2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
6 * Implementation of the Transmission Control Protocol(TCP).
9 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10 * Mark Evans, <evansmp@uhura.aston.ac.uk>
11 * Corey Minyard <wf-rch!minyard@relay.EU.net>
12 * Florian La Roche, <flla@stud.uni-sb.de>
13 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
14 * Linus Torvalds, <torvalds@cs.helsinki.fi>
15 * Alan Cox, <gw4pts@gw4pts.ampr.org>
16 * Matthew Dillon, <dillon@apollo.west.oic.com>
17 * Arnt Gulbrandsen, <agulbra@nvg.unit.no>
18 * Jorge Cwik, <jorge@laser.satlink.net>
23 * Pedro Roque : Fast Retransmit/Recovery.
25 * Retransmit queue handled by TCP.
26 * Better retransmit timer handling.
27 * New congestion avoidance.
31 * Eric : Fast Retransmit.
32 * Randy Scott : MSS option defines.
33 * Eric Schenk : Fixes to slow start algorithm.
34 * Eric Schenk : Yet another double ACK bug.
35 * Eric Schenk : Delayed ACK bug fixes.
36 * Eric Schenk : Floyd style fast retrans war avoidance.
37 * David S. Miller : Don't allow zero congestion window.
38 * Eric Schenk : Fix retransmitter so that it sends
39 * next packet on ack of previous packet.
40 * Andi Kleen : Moved open_request checking here
41 * and process RSTs for open_requests.
42 * Andi Kleen : Better prune_queue, and other fixes.
43 * Andrey Savochkin: Fix RTT measurements in the presence of
45 * Andrey Savochkin: Check sequence numbers correctly when
46 * removing SACKs due to in sequence incoming
48 * Andi Kleen: Make sure we never ack data there is not
49 * enough room for. Also make this condition
50 * a fatal error if it might still happen.
51 * Andi Kleen: Add tcp_measure_rcv_mss to make
52 * connections with MSS<min(MTU,ann. MSS)
53 * work without delayed acks.
54 * Andi Kleen: Process packets with PSH set in the
56 * J Hadi Salim: ECN support
59 * Panu Kuhlberg: Experimental audit of TCP (re)transmission
60 * engine. Lots of bugs are found.
61 * Pasi Sarolahti: F-RTO for dealing with spurious RTOs
64 #define pr_fmt(fmt) "TCP: " fmt
67 #include <linux/slab.h>
68 #include <linux/module.h>
69 #include <linux/sysctl.h>
70 #include <linux/kernel.h>
73 #include <net/inet_common.h>
74 #include <linux/ipsec.h>
75 #include <asm/unaligned.h>
76 #include <net/netdma.h>
78 int sysctl_tcp_timestamps __read_mostly
= 1;
79 int sysctl_tcp_window_scaling __read_mostly
= 1;
80 int sysctl_tcp_sack __read_mostly
= 1;
81 int sysctl_tcp_fack __read_mostly
= 1;
82 int sysctl_tcp_reordering __read_mostly
= TCP_FASTRETRANS_THRESH
;
83 EXPORT_SYMBOL(sysctl_tcp_reordering
);
84 int sysctl_tcp_dsack __read_mostly
= 1;
85 int sysctl_tcp_app_win __read_mostly
= 31;
86 int sysctl_tcp_adv_win_scale __read_mostly
= 1;
87 EXPORT_SYMBOL(sysctl_tcp_adv_win_scale
);
89 /* rfc5961 challenge ack rate limiting */
90 int sysctl_tcp_challenge_ack_limit
= 1000;
92 int sysctl_tcp_stdurg __read_mostly
;
93 int sysctl_tcp_rfc1337 __read_mostly
;
94 int sysctl_tcp_max_orphans __read_mostly
= NR_FILE
;
95 int sysctl_tcp_frto __read_mostly
= 2;
97 int sysctl_tcp_thin_dupack __read_mostly
;
99 int sysctl_tcp_moderate_rcvbuf __read_mostly
= 1;
100 int sysctl_tcp_early_retrans __read_mostly
= 3;
102 #define FLAG_DATA 0x01 /* Incoming frame contained data. */
103 #define FLAG_WIN_UPDATE 0x02 /* Incoming ACK was a window update. */
104 #define FLAG_DATA_ACKED 0x04 /* This ACK acknowledged new data. */
105 #define FLAG_RETRANS_DATA_ACKED 0x08 /* "" "" some of which was retransmitted. */
106 #define FLAG_SYN_ACKED 0x10 /* This ACK acknowledged SYN. */
107 #define FLAG_DATA_SACKED 0x20 /* New SACK. */
108 #define FLAG_ECE 0x40 /* ECE in this ACK */
109 #define FLAG_SLOWPATH 0x100 /* Do not skip RFC checks for window update.*/
110 #define FLAG_ORIG_SACK_ACKED 0x200 /* Never retransmitted data are (s)acked */
111 #define FLAG_SND_UNA_ADVANCED 0x400 /* Snd_una was changed (!= FLAG_DATA_ACKED) */
112 #define FLAG_DSACKING_ACK 0x800 /* SACK blocks contained D-SACK info */
113 #define FLAG_SACK_RENEGING 0x2000 /* snd_una advanced to a sacked seq */
114 #define FLAG_UPDATE_TS_RECENT 0x4000 /* tcp_replace_ts_recent() */
116 #define FLAG_ACKED (FLAG_DATA_ACKED|FLAG_SYN_ACKED)
117 #define FLAG_NOT_DUP (FLAG_DATA|FLAG_WIN_UPDATE|FLAG_ACKED)
118 #define FLAG_CA_ALERT (FLAG_DATA_SACKED|FLAG_ECE)
119 #define FLAG_FORWARD_PROGRESS (FLAG_ACKED|FLAG_DATA_SACKED)
121 #define TCP_REMNANT (TCP_FLAG_FIN|TCP_FLAG_URG|TCP_FLAG_SYN|TCP_FLAG_PSH)
122 #define TCP_HP_BITS (~(TCP_RESERVED_BITS|TCP_FLAG_PSH))
124 /* Adapt the MSS value used to make delayed ack decision to the
127 static void tcp_measure_rcv_mss(struct sock
*sk
, const struct sk_buff
*skb
)
129 struct inet_connection_sock
*icsk
= inet_csk(sk
);
130 const unsigned int lss
= icsk
->icsk_ack
.last_seg_size
;
133 icsk
->icsk_ack
.last_seg_size
= 0;
135 /* skb->len may jitter because of SACKs, even if peer
136 * sends good full-sized frames.
138 len
= skb_shinfo(skb
)->gso_size
? : skb
->len
;
139 if (len
>= icsk
->icsk_ack
.rcv_mss
) {
140 icsk
->icsk_ack
.rcv_mss
= len
;
142 /* Otherwise, we make more careful check taking into account,
143 * that SACKs block is variable.
145 * "len" is invariant segment length, including TCP header.
147 len
+= skb
->data
- skb_transport_header(skb
);
148 if (len
>= TCP_MSS_DEFAULT
+ sizeof(struct tcphdr
) ||
149 /* If PSH is not set, packet should be
150 * full sized, provided peer TCP is not badly broken.
151 * This observation (if it is correct 8)) allows
152 * to handle super-low mtu links fairly.
154 (len
>= TCP_MIN_MSS
+ sizeof(struct tcphdr
) &&
155 !(tcp_flag_word(tcp_hdr(skb
)) & TCP_REMNANT
))) {
156 /* Subtract also invariant (if peer is RFC compliant),
157 * tcp header plus fixed timestamp option length.
158 * Resulting "len" is MSS free of SACK jitter.
160 len
-= tcp_sk(sk
)->tcp_header_len
;
161 icsk
->icsk_ack
.last_seg_size
= len
;
163 icsk
->icsk_ack
.rcv_mss
= len
;
167 if (icsk
->icsk_ack
.pending
& ICSK_ACK_PUSHED
)
168 icsk
->icsk_ack
.pending
|= ICSK_ACK_PUSHED2
;
169 icsk
->icsk_ack
.pending
|= ICSK_ACK_PUSHED
;
173 static void tcp_incr_quickack(struct sock
*sk
)
175 struct inet_connection_sock
*icsk
= inet_csk(sk
);
176 unsigned int quickacks
= tcp_sk(sk
)->rcv_wnd
/ (2 * icsk
->icsk_ack
.rcv_mss
);
180 if (quickacks
> icsk
->icsk_ack
.quick
)
181 icsk
->icsk_ack
.quick
= min(quickacks
, TCP_MAX_QUICKACKS
);
184 static void tcp_enter_quickack_mode(struct sock
*sk
)
186 struct inet_connection_sock
*icsk
= inet_csk(sk
);
187 tcp_incr_quickack(sk
);
188 icsk
->icsk_ack
.pingpong
= 0;
189 icsk
->icsk_ack
.ato
= TCP_ATO_MIN
;
192 /* Send ACKs quickly, if "quick" count is not exhausted
193 * and the session is not interactive.
196 static inline bool tcp_in_quickack_mode(const struct sock
*sk
)
198 const struct inet_connection_sock
*icsk
= inet_csk(sk
);
200 return icsk
->icsk_ack
.quick
&& !icsk
->icsk_ack
.pingpong
;
203 static inline void TCP_ECN_queue_cwr(struct tcp_sock
*tp
)
205 if (tp
->ecn_flags
& TCP_ECN_OK
)
206 tp
->ecn_flags
|= TCP_ECN_QUEUE_CWR
;
209 static inline void TCP_ECN_accept_cwr(struct tcp_sock
*tp
, const struct sk_buff
*skb
)
211 if (tcp_hdr(skb
)->cwr
)
212 tp
->ecn_flags
&= ~TCP_ECN_DEMAND_CWR
;
215 static inline void TCP_ECN_withdraw_cwr(struct tcp_sock
*tp
)
217 tp
->ecn_flags
&= ~TCP_ECN_DEMAND_CWR
;
220 static inline void TCP_ECN_check_ce(struct tcp_sock
*tp
, const struct sk_buff
*skb
)
222 if (!(tp
->ecn_flags
& TCP_ECN_OK
))
225 switch (TCP_SKB_CB(skb
)->ip_dsfield
& INET_ECN_MASK
) {
226 case INET_ECN_NOT_ECT
:
227 /* Funny extension: if ECT is not set on a segment,
228 * and we already seen ECT on a previous segment,
229 * it is probably a retransmit.
231 if (tp
->ecn_flags
& TCP_ECN_SEEN
)
232 tcp_enter_quickack_mode((struct sock
*)tp
);
235 if (!(tp
->ecn_flags
& TCP_ECN_DEMAND_CWR
)) {
236 /* Better not delay acks, sender can have a very low cwnd */
237 tcp_enter_quickack_mode((struct sock
*)tp
);
238 tp
->ecn_flags
|= TCP_ECN_DEMAND_CWR
;
242 tp
->ecn_flags
|= TCP_ECN_SEEN
;
246 static inline void TCP_ECN_rcv_synack(struct tcp_sock
*tp
, const struct tcphdr
*th
)
248 if ((tp
->ecn_flags
& TCP_ECN_OK
) && (!th
->ece
|| th
->cwr
))
249 tp
->ecn_flags
&= ~TCP_ECN_OK
;
252 static inline void TCP_ECN_rcv_syn(struct tcp_sock
*tp
, const struct tcphdr
*th
)
254 if ((tp
->ecn_flags
& TCP_ECN_OK
) && (!th
->ece
|| !th
->cwr
))
255 tp
->ecn_flags
&= ~TCP_ECN_OK
;
258 static bool TCP_ECN_rcv_ecn_echo(const struct tcp_sock
*tp
, const struct tcphdr
*th
)
260 if (th
->ece
&& !th
->syn
&& (tp
->ecn_flags
& TCP_ECN_OK
))
265 /* Buffer size and advertised window tuning.
267 * 1. Tuning sk->sk_sndbuf, when connection enters established state.
270 static void tcp_fixup_sndbuf(struct sock
*sk
)
272 int sndmem
= SKB_TRUESIZE(tcp_sk(sk
)->rx_opt
.mss_clamp
+ MAX_TCP_HEADER
);
274 sndmem
*= TCP_INIT_CWND
;
275 if (sk
->sk_sndbuf
< sndmem
)
276 sk
->sk_sndbuf
= min(sndmem
, sysctl_tcp_wmem
[2]);
279 /* 2. Tuning advertised window (window_clamp, rcv_ssthresh)
281 * All tcp_full_space() is split to two parts: "network" buffer, allocated
282 * forward and advertised in receiver window (tp->rcv_wnd) and
283 * "application buffer", required to isolate scheduling/application
284 * latencies from network.
285 * window_clamp is maximal advertised window. It can be less than
286 * tcp_full_space(), in this case tcp_full_space() - window_clamp
287 * is reserved for "application" buffer. The less window_clamp is
288 * the smoother our behaviour from viewpoint of network, but the lower
289 * throughput and the higher sensitivity of the connection to losses. 8)
291 * rcv_ssthresh is more strict window_clamp used at "slow start"
292 * phase to predict further behaviour of this connection.
293 * It is used for two goals:
294 * - to enforce header prediction at sender, even when application
295 * requires some significant "application buffer". It is check #1.
296 * - to prevent pruning of receive queue because of misprediction
297 * of receiver window. Check #2.
299 * The scheme does not work when sender sends good segments opening
300 * window and then starts to feed us spaghetti. But it should work
301 * in common situations. Otherwise, we have to rely on queue collapsing.
304 /* Slow part of check#2. */
305 static int __tcp_grow_window(const struct sock
*sk
, const struct sk_buff
*skb
)
307 struct tcp_sock
*tp
= tcp_sk(sk
);
309 int truesize
= tcp_win_from_space(skb
->truesize
) >> 1;
310 int window
= tcp_win_from_space(sysctl_tcp_rmem
[2]) >> 1;
312 while (tp
->rcv_ssthresh
<= window
) {
313 if (truesize
<= skb
->len
)
314 return 2 * inet_csk(sk
)->icsk_ack
.rcv_mss
;
322 static void tcp_grow_window(struct sock
*sk
, const struct sk_buff
*skb
)
324 struct tcp_sock
*tp
= tcp_sk(sk
);
327 if (tp
->rcv_ssthresh
< tp
->window_clamp
&&
328 (int)tp
->rcv_ssthresh
< tcp_space(sk
) &&
329 !sk_under_memory_pressure(sk
)) {
332 /* Check #2. Increase window, if skb with such overhead
333 * will fit to rcvbuf in future.
335 if (tcp_win_from_space(skb
->truesize
) <= skb
->len
)
336 incr
= 2 * tp
->advmss
;
338 incr
= __tcp_grow_window(sk
, skb
);
341 incr
= max_t(int, incr
, 2 * skb
->len
);
342 tp
->rcv_ssthresh
= min(tp
->rcv_ssthresh
+ incr
,
344 inet_csk(sk
)->icsk_ack
.quick
|= 1;
349 /* 3. Tuning rcvbuf, when connection enters established state. */
350 static void tcp_fixup_rcvbuf(struct sock
*sk
)
352 u32 mss
= tcp_sk(sk
)->advmss
;
355 rcvmem
= 2 * SKB_TRUESIZE(mss
+ MAX_TCP_HEADER
) *
356 tcp_default_init_rwnd(mss
);
358 if (sk
->sk_rcvbuf
< rcvmem
)
359 sk
->sk_rcvbuf
= min(rcvmem
, sysctl_tcp_rmem
[2]);
362 /* 4. Try to fixup all. It is made immediately after connection enters
365 void tcp_init_buffer_space(struct sock
*sk
)
367 struct tcp_sock
*tp
= tcp_sk(sk
);
370 if (!(sk
->sk_userlocks
& SOCK_RCVBUF_LOCK
))
371 tcp_fixup_rcvbuf(sk
);
372 if (!(sk
->sk_userlocks
& SOCK_SNDBUF_LOCK
))
373 tcp_fixup_sndbuf(sk
);
375 tp
->rcvq_space
.space
= tp
->rcv_wnd
;
377 maxwin
= tcp_full_space(sk
);
379 if (tp
->window_clamp
>= maxwin
) {
380 tp
->window_clamp
= maxwin
;
382 if (sysctl_tcp_app_win
&& maxwin
> 4 * tp
->advmss
)
383 tp
->window_clamp
= max(maxwin
-
384 (maxwin
>> sysctl_tcp_app_win
),
388 /* Force reservation of one segment. */
389 if (sysctl_tcp_app_win
&&
390 tp
->window_clamp
> 2 * tp
->advmss
&&
391 tp
->window_clamp
+ tp
->advmss
> maxwin
)
392 tp
->window_clamp
= max(2 * tp
->advmss
, maxwin
- tp
->advmss
);
394 tp
->rcv_ssthresh
= min(tp
->rcv_ssthresh
, tp
->window_clamp
);
395 tp
->snd_cwnd_stamp
= tcp_time_stamp
;
398 /* 5. Recalculate window clamp after socket hit its memory bounds. */
399 static void tcp_clamp_window(struct sock
*sk
)
401 struct tcp_sock
*tp
= tcp_sk(sk
);
402 struct inet_connection_sock
*icsk
= inet_csk(sk
);
404 icsk
->icsk_ack
.quick
= 0;
406 if (sk
->sk_rcvbuf
< sysctl_tcp_rmem
[2] &&
407 !(sk
->sk_userlocks
& SOCK_RCVBUF_LOCK
) &&
408 !sk_under_memory_pressure(sk
) &&
409 sk_memory_allocated(sk
) < sk_prot_mem_limits(sk
, 0)) {
410 sk
->sk_rcvbuf
= min(atomic_read(&sk
->sk_rmem_alloc
),
413 if (atomic_read(&sk
->sk_rmem_alloc
) > sk
->sk_rcvbuf
)
414 tp
->rcv_ssthresh
= min(tp
->window_clamp
, 2U * tp
->advmss
);
417 /* Initialize RCV_MSS value.
418 * RCV_MSS is an our guess about MSS used by the peer.
419 * We haven't any direct information about the MSS.
420 * It's better to underestimate the RCV_MSS rather than overestimate.
421 * Overestimations make us ACKing less frequently than needed.
422 * Underestimations are more easy to detect and fix by tcp_measure_rcv_mss().
424 void tcp_initialize_rcv_mss(struct sock
*sk
)
426 const struct tcp_sock
*tp
= tcp_sk(sk
);
427 unsigned int hint
= min_t(unsigned int, tp
->advmss
, tp
->mss_cache
);
429 hint
= min(hint
, tp
->rcv_wnd
/ 2);
430 hint
= min(hint
, TCP_MSS_DEFAULT
);
431 hint
= max(hint
, TCP_MIN_MSS
);
433 inet_csk(sk
)->icsk_ack
.rcv_mss
= hint
;
435 EXPORT_SYMBOL(tcp_initialize_rcv_mss
);
437 /* Receiver "autotuning" code.
439 * The algorithm for RTT estimation w/o timestamps is based on
440 * Dynamic Right-Sizing (DRS) by Wu Feng and Mike Fisk of LANL.
441 * <http://public.lanl.gov/radiant/pubs.html#DRS>
443 * More detail on this code can be found at
444 * <http://staff.psc.edu/jheffner/>,
445 * though this reference is out of date. A new paper
448 static void tcp_rcv_rtt_update(struct tcp_sock
*tp
, u32 sample
, int win_dep
)
450 u32 new_sample
= tp
->rcv_rtt_est
.rtt
;
456 if (new_sample
!= 0) {
457 /* If we sample in larger samples in the non-timestamp
458 * case, we could grossly overestimate the RTT especially
459 * with chatty applications or bulk transfer apps which
460 * are stalled on filesystem I/O.
462 * Also, since we are only going for a minimum in the
463 * non-timestamp case, we do not smooth things out
464 * else with timestamps disabled convergence takes too
468 m
-= (new_sample
>> 3);
476 /* No previous measure. */
480 if (tp
->rcv_rtt_est
.rtt
!= new_sample
)
481 tp
->rcv_rtt_est
.rtt
= new_sample
;
484 static inline void tcp_rcv_rtt_measure(struct tcp_sock
*tp
)
486 if (tp
->rcv_rtt_est
.time
== 0)
488 if (before(tp
->rcv_nxt
, tp
->rcv_rtt_est
.seq
))
490 tcp_rcv_rtt_update(tp
, tcp_time_stamp
- tp
->rcv_rtt_est
.time
, 1);
493 tp
->rcv_rtt_est
.seq
= tp
->rcv_nxt
+ tp
->rcv_wnd
;
494 tp
->rcv_rtt_est
.time
= tcp_time_stamp
;
497 static inline void tcp_rcv_rtt_measure_ts(struct sock
*sk
,
498 const struct sk_buff
*skb
)
500 struct tcp_sock
*tp
= tcp_sk(sk
);
501 if (tp
->rx_opt
.rcv_tsecr
&&
502 (TCP_SKB_CB(skb
)->end_seq
-
503 TCP_SKB_CB(skb
)->seq
>= inet_csk(sk
)->icsk_ack
.rcv_mss
))
504 tcp_rcv_rtt_update(tp
, tcp_time_stamp
- tp
->rx_opt
.rcv_tsecr
, 0);
508 * This function should be called every time data is copied to user space.
509 * It calculates the appropriate TCP receive buffer space.
