit = 1000;
92 int sysctl_tcp_stdurg __read_mostly;
93 int sysctl_tcp_rfc1337 __read_mostly;
94 int sysctl_tcp_max_orphans __read_mostly = NR_FILE;
95 int sysctl_tcp_frto __read_mostly = 2;
97 int sysctl_tcp_thin_dupack __read_mostly;
99 int sysctl_tcp_moderate_rcvbuf __read_mostly = 1;
100 int sysctl_tcp_early_retrans __read_mostly = 3;
102 #define FLAG_DATA 0x01 /* Incoming frame contained data. */
103 #define FLAG_WIN_UPDATE 0x02 /* Incoming ACK was a window update. */
104 #define FLAG_DATA_ACKED 0x04 /* This ACK acknowledged new data. */
105 #define FLAG_RETRANS_DATA_ACKED 0x08 /* "" "" some of which was retransmitted. */
106 #define FLAG_SYN_ACKED 0x10 /* This ACK acknowledged SYN. */
107 #define FLAG_DATA_SACKED 0x20 /* New SACK. */
108 #define FLAG_ECE 0x40 /* ECE in this ACK */
109 #define FLAG_SLOWPATH 0x100 /* Do not skip RFC checks for window update.*/
110 #define FLAG_ORIG_SACK_ACKED 0x200 /* Never retransmitted data are (s)acked */
111 #define FLAG_SND_UNA_ADVANCED 0x400 /* Snd_una was changed (!= FLAG_DATA_ACKED) */
112 #define FLAG_DSACKING_ACK 0x800 /* SACK blocks contained D-SACK info */
113 #define FLAG_SACK_RENEGING 0x2000 /* snd_una advanced to a sacked seq */
114 #define FLAG_UPDATE_TS_RECENT 0x4000 /* tcp_replace_ts_recent() */
116 #define FLAG_ACKED (FLAG_DATA_ACKED|FLAG_SYN_ACKED)
117 #define FLAG_NOT_DUP (FLAG_DATA|FLAG_WIN_UPDATE|FLAG_ACKED)
118 #define FLAG_CA_ALERT (FLAG_DATA_SACKED|FLAG_ECE)
119 #define FLAG_FORWARD_PROGRESS (FLAG_ACKED|FLAG_DATA_SACKED)
121 #define TCP_REMNANT (TCP_FLAG_FIN|TCP_FLAG_URG|TCP_FLAG_SYN|TCP_FLAG_PSH)
122 #define TCP_HP_BITS (~(TCP_RESERVED_BITS|TCP_FLAG_PSH))
124 /* Adapt the MSS value used to make delayed ack decision to the
125 * real world.
127 static void tcp_measure_rcv_mss(struct sock *sk, const struct sk_buff *skb)
129 struct inet_connection_sock *icsk = inet_csk(sk);
130 const unsigned int lss = icsk->icsk_ack.last_seg_size;
131 unsigned int len;
133 icsk->icsk_ack.last_seg_size = 0;
135 /* skb->len may jitter because of SACKs, even if peer
136 * sends good full-sized frames.
138 len = skb_shinfo(skb)->gso_size ? : skb->len;
139 if (len >= icsk->icsk_ack.rcv_mss) {
140 icsk->icsk_ack.rcv_mss = len;
141 } else {
142 /* Otherwise, we make more careful check taking into account,
143 * that SACKs block is variable.
145 * "len" is invariant segment length, including TCP header.
147 len += skb->data - skb_transport_header(skb);
148 if (len >= TCP_MSS_DEFAULT + sizeof(struct tcphdr) ||
149 /* If PSH is not set, packet should be
150 * full sized, provided peer TCP is not badly broken.
151 * This observation (if it is correct 8)) allows
152 * to handle super-low mtu links fairly.
154 (len >= TCP_MIN_MSS + sizeof(struct tcphdr) &&
155 !(tcp_flag_word(tcp_hdr(skb)) & TCP_REMNANT))) {
156 /* Subtract also invariant (if peer is RFC compliant),
157 * tcp header plus fixed timestamp option length.
158 * Resulting "len" is MSS free of SACK jitter.
160 len -= tcp_sk(sk)->tcp_header_len;
161 icsk->icsk_ack.last_seg_size = len;
162 if (len == lss) {
163 icsk->icsk_ack.rcv_mss = len;
164 return;
167 if (icsk->icsk_ack.pending & ICSK_ACK_PUSHED)
168 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED2;
169 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED;
173 static void tcp_incr_quickack(struct sock *sk)
175 struct inet_connection_sock *icsk = inet_csk(sk);
176 unsigned int quickacks = tcp_sk(sk)->rcv_wnd / (2 * icsk->icsk_ack.rcv_mss);
178 if (quickacks == 0)
179 quickacks = 2;
180 if (quickacks > icsk->icsk_ack.quick)
181 icsk->icsk_ack.quick = min(quickacks, TCP_MAX_QUICKACKS);
184 static void tcp_enter_quickack_mode(struct sock *sk)
186 struct inet_connection_sock *icsk = inet_csk(sk);
187 tcp_incr_quickack(sk);
188 icsk->icsk_ack.pingpong = 0;
189 icsk->icsk_ack.ato = TCP_ATO_MIN;
192 /* Send ACKs quickly, if "quick" count is not exhausted
193 * and the session is not interactive.
196 static inline bool tcp_in_quickack_mode(const struct sock *sk)
198 const struct inet_connection_sock *icsk = inet_csk(sk);
200 return icsk->icsk_ack.quick && !icsk->icsk_ack.pingpong;
203 static inline void TCP_ECN_queue_cwr(struct tcp_sock *tp)
205 if (tp->ecn_flags & TCP_ECN_OK)
206 tp->ecn_flags |= TCP_ECN_QUEUE_CWR;
209 static inline void TCP_ECN_accept_cwr(struct tcp_sock *tp, const struct sk_buff *skb)
211 if (tcp_hdr(skb)->cwr)
212 tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
215 static inline void TCP_ECN_withdraw_cwr(struct tcp_sock *tp)
217 tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
220 static inline void TCP_ECN_check_ce(struct tcp_sock *tp, const struct sk_buff *skb)
222 if (!(tp->ecn_flags & TCP_ECN_OK))
223 return;
225 switch (TCP_SKB_CB(skb)->ip_dsfield & INET_ECN_MASK) {
226 case INET_ECN_NOT_ECT:
227 /* Funny extension: if ECT is not set on a segment,
228 * and we already seen ECT on a previous segment,
229 * it is probably a retransmit.
231 if (tp->ecn_flags & TCP_ECN_SEEN)
232 tcp_enter_quickack_mode((struct sock *)tp);
233 break;
234 case INET_ECN_CE:
235 if (!(tp->ecn_flags & TCP_ECN_DEMAND_CWR)) {
236 /* Better not delay acks, sender can have a very low cwnd */
237 tcp_enter_quickack_mode((struct sock *)tp);
238 tp->ecn_flags |= TCP_ECN_DEMAND_CWR;
240 /* fallinto */
241 default:
242 tp->ecn_flags |= TCP_ECN_SEEN;
246 static inline void TCP_ECN_rcv_synack(struct tcp_sock *tp, const struct tcphdr *th)
248 if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || th->cwr))
249 tp->ecn_flags &= ~TCP_ECN_OK;
252 static inline void TCP_ECN_rcv_syn(struct tcp_sock *tp, const struct tcphdr *th)
254 if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || !th->cwr))
255 tp->ecn_flags &= ~TCP_ECN_OK;
258 static bool TCP_ECN_rcv_ecn_echo(const struct tcp_sock *tp, const struct tcphdr *th)
260 if (th->ece && !th->syn && (tp->ecn_flags & TCP_ECN_OK))
261 return true;
262 return false;
265 /* Buffer size and advertised window tuning.
267 * 1. Tuning sk->sk_sndbuf, when connection enters established state.
270 static void tcp_fixup_sndbuf(struct sock *sk)
272 int sndmem = SKB_TRUESIZE(tcp_sk(sk)->rx_opt.mss_clamp + MAX_TCP_HEADER);
274 sndmem *= TCP_INIT_CWND;
275 if (sk->sk_sndbuf < sndmem)
276 sk->sk_sndbuf = min(sndmem, sysctl_tcp_wmem[2]);
279 /* 2. Tuning advertised window (window_clamp, rcv_ssthresh)
281 * All tcp_full_space() is split to two parts: "network" buffer, allocated
282 * forward and advertised in receiver window (tp->rcv_wnd) and
283 * "application buffer", required to isolate scheduling/application
284 * latencies from network.
285 * window_clamp is maximal advertised window. It can be less than
286 * tcp_full_space(), in this case tcp_full_space() - window_clamp
287 * is reserved for "application" buffer. The less window_clamp is
288 * the smoother our behaviour from viewpoint of network, but the lower
289 * throughput and the higher sensitivity of the connection to losses. 8)
291 * rcv_ssthresh is more strict window_clamp used at "slow start"
292 * phase to predict further behaviour of this connection.
293 * It is used for two goals:
294 * - to enforce header prediction at sender, even when application
295 * requires some significant "application buffer". It is check #1.
296 * - to prevent pruning of receive queue because of misprediction
297 * of receiver window. Check #2.
299 * The scheme does not work when sender sends good segments opening
300 * window and then starts to feed us spaghetti. But it should work
301 * in common situations. Otherwise, we have to rely on queue collapsing.
304 /* Slow part of check#2. */
305 static int __tcp_grow_window(const struct sock *sk, const struct sk_buff *skb)
307 struct tcp_sock *tp = tcp_sk(sk);
308 /* Optimize this! */
309 int truesize = tcp_win_from_space(skb->truesize) >> 1;
310 int window = tcp_win_from_space(sysctl_tcp_rmem[2]) >> 1;
312 while (tp->rcv_ssthresh <= window) {
313 if (truesize <= skb->len)
314 return 2 * inet_csk(sk)->icsk_ack.rcv_mss;
316 truesize >>= 1;
317 window >>= 1;
319 return 0;
322 static void tcp_grow_window(struct sock *sk, const struct sk_buff *skb)
324 struct tcp_sock *tp = tcp_sk(sk);
326 /* Check #1 */
327 if (tp->rcv_ssthresh < tp->window_clamp &&
328 (int)tp->rcv_ssthresh < tcp_space(sk) &&
329 !sk_under_memory_pressure(sk)) {
330 int incr;
332 /* Check #2. Increase window, if skb with such overhead
333 * will fit to rcvbuf in future.
335 if (tcp_win_from_space(skb->truesize) <= skb->len)
336 incr = 2 * tp->advmss;
337 else
338 incr = __tcp_grow_window(sk, skb);
340 if (incr) {
341 incr = max_t(int, incr, 2 * skb->len);
342 tp->rcv_ssthresh = min(tp->rcv_ssthresh + incr,
343 tp->window_clamp);
344 inet_csk(sk)->icsk_ack.quick |= 1;
349 /* 3. Tuning rcvbuf, when connection enters established state. */
350 static void tcp_fixup_rcvbuf(struct sock *sk)
352 u32 mss = tcp_sk(sk)->advmss;
353 int rcvmem;
355 rcvmem = 2 * SKB_TRUESIZE(mss + MAX_TCP_HEADER) *
356 tcp_default_init_rwnd(mss);
358 if (sk->sk_rcvbuf < rcvmem)
359 sk->sk_rcvbuf = min(rcvmem, sysctl_tcp_rmem[2]);
362 /* 4. Try to fixup all. It is made immediately after connection enters
363 * established state.
365 void tcp_init_buffer_space(struct sock *sk)
367 struct tcp_sock *tp = tcp_sk(sk);
368 int maxwin;
370 if (!(sk->sk_userlocks & SOCK_RCVBUF_LOCK))
371 tcp_fixup_rcvbuf(sk);
372 if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK))
373 tcp_fixup_sndbuf(sk);
375 tp->rcvq_space.space = tp->rcv_wnd;
377 maxwin = tcp_full_space(sk);
379 if (tp->window_clamp >= maxwin) {
380 tp->window_clamp = maxwin;
382 if (sysctl_tcp_app_win && maxwin > 4 * tp->advmss)
383 tp->window_clamp = max(maxwin -
384 (maxwin >> sysctl_tcp_app_win),
385 4 * tp->advmss);
388 /* Force reservation of one segment. */
389 if (sysctl_tcp_app_win &&
390 tp->window_clamp > 2 * tp->advmss &&
391 tp->window_clamp + tp->advmss > maxwin)
392 tp->window_clamp = max(2 * tp->advmss, maxwin - tp->advmss);
394 tp->rcv_ssthresh = min(tp->rcv_ssthresh, tp->window_clamp);
395 tp->snd_cwnd_stamp = tcp_time_stamp;
398 /* 5. Recalculate window clamp after socket hit its memory bounds. */
399 static void tcp_clamp_window(struct sock *sk)
401 struct tcp_sock *tp = tcp_sk(sk);
402 struct inet_connection_sock *icsk = inet_csk(sk);
404 icsk->icsk_ack.quick = 0;
406 if (sk->sk_rcvbuf < sysctl_tcp_rmem[2] &&
407 !(sk->sk_userlocks & SOCK_RCVBUF_LOCK) &&
408 !sk_under_memory_pressure(sk) &&
409 sk_memory_allocated(sk) < sk_prot_mem_limits(sk, 0)) {
410 sk->sk_rcvbuf = min(atomic_read(&sk->sk_rmem_alloc),
411 sysctl_tcp_rmem[2]);
413 if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf)
414 tp->rcv_ssthresh = min(tp->window_clamp, 2U * tp->advmss);
417 /* Initialize RCV_MSS value.
418 * RCV_MSS is an our guess about MSS used by the peer.
419 * We haven't any direct information about the MSS.
420 * It's better to underestimate the RCV_MSS rather than overestimate.
421 * Overestimations make us ACKing less frequently than needed.
422 * Underestimations are more easy to detect and fix by tcp_measure_rcv_mss().
424 void tcp_initialize_rcv_mss(struct sock *sk)
426 const struct tcp_sock *tp = tcp_sk(sk);
427 unsigned int hint = min_t(unsigned int, tp->advmss, tp->mss_cache);
429 hint = min(hint, tp->rcv_wnd / 2);
430 hint = min(hint, TCP_MSS_DEFAULT);
431 hint = max(hint, TCP_MIN_MSS);
433 inet_csk(sk)->icsk_ack.rcv_mss = hint;
435 EXPORT_SYMBOL(tcp_initialize_rcv_mss);
437 /* Receiver "autotuning" code.
439 * The algorithm for RTT estimation w/o timestamps is based on
440 * Dynamic Right-Sizing (DRS) by Wu Feng and Mike Fisk of LANL.
441 * <http://public.lanl.gov/radiant/pubs.html#DRS>
443 * More detail on this code can be found at
444 * <http://staff.psc.edu/jheffner/>,
445 * though this reference is out of date. A new paper
446 * is pending.
448 static void tcp_rcv_rtt_update(struct tcp_sock *tp, u32 sample, int win_dep)
450 u32 new_sample = tp->rcv_rtt_est.rtt;
451 long m = sample;
453 if (m == 0)
454 m = 1;
456 if (new_sample != 0) {
457 /* If we sample in larger samples in the non-timestamp
458 * case, we could grossly overestimate the RTT especially
459 * with chatty applications or bulk transfer apps which
460 * are stalled on filesystem I/O.
462 * Also, since we are only going for a minimum in the
463 * non-timestamp case, we do not smooth things out
464 * else with timestamps disabled convergence takes too
465 * long.
467 if (!win_dep) {
468 m -= (new_sample >> 3);
469 new_sample += m;
470 } else {
471 m <<= 3;
472 if (m < new_sample)
473 new_sample = m;
475 } else {
476 /* No previous measure. */
477 new_sample = m << 3;
480 if (tp->rcv_rtt_est.rtt != new_sample)
481 tp->rcv_rtt_est.rtt = new_sample;
484 static inline void tcp_rcv_rtt_measure(struct tcp_sock *tp)
486 if (tp->rcv_rtt_est.time == 0)
487 goto new_measure;
488 if (before(tp->rcv_nxt, tp->rcv_rtt_est.seq))
489 return;
490 tcp_rcv_rtt_update(tp, tcp_time_stamp - tp->rcv_rtt_est.time, 1);
492 new_measure:
493 tp->rcv_rtt_est.seq = tp->rcv_nxt + tp->rcv_wnd;
494 tp->rcv_rtt_est.time = tcp_time_stamp;
497 static inline void tcp_rcv_rtt_measure_ts(struct sock *sk,
498 const struct sk_buff *skb)
500 struct tcp_sock *tp = tcp_sk(sk);
501 if (tp->rx_opt.rcv_tsecr &&
502 (TCP_SKB_CB(skb)->end_seq -
503 TCP_SKB_CB(skb)->seq >= inet_csk(sk)->icsk_ack.rcv_mss))
504 tcp_rcv_rtt_update(tp, tcp_time_stamp - tp->rx_opt.rcv_tsecr, 0);
508 * This function should be called every time data is copied to user space.
509 * It calculates the appropriate TCP receive buffer space.
511 void tcp_rcv_space_adjust(struct sock *sk)
513 struct tcp_sock *tp = tcp_sk(sk);
514 int time;
515 int space;
517 if (tp->rcvq_space.time == 0)
518 goto new_measure;
520 time = tcp_time_stamp - tp->rcvq_space.time;
521 if (time < (tp->rcv_rtt_est.rtt >> 3) || tp->rcv_rtt_est.rtt == 0)
522 return;
524 space = 2 * (tp->copied_seq - tp->rcvq_space.seq);
526 space = max(tp->rcvq_space.space, space);
528 if (tp->rcvq_space.space != space) {
529 int rcvmem;
531 tp->rcvq_space.space = space;
533 if (sysctl_tcp_moderate_rcvbuf &&
534 !(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) {
535 int new_clamp = space;
537 /* Receive space grows, normalize in order to
538 * take into account packet headers and sk_buff
539 * structure overhead.
541 space /= tp->advmss;
542 if (!space)
543 space = 1;
544 rcvmem = SKB_TRUESIZE(tp->advmss + MAX_TCP_HEADER);
545 while (tcp_win_from_space(rcvmem) < tp->advmss)
546 rcvmem += 128;
547 space *= rcvmem;
548 space = min(space, sysctl_tcp_rmem[2]);
549 if (space > sk->sk_rcvbuf) {
550 sk->sk_rcvbuf = space;
552 /* Make the window clamp follow along. */
553 tp->window_clamp = new_clamp;
558 new_measure:
559 tp->rcvq_space.seq = tp->copied_seq;
560 tp->rcvq_space.time = tcp_time_stamp;
563 /* There is something which you must keep in mind when you analyze the
564 * behavior of the tp->ato delayed ack timeout interval. When a
565 * connection starts up, we want to ack as quickly as possible. The
566 * problem is that "good" TCP's do slow start at the beginning of data
567 * transmission. The means that until we send the first few ACK's the
568 * sender will sit on his end and only queue most of his data, because
569 * he can only send snd_cwnd unacked packets at any given time. For
570 * each ACK we send, he increments snd_cwnd and transmits more of his
571 * queue. -DaveM
573 static void tcp_event_data_recv(struct sock *sk, struct sk_buff *skb)
575 struct tcp_sock *tp = tcp_sk(sk);
576 struct inet_connection_sock *icsk = inet_csk(sk);
577 u32 now;
579 inet_csk_schedule_ack(sk);
581 tcp_measure_rcv_mss(sk, skb);
583 tcp_rcv_rtt_measure(tp);
585 now = tcp_time_stamp;
587 if (!icsk->icsk_ack.ato) {
588 /* The _first_ data packet received, initialize
589 * delayed ACK engine.
591 tcp_incr_quickack(sk);
592 icsk->icsk_ack.ato = TCP_ATO_MIN;
593 } else {
594 int m = now - icsk->icsk_ack.lrcvtime;
596 if (m <= TCP_ATO_MIN / 2) {
597 /* The fastest case is the first. */
598 icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + TCP_ATO_MIN / 2;
599 } else if (m < icsk->icsk_ack.ato) {
600 icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + m;
601 if (icsk->icsk_ack.ato > icsk->icsk_rto)
602 icsk->icsk_ack.ato = icsk->icsk_rto;
603 } else if (m > icsk->icsk_rto) {
604 /* Too long gap. Apparently sender failed to
605 * restart window, so that we send ACKs quickly.
607 tcp_incr_quickack(sk);
608 sk_mem_reclaim(sk);
611 icsk->icsk_ack.lrcvtime = now;
613 TCP_ECN_check_ce(tp, skb);
615 if (skb->len >= 128)
616 tcp_grow_window(sk, skb);
619 /* Called to compute a smoothed rtt estimate. The data fed to this
620 * routine either comes from timestamps, or from segments that were
621 * known _not_ to have been retransmitted [see Karn/Partridge
622 * Proceedings SIGCOMM 87]. The algorithm is from the SIGCOMM 88
623 * piece by Van Jacobson.
624 * NOTE: the next three routines used to be one big routine.
625 * To save cycles in the RFC 1323 implementation it was better to break
626 * it up into three procedures. -- erics
628 static void tcp_rtt_estimator(struct sock *sk, const __u32 mrtt)
630 struct tcp_sock *tp = tcp_sk(sk);
631 long m = mrtt; /* RTT */
633 /* The following amusing code comes from Jacobson's
634 * article in SIGCOMM '88. Note that rtt and mdev
635 * are scaled versions of rtt and mean deviation.
636 * This is designed to be as fast as possible
637 * m stands for "measurement".
639 * On a 1990 paper the rto value is changed to:
640 * RTO = rtt + 4 * mdev
642 * Funny. This algorithm seems to be very broken.
643 * These formulae increase RTO, when it should be decreased, increase
644 * too slowly, when it should be increased quickly, decrease too quickly
645 * etc. I guess in BSD RTO takes ONE value, so that it is absolutely
646 * does not matter how to _calculate_ it. Seems, it was trap
647 * that VJ failed to avoid. 8)
649 if (m == 0)
650 m = 1;
651 if (tp->srtt != 0) {
652 m -= (tp->srtt >> 3); /* m is now error in rtt est */
653 tp->srtt += m; /* rtt = 7/8 rtt + 1/8 new */
654 if (m < 0) {
655 m = -m; /* m is now abs(error) */
656 m -= (tp->mdev >> 2); /* similar update on mdev */
657 /* This is similar to one of Eifel findings.
658 * Eifel blocks mdev updates when rtt decreases.
659 * This solution is a bit different: we use finer gain
660 * for mdev in this case (alpha*beta).
661 * Like Eifel it also prevents growth of rto,
662 * but also it limits too fast rto decreases,
663 * happening in pure Eifel.
665 if (m > 0)
666 m >>= 3;
667 } else {
668 m -= (tp->mdev >> 2); /* similar update on mdev */
670 tp->mdev += m; /* mdev = 3/4 mdev + 1/4 new */
671 if (tp->mdev > tp->mdev_max) {
672 tp->mdev_max = tp->mdev;
673 if (tp->mdev_max > tp->rttvar)
674 tp->rttvar = tp->mdev_max;
676 if (after(tp->snd_una, tp->rtt_seq)) {
677 if (tp->mdev_max < tp->rttvar)
678 tp->rttvar -= (tp->rttvar - tp->mdev_max) >> 2;
679 tp->rtt_seq = tp->snd_nxt;
680 tp->mdev_max = tcp_rto_min(sk);
682 } else {
683 /* no previous measure. */
684 tp->srtt = m << 3; /* take the measured time to be rtt */
685 tp->mdev = m << 1; /* make sure rto = 3*rtt */
686 tp->mdev_max = tp->rttvar = max(tp->mdev, tcp_rto_min(sk));
687 tp->rtt_seq = tp->snd_nxt;
691 /* Set the sk_pacing_rate to allow proper sizing of TSO packets.
692 * Note: TCP stack does not yet implement pacing.
693 * FQ packet scheduler can be used to implement cheap but effective
694 * TCP pacing, to smooth the burst on large writes when packets
695 * in flight is significantly lower than cwnd (or rwin)
697 static void tcp_update_pacing_rate(struct sock *sk)
699 const struct tcp_sock *tp = tcp_sk(sk);
700 u64 rate;
702 /* set sk_pacing_rate to 200 % of current rate (mss * cwnd / srtt) */
703 rate = (u64)tp->mss_cache * 2 * (HZ << 3);
705 rate *= max(tp->snd_cwnd, tp->packets_out);
707 /* Correction for small srtt : minimum srtt being 8 (1 jiffy << 3),
708 * be conservative and assume srtt = 1 (125 us instead of 1.25 ms)
709 * We probably need usec resolution in the future.
710 * Note: This also takes care of possible srtt=0 case,
711 * when tcp_rtt_estimator() was not yet called.
713 if (tp->srtt > 8 + 2)
714 do_div(rate, tp->srtt);
716 sk->sk_pacing_rate = min_t(u64, rate, ~0U);
719 /* Calculate rto without backoff. This is the second half of Van Jacobson's
720 * routine referred to above.
722 void tcp_set_rto(struct sock *sk)
724 const struct tcp_sock *tp = tcp_sk(sk);
725 /* Old crap is replaced with new one. 8)
727 * More seriously:
728 * 1. If rtt variance happened to be less 50msec, it is hallucination.
729 * It cannot be less due to utterly erratic ACK generation made
730 * at least by solaris and freebsd. "Erratic ACKs" has _nothing_
731 * to do with delayed acks, because at cwnd>2 true delack timeout
732 * is invisible. Actually, Linux-2.4 also generates erratic
733 * ACKs in some circumstances.
735 inet_csk(sk)->icsk_rto = __tcp_set_rto(tp);
737 /* 2. Fixups made earlier cannot be right.
738 * If we do not estimate RTO correctly without them,
739 * all the algo is pure shit and should be replaced
740 * with correct one. It is exactly, which we pretend to do.
743 /* NOTE: clamping at TCP_RTO_MIN is not required, current algo
744 * guarantees that rto is higher.