511 void tcp_rcv_space_adjust(struct sock
*sk
)
513 struct tcp_sock
*tp
= tcp_sk(sk
);
517 if (tp
->rcvq_space
.time
== 0)
520 time
= tcp_time_stamp
- tp
->rcvq_space
.time
;
521 if (time
< (tp
->rcv_rtt_est
.rtt
>> 3) || tp
->rcv_rtt_est
.rtt
== 0)
524 space
= 2 * (tp
->copied_seq
- tp
->rcvq_space
.seq
);
526 space
= max(tp
->rcvq_space
.space
, space
);
528 if (tp
->rcvq_space
.space
!= space
) {
531 tp
->rcvq_space
.space
= space
;
533 if (sysctl_tcp_moderate_rcvbuf
&&
534 !(sk
->sk_userlocks
& SOCK_RCVBUF_LOCK
)) {
535 int new_clamp
= space
;
537 /* Receive space grows, normalize in order to
538 * take into account packet headers and sk_buff
539 * structure overhead.
544 rcvmem
= SKB_TRUESIZE(tp
->advmss
+ MAX_TCP_HEADER
);
545 while (tcp_win_from_space(rcvmem
) < tp
->advmss
)
548 space
= min(space
, sysctl_tcp_rmem
[2]);
549 if (space
> sk
->sk_rcvbuf
) {
550 sk
->sk_rcvbuf
= space
;
552 /* Make the window clamp follow along. */
553 tp
->window_clamp
= new_clamp
;
559 tp
->rcvq_space
.seq
= tp
->copied_seq
;
560 tp
->rcvq_space
.time
= tcp_time_stamp
;
563 /* There is something which you must keep in mind when you analyze the
564 * behavior of the tp->ato delayed ack timeout interval. When a
565 * connection starts up, we want to ack as quickly as possible. The
566 * problem is that "good" TCP's do slow start at the beginning of data
567 * transmission. The means that until we send the first few ACK's the
568 * sender will sit on his end and only queue most of his data, because
569 * he can only send snd_cwnd unacked packets at any given time. For
570 * each ACK we send, he increments snd_cwnd and transmits more of his
573 static void tcp_event_data_recv(struct sock
*sk
, struct sk_buff
*skb
)
575 struct tcp_sock
*tp
= tcp_sk(sk
);
576 struct inet_connection_sock
*icsk
= inet_csk(sk
);
579 inet_csk_schedule_ack(sk
);
581 tcp_measure_rcv_mss(sk
, skb
);
583 tcp_rcv_rtt_measure(tp
);
585 now
= tcp_time_stamp
;
587 if (!icsk
->icsk_ack
.ato
) {
588 /* The _first_ data packet received, initialize
589 * delayed ACK engine.
591 tcp_incr_quickack(sk
);
592 icsk
->icsk_ack
.ato
= TCP_ATO_MIN
;
594 int m
= now
- icsk
->icsk_ack
.lrcvtime
;
596 if (m
<= TCP_ATO_MIN
/ 2) {
597 /* The fastest case is the first. */
598 icsk
->icsk_ack
.ato
= (icsk
->icsk_ack
.ato
>> 1) + TCP_ATO_MIN
/ 2;
599 } else if (m
< icsk
->icsk_ack
.ato
) {
600 icsk
->icsk_ack
.ato
= (icsk
->icsk_ack
.ato
>> 1) + m
;
601 if (icsk
->icsk_ack
.ato
> icsk
->icsk_rto
)
602 icsk
->icsk_ack
.ato
= icsk
->icsk_rto
;
603 } else if (m
> icsk
->icsk_rto
) {
604 /* Too long gap. Apparently sender failed to
605 * restart window, so that we send ACKs quickly.
607 tcp_incr_quickack(sk
);
611 icsk
->icsk_ack
.lrcvtime
= now
;
613 TCP_ECN_check_ce(tp
, skb
);
616 tcp_grow_window(sk
, skb
);
619 /* Called to compute a smoothed rtt estimate. The data fed to this
620 * routine either comes from timestamps, or from segments that were
621 * known _not_ to have been retransmitted [see Karn/Partridge
622 * Proceedings SIGCOMM 87]. The algorithm is from the SIGCOMM 88
623 * piece by Van Jacobson.
624 * NOTE: the next three routines used to be one big routine.
625 * To save cycles in the RFC 1323 implementation it was better to break
626 * it up into three procedures. -- erics
628 static void tcp_rtt_estimator(struct sock
*sk
, const __u32 mrtt
)
630 struct tcp_sock
*tp
= tcp_sk(sk
);
631 long m
= mrtt
; /* RTT */
633 /* The following amusing code comes from Jacobson's
634 * article in SIGCOMM '88. Note that rtt and mdev
635 * are scaled versions of rtt and mean deviation.
636 * This is designed to be as fast as possible
637 * m stands for "measurement".
639 * On a 1990 paper the rto value is changed to:
640 * RTO = rtt + 4 * mdev
642 * Funny. This algorithm seems to be very broken.
643 * These formulae increase RTO, when it should be decreased, increase
644 * too slowly, when it should be increased quickly, decrease too quickly
645 * etc. I guess in BSD RTO takes ONE value, so that it is absolutely
646 * does not matter how to _calculate_ it. Seems, it was trap
647 * that VJ failed to avoid. 8)
652 m
-= (tp
->srtt
>> 3); /* m is now error in rtt est */
653 tp
->srtt
+= m
; /* rtt = 7/8 rtt + 1/8 new */
655 m
= -m
; /* m is now abs(error) */
656 m
-= (tp
->mdev
>> 2); /* similar update on mdev */
657 /* This is similar to one of Eifel findings.
658 * Eifel blocks mdev updates when rtt decreases.
659 * This solution is a bit different: we use finer gain
660 * for mdev in this case (alpha*beta).
661 * Like Eifel it also prevents growth of rto,
662 * but also it limits too fast rto decreases,
663 * happening in pure Eifel.
668 m
-= (tp
->mdev
>> 2); /* similar update on mdev */
670 tp
->mdev
+= m
; /* mdev = 3/4 mdev + 1/4 new */
671 if (tp
->mdev
> tp
->mdev_max
) {
672 tp
->mdev_max
= tp
->mdev
;
673 if (tp
->mdev_max
> tp
->rttvar
)
674 tp
->rttvar
= tp
->mdev_max
;
676 if (after(tp
->snd_una
, tp
->rtt_seq
)) {
677 if (tp
->mdev_max
< tp
->rttvar
)
678 tp
->rttvar
-= (tp
->rttvar
- tp
->mdev_max
) >> 2;
679 tp
->rtt_seq
= tp
->snd_nxt
;
680 tp
->mdev_max
= tcp_rto_min(sk
);
683 /* no previous measure. */
684 tp
->srtt
= m
<< 3; /* take the measured time to be rtt */
685 tp
->mdev
= m
<< 1; /* make sure rto = 3*rtt */
686 tp
->mdev_max
= tp
->rttvar
= max(tp
->mdev
, tcp_rto_min(sk
));
687 tp
->rtt_seq
= tp
->snd_nxt
;
691 /* Set the sk_pacing_rate to allow proper sizing of TSO packets.
692 * Note: TCP stack does not yet implement pacing.
693 * FQ packet scheduler can be used to implement cheap but effective
694 * TCP pacing, to smooth the burst on large writes when packets
695 * in flight is significantly lower than cwnd (or rwin)
697 static void tcp_update_pacing_rate(struct sock
*sk
)
699 const struct tcp_sock
*tp
= tcp_sk(sk
);
702 /* set sk_pacing_rate to 200 % of current rate (mss * cwnd / srtt) */
703 rate
= (u64
)tp
->mss_cache
* 2 * (HZ
<< 3);
705 rate
*= max(tp
->snd_cwnd
, tp
->packets_out
);
707 /* Correction for small srtt : minimum srtt being 8 (1 jiffy << 3),
708 * be conservative and assume srtt = 1 (125 us instead of 1.25 ms)
709 * We probably need usec resolution in the future.
710 * Note: This also takes care of possible srtt=0 case,
711 * when tcp_rtt_estimator() was not yet called.
713 if (tp
->srtt
> 8 + 2)
714 do_div(rate
, tp
->srtt
);
716 sk
->sk_pacing_rate
= min_t(u64
, rate
, ~0U);
719 /* Calculate rto without backoff. This is the second half of Van Jacobson's
720 * routine referred to above.
722 void tcp_set_rto(struct sock
*sk
)
724 const struct tcp_sock
*tp
= tcp_sk(sk
);
725 /* Old crap is replaced with new one. 8)
728 * 1. If rtt variance happened to be less 50msec, it is hallucination.
729 * It cannot be less due to utterly erratic ACK generation made
730 * at least by solaris and freebsd. "Erratic ACKs" has _nothing_
731 * to do with delayed acks, because at cwnd>2 true delack timeout
732 * is invisible. Actually, Linux-2.4 also generates erratic
733 * ACKs in some circumstances.
735 inet_csk(sk
)->icsk_rto
= __tcp_set_rto(tp
);
737 /* 2. Fixups made earlier cannot be right.
738 * If we do not estimate RTO correctly without them,
739 * all the algo is pure shit and should be replaced
740 * with correct one. It is exactly, which we pretend to do.
743 /* NOTE: clamping at TCP_RTO_MIN is not required, current algo
744 * guarantees that rto is higher.
749 __u32
tcp_init_cwnd(const struct tcp_sock
*tp
, const struct dst_entry
*dst
)
751 __u32 cwnd
= (dst
? dst_metric(dst
, RTAX_INITCWND
) : 0);
754 cwnd
= TCP_INIT_CWND
;
755 return min_t(__u32
, cwnd
, tp
->snd_cwnd_clamp
);
759 * Packet counting of FACK is based on in-order assumptions, therefore TCP
760 * disables it when reordering is detected
762 void tcp_disable_fack(struct tcp_sock
*tp
)
764 /* RFC3517 uses different metric in lost marker => reset on change */
766 tp
->lost_skb_hint
= NULL
;
767 tp
->rx_opt
.sack_ok
&= ~TCP_FACK_ENABLED
;
770 /* Take a notice that peer is sending D-SACKs */
771 static void tcp_dsack_seen(struct tcp_sock
*tp
)
773 tp
->rx_opt
.sack_ok
|= TCP_DSACK_SEEN
;
776 static void tcp_update_reordering(struct sock
*sk
, const int metric
,
779 struct tcp_sock
*tp
= tcp_sk(sk
);
780 if (metric
> tp
->reordering
) {
783 tp
->reordering
= min(TCP_MAX_REORDERING
, metric
);
785 /* This exciting event is worth to be remembered. 8) */
787 mib_idx
= LINUX_MIB_TCPTSREORDER
;
788 else if (tcp_is_reno(tp
))
789 mib_idx
= LINUX_MIB_TCPRENOREORDER
;
790 else if (tcp_is_fack(tp
))
791 mib_idx
= LINUX_MIB_TCPFACKREORDER
;
793 mib_idx
= LINUX_MIB_TCPSACKREORDER
;
795 NET_INC_STATS_BH(sock_net(sk
), mib_idx
);
796 #if FASTRETRANS_DEBUG > 1
797 pr_debug("Disorder%d %d %u f%u s%u rr%d\n",
798 tp
->rx_opt
.sack_ok
, inet_csk(sk
)->icsk_ca_state
,
802 tp
->undo_marker
? tp
->undo_retrans
: 0);
804 tcp_disable_fack(tp
);
808 tcp_disable_early_retrans(tp
);
811 /* This must be called before lost_out is incremented */
812 static void tcp_verify_retransmit_hint(struct tcp_sock
*tp
, struct sk_buff
*skb
)
814 if ((tp
->retransmit_skb_hint
== NULL
) ||
815 before(TCP_SKB_CB(skb
)->seq
,
816 TCP_SKB_CB(tp
->retransmit_skb_hint
)->seq
))
817 tp
->retransmit_skb_hint
= skb
;
820 after(TCP_SKB_CB(skb
)->end_seq
, tp
->retransmit_high
))
821 tp
->retransmit_high
= TCP_SKB_CB(skb
)->end_seq
;
824 static void tcp_skb_mark_lost(struct tcp_sock
*tp
, struct sk_buff
*skb
)
826 if (!(TCP_SKB_CB(skb
)->sacked
& (TCPCB_LOST
|TCPCB_SACKED_ACKED
))) {
827 tcp_verify_retransmit_hint(tp
, skb
);
829 tp
->lost_out
+= tcp_skb_pcount(skb
);
830 TCP_SKB_CB(skb
)->sacked
|= TCPCB_LOST
;
834 static void tcp_skb_mark_lost_uncond_verify(struct tcp_sock
*tp
,
837 tcp_verify_retransmit_hint(tp
, skb
);
839 if (!(TCP_SKB_CB(skb
)->sacked
& (TCPCB_LOST
|TCPCB_SACKED_ACKED
))) {
840 tp
->lost_out
+= tcp_skb_pcount(skb
);
841 TCP_SKB_CB(skb
)->sacked
|= TCPCB_LOST
;
845 /* This procedure tags the retransmission queue when SACKs arrive.
847 * We have three tag bits: SACKED(S), RETRANS(R) and LOST(L).
848 * Packets in queue with these bits set are counted in variables
849 * sacked_out, retrans_out and lost_out, correspondingly.
851 * Valid combinations are:
852 * Tag InFlight Description
853 * 0 1 - orig segment is in flight.
854 * S 0 - nothing flies, orig reached receiver.
855 * L 0 - nothing flies, orig lost by net.
856 * R 2 - both orig and retransmit are in flight.
857 * L|R 1 - orig is lost, retransmit is in flight.
858 * S|R 1 - orig reached receiver, retrans is still in flight.
859 * (L|S|R is logically valid, it could occur when L|R is sacked,
860 * but it is equivalent to plain S and code short-curcuits it to S.
861 * L|S is logically invalid, it would mean -1 packet in flight 8))
863 * These 6 states form finite state machine, controlled by the following events:
864 * 1. New ACK (+SACK) arrives. (tcp_sacktag_write_queue())
865 * 2. Retransmission. (tcp_retransmit_skb(), tcp_xmit_retransmit_queue())
866 * 3. Loss detection event of two flavors:
867 * A. Scoreboard estimator decided the packet is lost.
868 * A'. Reno "three dupacks" marks head of queue lost.
869 * A''. Its FACK modification, head until snd.fack is lost.
870 * B. SACK arrives sacking SND.NXT at the moment, when the
871 * segment was retransmitted.
872 * 4. D-SACK added new rule: D-SACK changes any tag to S.
874 * It is pleasant to note, that state diagram turns out to be commutative,
875 * so that we are allowed not to be bothered by order of our actions,
876 * when multiple events arrive simultaneously. (see the function below).
878 * Reordering detection.
879 * --------------------
880 * Reordering metric is maximal distance, which a packet can be displaced
881 * in packet stream. With SACKs we can estimate it:
883 * 1. SACK fills old hole and the corresponding segment was not
884 * ever retransmitted -> reordering. Alas, we cannot use it
885 * when segment was retransmitted.
886 * 2. The last flaw is solved with D-SACK. D-SACK arrives
887 * for retransmitted and already SACKed segment -> reordering..
888 * Both of these heuristics are not used in Loss state, when we cannot
889 * account for retransmits accurately.
891 * SACK block validation.
892 * ----------------------
894 * SACK block range validation checks that the received SACK block fits to
895 * the expected sequence limits, i.e., it is between SND.UNA and SND.NXT.
896 * Note that SND.UNA is not included to the range though being valid because
897 * it means that the receiver is rather inconsistent with itself reporting
898 * SACK reneging when it should advance SND.UNA. Such SACK block this is
899 * perfectly valid, however, in light of RFC2018 which explicitly states
900 * that "SACK block MUST reflect the newest segment. Even if the newest
901 * segment is going to be discarded ...", not that it looks very clever
902 * in case of head skb. Due to potentional receiver driven attacks, we
903 * choose to avoid immediate execution of a walk in write queue due to
904 * reneging and defer head skb's loss recovery to standard loss recovery
905 * procedure that will eventually trigger (nothing forbids us doing this).
907 * Implements also blockage to start_seq wrap-around. Problem lies in the
908 * fact that though start_seq (s) is before end_seq (i.e., not reversed),
909 * there's no guarantee that it will be before snd_nxt (n). The problem
910 * happens when start_seq resides between end_seq wrap (e_w) and snd_nxt
913 * <- outs wnd -> <- wrapzone ->
914 * u e n u_w e_w s n_w
916 * |<------------+------+----- TCP seqno space --------------+---------->|
917 * ...-- <2^31 ->| |<--------...
918 * ...---- >2^31 ------>| |<--------...
920 * Current code wouldn't be vulnerable but it's better still to discard such
921 * crazy SACK blocks. Doing this check for start_seq alone closes somewhat
922 * similar case (end_seq after snd_nxt wrap) as earlier reversed check in
923 * snd_nxt wrap -> snd_una region will then become "well defined", i.e.,
924 * equal to the ideal case (infinite seqno space without wrap caused issues).
926 * With D-SACK the lower bound is extended to cover sequence space below
927 * SND.UNA down to undo_marker, which is the last point of interest. Yet
928 * again, D-SACK block must not to go across snd_una (for the same reason as
929 * for the normal SACK blocks, explained above). But there all simplicity
930 * ends, TCP might receive valid D-SACKs below that. As long as they reside
931 * fully below undo_marker they do not affect behavior in anyway and can
932 * therefore be safely ignored. In rare cases (which are more or less
933 * theoretical ones), the D-SACK will nicely cross that boundary due to skb
934 * fragmentation and packet reordering past skb's retransmission. To consider
935 * them correctly, the acceptable range must be extended even more though
936 * the exact amount is rather hard to quantify. However, tp->max_window can
937 * be used as an exaggerated estimate.
939 static bool tcp_is_sackblock_valid(struct tcp_sock
*tp
, bool is_dsack
,
940 u32 start_seq
, u32 end_seq
)
942 /* Too far in future, or reversed (interpretation is ambiguous) */
943 if (after(end_seq
, tp
->snd_nxt
) || !before(start_seq
, end_seq
))
946 /* Nasty start_seq wrap-around check (see comments above) */
947 if (!before(start_seq
, tp
->snd_nxt
))
950 /* In outstanding window? ...This is valid exit for D-SACKs too.
951 * start_seq == snd_una is non-sensical (see comments above)
953 if (after(start_seq
, tp
->snd_una
))
956 if (!is_dsack
|| !tp
->undo_marker
)
959 /* ...Then it's D-SACK, and must reside below snd_una completely */
960 if (after(end_seq
, tp
->snd_una
))
963 if (!before(start_seq
, tp
->undo_marker
))
967 if (!after(end_seq
, tp
->undo_marker
))
970 /* Undo_marker boundary crossing (overestimates a lot). Known already:
971 * start_seq < undo_marker and end_seq >= undo_marker.
973 return !before(start_seq
, end_seq
- tp
->max_window
);
976 /* Check for lost retransmit. This superb idea is borrowed from "ratehalving".
977 * Event "B". Later note: FACK people cheated me again 8), we have to account
978 * for reordering! Ugly, but should help.
980 * Search retransmitted skbs from write_queue that were sent when snd_nxt was
981 * less than what is now known to be received by the other end (derived from
982 * highest SACK block). Also calculate the lowest snd_nxt among the remaining
983 * retransmitted skbs to avoid some costly processing per ACKs.
985 static void tcp_mark_lost_retrans(struct sock
*sk
)
987 const struct inet_connection_sock
*icsk
= inet_csk(sk
);
988 struct tcp_sock
*tp
= tcp_sk(sk
);
991 u32 new_low_seq
= tp
->snd_nxt
;
992 u32 received_upto
= tcp_highest_sack_seq(tp
);
994 if (!tcp_is_fack(tp
) || !tp
->retrans_out
||
995 !after(received_upto
, tp
->lost_retrans_low
) ||
996 icsk
->icsk_ca_state
!= TCP_CA_Recovery
)
999 tcp_for_write_queue(skb
, sk
) {
1000 u32 ack_seq
= TCP_SKB_CB(skb
)->ack_seq
;
1002 if (skb
== tcp_send_head(sk
))
1004 if (cnt
== tp
->retrans_out
)
1006 if (!after(TCP_SKB_CB(skb
)->end_seq
, tp
->snd_una
))
1009 if (!(TCP_SKB_CB(skb
)->sacked
& TCPCB_SACKED_RETRANS
))
1012 /* TODO: We would like to get rid of tcp_is_fack(tp) only
1013 * constraint here (see above) but figuring out that at
1014 * least tp->reordering SACK blocks reside between ack_seq
1015 * and received_upto is not easy task to do cheaply with
1016 * the available datastructures.
1018 * Whether FACK should check here for tp->reordering segs
1019 * in-between one could argue for either way (it would be
1020 * rather simple to implement as we could count fack_count
1021 * during the walk and do tp->fackets_out - fack_count).