746 tcp_bound_rto(sk);
749 __u32 tcp_init_cwnd(const struct tcp_sock *tp, const struct dst_entry *dst)
751 __u32 cwnd = (dst ? dst_metric(dst, RTAX_INITCWND) : 0);
753 if (!cwnd)
754 cwnd = TCP_INIT_CWND;
755 return min_t(__u32, cwnd, tp->snd_cwnd_clamp);
759 * Packet counting of FACK is based on in-order assumptions, therefore TCP
760 * disables it when reordering is detected
762 void tcp_disable_fack(struct tcp_sock *tp)
764 /* RFC3517 uses different metric in lost marker => reset on change */
765 if (tcp_is_fack(tp))
766 tp->lost_skb_hint = NULL;
767 tp->rx_opt.sack_ok &= ~TCP_FACK_ENABLED;
770 /* Take a notice that peer is sending D-SACKs */
771 static void tcp_dsack_seen(struct tcp_sock *tp)
773 tp->rx_opt.sack_ok |= TCP_DSACK_SEEN;
776 static void tcp_update_reordering(struct sock *sk, const int metric,
777 const int ts)
779 struct tcp_sock *tp = tcp_sk(sk);
780 if (metric > tp->reordering) {
781 int mib_idx;
783 tp->reordering = min(TCP_MAX_REORDERING, metric);
785 /* This exciting event is worth to be remembered. 8) */
786 if (ts)
787 mib_idx = LINUX_MIB_TCPTSREORDER;
788 else if (tcp_is_reno(tp))
789 mib_idx = LINUX_MIB_TCPRENOREORDER;
790 else if (tcp_is_fack(tp))
791 mib_idx = LINUX_MIB_TCPFACKREORDER;
792 else
793 mib_idx = LINUX_MIB_TCPSACKREORDER;
795 NET_INC_STATS_BH(sock_net(sk), mib_idx);
796 #if FASTRETRANS_DEBUG > 1
797 pr_debug("Disorder%d %d %u f%u s%u rr%d\n",
798 tp->rx_opt.sack_ok, inet_csk(sk)->icsk_ca_state,
799 tp->reordering,
800 tp->fackets_out,
801 tp->sacked_out,
802 tp->undo_marker ? tp->undo_retrans : 0);
803 #endif
804 tcp_disable_fack(tp);
807 if (metric > 0)
808 tcp_disable_early_retrans(tp);
811 /* This must be called before lost_out is incremented */
812 static void tcp_verify_retransmit_hint(struct tcp_sock *tp, struct sk_buff *skb)
814 if ((tp->retransmit_skb_hint == NULL) ||
815 before(TCP_SKB_CB(skb)->seq,
816 TCP_SKB_CB(tp->retransmit_skb_hint)->seq))
817 tp->retransmit_skb_hint = skb;
819 if (!tp->lost_out ||
820 after(TCP_SKB_CB(skb)->end_seq, tp->retransmit_high))
821 tp->retransmit_high = TCP_SKB_CB(skb)->end_seq;
824 static void tcp_skb_mark_lost(struct tcp_sock *tp, struct sk_buff *skb)
826 if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) {
827 tcp_verify_retransmit_hint(tp, skb);
829 tp->lost_out += tcp_skb_pcount(skb);
830 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
834 static void tcp_skb_mark_lost_uncond_verify(struct tcp_sock *tp,
835 struct sk_buff *skb)
837 tcp_verify_retransmit_hint(tp, skb);
839 if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) {
840 tp->lost_out += tcp_skb_pcount(skb);
841 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
845 /* This procedure tags the retransmission queue when SACKs arrive.
847 * We have three tag bits: SACKED(S), RETRANS(R) and LOST(L).
848 * Packets in queue with these bits set are counted in variables
849 * sacked_out, retrans_out and lost_out, correspondingly.
851 * Valid combinations are:
852 * Tag InFlight Description
853 * 0 1 - orig segment is in flight.
854 * S 0 - nothing flies, orig reached receiver.
855 * L 0 - nothing flies, orig lost by net.
856 * R 2 - both orig and retransmit are in flight.
857 * L|R 1 - orig is lost, retransmit is in flight.
858 * S|R 1 - orig reached receiver, retrans is still in flight.
859 * (L|S|R is logically valid, it could occur when L|R is sacked,
860 * but it is equivalent to plain S and code short-curcuits it to S.
861 * L|S is logically invalid, it would mean -1 packet in flight 8))
863 * These 6 states form finite state machine, controlled by the following events:
864 * 1. New ACK (+SACK) arrives. (tcp_sacktag_write_queue())
865 * 2. Retransmission. (tcp_retransmit_skb(), tcp_xmit_retransmit_queue())
866 * 3. Loss detection event of two flavors:
867 * A. Scoreboard estimator decided the packet is lost.
868 * A'. Reno "three dupacks" marks head of queue lost.
869 * A''. Its FACK modification, head until snd.fack is lost.
870 * B. SACK arrives sacking SND.NXT at the moment, when the
871 * segment was retransmitted.
872 * 4. D-SACK added new rule: D-SACK changes any tag to S.
874 * It is pleasant to note, that state diagram turns out to be commutative,
875 * so that we are allowed not to be bothered by order of our actions,
876 * when multiple events arrive simultaneously. (see the function below).
878 * Reordering detection.
879 * --------------------
880 * Reordering metric is maximal distance, which a packet can be displaced
881 * in packet stream. With SACKs we can estimate it:
883 * 1. SACK fills old hole and the corresponding segment was not
884 * ever retransmitted -> reordering. Alas, we cannot use it
885 * when segment was retransmitted.
886 * 2. The last flaw is solved with D-SACK. D-SACK arrives
887 * for retransmitted and already SACKed segment -> reordering..
888 * Both of these heuristics are not used in Loss state, when we cannot
889 * account for retransmits accurately.
891 * SACK block validation.
892 * ----------------------
894 * SACK block range validation checks that the received SACK block fits to
895 * the expected sequence limits, i.e., it is between SND.UNA and SND.NXT.
896 * Note that SND.UNA is not included to the range though being valid because
897 * it means that the receiver is rather inconsistent with itself reporting
898 * SACK reneging when it should advance SND.UNA. Such SACK block this is
899 * perfectly valid, however, in light of RFC2018 which explicitly states
900 * that "SACK block MUST reflect the newest segment. Even if the newest
901 * segment is going to be discarded ...", not that it looks very clever
902 * in case of head skb. Due to potentional receiver driven attacks, we
903 * choose to avoid immediate execution of a walk in write queue due to
904 * reneging and defer head skb's loss recovery to standard loss recovery
905 * procedure that will eventually trigger (nothing forbids us doing this).
907 * Implements also blockage to start_seq wrap-around. Problem lies in the
908 * fact that though start_seq (s) is before end_seq (i.e., not reversed),
909 * there's no guarantee that it will be before snd_nxt (n). The problem
910 * happens when start_seq resides between end_seq wrap (e_w) and snd_nxt
911 * wrap (s_w):
913 * <- outs wnd -> <- wrapzone ->
914 * u e n u_w e_w s n_w
915 * | | | | | | |
916 * |<------------+------+----- TCP seqno space --------------+---------->|
917 * ...-- <2^31 ->| |<--------...
918 * ...---- >2^31 ------>| |<--------...
920 * Current code wouldn't be vulnerable but it's better still to discard such
921 * crazy SACK blocks. Doing this check for start_seq alone closes somewhat
922 * similar case (end_seq after snd_nxt wrap) as earlier reversed check in
923 * snd_nxt wrap -> snd_una region will then become "well defined", i.e.,
924 * equal to the ideal case (infinite seqno space without wrap caused issues).
926 * With D-SACK the lower bound is extended to cover sequence space below
927 * SND.UNA down to undo_marker, which is the last point of interest. Yet
928 * again, D-SACK block must not to go across snd_una (for the same reason as
929 * for the normal SACK blocks, explained above). But there all simplicity
930 * ends, TCP might receive valid D-SACKs below that. As long as they reside
931 * fully below undo_marker they do not affect behavior in anyway and can
932 * therefore be safely ignored. In rare cases (which are more or less
933 * theoretical ones), the D-SACK will nicely cross that boundary due to skb
934 * fragmentation and packet reordering past skb's retransmission. To consider
935 * them correctly, the acceptable range must be extended even more though
936 * the exact amount is rather hard to quantify. However, tp->max_window can
937 * be used as an exaggerated estimate.
939 static bool tcp_is_sackblock_valid(struct tcp_sock *tp, bool is_dsack,
940 u32 start_seq, u32 end_seq)
942 /* Too far in future, or reversed (interpretation is ambiguous) */
943 if (after(end_seq, tp->snd_nxt) || !before(start_seq, end_seq))
944 return false;
946 /* Nasty start_seq wrap-around check (see comments above) */
947 if (!before(start_seq, tp->snd_nxt))
948 return false;
950 /* In outstanding window? ...This is valid exit for D-SACKs too.
951 * start_seq == snd_una is non-sensical (see comments above)
953 if (after(start_seq, tp->snd_una))
954 return true;
956 if (!is_dsack || !tp->undo_marker)
957 return false;
959 /* ...Then it's D-SACK, and must reside below snd_una completely */
960 if (after(end_seq, tp->snd_una))
961 return false;
963 if (!before(start_seq, tp->undo_marker))
964 return true;
966 /* Too old */
967 if (!after(end_seq, tp->undo_marker))
968 return false;
970 /* Undo_marker boundary crossing (overestimates a lot). Known already:
971 * start_seq < undo_marker and end_seq >= undo_marker.
973 return !before(start_seq, end_seq - tp->max_window);
976 /* Check for lost retransmit. This superb idea is borrowed from "ratehalving".
977 * Event "B". Later note: FACK people cheated me again 8), we have to account
978 * for reordering! Ugly, but should help.
980 * Search retransmitted skbs from write_queue that were sent when snd_nxt was
981 * less than what is now known to be received by the other end (derived from
982 * highest SACK block). Also calculate the lowest snd_nxt among the remaining
983 * retransmitted skbs to avoid some costly processing per ACKs.
985 static void tcp_mark_lost_retrans(struct sock *sk)
987 const struct inet_connection_sock *icsk = inet_csk(sk);
988 struct tcp_sock *tp = tcp_sk(sk);
989 struct sk_buff *skb;
990 int cnt = 0;
991 u32 new_low_seq = tp->snd_nxt;
992 u32 received_upto = tcp_highest_sack_seq(tp);
994 if (!tcp_is_fack(tp) || !tp->retrans_out ||
995 !after(received_upto, tp->lost_retrans_low) ||
996 icsk->icsk_ca_state != TCP_CA_Recovery)
997 return;
999 tcp_for_write_queue(skb, sk) {
1000 u32 ack_seq = TCP_SKB_CB(skb)->ack_seq;
1002 if (skb == tcp_send_head(sk))
1003 break;
1004 if (cnt == tp->retrans_out)
1005 break;
1006 if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
1007 continue;
1009 if (!(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS))
1010 continue;
1012 /* TODO: We would like to get rid of tcp_is_fack(tp) only
1013 * constraint here (see above) but figuring out that at
1014 * least tp->reordering SACK blocks reside between ack_seq
1015 * and received_upto is not easy task to do cheaply with
1016 * the available datastructures.
1018 * Whether FACK should check here for tp->reordering segs
1019 * in-between one could argue for either way (it would be
1020 * rather simple to implement as we could count fack_count
1021 * during the walk and do tp->fackets_out - fack_count).
1023 if (after(received_upto, ack_seq)) {
1024 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
1025 tp->retrans_out -= tcp_skb_pcount(skb);
1027 tcp_skb_mark_lost_uncond_verify(tp, skb);
1028 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPLOSTRETRANSMIT);
1029 } else {
1030 if (before(ack_seq, new_low_seq))
1031 new_low_seq = ack_seq;
1032 cnt += tcp_skb_pcount(skb);
1036 if (tp->retrans_out)
1037 tp->lost_retrans_low = new_low_seq;
1040 static bool tcp_check_dsack(struct sock *sk, const struct sk_buff *ack_skb,
1041 struct tcp_sack_block_wire *sp, int num_sacks,
1042 u32 prior_snd_una)
1044 struct tcp_sock *tp = tcp_sk(sk);
1045 u32 start_seq_0 = get_unaligned_be32(&sp[0].start_seq);
1046 u32 end_seq_0 = get_unaligned_be32(&sp[0].end_seq);
1047 bool dup_sack = false;
1049 if (before(start_seq_0, TCP_SKB_CB(ack_skb)->ack_seq)) {
1050 dup_sack = true;
1051 tcp_dsack_seen(tp);
1052 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPDSACKRECV);
1053 } else if (num_sacks > 1) {
1054 u32 end_seq_1 = get_unaligned_be32(&sp[1].end_seq);
1055 u32 start_seq_1 = get_unaligned_be32(&sp[1].start_seq);
1057 if (!after(end_seq_0, end_seq_1) &&
1058 !before(start_seq_0, start_seq_1)) {
1059 dup_sack = true;
1060 tcp_dsack_seen(tp);
1061 NET_INC_STATS_BH(sock_net(sk),
1062 LINUX_MIB_TCPDSACKOFORECV);
1066 /* D-SACK for already forgotten data... Do dumb counting. */
1067 if (dup_sack && tp->undo_marker && tp->undo_retrans > 0 &&
1068 !after(end_seq_0, prior_snd_una) &&
1069 after(end_seq_0, tp->undo_marker))
1070 tp->undo_retrans--;
1072 return dup_sack;
1075 struct tcp_sacktag_state {
1076 int reord;
1077 int fack_count;
1078 int flag;
1079 s32 rtt; /* RTT measured by SACKing never-retransmitted data */
1082 /* Check if skb is fully within the SACK block. In presence of GSO skbs,
1083 * the incoming SACK may not exactly match but we can find smaller MSS
1084 * aligned portion of it that matches. Therefore we might need to fragment
1085 * which may fail and creates some hassle (caller must handle error case
1086 * returns).
1088 * FIXME: this could be merged to shift decision code
1090 static int tcp_match_skb_to_sack(struct sock *sk, struct sk_buff *skb,
1091 u32 start_seq, u32 end_seq)
1093 int err;
1094 bool in_sack;
1095 unsigned int pkt_len;
1096 unsigned int mss;
1098 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1099 !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1101 if (tcp_skb_pcount(skb) > 1 && !in_sack &&
1102 after(TCP_SKB_CB(skb)->end_seq, start_seq)) {
1103 mss = tcp_skb_mss(skb);
1104 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1106 if (!in_sack) {
1107 pkt_len = start_seq - TCP_SKB_CB(skb)->seq;
1108 if (pkt_len < mss)
1109 pkt_len = mss;
1110 } else {
1111 pkt_len = end_seq - TCP_SKB_CB(skb)->seq;
1112 if (pkt_len < mss)
1113 return -EINVAL;
1116 /* Round if necessary so that SACKs cover only full MSSes
1117 * and/or the remaining small portion (if present)
1119 if (pkt_len > mss) {
1120 unsigned int new_len = (pkt_len / mss) * mss;
1121 if (!in_sack && new_len < pkt_len) {
1122 new_len += mss;
1123 if (new_len >= skb->len)
1124 return 0;
1126 pkt_len = new_len;
1128 err = tcp_fragment(sk, skb, pkt_len, mss);
1129 if (err < 0)
1130 return err;
1133 return in_sack;
1136 /* Mark the given newly-SACKed range as such, adjusting counters and hints. */
1137 static u8 tcp_sacktag_one(struct sock *sk,
1138 struct tcp_sacktag_state *state, u8 sacked,
1139 u32 start_seq, u32 end_seq,
1140 int dup_sack, int pcount, u32 xmit_time)
1142 struct tcp_sock *tp = tcp_sk(sk);
1143 int fack_count = state->fack_count;
1145 /* Account D-SACK for retransmitted packet. */
1146 if (dup_sack && (sacked & TCPCB_RETRANS)) {
1147 if (tp->undo_marker && tp->undo_retrans > 0 &&
1148 after(end_seq, tp->undo_marker))
1149 tp->undo_retrans--;
1150 if (sacked & TCPCB_SACKED_ACKED)
1151 state->reord = min(fack_count, state->reord);
1154 /* Nothing to do; acked frame is about to be dropped (was ACKed). */
1155 if (!after(end_seq, tp->snd_una))
1156 return sacked;
1158 if (!(sacked & TCPCB_SACKED_ACKED)) {
1159 if (sacked & TCPCB_SACKED_RETRANS) {
1160 /* If the segment is not tagged as lost,
1161 * we do not clear RETRANS, believing
1162 * that retransmission is still in flight.
1164 if (sacked & TCPCB_LOST) {
1165 sacked &= ~(TCPCB_LOST|TCPCB_SACKED_RETRANS);
1166 tp->lost_out -= pcount;
1167 tp->retrans_out -= pcount;
1169 } else {
1170 if (!(sacked & TCPCB_RETRANS)) {
1171 /* New sack for not retransmitted frame,
1172 * which was in hole. It is reordering.
1174 if (before(start_seq,
1175 tcp_highest_sack_seq(tp)))
1176 state->reord = min(fack_count,
1177 state->reord);
1178 if (!after(end_seq, tp->high_seq))
1179 state->flag |= FLAG_ORIG_SACK_ACKED;
1180 /* Pick the earliest sequence sacked for RTT */
1181 if (state->rtt < 0)
1182 state->rtt = tcp_time_stamp - xmit_time;
1185 if (sacked & TCPCB_LOST) {
1186 sacked &= ~TCPCB_LOST;
1187 tp->lost_out -= pcount;
1191 sacked |= TCPCB_SACKED_ACKED;
1192 state->flag |= FLAG_DATA_SACKED;
1193 tp->sacked_out += pcount;
1195 fack_count += pcount;
1197 /* Lost marker hint past SACKed? Tweak RFC3517 cnt */
1198 if (!tcp_is_fack(tp) && (tp->lost_skb_hint != NULL) &&
1199 before(start_seq, TCP_SKB_CB(tp->lost_skb_hint)->seq))
1200 tp->lost_cnt_hint += pcount;
1202 if (fack_count > tp->fackets_out)
1203 tp->fackets_out = fack_count;
1206 /* D-SACK. We can detect redundant retransmission in S|R and plain R
1207 * frames and clear it. undo_retrans is decreased above, L|R frames
1208 * are accounted above as well.
1210 if (dup_sack && (sacked & TCPCB_SACKED_RETRANS)) {
1211 sacked &= ~TCPCB_SACKED_RETRANS;
1212 tp->retrans_out -= pcount;
1215 return sacked;
1218 /* Shift newly-SACKed bytes from this skb to the immediately previous
1219 * already-SACKed sk_buff. Mark the newly-SACKed bytes as such.
1221 static bool tcp_shifted_skb(struct sock *sk, struct sk_buff *skb,
1222 struct tcp_sacktag_state *state,
1223 unsigned int pcount, int shifted, int mss,
1224 bool dup_sack)
1226 struct tcp_sock *tp = tcp_sk(sk);
1227 struct sk_buff *prev = tcp_write_queue_prev(sk, skb);
1228 u32 start_seq = TCP_SKB_CB(skb)->seq; /* start of newly-SACKed */
1229 u32 end_seq = start_seq + shifted; /* end of newly-SACKed */
1231 BUG_ON(!pcount);
1233 /* Adjust counters and hints for the newly sacked sequence
1234 * range but discard the return value since prev is already
1235 * marked. We must tag the range first because the seq
1236 * advancement below implicitly advances
1237 * tcp_highest_sack_seq() when skb is highest_sack.
1239 tcp_sacktag_one(sk, state, TCP_SKB_CB(skb)->sacked,
1240 start_seq, end_seq, dup_sack, pcount,
1241 TCP_SKB_CB(skb)->when);
1243 if (skb == tp->lost_skb_hint)
1244 tp->lost_cnt_hint += pcount;
1246 TCP_SKB_CB(prev)->end_seq += shifted;
1247 TCP_SKB_CB(skb)->seq += shifted;
1249 skb_shinfo(prev)->gso_segs += pcount;
1250 BUG_ON(skb_shinfo(skb)->gso_segs < pcount);
1251 skb_shinfo(skb)->gso_segs -= pcount;
1253 /* When we're adding to gso_segs == 1, gso_size will be zero,
1254 * in theory this shouldn't be necessary but as long as DSACK
1255 * code can come after this skb later on it's better to keep
1256 * setting gso_size to something.
1258 if (!skb_shinfo(prev)->gso_size) {
1259 skb_shinfo(prev)->gso_size = mss;
1260 skb_shinfo(prev)->gso_type = sk->sk_gso_type;
1263 /* CHECKME: To clear or not to clear? Mimics normal skb currently */
1264 if (skb_shinfo(skb)->gso_segs <= 1) {
1265 skb_shinfo(skb)->gso_size = 0;
1266 skb_shinfo(skb)->gso_type = 0;
1269 /* Difference in this won't matter, both ACKed by the same cumul. ACK */
1270 TCP_SKB_CB(prev)->sacked |= (TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS);
1272 if (skb->len > 0) {
1273 BUG_ON(!tcp_skb_pcount(skb));
1274 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SACKSHIFTED);
1275 return false;
1278 /* Whole SKB was eaten :-) */
1280 if (skb == tp->retransmit_skb_hint)
1281 tp->retransmit_skb_hint = prev;
1282 if (skb == tp->lost_skb_hint) {
1283 tp->lost_skb_hint = prev;
1284 tp->lost_cnt_hint -= tcp_skb_pcount(prev);
1287 TCP_SKB_CB(prev)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags;
1288 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
1289 TCP_SKB_CB(prev)->end_seq++;
1291 if (skb == tcp_highest_sack(sk))
1292 tcp_advance_highest_sack(sk, skb);
1294 tcp_unlink_write_queue(skb, sk);
1295 sk_wmem_free_skb(sk, skb);
1297 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SACKMERGED);
1299 return true;
1302 /* I wish gso_size would have a bit more sane initialization than
1303 * something-or-zero which complicates things
1305 static int tcp_skb_seglen(const struct sk_buff *skb)
1307 return tcp_skb_pcount(skb) == 1 ? skb->len : tcp_skb_mss(skb);
1310 /* Shifting pages past head area doesn't work */
1311 static int skb_can_shift(const struct sk_buff *skb)
1313 return !skb_headlen(skb) && skb_is_nonlinear(skb);
1316 /* Try collapsing SACK blocks spanning across multiple skbs to a single
1317 * skb.
1319 static struct sk_buff *tcp_shift_skb_data(struct sock *sk, struct sk_buff *skb,
1320 struct tcp_sacktag_state *state,
1321 u32 start_seq, u32 end_seq,
1322 bool dup_sack)
1324 struct tcp_sock *tp = tcp_sk(sk);
1325 struct sk_buff *prev;
1326 int mss;
1327 int pcount = 0;
1328 int len;
1329 int in_sack;
1331 if (!sk_can_gso(sk))
1332 goto fallback;
1334 /* Normally R but no L won't result in plain S */
1335 if (!dup_sack &&
1336 (TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_RETRANS)) == TCPCB_SACKED_RETRANS)
1337 goto fallback;
1338 if (!skb_can_shift(skb))
1339 goto fallback;
1340 /* This frame is about to be dropped (was ACKed). */
1341 if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
1342 goto fallback;
1344 /* Can only happen with delayed DSACK + discard craziness */
1345 if (unlikely(skb == tcp_write_queue_head(sk)))
1346 goto fallback;
1347 prev = tcp_write_queue_prev(sk, skb);
1349 if ((TCP_SKB_CB(prev)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED)
1350 goto fallback;
1352 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1353 !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1355 if (in_sack) {
1356 len = skb->len;
1357 pcount = tcp_skb_pcount(skb);
1358 mss = tcp_skb_seglen(skb);
1360 /* TODO: Fix DSACKs to not fragment already SACKed and we can
1361 * drop this restriction as unnecessary
1363 if (mss != tcp_skb_seglen(prev))
1364 goto fallback;
1365 } else {
1366 if (!after(TCP_SKB_CB(skb)->end_seq, start_seq))
1367 goto noop;
1368 /* CHECKME: This is non-MSS split case only?, this will
1369 * cause skipped skbs due to advancing loop btw, original
1370 * has that feature too
1372 if (tcp_skb_pcount(skb) <= 1)
1373 goto noop;
1375 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1376 if (!in_sack) {
1377 /* TODO: head merge to next could be attempted here
1378 * if (!after(TCP_SKB_CB(skb)->end_seq, end_seq)),
1379 * though it might not be worth of the additional hassle
1381 * ...we can probably just fallback to what was done
1382 * previously. We could try merging non-SACKed ones
1383 * as well but it probably isn't going to buy off
1384 * because later SACKs might again split them, and
1385 * it would make skb timestamp tracking considerably
1386 * harder problem.
1388 goto fallback;
1391 len = end_seq - TCP_SKB_CB(skb)->seq;
1392 BUG_ON(len < 0);
1393 BUG_ON(len > skb->len);
1395 /* MSS boundaries should be honoured or else pcount will
1396 * severely break even though it makes things bit trickier.
1397 * Optimize common case to avoid most of the divides
1399 mss = tcp_skb_mss(skb);
1401 /* TODO: Fix DSACKs to not fragment already SACKed and we can
1402 * drop this restriction as unnecessary
1404 if (mss != tcp_skb_seglen(prev))
1405 goto fallback;
1407 if (len == mss) {
1408 pcount = 1;
1409 } else if (len < mss) {
1410 goto noop;
1411 } else {
1412 pcount = len / mss;
1413 len = pcount * mss;
1417 /* tcp_sacktag_one() won't SACK-tag ranges below snd_una */
1418 if (!after(TCP_SKB_CB(skb)->seq + len, tp->snd_una))
1419 goto fallback;
1421 if (!skb_shift(prev, skb, len))
1422 goto fallback;
1423 if (!tcp_shifted_skb(sk, skb, state, pcount, len, mss, dup_sack))
1424 goto out;
1426 /* Hole filled allows collapsing with the next as well, this is very
1427 * useful when hole on every nth skb pattern happens
1429 if (prev == tcp_write_queue_tail(sk))
1430 goto out;
1431 skb = tcp_write_queue_next(sk, prev);
1433 if (!skb_can_shift(skb) ||
1434 (skb == tcp_send_head(sk)) ||
1435 ((TCP_SKB_CB(skb)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED) ||
1436 (mss != tcp_skb_seglen(skb)))
1437 goto out;
1439 len = skb->len;
1440 if (skb_shift(prev, skb, len)) {
1441 pcount += tcp_skb_pcount(skb);
1442 tcp_shifted_skb(sk, skb, state, tcp_skb_pcount(skb), len, mss, 0);
1445 out:
1446 state->fack_count += pcount;
1447 return prev;
1449 noop:
1450 return skb;
1452 fallback:
1453 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SACKSHIFTFALLBACK);
1454 return NULL;
1457 static struct sk_buff *tcp_sacktag_walk(struct sk_buff *skb, struct sock *sk,
1458 struct tcp_sack_block *next_dup,
1459 struct tcp_sacktag_state *state,
1460 u32 start_seq, u32 end_seq,
1461 bool dup_sack_in)
1463 struct tcp_sock *tp = tcp_sk(sk);
1464 struct sk_buff *tmp;
1466 tcp_for_write_queue_from(skb, sk) {
1467 int in_sack = 0;
1468 bool dup_sack = dup_sack_in;
1470 if (skb == tcp_send_head(sk))
1471 break;
1473 /* queue is in-order => we can short-circuit the walk early */
1474 if (!before(TCP_SKB_CB(skb)->seq, end_seq))
1475 break;
1477 if ((next_dup != NULL) &&
1478 before(TCP_SKB_CB(skb)->seq, next_dup->end_seq)) {
1479 in_sack = tcp_match_skb_to_sack(sk, skb,
1480 next_dup->start_seq,
1481 next_dup->end_seq);
1482 if (in_sack > 0)
1483 dup_sack = true;
1486 /* skb reference here is a bit tricky to get right, since
1487 * shifting can eat and free both this skb and the next,
1488 * so not even _safe variant of the loop is enough.