1023 if (after(received_upto
, ack_seq
)) {
1024 TCP_SKB_CB(skb
)->sacked
&= ~TCPCB_SACKED_RETRANS
;
1025 tp
->retrans_out
-= tcp_skb_pcount(skb
);
1027 tcp_skb_mark_lost_uncond_verify(tp
, skb
);
1028 NET_INC_STATS_BH(sock_net(sk
), LINUX_MIB_TCPLOSTRETRANSMIT
);
1030 if (before(ack_seq
, new_low_seq
))
1031 new_low_seq
= ack_seq
;
1032 cnt
+= tcp_skb_pcount(skb
);
1036 if (tp
->retrans_out
)
1037 tp
->lost_retrans_low
= new_low_seq
;
1040 static bool tcp_check_dsack(struct sock
*sk
, const struct sk_buff
*ack_skb
,
1041 struct tcp_sack_block_wire
*sp
, int num_sacks
,
1044 struct tcp_sock
*tp
= tcp_sk(sk
);
1045 u32 start_seq_0
= get_unaligned_be32(&sp
[0].start_seq
);
1046 u32 end_seq_0
= get_unaligned_be32(&sp
[0].end_seq
);
1047 bool dup_sack
= false;
1049 if (before(start_seq_0
, TCP_SKB_CB(ack_skb
)->ack_seq
)) {
1052 NET_INC_STATS_BH(sock_net(sk
), LINUX_MIB_TCPDSACKRECV
);
1053 } else if (num_sacks
> 1) {
1054 u32 end_seq_1
= get_unaligned_be32(&sp
[1].end_seq
);
1055 u32 start_seq_1
= get_unaligned_be32(&sp
[1].start_seq
);
1057 if (!after(end_seq_0
, end_seq_1
) &&
1058 !before(start_seq_0
, start_seq_1
)) {
1061 NET_INC_STATS_BH(sock_net(sk
),
1062 LINUX_MIB_TCPDSACKOFORECV
);
1066 /* D-SACK for already forgotten data... Do dumb counting. */
1067 if (dup_sack
&& tp
->undo_marker
&& tp
->undo_retrans
> 0 &&
1068 !after(end_seq_0
, prior_snd_una
) &&
1069 after(end_seq_0
, tp
->undo_marker
))
1075 struct tcp_sacktag_state
{
1079 s32 rtt
; /* RTT measured by SACKing never-retransmitted data */
1082 /* Check if skb is fully within the SACK block. In presence of GSO skbs,
1083 * the incoming SACK may not exactly match but we can find smaller MSS
1084 * aligned portion of it that matches. Therefore we might need to fragment
1085 * which may fail and creates some hassle (caller must handle error case
1088 * FIXME: this could be merged to shift decision code
1090 static int tcp_match_skb_to_sack(struct sock
*sk
, struct sk_buff
*skb
,
1091 u32 start_seq
, u32 end_seq
)
1095 unsigned int pkt_len
;
1098 in_sack
= !after(start_seq
, TCP_SKB_CB(skb
)->seq
) &&
1099 !before(end_seq
, TCP_SKB_CB(skb
)->end_seq
);
1101 if (tcp_skb_pcount(skb
) > 1 && !in_sack
&&
1102 after(TCP_SKB_CB(skb
)->end_seq
, start_seq
)) {
1103 mss
= tcp_skb_mss(skb
);
1104 in_sack
= !after(start_seq
, TCP_SKB_CB(skb
)->seq
);
1107 pkt_len
= start_seq
- TCP_SKB_CB(skb
)->seq
;
1111 pkt_len
= end_seq
- TCP_SKB_CB(skb
)->seq
;
1116 /* Round if necessary so that SACKs cover only full MSSes
1117 * and/or the remaining small portion (if present)
1119 if (pkt_len
> mss
) {
1120 unsigned int new_len
= (pkt_len
/ mss
) * mss
;
1121 if (!in_sack
&& new_len
< pkt_len
) {
1123 if (new_len
>= skb
->len
)
1128 err
= tcp_fragment(sk
, skb
, pkt_len
, mss
);
1136 /* Mark the given newly-SACKed range as such, adjusting counters and hints. */
1137 static u8
tcp_sacktag_one(struct sock
*sk
,
1138 struct tcp_sacktag_state
*state
, u8 sacked
,
1139 u32 start_seq
, u32 end_seq
,
1140 int dup_sack
, int pcount
, u32 xmit_time
)
1142 struct tcp_sock
*tp
= tcp_sk(sk
);
1143 int fack_count
= state
->fack_count
;
1145 /* Account D-SACK for retransmitted packet. */
1146 if (dup_sack
&& (sacked
& TCPCB_RETRANS
)) {
1147 if (tp
->undo_marker
&& tp
->undo_retrans
> 0 &&
1148 after(end_seq
, tp
->undo_marker
))
1150 if (sacked
& TCPCB_SACKED_ACKED
)
1151 state
->reord
= min(fack_count
, state
->reord
);
1154 /* Nothing to do; acked frame is about to be dropped (was ACKed). */
1155 if (!after(end_seq
, tp
->snd_una
))
1158 if (!(sacked
& TCPCB_SACKED_ACKED
)) {
1159 if (sacked
& TCPCB_SACKED_RETRANS
) {
1160 /* If the segment is not tagged as lost,
1161 * we do not clear RETRANS, believing
1162 * that retransmission is still in flight.
1164 if (sacked
& TCPCB_LOST
) {
1165 sacked
&= ~(TCPCB_LOST
|TCPCB_SACKED_RETRANS
);
1166 tp
->lost_out
-= pcount
;
1167 tp
->retrans_out
-= pcount
;
1170 if (!(sacked
& TCPCB_RETRANS
)) {
1171 /* New sack for not retransmitted frame,
1172 * which was in hole. It is reordering.
1174 if (before(start_seq
,
1175 tcp_highest_sack_seq(tp
)))
1176 state
->reord
= min(fack_count
,
1178 if (!after(end_seq
, tp
->high_seq
))
1179 state
->flag
|= FLAG_ORIG_SACK_ACKED
;
1180 /* Pick the earliest sequence sacked for RTT */
1182 state
->rtt
= tcp_time_stamp
- xmit_time
;
1185 if (sacked
& TCPCB_LOST
) {
1186 sacked
&= ~TCPCB_LOST
;
1187 tp
->lost_out
-= pcount
;
1191 sacked
|= TCPCB_SACKED_ACKED
;
1192 state
->flag
|= FLAG_DATA_SACKED
;
1193 tp
->sacked_out
+= pcount
;
1195 fack_count
+= pcount
;
1197 /* Lost marker hint past SACKed? Tweak RFC3517 cnt */
1198 if (!tcp_is_fack(tp
) && (tp
->lost_skb_hint
!= NULL
) &&
1199 before(start_seq
, TCP_SKB_CB(tp
->lost_skb_hint
)->seq
))
1200 tp
->lost_cnt_hint
+= pcount
;
1202 if (fack_count
> tp
->fackets_out
)
1203 tp
->fackets_out
= fack_count
;
1206 /* D-SACK. We can detect redundant retransmission in S|R and plain R
1207 * frames and clear it. undo_retrans is decreased above, L|R frames
1208 * are accounted above as well.
1210 if (dup_sack
&& (sacked
& TCPCB_SACKED_RETRANS
)) {
1211 sacked
&= ~TCPCB_SACKED_RETRANS
;
1212 tp
->retrans_out
-= pcount
;
1218 /* Shift newly-SACKed bytes from this skb to the immediately previous
1219 * already-SACKed sk_buff. Mark the newly-SACKed bytes as such.
1221 static bool tcp_shifted_skb(struct sock
*sk
, struct sk_buff
*skb
,
1222 struct tcp_sacktag_state
*state
,
1223 unsigned int pcount
, int shifted
, int mss
,
1226 struct tcp_sock
*tp
= tcp_sk(sk
);
1227 struct sk_buff
*prev
= tcp_write_queue_prev(sk
, skb
);
1228 u32 start_seq
= TCP_SKB_CB(skb
)->seq
; /* start of newly-SACKed */
1229 u32 end_seq
= start_seq
+ shifted
; /* end of newly-SACKed */
1233 /* Adjust counters and hints for the newly sacked sequence
1234 * range but discard the return value since prev is already
1235 * marked. We must tag the range first because the seq
1236 * advancement below implicitly advances
1237 * tcp_highest_sack_seq() when skb is highest_sack.
1239 tcp_sacktag_one(sk
, state
, TCP_SKB_CB(skb
)->sacked
,
1240 start_seq
, end_seq
, dup_sack
, pcount
,
1241 TCP_SKB_CB(skb
)->when
);
1243 if (skb
== tp
->lost_skb_hint
)
1244 tp
->lost_cnt_hint
+= pcount
;
1246 TCP_SKB_CB(prev
)->end_seq
+= shifted
;
1247 TCP_SKB_CB(skb
)->seq
+= shifted
;
1249 skb_shinfo(prev
)->gso_segs
+= pcount
;
1250 BUG_ON(skb_shinfo(skb
)->gso_segs
< pcount
);
1251 skb_shinfo(skb
)->gso_segs
-= pcount
;
1253 /* When we're adding to gso_segs == 1, gso_size will be zero,
1254 * in theory this shouldn't be necessary but as long as DSACK
1255 * code can come after this skb later on it's better to keep
1256 * setting gso_size to something.
1258 if (!skb_shinfo(prev
)->gso_size
) {
1259 skb_shinfo(prev
)->gso_size
= mss
;
1260 skb_shinfo(prev
)->gso_type
= sk
->sk_gso_type
;
1263 /* CHECKME: To clear or not to clear? Mimics normal skb currently */
1264 if (skb_shinfo(skb
)->gso_segs
<= 1) {
1265 skb_shinfo(skb
)->gso_size
= 0;
1266 skb_shinfo(skb
)->gso_type
= 0;
1269 /* Difference in this won't matter, both ACKed by the same cumul. ACK */
1270 TCP_SKB_CB(prev
)->sacked
|= (TCP_SKB_CB(skb
)->sacked
& TCPCB_EVER_RETRANS
);
1273 BUG_ON(!tcp_skb_pcount(skb
));
1274 NET_INC_STATS_BH(sock_net(sk
), LINUX_MIB_SACKSHIFTED
);
1278 /* Whole SKB was eaten :-) */
1280 if (skb
== tp
->retransmit_skb_hint
)
1281 tp
->retransmit_skb_hint
= prev
;
1282 if (skb
== tp
->lost_skb_hint
) {
1283 tp
->lost_skb_hint
= prev
;
1284 tp
->lost_cnt_hint
-= tcp_skb_pcount(prev
);
1287 TCP_SKB_CB(prev
)->tcp_flags
|= TCP_SKB_CB(skb
)->tcp_flags
;
1288 if (TCP_SKB_CB(skb
)->tcp_flags
& TCPHDR_FIN
)
1289 TCP_SKB_CB(prev
)->end_seq
++;
1291 if (skb
== tcp_highest_sack(sk
))
1292 tcp_advance_highest_sack(sk
, skb
);
1294 tcp_unlink_write_queue(skb
, sk
);
1295 sk_wmem_free_skb(sk
, skb
);
1297 NET_INC_STATS_BH(sock_net(sk
), LINUX_MIB_SACKMERGED
);
1302 /* I wish gso_size would have a bit more sane initialization than
1303 * something-or-zero which complicates things
1305 static int tcp_skb_seglen(const struct sk_buff
*skb
)
1307 return tcp_skb_pcount(skb
) == 1 ? skb
->len
: tcp_skb_mss(skb
);
1310 /* Shifting pages past head area doesn't work */
1311 static int skb_can_shift(const struct sk_buff
*skb
)
1313 return !skb_headlen(skb
) && skb_is_nonlinear(skb
);
1316 /* Try collapsing SACK blocks spanning across multiple skbs to a single
1319 static struct sk_buff
*tcp_shift_skb_data(struct sock
*sk
, struct sk_buff
*skb
,
1320 struct tcp_sacktag_state
*state
,
1321 u32 start_seq
, u32 end_seq
,
1324 struct tcp_sock
*tp
= tcp_sk(sk
);
1325 struct sk_buff
*prev
;
1331 if (!sk_can_gso(sk
))
1334 /* Normally R but no L won't result in plain S */
1336 (TCP_SKB_CB(skb
)->sacked
& (TCPCB_LOST
|TCPCB_SACKED_RETRANS
)) == TCPCB_SACKED_RETRANS
)
1338 if (!skb_can_shift(skb
))
1340 /* This frame is about to be dropped (was ACKed). */
1341 if (!after(TCP_SKB_CB(skb
)->end_seq
, tp
->snd_una
))
1344 /* Can only happen with delayed DSACK + discard craziness */
1345 if (unlikely(skb
== tcp_write_queue_head(sk
)))
1347 prev
= tcp_write_queue_prev(sk
, skb
);
1349 if ((TCP_SKB_CB(prev
)->sacked
& TCPCB_TAGBITS
) != TCPCB_SACKED_ACKED
)
1352 in_sack
= !after(start_seq
, TCP_SKB_CB(skb
)->seq
) &&
1353 !before(end_seq
, TCP_SKB_CB(skb
)->end_seq
);
1357 pcount
= tcp_skb_pcount(skb
);
1358 mss
= tcp_skb_seglen(skb
);
1360 /* TODO: Fix DSACKs to not fragment already SACKed and we can
1361 * drop this restriction as unnecessary
1363 if (mss
!= tcp_skb_seglen(prev
))
1366 if (!after(TCP_SKB_CB(skb
)->end_seq
, start_seq
))
1368 /* CHECKME: This is non-MSS split case only?, this will
1369 * cause skipped skbs due to advancing loop btw, original
1370 * has that feature too
1372 if (tcp_skb_pcount(skb
) <= 1)
1375 in_sack
= !after(start_seq
, TCP_SKB_CB(skb
)->seq
);
1377 /* TODO: head merge to next could be attempted here
1378 * if (!after(TCP_SKB_CB(skb)->end_seq, end_seq)),
1379 * though it might not be worth of the additional hassle
1381 * ...we can probably just fallback to what was done
1382 * previously. We could try merging non-SACKed ones
1383 * as well but it probably isn't going to buy off
1384 * because later SACKs might again split them, and
1385 * it would make skb timestamp tracking considerably
1391 len
= end_seq
- TCP_SKB_CB(skb
)->seq
;
1393 BUG_ON(len
> skb
->len
);
1395 /* MSS boundaries should be honoured or else pcount will
1396 * severely break even though it makes things bit trickier.
1397 * Optimize common case to avoid most of the divides
1399 mss
= tcp_skb_mss(skb
);
1401 /* TODO: Fix DSACKs to not fragment already SACKed and we can
1402 * drop this restriction as unnecessary
1404 if (mss
!= tcp_skb_seglen(prev
))
1409 } else if (len
< mss
) {
1417 /* tcp_sacktag_one() won't SACK-tag ranges below snd_una */
1418 if (!after(TCP_SKB_CB(skb
)->seq
+ len
, tp
->snd_una
))
1421 if (!skb_shift(prev
, skb
, len
))
1423 if (!tcp_shifted_skb(sk
, skb
, state
, pcount
, len
, mss
, dup_sack
))
1426 /* Hole filled allows collapsing with the next as well, this is very
1427 * useful when hole on every nth skb pattern happens
1429 if (prev
== tcp_write_queue_tail(sk
))
1431 skb
= tcp_write_queue_next(sk
, prev
);
1433 if (!skb_can_shift(skb
) ||
1434 (skb
== tcp_send_head(sk
)) ||
1435 ((TCP_SKB_CB(skb
)->sacked
& TCPCB_TAGBITS
) != TCPCB_SACKED_ACKED
) ||
1436 (mss
!= tcp_skb_seglen(skb
)))
1440 if (skb_shift(prev
, skb
, len
)) {
1441 pcount
+= tcp_skb_pcount(skb
);
1442 tcp_shifted_skb(sk
, skb
, state
, tcp_skb_pcount(skb
), len
, mss
, 0);
1446 state
->fack_count
+= pcount
;
1453 NET_INC_STATS_BH(sock_net(sk
), LINUX_MIB_SACKSHIFTFALLBACK
);
1457 static struct sk_buff
*tcp_sacktag_walk(struct sk_buff
*skb
, struct sock
*sk
,
1458 struct tcp_sack_block
*next_dup
,
1459 struct tcp_sacktag_state
*state
,
1460 u32 start_seq
, u32 end_seq
,
1463 struct tcp_sock
*tp
= tcp_sk(sk
);
1464 struct sk_buff
*tmp
;
1466 tcp_for_write_queue_from(skb
, sk
) {
1468 bool dup_sack
= dup_sack_in
;
1470 if (skb
== tcp_send_head(sk
))
1473 /* queue is in-order => we can short-circuit the walk early */
1474 if (!before(TCP_SKB_CB(skb
)->seq
, end_seq
))
1477 if ((next_dup
!= NULL
) &&
1478 before(TCP_SKB_CB(skb
)->seq
, next_dup
->end_seq
)) {
1479 in_sack
= tcp_match_skb_to_sack(sk
, skb
,
1480 next_dup
->start_seq
,
1486 /* skb reference here is a bit tricky to get right, since
1487 * shifting can eat and free both this skb and the next,
1488 * so not even _safe variant of the loop is enough.
1491 tmp
= tcp_shift_skb_data(sk
, skb
, state
,
1492 start_seq
, end_seq
, dup_sack
);
1501 in_sack
= tcp_match_skb_to_sack(sk
, skb
,
1507 if (unlikely(in_sack
< 0))
1511 TCP_SKB_CB(skb
)->sacked
=
1514 TCP_SKB_CB(skb
)->sacked
,
1515 TCP_SKB_CB(skb
)->seq
,
1516 TCP_SKB_CB(skb
)->end_seq
,
1518 tcp_skb_pcount(skb
),
1519 TCP_SKB_CB(skb
)->when
);
1521 if (!before(TCP_SKB_CB(skb
)->seq
,
1522 tcp_highest_sack_seq(tp
)))
1523 tcp_advance_highest_sack(sk
, skb
);
1526 state
->fack_count
+= tcp_skb_pcount(skb
);
1531 /* Avoid all extra work that is being done by sacktag while walking in
1534 static struct sk_buff
*tcp_sacktag_skip(struct sk_buff
*skb
, struct sock
*sk
,
1535 struct tcp_sacktag_state
*state
,
1538 tcp_for_write_queue_from(skb
, sk
) {
1539 if (skb
== tcp_send_head(sk
))
1542 if (after(TCP_SKB_CB(skb
)->end_seq
, skip_to_seq
))
1545 state
->fack_count
+= tcp_skb_pcount(skb
);
1550 static struct sk_buff
*tcp_maybe_skipping_dsack(struct sk_buff
*skb
,
1552 struct tcp_sack_block
*next_dup
,
1553 struct tcp_sacktag_state
*state
,
1556 if (next_dup
== NULL
)
1559 if (before(next_dup
->start_seq
, skip_to_seq
)) {
1560 skb
= tcp_sacktag_skip(skb
, sk
, state
, next_dup
->start_seq
);
1561 skb
= tcp_sacktag_walk(skb
, sk
, NULL
, state
,
1562 next_dup
->start_seq
, next_dup
->end_seq
,
1569 static int tcp_sack_cache_ok(const struct tcp_sock
*tp
, const struct tcp_sack_block
*cache
)
1571 return cache
< tp
->recv_sack_cache
+ ARRAY_SIZE(tp
->recv_sack_cache
);
1575 tcp_sacktag_write_queue(struct sock
*sk
, const struct sk_buff
*ack_skb
,
1576 u32 prior_snd_una
, s32
*sack_rtt
)
1578 struct tcp_sock
*tp
= tcp_sk(sk
);
1579 const unsigned char *ptr
= (skb_transport_header(ack_skb
) +
1580 TCP_SKB_CB(ack_skb
)->sacked
);
1581 struct tcp_sack_block_wire
*sp_wire
= (struct tcp_sack_block_wire
*)(ptr
+2);
1582 struct tcp_sack_block sp
[TCP_NUM_SACKS
];
1583 struct tcp_sack_block
*cache
;
1584 struct tcp_sacktag_state state
;
1585 struct sk_buff
*skb
;
1586 int num_sacks
= min(TCP_NUM_SACKS
, (ptr
[1] - TCPOLEN_SACK_BASE
) >> 3);
1588 bool found_dup_sack
= false;
1590 int first_sack_index
;
1593 state
.reord
= tp
->packets_out
;
1596 if (!tp
->sacked_out
) {
1597 if (WARN_ON(tp
->fackets_out
))
1598 tp
->fackets_out
= 0;
1599 tcp_highest_sack_reset(sk
);
1602 found_dup_sack
= tcp_check_dsack(sk
, ack_skb
, sp_wire
,
1603 num_sacks
, prior_snd_una
);
1605 state
.flag
|= FLAG_DSACKING_ACK
;
1607 /* Eliminate too old ACKs, but take into
1608 * account more or less fresh ones, they can
1609 * contain valid SACK info.
1611 if (before(TCP_SKB_CB(ack_skb
)->ack_seq
, prior_snd_una
- tp
->max_window
))
1614 if (!tp
->packets_out
)
1618 first_sack_index
= 0;
1619 for (i
= 0; i
< num_sacks
; i
++) {
1620 bool dup_sack
= !i
&& found_dup_sack
;
1622 sp
[used_sacks
].start_seq
= get_unaligned_be32(&sp_wire
[i
].start_seq
);
1623 sp
[used_sacks
].end_seq
= get_unaligned_be32(&sp_wire
[i
].end_seq
);
1625 if (!tcp_is_sackblock_valid(tp
, dup_sack
,
1626 sp
[used_sacks
].start_seq
,
1627 sp
[used_sacks
].end_seq
)) {
1631 if (!tp
->undo_marker
)
1632 mib_idx
= LINUX_MIB_TCPDSACKIGNOREDNOUNDO
;
1634 mib_idx
= LINUX_MIB_TCPDSACKIGNOREDOLD
;
1636 /* Don't count olds caused by ACK reordering */
1637 if ((TCP_SKB_CB(ack_skb
)->ack_seq
!= tp
->snd_una
) &&
1638 !after(sp
[used_sacks
].end_seq
, tp
->snd_una
))
1640 mib_idx
= LINUX_MIB_TCPSACKDISCARD
;
1643 NET_INC_STATS_BH(sock_net(sk
), mib_idx
);
1645 first_sack_index
= -1;
1649 /* Ignore very old stuff early */
1650 if (!after(sp
[used_sacks
].end_seq
, prior_snd_una
))
1656 /* order SACK blocks to allow in order walk of the retrans queue */
1657 for (i
= used_sacks
- 1; i
> 0; i
--) {
1658 for (j
= 0; j
< i
; j
++) {
1659 if (after(sp
[j
].start_seq
, sp
[j
+ 1].start_seq
)) {
1660 swap(sp
[j
], sp
[j
+ 1]);
1662 /* Track where the first SACK block goes to */
1663 if (j
== first_sack_index
)
1664 first_sack_index
= j
+ 1;
1669 skb
= tcp_write_queue_head(sk
);
1670 state
.fack_count
= 0;
1673 if (!tp
->sacked_out
) {
1674 /* It's already past, so skip checking against it */
1675 cache
= tp
->recv_sack_cache
+ ARRAY_SIZE(tp
->recv_sack_cache
);
1677 cache
= tp
->recv_sack_cache
;
1678 /* Skip empty blocks in at head of the cache */
1679 while (tcp_sack_cache_ok(tp
, cache
) && !cache
->start_seq
&&
1684 while (i
< used_sacks
) {
1685 u32 start_seq
= sp
[i
].start_seq
;
1686 u32 end_seq
= sp
[i
].end_seq
;
1687 bool dup_sack
= (found_dup_sack
&& (i
== first_sack_index
));
1688 struct tcp_sack_block
*next_dup
= NULL
;
1690 if (found_dup_sack
&& ((i
+ 1) == first_sack_index
))
1691 next_dup
= &sp
[i
+ 1];
1693 /* Skip too early cached blocks */
1694 while (tcp_sack_cache_ok(tp
, cache
) &&
1695 !before(start_seq
, cache
->end_seq
))
1698 /* Can skip some work by looking recv_sack_cache? */
1699 if (tcp_sack_cache_ok(tp
, cache
) && !dup_sack
&&
1700 after(end_seq
, cache
->start_seq
)) {
1703 if (before(start_seq
, cache
->start_seq
)) {
1704 skb
= tcp_sacktag_skip(skb
, sk
, &state
,
1706 skb
= tcp_sacktag_walk(skb
, sk
, next_dup
,
1713 /* Rest of the block already fully processed? */
1714 if (!after(end_seq
, cache
->end_seq
))
1717 skb
= tcp_maybe_skipping_dsack(skb
, sk
, next_dup
,
1721 /* ...tail remains todo... */
1722 if (tcp_highest_sack_seq(tp
) == cache
->end_seq
) {
1723 /* ...but better entrypoint exists! */
1724 skb
= tcp_highest_sack(sk
);
1727 state
.fack_count
= tp
->fackets_out
;
1732 skb
= tcp_sacktag_skip(skb
, sk
, &state
, cache
->end_seq
);
1733 /* Check overlap against next cached too (past this one already) */
1738 if (!before(start_seq
, tcp_highest_sack_seq(tp
))) {
1739 skb
= tcp_highest_sack(sk
);
1742 state
.fack_count
= tp
->fackets_out
;
1744 skb
= tcp_sacktag_skip(skb
, sk
, &state
, start_seq
);
1747 skb
= tcp_sacktag_walk(skb
, sk
, next_dup
, &state
,
1748 start_seq
, end_seq
, dup_sack
);
1754 /* Clear the head of the cache sack blocks so we can skip it next time */
1755 for (i
= 0; i
< ARRAY_SIZE(tp
->recv_sack_cache
) - used_sacks
; i
++) {
1756 tp
->recv_sack_cache
[i
].start_seq
= 0;
1757 tp
->recv_sack_cache
[i
].end_seq
= 0;
1759 for (j
= 0; j
< used_sacks
; j
++)
1760 tp
->recv_sack_cache
[i
++] = sp
[j
];
1762 tcp_mark_lost_retrans(sk
);
1764 tcp_verify_left_out(tp
);
1766 if ((state
.reord
< tp
->fackets_out
) &&
1767 ((inet_csk(sk
)->icsk_ca_state
!= TCP_CA_Loss
) || tp
->undo_marker
))
1768 tcp_update_reordering(sk
, tp
->fackets_out
- state
.reord
, 0);
1772 #if FASTRETRANS_DEBUG > 0
1773 WARN_ON((int)tp
->sacked_out
< 0);
1774 WARN_ON((int)tp
->lost_out
< 0);
1775 WARN_ON((int)tp
->retrans_out
< 0);
1776 WARN_ON((int)tcp_packets_in_flight(tp
) < 0);
1778 *sack_rtt
= state
.rtt
;
1782 /* Limits sacked_out so that sum with lost_out isn't ever larger than
1783 * packets_out. Returns false if sacked_out adjustement wasn't necessary.
1785 static bool tcp_limit_reno_sacked(struct tcp_sock
*tp
)
1789 holes
= max(tp
->lost_out
, 1U);
1790 holes
= min(holes
, tp
->packets_out
);
1792 if ((tp
->sacked_out
+ holes
) > tp
->packets_out
) {
1793 tp
->sacked_out
= tp
->packets_out
- holes
;
1799 /* If we receive more dupacks than we expected counting segments
1800 * in assumption of absent reordering, interpret this as reordering.
1801 * The only another reason could be bug in receiver TCP.
1803 static void tcp_check_reno_reordering(struct sock
*sk
, const int addend
)
1805 struct tcp_sock
*tp
= tcp_sk(sk
);
1806 if (tcp_limit_reno_sacked(tp
))
1807 tcp_update_reordering(sk
, tp
->packets_out
+ addend
, 0);
1810 /* Emulate SACKs for SACKless connection: account for a new dupack. */
1812 static void tcp_add_reno_sack(struct sock
*sk
)
1814 struct tcp_sock
*tp
= tcp_sk(sk
);
1816 tcp_check_reno_reordering(sk
, 0);
1817 tcp_verify_left_out(tp
);
1820 /* Account for ACK, ACKing some data in Reno Recovery phase. */
1822 static void tcp_remove_reno_sacks(struct sock
*sk
, int acked
)
1824 struct tcp_sock
*tp
= tcp_sk(sk
);
1827 /* One ACK acked hole. The rest eat duplicate ACKs. */
1828 if (acked
- 1 >= tp
->sacked_out
)
1831 tp
->sacked_out
-= acked
- 1;
1833 tcp_check_reno_reordering(sk
, acked
);
1834 tcp_verify_left_out(tp
);
1837 static inline void tcp_reset_reno_sack(struct tcp_sock
*tp
)
1842 static void tcp_clear_retrans_partial(struct tcp_sock
*tp
)
1844 tp
->retrans_out
= 0;
1847 tp
->undo_marker
= 0;
1848 tp
->undo_retrans
= -1;
1851 void tcp_clear_retrans(struct tcp_sock
*tp
)
1853 tcp_clear_retrans_partial(tp
);
1855 tp
->fackets_out
= 0;
1859 /* Enter Loss state. If "how" is not zero, forget all SACK information
1860 * and reset tags completely, otherwise preserve SACKs. If receiver
1861 * dropped its ofo queue, we will know this due to reneging detection.
1863 void tcp_enter_loss(struct sock
*sk
, int how
)
1865 const struct inet_connection_sock
*icsk
= inet_csk(sk
);
1866 struct tcp_sock
*tp
= tcp_sk(sk
);
1867 struct sk_buff
*skb
;
1868 bool new_recovery
= false;
1870 /* Reduce ssthresh if it has not yet been made inside this window. */
1871 if (icsk
->icsk_ca_state
<= TCP_CA_Disorder
||
1872 !after(tp
->high_seq
, tp
->snd_una
) ||
1873 (icsk
->icsk_ca_state
== TCP_CA_Loss
&& !icsk
->icsk_retransmits
)) {
1874 new_recovery
= true;
1875 tp
->prior_ssthresh
= tcp_current_ssthresh(sk
);
1876 tp
->snd_ssthresh
= icsk
->icsk_ca_ops
->ssthresh(sk
);
1877 tcp_ca_event(sk
, CA_EVENT_LOSS
);
1880 tp
->snd_cwnd_cnt
= 0;
1881 tp
->snd_cwnd_stamp
= tcp_time_stamp
;
1883 tcp_clear_retrans_partial(tp
);
1885 if (tcp_is_reno(tp
))
1886 tcp_reset_reno_sack(tp
);
1888 tp
->undo_marker
= tp
->snd_una
;
1891 tp
->fackets_out
= 0;
1893 tcp_clear_all_retrans_hints(tp
);
1895 tcp_for_write_queue(skb
, sk
) {
1896 if (skb
== tcp_send_head(sk
))
1899 if (TCP_SKB_CB(skb
)->sacked
& TCPCB_RETRANS
)
1900 tp
->undo_marker
= 0;
1901 TCP_SKB_CB(skb
)->sacked
&= (~TCPCB_TAGBITS
)|TCPCB_SACKED_ACKED
;
1902 if (!(TCP_SKB_CB(skb
)->sacked
&TCPCB_SACKED_ACKED
) || how
) {
1903 TCP_SKB_CB(skb
)->sacked
&= ~TCPCB_SACKED_ACKED
;
1904 TCP_SKB_CB(skb
)->sacked
|= TCPCB_LOST
;
1905 tp
->lost_out
+= tcp_skb_pcount(skb
);
1906 tp
->retransmit_high
= TCP_SKB_CB(skb
)->end_seq
;
1909 tcp_verify_left_out(tp
);
1911 /* Timeout in disordered state after receiving substantial DUPACKs
1912 * suggests that the degree of reordering is over-estimated.
1914 if (icsk
->icsk_ca_state
<= TCP_CA_Disorder
&&
1915 tp
->sacked_out
>= sysctl_tcp_reordering
)
1916 tp
->reordering
= min_t(unsigned int, tp
->reordering
,
1917 sysctl_tcp_reordering
);
1918 tcp_set_ca_state(sk
, TCP_CA_Loss
);
1919 tp
->high_seq
= tp
->snd_nxt
;
1920 TCP_ECN_queue_cwr(tp
);
1922 /* F-RTO RFC5682 sec 3.1 step 1: retransmit SND.UNA if no previous
1923 * loss recovery is underway except recurring timeout(s) on
1924 * the same SND.UNA (sec 3.2). Disable F-RTO on path MTU probing
1926 tp
->frto
= sysctl_tcp_frto
&&
1927 (new_recovery
|| icsk
->icsk_retransmits
) &&
1928 !inet_csk(sk
)->icsk_mtup
.probe_size
;
1931 /* If ACK arrived pointing to a remembered SACK, it means that our
1932 * remembered SACKs do not reflect real state of receiver i.e.
1933 * receiver _host_ is heavily congested (or buggy).
1935 * Do processing similar to RTO timeout.
1937 static bool tcp_check_sack_reneging(struct sock
*sk
, int flag
)
1939 if (flag
& FLAG_SACK_RENEGING
) {
1940 struct inet_connection_sock
*icsk
= inet_csk(sk
);
1941 NET_INC_STATS_BH(sock_net(sk
), LINUX_MIB_TCPSACKRENEGING
);
1943 tcp_enter_loss(sk
, 1);
1944 icsk
->icsk_retransmits
++;
1945 tcp_retransmit_skb(sk
, tcp_write_queue_head(sk
));
1946 inet_csk_reset_xmit_timer(sk
, ICSK_TIME_RETRANS
,
1947 icsk
->icsk_rto
, TCP_RTO_MAX
);
1953 static inline int tcp_fackets_out(const struct tcp_sock
*tp
)
1955 return tcp_is_reno(tp
) ? tp
->sacked_out
+ 1 : tp
->fackets_out
;
1958 /* Heurestics to calculate number of duplicate ACKs. There's no dupACKs
1959 * counter when SACK is enabled (without SACK, sacked_out is used for
1962 * Instead, with FACK TCP uses fackets_out that includes both SACKed
1963 * segments up to the highest received SACK block so far and holes in
1966 * With reordering, holes may still be in flight, so RFC3517 recovery
1967 * uses pure sacked_out (total number of SACKed segments) even though
1968 * it violates the RFC that uses duplicate ACKs, often these are equal
1969 * but when e.g. out-of-window ACKs or packet duplication occurs,
1970 * they differ. Since neither occurs due to loss, TCP should really
1973 static inline int tcp_dupack_heuristics(const struct tcp_sock
*tp
)
1975 return tcp_is_fack(tp
) ? tp
->fackets_out
: tp
->sacked_out
+ 1;
1978 static bool tcp_pause_early_retransmit(struct sock
*sk
, int flag
)
1980 struct tcp_sock
*tp
= tcp_sk(sk
);
1981 unsigned long delay
;
1983 /* Delay early retransmit and entering fast recovery for
1984 * max(RTT/4, 2msec) unless ack has ECE mark, no RTT samples
1985 * available, or RTO is scheduled to fire first.
1987 if (sysctl_tcp_early_retrans
< 2 || sysctl_tcp_early_retrans
> 3 ||
1988 (flag
& FLAG_ECE
) || !tp
->srtt
)
1991 delay
= max_t(unsigned long, (tp
->srtt
>> 5), msecs_to_jiffies(2));
1992 if (!time_after(inet_csk(sk
)->icsk_timeout
, (jiffies
+ delay
)))
1995 inet_csk_reset_xmit_timer(sk
, ICSK_TIME_EARLY_RETRANS
, delay
,
2000 /* Linux NewReno/SACK/FACK/ECN state machine.
2001 * --------------------------------------
2003 * "Open" Normal state, no dubious events, fast path.
2004 * "Disorder" In all the respects it is "Open",
2005 * but requires a bit more attention. It is entered when
2006 * we see some SACKs or dupacks. It is split of "Open"
2007 * mainly to move some processing from fast path to slow one.
2008 * "CWR" CWND was reduced due to some Congestion Notification event.
2009 * It can be ECN, ICMP source quench, local device congestion.
2010 * "Recovery" CWND was reduced, we are fast-retransmitting.
2011 * "Loss" CWND was reduced due to RTO timeout or SACK reneging.
2013 * tcp_fastretrans_alert() is entered:
2014 * - each incoming ACK, if state is not "Open"
2015 * - when arrived ACK is unusual, namely:
2020 * Counting packets in flight is pretty simple.
2022 * in_flight = packets_out - left_out + retrans_out
2024 * packets_out is SND.NXT-SND.UNA counted in packets.
2026 * retrans_out is number of retransmitted segments.
2028 * left_out is number of segments left network, but not ACKed yet.
2030 * left_out = sacked_out + lost_out
2032 * sacked_out: Packets, which arrived to receiver out of order
2033 * and hence not ACKed. With SACKs this number is simply
2034 * amount of SACKed data. Even without SACKs
2035 * it is easy to give pretty reliable estimate of this number,
2036 * counting duplicate ACKs.
2038 * lost_out: Packets lost by network. TCP has no explicit
2039 * "loss notification" feedback from network (for now).
2040 * It means that this number can be only _guessed_.
2041 * Actually, it is the heuristics to predict lossage that
2042 * distinguishes different algorithms.
2044 * F.e. after RTO, when all the queue is considered as lost,
2045 * lost_out = packets_out and in_flight = retrans_out.
2047 * Essentially, we have now two algorithms counting
2050 * FACK: It is the simplest heuristics. As soon as we decided
2051 * that something is lost, we decide that _all_ not SACKed
2052 * packets until the most forward SACK are lost. I.e.
2053 * lost_out = fackets_out - sacked_out and left_out = fackets_out.
2054 * It is absolutely correct estimate, if network does not reorder
2055 * packets. And it loses any connection to reality when reordering
2056 * takes place. We use FACK by default until reordering
2057 * is suspected on the path to this destination.
2059 * NewReno: when Recovery is entered, we assume that one segment
2060 * is lost (classic Reno). While we are in Recovery and
2061 * a partial ACK arrives, we assume that one more packet
2062 * is lost (NewReno). This heuristics are the same in NewReno
2065 * Imagine, that's all! Forget about all this shamanism about CWND inflation
2066 * deflation etc. CWND is real congestion window, never inflated, changes
2067 * only according to classic VJ rules.
2069 * Really tricky (and requiring careful tuning) part of algorithm
2070 * is hidden in functions tcp_time_to_recover() and tcp_xmit_retransmit_queue().
2071 * The first determines the moment _when_ we should reduce CWND and,
2072 * hence, slow down forward transmission. In fact, it determines the moment
2073 * when we decide that hole is caused by loss, rather than by a reorder.
2075 * tcp_xmit_retransmit_queue() decides, _what_ we should retransmit to fill
2076 * holes, caused by lost packets.
2078 * And the most logically complicated part of algorithm is undo
2079 * heuristics. We detect false retransmits due to both too early
2080 * fast retransmit (reordering) and underestimated RTO, analyzing
2081 * timestamps and D-SACKs. When we detect that some segments were
2082 * retransmitted by mistake and CWND reduction was wrong, we undo
2083 * window reduction and abort recovery phase. This logic is hidden
2084 * inside several functions named tcp_try_undo_<something>.
2087 /* This function decides, when we should leave Disordered state
2088 * and enter Recovery phase, reducing congestion window.
2090 * Main question: may we further continue forward transmission
2091 * with the same cwnd?
2093 static bool tcp_time_to_recover(struct sock
*sk
, int flag
)
2095 struct tcp_sock
*tp
= tcp_sk(sk
);
2098 /* Trick#1: The loss is proven. */
2102 /* Not-A-Trick#2 : Classic rule... */
2103 if (tcp_dupack_heuristics(tp
) > tp
->reordering
)
2106 /* Trick#4: It is still not OK... But will it be useful to delay
2109 packets_out
= tp
->packets_out
;
2110 if (packets_out
<= tp
->reordering
&&
2111 tp
->sacked_out
>= max_t(__u32
, packets_out
/2, sysctl_tcp_reordering
) &&
2112 !tcp_may_send_now(sk
)) {
2113 /* We have nothing to send. This connection is limited
2114 * either by receiver window or by application.
2119 /* If a thin stream is detected, retransmit after first
2120 * received dupack. Employ only if SACK is supported in order
2121 * to avoid possible corner-case series of spurious retransmissions
2122 * Use only if there are no unsent data.
2124 if ((tp
->thin_dupack
|| sysctl_tcp_thin_dupack
) &&
2125 tcp_stream_is_thin(tp
) && tcp_dupack_heuristics(tp
) > 1 &&
2126 tcp_is_sack(tp
) && !tcp_send_head(sk
))
2129 /* Trick#6: TCP early retransmit, per RFC5827. To avoid spurious
2130 * retransmissions due to small network reorderings, we implement
2131 * Mitigation A.3 in the RFC and delay the retransmission for a short
2132 * interval if appropriate.
2134 if (tp
->do_early_retrans
&& !tp
->retrans_out
&& tp
->sacked_out
&&
2135 (tp
->packets_out
>= (tp
->sacked_out
+ 1) && tp
->packets_out
< 4) &&
2136 !tcp_may_send_now(sk
))
2137 return !tcp_pause_early_retransmit(sk
, flag
);
2142 /* Detect loss in event "A" above by marking head of queue up as lost.
2143 * For FACK or non-SACK(Reno) senders, the first "packets" number of segments
2144 * are considered lost. For RFC3517 SACK, a segment is considered lost if it
2145 * has at least tp->reordering SACKed seqments above it; "packets" refers to
2146 * the maximum SACKed segments to pass before reaching this limit.