1490 if (in_sack <= 0) {
1491 tmp = tcp_shift_skb_data(sk, skb, state,
1492 start_seq, end_seq, dup_sack);
1493 if (tmp != NULL) {
1494 if (tmp != skb) {
1495 skb = tmp;
1496 continue;
1499 in_sack = 0;
1500 } else {
1501 in_sack = tcp_match_skb_to_sack(sk, skb,
1502 start_seq,
1503 end_seq);
1507 if (unlikely(in_sack < 0))
1508 break;
1510 if (in_sack) {
1511 TCP_SKB_CB(skb)->sacked =
1512 tcp_sacktag_one(sk,
1513 state,
1514 TCP_SKB_CB(skb)->sacked,
1515 TCP_SKB_CB(skb)->seq,
1516 TCP_SKB_CB(skb)->end_seq,
1517 dup_sack,
1518 tcp_skb_pcount(skb),
1519 TCP_SKB_CB(skb)->when);
1521 if (!before(TCP_SKB_CB(skb)->seq,
1522 tcp_highest_sack_seq(tp)))
1523 tcp_advance_highest_sack(sk, skb);
1526 state->fack_count += tcp_skb_pcount(skb);
1528 return skb;
1531 /* Avoid all extra work that is being done by sacktag while walking in
1532 * a normal way
1534 static struct sk_buff *tcp_sacktag_skip(struct sk_buff *skb, struct sock *sk,
1535 struct tcp_sacktag_state *state,
1536 u32 skip_to_seq)
1538 tcp_for_write_queue_from(skb, sk) {
1539 if (skb == tcp_send_head(sk))
1540 break;
1542 if (after(TCP_SKB_CB(skb)->end_seq, skip_to_seq))
1543 break;
1545 state->fack_count += tcp_skb_pcount(skb);
1547 return skb;
1550 static struct sk_buff *tcp_maybe_skipping_dsack(struct sk_buff *skb,
1551 struct sock *sk,
1552 struct tcp_sack_block *next_dup,
1553 struct tcp_sacktag_state *state,
1554 u32 skip_to_seq)
1556 if (next_dup == NULL)
1557 return skb;
1559 if (before(next_dup->start_seq, skip_to_seq)) {
1560 skb = tcp_sacktag_skip(skb, sk, state, next_dup->start_seq);
1561 skb = tcp_sacktag_walk(skb, sk, NULL, state,
1562 next_dup->start_seq, next_dup->end_seq,
1566 return skb;
1569 static int tcp_sack_cache_ok(const struct tcp_sock *tp, const struct tcp_sack_block *cache)
1571 return cache < tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
1574 static int
1575 tcp_sacktag_write_queue(struct sock *sk, const struct sk_buff *ack_skb,
1576 u32 prior_snd_una, s32 *sack_rtt)
1578 struct tcp_sock *tp = tcp_sk(sk);
1579 const unsigned char *ptr = (skb_transport_header(ack_skb) +
1580 TCP_SKB_CB(ack_skb)->sacked);
1581 struct tcp_sack_block_wire *sp_wire = (struct tcp_sack_block_wire *)(ptr+2);
1582 struct tcp_sack_block sp[TCP_NUM_SACKS];
1583 struct tcp_sack_block *cache;
1584 struct tcp_sacktag_state state;
1585 struct sk_buff *skb;
1586 int num_sacks = min(TCP_NUM_SACKS, (ptr[1] - TCPOLEN_SACK_BASE) >> 3);
1587 int used_sacks;
1588 bool found_dup_sack = false;
1589 int i, j;
1590 int first_sack_index;
1592 state.flag = 0;
1593 state.reord = tp->packets_out;
1594 state.rtt = -1;
1596 if (!tp->sacked_out) {
1597 if (WARN_ON(tp->fackets_out))
1598 tp->fackets_out = 0;
1599 tcp_highest_sack_reset(sk);
1602 found_dup_sack = tcp_check_dsack(sk, ack_skb, sp_wire,
1603 num_sacks, prior_snd_una);
1604 if (found_dup_sack)
1605 state.flag |= FLAG_DSACKING_ACK;
1607 /* Eliminate too old ACKs, but take into
1608 * account more or less fresh ones, they can
1609 * contain valid SACK info.
1611 if (before(TCP_SKB_CB(ack_skb)->ack_seq, prior_snd_una - tp->max_window))
1612 return 0;
1614 if (!tp->packets_out)
1615 goto out;
1617 used_sacks = 0;
1618 first_sack_index = 0;
1619 for (i = 0; i < num_sacks; i++) {
1620 bool dup_sack = !i && found_dup_sack;
1622 sp[used_sacks].start_seq = get_unaligned_be32(&sp_wire[i].start_seq);
1623 sp[used_sacks].end_seq = get_unaligned_be32(&sp_wire[i].end_seq);
1625 if (!tcp_is_sackblock_valid(tp, dup_sack,
1626 sp[used_sacks].start_seq,
1627 sp[used_sacks].end_seq)) {
1628 int mib_idx;
1630 if (dup_sack) {
1631 if (!tp->undo_marker)
1632 mib_idx = LINUX_MIB_TCPDSACKIGNOREDNOUNDO;
1633 else
1634 mib_idx = LINUX_MIB_TCPDSACKIGNOREDOLD;
1635 } else {
1636 /* Don't count olds caused by ACK reordering */
1637 if ((TCP_SKB_CB(ack_skb)->ack_seq != tp->snd_una) &&
1638 !after(sp[used_sacks].end_seq, tp->snd_una))
1639 continue;
1640 mib_idx = LINUX_MIB_TCPSACKDISCARD;
1643 NET_INC_STATS_BH(sock_net(sk), mib_idx);
1644 if (i == 0)
1645 first_sack_index = -1;
1646 continue;
1649 /* Ignore very old stuff early */
1650 if (!after(sp[used_sacks].end_seq, prior_snd_una))
1651 continue;
1653 used_sacks++;
1656 /* order SACK blocks to allow in order walk of the retrans queue */
1657 for (i = used_sacks - 1; i > 0; i--) {
1658 for (j = 0; j < i; j++) {
1659 if (after(sp[j].start_seq, sp[j + 1].start_seq)) {
1660 swap(sp[j], sp[j + 1]);
1662 /* Track where the first SACK block goes to */
1663 if (j == first_sack_index)
1664 first_sack_index = j + 1;
1669 skb = tcp_write_queue_head(sk);
1670 state.fack_count = 0;
1671 i = 0;
1673 if (!tp->sacked_out) {
1674 /* It's already past, so skip checking against it */
1675 cache = tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
1676 } else {
1677 cache = tp->recv_sack_cache;
1678 /* Skip empty blocks in at head of the cache */
1679 while (tcp_sack_cache_ok(tp, cache) && !cache->start_seq &&
1680 !cache->end_seq)
1681 cache++;
1684 while (i < used_sacks) {
1685 u32 start_seq = sp[i].start_seq;
1686 u32 end_seq = sp[i].end_seq;
1687 bool dup_sack = (found_dup_sack && (i == first_sack_index));
1688 struct tcp_sack_block *next_dup = NULL;
1690 if (found_dup_sack && ((i + 1) == first_sack_index))
1691 next_dup = &sp[i + 1];
1693 /* Skip too early cached blocks */
1694 while (tcp_sack_cache_ok(tp, cache) &&
1695 !before(start_seq, cache->end_seq))
1696 cache++;
1698 /* Can skip some work by looking recv_sack_cache? */
1699 if (tcp_sack_cache_ok(tp, cache) && !dup_sack &&
1700 after(end_seq, cache->start_seq)) {
1702 /* Head todo? */
1703 if (before(start_seq, cache->start_seq)) {
1704 skb = tcp_sacktag_skip(skb, sk, &state,
1705 start_seq);
1706 skb = tcp_sacktag_walk(skb, sk, next_dup,
1707 &state,
1708 start_seq,
1709 cache->start_seq,
1710 dup_sack);
1713 /* Rest of the block already fully processed? */
1714 if (!after(end_seq, cache->end_seq))
1715 goto advance_sp;
1717 skb = tcp_maybe_skipping_dsack(skb, sk, next_dup,
1718 &state,
1719 cache->end_seq);
1721 /* ...tail remains todo... */
1722 if (tcp_highest_sack_seq(tp) == cache->end_seq) {
1723 /* ...but better entrypoint exists! */
1724 skb = tcp_highest_sack(sk);
1725 if (skb == NULL)
1726 break;
1727 state.fack_count = tp->fackets_out;
1728 cache++;
1729 goto walk;
1732 skb = tcp_sacktag_skip(skb, sk, &state, cache->end_seq);
1733 /* Check overlap against next cached too (past this one already) */
1734 cache++;
1735 continue;
1738 if (!before(start_seq, tcp_highest_sack_seq(tp))) {
1739 skb = tcp_highest_sack(sk);
1740 if (skb == NULL)
1741 break;
1742 state.fack_count = tp->fackets_out;
1744 skb = tcp_sacktag_skip(skb, sk, &state, start_seq);
1746 walk:
1747 skb = tcp_sacktag_walk(skb, sk, next_dup, &state,
1748 start_seq, end_seq, dup_sack);
1750 advance_sp:
1751 i++;
1754 /* Clear the head of the cache sack blocks so we can skip it next time */
1755 for (i = 0; i < ARRAY_SIZE(tp->recv_sack_cache) - used_sacks; i++) {
1756 tp->recv_sack_cache[i].start_seq = 0;
1757 tp->recv_sack_cache[i].end_seq = 0;
1759 for (j = 0; j < used_sacks; j++)
1760 tp->recv_sack_cache[i++] = sp[j];
1762 tcp_mark_lost_retrans(sk);
1764 tcp_verify_left_out(tp);
1766 if ((state.reord < tp->fackets_out) &&
1767 ((inet_csk(sk)->icsk_ca_state != TCP_CA_Loss) || tp->undo_marker))
1768 tcp_update_reordering(sk, tp->fackets_out - state.reord, 0);
1770 out:
1772 #if FASTRETRANS_DEBUG > 0
1773 WARN_ON((int)tp->sacked_out < 0);
1774 WARN_ON((int)tp->lost_out < 0);
1775 WARN_ON((int)tp->retrans_out < 0);
1776 WARN_ON((int)tcp_packets_in_flight(tp) < 0);
1777 #endif
1778 *sack_rtt = state.rtt;
1779 return state.flag;
1782 /* Limits sacked_out so that sum with lost_out isn't ever larger than
1783 * packets_out. Returns false if sacked_out adjustement wasn't necessary.
1785 static bool tcp_limit_reno_sacked(struct tcp_sock *tp)
1787 u32 holes;
1789 holes = max(tp->lost_out, 1U);
1790 holes = min(holes, tp->packets_out);
1792 if ((tp->sacked_out + holes) > tp->packets_out) {
1793 tp->sacked_out = tp->packets_out - holes;
1794 return true;
1796 return false;
1799 /* If we receive more dupacks than we expected counting segments
1800 * in assumption of absent reordering, interpret this as reordering.
1801 * The only another reason could be bug in receiver TCP.
1803 static void tcp_check_reno_reordering(struct sock *sk, const int addend)
1805 struct tcp_sock *tp = tcp_sk(sk);
1806 if (tcp_limit_reno_sacked(tp))
1807 tcp_update_reordering(sk, tp->packets_out + addend, 0);
1810 /* Emulate SACKs for SACKless connection: account for a new dupack. */
1812 static void tcp_add_reno_sack(struct sock *sk)
1814 struct tcp_sock *tp = tcp_sk(sk);
1815 tp->sacked_out++;
1816 tcp_check_reno_reordering(sk, 0);
1817 tcp_verify_left_out(tp);
1820 /* Account for ACK, ACKing some data in Reno Recovery phase. */
1822 static void tcp_remove_reno_sacks(struct sock *sk, int acked)
1824 struct tcp_sock *tp = tcp_sk(sk);
1826 if (acked > 0) {
1827 /* One ACK acked hole. The rest eat duplicate ACKs. */
1828 if (acked - 1 >= tp->sacked_out)
1829 tp->sacked_out = 0;
1830 else
1831 tp->sacked_out -= acked - 1;
1833 tcp_check_reno_reordering(sk, acked);
1834 tcp_verify_left_out(tp);
1837 static inline void tcp_reset_reno_sack(struct tcp_sock *tp)
1839 tp->sacked_out = 0;
1842 static void tcp_clear_retrans_partial(struct tcp_sock *tp)
1844 tp->retrans_out = 0;
1845 tp->lost_out = 0;
1847 tp->undo_marker = 0;
1848 tp->undo_retrans = -1;
1851 void tcp_clear_retrans(struct tcp_sock *tp)
1853 tcp_clear_retrans_partial(tp);
1855 tp->fackets_out = 0;
1856 tp->sacked_out = 0;
1859 /* Enter Loss state. If "how" is not zero, forget all SACK information
1860 * and reset tags completely, otherwise preserve SACKs. If receiver
1861 * dropped its ofo queue, we will know this due to reneging detection.
1863 void tcp_enter_loss(struct sock *sk, int how)
1865 const struct inet_connection_sock *icsk = inet_csk(sk);
1866 struct tcp_sock *tp = tcp_sk(sk);
1867 struct sk_buff *skb;
1868 bool new_recovery = false;
1870 /* Reduce ssthresh if it has not yet been made inside this window. */
1871 if (icsk->icsk_ca_state <= TCP_CA_Disorder ||
1872 !after(tp->high_seq, tp->snd_una) ||
1873 (icsk->icsk_ca_state == TCP_CA_Loss && !icsk->icsk_retransmits)) {
1874 new_recovery = true;
1875 tp->prior_ssthresh = tcp_current_ssthresh(sk);
1876 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
1877 tcp_ca_event(sk, CA_EVENT_LOSS);
1879 tp->snd_cwnd = 1;
1880 tp->snd_cwnd_cnt = 0;
1881 tp->snd_cwnd_stamp = tcp_time_stamp;
1883 tcp_clear_retrans_partial(tp);
1885 if (tcp_is_reno(tp))
1886 tcp_reset_reno_sack(tp);
1888 tp->undo_marker = tp->snd_una;
1889 if (how) {
1890 tp->sacked_out = 0;
1891 tp->fackets_out = 0;
1893 tcp_clear_all_retrans_hints(tp);
1895 tcp_for_write_queue(skb, sk) {
1896 if (skb == tcp_send_head(sk))
1897 break;
1899 if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS)
1900 tp->undo_marker = 0;
1901 TCP_SKB_CB(skb)->sacked &= (~TCPCB_TAGBITS)|TCPCB_SACKED_ACKED;
1902 if (!(TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_ACKED) || how) {
1903 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_ACKED;
1904 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1905 tp->lost_out += tcp_skb_pcount(skb);
1906 tp->retransmit_high = TCP_SKB_CB(skb)->end_seq;
1909 tcp_verify_left_out(tp);
1911 /* Timeout in disordered state after receiving substantial DUPACKs
1912 * suggests that the degree of reordering is over-estimated.
1914 if (icsk->icsk_ca_state <= TCP_CA_Disorder &&
1915 tp->sacked_out >= sysctl_tcp_reordering)
1916 tp->reordering = min_t(unsigned int, tp->reordering,
1917 sysctl_tcp_reordering);
1918 tcp_set_ca_state(sk, TCP_CA_Loss);
1919 tp->high_seq = tp->snd_nxt;
1920 TCP_ECN_queue_cwr(tp);
1922 /* F-RTO RFC5682 sec 3.1 step 1: retransmit SND.UNA if no previous
1923 * loss recovery is underway except recurring timeout(s) on
1924 * the same SND.UNA (sec 3.2). Disable F-RTO on path MTU probing
1926 tp->frto = sysctl_tcp_frto &&
1927 (new_recovery || icsk->icsk_retransmits) &&
1928 !inet_csk(sk)->icsk_mtup.probe_size;
1931 /* If ACK arrived pointing to a remembered SACK, it means that our
1932 * remembered SACKs do not reflect real state of receiver i.e.
1933 * receiver _host_ is heavily congested (or buggy).
1935 * Do processing similar to RTO timeout.
1937 static bool tcp_check_sack_reneging(struct sock *sk, int flag)
1939 if (flag & FLAG_SACK_RENEGING) {
1940 struct inet_connection_sock *icsk = inet_csk(sk);
1941 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPSACKRENEGING);
1943 tcp_enter_loss(sk, 1);
1944 icsk->icsk_retransmits++;
1945 tcp_retransmit_skb(sk, tcp_write_queue_head(sk));
1946 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
1947 icsk->icsk_rto, TCP_RTO_MAX);
1948 return true;
1950 return false;
1953 static inline int tcp_fackets_out(const struct tcp_sock *tp)
1955 return tcp_is_reno(tp) ? tp->sacked_out + 1 : tp->fackets_out;
1958 /* Heurestics to calculate number of duplicate ACKs. There's no dupACKs
1959 * counter when SACK is enabled (without SACK, sacked_out is used for
1960 * that purpose).
1962 * Instead, with FACK TCP uses fackets_out that includes both SACKed
1963 * segments up to the highest received SACK block so far and holes in
1964 * between them.
1966 * With reordering, holes may still be in flight, so RFC3517 recovery
1967 * uses pure sacked_out (total number of SACKed segments) even though
1968 * it violates the RFC that uses duplicate ACKs, often these are equal
1969 * but when e.g. out-of-window ACKs or packet duplication occurs,
1970 * they differ. Since neither occurs due to loss, TCP should really
1971 * ignore them.
1973 static inline int tcp_dupack_heuristics(const struct tcp_sock *tp)
1975 return tcp_is_fack(tp) ? tp->fackets_out : tp->sacked_out + 1;
1978 static bool tcp_pause_early_retransmit(struct sock *sk, int flag)
1980 struct tcp_sock *tp = tcp_sk(sk);
1981 unsigned long delay;
1983 /* Delay early retransmit and entering fast recovery for
1984 * max(RTT/4, 2msec) unless ack has ECE mark, no RTT samples
1985 * available, or RTO is scheduled to fire first.
1987 if (sysctl_tcp_early_retrans < 2 || sysctl_tcp_early_retrans > 3 ||
1988 (flag & FLAG_ECE) || !tp->srtt)
1989 return false;
1991 delay = max_t(unsigned long, (tp->srtt >> 5), msecs_to_jiffies(2));
1992 if (!time_after(inet_csk(sk)->icsk_timeout, (jiffies + delay)))
1993 return false;
1995 inet_csk_reset_xmit_timer(sk, ICSK_TIME_EARLY_RETRANS, delay,
1996 TCP_RTO_MAX);
1997 return true;
2000 /* Linux NewReno/SACK/FACK/ECN state machine.
2001 * --------------------------------------
2003 * "Open" Normal state, no dubious events, fast path.
2004 * "Disorder" In all the respects it is "Open",
2005 * but requires a bit more attention. It is entered when
2006 * we see some SACKs or dupacks. It is split of "Open"
2007 * mainly to move some processing from fast path to slow one.
2008 * "CWR" CWND was reduced due to some Congestion Notification event.
2009 * It can be ECN, ICMP source quench, local device congestion.
2010 * "Recovery" CWND was reduced, we are fast-retransmitting.
2011 * "Loss" CWND was reduced due to RTO timeout or SACK reneging.
2013 * tcp_fastretrans_alert() is entered:
2014 * - each incoming ACK, if state is not "Open"
2015 * - when arrived ACK is unusual, namely:
2016 * * SACK
2017 * * Duplicate ACK.
2018 * * ECN ECE.
2020 * Counting packets in flight is pretty simple.
2022 * in_flight = packets_out - left_out + retrans_out
2024 * packets_out is SND.NXT-SND.UNA counted in packets.
2026 * retrans_out is number of retransmitted segments.
2028 * left_out is number of segments left network, but not ACKed yet.
2030 * left_out = sacked_out + lost_out
2032 * sacked_out: Packets, which arrived to receiver out of order
2033 * and hence not ACKed. With SACKs this number is simply
2034 * amount of SACKed data. Even without SACKs
2035 * it is easy to give pretty reliable estimate of this number,
2036 * counting duplicate ACKs.
2038 * lost_out: Packets lost by network. TCP has no explicit
2039 * "loss notification" feedback from network (for now).
2040 * It means that this number can be only _guessed_.
2041 * Actually, it is the heuristics to predict lossage that
2042 * distinguishes different algorithms.
2044 * F.e. after RTO, when all the queue is considered as lost,
2045 * lost_out = packets_out and in_flight = retrans_out.
2047 * Essentially, we have now two algorithms counting
2048 * lost packets.
2050 * FACK: It is the simplest heuristics. As soon as we decided
2051 * that something is lost, we decide that _all_ not SACKed
2052 * packets until the most forward SACK are lost. I.e.
2053 * lost_out = fackets_out - sacked_out and left_out = fackets_out.
2054 * It is absolutely correct estimate, if network does not reorder
2055 * packets. And it loses any connection to reality when reordering
2056 * takes place. We use FACK by default until reordering
2057 * is suspected on the path to this destination.
2059 * NewReno: when Recovery is entered, we assume that one segment
2060 * is lost (classic Reno). While we are in Recovery and
2061 * a partial ACK arrives, we assume that one more packet
2062 * is lost (NewReno). This heuristics are the same in NewReno
2063 * and SACK.
2065 * Imagine, that's all! Forget about all this shamanism about CWND inflation
2066 * deflation etc. CWND is real congestion window, never inflated, changes
2067 * only according to classic VJ rules.
2069 * Really tricky (and requiring careful tuning) part of algorithm
2070 * is hidden in functions tcp_time_to_recover() and tcp_xmit_retransmit_queue().
2071 * The first determines the moment _when_ we should reduce CWND and,
2072 * hence, slow down forward transmission. In fact, it determines the moment
2073 * when we decide that hole is caused by loss, rather than by a reorder.
2075 * tcp_xmit_retransmit_queue() decides, _what_ we should retransmit to fill
2076 * holes, caused by lost packets.
2078 * And the most logically complicated part of algorithm is undo
2079 * heuristics. We detect false retransmits due to both too early
2080 * fast retransmit (reordering) and underestimated RTO, analyzing
2081 * timestamps and D-SACKs. When we detect that some segments were
2082 * retransmitted by mistake and CWND reduction was wrong, we undo
2083 * window reduction and abort recovery phase. This logic is hidden
2084 * inside several functions named tcp_try_undo_<something>.
2087 /* This function decides, when we should leave Disordered state
2088 * and enter Recovery phase, reducing congestion window.
2090 * Main question: may we further continue forward transmission
2091 * with the same cwnd?
2093 static bool tcp_time_to_recover(struct sock *sk, int flag)
2095 struct tcp_sock *tp = tcp_sk(sk);
2096 __u32 packets_out;
2098 /* Trick#1: The loss is proven. */
2099 if (tp->lost_out)
2100 return true;
2102 /* Not-A-Trick#2 : Classic rule... */
2103 if (tcp_dupack_heuristics(tp) > tp->reordering)
2104 return true;
2106 /* Trick#4: It is still not OK... But will it be useful to delay
2107 * recovery more?
2109 packets_out = tp->packets_out;
2110 if (packets_out <= tp->reordering &&
2111 tp->sacked_out >= max_t(__u32, packets_out/2, sysctl_tcp_reordering) &&
2112 !tcp_may_send_now(sk)) {
2113 /* We have nothing to send. This connection is limited
2114 * either by receiver window or by application.
2116 return true;
2119 /* If a thin stream is detected, retransmit after first
2120 * received dupack. Employ only if SACK is supported in order
2121 * to avoid possible corner-case series of spurious retransmissions
2122 * Use only if there are no unsent data.
2124 if ((tp->thin_dupack || sysctl_tcp_thin_dupack) &&
2125 tcp_stream_is_thin(tp) && tcp_dupack_heuristics(tp) > 1 &&
2126 tcp_is_sack(tp) && !tcp_send_head(sk))
2127 return true;
2129 /* Trick#6: TCP early retransmit, per RFC5827. To avoid spurious
2130 * retransmissions due to small network reorderings, we implement
2131 * Mitigation A.3 in the RFC and delay the retransmission for a short
2132 * interval if appropriate.
2134 if (tp->do_early_retrans && !tp->retrans_out && tp->sacked_out &&
2135 (tp->packets_out >= (tp->sacked_out + 1) && tp->packets_out < 4) &&
2136 !tcp_may_send_now(sk))
2137 return !tcp_pause_early_retransmit(sk, flag);
2139 return false;
2142 /* Detect loss in event "A" above by marking head of queue up as lost.
2143 * For FACK or non-SACK(Reno) senders, the first "packets" number of segments
2144 * are considered lost. For RFC3517 SACK, a segment is considered lost if it
2145 * has at least tp->reordering SACKed seqments above it; "packets" refers to
2146 * the maximum SACKed segments to pass before reaching this limit.