2148 static void tcp_mark_head_lost(struct sock
*sk
, int packets
, int mark_head
)
2150 struct tcp_sock
*tp
= tcp_sk(sk
);
2151 struct sk_buff
*skb
;
2155 /* Use SACK to deduce losses of new sequences sent during recovery */
2156 const u32 loss_high
= tcp_is_sack(tp
) ? tp
->snd_nxt
: tp
->high_seq
;
2158 WARN_ON(packets
> tp
->packets_out
);
2159 if (tp
->lost_skb_hint
) {
2160 skb
= tp
->lost_skb_hint
;
2161 cnt
= tp
->lost_cnt_hint
;
2162 /* Head already handled? */
2163 if (mark_head
&& skb
!= tcp_write_queue_head(sk
))
2166 skb
= tcp_write_queue_head(sk
);
2170 tcp_for_write_queue_from(skb
, sk
) {
2171 if (skb
== tcp_send_head(sk
))
2173 /* TODO: do this better */
2174 /* this is not the most efficient way to do this... */
2175 tp
->lost_skb_hint
= skb
;
2176 tp
->lost_cnt_hint
= cnt
;
2178 if (after(TCP_SKB_CB(skb
)->end_seq
, loss_high
))
2182 if (tcp_is_fack(tp
) || tcp_is_reno(tp
) ||
2183 (TCP_SKB_CB(skb
)->sacked
& TCPCB_SACKED_ACKED
))
2184 cnt
+= tcp_skb_pcount(skb
);
2186 if (cnt
> packets
) {
2187 if ((tcp_is_sack(tp
) && !tcp_is_fack(tp
)) ||
2188 (TCP_SKB_CB(skb
)->sacked
& TCPCB_SACKED_ACKED
) ||
2189 (oldcnt
>= packets
))
2192 mss
= skb_shinfo(skb
)->gso_size
;
2193 err
= tcp_fragment(sk
, skb
, (packets
- oldcnt
) * mss
, mss
);
2199 tcp_skb_mark_lost(tp
, skb
);
2204 tcp_verify_left_out(tp
);
2207 /* Account newly detected lost packet(s) */
2209 static void tcp_update_scoreboard(struct sock
*sk
, int fast_rexmit
)
2211 struct tcp_sock
*tp
= tcp_sk(sk
);
2213 if (tcp_is_reno(tp
)) {
2214 tcp_mark_head_lost(sk
, 1, 1);
2215 } else if (tcp_is_fack(tp
)) {
2216 int lost
= tp
->fackets_out
- tp
->reordering
;
2219 tcp_mark_head_lost(sk
, lost
, 0);
2221 int sacked_upto
= tp
->sacked_out
- tp
->reordering
;
2222 if (sacked_upto
>= 0)
2223 tcp_mark_head_lost(sk
, sacked_upto
, 0);
2224 else if (fast_rexmit
)
2225 tcp_mark_head_lost(sk
, 1, 1);
2229 /* CWND moderation, preventing bursts due to too big ACKs
2230 * in dubious situations.
2232 static inline void tcp_moderate_cwnd(struct tcp_sock
*tp
)
2234 tp
->snd_cwnd
= min(tp
->snd_cwnd
,
2235 tcp_packets_in_flight(tp
) + tcp_max_burst(tp
));
2236 tp
->snd_cwnd_stamp
= tcp_time_stamp
;
2239 /* Nothing was retransmitted or returned timestamp is less
2240 * than timestamp of the first retransmission.
2242 static inline bool tcp_packet_delayed(const struct tcp_sock
*tp
)
2244 return !tp
->retrans_stamp
||
2245 (tp
->rx_opt
.saw_tstamp
&& tp
->rx_opt
.rcv_tsecr
&&
2246 before(tp
->rx_opt
.rcv_tsecr
, tp
->retrans_stamp
));
2249 /* Undo procedures. */
2251 #if FASTRETRANS_DEBUG > 1
2252 static void DBGUNDO(struct sock
*sk
, const char *msg
)
2254 struct tcp_sock
*tp
= tcp_sk(sk
);
2255 struct inet_sock
*inet
= inet_sk(sk
);
2257 if (sk
->sk_family
== AF_INET
) {
2258 pr_debug("Undo %s %pI4/%u c%u l%u ss%u/%u p%u\n",
2260 &inet
->inet_daddr
, ntohs(inet
->inet_dport
),
2261 tp
->snd_cwnd
, tcp_left_out(tp
),
2262 tp
->snd_ssthresh
, tp
->prior_ssthresh
,
2265 #if IS_ENABLED(CONFIG_IPV6)
2266 else if (sk
->sk_family
== AF_INET6
) {
2267 struct ipv6_pinfo
*np
= inet6_sk(sk
);
2268 pr_debug("Undo %s %pI6/%u c%u l%u ss%u/%u p%u\n",
2270 &np
->daddr
, ntohs(inet
->inet_dport
),
2271 tp
->snd_cwnd
, tcp_left_out(tp
),
2272 tp
->snd_ssthresh
, tp
->prior_ssthresh
,
2278 #define DBGUNDO(x...) do { } while (0)
2281 static void tcp_undo_cwnd_reduction(struct sock
*sk
, bool unmark_loss
)
2283 struct tcp_sock
*tp
= tcp_sk(sk
);
2286 struct sk_buff
*skb
;
2288 tcp_for_write_queue(skb
, sk
) {
2289 if (skb
== tcp_send_head(sk
))
2291 TCP_SKB_CB(skb
)->sacked
&= ~TCPCB_LOST
;
2294 tcp_clear_all_retrans_hints(tp
);
2297 if (tp
->prior_ssthresh
) {
2298 const struct inet_connection_sock
*icsk
= inet_csk(sk
);
2300 if (icsk
->icsk_ca_ops
->undo_cwnd
)
2301 tp
->snd_cwnd
= icsk
->icsk_ca_ops
->undo_cwnd(sk
);
2303 tp
->snd_cwnd
= max(tp
->snd_cwnd
, tp
->snd_ssthresh
<< 1);
2305 if (tp
->prior_ssthresh
> tp
->snd_ssthresh
) {
2306 tp
->snd_ssthresh
= tp
->prior_ssthresh
;
2307 TCP_ECN_withdraw_cwr(tp
);
2310 tp
->snd_cwnd
= max(tp
->snd_cwnd
, tp
->snd_ssthresh
);
2312 tp
->snd_cwnd_stamp
= tcp_time_stamp
;
2313 tp
->undo_marker
= 0;
2316 static inline bool tcp_may_undo(const struct tcp_sock
*tp
)
2318 return tp
->undo_marker
&& (!tp
->undo_retrans
|| tcp_packet_delayed(tp
));
2321 /* People celebrate: "We love our President!" */
2322 static bool tcp_try_undo_recovery(struct sock
*sk
)
2324 struct tcp_sock
*tp
= tcp_sk(sk
);
2326 if (tcp_may_undo(tp
)) {
2329 /* Happy end! We did not retransmit anything
2330 * or our original transmission succeeded.
2332 DBGUNDO(sk
, inet_csk(sk
)->icsk_ca_state
== TCP_CA_Loss
? "loss" : "retrans");
2333 tcp_undo_cwnd_reduction(sk
, false);
2334 if (inet_csk(sk
)->icsk_ca_state
== TCP_CA_Loss
)
2335 mib_idx
= LINUX_MIB_TCPLOSSUNDO
;
2337 mib_idx
= LINUX_MIB_TCPFULLUNDO
;
2339 NET_INC_STATS_BH(sock_net(sk
), mib_idx
);
2341 if (tp
->snd_una
== tp
->high_seq
&& tcp_is_reno(tp
)) {
2342 /* Hold old state until something *above* high_seq
2343 * is ACKed. For Reno it is MUST to prevent false
2344 * fast retransmits (RFC2582). SACK TCP is safe. */
2345 tcp_moderate_cwnd(tp
);
2348 tcp_set_ca_state(sk
, TCP_CA_Open
);
2352 /* Try to undo cwnd reduction, because D-SACKs acked all retransmitted data */
2353 static bool tcp_try_undo_dsack(struct sock
*sk
)
2355 struct tcp_sock
*tp
= tcp_sk(sk
);
2357 if (tp
->undo_marker
&& !tp
->undo_retrans
) {
2358 DBGUNDO(sk
, "D-SACK");
2359 tcp_undo_cwnd_reduction(sk
, false);
2360 NET_INC_STATS_BH(sock_net(sk
), LINUX_MIB_TCPDSACKUNDO
);
2366 /* We can clear retrans_stamp when there are no retransmissions in the
2367 * window. It would seem that it is trivially available for us in
2368 * tp->retrans_out, however, that kind of assumptions doesn't consider
2369 * what will happen if errors occur when sending retransmission for the
2370 * second time. ...It could the that such segment has only
2371 * TCPCB_EVER_RETRANS set at the present time. It seems that checking
2372 * the head skb is enough except for some reneging corner cases that
2373 * are not worth the effort.
2375 * Main reason for all this complexity is the fact that connection dying
2376 * time now depends on the validity of the retrans_stamp, in particular,
2377 * that successive retransmissions of a segment must not advance
2378 * retrans_stamp under any conditions.
2380 static bool tcp_any_retrans_done(const struct sock
*sk
)
2382 const struct tcp_sock
*tp
= tcp_sk(sk
);
2383 struct sk_buff
*skb
;
2385 if (tp
->retrans_out
)
2388 skb
= tcp_write_queue_head(sk
);
2389 if (unlikely(skb
&& TCP_SKB_CB(skb
)->sacked
& TCPCB_EVER_RETRANS
))
2395 /* Undo during loss recovery after partial ACK or using F-RTO. */
2396 static bool tcp_try_undo_loss(struct sock
*sk
, bool frto_undo
)
2398 struct tcp_sock
*tp
= tcp_sk(sk
);
2400 if (frto_undo
|| tcp_may_undo(tp
)) {
2401 tcp_undo_cwnd_reduction(sk
, true);
2403 DBGUNDO(sk
, "partial loss");
2404 NET_INC_STATS_BH(sock_net(sk
), LINUX_MIB_TCPLOSSUNDO
);
2406 NET_INC_STATS_BH(sock_net(sk
),
2407 LINUX_MIB_TCPSPURIOUSRTOS
);
2408 inet_csk(sk
)->icsk_retransmits
= 0;
2409 if (frto_undo
|| tcp_is_sack(tp
))
2410 tcp_set_ca_state(sk
, TCP_CA_Open
);
2416 /* The cwnd reduction in CWR and Recovery use the PRR algorithm
2417 * https://datatracker.ietf.org/doc/draft-ietf-tcpm-proportional-rate-reduction/
2418 * It computes the number of packets to send (sndcnt) based on packets newly
2420 * 1) If the packets in flight is larger than ssthresh, PRR spreads the
2421 * cwnd reductions across a full RTT.
2422 * 2) If packets in flight is lower than ssthresh (such as due to excess
2423 * losses and/or application stalls), do not perform any further cwnd
2424 * reductions, but instead slow start up to ssthresh.
2426 static void tcp_init_cwnd_reduction(struct sock
*sk
, const bool set_ssthresh
)
2428 struct tcp_sock
*tp
= tcp_sk(sk
);
2430 tp
->high_seq
= tp
->snd_nxt
;
2431 tp
->tlp_high_seq
= 0;
2432 tp
->snd_cwnd_cnt
= 0;
2433 tp
->prior_cwnd
= tp
->snd_cwnd
;
2434 tp
->prr_delivered
= 0;
2437 tp
->snd_ssthresh
= inet_csk(sk
)->icsk_ca_ops
->ssthresh(sk
);
2438 TCP_ECN_queue_cwr(tp
);
2441 static void tcp_cwnd_reduction(struct sock
*sk
, const int prior_unsacked
,
2444 struct tcp_sock
*tp
= tcp_sk(sk
);
2446 int delta
= tp
->snd_ssthresh
- tcp_packets_in_flight(tp
);
2447 int newly_acked_sacked
= prior_unsacked
-
2448 (tp
->packets_out
- tp
->sacked_out
);
2450 tp
->prr_delivered
+= newly_acked_sacked
;
2451 if (tcp_packets_in_flight(tp
) > tp
->snd_ssthresh
) {
2452 u64 dividend
= (u64
)tp
->snd_ssthresh
* tp
->prr_delivered
+
2454 sndcnt
= div_u64(dividend
, tp
->prior_cwnd
) - tp
->prr_out
;
2456 sndcnt
= min_t(int, delta
,
2457 max_t(int, tp
->prr_delivered
- tp
->prr_out
,
2458 newly_acked_sacked
) + 1);
2461 sndcnt
= max(sndcnt
, (fast_rexmit
? 1 : 0));
2462 tp
->snd_cwnd
= tcp_packets_in_flight(tp
) + sndcnt
;
2465 static inline void tcp_end_cwnd_reduction(struct sock
*sk
)
2467 struct tcp_sock
*tp
= tcp_sk(sk
);
2469 /* Reset cwnd to ssthresh in CWR or Recovery (unless it's undone) */
2470 if (inet_csk(sk
)->icsk_ca_state
== TCP_CA_CWR
||
2471 (tp
->undo_marker
&& tp
->snd_ssthresh
< TCP_INFINITE_SSTHRESH
)) {
2472 tp
->snd_cwnd
= tp
->snd_ssthresh
;
2473 tp
->snd_cwnd_stamp
= tcp_time_stamp
;
2475 tcp_ca_event(sk
, CA_EVENT_COMPLETE_CWR
);
2478 /* Enter CWR state. Disable cwnd undo since congestion is proven with ECN */
2479 void tcp_enter_cwr(struct sock
*sk
, const int set_ssthresh
)
2481 struct tcp_sock
*tp
= tcp_sk(sk
);
2483 tp
->prior_ssthresh
= 0;
2484 if (inet_csk(sk
)->icsk_ca_state
< TCP_CA_CWR
) {
2485 tp
->undo_marker
= 0;
2486 tcp_init_cwnd_reduction(sk
, set_ssthresh
);
2487 tcp_set_ca_state(sk
, TCP_CA_CWR
);
2491 static void tcp_try_keep_open(struct sock
*sk
)
2493 struct tcp_sock
*tp
= tcp_sk(sk
);
2494 int state
= TCP_CA_Open
;
2496 if (tcp_left_out(tp
) || tcp_any_retrans_done(sk
))
2497 state
= TCP_CA_Disorder
;
2499 if (inet_csk(sk
)->icsk_ca_state
!= state
) {
2500 tcp_set_ca_state(sk
, state
);
2501 tp
->high_seq
= tp
->snd_nxt
;
2505 static void tcp_try_to_open(struct sock
*sk
, int flag
, const int prior_unsacked
)
2507 struct tcp_sock
*tp
= tcp_sk(sk
);
2509 tcp_verify_left_out(tp
);
2511 if (!tcp_any_retrans_done(sk
))
2512 tp
->retrans_stamp
= 0;
2514 if (flag
& FLAG_ECE
)
2515 tcp_enter_cwr(sk
, 1);
2517 if (inet_csk(sk
)->icsk_ca_state
!= TCP_CA_CWR
) {
2518 tcp_try_keep_open(sk
);
2520 tcp_cwnd_reduction(sk
, prior_unsacked
, 0);
2524 static void tcp_mtup_probe_failed(struct sock
*sk
)
2526 struct inet_connection_sock
*icsk
= inet_csk(sk
);
2528 icsk
->icsk_mtup
.search_high
= icsk
->icsk_mtup
.probe_size
- 1;
2529 icsk
->icsk_mtup
.probe_size
= 0;
2532 static void tcp_mtup_probe_success(struct sock
*sk
)
2534 struct tcp_sock
*tp
= tcp_sk(sk
);
2535 struct inet_connection_sock
*icsk
= inet_csk(sk
);
2537 /* FIXME: breaks with very large cwnd */
2538 tp
->prior_ssthresh
= tcp_current_ssthresh(sk
);
2539 tp
->snd_cwnd
= tp
->snd_cwnd
*
2540 tcp_mss_to_mtu(sk
, tp
->mss_cache
) /
2541 icsk
->icsk_mtup
.probe_size
;
2542 tp
->snd_cwnd_cnt
= 0;
2543 tp
->snd_cwnd_stamp
= tcp_time_stamp
;
2544 tp
->snd_ssthresh
= tcp_current_ssthresh(sk
);
2546 icsk
->icsk_mtup
.search_low
= icsk
->icsk_mtup
.probe_size
;
2547 icsk
->icsk_mtup
.probe_size
= 0;
2548 tcp_sync_mss(sk
, icsk
->icsk_pmtu_cookie
);
2551 /* Do a simple retransmit without using the backoff mechanisms in
2552 * tcp_timer. This is used for path mtu discovery.
2553 * The socket is already locked here.
2555 void tcp_simple_retransmit(struct sock
*sk
)
2557 const struct inet_connection_sock
*icsk
= inet_csk(sk
);
2558 struct tcp_sock
*tp
= tcp_sk(sk
);
2559 struct sk_buff
*skb
;
2560 unsigned int mss
= tcp_current_mss(sk
);
2561 u32 prior_lost
= tp
->lost_out
;
2563 tcp_for_write_queue(skb
, sk
) {
2564 if (skb
== tcp_send_head(sk
))
2566 if (tcp_skb_seglen(skb
) > mss
&&
2567 !(TCP_SKB_CB(skb
)->sacked
& TCPCB_SACKED_ACKED
)) {
2568 if (TCP_SKB_CB(skb
)->sacked
& TCPCB_SACKED_RETRANS
) {
2569 TCP_SKB_CB(skb
)->sacked
&= ~TCPCB_SACKED_RETRANS
;
2570 tp
->retrans_out
-= tcp_skb_pcount(skb
);
2572 tcp_skb_mark_lost_uncond_verify(tp
, skb
);
2576 tcp_clear_retrans_hints_partial(tp
);
2578 if (prior_lost
== tp
->lost_out
)
2581 if (tcp_is_reno(tp
))
2582 tcp_limit_reno_sacked(tp
);
2584 tcp_verify_left_out(tp
);
2586 /* Don't muck with the congestion window here.
2587 * Reason is that we do not increase amount of _data_
2588 * in network, but units changed and effective
2589 * cwnd/ssthresh really reduced now.
2591 if (icsk
->icsk_ca_state
!= TCP_CA_Loss
) {
2592 tp
->high_seq
= tp
->snd_nxt
;
2593 tp
->snd_ssthresh
= tcp_current_ssthresh(sk
);
2594 tp
->prior_ssthresh
= 0;
2595 tp
->undo_marker
= 0;
2596 tcp_set_ca_state(sk
, TCP_CA_Loss
);
2598 tcp_xmit_retransmit_queue(sk
);
2600 EXPORT_SYMBOL(tcp_simple_retransmit
);
2602 static void tcp_enter_recovery(struct sock
*sk
, bool ece_ack
)
2604 struct tcp_sock
*tp
= tcp_sk(sk
);
2607 if (tcp_is_reno(tp
))
2608 mib_idx
= LINUX_MIB_TCPRENORECOVERY
;
2610 mib_idx
= LINUX_MIB_TCPSACKRECOVERY
;
2612 NET_INC_STATS_BH(sock_net(sk
), mib_idx
);
2614 tp
->prior_ssthresh
= 0;
2615 tp
->undo_marker
= tp
->snd_una
;
2616 tp
->undo_retrans
= tp
->retrans_out
? : -1;
2618 if (inet_csk(sk
)->icsk_ca_state
< TCP_CA_CWR
) {
2620 tp
->prior_ssthresh
= tcp_current_ssthresh(sk
);
2621 tcp_init_cwnd_reduction(sk
, true);
2623 tcp_set_ca_state(sk
, TCP_CA_Recovery
);
2626 /* Process an ACK in CA_Loss state. Move to CA_Open if lost data are
2627 * recovered or spurious. Otherwise retransmits more on partial ACKs.
2629 static void tcp_process_loss(struct sock
*sk
, int flag
, bool is_dupack
)
2631 struct tcp_sock
*tp
= tcp_sk(sk
);
2632 bool recovered
= !before(tp
->snd_una
, tp
->high_seq
);
2634 if (tp
->frto
) { /* F-RTO RFC5682 sec 3.1 (sack enhanced version). */
2635 /* Step 3.b. A timeout is spurious if not all data are
2636 * lost, i.e., never-retransmitted data are (s)acked.
2638 if (tcp_try_undo_loss(sk
, flag
& FLAG_ORIG_SACK_ACKED
))
2641 if (after(tp
->snd_nxt
, tp
->high_seq
) &&
2642 (flag
& FLAG_DATA_SACKED
|| is_dupack
)) {
2643 tp
->frto
= 0; /* Loss was real: 2nd part of step 3.a */
2644 } else if (flag
& FLAG_SND_UNA_ADVANCED
&& !recovered
) {
2645 tp
->high_seq
= tp
->snd_nxt
;
2646 __tcp_push_pending_frames(sk
, tcp_current_mss(sk
),
2648 if (after(tp
->snd_nxt
, tp
->high_seq
))
2649 return; /* Step 2.b */
2655 /* F-RTO RFC5682 sec 3.1 step 2.a and 1st part of step 3.a */
2656 tcp_try_undo_recovery(sk
);
2659 if (tcp_is_reno(tp
)) {
2660 /* A Reno DUPACK means new data in F-RTO step 2.b above are
2661 * delivered. Lower inflight to clock out (re)tranmissions.
2663 if (after(tp
->snd_nxt
, tp
->high_seq
) && is_dupack
)
2664 tcp_add_reno_sack(sk
);
2665 else if (flag
& FLAG_SND_UNA_ADVANCED
)
2666 tcp_reset_reno_sack(tp
);
2668 if (tcp_try_undo_loss(sk
, false))
2670 tcp_xmit_retransmit_queue(sk
);
2673 /* Undo during fast recovery after partial ACK. */
2674 static bool tcp_try_undo_partial(struct sock
*sk
, const int acked
,
2675 const int prior_unsacked
)
2677 struct tcp_sock
*tp
= tcp_sk(sk
);
2679 if (tp
->undo_marker
&& tcp_packet_delayed(tp
)) {
2680 /* Plain luck! Hole if filled with delayed
2681 * packet, rather than with a retransmit.
2683 tcp_update_reordering(sk
, tcp_fackets_out(tp
) + acked
, 1);
2685 /* We are getting evidence that the reordering degree is higher
2686 * than we realized. If there are no retransmits out then we
2687 * can undo. Otherwise we clock out new packets but do not
2688 * mark more packets lost or retransmit more.