2148 static void tcp_mark_head_lost(struct sock *sk, int packets, int mark_head)
2150 struct tcp_sock *tp = tcp_sk(sk);
2151 struct sk_buff *skb;
2152 int cnt, oldcnt;
2153 int err;
2154 unsigned int mss;
2155 /* Use SACK to deduce losses of new sequences sent during recovery */
2156 const u32 loss_high = tcp_is_sack(tp) ? tp->snd_nxt : tp->high_seq;
2158 WARN_ON(packets > tp->packets_out);
2159 if (tp->lost_skb_hint) {
2160 skb = tp->lost_skb_hint;
2161 cnt = tp->lost_cnt_hint;
2162 /* Head already handled? */
2163 if (mark_head && skb != tcp_write_queue_head(sk))
2164 return;
2165 } else {
2166 skb = tcp_write_queue_head(sk);
2167 cnt = 0;
2170 tcp_for_write_queue_from(skb, sk) {
2171 if (skb == tcp_send_head(sk))
2172 break;
2173 /* TODO: do this better */
2174 /* this is not the most efficient way to do this... */
2175 tp->lost_skb_hint = skb;
2176 tp->lost_cnt_hint = cnt;
2178 if (after(TCP_SKB_CB(skb)->end_seq, loss_high))
2179 break;
2181 oldcnt = cnt;
2182 if (tcp_is_fack(tp) || tcp_is_reno(tp) ||
2183 (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
2184 cnt += tcp_skb_pcount(skb);
2186 if (cnt > packets) {
2187 if ((tcp_is_sack(tp) && !tcp_is_fack(tp)) ||
2188 (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED) ||
2189 (oldcnt >= packets))
2190 break;
2192 mss = skb_shinfo(skb)->gso_size;
2193 err = tcp_fragment(sk, skb, (packets - oldcnt) * mss, mss);
2194 if (err < 0)
2195 break;
2196 cnt = packets;
2199 tcp_skb_mark_lost(tp, skb);
2201 if (mark_head)
2202 break;
2204 tcp_verify_left_out(tp);
2207 /* Account newly detected lost packet(s) */
2209 static void tcp_update_scoreboard(struct sock *sk, int fast_rexmit)
2211 struct tcp_sock *tp = tcp_sk(sk);
2213 if (tcp_is_reno(tp)) {
2214 tcp_mark_head_lost(sk, 1, 1);
2215 } else if (tcp_is_fack(tp)) {
2216 int lost = tp->fackets_out - tp->reordering;
2217 if (lost <= 0)
2218 lost = 1;
2219 tcp_mark_head_lost(sk, lost, 0);
2220 } else {
2221 int sacked_upto = tp->sacked_out - tp->reordering;
2222 if (sacked_upto >= 0)
2223 tcp_mark_head_lost(sk, sacked_upto, 0);
2224 else if (fast_rexmit)
2225 tcp_mark_head_lost(sk, 1, 1);
2229 /* CWND moderation, preventing bursts due to too big ACKs
2230 * in dubious situations.
2232 static inline void tcp_moderate_cwnd(struct tcp_sock *tp)
2234 tp->snd_cwnd = min(tp->snd_cwnd,
2235 tcp_packets_in_flight(tp) + tcp_max_burst(tp));
2236 tp->snd_cwnd_stamp = tcp_time_stamp;
2239 /* Nothing was retransmitted or returned timestamp is less
2240 * than timestamp of the first retransmission.
2242 static inline bool tcp_packet_delayed(const struct tcp_sock *tp)
2244 return !tp->retrans_stamp ||
2245 (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
2246 before(tp->rx_opt.rcv_tsecr, tp->retrans_stamp));
2249 /* Undo procedures. */
2251 #if FASTRETRANS_DEBUG > 1
2252 static void DBGUNDO(struct sock *sk, const char *msg)
2254 struct tcp_sock *tp = tcp_sk(sk);
2255 struct inet_sock *inet = inet_sk(sk);
2257 if (sk->sk_family == AF_INET) {
2258 pr_debug("Undo %s %pI4/%u c%u l%u ss%u/%u p%u\n",
2259 msg,
2260 &inet->inet_daddr, ntohs(inet->inet_dport),
2261 tp->snd_cwnd, tcp_left_out(tp),
2262 tp->snd_ssthresh, tp->prior_ssthresh,
2263 tp->packets_out);
2265 #if IS_ENABLED(CONFIG_IPV6)
2266 else if (sk->sk_family == AF_INET6) {
2267 struct ipv6_pinfo *np = inet6_sk(sk);
2268 pr_debug("Undo %s %pI6/%u c%u l%u ss%u/%u p%u\n",
2269 msg,
2270 &np->daddr, ntohs(inet->inet_dport),
2271 tp->snd_cwnd, tcp_left_out(tp),
2272 tp->snd_ssthresh, tp->prior_ssthresh,
2273 tp->packets_out);
2275 #endif
2277 #else
2278 #define DBGUNDO(x...) do { } while (0)
2279 #endif
2281 static void tcp_undo_cwnd_reduction(struct sock *sk, bool unmark_loss)
2283 struct tcp_sock *tp = tcp_sk(sk);
2285 if (unmark_loss) {
2286 struct sk_buff *skb;
2288 tcp_for_write_queue(skb, sk) {
2289 if (skb == tcp_send_head(sk))
2290 break;
2291 TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
2293 tp->lost_out = 0;
2294 tcp_clear_all_retrans_hints(tp);
2297 if (tp->prior_ssthresh) {
2298 const struct inet_connection_sock *icsk = inet_csk(sk);
2300 if (icsk->icsk_ca_ops->undo_cwnd)
2301 tp->snd_cwnd = icsk->icsk_ca_ops->undo_cwnd(sk);
2302 else
2303 tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh << 1);
2305 if (tp->prior_ssthresh > tp->snd_ssthresh) {
2306 tp->snd_ssthresh = tp->prior_ssthresh;
2307 TCP_ECN_withdraw_cwr(tp);
2309 } else {
2310 tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh);
2312 tp->snd_cwnd_stamp = tcp_time_stamp;
2313 tp->undo_marker = 0;
2316 static inline bool tcp_may_undo(const struct tcp_sock *tp)
2318 return tp->undo_marker && (!tp->undo_retrans || tcp_packet_delayed(tp));
2321 /* People celebrate: "We love our President!" */
2322 static bool tcp_try_undo_recovery(struct sock *sk)
2324 struct tcp_sock *tp = tcp_sk(sk);
2326 if (tcp_may_undo(tp)) {
2327 int mib_idx;
2329 /* Happy end! We did not retransmit anything
2330 * or our original transmission succeeded.
2332 DBGUNDO(sk, inet_csk(sk)->icsk_ca_state == TCP_CA_Loss ? "loss" : "retrans");
2333 tcp_undo_cwnd_reduction(sk, false);
2334 if (inet_csk(sk)->icsk_ca_state == TCP_CA_Loss)
2335 mib_idx = LINUX_MIB_TCPLOSSUNDO;
2336 else
2337 mib_idx = LINUX_MIB_TCPFULLUNDO;
2339 NET_INC_STATS_BH(sock_net(sk), mib_idx);
2341 if (tp->snd_una == tp->high_seq && tcp_is_reno(tp)) {
2342 /* Hold old state until something *above* high_seq
2343 * is ACKed. For Reno it is MUST to prevent false
2344 * fast retransmits (RFC2582). SACK TCP is safe. */
2345 tcp_moderate_cwnd(tp);
2346 return true;
2348 tcp_set_ca_state(sk, TCP_CA_Open);
2349 return false;
2352 /* Try to undo cwnd reduction, because D-SACKs acked all retransmitted data */
2353 static bool tcp_try_undo_dsack(struct sock *sk)
2355 struct tcp_sock *tp = tcp_sk(sk);
2357 if (tp->undo_marker && !tp->undo_retrans) {
2358 DBGUNDO(sk, "D-SACK");
2359 tcp_undo_cwnd_reduction(sk, false);
2360 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPDSACKUNDO);
2361 return true;
2363 return false;
2366 /* We can clear retrans_stamp when there are no retransmissions in the
2367 * window. It would seem that it is trivially available for us in
2368 * tp->retrans_out, however, that kind of assumptions doesn't consider
2369 * what will happen if errors occur when sending retransmission for the
2370 * second time. ...It could the that such segment has only
2371 * TCPCB_EVER_RETRANS set at the present time. It seems that checking
2372 * the head skb is enough except for some reneging corner cases that
2373 * are not worth the effort.
2375 * Main reason for all this complexity is the fact that connection dying
2376 * time now depends on the validity of the retrans_stamp, in particular,
2377 * that successive retransmissions of a segment must not advance
2378 * retrans_stamp under any conditions.
2380 static bool tcp_any_retrans_done(const struct sock *sk)
2382 const struct tcp_sock *tp = tcp_sk(sk);
2383 struct sk_buff *skb;
2385 if (tp->retrans_out)
2386 return true;
2388 skb = tcp_write_queue_head(sk);
2389 if (unlikely(skb && TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS))
2390 return true;
2392 return false;
2395 /* Undo during loss recovery after partial ACK or using F-RTO. */
2396 static bool tcp_try_undo_loss(struct sock *sk, bool frto_undo)
2398 struct tcp_sock *tp = tcp_sk(sk);
2400 if (frto_undo || tcp_may_undo(tp)) {
2401 tcp_undo_cwnd_reduction(sk, true);
2403 DBGUNDO(sk, "partial loss");
2404 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPLOSSUNDO);
2405 if (frto_undo)
2406 NET_INC_STATS_BH(sock_net(sk),
2407 LINUX_MIB_TCPSPURIOUSRTOS);
2408 inet_csk(sk)->icsk_retransmits = 0;
2409 if (frto_undo || tcp_is_sack(tp))
2410 tcp_set_ca_state(sk, TCP_CA_Open);
2411 return true;
2413 return false;
2416 /* The cwnd reduction in CWR and Recovery use the PRR algorithm
2417 * https://datatracker.ietf.org/doc/draft-ietf-tcpm-proportional-rate-reduction/
2418 * It computes the number of packets to send (sndcnt) based on packets newly
2419 * delivered:
2420 * 1) If the packets in flight is larger than ssthresh, PRR spreads the
2421 * cwnd reductions across a full RTT.
2422 * 2) If packets in flight is lower than ssthresh (such as due to excess
2423 * losses and/or application stalls), do not perform any further cwnd
2424 * reductions, but instead slow start up to ssthresh.
2426 static void tcp_init_cwnd_reduction(struct sock *sk, const bool set_ssthresh)
2428 struct tcp_sock *tp = tcp_sk(sk);
2430 tp->high_seq = tp->snd_nxt;
2431 tp->tlp_high_seq = 0;
2432 tp->snd_cwnd_cnt = 0;
2433 tp->prior_cwnd = tp->snd_cwnd;
2434 tp->prr_delivered = 0;
2435 tp->prr_out = 0;
2436 if (set_ssthresh)
2437 tp->snd_ssthresh = inet_csk(sk)->icsk_ca_ops->ssthresh(sk);
2438 TCP_ECN_queue_cwr(tp);
2441 static void tcp_cwnd_reduction(struct sock *sk, const int prior_unsacked,
2442 int fast_rexmit)
2444 struct tcp_sock *tp = tcp_sk(sk);
2445 int sndcnt = 0;
2446 int delta = tp->snd_ssthresh - tcp_packets_in_flight(tp);
2447 int newly_acked_sacked = prior_unsacked -
2448 (tp->packets_out - tp->sacked_out);
2450 tp->prr_delivered += newly_acked_sacked;
2451 if (tcp_packets_in_flight(tp) > tp->snd_ssthresh) {
2452 u64 dividend = (u64)tp->snd_ssthresh * tp->prr_delivered +
2453 tp->prior_cwnd - 1;
2454 sndcnt = div_u64(dividend, tp->prior_cwnd) - tp->prr_out;
2455 } else {
2456 sndcnt = min_t(int, delta,
2457 max_t(int, tp->prr_delivered - tp->prr_out,
2458 newly_acked_sacked) + 1);
2461 sndcnt = max(sndcnt, (fast_rexmit ? 1 : 0));
2462 tp->snd_cwnd = tcp_packets_in_flight(tp) + sndcnt;
2465 static inline void tcp_end_cwnd_reduction(struct sock *sk)
2467 struct tcp_sock *tp = tcp_sk(sk);
2469 /* Reset cwnd to ssthresh in CWR or Recovery (unless it's undone) */
2470 if (inet_csk(sk)->icsk_ca_state == TCP_CA_CWR ||
2471 (tp->undo_marker && tp->snd_ssthresh < TCP_INFINITE_SSTHRESH)) {
2472 tp->snd_cwnd = tp->snd_ssthresh;
2473 tp->snd_cwnd_stamp = tcp_time_stamp;
2475 tcp_ca_event(sk, CA_EVENT_COMPLETE_CWR);
2478 /* Enter CWR state. Disable cwnd undo since congestion is proven with ECN */
2479 void tcp_enter_cwr(struct sock *sk, const int set_ssthresh)
2481 struct tcp_sock *tp = tcp_sk(sk);
2483 tp->prior_ssthresh = 0;
2484 if (inet_csk(sk)->icsk_ca_state < TCP_CA_CWR) {
2485 tp->undo_marker = 0;
2486 tcp_init_cwnd_reduction(sk, set_ssthresh);
2487 tcp_set_ca_state(sk, TCP_CA_CWR);
2491 static void tcp_try_keep_open(struct sock *sk)
2493 struct tcp_sock *tp = tcp_sk(sk);
2494 int state = TCP_CA_Open;
2496 if (tcp_left_out(tp) || tcp_any_retrans_done(sk))
2497 state = TCP_CA_Disorder;
2499 if (inet_csk(sk)->icsk_ca_state != state) {
2500 tcp_set_ca_state(sk, state);
2501 tp->high_seq = tp->snd_nxt;
2505 static void tcp_try_to_open(struct sock *sk, int flag, const int prior_unsacked)
2507 struct tcp_sock *tp = tcp_sk(sk);
2509 tcp_verify_left_out(tp);
2511 if (!tcp_any_retrans_done(sk))
2512 tp->retrans_stamp = 0;
2514 if (flag & FLAG_ECE)
2515 tcp_enter_cwr(sk, 1);
2517 if (inet_csk(sk)->icsk_ca_state != TCP_CA_CWR) {
2518 tcp_try_keep_open(sk);
2519 } else {
2520 tcp_cwnd_reduction(sk, prior_unsacked, 0);
2524 static void tcp_mtup_probe_failed(struct sock *sk)
2526 struct inet_connection_sock *icsk = inet_csk(sk);
2528 icsk->icsk_mtup.search_high = icsk->icsk_mtup.probe_size - 1;
2529 icsk->icsk_mtup.probe_size = 0;
2532 static void tcp_mtup_probe_success(struct sock *sk)
2534 struct tcp_sock *tp = tcp_sk(sk);
2535 struct inet_connection_sock *icsk = inet_csk(sk);
2537 /* FIXME: breaks with very large cwnd */
2538 tp->prior_ssthresh = tcp_current_ssthresh(sk);
2539 tp->snd_cwnd = tp->snd_cwnd *
2540 tcp_mss_to_mtu(sk, tp->mss_cache) /
2541 icsk->icsk_mtup.probe_size;
2542 tp->snd_cwnd_cnt = 0;
2543 tp->snd_cwnd_stamp = tcp_time_stamp;
2544 tp->snd_ssthresh = tcp_current_ssthresh(sk);
2546 icsk->icsk_mtup.search_low = icsk->icsk_mtup.probe_size;
2547 icsk->icsk_mtup.probe_size = 0;
2548 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
2551 /* Do a simple retransmit without using the backoff mechanisms in
2552 * tcp_timer. This is used for path mtu discovery.
2553 * The socket is already locked here.
2555 void tcp_simple_retransmit(struct sock *sk)
2557 const struct inet_connection_sock *icsk = inet_csk(sk);
2558 struct tcp_sock *tp = tcp_sk(sk);
2559 struct sk_buff *skb;
2560 unsigned int mss = tcp_current_mss(sk);
2561 u32 prior_lost = tp->lost_out;
2563 tcp_for_write_queue(skb, sk) {
2564 if (skb == tcp_send_head(sk))
2565 break;
2566 if (tcp_skb_seglen(skb) > mss &&
2567 !(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) {
2568 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) {
2569 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
2570 tp->retrans_out -= tcp_skb_pcount(skb);
2572 tcp_skb_mark_lost_uncond_verify(tp, skb);
2576 tcp_clear_retrans_hints_partial(tp);
2578 if (prior_lost == tp->lost_out)
2579 return;
2581 if (tcp_is_reno(tp))
2582 tcp_limit_reno_sacked(tp);
2584 tcp_verify_left_out(tp);
2586 /* Don't muck with the congestion window here.
2587 * Reason is that we do not increase amount of _data_
2588 * in network, but units changed and effective
2589 * cwnd/ssthresh really reduced now.
2591 if (icsk->icsk_ca_state != TCP_CA_Loss) {
2592 tp->high_seq = tp->snd_nxt;
2593 tp->snd_ssthresh = tcp_current_ssthresh(sk);
2594 tp->prior_ssthresh = 0;
2595 tp->undo_marker = 0;
2596 tcp_set_ca_state(sk, TCP_CA_Loss);
2598 tcp_xmit_retransmit_queue(sk);
2600 EXPORT_SYMBOL(tcp_simple_retransmit);
2602 static void tcp_enter_recovery(struct sock *sk, bool ece_ack)
2604 struct tcp_sock *tp = tcp_sk(sk);
2605 int mib_idx;
2607 if (tcp_is_reno(tp))
2608 mib_idx = LINUX_MIB_TCPRENORECOVERY;
2609 else
2610 mib_idx = LINUX_MIB_TCPSACKRECOVERY;
2612 NET_INC_STATS_BH(sock_net(sk), mib_idx);
2614 tp->prior_ssthresh = 0;
2615 tp->undo_marker = tp->snd_una;
2616 tp->undo_retrans = tp->retrans_out ? : -1;
2618 if (inet_csk(sk)->icsk_ca_state < TCP_CA_CWR) {
2619 if (!ece_ack)
2620 tp->prior_ssthresh = tcp_current_ssthresh(sk);
2621 tcp_init_cwnd_reduction(sk, true);
2623 tcp_set_ca_state(sk, TCP_CA_Recovery);
2626 /* Process an ACK in CA_Loss state. Move to CA_Open if lost data are
2627 * recovered or spurious. Otherwise retransmits more on partial ACKs.
2629 static void tcp_process_loss(struct sock *sk, int flag, bool is_dupack)
2631 struct tcp_sock *tp = tcp_sk(sk);
2632 bool recovered = !before(tp->snd_una, tp->high_seq);
2634 if (tp->frto) { /* F-RTO RFC5682 sec 3.1 (sack enhanced version). */
2635 /* Step 3.b. A timeout is spurious if not all data are
2636 * lost, i.e., never-retransmitted data are (s)acked.
2638 if (tcp_try_undo_loss(sk, flag & FLAG_ORIG_SACK_ACKED))
2639 return;
2641 if (after(tp->snd_nxt, tp->high_seq) &&
2642 (flag & FLAG_DATA_SACKED || is_dupack)) {
2643 tp->frto = 0; /* Loss was real: 2nd part of step 3.a */
2644 } else if (flag & FLAG_SND_UNA_ADVANCED && !recovered) {
2645 tp->high_seq = tp->snd_nxt;
2646 __tcp_push_pending_frames(sk, tcp_current_mss(sk),
2647 TCP_NAGLE_OFF);
2648 if (after(tp->snd_nxt, tp->high_seq))
2649 return; /* Step 2.b */
2650 tp->frto = 0;
2654 if (recovered) {
2655 /* F-RTO RFC5682 sec 3.1 step 2.a and 1st part of step 3.a */
2656 tcp_try_undo_recovery(sk);
2657 return;
2659 if (tcp_is_reno(tp)) {
2660 /* A Reno DUPACK means new data in F-RTO step 2.b above are
2661 * delivered. Lower inflight to clock out (re)tranmissions.
2663 if (after(tp->snd_nxt, tp->high_seq) && is_dupack)
2664 tcp_add_reno_sack(sk);
2665 else if (flag & FLAG_SND_UNA_ADVANCED)
2666 tcp_reset_reno_sack(tp);
2668 if (tcp_try_undo_loss(sk, false))
2669 return;
2670 tcp_xmit_retransmit_queue(sk);
2673 /* Undo during fast recovery after partial ACK. */
2674 static bool tcp_try_undo_partial(struct sock *sk, const int acked,
2675 const int prior_unsacked)
2677 struct tcp_sock *tp = tcp_sk(sk);
2679 if (tp->undo_marker && tcp_packet_delayed(tp)) {
2680 /* Plain luck! Hole if filled with delayed
2681 * packet, rather than with a retransmit.
2683 tcp_update_reordering(sk, tcp_fackets_out(tp) + acked, 1);
2685 /* We are getting evidence that the reordering degree is higher
2686 * than we realized. If there are no retransmits out then we
2687 * can undo. Otherwise we clock out new packets but do not
2688 * mark more packets lost or retransmit more.
2690 if (tp->retrans_out) {
2691 tcp_cwnd_reduction(sk, prior_unsacked, 0);
2692 return true;
2695 if (!tcp_any_retrans_done(sk))
2696 tp->retrans_stamp = 0;
2698 DBGUNDO(sk, "partial recovery");
2699 tcp_undo_cwnd_reduction(sk, true);
2700 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPPARTIALUNDO);
2701 tcp_try_keep_open(sk);
2702 return true;
2704 return false;
2707 /* Process an event, which can update packets-in-flight not trivially.
2708 * Main goal of this function is to calculate new estimate for left_out,
2709 * taking into account both packets sitting in receiver's buffer and
2710 * packets lost by network.
2712 * Besides that it does CWND reduction, when packet loss is detected
2713 * and changes state of machine.
2715 * It does _not_ decide what to send, it is made in function
2716 * tcp_xmit_retransmit_queue().
2718 static void tcp_fastretrans_alert(struct sock *sk, const int acked,
2719 const int prior_unsacked,
2720 bool is_dupack, int flag)
2722 struct inet_connection_sock *icsk = inet_csk(sk);
2723 struct tcp_sock *tp = tcp_sk(sk);
2724 bool do_lost = is_dupack || ((flag & FLAG_DATA_SACKED) &&
2725 (tcp_fackets_out(tp) > tp->reordering));
2726 int fast_rexmit = 0;
2728 if (WARN_ON(!tp->packets_out && tp->sacked_out))
2729 tp->sacked_out = 0;
2730 if (WARN_ON(!tp->sacked_out && tp->fackets_out))
2731 tp->fackets_out = 0;
2733 /* Now state machine starts.
2734 * A. ECE, hence prohibit cwnd undoing, the reduction is required. */
2735 if (flag & FLAG_ECE)
2736 tp->prior_ssthresh = 0;
2738 /* B. In all the states check for reneging SACKs. */
2739 if (tcp_check_sack_reneging(sk, flag))
2740 return;
2742 /* C. Check consistency of the current state. */
2743 tcp_verify_left_out(tp);
2745 /* D. Check state exit conditions. State can be terminated
2746 * when high_seq is ACKed. */
2747 if (icsk->icsk_ca_state == TCP_CA_Open) {
2748 WARN_ON(tp->retrans_out != 0);
2749 tp->retrans_stamp = 0;
2750 } else if (!before(tp->snd_una, tp->high_seq)) {
2751 switch (icsk->icsk_ca_state) {
2752 case TCP_CA_CWR:
2753 /* CWR is to be held something *above* high_seq
2754 * is ACKed for CWR bit to reach receiver. */
2755 if (tp->snd_una != tp->high_seq) {
2756 tcp_end_cwnd_reduction(sk);
2757 tcp_set_ca_state(sk, TCP_CA_Open);
2759 break;
2761 case TCP_CA_Recovery:
2762 if (tcp_is_reno(tp))
2763 tcp_reset_reno_sack(tp);
2764 if (tcp_try_undo_recovery(sk))
2765 return;
2766 tcp_end_cwnd_reduction(sk);
2767 break;
2771 /* E. Process state. */
2772 switch (icsk->icsk_ca_state) {
2773 case TCP_CA_Recovery:
2774 if (!(flag & FLAG_SND_UNA_ADVANCED)) {
2775 if (tcp_is_reno(tp) && is_dupack)
2776 tcp_add_reno_sack(sk);
2777 } else {
2778 if (tcp_try_undo_partial(sk, acked, prior_unsacked))
2779 return;
2780 /* Partial ACK arrived. Force fast retransmit. */
2781 do_lost = tcp_is_reno(tp) ||
2782 tcp_fackets_out(tp) > tp->reordering;
2784 if (tcp_try_undo_dsack(sk)) {
2785 tcp_try_keep_open(sk);
2786 return;
2788 break;
2789 case TCP_CA_Loss:
2790 tcp_process_loss(sk, flag, is_dupack);
2791 if (icsk->icsk_ca_state != TCP_CA_Open)
2792 return;
2793 /* Fall through to processing in Open state. */
2794 default:
2795 if (tcp_is_reno(tp)) {
2796 if (flag & FLAG_SND_UNA_ADVANCED)
2797 tcp_reset_reno_sack(tp);
2798 if (is_dupack)
2799 tcp_add_reno_sack(sk);
2802 if (icsk->icsk_ca_state <= TCP_CA_Disorder)
2803 tcp_try_undo_dsack(sk);
2805 if (!tcp_time_to_recover(sk, flag)) {
2806 tcp_try_to_open(sk, flag, prior_unsacked);
2807 return;
2810 /* MTU probe failure: don't reduce cwnd */
2811 if (icsk->icsk_ca_state < TCP_CA_CWR &&
2812 icsk->icsk_mtup.probe_size &&
2813 tp->snd_una == tp->mtu_probe.probe_seq_start) {
2814 tcp_mtup_probe_failed(sk);
2815 /* Restores the reduction we did in tcp_mtup_probe() */
2816 tp->snd_cwnd++;
2817 tcp_simple_retransmit(sk);
2818 return;
2821 /* Otherwise enter Recovery state */
2822 tcp_enter_recovery(sk, (flag & FLAG_ECE));
2823 fast_rexmit = 1;
2826 if (do_lost)
2827 tcp_update_scoreboard(sk, fast_rexmit);
2828 tcp_cwnd_reduction(sk, prior_unsacked, fast_rexmit);
2829 tcp_xmit_retransmit_queue(sk);
2832 static inline bool tcp_ack_update_rtt(struct sock *sk, const int flag,
2833 s32 seq_rtt, s32 sack_rtt)
2835 const struct tcp_sock *tp = tcp_sk(sk);
2837 /* Prefer RTT measured from ACK's timing to TS-ECR. This is because
2838 * broken middle-boxes or peers may corrupt TS-ECR fields. But
2839 * Karn's algorithm forbids taking RTT if some retransmitted data
2840 * is acked (RFC6298).
2842 if (flag & FLAG_RETRANS_DATA_ACKED)
2843 seq_rtt = -1;
2845 if (seq_rtt < 0)
2846 seq_rtt = sack_rtt;
2848 /* RTTM Rule: A TSecr value received in a segment is used to
2849 * update the averaged RTT measurement only if the segment
2850 * acknowledges some new data, i.e., only if it advances the
2851 * left edge of the send window.
2852 * See draft-ietf-tcplw-high-performance-00, section 3.3.
2854 if (seq_rtt < 0 && tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
2855 flag & FLAG_ACKED)
2856 seq_rtt = tcp_time_stamp - tp->rx_opt.rcv_tsecr;
2858 if (seq_rtt < 0)
2859 return false;
2861 tcp_rtt_estimator(sk, seq_rtt);
2862 tcp_set_rto(sk);
2864 /* RFC6298: only reset backoff on valid RTT measurement. */
2865 inet_csk(sk)->icsk_backoff = 0;
2866 return true;
2869 /* Compute time elapsed between (last) SYNACK and the ACK completing 3WHS. */
2870 static void tcp_synack_rtt_meas(struct sock *sk, const u32 synack_stamp)
2872 struct tcp_sock *tp = tcp_sk(sk);
2873 s32 seq_rtt = -1;
2875 if (synack_stamp && !tp->total_retrans)
2876 seq_rtt = tcp_time_stamp - synack_stamp;
2878 /* If the ACK acks both the SYNACK and the (Fast Open'd) data packets
2879 * sent in SYN_RECV, SYNACK RTT is the smooth RTT computed in tcp_ack()
2881 if (!tp->srtt)
2882 tcp_ack_update_rtt(sk, FLAG_SYN_ACKED, seq_rtt, -1);
2885 static void tcp_cong_avoid(struct sock *sk, u32 ack, u32 in_flight)
2887 const struct inet_connection_sock *icsk = inet_csk(sk);
2888 icsk->icsk_ca_ops->cong_avoid(sk, ack, in_flight);
2889 tcp_sk(sk)->snd_cwnd_stamp = tcp_time_stamp;
2892 /* Restart timer after forward progress on connection.
2893 * RFC2988 recommends to restart timer to now+rto.
2895 void tcp_rearm_rto(struct sock *sk)
2897 const struct inet_connection_sock *icsk = inet_csk(sk);
2898 struct tcp_sock *tp = tcp_sk(sk);
2900 /* If the retrans timer is currently being used by Fast Open
2901 * for SYN-ACK retrans purpose, stay put.
2903 if (tp->fastopen_rsk)
2904 return;
2906 if (!tp->packets_out) {
2907 inet_csk_clear_xmit_timer(sk, ICSK_TIME_RETRANS);
2908 } else {
2909 u32 rto = inet_csk(sk)->icsk_rto;
2910 /* Offset the time elapsed after installing regular RTO */
2911 if (icsk->icsk_pending == ICSK_TIME_EARLY_RETRANS ||
2912 icsk->icsk_pending == ICSK_TIME_LOSS_PROBE) {
2913 struct sk_buff *skb = tcp_write_queue_head(sk);
2914 const u32 rto_time_stamp = TCP_SKB_CB(skb)->when + rto;
2915 s32 delta = (s32)(rto_time_stamp - tcp_time_stamp);
2916 /* delta may not be positive if the socket is locked
2917 * when the retrans timer fires and is rescheduled.
2919 if (delta > 0)
2920 rto = delta;
2922 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS, rto,
2923 TCP_RTO_MAX);
2927 /* This function is called when the delayed ER timer fires. TCP enters
2928 * fast recovery and performs fast-retransmit.
2930 void tcp_resume_early_retransmit(struct sock *sk)
2932 struct tcp_sock *tp = tcp_sk(sk);
2934 tcp_rearm_rto(sk);
2936 /* Stop if ER is disabled after the delayed ER timer is scheduled */
2937 if (!tp->do_early_retrans)
2938 return;
2940 tcp_enter_recovery(sk, false);
2941 tcp_update_scoreboard(sk, 1);
2942 tcp_xmit_retransmit_queue(sk);
2945 /* If we get here, the whole TSO packet has not been acked. */
2946 static u32 tcp_tso_acked(struct sock *sk, struct sk_buff *skb)
2948 struct tcp_sock *tp = tcp_sk(sk);
2949 u32 packets_acked;
2951 BUG_ON(!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una));
2953 packets_acked = tcp_skb_pcount(skb);
2954 if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq))
2955 return 0;
2956 packets_acked -= tcp_skb_pcount(skb);
2958 if (packets_acked) {
2959 BUG_ON(tcp_skb_pcount(skb) == 0);
2960 BUG_ON(!before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq));
2963 return packets_acked;
2966 /* Remove acknowledged frames from the retransmission queue. If our packet
2967 * is before the ack sequence we can discard it as it's confirmed to have
2968 * arrived at the other end.
2970 static int tcp_clean_rtx_queue(struct sock *sk, int prior_fackets,
2971 u32 prior_snd_una, s32 sack_rtt)
2973 struct tcp_sock *tp = tcp_sk(sk);
2974 const struct inet_connection_sock *icsk = inet_csk(sk);
2975 struct sk_buff *skb;
2976 u32 now = tcp_time_stamp;
2977 int fully_acked = true;
2978 int flag = 0;
2979 u32 pkts_acked = 0;
2980 u32 reord = tp->packets_out;
2981 u32 prior_sacked = tp->sacked_out;
2982 s32 seq_rtt = -1;
2983 s32 ca_seq_rtt = -1;
2984 ktime_t last_ackt = net_invalid_timestamp();
2985 bool rtt_update;
2987 while ((skb = tcp_write_queue_head(sk)) && skb != tcp_send_head(sk)) {
2988 struct tcp_skb_cb *scb = TCP_SKB_CB(skb);
2989 u32 acked_pcount;
2990 u8 sacked = scb->sacked;
2992 /* Determine how many packets and what bytes were acked, tso and else */
2993 if (after(scb->end_seq, tp->snd_una)) {
2994 if (tcp_skb_pcount(skb) == 1 ||
2995 !after(tp->snd_una, scb->seq))
2996 break;
2998 acked_pcount = tcp_tso_acked(sk, skb);
2999 if (!acked_pcount)
3000 break;
3002 fully_acked = false;
3003 } else {
3004 acked_pcount = tcp_skb_pcount(skb);
3007 if (sacked & TCPCB_RETRANS) {
3008 if (sacked & TCPCB_SACKED_RETRANS)
3009 tp->retrans_out -= acked_pcount;
3010 flag |= FLAG_RETRANS_DATA_ACKED;
3011 } else {
3012 ca_seq_rtt = now - scb->when;
3013 last_ackt = skb->tstamp;
3014 if (seq_rtt < 0) {
3015 seq_rtt = ca_seq_rtt;
3017 if (!(sacked & TCPCB_SACKED_ACKED)) {
3018 reord = min(pkts_acked, reord);
3019 if (!after(scb->end_seq, tp->high_seq))
3020 flag |= FLAG_ORIG_SACK_ACKED;
3024 if (sacked & TCPCB_SACKED_ACKED)
3025 tp->sacked_out -= acked_pcount;
3026 if (sacked & TCPCB_LOST)
3027 tp->lost_out -= acked_pcount;
3029 tp->packets_out -= acked_pcount;
3030 pkts_acked += acked_pcount;
3032 /* Initial outgoing SYN's get put onto the write_queue
3033 * just like anything else we transmit. It is not
3034 * true data, and if we misinform our callers that
3035 * this ACK acks real data, we will erroneously exit
3036 * connection startup slow start one packet too
3037 * quickly. This is severely frowned upon behavior.
3039 if (!(scb->tcp_flags & TCPHDR_SYN)) {
3040 flag |= FLAG_DATA_ACKED;
3041 } else {
3042 flag |= FLAG_SYN_ACKED;
3043 tp->retrans_stamp = 0;
3046 if (!fully_acked)
3047 break;
3049 tcp_unlink_write_queue(skb, sk);
3050 sk_wmem_free_skb(sk, skb);
3051 if (skb == tp->retransmit_skb_hint)
3052 tp->retransmit_skb_hint = NULL;
3053 if (skb == tp->lost_skb_hint)
3054 tp->lost_skb_hint = NULL;
3057 if (likely(between(tp->snd_up, prior_snd_una, tp->snd_una)))
3058 tp->snd_up = tp->snd_una;
3060 if (skb && (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
3061 flag |= FLAG_SACK_RENEGING;
3063 rtt_update = tcp_ack_update_rtt(sk, flag, seq_rtt, sack_rtt);
3065 if (flag & FLAG_ACKED) {
3066 const struct tcp_congestion_ops *ca_ops
3067 = inet_csk(sk)->icsk_ca_ops;
3069 tcp_rearm_rto(sk);
3070 if (unlikely(icsk->icsk_mtup.probe_size &&
3071 !after(tp->mtu_probe.probe_seq_end, tp->snd_una))) {
3072 tcp_mtup_probe_success(sk);
3075 if (tcp_is_reno(tp)) {
3076 tcp_remove_reno_sacks(sk, pkts_acked);
3077 } else {
3078 int delta;
3080 /* Non-retransmitted hole got filled? That's reordering */
3081 if (reord < prior_fackets)
3082 tcp_update_reordering(sk, tp->fackets_out - reord, 0);
3084 delta = tcp_is_fack(tp) ? pkts_acked :
3085 prior_sacked - tp->sacked_out;
3086 tp->lost_cnt_hint -= min(tp->lost_cnt_hint, delta);
3089 tp->fackets_out -= min(pkts_acked, tp->fackets_out);
3091 if (ca_ops->pkts_acked) {
3092 s32 rtt_us = -1;
3094 /* Is the ACK triggering packet unambiguous? */
3095 if (!(flag & FLAG_RETRANS_DATA_ACKED)) {
3096 /* High resolution needed and available? */
3097 if (ca_ops->flags & TCP_CONG_RTT_STAMP &&
3098 !ktime_equal(last_ackt,
3099 net_invalid_timestamp()))
3100 rtt_us = ktime_us_delta(ktime_get_real(),
3101 last_ackt);
3102 else if (ca_seq_rtt >= 0)
3103 rtt_us = jiffies_to_usecs(ca_seq_rtt);
3106 ca_ops->pkts_acked(sk, pkts_acked, rtt_us);
3108 } else if (skb && rtt_update && sack_rtt >= 0 &&
3109 sack_rtt > (s32)(now - TCP_SKB_CB(skb)->when)) {
3110 /* Do not re-arm RTO if the sack RTT is measured from data sent
3111 * after when the head was last (re)transmitted. Otherwise the
3112 * timeout may continue to extend in loss recovery.
3114 tcp_rearm_rto(sk);
3117 #if FASTRETRANS_DEBUG > 0
3118 WARN_ON((int)tp->sacked_out < 0);
3119 WARN_ON((int)tp->lost_out < 0);
3120 WARN_ON((int)tp->retrans_out < 0);
3121 if (!tp->packets_out && tcp_is_sack(tp)) {
3122 icsk = inet_csk(sk);
3123 if (tp->lost_out) {
3124 pr_debug("Leak l=%u %d\n",
3125 tp->lost_out, icsk->icsk_ca_state);
3126 tp->lost_out = 0;
3128 if (tp->sacked_out) {
3129 pr_debug("Leak s=%u %d\n",
3130 tp->sacked_out, icsk->icsk_ca_state);
3131 tp->sacked_out = 0;
3133 if (tp->retrans_out) {
3134 pr_debug("Leak r=%u %d\n",
3135 tp->retrans_out, icsk->icsk_ca_state);
3136 tp->retrans_out = 0;
3139 #endif
3140 return flag;
3143 static void tcp_ack_probe(struct sock *sk)
3145 const struct tcp_sock *tp = tcp_sk(sk);
3146 struct inet_connection_sock *icsk = inet_csk(sk);
3148 /* Was it a usable window open? */
3150 if (!after(TCP_SKB_CB(tcp_send_head(sk))->end_seq, tcp_wnd_end(tp))) {
3151 icsk->icsk_backoff = 0;
3152 inet_csk_clear_xmit_timer(sk, ICSK_TIME_PROBE0);
3153 /* Socket must be waked up by subsequent tcp_data_snd_check().
3154 * This function is not for random using!
3156 } else {
3157 inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0,
3158 min(icsk->icsk_rto << icsk->icsk_backoff, TCP_RTO_MAX),
3159 TCP_RTO_MAX);
3163 static inline bool tcp_ack_is_dubious(const struct sock *sk, const int flag)
3165 return !(flag & FLAG_NOT_DUP) || (flag & FLAG_CA_ALERT) ||
3166 inet_csk(sk)->icsk_ca_state != TCP_CA_Open;
3169 /* Decide wheather to run the increase function of congestion control. */
3170 static inline bool tcp_may_raise_cwnd(const struct sock *sk, const int flag)
3172 if (tcp_in_cwnd_reduction(sk))
3173 return false;
3175 /* If reordering is high then always grow cwnd whenever data is
3176 * delivered regardless of its ordering. Otherwise stay conservative
3177 * and only grow cwnd on in-order delivery (RFC5681). A stretched ACK w/
3178 * new SACK or ECE mark may first advance cwnd here and later reduce
3179 * cwnd in tcp_fastretrans_alert() based on more states.
3181 if (tcp_sk(sk)->reordering > sysctl_tcp_reordering)
3182 return flag & FLAG_FORWARD_PROGRESS;
3184 return flag & FLAG_DATA_ACKED;
3187 /* Check that window update is acceptable.
3188 * The function assumes that snd_una<=ack<=snd_next.
3190 static inline bool tcp_may_update_window(const struct tcp_sock *tp,
3191 const u32 ack, const u32 ack_seq,
3192 const u32 nwin)
3194 return after(ack, tp->snd_una) ||
3195 after(ack_seq, tp->snd_wl1) ||
3196 (ack_seq == tp->snd_wl1 && nwin > tp->snd_wnd);
3199 /* Update our send window.
3201 * Window update algorithm, described in RFC793/RFC1122 (used in linux-2.2
3202 * and in FreeBSD. NetBSD's one is even worse.) is wrong.
3204 static int tcp_ack_update_window(struct sock *sk, const struct sk_buff *skb, u32 ack,
3205 u32 ack_seq)
3207 struct tcp_sock *tp = tcp_sk(sk);
3208 int flag = 0;
3209 u32 nwin = ntohs(tcp_hdr(skb)->window);
3211 if (likely(!tcp_hdr(skb)->syn))
3212 nwin <<= tp->rx_opt.snd_wscale;
3214 if (tcp_may_update_window(tp, ack, ack_seq, nwin)) {
3215 flag |= FLAG_WIN_UPDATE;
3216 tcp_update_wl(tp, ack_seq);
3218 if (tp->snd_wnd != nwin) {
3219 tp->snd_wnd = nwin;
3221 /* Note, it is the only place, where
3222 * fast path is recovered for sending TCP.
3224 tp->pred_flags = 0;
3225 tcp_fast_path_check(sk);
3227 if (nwin > tp->max_window) {
3228 tp->max_window = nwin;
3229 tcp_sync_mss(sk, inet_csk(sk)->icsk_pmtu_cookie);
3234 tp->snd_una = ack;
3236 return flag;
3239 /* RFC 5961 7 [ACK Throttling] */
3240 static void tcp_send_challenge_ack(struct sock *sk)
3242 /* unprotected vars, we dont care of overwrites */
3243 static u32 challenge_timestamp;
3244 static unsigned int challenge_count;
3245 u32 count, now = jiffies / HZ;
3247 if (now != challenge_timestamp) {
3248 u32 half = (sysctl_tcp_challenge_ack_limit + 1) >> 1;
3250 challenge_timestamp = now;
3251 WRITE_ONCE(challenge_count, half +
3252 prandom_u32_max(sysctl_tcp_challenge_ack_limit));
3254 count = READ_ONCE(challenge_count);
3255 if (count > 0) {
3256 WRITE_ONCE(challenge_count, count - 1);
3257 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPCHALLENGEACK);
3258 tcp_send_ack(sk);
3262 static void tcp_store_ts_recent(struct tcp_sock *tp)
3264 tp->rx_opt.ts_recent = tp->rx_opt.rcv_tsval;
3265 tp->rx_opt.ts_recent_stamp = get_seconds();
3268 static void tcp_replace_ts_recent(struct tcp_sock *tp, u32 seq)
3270 if (tp->rx_opt.saw_tstamp && !after(seq, tp->rcv_wup)) {
3271 /* PAWS bug workaround wrt. ACK frames, the PAWS discard
3272 * extra check below makes sure this can only happen
3273 * for pure ACK frames. -DaveM
3275 * Not only, also it occurs for expired timestamps.
3278 if (tcp_paws_check(&tp->rx_opt, 0))
3279 tcp_store_ts_recent(tp);
3283 /* This routine deals with acks during a TLP episode.
3284 * Ref: loss detection algorithm in draft-dukkipati-tcpm-tcp-loss-probe.
3286 static void tcp_process_tlp_ack(struct sock *sk, u32 ack, int flag)
3288 struct tcp_sock *tp = tcp_sk(sk);
3289 bool is_tlp_dupack = (ack == tp->tlp_high_seq) &&
3290 !(flag & (FLAG_SND_UNA_ADVANCED |
3291 FLAG_NOT_DUP | FLAG_DATA_SACKED));
3293 /* Mark the end of TLP episode on receiving TLP dupack or when
3294 * ack is after tlp_high_seq.
3296 if (is_tlp_dupack) {
3297 tp->tlp_high_seq = 0;
3298 return;
3301 if (after(ack, tp->tlp_high_seq)) {
3302 tp->tlp_high_seq = 0;
3303 /* Don't reduce cwnd if DSACK arrives for TLP retrans. */
3304 if (!(flag & FLAG_DSACKING_ACK)) {
3305 tcp_init_cwnd_reduction(sk, true);
3306 tcp_set_ca_state(sk, TCP_CA_CWR);
3307 tcp_end_cwnd_reduction(sk);
3308 tcp_try_keep_open(sk);
3309 NET_INC_STATS_BH(sock_net(sk),
3310 LINUX_MIB_TCPLOSSPROBERECOVERY);
3315 /* This routine deals with incoming acks, but not outgoing ones. */
3316 static int tcp_ack(struct sock *sk, const struct sk_buff *skb, int flag)
3318 struct inet_connection_sock *icsk = inet_csk(sk);
3319 struct tcp_sock *tp = tcp_sk(sk);
3320 u32 prior_snd_una = tp->snd_una;
3321 u32 ack_seq = TCP_SKB_CB(skb)->seq;
3322 u32 ack = TCP_SKB_CB(skb)->ack_seq;
3323 bool is_dupack = false;
3324 u32 prior_in_flight, prior_cwnd = tp->snd_cwnd, prior_rtt = tp->srtt;
3325 u32 prior_fackets;
3326 int prior_packets = tp->packets_out;
3327 const int prior_unsacked = tp->packets_out - tp->sacked_out;
3328 int acked = 0; /* Number of packets newly acked */
3329 s32 sack_rtt = -1;
3331 /* If the ack is older than previous acks
3332 * then we can probably ignore it.
3334 if (before(ack, prior_snd_una)) {
3335 /* RFC 5961 5.2 [Blind Data Injection Attack].[Mitigation] */
3336 if (before(ack, prior_snd_una - tp->max_window)) {
3337 tcp_send_challenge_ack(sk);
3338 return -1;
3340 goto old_ack;
3343 /* If the ack includes data we haven't sent yet, discard
3344 * this segment (RFC793 Section 3.9).
3346 if (after(ack, tp->snd_nxt))
3347 goto invalid_ack;
3349 if (icsk->icsk_pending == ICSK_TIME_EARLY_RETRANS ||
3350 icsk->icsk_pending == ICSK_TIME_LOSS_PROBE)
3351 tcp_rearm_rto(sk);
3353 if (after(ack, prior_snd_una)) {
3354 flag |= FLAG_SND_UNA_ADVANCED;
3355 icsk->icsk_retransmits = 0;
3358 prior_fackets = tp->fackets_out;
3359 prior_in_flight = tcp_packets_in_flight(tp);
3361 /* ts_recent update must be made after we are sure that the packet
3362 * is in window.
3364 if (flag & FLAG_UPDATE_TS_RECENT)
3365 tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq);
3367 if (!(flag & FLAG_SLOWPATH) && after(ack, prior_snd_una)) {
3368 /* Window is constant, pure forward advance.
3369 * No more checks are required.
3370 * Note, we use the fact that SND.UNA>=SND.WL2.
3372 tcp_update_wl(tp, ack_seq);
3373 tp->snd_una = ack;
3374 flag |= FLAG_WIN_UPDATE;
3376 tcp_ca_event(sk, CA_EVENT_FAST_ACK);
3378 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPHPACKS);
3379 } else {
3380 if (ack_seq != TCP_SKB_CB(skb)->end_seq)
3381 flag |= FLAG_DATA;
3382 else
3383 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPPUREACKS);
3385 flag |= tcp_ack_update_window(sk, skb, ack, ack_seq);
3387 if (TCP_SKB_CB(skb)->sacked)
3388 flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una,
3389 &sack_rtt);
3391 if (TCP_ECN_rcv_ecn_echo(tp, tcp_hdr(skb)))
3392 flag |= FLAG_ECE;
3394 tcp_ca_event(sk, CA_EVENT_SLOW_ACK);
3397 /* We passed data and got it acked, remove any soft error
3398 * log. Something worked...
3400 sk->sk_err_soft = 0;
3401 icsk->icsk_probes_out = 0;
3402 tp->rcv_tstamp = tcp_time_stamp;
3403 if (!prior_packets)
3404 goto no_queue;
3406 /* See if we can take anything off of the retransmit queue. */
3407 acked = tp->packets_out;
3408 flag |= tcp_clean_rtx_queue(sk, prior_fackets, prior_snd_una, sack_rtt);
3409 acked -= tp->packets_out;
3411 /* Advance cwnd if state allows */
3412 if (tcp_may_raise_cwnd(sk, flag))
3413 tcp_cong_avoid(sk, ack, prior_in_flight);
3415 if (tcp_ack_is_dubious(sk, flag)) {
3416 is_dupack = !(flag & (FLAG_SND_UNA_ADVANCED | FLAG_NOT_DUP));
3417 tcp_fastretrans_alert(sk, acked, prior_unsacked,
3418 is_dupack, flag);
3420 if (tp->tlp_high_seq)
3421 tcp_process_tlp_ack(sk, ack, flag);
3423 if ((flag & FLAG_FORWARD_PROGRESS) || !(flag & FLAG_NOT_DUP)) {
3424 struct dst_entry *dst = __sk_dst_get(sk);
3425 if (dst)
3426 dst_confirm(dst);
3429 if (icsk->icsk_pending == ICSK_TIME_RETRANS)
3430 tcp_schedule_loss_probe(sk);
3431 if (tp->srtt != prior_rtt || tp->snd_cwnd != prior_cwnd)
3432 tcp_update_pacing_rate(sk);
3433 return 1;
3435 no_queue:
3436 /* If data was DSACKed, see if we can undo a cwnd reduction. */
3437 if (flag & FLAG_DSACKING_ACK)
3438 tcp_fastretrans_alert(sk, acked, prior_unsacked,
3439 is_dupack, flag);
3440 /* If this ack opens up a zero window, clear backoff. It was
3441 * being used to time the probes, and is probably far higher than
3442 * it needs to be for normal retransmission.
3444 if (tcp_send_head(sk))
3445 tcp_ack_probe(sk);
3447 if (tp->tlp_high_seq)
3448 tcp_process_tlp_ack(sk, ack, flag);
3449 return 1;
3451 invalid_ack:
3452 SOCK_DEBUG(sk, "Ack %u after %u:%u\n", ack, tp->snd_una, tp->snd_nxt);
3453 return -1;
3455 old_ack:
3456 /* If data was SACKed, tag it and see if we should send more data.
3457 * If data was DSACKed, see if we can undo a cwnd reduction.
3459 if (TCP_SKB_CB(skb)->sacked) {
3460 flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una,
3461 &sack_rtt);
3462 tcp_fastretrans_alert(sk, acked, prior_unsacked,
3463 is_dupack, flag);
3466 SOCK_DEBUG(sk, "Ack %u before %u:%u\n", ack, tp->snd_una, tp->snd_nxt);
3467 return 0;
3470 /* Look for tcp options. Normally only called on SYN and SYNACK packets.
3471 * But, this can also be called on packets in the established flow when
3472 * the fast version below fails.
3474 void tcp_parse_options(const struct sk_buff *skb,
3475 struct tcp_options_received *opt_rx, int estab,
3476 struct tcp_fastopen_cookie *foc)
3478 const unsigned char *ptr;
3479 const struct tcphdr *th = tcp_hdr(skb);
3480 int length = (th->doff * 4) - sizeof(struct tcphdr);
3482 ptr = (const unsigned char *)(th + 1);
3483 opt_rx->saw_tstamp = 0;
3485 while (length > 0) {
3486 int opcode = *ptr++;
3487 int opsize;
3489 switch (opcode) {
3490 case TCPOPT_EOL:
3491 return;
3492 case TCPOPT_NOP: /* Ref: RFC 793 section 3.1 */
3493 length--;
3494 continue;
3495 default:
3496 opsize = *ptr++;
3497 if (opsize < 2) /* "silly options" */
3498 return;
3499 if (opsize > length)
3500 return; /* don't parse partial options */
3501 switch (opcode) {
3502 case TCPOPT_MSS:
3503 if (opsize == TCPOLEN_MSS && th->syn && !estab) {
3504 u16 in_mss = get_unaligned_be16(ptr);
3505 if (in_mss) {
3506 if (opt_rx->user_mss &&
3507 opt_rx->user_mss < in_mss)
3508 in_mss = opt_rx->user_mss;
3509 opt_rx->mss_clamp = in_mss;
3512 break;
3513 case TCPOPT_WINDOW:
3514 if (opsize == TCPOLEN_WINDOW && th->syn &&
3515 !estab && sysctl_tcp_window_scaling) {
3516 __u8 snd_wscale = *(__u8 *)ptr;
3517 opt_rx->wscale_ok = 1;
3518 if (snd_wscale > 14) {
3519 net_info_ratelimited("%s: Illegal window scaling value %d >14 received\n",
3520 __func__,
3521 snd_wscale);
3522 snd_wscale = 14;
3524 opt_rx->snd_wscale = snd_wscale;
3526 break;
3527 case TCPOPT_TIMESTAMP:
3528 if ((opsize == TCPOLEN_TIMESTAMP) &&
3529 ((estab && opt_rx->tstamp_ok) ||
3530 (!estab && sysctl_tcp_timestamps))) {
3531 opt_rx->saw_tstamp = 1;
3532 opt_rx->rcv_tsval = get_unaligned_be32(ptr);
3533 opt_rx->rcv_tsecr = get_unaligned_be32(ptr + 4);
3535 break;
3536 case TCPOPT_SACK_PERM:
3537 if (opsize == TCPOLEN_SACK_PERM && th->syn &&
3538 !estab && sysctl_tcp_sack) {
3539 opt_rx->sack_ok = TCP_SACK_SEEN;
3540 tcp_sack_reset(opt_rx);
3542 break;
3544 case TCPOPT_SACK:
3545 if ((opsize >= (TCPOLEN_SACK_BASE + TCPOLEN_SACK_PERBLOCK)) &&
3546 !((opsize - TCPOLEN_SACK_BASE) % TCPOLEN_SACK_PERBLOCK) &&
3547 opt_rx->sack_ok) {
3548 TCP_SKB_CB(skb)->sacked = (ptr - 2) - (unsigned char *)th;
3550 break;
3551 #ifdef CONFIG_TCP_MD5SIG
3552 case TCPOPT_MD5SIG:
3554 * The MD5 Hash has already been
3555 * checked (see tcp_v{4,6}_do_rcv()).