2690 if (tp
->retrans_out
) {
2691 tcp_cwnd_reduction(sk
, prior_unsacked
, 0);
2695 if (!tcp_any_retrans_done(sk
))
2696 tp
->retrans_stamp
= 0;
2698 DBGUNDO(sk
, "partial recovery");
2699 tcp_undo_cwnd_reduction(sk
, true);
2700 NET_INC_STATS_BH(sock_net(sk
), LINUX_MIB_TCPPARTIALUNDO
);
2701 tcp_try_keep_open(sk
);
2707 /* Process an event, which can update packets-in-flight not trivially.
2708 * Main goal of this function is to calculate new estimate for left_out,
2709 * taking into account both packets sitting in receiver's buffer and
2710 * packets lost by network.
2712 * Besides that it does CWND reduction, when packet loss is detected
2713 * and changes state of machine.
2715 * It does _not_ decide what to send, it is made in function
2716 * tcp_xmit_retransmit_queue().
2718 static void tcp_fastretrans_alert(struct sock
*sk
, const int acked
,
2719 const int prior_unsacked
,
2720 bool is_dupack
, int flag
)
2722 struct inet_connection_sock
*icsk
= inet_csk(sk
);
2723 struct tcp_sock
*tp
= tcp_sk(sk
);
2724 bool do_lost
= is_dupack
|| ((flag
& FLAG_DATA_SACKED
) &&
2725 (tcp_fackets_out(tp
) > tp
->reordering
));
2726 int fast_rexmit
= 0;
2728 if (WARN_ON(!tp
->packets_out
&& tp
->sacked_out
))
2730 if (WARN_ON(!tp
->sacked_out
&& tp
->fackets_out
))
2731 tp
->fackets_out
= 0;
2733 /* Now state machine starts.
2734 * A. ECE, hence prohibit cwnd undoing, the reduction is required. */
2735 if (flag
& FLAG_ECE
)
2736 tp
->prior_ssthresh
= 0;
2738 /* B. In all the states check for reneging SACKs. */
2739 if (tcp_check_sack_reneging(sk
, flag
))
2742 /* C. Check consistency of the current state. */
2743 tcp_verify_left_out(tp
);
2745 /* D. Check state exit conditions. State can be terminated
2746 * when high_seq is ACKed. */
2747 if (icsk
->icsk_ca_state
== TCP_CA_Open
) {
2748 WARN_ON(tp
->retrans_out
!= 0);
2749 tp
->retrans_stamp
= 0;
2750 } else if (!before(tp
->snd_una
, tp
->high_seq
)) {
2751 switch (icsk
->icsk_ca_state
) {
2753 /* CWR is to be held something *above* high_seq
2754 * is ACKed for CWR bit to reach receiver. */
2755 if (tp
->snd_una
!= tp
->high_seq
) {
2756 tcp_end_cwnd_reduction(sk
);
2757 tcp_set_ca_state(sk
, TCP_CA_Open
);
2761 case TCP_CA_Recovery
:
2762 if (tcp_is_reno(tp
))
2763 tcp_reset_reno_sack(tp
);
2764 if (tcp_try_undo_recovery(sk
))
2766 tcp_end_cwnd_reduction(sk
);
2771 /* E. Process state. */
2772 switch (icsk
->icsk_ca_state
) {
2773 case TCP_CA_Recovery
:
2774 if (!(flag
& FLAG_SND_UNA_ADVANCED
)) {
2775 if (tcp_is_reno(tp
) && is_dupack
)
2776 tcp_add_reno_sack(sk
);
2778 if (tcp_try_undo_partial(sk
, acked
, prior_unsacked
))
2780 /* Partial ACK arrived. Force fast retransmit. */
2781 do_lost
= tcp_is_reno(tp
) ||
2782 tcp_fackets_out(tp
) > tp
->reordering
;
2784 if (tcp_try_undo_dsack(sk
)) {
2785 tcp_try_keep_open(sk
);
2790 tcp_process_loss(sk
, flag
, is_dupack
);
2791 if (icsk
->icsk_ca_state
!= TCP_CA_Open
)
2793 /* Fall through to processing in Open state. */
2795 if (tcp_is_reno(tp
)) {
2796 if (flag
& FLAG_SND_UNA_ADVANCED
)
2797 tcp_reset_reno_sack(tp
);
2799 tcp_add_reno_sack(sk
);
2802 if (icsk
->icsk_ca_state
<= TCP_CA_Disorder
)
2803 tcp_try_undo_dsack(sk
);
2805 if (!tcp_time_to_recover(sk
, flag
)) {
2806 tcp_try_to_open(sk
, flag
, prior_unsacked
);
2810 /* MTU probe failure: don't reduce cwnd */
2811 if (icsk
->icsk_ca_state
< TCP_CA_CWR
&&
2812 icsk
->icsk_mtup
.probe_size
&&
2813 tp
->snd_una
== tp
->mtu_probe
.probe_seq_start
) {
2814 tcp_mtup_probe_failed(sk
);
2815 /* Restores the reduction we did in tcp_mtup_probe() */
2817 tcp_simple_retransmit(sk
);
2821 /* Otherwise enter Recovery state */
2822 tcp_enter_recovery(sk
, (flag
& FLAG_ECE
));
2827 tcp_update_scoreboard(sk
, fast_rexmit
);
2828 tcp_cwnd_reduction(sk
, prior_unsacked
, fast_rexmit
);
2829 tcp_xmit_retransmit_queue(sk
);
2832 static inline bool tcp_ack_update_rtt(struct sock
*sk
, const int flag
,
2833 s32 seq_rtt
, s32 sack_rtt
)
2835 const struct tcp_sock
*tp
= tcp_sk(sk
);
2837 /* Prefer RTT measured from ACK's timing to TS-ECR. This is because
2838 * broken middle-boxes or peers may corrupt TS-ECR fields. But
2839 * Karn's algorithm forbids taking RTT if some retransmitted data
2840 * is acked (RFC6298).
2842 if (flag
& FLAG_RETRANS_DATA_ACKED
)
2848 /* RTTM Rule: A TSecr value received in a segment is used to
2849 * update the averaged RTT measurement only if the segment
2850 * acknowledges some new data, i.e., only if it advances the
2851 * left edge of the send window.
2852 * See draft-ietf-tcplw-high-performance-00, section 3.3.
2854 if (seq_rtt
< 0 && tp
->rx_opt
.saw_tstamp
&& tp
->rx_opt
.rcv_tsecr
&&
2856 seq_rtt
= tcp_time_stamp
- tp
->rx_opt
.rcv_tsecr
;
2861 tcp_rtt_estimator(sk
, seq_rtt
);
2864 /* RFC6298: only reset backoff on valid RTT measurement. */
2865 inet_csk(sk
)->icsk_backoff
= 0;
2869 /* Compute time elapsed between (last) SYNACK and the ACK completing 3WHS. */
2870 static void tcp_synack_rtt_meas(struct sock
*sk
, const u32 synack_stamp
)
2872 struct tcp_sock
*tp
= tcp_sk(sk
);
2875 if (synack_stamp
&& !tp
->total_retrans
)
2876 seq_rtt
= tcp_time_stamp
- synack_stamp
;
2878 /* If the ACK acks both the SYNACK and the (Fast Open'd) data packets
2879 * sent in SYN_RECV, SYNACK RTT is the smooth RTT computed in tcp_ack()
2882 tcp_ack_update_rtt(sk
, FLAG_SYN_ACKED
, seq_rtt
, -1);
2885 static void tcp_cong_avoid(struct sock
*sk
, u32 ack
, u32 in_flight
)
2887 const struct inet_connection_sock
*icsk
= inet_csk(sk
);
2888 icsk
->icsk_ca_ops
->cong_avoid(sk
, ack
, in_flight
);
2889 tcp_sk(sk
)->snd_cwnd_stamp
= tcp_time_stamp
;
2892 /* Restart timer after forward progress on connection.
2893 * RFC2988 recommends to restart timer to now+rto.
2895 void tcp_rearm_rto(struct sock
*sk
)
2897 const struct inet_connection_sock
*icsk
= inet_csk(sk
);
2898 struct tcp_sock
*tp
= tcp_sk(sk
);
2900 /* If the retrans timer is currently being used by Fast Open
2901 * for SYN-ACK retrans purpose, stay put.
2903 if (tp
->fastopen_rsk
)
2906 if (!tp
->packets_out
) {
2907 inet_csk_clear_xmit_timer(sk
, ICSK_TIME_RETRANS
);
2909 u32 rto
= inet_csk(sk
)->icsk_rto
;
2910 /* Offset the time elapsed after installing regular RTO */
2911 if (icsk
->icsk_pending
== ICSK_TIME_EARLY_RETRANS
||
2912 icsk
->icsk_pending
== ICSK_TIME_LOSS_PROBE
) {
2913 struct sk_buff
*skb
= tcp_write_queue_head(sk
);
2914 const u32 rto_time_stamp
= TCP_SKB_CB(skb
)->when
+ rto
;
2915 s32 delta
= (s32
)(rto_time_stamp
- tcp_time_stamp
);
2916 /* delta may not be positive if the socket is locked
2917 * when the retrans timer fires and is rescheduled.
2922 inet_csk_reset_xmit_timer(sk
, ICSK_TIME_RETRANS
, rto
,
2927 /* This function is called when the delayed ER timer fires. TCP enters
2928 * fast recovery and performs fast-retransmit.
2930 void tcp_resume_early_retransmit(struct sock
*sk
)
2932 struct tcp_sock
*tp
= tcp_sk(sk
);
2936 /* Stop if ER is disabled after the delayed ER timer is scheduled */
2937 if (!tp
->do_early_retrans
)
2940 tcp_enter_recovery(sk
, false);
2941 tcp_update_scoreboard(sk
, 1);
2942 tcp_xmit_retransmit_queue(sk
);
2945 /* If we get here, the whole TSO packet has not been acked. */
2946 static u32
tcp_tso_acked(struct sock
*sk
, struct sk_buff
*skb
)
2948 struct tcp_sock
*tp
= tcp_sk(sk
);
2951 BUG_ON(!after(TCP_SKB_CB(skb
)->end_seq
, tp
->snd_una
));
2953 packets_acked
= tcp_skb_pcount(skb
);
2954 if (tcp_trim_head(sk
, skb
, tp
->snd_una
- TCP_SKB_CB(skb
)->seq
))
2956 packets_acked
-= tcp_skb_pcount(skb
);
2958 if (packets_acked
) {
2959 BUG_ON(tcp_skb_pcount(skb
) == 0);
2960 BUG_ON(!before(TCP_SKB_CB(skb
)->seq
, TCP_SKB_CB(skb
)->end_seq
));
2963 return packets_acked
;
2966 /* Remove acknowledged frames from the retransmission queue. If our packet
2967 * is before the ack sequence we can discard it as it's confirmed to have
2968 * arrived at the other end.
2970 static int tcp_clean_rtx_queue(struct sock
*sk
, int prior_fackets
,
2971 u32 prior_snd_una
, s32 sack_rtt
)
2973 struct tcp_sock
*tp
= tcp_sk(sk
);
2974 const struct inet_connection_sock
*icsk
= inet_csk(sk
);
2975 struct sk_buff
*skb
;
2976 u32 now
= tcp_time_stamp
;
2977 int fully_acked
= true;
2980 u32 reord
= tp
->packets_out
;
2981 u32 prior_sacked
= tp
->sacked_out
;
2983 s32 ca_seq_rtt
= -1;
2984 ktime_t last_ackt
= net_invalid_timestamp();
2987 while ((skb
= tcp_write_queue_head(sk
)) && skb
!= tcp_send_head(sk
)) {
2988 struct tcp_skb_cb
*scb
= TCP_SKB_CB(skb
);
2990 u8 sacked
= scb
->sacked
;
2992 /* Determine how many packets and what bytes were acked, tso and else */
2993 if (after(scb
->end_seq
, tp
->snd_una
)) {
2994 if (tcp_skb_pcount(skb
) == 1 ||
2995 !after(tp
->snd_una
, scb
->seq
))
2998 acked_pcount
= tcp_tso_acked(sk
, skb
);
3002 fully_acked
= false;
3004 acked_pcount
= tcp_skb_pcount(skb
);
3007 if (sacked
& TCPCB_RETRANS
) {
3008 if (sacked
& TCPCB_SACKED_RETRANS
)
3009 tp
->retrans_out
-= acked_pcount
;
3010 flag
|= FLAG_RETRANS_DATA_ACKED
;
3012 ca_seq_rtt
= now
- scb
->when
;
3013 last_ackt
= skb
->tstamp
;
3015 seq_rtt
= ca_seq_rtt
;
3017 if (!(sacked
& TCPCB_SACKED_ACKED
)) {
3018 reord
= min(pkts_acked
, reord
);
3019 if (!after(scb
->end_seq
, tp
->high_seq
))
3020 flag
|= FLAG_ORIG_SACK_ACKED
;
3024 if (sacked
& TCPCB_SACKED_ACKED
)
3025 tp
->sacked_out
-= acked_pcount
;
3026 if (sacked
& TCPCB_LOST
)
3027 tp
->lost_out
-= acked_pcount
;
3029 tp
->packets_out
-= acked_pcount
;
3030 pkts_acked
+= acked_pcount
;
3032 /* Initial outgoing SYN's get put onto the write_queue
3033 * just like anything else we transmit. It is not
3034 * true data, and if we misinform our callers that
3035 * this ACK acks real data, we will erroneously exit
3036 * connection startup slow start one packet too
3037 * quickly. This is severely frowned upon behavior.
3039 if (!(scb
->tcp_flags
& TCPHDR_SYN
)) {
3040 flag
|= FLAG_DATA_ACKED
;
3042 flag
|= FLAG_SYN_ACKED
;
3043 tp
->retrans_stamp
= 0;
3049 tcp_unlink_write_queue(skb
, sk
);
3050 sk_wmem_free_skb(sk
, skb
);
3051 if (skb
== tp
->retransmit_skb_hint
)
3052 tp
->retransmit_skb_hint
= NULL
;
3053 if (skb
== tp
->lost_skb_hint
)
3054 tp
->lost_skb_hint
= NULL
;
3057 if (likely(between(tp
->snd_up
, prior_snd_una
, tp
->snd_una
)))
3058 tp
->snd_up
= tp
->snd_una
;
3060 if (skb
&& (TCP_SKB_CB(skb
)->sacked
& TCPCB_SACKED_ACKED
))
3061 flag
|= FLAG_SACK_RENEGING
;
3063 rtt_update
= tcp_ack_update_rtt(sk
, flag
, seq_rtt
, sack_rtt
);
3065 if (flag
& FLAG_ACKED
) {
3066 const struct tcp_congestion_ops
*ca_ops
3067 = inet_csk(sk
)->icsk_ca_ops
;
3070 if (unlikely(icsk
->icsk_mtup
.probe_size
&&
3071 !after(tp
->mtu_probe
.probe_seq_end
, tp
->snd_una
))) {
3072 tcp_mtup_probe_success(sk
);
3075 if (tcp_is_reno(tp
)) {
3076 tcp_remove_reno_sacks(sk
, pkts_acked
);
3080 /* Non-retransmitted hole got filled? That's reordering */
3081 if (reord
< prior_fackets
)
3082 tcp_update_reordering(sk
, tp
->fackets_out
- reord
, 0);
3084 delta
= tcp_is_fack(tp
) ? pkts_acked
:
3085 prior_sacked
- tp
->sacked_out
;
3086 tp
->lost_cnt_hint
-= min(tp
->lost_cnt_hint
, delta
);
3089 tp
->fackets_out
-= min(pkts_acked
, tp
->fackets_out
);
3091 if (ca_ops
->pkts_acked
) {
3094 /* Is the ACK triggering packet unambiguous? */
3095 if (!(flag
& FLAG_RETRANS_DATA_ACKED
)) {
3096 /* High resolution needed and available? */
3097 if (ca_ops
->flags
& TCP_CONG_RTT_STAMP
&&
3098 !ktime_equal(last_ackt
,
3099 net_invalid_timestamp()))
3100 rtt_us
= ktime_us_delta(ktime_get_real(),
3102 else if (ca_seq_rtt
>= 0)
3103 rtt_us
= jiffies_to_usecs(ca_seq_rtt
);
3106 ca_ops
->pkts_acked(sk
, pkts_acked
, rtt_us
);
3108 } else if (skb
&& rtt_update
&& sack_rtt
>= 0 &&
3109 sack_rtt
> (s32
)(now
- TCP_SKB_CB(skb
)->when
)) {
3110 /* Do not re-arm RTO if the sack RTT is measured from data sent
3111 * after when the head was last (re)transmitted. Otherwise the
3112 * timeout may continue to extend in loss recovery.
3117 #if FASTRETRANS_DEBUG > 0
3118 WARN_ON((int)tp
->sacked_out
< 0);
3119 WARN_ON((int)tp
->lost_out
< 0);
3120 WARN_ON((int)tp
->retrans_out
< 0);
3121 if (!tp
->packets_out
&& tcp_is_sack(tp
)) {
3122 icsk
= inet_csk(sk
);
3124 pr_debug("Leak l=%u %d\n",
3125 tp
->lost_out
, icsk
->icsk_ca_state
);
3128 if (tp
->sacked_out
) {
3129 pr_debug("Leak s=%u %d\n",
3130 tp
->sacked_out
, icsk
->icsk_ca_state
);
3133 if (tp
->retrans_out
) {
3134 pr_debug("Leak r=%u %d\n",
3135 tp
->retrans_out
, icsk
->icsk_ca_state
);
3136 tp
->retrans_out
= 0;
3143 static void tcp_ack_probe(struct sock
*sk
)
3145 const struct tcp_sock
*tp
= tcp_sk(sk
);
3146 struct inet_connection_sock
*icsk
= inet_csk(sk
);
3148 /* Was it a usable window open? */
3150 if (!after(TCP_SKB_CB(tcp_send_head(sk
))->end_seq
, tcp_wnd_end(tp
))) {
3151 icsk
->icsk_backoff
= 0;
3152 inet_csk_clear_xmit_timer(sk
, ICSK_TIME_PROBE0
);
3153 /* Socket must be waked up by subsequent tcp_data_snd_check().
3154 * This function is not for random using!
3157 inet_csk_reset_xmit_timer(sk
, ICSK_TIME_PROBE0
,
3158 min(icsk
->icsk_rto
<< icsk
->icsk_backoff
, TCP_RTO_MAX
),
3163 static inline bool tcp_ack_is_dubious(const struct sock
*sk
, const int flag
)
3165 return !(flag
& FLAG_NOT_DUP
) || (flag
& FLAG_CA_ALERT
) ||
3166 inet_csk(sk
)->icsk_ca_state
!= TCP_CA_Open
;
3169 /* Decide wheather to run the increase function of congestion control. */
3170 static inline bool tcp_may_raise_cwnd(const struct sock
*sk
, const int flag
)
3172 if (tcp_in_cwnd_reduction(sk
))
3175 /* If reordering is high then always grow cwnd whenever data is
3176 * delivered regardless of its ordering. Otherwise stay conservative
3177 * and only grow cwnd on in-order delivery (RFC5681). A stretched ACK w/
3178 * new SACK or ECE mark may first advance cwnd here and later reduce
3179 * cwnd in tcp_fastretrans_alert() based on more states.
3181 if (tcp_sk(sk
)->reordering
> sysctl_tcp_reordering
)
3182 return flag
& FLAG_FORWARD_PROGRESS
;
3184 return flag
& FLAG_DATA_ACKED
;
3187 /* Check that window update is acceptable.
3188 * The function assumes that snd_una<=ack<=snd_next.
3190 static inline bool tcp_may_update_window(const struct tcp_sock
*tp
,
3191 const u32 ack
, const u32 ack_seq
,
3194 return after(ack
, tp
->snd_una
) ||
3195 after(ack_seq
, tp
->snd_wl1
) ||
3196 (ack_seq
== tp
->snd_wl1
&& nwin
> tp
->snd_wnd
);
3199 /* Update our send window.
3201 * Window update algorithm, described in RFC793/RFC1122 (used in linux-2.2
3202 * and in FreeBSD. NetBSD's one is even worse.) is wrong.
3204 static int tcp_ack_update_window(struct sock
*sk
, const struct sk_buff
*skb
, u32 ack
,
3207 struct tcp_sock
*tp
= tcp_sk(sk
);
3209 u32 nwin
= ntohs(tcp_hdr(skb
)->window
);
3211 if (likely(!tcp_hdr(skb
)->syn
))
3212 nwin
<<= tp
->rx_opt
.snd_wscale
;
3214 if (tcp_may_update_window(tp
, ack
, ack_seq
, nwin
)) {
3215 flag
|= FLAG_WIN_UPDATE
;
3216 tcp_update_wl(tp
, ack_seq
);
3218 if (tp
->snd_wnd
!= nwin
) {
3221 /* Note, it is the only place, where
3222 * fast path is recovered for sending TCP.