3557 break;
3558 #endif
3559 case TCPOPT_EXP:
3560 /* Fast Open option shares code 254 using a
3561 * 16 bits magic number. It's valid only in
3562 * SYN or SYN-ACK with an even size.
3564 if (opsize < TCPOLEN_EXP_FASTOPEN_BASE ||
3565 get_unaligned_be16(ptr) != TCPOPT_FASTOPEN_MAGIC ||
3566 foc == NULL || !th->syn || (opsize & 1))
3567 break;
3568 foc->len = opsize - TCPOLEN_EXP_FASTOPEN_BASE;
3569 if (foc->len >= TCP_FASTOPEN_COOKIE_MIN &&
3570 foc->len <= TCP_FASTOPEN_COOKIE_MAX)
3571 memcpy(foc->val, ptr + 2, foc->len);
3572 else if (foc->len != 0)
3573 foc->len = -1;
3574 break;
3577 ptr += opsize-2;
3578 length -= opsize;
3582 EXPORT_SYMBOL(tcp_parse_options);
3584 static bool tcp_parse_aligned_timestamp(struct tcp_sock *tp, const struct tcphdr *th)
3586 const __be32 *ptr = (const __be32 *)(th + 1);
3588 if (*ptr == htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16)
3589 | (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP)) {
3590 tp->rx_opt.saw_tstamp = 1;
3591 ++ptr;
3592 tp->rx_opt.rcv_tsval = ntohl(*ptr);
3593 ++ptr;
3594 if (*ptr)
3595 tp->rx_opt.rcv_tsecr = ntohl(*ptr) - tp->tsoffset;
3596 else
3597 tp->rx_opt.rcv_tsecr = 0;
3598 return true;
3600 return false;
3603 /* Fast parse options. This hopes to only see timestamps.
3604 * If it is wrong it falls back on tcp_parse_options().
3606 static bool tcp_fast_parse_options(const struct sk_buff *skb,
3607 const struct tcphdr *th, struct tcp_sock *tp)
3609 /* In the spirit of fast parsing, compare doff directly to constant
3610 * values. Because equality is used, short doff can be ignored here.
3612 if (th->doff == (sizeof(*th) / 4)) {
3613 tp->rx_opt.saw_tstamp = 0;
3614 return false;
3615 } else if (tp->rx_opt.tstamp_ok &&
3616 th->doff == ((sizeof(*th) + TCPOLEN_TSTAMP_ALIGNED) / 4)) {
3617 if (tcp_parse_aligned_timestamp(tp, th))
3618 return true;
3621 tcp_parse_options(skb, &tp->rx_opt, 1, NULL);
3622 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr)
3623 tp->rx_opt.rcv_tsecr -= tp->tsoffset;
3625 return true;
3628 #ifdef CONFIG_TCP_MD5SIG
3630 * Parse MD5 Signature option
3632 const u8 *tcp_parse_md5sig_option(const struct tcphdr *th)
3634 int length = (th->doff << 2) - sizeof(*th);
3635 const u8 *ptr = (const u8 *)(th + 1);
3637 /* If the TCP option is too short, we can short cut */
3638 if (length < TCPOLEN_MD5SIG)
3639 return NULL;
3641 while (length > 0) {
3642 int opcode = *ptr++;
3643 int opsize;
3645 switch(opcode) {
3646 case TCPOPT_EOL:
3647 return NULL;
3648 case TCPOPT_NOP:
3649 length--;
3650 continue;
3651 default:
3652 opsize = *ptr++;
3653 if (opsize < 2 || opsize > length)
3654 return NULL;
3655 if (opcode == TCPOPT_MD5SIG)
3656 return opsize == TCPOLEN_MD5SIG ? ptr : NULL;
3658 ptr += opsize - 2;
3659 length -= opsize;
3661 return NULL;
3663 EXPORT_SYMBOL(tcp_parse_md5sig_option);
3664 #endif
3666 /* Sorry, PAWS as specified is broken wrt. pure-ACKs -DaveM
3668 * It is not fatal. If this ACK does _not_ change critical state (seqs, window)
3669 * it can pass through stack. So, the following predicate verifies that
3670 * this segment is not used for anything but congestion avoidance or
3671 * fast retransmit. Moreover, we even are able to eliminate most of such
3672 * second order effects, if we apply some small "replay" window (~RTO)
3673 * to timestamp space.
3675 * All these measures still do not guarantee that we reject wrapped ACKs
3676 * on networks with high bandwidth, when sequence space is recycled fastly,
3677 * but it guarantees that such events will be very rare and do not affect
3678 * connection seriously. This doesn't look nice, but alas, PAWS is really
3679 * buggy extension.
3681 * [ Later note. Even worse! It is buggy for segments _with_ data. RFC
3682 * states that events when retransmit arrives after original data are rare.
3683 * It is a blatant lie. VJ forgot about fast retransmit! 8)8) It is
3684 * the biggest problem on large power networks even with minor reordering.
3685 * OK, let's give it small replay window. If peer clock is even 1hz, it is safe
3686 * up to bandwidth of 18Gigabit/sec. 8) ]
3689 static int tcp_disordered_ack(const struct sock *sk, const struct sk_buff *skb)
3691 const struct tcp_sock *tp = tcp_sk(sk);
3692 const struct tcphdr *th = tcp_hdr(skb);
3693 u32 seq = TCP_SKB_CB(skb)->seq;
3694 u32 ack = TCP_SKB_CB(skb)->ack_seq;
3696 return (/* 1. Pure ACK with correct sequence number. */
3697 (th->ack && seq == TCP_SKB_CB(skb)->end_seq && seq == tp->rcv_nxt) &&
3699 /* 2. ... and duplicate ACK. */
3700 ack == tp->snd_una &&
3702 /* 3. ... and does not update window. */
3703 !tcp_may_update_window(tp, ack, seq, ntohs(th->window) << tp->rx_opt.snd_wscale) &&
3705 /* 4. ... and sits in replay window. */
3706 (s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) <= (inet_csk(sk)->icsk_rto * 1024) / HZ);
3709 static inline bool tcp_paws_discard(const struct sock *sk,
3710 const struct sk_buff *skb)
3712 const struct tcp_sock *tp = tcp_sk(sk);
3714 return !tcp_paws_check(&tp->rx_opt, TCP_PAWS_WINDOW) &&
3715 !tcp_disordered_ack(sk, skb);
3718 /* Check segment sequence number for validity.
3720 * Segment controls are considered valid, if the segment
3721 * fits to the window after truncation to the window. Acceptability
3722 * of data (and SYN, FIN, of course) is checked separately.
3723 * See tcp_data_queue(), for example.
3725 * Also, controls (RST is main one) are accepted using RCV.WUP instead
3726 * of RCV.NXT. Peer still did not advance his SND.UNA when we
3727 * delayed ACK, so that hisSND.UNA<=ourRCV.WUP.
3728 * (borrowed from freebsd)
3731 static inline bool tcp_sequence(const struct tcp_sock *tp, u32 seq, u32 end_seq)
3733 return !before(end_seq, tp->rcv_wup) &&
3734 !after(seq, tp->rcv_nxt + tcp_receive_window(tp));
3737 /* When we get a reset we do this. */
3738 void tcp_reset(struct sock *sk)
3740 /* We want the right error as BSD sees it (and indeed as we do). */
3741 switch (sk->sk_state) {
3742 case TCP_SYN_SENT:
3743 sk->sk_err = ECONNREFUSED;
3744 break;
3745 case TCP_CLOSE_WAIT:
3746 sk->sk_err = EPIPE;
3747 break;
3748 case TCP_CLOSE:
3749 return;
3750 default:
3751 sk->sk_err = ECONNRESET;
3753 /* This barrier is coupled with smp_rmb() in tcp_poll() */
3754 smp_wmb();
3756 if (!sock_flag(sk, SOCK_DEAD))
3757 sk->sk_error_report(sk);
3759 tcp_done(sk);
3763 * Process the FIN bit. This now behaves as it is supposed to work
3764 * and the FIN takes effect when it is validly part of sequence
3765 * space. Not before when we get holes.
3767 * If we are ESTABLISHED, a received fin moves us to CLOSE-WAIT
3768 * (and thence onto LAST-ACK and finally, CLOSE, we never enter
3769 * TIME-WAIT)
3771 * If we are in FINWAIT-1, a received FIN indicates simultaneous
3772 * close and we go into CLOSING (and later onto TIME-WAIT)
3774 * If we are in FINWAIT-2, a received FIN moves us to TIME-WAIT.
3776 static void tcp_fin(struct sock *sk)
3778 struct tcp_sock *tp = tcp_sk(sk);
3779 const struct dst_entry *dst;
3781 inet_csk_schedule_ack(sk);
3783 sk->sk_shutdown |= RCV_SHUTDOWN;
3784 sock_set_flag(sk, SOCK_DONE);
3786 switch (sk->sk_state) {
3787 case TCP_SYN_RECV:
3788 case TCP_ESTABLISHED:
3789 /* Move to CLOSE_WAIT */
3790 tcp_set_state(sk, TCP_CLOSE_WAIT);
3791 dst = __sk_dst_get(sk);
3792 if (!dst || !dst_metric(dst, RTAX_QUICKACK))
3793 inet_csk(sk)->icsk_ack.pingpong = 1;
3794 break;
3796 case TCP_CLOSE_WAIT:
3797 case TCP_CLOSING:
3798 /* Received a retransmission of the FIN, do
3799 * nothing.
3801 break;
3802 case TCP_LAST_ACK:
3803 /* RFC793: Remain in the LAST-ACK state. */
3804 break;
3806 case TCP_FIN_WAIT1:
3807 /* This case occurs when a simultaneous close
3808 * happens, we must ack the received FIN and
3809 * enter the CLOSING state.
3811 tcp_send_ack(sk);
3812 tcp_set_state(sk, TCP_CLOSING);
3813 break;
3814 case TCP_FIN_WAIT2:
3815 /* Received a FIN -- send ACK and enter TIME_WAIT. */
3816 tcp_send_ack(sk);
3817 tcp_time_wait(sk, TCP_TIME_WAIT, 0);
3818 break;
3819 default:
3820 /* Only TCP_LISTEN and TCP_CLOSE are left, in these
3821 * cases we should never reach this piece of code.
3823 pr_err("%s: Impossible, sk->sk_state=%d\n",
3824 __func__, sk->sk_state);
3825 break;
3828 /* It _is_ possible, that we have something out-of-order _after_ FIN.
3829 * Probably, we should reset in this case. For now drop them.
3831 __skb_queue_purge(&tp->out_of_order_queue);
3832 if (tcp_is_sack(tp))
3833 tcp_sack_reset(&tp->rx_opt);
3834 sk_mem_reclaim(sk);
3836 if (!sock_flag(sk, SOCK_DEAD)) {
3837 sk->sk_state_change(sk);
3839 /* Do not send POLL_HUP for half duplex close. */
3840 if (sk->sk_shutdown == SHUTDOWN_MASK ||
3841 sk->sk_state == TCP_CLOSE)
3842 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_HUP);
3843 else
3844 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
3848 static inline bool tcp_sack_extend(struct tcp_sack_block *sp, u32 seq,
3849 u32 end_seq)
3851 if (!after(seq, sp->end_seq) && !after(sp->start_seq, end_seq)) {
3852 if (before(seq, sp->start_seq))
3853 sp->start_seq = seq;
3854 if (after(end_seq, sp->end_seq))
3855 sp->end_seq = end_seq;
3856 return true;
3858 return false;
3861 static void tcp_dsack_set(struct sock *sk, u32 seq, u32 end_seq)
3863 struct tcp_sock *tp = tcp_sk(sk);
3865 if (tcp_is_sack(tp) && sysctl_tcp_dsack) {
3866 int mib_idx;
3868 if (before(seq, tp->rcv_nxt))
3869 mib_idx = LINUX_MIB_TCPDSACKOLDSENT;
3870 else
3871 mib_idx = LINUX_MIB_TCPDSACKOFOSENT;
3873 NET_INC_STATS_BH(sock_net(sk), mib_idx);
3875 tp->rx_opt.dsack = 1;
3876 tp->duplicate_sack[0].start_seq = seq;
3877 tp->duplicate_sack[0].end_seq = end_seq;
3881 static void tcp_dsack_extend(struct sock *sk, u32 seq, u32 end_seq)
3883 struct tcp_sock *tp = tcp_sk(sk);
3885 if (!tp->rx_opt.dsack)
3886 tcp_dsack_set(sk, seq, end_seq);
3887 else
3888 tcp_sack_extend(tp->duplicate_sack, seq, end_seq);
3891 static void tcp_send_dupack(struct sock *sk, const struct sk_buff *skb)
3893 struct tcp_sock *tp = tcp_sk(sk);
3895 if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
3896 before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
3897 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_DELAYEDACKLOST);
3898 tcp_enter_quickack_mode(sk);
3900 if (tcp_is_sack(tp) && sysctl_tcp_dsack) {
3901 u32 end_seq = TCP_SKB_CB(skb)->end_seq;
3903 if (after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt))
3904 end_seq = tp->rcv_nxt;
3905 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, end_seq);
3909 tcp_send_ack(sk);
3912 /* These routines update the SACK block as out-of-order packets arrive or
3913 * in-order packets close up the sequence space.
3915 static void tcp_sack_maybe_coalesce(struct tcp_sock *tp)
3917 int this_sack;
3918 struct tcp_sack_block *sp = &tp->selective_acks[0];
3919 struct tcp_sack_block *swalk = sp + 1;
3921 /* See if the recent change to the first SACK eats into
3922 * or hits the sequence space of other SACK blocks, if so coalesce.
3924 for (this_sack = 1; this_sack < tp->rx_opt.num_sacks;) {
3925 if (tcp_sack_extend(sp, swalk->start_seq, swalk->end_seq)) {
3926 int i;
3928 /* Zap SWALK, by moving every further SACK up by one slot.
3929 * Decrease num_sacks.
3931 tp->rx_opt.num_sacks--;
3932 for (i = this_sack; i < tp->rx_opt.num_sacks; i++)
3933 sp[i] = sp[i + 1];
3934 continue;
3936 this_sack++, swalk++;
3940 static void tcp_sack_new_ofo_skb(struct sock *sk, u32 seq, u32 end_seq)
3942 struct tcp_sock *tp = tcp_sk(sk);
3943 struct tcp_sack_block *sp = &tp->selective_acks[0];
3944 int cur_sacks = tp->rx_opt.num_sacks;
3945 int this_sack;
3947 if (!cur_sacks)
3948 goto new_sack;
3950 for (this_sack = 0; this_sack < cur_sacks; this_sack++, sp++) {
3951 if (tcp_sack_extend(sp, seq, end_seq)) {
3952 /* Rotate this_sack to the first one. */
3953 for (; this_sack > 0; this_sack--, sp--)
3954 swap(*sp, *(sp - 1));
3955 if (cur_sacks > 1)
3956 tcp_sack_maybe_coalesce(tp);
3957 return;
3961 /* Could not find an adjacent existing SACK, build a new one,
3962 * put it at the front, and shift everyone else down. We
3963 * always know there is at least one SACK present already here.
3965 * If the sack array is full, forget about the last one.
3967 if (this_sack >= TCP_NUM_SACKS) {
3968 this_sack--;
3969 tp->rx_opt.num_sacks--;
3970 sp--;
3972 for (; this_sack > 0; this_sack--, sp--)
3973 *sp = *(sp - 1);
3975 new_sack:
3976 /* Build the new head SACK, and we're done. */
3977 sp->start_seq = seq;
3978 sp->end_seq = end_seq;
3979 tp->rx_opt.num_sacks++;
3982 /* RCV.NXT advances, some SACKs should be eaten. */
3984 static void tcp_sack_remove(struct tcp_sock *tp)
3986 struct tcp_sack_block *sp = &tp->selective_acks[0];
3987 int num_sacks = tp->rx_opt.num_sacks;
3988 int this_sack;
3990 /* Empty ofo queue, hence, all the SACKs are eaten. Clear. */
3991 if (skb_queue_empty(&tp->out_of_order_queue)) {
3992 tp->rx_opt.num_sacks = 0;
3993 return;
3996 for (this_sack = 0; this_sack < num_sacks;) {
3997 /* Check if the start of the sack is covered by RCV.NXT. */
3998 if (!before(tp->rcv_nxt, sp->start_seq)) {
3999 int i;
4001 /* RCV.NXT must cover all the block! */
4002 WARN_ON(before(tp->rcv_nxt, sp->end_seq));
4004 /* Zap this SACK, by moving forward any other SACKS. */
4005 for (i=this_sack+1; i < num_sacks; i++)
4006 tp->selective_acks[i-1] = tp->selective_acks[i];
4007 num_sacks--;
4008 continue;
4010 this_sack++;
4011 sp++;
4013 tp->rx_opt.num_sacks = num_sacks;
4016 /* This one checks to see if we can put data from the
4017 * out_of_order queue into the receive_queue.
4019 static void tcp_ofo_queue(struct sock *sk)
4021 struct tcp_sock *tp = tcp_sk(sk);
4022 __u32 dsack_high = tp->rcv_nxt;
4023 struct sk_buff *skb;
4025 while ((skb = skb_peek(&tp->out_of_order_queue)) != NULL) {
4026 if (after(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
4027 break;
4029 if (before(TCP_SKB_CB(skb)->seq, dsack_high)) {
4030 __u32 dsack = dsack_high;
4031 if (before(TCP_SKB_CB(skb)->end_seq, dsack_high))
4032 dsack_high = TCP_SKB_CB(skb)->end_seq;
4033 tcp_dsack_extend(sk, TCP_SKB_CB(skb)->seq, dsack);
4036 if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
4037 SOCK_DEBUG(sk, "ofo packet was already received\n");
4038 __skb_unlink(skb, &tp->out_of_order_queue);
4039 __kfree_skb(skb);
4040 continue;
4042 SOCK_DEBUG(sk, "ofo requeuing : rcv_next %X seq %X - %X\n",
4043 tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
4044 TCP_SKB_CB(skb)->end_seq);
4046 __skb_unlink(skb, &tp->out_of_order_queue);
4047 __skb_queue_tail(&sk->sk_receive_queue, skb);
4048 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
4049 if (tcp_hdr(skb)->fin)
4050 tcp_fin(sk);
4054 static bool tcp_prune_ofo_queue(struct sock *sk);
4055 static int tcp_prune_queue(struct sock *sk);
4057 static int tcp_try_rmem_schedule(struct sock *sk, struct sk_buff *skb,
4058 unsigned int size)
4060 if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf ||
4061 !sk_rmem_schedule(sk, skb, size)) {
4063 if (tcp_prune_queue(sk) < 0)
4064 return -1;
4066 if (!sk_rmem_schedule(sk, skb, size)) {
4067 if (!tcp_prune_ofo_queue(sk))
4068 return -1;
4070 if (!sk_rmem_schedule(sk, skb, size))
4071 return -1;
4074 return 0;
4078 * tcp_try_coalesce - try to merge skb to prior one
4079 * @sk: socket
4080 * @to: prior buffer
4081 * @from: buffer to add in queue
4082 * @fragstolen: pointer to boolean
4084 * Before queueing skb @from after @to, try to merge them
4085 * to reduce overall memory use and queue lengths, if cost is small.
4086 * Packets in ofo or receive queues can stay a long time.
4087 * Better try to coalesce them right now to avoid future collapses.
4088 * Returns true if caller should free @from instead of queueing it
4090 static bool tcp_try_coalesce(struct sock *sk,
4091 struct sk_buff *to,
4092 struct sk_buff *from,
4093 bool *fragstolen)
4095 int delta;
4097 *fragstolen = false;
4099 if (tcp_hdr(from)->fin)
4100 return false;
4102 /* Its possible this segment overlaps with prior segment in queue */
4103 if (TCP_SKB_CB(from)->seq != TCP_SKB_CB(to)->end_seq)
4104 return false;
4106 if (!skb_try_coalesce(to, from, fragstolen, &delta))
4107 return false;
4109 atomic_add(delta, &sk->sk_rmem_alloc);
4110 sk_mem_charge(sk, delta);
4111 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPRCVCOALESCE);
4112 TCP_SKB_CB(to)->end_seq = TCP_SKB_CB(from)->end_seq;
4113 TCP_SKB_CB(to)->ack_seq = TCP_SKB_CB(from)->ack_seq;
4114 return true;
4117 static void tcp_data_queue_ofo(struct sock *sk, struct sk_buff *skb)
4119 struct tcp_sock *tp = tcp_sk(sk);
4120 struct sk_buff *skb1;
4121 u32 seq, end_seq;
4123 TCP_ECN_check_ce(tp, skb);
4125 if (unlikely(tcp_try_rmem_schedule(sk, skb, skb->truesize))) {
4126 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPOFODROP);
4127 __kfree_skb(skb);
4128 return;
4131 /* Disable header prediction. */
4132 tp->pred_flags = 0;
4133 inet_csk_schedule_ack(sk);
4135 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPOFOQUEUE);
4136 SOCK_DEBUG(sk, "out of order segment: rcv_next %X seq %X - %X\n",
4137 tp->rcv_nxt, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
4139 skb1 = skb_peek_tail(&tp->out_of_order_queue);
4140 if (!skb1) {
4141 /* Initial out of order segment, build 1 SACK. */
4142 if (tcp_is_sack(tp)) {
4143 tp->rx_opt.num_sacks = 1;
4144 tp->selective_acks[0].start_seq = TCP_SKB_CB(skb)->seq;
4145 tp->selective_acks[0].end_seq =
4146 TCP_SKB_CB(skb)->end_seq;
4148 __skb_queue_head(&tp->out_of_order_queue, skb);
4149 goto end;
4152 seq = TCP_SKB_CB(skb)->seq;
4153 end_seq = TCP_SKB_CB(skb)->end_seq;
4155 if (seq == TCP_SKB_CB(skb1)->end_seq) {
4156 bool fragstolen;
4158 if (!tcp_try_coalesce(sk, skb1, skb, &fragstolen)) {
4159 __skb_queue_after(&tp->out_of_order_queue, skb1, skb);
4160 } else {
4161 tcp_grow_window(sk, skb);
4162 kfree_skb_partial(skb, fragstolen);
4163 skb = NULL;
4166 if (!tp->rx_opt.num_sacks ||
4167 tp->selective_acks[0].end_seq != seq)
4168 goto add_sack;
4170 /* Common case: data arrive in order after hole. */
4171 tp->selective_acks[0].end_seq = end_seq;
4172 goto end;
4175 /* Find place to insert this segment. */
4176 while (1) {
4177 if (!after(TCP_SKB_CB(skb1)->seq, seq))
4178 break;
4179 if (skb_queue_is_first(&tp->out_of_order_queue, skb1)) {
4180 skb1 = NULL;
4181 break;
4183 skb1 = skb_queue_prev(&tp->out_of_order_queue, skb1);
4186 /* Do skb overlap to previous one? */
4187 if (skb1 && before(seq, TCP_SKB_CB(skb1)->end_seq)) {
4188 if (!after(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
4189 /* All the bits are present. Drop. */
4190 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPOFOMERGE);
4191 __kfree_skb(skb);
4192 skb = NULL;
4193 tcp_dsack_set(sk, seq, end_seq);
4194 goto add_sack;
4196 if (after(seq, TCP_SKB_CB(skb1)->seq)) {
4197 /* Partial overlap. */
4198 tcp_dsack_set(sk, seq,
4199 TCP_SKB_CB(skb1)->end_seq);
4200 } else {
4201 if (skb_queue_is_first(&tp->out_of_order_queue,
4202 skb1))
4203 skb1 = NULL;
4204 else
4205 skb1 = skb_queue_prev(
4206 &tp->out_of_order_queue,
4207 skb1);
4210 if (!skb1)
4211 __skb_queue_head(&tp->out_of_order_queue, skb);
4212 else
4213 __skb_queue_after(&tp->out_of_order_queue, skb1, skb);
4215 /* And clean segments covered by new one as whole. */
4216 while (!skb_queue_is_last(&tp->out_of_order_queue, skb)) {
4217 skb1 = skb_queue_next(&tp->out_of_order_queue, skb);
4219 if (!after(end_seq, TCP_SKB_CB(skb1)->seq))
4220 break;
4221 if (before(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
4222 tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq,
4223 end_seq);
4224 break;
4226 __skb_unlink(skb1, &tp->out_of_order_queue);
4227 tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq,
4228 TCP_SKB_CB(skb1)->end_seq);
4229 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPOFOMERGE);
4230 __kfree_skb(skb1);
4233 add_sack:
4234 if (tcp_is_sack(tp))
4235 tcp_sack_new_ofo_skb(sk, seq, end_seq);
4236 end:
4237 if (skb) {
4238 tcp_grow_window(sk, skb);
4239 skb_set_owner_r(skb, sk);
4243 static int __must_check tcp_queue_rcv(struct sock *sk, struct sk_buff *skb, int hdrlen,
4244 bool *fragstolen)
4246 int eaten;
4247 struct sk_buff *tail = skb_peek_tail(&sk->sk_receive_queue);
4249 __skb_pull(skb, hdrlen);
4250 eaten = (tail &&
4251 tcp_try_coalesce(sk, tail, skb, fragstolen)) ? 1 : 0;
4252 tcp_sk(sk)->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
4253 if (!eaten) {
4254 __skb_queue_tail(&sk->sk_receive_queue, skb);
4255 skb_set_owner_r(skb, sk);
4257 return eaten;
4260 int tcp_send_rcvq(struct sock *sk, struct msghdr *msg, size_t size)
4262 struct sk_buff *skb = NULL;
4263 struct tcphdr *th;
4264 bool fragstolen;
4266 if (size == 0)
4267 return 0;
4269 skb = alloc_skb(size + sizeof(*th), sk->sk_allocation);
4270 if (!skb)
4271 goto err;
4273 if (tcp_try_rmem_schedule(sk, skb, size + sizeof(*th)))
4274 goto err_free;
4276 th = (struct tcphdr *)skb_put(skb, sizeof(*th));
4277 skb_reset_transport_header(skb);
4278 memset(th, 0, sizeof(*th));
4280 if (memcpy_fromiovec(skb_put(skb, size), msg->msg_iov, size))
4281 goto err_free;
4283 TCP_SKB_CB(skb)->seq = tcp_sk(sk)->rcv_nxt;
4284 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(skb)->seq + size;
4285 TCP_SKB_CB(skb)->ack_seq = tcp_sk(sk)->snd_una - 1;
4287 if (tcp_queue_rcv(sk, skb, sizeof(*th), &fragstolen)) {
4288 WARN_ON_ONCE(fragstolen); /* should not happen */
4289 __kfree_skb(skb);
4291 return size;
4293 err_free:
4294 kfree_skb(skb);
4295 err:
4296 return -ENOMEM;
4299 static void tcp_data_queue(struct sock *sk, struct sk_buff *skb)
4301 const struct tcphdr *th = tcp_hdr(skb);
4302 struct tcp_sock *tp = tcp_sk(sk);
4303 int eaten = -1;
4304 bool fragstolen = false;
4306 if (TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq)
4307 goto drop;
4309 skb_dst_drop(skb);
4310 __skb_pull(skb, th->doff * 4);
4312 TCP_ECN_accept_cwr(tp, skb);
4314 tp->rx_opt.dsack = 0;
4316 /* Queue data for delivery to the user.
4317 * Packets in sequence go to the receive queue.
4318 * Out of sequence packets to the out_of_order_queue.
4320 if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt) {
4321 if (tcp_receive_window(tp) == 0)
4322 goto out_of_window;
4324 /* Ok. In sequence. In window. */
4325 if (tp->ucopy.task == current &&
4326 tp->copied_seq == tp->rcv_nxt && tp->ucopy.len &&
4327 sock_owned_by_user(sk) && !tp->urg_data) {
4328 int chunk = min_t(unsigned int, skb->len,
4329 tp->ucopy.len);
4331 __set_current_state(TASK_RUNNING);
4333 local_bh_enable();
4334 if (!skb_copy_datagram_iovec(skb, 0, tp->ucopy.iov, chunk)) {
4335 tp->ucopy.len -= chunk;
4336 tp->copied_seq += chunk;
4337 eaten = (chunk == skb->len);
4338 tcp_rcv_space_adjust(sk);
4340 local_bh_disable();
4343 if (eaten <= 0) {
4344 queue_and_out:
4345 if (eaten < 0 &&
4346 tcp_try_rmem_schedule(sk, skb, skb->truesize))
4347 goto drop;
4349 eaten = tcp_queue_rcv(sk, skb, 0, &fragstolen);
4351 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
4352 if (skb->len)
4353 tcp_event_data_recv(sk, skb);
4354 if (th->fin)
4355 tcp_fin(sk);
4357 if (!skb_queue_empty(&tp->out_of_order_queue)) {
4358 tcp_ofo_queue(sk);
4360 /* RFC2581. 4.2. SHOULD send immediate ACK, when
4361 * gap in queue is filled.
4363 if (skb_queue_empty(&tp->out_of_order_queue))
4364 inet_csk(sk)->icsk_ack.pingpong = 0;
4367 if (tp->rx_opt.num_sacks)
4368 tcp_sack_remove(tp);
4370 tcp_fast_path_check(sk);
4372 if (eaten > 0)
4373 kfree_skb_partial(skb, fragstolen);
4374 if (!sock_flag(sk, SOCK_DEAD))
4375 sk->sk_data_ready(sk, 0);
4376 return;
4379 if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
4380 /* A retransmit, 2nd most common case. Force an immediate ack. */
4381 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_DELAYEDACKLOST);
4382 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
4384 out_of_window:
4385 tcp_enter_quickack_mode(sk);
4386 inet_csk_schedule_ack(sk);
4387 drop:
4388 __kfree_skb(skb);
4389 return;
4392 /* Out of window. F.e. zero window probe. */
4393 if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt + tcp_receive_window(tp)))
4394 goto out_of_window;
4396 tcp_enter_quickack_mode(sk);
4398 if (before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
4399 /* Partial packet, seq < rcv_next < end_seq */
4400 SOCK_DEBUG(sk, "partial packet: rcv_next %X seq %X - %X\n",
4401 tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
4402 TCP_SKB_CB(skb)->end_seq);
4404 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, tp->rcv_nxt);
4406 /* If window is closed, drop tail of packet. But after
4407 * remembering D-SACK for its head made in previous line.
4409 if (!tcp_receive_window(tp))
4410 goto out_of_window;
4411 goto queue_and_out;
4414 tcp_data_queue_ofo(sk, skb);
4417 static struct sk_buff *tcp_collapse_one(struct sock *sk, struct sk_buff *skb,
4418 struct sk_buff_head *list)
4420 struct sk_buff *next = NULL;
4422 if (!skb_queue_is_last(list, skb))
4423 next = skb_queue_next(list, skb);
4425 __skb_unlink(skb, list);
4426 __kfree_skb(skb);
4427 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPRCVCOLLAPSED);
4429 return next;
4432 /* Collapse contiguous sequence of skbs head..tail with
4433 * sequence numbers start..end.
4435 * If tail is NULL, this means until the end of the list.
4437 * Segments with FIN/SYN are not collapsed (only because this
4438 * simplifies code)
4440 static void
4441 tcp_collapse(struct sock *sk, struct sk_buff_head *list,
4442 struct sk_buff *head, struct sk_buff *tail,
4443 u32 start, u32 end)
4445 struct sk_buff *skb, *n;
4446 bool end_of_skbs;
4448 /* First, check that queue is collapsible and find
4449 * the point where collapsing can be useful. */
4450 skb = head;
4451 restart:
4452 end_of_skbs = true;
4453 skb_queue_walk_from_safe(list, skb, n) {
4454 if (skb == tail)
4455 break;
4456 /* No new bits? It is possible on ofo queue. */
4457 if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
4458 skb = tcp_collapse_one(sk, skb, list);
4459 if (!skb)
4460 break;
4461 goto restart;
4464 /* The first skb to collapse is:
4465 * - not SYN/FIN and
4466 * - bloated or contains data before "start" or
4467 * overlaps to the next one.
4469 if (!tcp_hdr(skb)->syn && !tcp_hdr(skb)->fin &&
4470 (tcp_win_from_space(skb->truesize) > skb->len ||
4471 before(TCP_SKB_CB(skb)->seq, start))) {
4472 end_of_skbs = false;
4473 break;
4476 if (!skb_queue_is_last(list, skb)) {
4477 struct sk_buff *next = skb_queue_next(list, skb);
4478 if (next != tail &&
4479 TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(next)->seq) {
4480 end_of_skbs = false;
4481 break;
4485 /* Decided to skip this, advance start seq. */
4486 start = TCP_SKB_CB(skb)->end_seq;
4488 if (end_of_skbs || tcp_hdr(skb)->syn || tcp_hdr(skb)->fin)
4489 return;
4491 while (before(start, end)) {
4492 struct sk_buff *nskb;
4493 unsigned int header = skb_headroom(skb);
4494 int copy = SKB_MAX_ORDER(header, 0);
4496 /* Too big header? This can happen with IPv6. */
4497 if (copy < 0)
4498 return;
4499 if (end - start < copy)
4500 copy = end - start;
4501 nskb = alloc_skb(copy + header, GFP_ATOMIC);
4502 if (!nskb)
4503 return;
4505 skb_set_mac_header(nskb, skb_mac_header(skb) - skb->head);
4506 skb_set_network_header(nskb, (skb_network_header(skb) -
4507 skb->head));
4508 skb_set_transport_header(nskb, (skb_transport_header(skb) -
4509 skb->head));
4510 skb_reserve(nskb, header);
4511 memcpy(nskb->head, skb->head, header);
4512 memcpy(nskb->cb, skb->cb, sizeof(skb->cb));
4513 TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(nskb)->end_seq = start;
4514 __skb_queue_before(list, skb, nskb);
4515 skb_set_owner_r(nskb, sk);
4517 /* Copy data, releasing collapsed skbs. */
4518 while (copy > 0) {
4519 int offset = start - TCP_SKB_CB(skb)->seq;
4520 int size = TCP_SKB_CB(skb)->end_seq - start;
4522 BUG_ON(offset < 0);
4523 if (size > 0) {
4524 size = min(copy, size);
4525 if (skb_copy_bits(skb, offset, skb_put(nskb, size), size))
4526 BUG();
4527 TCP_SKB_CB(nskb)->end_seq += size;
4528 copy -= size;
4529 start += size;
4531 if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
4532 skb = tcp_collapse_one(sk, skb, list);
4533 if (!skb ||
4534 skb == tail ||
4535 tcp_hdr(skb)->syn ||
4536 tcp_hdr(skb)->fin)
4537 return;
4543 /* Collapse ofo queue. Algorithm: select contiguous sequence of skbs
4544 * and tcp_collapse() them until all the queue is collapsed.
4546 static void tcp_collapse_ofo_queue(struct sock *sk)
4548 struct tcp_sock *tp = tcp_sk(sk);
4549 struct sk_buff *skb = skb_peek(&tp->out_of_order_queue);
4550 struct sk_buff *head;
4551 u32 start, end;
4553 if (skb == NULL)
4554 return;
4556 start = TCP_SKB_CB(skb)->seq;
4557 end = TCP_SKB_CB(skb)->end_seq;
4558 head = skb;
4560 for (;;) {
4561 struct sk_buff *next = NULL;
4563 if (!skb_queue_is_last(&tp->out_of_order_queue, skb))
4564 next = skb_queue_next(&tp->out_of_order_queue, skb);
4565 skb = next;
4567 /* Segment is terminated when we see gap or when
4568 * we are at the end of all the queue. */
4569 if (!skb ||
4570 after(TCP_SKB_CB(skb)->seq, end) ||
4571 before(TCP_SKB_CB(skb)->end_seq, start)) {
4572 tcp_collapse(sk, &tp->out_of_order_queue,
4573 head, skb, start, end);
4574 head = skb;
4575 if (!skb)
4576 break;
4577 /* Start new segment */
4578 start = TCP_SKB_CB(skb)->seq;
4579 end = TCP_SKB_CB(skb)->end_seq;
4580 } else {
4581 if (before(TCP_SKB_CB(skb)->seq, start))
4582 start = TCP_SKB_CB(skb)->seq;
4583 if (after(TCP_SKB_CB(skb)->end_seq, end))
4584 end = TCP_SKB_CB(skb)->end_seq;
4590 * Purge the out-of-order queue.
4591 * Return true if queue was pruned.
4593 static bool tcp_prune_ofo_queue(struct sock *sk)
4595 struct tcp_sock *tp = tcp_sk(sk);
4596 bool res = false;
4598 if (!skb_queue_empty(&tp->out_of_order_queue)) {
4599 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_OFOPRUNED);
4600 __skb_queue_purge(&tp->out_of_order_queue);
4602 /* Reset SACK state. A conforming SACK implementation will
4603 * do the same at a timeout based retransmit. When a connection
4604 * is in a sad state like this, we care only about integrity
4605 * of the connection not performance.
4607 if (tp->rx_opt.sack_ok)
4608 tcp_sack_reset(&tp->rx_opt);
4609 sk_mem_reclaim(sk);
4610 res = true;
4612 return res;
4615 /* Reduce allocated memory if we can, trying to get
4616 * the socket within its memory limits again.
4618 * Return less than zero if we should start dropping frames
4619 * until the socket owning process reads some of the data
4620 * to stabilize the situation.
4622 static int tcp_prune_queue(struct sock *sk)
4624 struct tcp_sock *tp = tcp_sk(sk);
4626 SOCK_DEBUG(sk, "prune_queue: c=%x\n", tp->copied_seq);
4628 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PRUNECALLED);
4630 if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf)
4631 tcp_clamp_window(sk);
4632 else if (sk_under_memory_pressure(sk))
4633 tp->rcv_ssthresh = min(tp->rcv_ssthresh, 4U * tp->advmss);
4635 tcp_collapse_ofo_queue(sk);
4636 if (!skb_queue_empty(&sk->sk_receive_queue))
4637 tcp_collapse(sk, &sk->sk_receive_queue,
4638 skb_peek(&sk->sk_receive_queue),
4639 NULL,
4640 tp->copied_seq, tp->rcv_nxt);
4641 sk_mem_reclaim(sk);
4643 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
4644 return 0;
4646 /* Collapsing did not help, destructive actions follow.
4647 * This must not ever occur. */
4649 tcp_prune_ofo_queue(sk);
4651 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
4652 return 0;
4654 /* If we are really being abused, tell the caller to silently
4655 * drop receive data on the floor. It will get retransmitted
4656 * and hopefully then we'll have sufficient space.
4658 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_RCVPRUNED);
4660 /* Massive buffer overcommit. */
4661 tp->pred_flags = 0;
4662 return -1;
4665 /* RFC2861, slow part. Adjust cwnd, after it was not full during one rto.
4666 * As additional protections, we do not touch cwnd in retransmission phases,
4667 * and if application hit its sndbuf limit recently.
4669 void tcp_cwnd_application_limited(struct sock *sk)
4671 struct tcp_sock *tp = tcp_sk(sk);
4673 if (inet_csk(sk)->icsk_ca_state == TCP_CA_Open &&
4674 sk->sk_socket && !test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
4675 /* Limited by application or receiver window. */
4676 u32 init_win = tcp_init_cwnd(tp, __sk_dst_get(sk));
4677 u32 win_used = max(tp->snd_cwnd_used, init_win);
4678 if (win_used < tp->snd_cwnd) {
4679 tp->snd_ssthresh = tcp_current_ssthresh(sk);
4680 tp->snd_cwnd = (tp->snd_cwnd + win_used) >> 1;
4682 tp->snd_cwnd_used = 0;
4684 tp->snd_cwnd_stamp = tcp_time_stamp;
4687 static bool tcp_should_expand_sndbuf(const struct sock *sk)
4689 const struct tcp_sock *tp = tcp_sk(sk);
4691 /* If the user specified a specific send buffer setting, do
4692 * not modify it.
4694 if (sk->sk_userlocks & SOCK_SNDBUF_LOCK)
4695 return false;
4697 /* If we are under global TCP memory pressure, do not expand. */
4698 if (sk_under_memory_pressure(sk))
4699 return false;
4701 /* If we are under soft global TCP memory pressure, do not expand. */
4702 if (sk_memory_allocated(sk) >= sk_prot_mem_limits(sk, 0))
4703 return false;
4705 /* If we filled the congestion window, do not expand. */
4706 if (tp->packets_out >= tp->snd_cwnd)
4707 return false;
4709 return true;
4712 /* When incoming ACK allowed to free some skb from write_queue,
4713 * we remember this event in flag SOCK_QUEUE_SHRUNK and wake up socket
4714 * on the exit from tcp input handler.
4716 * PROBLEM: sndbuf expansion does not work well with largesend.
4718 static void tcp_new_space(struct sock *sk)
4720 struct tcp_sock *tp = tcp_sk(sk);
4722 if (tcp_should_expand_sndbuf(sk)) {
4723 int sndmem = SKB_TRUESIZE(max_t(u32,
4724 tp->rx_opt.mss_clamp,
4725 tp->mss_cache) +
4726 MAX_TCP_HEADER);
4727 int demanded = max_t(unsigned int, tp->snd_cwnd,
4728 tp->reordering + 1);
4729 sndmem *= 2 * demanded;
4730 if (sndmem > sk->sk_sndbuf)
4731 sk->sk_sndbuf = min(sndmem, sysctl_tcp_wmem[2]);
4732 tp->snd_cwnd_stamp = tcp_time_stamp;
4735 sk->sk_write_space(sk);
4738 static void tcp_check_space(struct sock *sk)
4740 if (sock_flag(sk, SOCK_QUEUE_SHRUNK)) {
4741 sock_reset_flag(sk, SOCK_QUEUE_SHRUNK);
4742 if (sk->sk_socket &&
4743 test_bit(SOCK_NOSPACE, &sk->sk_socket->flags))
4744 tcp_new_space(sk);
4748 static inline void tcp_data_snd_check(struct sock *sk)
4750 tcp_push_pending_frames(sk);
4751 tcp_check_space(sk);
4755 * Check if sending an ack is needed.
4757 static void __tcp_ack_snd_check(struct sock *sk, int ofo_possible)
4759 struct tcp_sock *tp = tcp_sk(sk);
4761 /* More than one full frame received... */
4762 if (((tp->rcv_nxt - tp->rcv_wup) > inet_csk(sk)->icsk_ack.rcv_mss &&
4763 /* ... and right edge of window advances far enough.
4764 * (tcp_recvmsg() will send ACK otherwise). Or...
4766 __tcp_select_window(sk) >= tp->rcv_wnd) ||
4767 /* We ACK each frame or... */
4768 tcp_in_quickack_mode(sk) ||
4769 /* We have out of order data. */
4770 (ofo_possible && skb_peek(&tp->out_of_order_queue))) {
4771 /* Then ack it now */
4772 tcp_send_ack(sk);
4773 } else {
4774 /* Else, send delayed ack. */
4775 tcp_send_delayed_ack(sk);
4779 static inline void tcp_ack_snd_check(struct sock *sk)
4781 if (!inet_csk_ack_scheduled(sk)) {
4782 /* We sent a data segment already. */
4783 return;
4785 __tcp_ack_snd_check(sk, 1);
4789 * This routine is only called when we have urgent data
4790 * signaled. Its the 'slow' part of tcp_urg. It could be
4791 * moved inline now as tcp_urg is only called from one
4792 * place. We handle URGent data wrong. We have to - as
4793 * BSD still doesn't use the correction from RFC961.
4794 * For 1003.1g we should support a new option TCP_STDURG to permit
4795 * either form (or just set the sysctl tcp_stdurg).
4798 static void tcp_check_urg(struct sock *sk, const struct tcphdr *th)
4800 struct tcp_sock *tp = tcp_sk(sk);
4801 u32 ptr = ntohs(th->urg_ptr);
4803 if (ptr && !sysctl_tcp_stdurg)
4804 ptr--;
4805 ptr += ntohl(th->seq);
4807 /* Ignore urgent data that we've already seen and read. */
4808 if (after(tp->copied_seq, ptr))
4809 return;
4811 /* Do not replay urg ptr.
4813 * NOTE: interesting situation not covered by specs.
4814 * Misbehaving sender may send urg ptr, pointing to segment,
4815 * which we already have in ofo queue. We are not able to fetch
4816 * such data and will stay in TCP_URG_NOTYET until will be eaten
4817 * by recvmsg(). Seems, we are not obliged to handle such wicked
4818 * situations. But it is worth to think about possibility of some
4819 * DoSes using some hypothetical application level deadlock.
4821 if (before(ptr, tp->rcv_nxt))
4822 return;
4824 /* Do we already have a newer (or duplicate) urgent pointer? */
4825 if (tp->urg_data && !after(ptr, tp->urg_seq))
4826 return;
4828 /* Tell the world about our new urgent pointer. */
4829 sk_send_sigurg(sk);
4831 /* We may be adding urgent data when the last byte read was
4832 * urgent. To do this requires some care. We cannot just ignore
4833 * tp->copied_seq since we would read the last urgent byte again
4834 * as data, nor can we alter copied_seq until this data arrives
4835 * or we break the semantics of SIOCATMARK (and thus sockatmark())
4837 * NOTE. Double Dutch. Rendering to plain English: author of comment
4838 * above did something sort of send("A", MSG_OOB); send("B", MSG_OOB);
4839 * and expect that both A and B disappear from stream. This is _wrong_.
4840 * Though this happens in BSD with high probability, this is occasional.
4841 * Any application relying on this is buggy. Note also, that fix "works"
4842 * only in this artificial test. Insert some normal data between A and B and we will
4843 * decline of BSD again. Verdict: it is better to remove to trap
4844 * buggy users.
4846 if (tp->urg_seq == tp->copied_seq && tp->urg_data &&
4847 !sock_flag(sk, SOCK_URGINLINE) && tp->copied_seq != tp->rcv_nxt) {
4848 struct sk_buff *skb = skb_peek(&sk->sk_receive_queue);
4849 tp->copied_seq++;
4850 if (skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq)) {
4851 __skb_unlink(skb, &sk->sk_receive_queue);
4852 __kfree_skb(skb);
4856 tp->urg_data = TCP_URG_NOTYET;
4857 tp->urg_seq = ptr;
4859 /* Disable header prediction. */
4860 tp->pred_flags = 0;
4863 /* This is the 'fast' part of urgent handling. */
4864 static void tcp_urg(struct sock *sk, struct sk_buff *skb, const struct tcphdr *th)
4866 struct tcp_sock *tp = tcp_sk(sk);
4868 /* Check if we get a new urgent pointer - normally not. */
4869 if (th->urg)
4870 tcp_check_urg(sk, th);
4872 /* Do we wait for any urgent data? - normally not... */
4873 if (tp->urg_data == TCP_URG_NOTYET) {
4874 u32 ptr = tp->urg_seq - ntohl(th->seq) + (th->doff * 4) -
4875 th->syn;
4877 /* Is the urgent pointer pointing into this packet? */
4878 if (ptr < skb->len) {
4879 u8 tmp;
4880 if (skb_copy_bits(skb, ptr, &tmp, 1))
4881 BUG();
4882 tp->urg_data = TCP_URG_VALID | tmp;
4883 if (!sock_flag(sk, SOCK_DEAD))
4884 sk->sk_data_ready(sk, 0);
4889 static int tcp_copy_to_iovec(struct sock *sk, struct sk_buff *skb, int hlen)
4891 struct tcp_sock *tp = tcp_sk(sk);
4892 int chunk = skb->len - hlen;
4893 int err;
4895 local_bh_enable();
4896 if (skb_csum_unnecessary(skb))
4897 err = skb_copy_datagram_iovec(skb, hlen, tp->ucopy.iov, chunk);
4898 else
4899 err = skb_copy_and_csum_datagram_iovec(skb, hlen,
4900 tp->ucopy.iov, chunk);
4902 if (!err) {
4903 tp->ucopy.len -= chunk;
4904 tp->copied_seq += chunk;
4905 tcp_rcv_space_adjust(sk);
4908 local_bh_disable();
4909 return err;
4912 static __sum16 __tcp_checksum_complete_user(struct sock *sk,
4913 struct sk_buff *skb)
4915 __sum16 result;
4917 if (sock_owned_by_user(sk)) {
4918 local_bh_enable();
4919 result = __tcp_checksum_complete(skb);
4920 local_bh_disable();
4921 } else {
4922 result = __tcp_checksum_complete(skb);
4924 return result;
4927 static inline bool tcp_checksum_complete_user(struct sock *sk,
4928 struct sk_buff *skb)
4930 return !skb_csum_unnecessary(skb) &&
4931 __tcp_checksum_complete_user(sk, skb);
4934 #ifdef CONFIG_NET_DMA
4935 static bool tcp_dma_try_early_copy(struct sock *sk, struct sk_buff *skb,
4936 int hlen)
4938 struct tcp_sock *tp = tcp_sk(sk);
4939 int chunk = skb->len - hlen;
4940 int dma_cookie;
4941 bool copied_early = false;
4943 if (tp->ucopy.wakeup)
4944 return false;
4946 if (!tp->ucopy.dma_chan && tp->ucopy.pinned_list)
4947 tp->ucopy.dma_chan = net_dma_find_channel();
4949 if (tp->ucopy.dma_chan && skb_csum_unnecessary(skb)) {
4951 dma_cookie = dma_skb_copy_datagram_iovec(tp->ucopy.dma_chan,
4952 skb, hlen,
4953 tp->ucopy.iov, chunk,
4954 tp->ucopy.pinned_list);
4956 if (dma_cookie < 0)
4957 goto out;
4959 tp->ucopy.dma_cookie = dma_cookie;
4960 copied_early = true;
4962 tp->ucopy.len -= chunk;
4963 tp->copied_seq += chunk;
4964 tcp_rcv_space_adjust(sk);
4966 if ((tp->ucopy.len == 0) ||
4967 (tcp_flag_word(tcp_hdr(skb)) & TCP_FLAG_PSH) ||
4968 (atomic_read(&sk->sk_rmem_alloc) > (sk->sk_rcvbuf >> 1))) {
4969 tp->ucopy.wakeup = 1;
4970 sk->sk_data_ready(sk, 0);
4972 } else if (chunk > 0) {
4973 tp->ucopy.wakeup = 1;
4974 sk->sk_data_ready(sk, 0);
4976 out:
4977 return copied_early;
4979 #endif /* CONFIG_NET_DMA */
4981 /* Does PAWS and seqno based validation of an incoming segment, flags will
4982 * play significant role here.
4984 static bool tcp_validate_incoming(struct sock *sk, struct sk_buff *skb,
4985 const struct tcphdr *th, int syn_inerr)
4987 struct tcp_sock *tp = tcp_sk(sk);
4989 /* RFC1323: H1. Apply PAWS check first. */
4990 if (tcp_fast_parse_options(skb, th, tp) && tp->rx_opt.saw_tstamp &&
4991 tcp_paws_discard(sk, skb)) {
4992 if (!th->rst) {
4993 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PAWSESTABREJECTED);
4994 tcp_send_dupack(sk, skb);
4995 goto discard;
4997 /* Reset is accepted even if it did not pass PAWS. */
5000 /* Step 1: check sequence number */
5001 if (!tcp_sequence(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)) {
5002 /* RFC793, page 37: "In all states except SYN-SENT, all reset
5003 * (RST) segments are validated by checking their SEQ-fields."
5004 * And page 69: "If an incoming segment is not acceptable,
5005 * an acknowledgment should be sent in reply (unless the RST
5006 * bit is set, if so drop the segment and return)".
5008 if (!th->rst) {
5009 if (th->syn)
5010 goto syn_challenge;
5011 tcp_send_dupack(sk, skb);
5013 goto discard;
5016 /* Step 2: check RST bit */
5017 if (th->rst) {
5018 /* RFC 5961 3.2 :
5019 * If sequence number exactly matches RCV.NXT, then
5020 * RESET the connection
5021 * else
5022 * Send a challenge ACK
5024 if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt)
5025 tcp_reset(sk);
5026 else
5027 tcp_send_challenge_ack(sk);
5028 goto discard;
5031 /* step 3: check security and precedence [ignored] */
5033 /* step 4: Check for a SYN
5034 * RFC 5691 4.2 : Send a challenge ack
5036 if (th->syn) {
5037 syn_challenge:
5038 if (syn_inerr)
5039 TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS);
5040 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPSYNCHALLENGE);
5041 tcp_send_challenge_ack(sk);
5042 goto discard;
5045 return true;
5047 discard:
5048 __kfree_skb(skb);
5049 return false;
5053 * TCP receive function for the ESTABLISHED state.
5055 * It is split into a fast path and a slow path. The fast path is
5056 * disabled when:
5057 * - A zero window was announced from us - zero window probing
5058 * is only handled properly in the slow path.
5059 * - Out of order segments arrived.
5060 * - Urgent data is expected.