3225 tcp_fast_path_check(sk
);
3227 if (nwin
> tp
->max_window
) {
3228 tp
->max_window
= nwin
;
3229 tcp_sync_mss(sk
, inet_csk(sk
)->icsk_pmtu_cookie
);
3239 /* RFC 5961 7 [ACK Throttling] */
3240 static void tcp_send_challenge_ack(struct sock
*sk
)
3242 /* unprotected vars, we dont care of overwrites */
3243 static u32 challenge_timestamp
;
3244 static unsigned int challenge_count
;
3245 u32 count
, now
= jiffies
/ HZ
;
3247 if (now
!= challenge_timestamp
) {
3248 u32 half
= (sysctl_tcp_challenge_ack_limit
+ 1) >> 1;
3250 challenge_timestamp
= now
;
3251 WRITE_ONCE(challenge_count
, half
+
3252 prandom_u32_max(sysctl_tcp_challenge_ack_limit
));
3254 count
= READ_ONCE(challenge_count
);
3256 WRITE_ONCE(challenge_count
, count
- 1);
3257 NET_INC_STATS_BH(sock_net(sk
), LINUX_MIB_TCPCHALLENGEACK
);
3262 static void tcp_store_ts_recent(struct tcp_sock
*tp
)
3264 tp
->rx_opt
.ts_recent
= tp
->rx_opt
.rcv_tsval
;
3265 tp
->rx_opt
.ts_recent_stamp
= get_seconds();
3268 static void tcp_replace_ts_recent(struct tcp_sock
*tp
, u32 seq
)
3270 if (tp
->rx_opt
.saw_tstamp
&& !after(seq
, tp
->rcv_wup
)) {
3271 /* PAWS bug workaround wrt. ACK frames, the PAWS discard
3272 * extra check below makes sure this can only happen
3273 * for pure ACK frames. -DaveM
3275 * Not only, also it occurs for expired timestamps.
3278 if (tcp_paws_check(&tp
->rx_opt
, 0))
3279 tcp_store_ts_recent(tp
);
3283 /* This routine deals with acks during a TLP episode.
3284 * Ref: loss detection algorithm in draft-dukkipati-tcpm-tcp-loss-probe.
3286 static void tcp_process_tlp_ack(struct sock
*sk
, u32 ack
, int flag
)
3288 struct tcp_sock
*tp
= tcp_sk(sk
);
3289 bool is_tlp_dupack
= (ack
== tp
->tlp_high_seq
) &&
3290 !(flag
& (FLAG_SND_UNA_ADVANCED
|
3291 FLAG_NOT_DUP
| FLAG_DATA_SACKED
));
3293 /* Mark the end of TLP episode on receiving TLP dupack or when
3294 * ack is after tlp_high_seq.
3296 if (is_tlp_dupack
) {
3297 tp
->tlp_high_seq
= 0;
3301 if (after(ack
, tp
->tlp_high_seq
)) {
3302 tp
->tlp_high_seq
= 0;
3303 /* Don't reduce cwnd if DSACK arrives for TLP retrans. */
3304 if (!(flag
& FLAG_DSACKING_ACK
)) {
3305 tcp_init_cwnd_reduction(sk
, true);
3306 tcp_set_ca_state(sk
, TCP_CA_CWR
);
3307 tcp_end_cwnd_reduction(sk
);
3308 tcp_try_keep_open(sk
);
3309 NET_INC_STATS_BH(sock_net(sk
),
3310 LINUX_MIB_TCPLOSSPROBERECOVERY
);
3315 /* This routine deals with incoming acks, but not outgoing ones. */
3316 static int tcp_ack(struct sock
*sk
, const struct sk_buff
*skb
, int flag
)
3318 struct inet_connection_sock
*icsk
= inet_csk(sk
);
3319 struct tcp_sock
*tp
= tcp_sk(sk
);
3320 u32 prior_snd_una
= tp
->snd_una
;
3321 u32 ack_seq
= TCP_SKB_CB(skb
)->seq
;
3322 u32 ack
= TCP_SKB_CB(skb
)->ack_seq
;
3323 bool is_dupack
= false;
3324 u32 prior_in_flight
, prior_cwnd
= tp
->snd_cwnd
, prior_rtt
= tp
->srtt
;
3326 int prior_packets
= tp
->packets_out
;
3327 const int prior_unsacked
= tp
->packets_out
- tp
->sacked_out
;
3328 int acked
= 0; /* Number of packets newly acked */
3331 /* If the ack is older than previous acks
3332 * then we can probably ignore it.
3334 if (before(ack
, prior_snd_una
)) {
3335 /* RFC 5961 5.2 [Blind Data Injection Attack].[Mitigation] */
3336 if (before(ack
, prior_snd_una
- tp
->max_window
)) {
3337 tcp_send_challenge_ack(sk
);
3343 /* If the ack includes data we haven't sent yet, discard
3344 * this segment (RFC793 Section 3.9).
3346 if (after(ack
, tp
->snd_nxt
))
3349 if (icsk
->icsk_pending
== ICSK_TIME_EARLY_RETRANS
||
3350 icsk
->icsk_pending
== ICSK_TIME_LOSS_PROBE
)
3353 if (after(ack
, prior_snd_una
)) {
3354 flag
|= FLAG_SND_UNA_ADVANCED
;
3355 icsk
->icsk_retransmits
= 0;
3358 prior_fackets
= tp
->fackets_out
;
3359 prior_in_flight
= tcp_packets_in_flight(tp
);
3361 /* ts_recent update must be made after we are sure that the packet
3364 if (flag
& FLAG_UPDATE_TS_RECENT
)
3365 tcp_replace_ts_recent(tp
, TCP_SKB_CB(skb
)->seq
);
3367 if (!(flag
& FLAG_SLOWPATH
) && after(ack
, prior_snd_una
)) {
3368 /* Window is constant, pure forward advance.
3369 * No more checks are required.
3370 * Note, we use the fact that SND.UNA>=SND.WL2.
3372 tcp_update_wl(tp
, ack_seq
);
3374 flag
|= FLAG_WIN_UPDATE
;
3376 tcp_ca_event(sk
, CA_EVENT_FAST_ACK
);
3378 NET_INC_STATS_BH(sock_net(sk
), LINUX_MIB_TCPHPACKS
);
3380 if (ack_seq
!= TCP_SKB_CB(skb
)->end_seq
)
3383 NET_INC_STATS_BH(sock_net(sk
), LINUX_MIB_TCPPUREACKS
);
3385 flag
|= tcp_ack_update_window(sk
, skb
, ack
, ack_seq
);
3387 if (TCP_SKB_CB(skb
)->sacked
)
3388 flag
|= tcp_sacktag_write_queue(sk
, skb
, prior_snd_una
,
3391 if (TCP_ECN_rcv_ecn_echo(tp
, tcp_hdr(skb
)))
3394 tcp_ca_event(sk
, CA_EVENT_SLOW_ACK
);
3397 /* We passed data and got it acked, remove any soft error
3398 * log. Something worked...
3400 sk
->sk_err_soft
= 0;
3401 icsk
->icsk_probes_out
= 0;
3402 tp
->rcv_tstamp
= tcp_time_stamp
;
3406 /* See if we can take anything off of the retransmit queue. */
3407 acked
= tp
->packets_out
;
3408 flag
|= tcp_clean_rtx_queue(sk
, prior_fackets
, prior_snd_una
, sack_rtt
);
3409 acked
-= tp
->packets_out
;
3411 /* Advance cwnd if state allows */
3412 if (tcp_may_raise_cwnd(sk
, flag
))
3413 tcp_cong_avoid(sk
, ack
, prior_in_flight
);
3415 if (tcp_ack_is_dubious(sk
, flag
)) {
3416 is_dupack
= !(flag
& (FLAG_SND_UNA_ADVANCED
| FLAG_NOT_DUP
));
3417 tcp_fastretrans_alert(sk
, acked
, prior_unsacked
,
3420 if (tp
->tlp_high_seq
)
3421 tcp_process_tlp_ack(sk
, ack
, flag
);
3423 if ((flag
& FLAG_FORWARD_PROGRESS
) || !(flag
& FLAG_NOT_DUP
)) {
3424 struct dst_entry
*dst
= __sk_dst_get(sk
);
3429 if (icsk
->icsk_pending
== ICSK_TIME_RETRANS
)
3430 tcp_schedule_loss_probe(sk
);
3431 if (tp
->srtt
!= prior_rtt
|| tp
->snd_cwnd
!= prior_cwnd
)
3432 tcp_update_pacing_rate(sk
);
3436 /* If data was DSACKed, see if we can undo a cwnd reduction. */
3437 if (flag
& FLAG_DSACKING_ACK
)
3438 tcp_fastretrans_alert(sk
, acked
, prior_unsacked
,
3440 /* If this ack opens up a zero window, clear backoff. It was
3441 * being used to time the probes, and is probably far higher than
3442 * it needs to be for normal retransmission.
3444 if (tcp_send_head(sk
))
3447 if (tp
->tlp_high_seq
)
3448 tcp_process_tlp_ack(sk
, ack
, flag
);
3452 SOCK_DEBUG(sk
, "Ack %u after %u:%u\n", ack
, tp
->snd_una
, tp
->snd_nxt
);
3456 /* If data was SACKed, tag it and see if we should send more data.
3457 * If data was DSACKed, see if we can undo a cwnd reduction.
3459 if (TCP_SKB_CB(skb
)->sacked
) {
3460 flag
|= tcp_sacktag_write_queue(sk
, skb
, prior_snd_una
,
3462 tcp_fastretrans_alert(sk
, acked
, prior_unsacked
,
3466 SOCK_DEBUG(sk
, "Ack %u before %u:%u\n", ack
, tp
->snd_una
, tp
->snd_nxt
);
3470 /* Look for tcp options. Normally only called on SYN and SYNACK packets.
3471 * But, this can also be called on packets in the established flow when
3472 * the fast version below fails.
3474 void tcp_parse_options(const struct sk_buff
*skb
,
3475 struct tcp_options_received
*opt_rx
, int estab
,
3476 struct tcp_fastopen_cookie
*foc
)
3478 const unsigned char *ptr
;
3479 const struct tcphdr
*th
= tcp_hdr(skb
);
3480 int length
= (th
->doff
* 4) - sizeof(struct tcphdr
);
3482 ptr
= (const unsigned char *)(th
+ 1);
3483 opt_rx
->saw_tstamp
= 0;
3485 while (length
> 0) {
3486 int opcode
= *ptr
++;
3492 case TCPOPT_NOP
: /* Ref: RFC 793 section 3.1 */
3497 if (opsize
< 2) /* "silly options" */
3499 if (opsize
> length
)
3500 return; /* don't parse partial options */
3503 if (opsize
== TCPOLEN_MSS
&& th
->syn
&& !estab
) {
3504 u16 in_mss
= get_unaligned_be16(ptr
);
3506 if (opt_rx
->user_mss
&&
3507 opt_rx
->user_mss
< in_mss
)
3508 in_mss
= opt_rx
->user_mss
;
3509 opt_rx
->mss_clamp
= in_mss
;
3514 if (opsize
== TCPOLEN_WINDOW
&& th
->syn
&&
3515 !estab
&& sysctl_tcp_window_scaling
) {
3516 __u8 snd_wscale
= *(__u8
*)ptr
;
3517 opt_rx
->wscale_ok
= 1;
3518 if (snd_wscale
> 14) {
3519 net_info_ratelimited("%s: Illegal window scaling value %d >14 received\n",
3524 opt_rx
->snd_wscale
= snd_wscale
;
3527 case TCPOPT_TIMESTAMP
:
3528 if ((opsize
== TCPOLEN_TIMESTAMP
) &&
3529 ((estab
&& opt_rx
->tstamp_ok
) ||
3530 (!estab
&& sysctl_tcp_timestamps
))) {
3531 opt_rx
->saw_tstamp
= 1;
3532 opt_rx
->rcv_tsval
= get_unaligned_be32(ptr
);
3533 opt_rx
->rcv_tsecr
= get_unaligned_be32(ptr
+ 4);
3536 case TCPOPT_SACK_PERM
:
3537 if (opsize
== TCPOLEN_SACK_PERM
&& th
->syn
&&
3538 !estab
&& sysctl_tcp_sack
) {
3539 opt_rx
->sack_ok
= TCP_SACK_SEEN
;
3540 tcp_sack_reset(opt_rx
);
3545 if ((opsize
>= (TCPOLEN_SACK_BASE
+ TCPOLEN_SACK_PERBLOCK
)) &&
3546 !((opsize
- TCPOLEN_SACK_BASE
) % TCPOLEN_SACK_PERBLOCK
) &&
3548 TCP_SKB_CB(skb
)->sacked
= (ptr
- 2) - (unsigned char *)th
;
3551 #ifdef CONFIG_TCP_MD5SIG
3554 * The MD5 Hash has already been
3555 * checked (see tcp_v{4,6}_do_rcv()).
3560 /* Fast Open option shares code 254 using a
3561 * 16 bits magic number. It's valid only in
3562 * SYN or SYN-ACK with an even size.
3564 if (opsize
< TCPOLEN_EXP_FASTOPEN_BASE
||
3565 get_unaligned_be16(ptr
) != TCPOPT_FASTOPEN_MAGIC
||
3566 foc
== NULL
|| !th
->syn
|| (opsize
& 1))
3568 foc
->len
= opsize
- TCPOLEN_EXP_FASTOPEN_BASE
;
3569 if (foc
->len
>= TCP_FASTOPEN_COOKIE_MIN
&&
3570 foc
->len
<= TCP_FASTOPEN_COOKIE_MAX
)
3571 memcpy(foc
->val
, ptr
+ 2, foc
->len
);
3572 else if (foc
->len
!= 0)
3582 EXPORT_SYMBOL(tcp_parse_options
);
3584 static bool tcp_parse_aligned_timestamp(struct tcp_sock
*tp
, const struct tcphdr
*th
)
3586 const __be32
*ptr
= (const __be32
*)(th
+ 1);
3588 if (*ptr
== htonl((TCPOPT_NOP
<< 24) | (TCPOPT_NOP
<< 16)
3589 | (TCPOPT_TIMESTAMP
<< 8) | TCPOLEN_TIMESTAMP
)) {
3590 tp
->rx_opt
.saw_tstamp
= 1;
3592 tp
->rx_opt
.rcv_tsval
= ntohl(*ptr
);
3595 tp
->rx_opt
.rcv_tsecr
= ntohl(*ptr
) - tp
->tsoffset
;
3597 tp
->rx_opt
.rcv_tsecr
= 0;
3603 /* Fast parse options. This hopes to only see timestamps.
3604 * If it is wrong it falls back on tcp_parse_options().
3606 static bool tcp_fast_parse_options(const struct sk_buff
*skb
,
3607 const struct tcphdr
*th
, struct tcp_sock
*tp
)
3609 /* In the spirit of fast parsing, compare doff directly to constant
3610 * values. Because equality is used, short doff can be ignored here.
3612 if (th
->doff
== (sizeof(*th
) / 4)) {
3613 tp
->rx_opt
.saw_tstamp
= 0;
3615 } else if (tp
->rx_opt
.tstamp_ok
&&
3616 th
->doff
== ((sizeof(*th
) + TCPOLEN_TSTAMP_ALIGNED
) / 4)) {
3617 if (tcp_parse_aligned_timestamp(tp
, th
))
3621 tcp_parse_options(skb
, &tp
->rx_opt
, 1, NULL
);
3622 if (tp
->rx_opt
.saw_tstamp
&& tp
->rx_opt
.rcv_tsecr
)
3623 tp
->rx_opt
.rcv_tsecr
-= tp
->tsoffset
;
3628 #ifdef CONFIG_TCP_MD5SIG
3630 * Parse MD5 Signature option
3632 const u8
*tcp_parse_md5sig_option(const struct tcphdr
*th
)
3634 int length
= (th
->doff
<< 2) - sizeof(*th
);
3635 const u8
*ptr
= (const u8
*)(th
+ 1);
3637 /* If the TCP option is too short, we can short cut */
3638 if (length
< TCPOLEN_MD5SIG
)
3641 while (length
> 0) {
3642 int opcode
= *ptr
++;
3653 if (opsize
< 2 || opsize
> length
)
3655 if (opcode
== TCPOPT_MD5SIG
)
3656 return opsize
== TCPOLEN_MD5SIG
? ptr
: NULL
;
3663 EXPORT_SYMBOL(tcp_parse_md5sig_option
);
3666 /* Sorry, PAWS as specified is broken wrt. pure-ACKs -DaveM
3668 * It is not fatal. If this ACK does _not_ change critical state (seqs, window)
3669 * it can pass through stack. So, the following predicate verifies that
3670 * this segment is not used for anything but congestion avoidance or
3671 * fast retransmit. Moreover, we even are able to eliminate most of such
3672 * second order effects, if we apply some small "replay" window (~RTO)
3673 * to timestamp space.
3675 * All these measures still do not guarantee that we reject wrapped ACKs
3676 * on networks with high bandwidth, when sequence space is recycled fastly,
3677 * but it guarantees that such events will be very rare and do not affect
3678 * connection seriously. This doesn't look nice, but alas, PAWS is really
3681 * [ Later note. Even worse! It is buggy for segments _with_ data. RFC
3682 * states that events when retransmit arrives after original data are rare.
3683 * It is a blatant lie. VJ forgot about fast retransmit! 8)8) It is
3684 * the biggest problem on large power networks even with minor reordering.
3685 * OK, let's give it small replay window. If peer clock is even 1hz, it is safe
3686 * up to bandwidth of 18Gigabit/sec. 8) ]
3689 static int tcp_disordered_ack(const struct sock
*sk
, const struct sk_buff
*skb
)
3691 const struct tcp_sock
*tp
= tcp_sk(sk
);
3692 const struct tcphdr
*th
= tcp_hdr(skb
);
3693 u32 seq
= TCP_SKB_CB(skb
)->seq
;
3694 u32 ack
= TCP_SKB_CB(skb
)->ack_seq
;
3696 return (/* 1. Pure ACK with correct sequence number. */
3697 (th
->ack
&& seq
== TCP_SKB_CB(skb
)->end_seq
&& seq
== tp
->rcv_nxt
) &&
3699 /* 2. ... and duplicate ACK. */
3700 ack
== tp
->snd_una
&&
3702 /* 3. ... and does not update window. */
3703 !tcp_may_update_window(tp
, ack
, seq
, ntohs(th
->window
) << tp
->rx_opt
.snd_wscale
) &&
3705 /* 4. ... and sits in replay window. */
3706 (s32
)(tp
->rx_opt
.ts_recent
- tp
->rx_opt
.rcv_tsval
) <= (inet_csk(sk
)->icsk_rto
* 1024) / HZ
);
3709 static inline bool tcp_paws_discard(const struct sock
*sk
,
3710 const struct sk_buff
*skb
)
3712 const struct tcp_sock
*tp
= tcp_sk(sk
);
3714 return !tcp_paws_check(&tp
->rx_opt
, TCP_PAWS_WINDOW
) &&
3715 !tcp_disordered_ack(sk
, skb
);
3718 /* Check segment sequence number for validity.
3720 * Segment controls are considered valid, if the segment
3721 * fits to the window after truncation to the window. Acceptability
3722 * of data (and SYN, FIN, of course) is checked separately.
3723 * See tcp_data_queue(), for example.
3725 * Also, controls (RST is main one) are accepted using RCV.WUP instead
3726 * of RCV.NXT. Peer still did not advance his SND.UNA when we
3727 * delayed ACK, so that hisSND.UNA<=ourRCV.WUP.
3728 * (borrowed from freebsd)
3731 static inline bool tcp_sequence(const struct tcp_sock
*tp
, u32 seq
, u32 end_seq
)
3733 return !before(end_seq
, tp
->rcv_wup
) &&
3734 !after(seq
, tp
->rcv_nxt
+ tcp_receive_window(tp
));
3737 /* When we get a reset we do this. */
3738 void tcp_reset(struct sock
*sk
)
3740 /* We want the right error as BSD sees it (and indeed as we do). */
3741 switch (sk
->sk_state
) {
3743 sk
->sk_err
= ECONNREFUSED
;
3745 case TCP_CLOSE_WAIT
:
3751 sk
->sk_err
= ECONNRESET
;
3753 /* This barrier is coupled with smp_rmb() in tcp_poll() */
3756 if (!sock_flag(sk
, SOCK_DEAD
))
3757 sk
->sk_error_report(sk
);
3763 * Process the FIN bit. This now behaves as it is supposed to work
3764 * and the FIN takes effect when it is validly part of sequence
3765 * space. Not before when we get holes.
3767 * If we are ESTABLISHED, a received fin moves us to CLOSE-WAIT
3768 * (and thence onto LAST-ACK and finally, CLOSE, we never enter
3771 * If we are in FINWAIT-1, a received FIN indicates simultaneous
3772 * close and we go into CLOSING (and later onto TIME-WAIT)
3774 * If we are in FINWAIT-2, a received FIN moves us to TIME-WAIT.
3776 static void tcp_fin(struct sock
*sk
)
3778 struct tcp_sock
*tp
= tcp_sk(sk
);
3779 const struct dst_entry
*dst
;
3781 inet_csk_schedule_ack(sk
);
3783 sk
->sk_shutdown
|= RCV_SHUTDOWN
;
3784 sock_set_flag(sk
, SOCK_DONE
);
3786 switch (sk
->sk_state
) {
3788 case TCP_ESTABLISHED
:
3789 /* Move to CLOSE_WAIT */
3790 tcp_set_state(sk
, TCP_CLOSE_WAIT
);
3791 dst
= __sk_dst_get(sk
);
3792 if (!dst
|| !dst_metric(dst
, RTAX_QUICKACK
))
3793 inet_csk(sk
)->icsk_ack
.pingpong
= 1;
3796 case TCP_CLOSE_WAIT
:
3798 /* Received a retransmission of the FIN, do
3803 /* RFC793: Remain in the LAST-ACK state. */
3807 /* This case occurs when a simultaneous close
3808 * happens, we must ack the received FIN and
3809 * enter the CLOSING state.