5061 * - There is no buffer space left
5062 * - Unexpected TCP flags/window values/header lengths are received
5063 * (detected by checking the TCP header against pred_flags)
5064 * - Data is sent in both directions. Fast path only supports pure senders
5065 * or pure receivers (this means either the sequence number or the ack
5066 * value must stay constant)
5067 * - Unexpected TCP option.
5069 * When these conditions are not satisfied it drops into a standard
5070 * receive procedure patterned after RFC793 to handle all cases.
5071 * The first three cases are guaranteed by proper pred_flags setting,
5072 * the rest is checked inline. Fast processing is turned on in
5073 * tcp_data_queue when everything is OK.
5075 void tcp_rcv_established(struct sock *sk, struct sk_buff *skb,
5076 const struct tcphdr *th, unsigned int len)
5078 struct tcp_sock *tp = tcp_sk(sk);
5080 if (unlikely(sk->sk_rx_dst == NULL))
5081 inet_csk(sk)->icsk_af_ops->sk_rx_dst_set(sk, skb);
5083 * Header prediction.
5084 * The code loosely follows the one in the famous
5085 * "30 instruction TCP receive" Van Jacobson mail.
5087 * Van's trick is to deposit buffers into socket queue
5088 * on a device interrupt, to call tcp_recv function
5089 * on the receive process context and checksum and copy
5090 * the buffer to user space. smart...
5092 * Our current scheme is not silly either but we take the
5093 * extra cost of the net_bh soft interrupt processing...
5094 * We do checksum and copy also but from device to kernel.
5097 tp->rx_opt.saw_tstamp = 0;
5099 /* pred_flags is 0xS?10 << 16 + snd_wnd
5100 * if header_prediction is to be made
5101 * 'S' will always be tp->tcp_header_len >> 2
5102 * '?' will be 0 for the fast path, otherwise pred_flags is 0 to
5103 * turn it off (when there are holes in the receive
5104 * space for instance)
5105 * PSH flag is ignored.
5108 if ((tcp_flag_word(th) & TCP_HP_BITS) == tp->pred_flags &&
5109 TCP_SKB_CB(skb)->seq == tp->rcv_nxt &&
5110 !after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt)) {
5111 int tcp_header_len = tp->tcp_header_len;
5113 /* Timestamp header prediction: tcp_header_len
5114 * is automatically equal to th->doff*4 due to pred_flags
5115 * match.
5118 /* Check timestamp */
5119 if (tcp_header_len == sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) {
5120 /* No? Slow path! */
5121 if (!tcp_parse_aligned_timestamp(tp, th))
5122 goto slow_path;
5124 /* If PAWS failed, check it more carefully in slow path */
5125 if ((s32)(tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent) < 0)
5126 goto slow_path;
5128 /* DO NOT update ts_recent here, if checksum fails
5129 * and timestamp was corrupted part, it will result
5130 * in a hung connection since we will drop all
5131 * future packets due to the PAWS test.
5135 if (len <= tcp_header_len) {
5136 /* Bulk data transfer: sender */
5137 if (len == tcp_header_len) {
5138 /* Predicted packet is in window by definition.
5139 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5140 * Hence, check seq<=rcv_wup reduces to:
5142 if (tcp_header_len ==
5143 (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
5144 tp->rcv_nxt == tp->rcv_wup)
5145 tcp_store_ts_recent(tp);
5147 /* We know that such packets are checksummed
5148 * on entry.
5150 tcp_ack(sk, skb, 0);
5151 __kfree_skb(skb);
5152 tcp_data_snd_check(sk);
5153 return;
5154 } else { /* Header too small */
5155 TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS);
5156 goto discard;
5158 } else {
5159 int eaten = 0;
5160 int copied_early = 0;
5161 bool fragstolen = false;
5163 if (tp->copied_seq == tp->rcv_nxt &&
5164 len - tcp_header_len <= tp->ucopy.len) {
5165 #ifdef CONFIG_NET_DMA
5166 if (tp->ucopy.task == current &&
5167 sock_owned_by_user(sk) &&
5168 tcp_dma_try_early_copy(sk, skb, tcp_header_len)) {
5169 copied_early = 1;
5170 eaten = 1;
5172 #endif
5173 if (tp->ucopy.task == current &&
5174 sock_owned_by_user(sk) && !copied_early) {
5175 __set_current_state(TASK_RUNNING);
5177 if (!tcp_copy_to_iovec(sk, skb, tcp_header_len))
5178 eaten = 1;
5180 if (eaten) {
5181 /* Predicted packet is in window by definition.
5182 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5183 * Hence, check seq<=rcv_wup reduces to:
5185 if (tcp_header_len ==
5186 (sizeof(struct tcphdr) +
5187 TCPOLEN_TSTAMP_ALIGNED) &&
5188 tp->rcv_nxt == tp->rcv_wup)
5189 tcp_store_ts_recent(tp);
5191 tcp_rcv_rtt_measure_ts(sk, skb);
5193 __skb_pull(skb, tcp_header_len);
5194 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
5195 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPHPHITSTOUSER);
5197 if (copied_early)
5198 tcp_cleanup_rbuf(sk, skb->len);
5200 if (!eaten) {
5201 if (tcp_checksum_complete_user(sk, skb))
5202 goto csum_error;
5204 if ((int)skb->truesize > sk->sk_forward_alloc)
5205 goto step5;
5207 /* Predicted packet is in window by definition.
5208 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5209 * Hence, check seq<=rcv_wup reduces to:
5211 if (tcp_header_len ==
5212 (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
5213 tp->rcv_nxt == tp->rcv_wup)
5214 tcp_store_ts_recent(tp);
5216 tcp_rcv_rtt_measure_ts(sk, skb);
5218 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPHPHITS);
5220 /* Bulk data transfer: receiver */
5221 eaten = tcp_queue_rcv(sk, skb, tcp_header_len,
5222 &fragstolen);
5225 tcp_event_data_recv(sk, skb);
5227 if (TCP_SKB_CB(skb)->ack_seq != tp->snd_una) {
5228 /* Well, only one small jumplet in fast path... */
5229 tcp_ack(sk, skb, FLAG_DATA);
5230 tcp_data_snd_check(sk);
5231 if (!inet_csk_ack_scheduled(sk))
5232 goto no_ack;
5235 if (!copied_early || tp->rcv_nxt != tp->rcv_wup)
5236 __tcp_ack_snd_check(sk, 0);
5237 no_ack:
5238 #ifdef CONFIG_NET_DMA
5239 if (copied_early)
5240 __skb_queue_tail(&sk->sk_async_wait_queue, skb);
5241 else
5242 #endif
5243 if (eaten)
5244 kfree_skb_partial(skb, fragstolen);
5245 sk->sk_data_ready(sk, 0);
5246 return;
5250 slow_path:
5251 if (len < (th->doff << 2) || tcp_checksum_complete_user(sk, skb))
5252 goto csum_error;
5254 if (!th->ack && !th->rst)
5255 goto discard;
5258 * Standard slow path.
5261 if (!tcp_validate_incoming(sk, skb, th, 1))
5262 return;
5264 step5:
5265 if (tcp_ack(sk, skb, FLAG_SLOWPATH | FLAG_UPDATE_TS_RECENT) < 0)
5266 goto discard;
5268 tcp_rcv_rtt_measure_ts(sk, skb);
5270 /* Process urgent data. */
5271 tcp_urg(sk, skb, th);
5273 /* step 7: process the segment text */
5274 tcp_data_queue(sk, skb);
5276 tcp_data_snd_check(sk);
5277 tcp_ack_snd_check(sk);
5278 return;
5280 csum_error:
5281 TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_CSUMERRORS);
5282 TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS);
5284 discard:
5285 __kfree_skb(skb);
5287 EXPORT_SYMBOL(tcp_rcv_established);
5289 void tcp_finish_connect(struct sock *sk, struct sk_buff *skb)
5291 struct tcp_sock *tp = tcp_sk(sk);
5292 struct inet_connection_sock *icsk = inet_csk(sk);
5294 tcp_set_state(sk, TCP_ESTABLISHED);
5296 if (skb != NULL) {
5297 icsk->icsk_af_ops->sk_rx_dst_set(sk, skb);
5298 security_inet_conn_established(sk, skb);
5301 /* Make sure socket is routed, for correct metrics. */
5302 icsk->icsk_af_ops->rebuild_header(sk);
5304 tcp_init_metrics(sk);
5306 tcp_init_congestion_control(sk);
5308 /* Prevent spurious tcp_cwnd_restart() on first data
5309 * packet.
5311 tp->lsndtime = tcp_time_stamp;
5313 tcp_init_buffer_space(sk);
5315 if (sock_flag(sk, SOCK_KEEPOPEN))
5316 inet_csk_reset_keepalive_timer(sk, keepalive_time_when(tp));
5318 if (!tp->rx_opt.snd_wscale)
5319 __tcp_fast_path_on(tp, tp->snd_wnd);
5320 else
5321 tp->pred_flags = 0;
5323 if (!sock_flag(sk, SOCK_DEAD)) {
5324 sk->sk_state_change(sk);
5325 sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT);
5329 static bool tcp_rcv_fastopen_synack(struct sock *sk, struct sk_buff *synack,
5330 struct tcp_fastopen_cookie *cookie)
5332 struct tcp_sock *tp = tcp_sk(sk);
5333 struct sk_buff *data = tp->syn_data ? tcp_write_queue_head(sk) : NULL;
5334 u16 mss = tp->rx_opt.mss_clamp;
5335 bool syn_drop;
5337 if (mss == tp->rx_opt.user_mss) {
5338 struct tcp_options_received opt;
5340 /* Get original SYNACK MSS value if user MSS sets mss_clamp */
5341 tcp_clear_options(&opt);
5342 opt.user_mss = opt.mss_clamp = 0;
5343 tcp_parse_options(synack, &opt, 0, NULL);
5344 mss = opt.mss_clamp;
5347 if (!tp->syn_fastopen) /* Ignore an unsolicited cookie */
5348 cookie->len = -1;
5350 /* The SYN-ACK neither has cookie nor acknowledges the data. Presumably
5351 * the remote receives only the retransmitted (regular) SYNs: either
5352 * the original SYN-data or the corresponding SYN-ACK is lost.
5354 syn_drop = (cookie->len <= 0 && data && tp->total_retrans);
5356 tcp_fastopen_cache_set(sk, mss, cookie, syn_drop);
5358 if (data) { /* Retransmit unacked data in SYN */
5359 tcp_for_write_queue_from(data, sk) {
5360 if (data == tcp_send_head(sk) ||
5361 __tcp_retransmit_skb(sk, data))
5362 break;
5364 tcp_rearm_rto(sk);
5365 return true;
5367 tp->syn_data_acked = tp->syn_data;
5368 return false;
5371 static int tcp_rcv_synsent_state_process(struct sock *sk, struct sk_buff *skb,
5372 const struct tcphdr *th, unsigned int len)
5374 struct inet_connection_sock *icsk = inet_csk(sk);
5375 struct tcp_sock *tp = tcp_sk(sk);
5376 struct tcp_fastopen_cookie foc = { .len = -1 };
5377 int saved_clamp = tp->rx_opt.mss_clamp;
5379 tcp_parse_options(skb, &tp->rx_opt, 0, &foc);
5380 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr)
5381 tp->rx_opt.rcv_tsecr -= tp->tsoffset;
5383 if (th->ack) {
5384 /* rfc793:
5385 * "If the state is SYN-SENT then
5386 * first check the ACK bit
5387 * If the ACK bit is set
5388 * If SEG.ACK =< ISS, or SEG.ACK > SND.NXT, send
5389 * a reset (unless the RST bit is set, if so drop
5390 * the segment and return)"
5392 if (!after(TCP_SKB_CB(skb)->ack_seq, tp->snd_una) ||
5393 after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt))
5394 goto reset_and_undo;
5396 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
5397 !between(tp->rx_opt.rcv_tsecr, tp->retrans_stamp,
5398 tcp_time_stamp)) {
5399 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PAWSACTIVEREJECTED);
5400 goto reset_and_undo;
5403 /* Now ACK is acceptable.
5405 * "If the RST bit is set
5406 * If the ACK was acceptable then signal the user "error:
5407 * connection reset", drop the segment, enter CLOSED state,
5408 * delete TCB, and return."
5411 if (th->rst) {
5412 tcp_reset(sk);
5413 goto discard;
5416 /* rfc793:
5417 * "fifth, if neither of the SYN or RST bits is set then
5418 * drop the segment and return."
5420 * See note below!
5421 * --ANK(990513)
5423 if (!th->syn)
5424 goto discard_and_undo;
5426 /* rfc793:
5427 * "If the SYN bit is on ...
5428 * are acceptable then ...
5429 * (our SYN has been ACKed), change the connection
5430 * state to ESTABLISHED..."
5433 TCP_ECN_rcv_synack(tp, th);
5435 tcp_init_wl(tp, TCP_SKB_CB(skb)->seq);
5436 tcp_ack(sk, skb, FLAG_SLOWPATH);
5438 /* Ok.. it's good. Set up sequence numbers and
5439 * move to established.
5441 tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
5442 tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
5444 /* RFC1323: The window in SYN & SYN/ACK segments is
5445 * never scaled.
5447 tp->snd_wnd = ntohs(th->window);
5449 if (!tp->rx_opt.wscale_ok) {
5450 tp->rx_opt.snd_wscale = tp->rx_opt.rcv_wscale = 0;
5451 tp->window_clamp = min(tp->window_clamp, 65535U);
5454 if (tp->rx_opt.saw_tstamp) {
5455 tp->rx_opt.tstamp_ok = 1;
5456 tp->tcp_header_len =
5457 sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
5458 tp->advmss -= TCPOLEN_TSTAMP_ALIGNED;
5459 tcp_store_ts_recent(tp);
5460 } else {
5461 tp->tcp_header_len = sizeof(struct tcphdr);
5464 if (tcp_is_sack(tp) && sysctl_tcp_fack)
5465 tcp_enable_fack(tp);
5467 tcp_mtup_init(sk);
5468 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
5469 tcp_initialize_rcv_mss(sk);
5471 /* Remember, tcp_poll() does not lock socket!
5472 * Change state from SYN-SENT only after copied_seq
5473 * is initialized. */
5474 tp->copied_seq = tp->rcv_nxt;
5476 smp_mb();
5478 tcp_finish_connect(sk, skb);
5480 if ((tp->syn_fastopen || tp->syn_data) &&
5481 tcp_rcv_fastopen_synack(sk, skb, &foc))
5482 return -1;
5484 if (sk->sk_write_pending ||
5485 icsk->icsk_accept_queue.rskq_defer_accept ||
5486 icsk->icsk_ack.pingpong) {
5487 /* Save one ACK. Data will be ready after
5488 * several ticks, if write_pending is set.
5490 * It may be deleted, but with this feature tcpdumps
5491 * look so _wonderfully_ clever, that I was not able
5492 * to stand against the temptation 8) --ANK
5494 inet_csk_schedule_ack(sk);
5495 icsk->icsk_ack.lrcvtime = tcp_time_stamp;
5496 tcp_enter_quickack_mode(sk);
5497 inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK,
5498 TCP_DELACK_MAX, TCP_RTO_MAX);
5500 discard:
5501 __kfree_skb(skb);
5502 return 0;
5503 } else {
5504 tcp_send_ack(sk);
5506 return -1;
5509 /* No ACK in the segment */
5511 if (th->rst) {
5512 /* rfc793:
5513 * "If the RST bit is set
5515 * Otherwise (no ACK) drop the segment and return."
5518 goto discard_and_undo;
5521 /* PAWS check. */
5522 if (tp->rx_opt.ts_recent_stamp && tp->rx_opt.saw_tstamp &&
5523 tcp_paws_reject(&tp->rx_opt, 0))
5524 goto discard_and_undo;
5526 if (th->syn) {
5527 /* We see SYN without ACK. It is attempt of
5528 * simultaneous connect with crossed SYNs.
5529 * Particularly, it can be connect to self.
5531 tcp_set_state(sk, TCP_SYN_RECV);
5533 if (tp->rx_opt.saw_tstamp) {
5534 tp->rx_opt.tstamp_ok = 1;
5535 tcp_store_ts_recent(tp);
5536 tp->tcp_header_len =
5537 sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
5538 } else {
5539 tp->tcp_header_len = sizeof(struct tcphdr);
5542 tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
5543 tp->copied_seq = tp->rcv_nxt;
5544 tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
5546 /* RFC1323: The window in SYN & SYN/ACK segments is
5547 * never scaled.
5549 tp->snd_wnd = ntohs(th->window);
5550 tp->snd_wl1 = TCP_SKB_CB(skb)->seq;
5551 tp->max_window = tp->snd_wnd;
5553 TCP_ECN_rcv_syn(tp, th);
5555 tcp_mtup_init(sk);
5556 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
5557 tcp_initialize_rcv_mss(sk);
5559 tcp_send_synack(sk);
5560 #if 0
5561 /* Note, we could accept data and URG from this segment.
5562 * There are no obstacles to make this (except that we must
5563 * either change tcp_recvmsg() to prevent it from returning data
5564 * before 3WHS completes per RFC793, or employ TCP Fast Open).
5566 * However, if we ignore data in ACKless segments sometimes,
5567 * we have no reasons to accept it sometimes.
5568 * Also, seems the code doing it in step6 of tcp_rcv_state_process
5569 * is not flawless. So, discard packet for sanity.
5570 * Uncomment this return to process the data.
5572 return -1;
5573 #else
5574 goto discard;
5575 #endif
5577 /* "fifth, if neither of the SYN or RST bits is set then
5578 * drop the segment and return."
5581 discard_and_undo:
5582 tcp_clear_options(&tp->rx_opt);
5583 tp->rx_opt.mss_clamp = saved_clamp;
5584 goto discard;
5586 reset_and_undo:
5587 tcp_clear_options(&tp->rx_opt);
5588 tp->rx_opt.mss_clamp = saved_clamp;
5589 return 1;
5593 * This function implements the receiving procedure of RFC 793 for
5594 * all states except ESTABLISHED and TIME_WAIT.
5595 * It's called from both tcp_v4_rcv and tcp_v6_rcv and should be
5596 * address independent.
5599 int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb,
5600 const struct tcphdr *th, unsigned int len)
5602 struct tcp_sock *tp = tcp_sk(sk);
5603 struct inet_connection_sock *icsk = inet_csk(sk);
5604 struct request_sock *req;
5605 int queued = 0;
5606 bool acceptable;
5607 u32 synack_stamp;
5609 tp->rx_opt.saw_tstamp = 0;
5611 switch (sk->sk_state) {
5612 case TCP_CLOSE:
5613 goto discard;
5615 case TCP_LISTEN:
5616 if (th->ack)
5617 return 1;
5619 if (th->rst)
5620 goto discard;
5622 if (th->syn) {
5623 if (th->fin)
5624 goto discard;
5625 if (icsk->icsk_af_ops->conn_request(sk, skb) < 0)
5626 return 1;
5628 /* Now we have several options: In theory there is
5629 * nothing else in the frame. KA9Q has an option to
5630 * send data with the syn, BSD accepts data with the
5631 * syn up to the [to be] advertised window and
5632 * Solaris 2.1 gives you a protocol error. For now
5633 * we just ignore it, that fits the spec precisely
5634 * and avoids incompatibilities. It would be nice in
5635 * future to drop through and process the data.
5637 * Now that TTCP is starting to be used we ought to
5638 * queue this data.
5639 * But, this leaves one open to an easy denial of
5640 * service attack, and SYN cookies can't defend
5641 * against this problem. So, we drop the data
5642 * in the interest of security over speed unless
5643 * it's still in use.
5645 kfree_skb(skb);
5646 return 0;
5648 goto discard;
5650 case TCP_SYN_SENT:
5651 queued = tcp_rcv_synsent_state_process(sk, skb, th, len);
5652 if (queued >= 0)
5653 return queued;
5655 /* Do step6 onward by hand. */
5656 tcp_urg(sk, skb, th);
5657 __kfree_skb(skb);
5658 tcp_data_snd_check(sk);
5659 return 0;
5662 req = tp->fastopen_rsk;
5663 if (req != NULL) {
5664 WARN_ON_ONCE(sk->sk_state != TCP_SYN_RECV &&
5665 sk->sk_state != TCP_FIN_WAIT1);
5667 if (tcp_check_req(sk, skb, req, NULL, true) == NULL)
5668 goto discard;
5671 if (!th->ack && !th->rst)
5672 goto discard;
5674 if (!tcp_validate_incoming(sk, skb, th, 0))
5675 return 0;
5677 /* step 5: check the ACK field */
5678 acceptable = tcp_ack(sk, skb, FLAG_SLOWPATH |
5679 FLAG_UPDATE_TS_RECENT) > 0;
5681 switch (sk->sk_state) {
5682 case TCP_SYN_RECV:
5683 if (!acceptable)
5684 return 1;
5686 /* Once we leave TCP_SYN_RECV, we no longer need req
5687 * so release it.
5689 if (req) {
5690 synack_stamp = tcp_rsk(req)->snt_synack;
5691 tp->total_retrans = req->num_retrans;
5692 reqsk_fastopen_remove(sk, req, false);
5693 } else {
5694 synack_stamp = tp->lsndtime;
5695 /* Make sure socket is routed, for correct metrics. */
5696 icsk->icsk_af_ops->rebuild_header(sk);
5697 tcp_init_congestion_control(sk);
5699 tcp_mtup_init(sk);
5700 tcp_init_buffer_space(sk);
5701 tp->copied_seq = tp->rcv_nxt;
5703 smp_mb();
5704 tcp_set_state(sk, TCP_ESTABLISHED);
5705 sk->sk_state_change(sk);
5707 /* Note, that this wakeup is only for marginal crossed SYN case.
5708 * Passively open sockets are not waked up, because
5709 * sk->sk_sleep == NULL and sk->sk_socket == NULL.
5711 if (sk->sk_socket)
5712 sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT);
5714 tp->snd_una = TCP_SKB_CB(skb)->ack_seq;
5715 tp->snd_wnd = ntohs(th->window) << tp->rx_opt.snd_wscale;
5716 tcp_init_wl(tp, TCP_SKB_CB(skb)->seq);
5717 tcp_synack_rtt_meas(sk, synack_stamp);
5719 if (tp->rx_opt.tstamp_ok)
5720 tp->advmss -= TCPOLEN_TSTAMP_ALIGNED;
5722 if (req) {
5723 /* Re-arm the timer because data may have been sent out.
5724 * This is similar to the regular data transmission case
5725 * when new data has just been ack'ed.
5727 * (TFO) - we could try to be more aggressive and
5728 * retransmitting any data sooner based on when they
5729 * are sent out.
5731 tcp_rearm_rto(sk);
5732 } else
5733 tcp_init_metrics(sk);
5735 tcp_update_pacing_rate(sk);
5737 /* Prevent spurious tcp_cwnd_restart() on first data packet */
5738 tp->lsndtime = tcp_time_stamp;
5740 tcp_initialize_rcv_mss(sk);
5741 tcp_fast_path_on(tp);
5742 break;
5744 case TCP_FIN_WAIT1: {
5745 struct dst_entry *dst;
5746 int tmo;
5748 /* If we enter the TCP_FIN_WAIT1 state and we are a
5749 * Fast Open socket and this is the first acceptable
5750 * ACK we have received, this would have acknowledged
5751 * our SYNACK so stop the SYNACK timer.
5753 if (req != NULL) {
5754 /* Return RST if ack_seq is invalid.
5755 * Note that RFC793 only says to generate a
5756 * DUPACK for it but for TCP Fast Open it seems
5757 * better to treat this case like TCP_SYN_RECV
5758 * above.
5760 if (!acceptable)
5761 return 1;
5762 /* We no longer need the request sock. */
5763 reqsk_fastopen_remove(sk, req, false);
5764 tcp_rearm_rto(sk);
5766 if (tp->snd_una != tp->write_seq)
5767 break;
5769 tcp_set_state(sk, TCP_FIN_WAIT2);
5770 sk->sk_shutdown |= SEND_SHUTDOWN;
5772 dst = __sk_dst_get(sk);
5773 if (dst)
5774 dst_confirm(dst);
5776 if (!sock_flag(sk, SOCK_DEAD)) {
5777 /* Wake up lingering close() */
5778 sk->sk_state_change(sk);
5779 break;
5782 if (tp->linger2 < 0 ||
5783 (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
5784 after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt))) {
5785 tcp_done(sk);
5786 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
5787 return 1;
5790 tmo = tcp_fin_time(sk);
5791 if (tmo > TCP_TIMEWAIT_LEN) {
5792 inet_csk_reset_keepalive_timer(sk, tmo - TCP_TIMEWAIT_LEN);
5793 } else if (th->fin || sock_owned_by_user(sk)) {
5794 /* Bad case. We could lose such FIN otherwise.
5795 * It is not a big problem, but it looks confusing
5796 * and not so rare event. We still can lose it now,
5797 * if it spins in bh_lock_sock(), but it is really
5798 * marginal case.
5800 inet_csk_reset_keepalive_timer(sk, tmo);
5801 } else {
5802 tcp_time_wait(sk, TCP_FIN_WAIT2, tmo);
5803 goto discard;
5805 break;
5808 case TCP_CLOSING:
5809 if (tp->snd_una == tp->write_seq) {
5810 tcp_time_wait(sk, TCP_TIME_WAIT, 0);
5811 goto discard;
5813 break;
5815 case TCP_LAST_ACK:
5816 if (tp->snd_una == tp->write_seq) {
5817 tcp_update_metrics(sk);
5818 tcp_done(sk);
5819 goto discard;
5821 break;
5824 /* step 6: check the URG bit */
5825 tcp_urg(sk, skb, th);
5827 /* step 7: process the segment text */
5828 switch (sk->sk_state) {
5829 case TCP_CLOSE_WAIT:
5830 case TCP_CLOSING:
5831 case TCP_LAST_ACK:
5832 if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
5833 break;
5834 case TCP_FIN_WAIT1:
5835 case TCP_FIN_WAIT2:
5836 /* RFC 793 says to queue data in these states,
5837 * RFC 1122 says we MUST send a reset.
5838 * BSD 4.4 also does reset.
5840 if (sk->sk_shutdown & RCV_SHUTDOWN) {
5841 if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
5842 after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) {
5843 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
5844 tcp_reset(sk);
5845 return 1;
5848 /* Fall through */
5849 case TCP_ESTABLISHED:
5850 tcp_data_queue(sk, skb);
5851 queued = 1;
5852 break;
5855 /* tcp_data could move socket to TIME-WAIT */
5856 if (sk->sk_state != TCP_CLOSE) {
5857 tcp_data_snd_check(sk);
5858 tcp_ack_snd_check(sk);
5861 if (!queued) {
5862 discard:
5863 __kfree_skb(skb);
5865 return 0;
5867 EXPORT_SYMBOL(tcp_rcv_state_process);