3812 tcp_set_state(sk
, TCP_CLOSING
);
3815 /* Received a FIN -- send ACK and enter TIME_WAIT. */
3817 tcp_time_wait(sk
, TCP_TIME_WAIT
, 0);
3820 /* Only TCP_LISTEN and TCP_CLOSE are left, in these
3821 * cases we should never reach this piece of code.
3823 pr_err("%s: Impossible, sk->sk_state=%d\n",
3824 __func__
, sk
->sk_state
);
3828 /* It _is_ possible, that we have something out-of-order _after_ FIN.
3829 * Probably, we should reset in this case. For now drop them.
3831 __skb_queue_purge(&tp
->out_of_order_queue
);
3832 if (tcp_is_sack(tp
))
3833 tcp_sack_reset(&tp
->rx_opt
);
3836 if (!sock_flag(sk
, SOCK_DEAD
)) {
3837 sk
->sk_state_change(sk
);
3839 /* Do not send POLL_HUP for half duplex close. */
3840 if (sk
->sk_shutdown
== SHUTDOWN_MASK
||
3841 sk
->sk_state
== TCP_CLOSE
)
3842 sk_wake_async(sk
, SOCK_WAKE_WAITD
, POLL_HUP
);
3844 sk_wake_async(sk
, SOCK_WAKE_WAITD
, POLL_IN
);
3848 static inline bool tcp_sack_extend(struct tcp_sack_block
*sp
, u32 seq
,
3851 if (!after(seq
, sp
->end_seq
) && !after(sp
->start_seq
, end_seq
)) {
3852 if (before(seq
, sp
->start_seq
))
3853 sp
->start_seq
= seq
;
3854 if (after(end_seq
, sp
->end_seq
))
3855 sp
->end_seq
= end_seq
;
3861 static void tcp_dsack_set(struct sock
*sk
, u32 seq
, u32 end_seq
)
3863 struct tcp_sock
*tp
= tcp_sk(sk
);
3865 if (tcp_is_sack(tp
) && sysctl_tcp_dsack
) {
3868 if (before(seq
, tp
->rcv_nxt
))
3869 mib_idx
= LINUX_MIB_TCPDSACKOLDSENT
;
3871 mib_idx
= LINUX_MIB_TCPDSACKOFOSENT
;
3873 NET_INC_STATS_BH(sock_net(sk
), mib_idx
);
3875 tp
->rx_opt
.dsack
= 1;
3876 tp
->duplicate_sack
[0].start_seq
= seq
;
3877 tp
->duplicate_sack
[0].end_seq
= end_seq
;
3881 static void tcp_dsack_extend(struct sock
*sk
, u32 seq
, u32 end_seq
)
3883 struct tcp_sock
*tp
= tcp_sk(sk
);
3885 if (!tp
->rx_opt
.dsack
)
3886 tcp_dsack_set(sk
, seq
, end_seq
);
3888 tcp_sack_extend(tp
->duplicate_sack
, seq
, end_seq
);
3891 static void tcp_send_dupack(struct sock
*sk
, const struct sk_buff
*skb
)
3893 struct tcp_sock
*tp
= tcp_sk(sk
);
3895 if (TCP_SKB_CB(skb
)->end_seq
!= TCP_SKB_CB(skb
)->seq
&&
3896 before(TCP_SKB_CB(skb
)->seq
, tp
->rcv_nxt
)) {
3897 NET_INC_STATS_BH(sock_net(sk
), LINUX_MIB_DELAYEDACKLOST
);
3898 tcp_enter_quickack_mode(sk
);
3900 if (tcp_is_sack(tp
) && sysctl_tcp_dsack
) {
3901 u32 end_seq
= TCP_SKB_CB(skb
)->end_seq
;
3903 if (after(TCP_SKB_CB(skb
)->end_seq
, tp
->rcv_nxt
))
3904 end_seq
= tp
->rcv_nxt
;
3905 tcp_dsack_set(sk
, TCP_SKB_CB(skb
)->seq
, end_seq
);
3912 /* These routines update the SACK block as out-of-order packets arrive or
3913 * in-order packets close up the sequence space.
3915 static void tcp_sack_maybe_coalesce(struct tcp_sock
*tp
)
3918 struct tcp_sack_block
*sp
= &tp
->selective_acks
[0];
3919 struct tcp_sack_block
*swalk
= sp
+ 1;
3921 /* See if the recent change to the first SACK eats into
3922 * or hits the sequence space of other SACK blocks, if so coalesce.
3924 for (this_sack
= 1; this_sack
< tp
->rx_opt
.num_sacks
;) {
3925 if (tcp_sack_extend(sp
, swalk
->start_seq
, swalk
->end_seq
)) {
3928 /* Zap SWALK, by moving every further SACK up by one slot.
3929 * Decrease num_sacks.
3931 tp
->rx_opt
.num_sacks
--;
3932 for (i
= this_sack
; i
< tp
->rx_opt
.num_sacks
; i
++)
3936 this_sack
++, swalk
++;
3940 static void tcp_sack_new_ofo_skb(struct sock
*sk
, u32 seq
, u32 end_seq
)
3942 struct tcp_sock
*tp
= tcp_sk(sk
);
3943 struct tcp_sack_block
*sp
= &tp
->selective_acks
[0];
3944 int cur_sacks
= tp
->rx_opt
.num_sacks
;
3950 for (this_sack
= 0; this_sack
< cur_sacks
; this_sack
++, sp
++) {
3951 if (tcp_sack_extend(sp
, seq
, end_seq
)) {
3952 /* Rotate this_sack to the first one. */
3953 for (; this_sack
> 0; this_sack
--, sp
--)
3954 swap(*sp
, *(sp
- 1));
3956 tcp_sack_maybe_coalesce(tp
);
3961 /* Could not find an adjacent existing SACK, build a new one,
3962 * put it at the front, and shift everyone else down. We
3963 * always know there is at least one SACK present already here.
3965 * If the sack array is full, forget about the last one.
3967 if (this_sack
>= TCP_NUM_SACKS
) {
3969 tp
->rx_opt
.num_sacks
--;
3972 for (; this_sack
> 0; this_sack
--, sp
--)
3976 /* Build the new head SACK, and we're done. */
3977 sp
->start_seq
= seq
;
3978 sp
->end_seq
= end_seq
;
3979 tp
->rx_opt
.num_sacks
++;
3982 /* RCV.NXT advances, some SACKs should be eaten. */
3984 static void tcp_sack_remove(struct tcp_sock
*tp
)
3986 struct tcp_sack_block
*sp
= &tp
->selective_acks
[0];
3987 int num_sacks
= tp
->rx_opt
.num_sacks
;
3990 /* Empty ofo queue, hence, all the SACKs are eaten. Clear. */
3991 if (skb_queue_empty(&tp
->out_of_order_queue
)) {
3992 tp
->rx_opt
.num_sacks
= 0;
3996 for (this_sack
= 0; this_sack
< num_sacks
;) {
3997 /* Check if the start of the sack is covered by RCV.NXT. */
3998 if (!before(tp
->rcv_nxt
, sp
->start_seq
)) {
4001 /* RCV.NXT must cover all the block! */
4002 WARN_ON(before(tp
->rcv_nxt
, sp
->end_seq
));
4004 /* Zap this SACK, by moving forward any other SACKS. */
4005 for (i
=this_sack
+1; i
< num_sacks
; i
++)
4006 tp
->selective_acks
[i
-1] = tp
->selective_acks
[i
];
4013 tp
->rx_opt
.num_sacks
= num_sacks
;
4016 /* This one checks to see if we can put data from the
4017 * out_of_order queue into the receive_queue.
4019 static void tcp_ofo_queue(struct sock
*sk
)
4021 struct tcp_sock
*tp
= tcp_sk(sk
);
4022 __u32 dsack_high
= tp
->rcv_nxt
;
4023 struct sk_buff
*skb
;
4025 while ((skb
= skb_peek(&tp
->out_of_order_queue
)) != NULL
) {
4026 if (after(TCP_SKB_CB(skb
)->seq
, tp
->rcv_nxt
))
4029 if (before(TCP_SKB_CB(skb
)->seq
, dsack_high
)) {
4030 __u32 dsack
= dsack_high
;
4031 if (before(TCP_SKB_CB(skb
)->end_seq
, dsack_high
))
4032 dsack_high
= TCP_SKB_CB(skb
)->end_seq
;
4033 tcp_dsack_extend(sk
, TCP_SKB_CB(skb
)->seq
, dsack
);
4036 if (!after(TCP_SKB_CB(skb
)->end_seq
, tp
->rcv_nxt
)) {
4037 SOCK_DEBUG(sk
, "ofo packet was already received\n");
4038 __skb_unlink(skb
, &tp
->out_of_order_queue
);
4042 SOCK_DEBUG(sk
, "ofo requeuing : rcv_next %X seq %X - %X\n",
4043 tp
->rcv_nxt
, TCP_SKB_CB(skb
)->seq
,
4044 TCP_SKB_CB(skb
)->end_seq
);
4046 __skb_unlink(skb
, &tp
->out_of_order_queue
);
4047 __skb_queue_tail(&sk
->sk_receive_queue
, skb
);
4048 tp
->rcv_nxt
= TCP_SKB_CB(skb
)->end_seq
;
4049 if (tcp_hdr(skb
)->fin
)
4054 static bool tcp_prune_ofo_queue(struct sock
*sk
);
4055 static int tcp_prune_queue(struct sock
*sk
);
4057 static int tcp_try_rmem_schedule(struct sock
*sk
, struct sk_buff
*skb
,
4060 if (atomic_read(&sk
->sk_rmem_alloc
) > sk
->sk_rcvbuf
||
4061 !sk_rmem_schedule(sk
, skb
, size
)) {
4063 if (tcp_prune_queue(sk
) < 0)
4066 if (!sk_rmem_schedule(sk
, skb
, size
)) {
4067 if (!tcp_prune_ofo_queue(sk
))
4070 if (!sk_rmem_schedule(sk
, skb
, size
))
4078 * tcp_try_coalesce - try to merge skb to prior one
4081 * @from: buffer to add in queue
4082 * @fragstolen: pointer to boolean
4084 * Before queueing skb @from after @to, try to merge them
4085 * to reduce overall memory use and queue lengths, if cost is small.
4086 * Packets in ofo or receive queues can stay a long time.
4087 * Better try to coalesce them right now to avoid future collapses.
4088 * Returns true if caller should free @from instead of queueing it
4090 static bool tcp_try_coalesce(struct sock
*sk
,
4092 struct sk_buff
*from
,
4097 *fragstolen
= false;
4099 if (tcp_hdr(from
)->fin
)
4102 /* Its possible this segment overlaps with prior segment in queue */
4103 if (TCP_SKB_CB(from
)->seq
!= TCP_SKB_CB(to
)->end_seq
)
4106 if (!skb_try_coalesce(to
, from
, fragstolen
, &delta
))
4109 atomic_add(delta
, &sk
->sk_rmem_alloc
);
4110 sk_mem_charge(sk
, delta
);
4111 NET_INC_STATS_BH(sock_net(sk
), LINUX_MIB_TCPRCVCOALESCE
);
4112 TCP_SKB_CB(to
)->end_seq
= TCP_SKB_CB(from
)->end_seq
;
4113 TCP_SKB_CB(to
)->ack_seq
= TCP_SKB_CB(from
)->ack_seq
;
4117 static void tcp_data_queue_ofo(struct sock
*sk
, struct sk_buff
*skb
)
4119 struct tcp_sock
*tp
= tcp_sk(sk
);
4120 struct sk_buff
*skb1
;
4123 TCP_ECN_check_ce(tp
, skb
);
4125 if (unlikely(tcp_try_rmem_schedule(sk
, skb
, skb
->truesize
))) {
4126 NET_INC_STATS_BH(sock_net(sk
), LINUX_MIB_TCPOFODROP
);
4131 /* Disable header prediction. */
4133 inet_csk_schedule_ack(sk
);
4135 NET_INC_STATS_BH(sock_net(sk
), LINUX_MIB_TCPOFOQUEUE
);
4136 SOCK_DEBUG(sk
, "out of order segment: rcv_next %X seq %X - %X\n",
4137 tp
->rcv_nxt
, TCP_SKB_CB(skb
)->seq
, TCP_SKB_CB(skb
)->end_seq
);
4139 skb1
= skb_peek_tail(&tp
->out_of_order_queue
);
4141 /* Initial out of order segment, build 1 SACK. */
4142 if (tcp_is_sack(tp
)) {
4143 tp
->rx_opt
.num_sacks
= 1;
4144 tp
->selective_acks
[0].start_seq
= TCP_SKB_CB(skb
)->seq
;
4145 tp
->selective_acks
[0].end_seq
=
4146 TCP_SKB_CB(skb
)->end_seq
;
4148 __skb_queue_head(&tp
->out_of_order_queue
, skb
);
4152 seq
= TCP_SKB_CB(skb
)->seq
;
4153 end_seq
= TCP_SKB_CB(skb
)->end_seq
;
4155 if (seq
== TCP_SKB_CB(skb1
)->end_seq
) {
4158 if (!tcp_try_coalesce(sk
, skb1
, skb
, &fragstolen
)) {
4159 __skb_queue_after(&tp
->out_of_order_queue
, skb1
, skb
);
4161 tcp_grow_window(sk
, skb
);
4162 kfree_skb_partial(skb
, fragstolen
);
4166 if (!tp
->rx_opt
.num_sacks
||
4167 tp
->selective_acks
[0].end_seq
!= seq
)
4170 /* Common case: data arrive in order after hole. */
4171 tp
->selective_acks
[0].end_seq
= end_seq
;
4175 /* Find place to insert this segment. */
4177 if (!after(TCP_SKB_CB(skb1
)->seq
, seq
))
4179 if (skb_queue_is_first(&tp
->out_of_order_queue
, skb1
)) {
4183 skb1
= skb_queue_prev(&tp
->out_of_order_queue
, skb1
);
4186 /* Do skb overlap to previous one? */
4187 if (skb1
&& before(seq
, TCP_SKB_CB(skb1
)->end_seq
)) {
4188 if (!after(end_seq
, TCP_SKB_CB(skb1
)->end_seq
)) {
4189 /* All the bits are present. Drop. */
4190 NET_INC_STATS_BH(sock_net(sk
), LINUX_MIB_TCPOFOMERGE
);
4193 tcp_dsack_set(sk
, seq
, end_seq
);
4196 if (after(seq
, TCP_SKB_CB(skb1
)->seq
)) {
4197 /* Partial overlap. */
4198 tcp_dsack_set(sk
, seq
,
4199 TCP_SKB_CB(skb1
)->end_seq
);
4201 if (skb_queue_is_first(&tp
->out_of_order_queue
,
4205 skb1
= skb_queue_prev(
4206 &tp
->out_of_order_queue
,
4211 __skb_queue_head(&tp
->out_of_order_queue
, skb
);
4213 __skb_queue_after(&tp
->out_of_order_queue
, skb1
, skb
);
4215 /* And clean segments covered by new one as whole. */
4216 while (!skb_queue_is_last(&tp
->out_of_order_queue
, skb
)) {
4217 skb1
= skb_queue_next(&tp
->out_of_order_queue
, skb
);
4219 if (!after(end_seq
, TCP_SKB_CB(skb1
)->seq
))
4221 if (before(end_seq
, TCP_SKB_CB(skb1
)->end_seq
)) {
4222 tcp_dsack_extend(sk
, TCP_SKB_CB(skb1
)->seq
,
4226 __skb_unlink(skb1
, &tp
->out_of_order_queue
);
4227 tcp_dsack_extend(sk
, TCP_SKB_CB(skb1
)->seq
,
4228 TCP_SKB_CB(skb1
)->end_seq
);
4229 NET_INC_STATS_BH(sock_net(sk
), LINUX_MIB_TCPOFOMERGE
);
4234 if (tcp_is_sack(tp
))
4235 tcp_sack_new_ofo_skb(sk
, seq
, end_seq
);
4238 tcp_grow_window(sk
, skb
);
4239 skb_set_owner_r(skb
, sk
);
4243 static int __must_check
tcp_queue_rcv(struct sock
*sk
, struct sk_buff
*skb
, int hdrlen
,
4247 struct sk_buff
*tail
= skb_peek_tail(&sk
->sk_receive_queue
);
4249 __skb_pull(skb
, hdrlen
);
4251 tcp_try_coalesce(sk
, tail
, skb
, fragstolen
)) ? 1 : 0;
4252 tcp_sk(sk
)->rcv_nxt
= TCP_SKB_CB(skb
)->end_seq
;
4254 __skb_queue_tail(&sk
->sk_receive_queue
, skb
);
4255 skb_set_owner_r(skb
, sk
);
4260 int tcp_send_rcvq(struct sock
*sk
, struct msghdr
*msg
, size_t size
)
4262 struct sk_buff
*skb
= NULL
;
4269 skb
= alloc_skb(size
+ sizeof(*th
), sk
->sk_allocation
);
4273 if (tcp_try_rmem_schedule(sk
, skb
, size
+ sizeof(*th
)))
4276 th
= (struct tcphdr
*)skb_put(skb
, sizeof(*th
));
4277 skb_reset_transport_header(skb
);
4278 memset(th
, 0, sizeof(*th
));
4280 if (memcpy_fromiovec(skb_put(skb
, size
), msg
->msg_iov
, size
))
4283 TCP_SKB_CB(skb
)->seq
= tcp_sk(sk
)->rcv_nxt
;
4284 TCP_SKB_CB(skb
)->end_seq
= TCP_SKB_CB(skb
)->seq
+ size
;
4285 TCP_SKB_CB(skb
)->ack_seq
= tcp_sk(sk
)->snd_una
- 1;
4287 if (tcp_queue_rcv(sk
, skb
, sizeof(*th
), &fragstolen
)) {
4288 WARN_ON_ONCE(fragstolen
); /* should not happen */
4299 static void tcp_data_queue(struct sock
*sk
, struct sk_buff
*skb
)
4301 const struct tcphdr
*th
= tcp_hdr(skb
);
4302 struct tcp_sock
*tp
= tcp_sk(sk
);
4304 bool fragstolen
= false;
4306 if (TCP_SKB_CB(skb
)->seq
== TCP_SKB_CB(skb
)->end_seq
)
4310 __skb_pull(skb
, th
->doff
* 4);
4312 TCP_ECN_accept_cwr(tp
, skb
);
4314 tp
->rx_opt
.dsack
= 0;
4316 /* Queue data for delivery to the user.
4317 * Packets in sequence go to the receive queue.
4318 * Out of sequence packets to the out_of_order_queue.
4320 if (TCP_SKB_CB(skb
)->seq
== tp
->rcv_nxt
) {
4321 if (tcp_receive_window(tp
) == 0)
4324 /* Ok. In sequence. In window. */
4325 if (tp
->ucopy
.task
== current
&&
4326 tp
->copied_seq
== tp
->rcv_nxt
&& tp
->ucopy
.len
&&
4327 sock_owned_by_user(sk
) && !tp
->urg_data
) {
4328 int chunk
= min_t(unsigned int, skb
->len
,
4331 __set_current_state(TASK_RUNNING
);
4334 if (!skb_copy_datagram_iovec(skb
, 0, tp
->ucopy
.iov
, chunk
)) {
4335 tp
->ucopy
.len
-= chunk
;
4336 tp
->copied_seq
+= chunk
;
4337 eaten
= (chunk
== skb
->len
);
4338 tcp_rcv_space_adjust(sk
);
4346 tcp_try_rmem_schedule(sk
, skb
, skb
->truesize
))
4349 eaten
= tcp_queue_rcv(sk
, skb
, 0, &fragstolen
);
4351 tp
->rcv_nxt
= TCP_SKB_CB(skb
)->end_seq
;
4353 tcp_event_data_recv(sk
, skb
);
4357 if (!skb_queue_empty(&tp
->out_of_order_queue
)) {
4360 /* RFC2581. 4.2. SHOULD send immediate ACK, when
4361 * gap in queue is filled.
4363 if (skb_queue_empty(&tp
->out_of_order_queue
))
4364 inet_csk(sk
)->icsk_ack
.pingpong
= 0;
4367 if (tp
->rx_opt
.num_sacks
)
4368 tcp_sack_remove(tp
);
4370 tcp_fast_path_check(sk
);
4373 kfree_skb_partial(skb
, fragstolen
);
4374 if (!sock_flag(sk
, SOCK_DEAD
))
4375 sk
->sk_data_ready(sk
, 0);
4379 if (!after(TCP_SKB_CB(skb
)->end_seq
, tp
->rcv_nxt
)) {
4380 /* A retransmit, 2nd most common case. Force an immediate ack. */
4381 NET_INC_STATS_BH(sock_net(sk
), LINUX_MIB_DELAYEDACKLOST
);
4382 tcp_dsack_set(sk
, TCP_SKB_CB(skb
)->seq
, TCP_SKB_CB(skb
)->end_seq
);
4385 tcp_enter_quickack_mode(sk
);
4386 inet_csk_schedule_ack(sk
);
4392 /* Out of window. F.e. zero window probe. */
4393 if (!before(TCP_SKB_CB(skb
)->seq
, tp
->rcv_nxt
+ tcp_receive_window(tp
)))
4396 tcp_enter_quickack_mode(sk
);
4398 if (before(TCP_SKB_CB(skb
)->seq
, tp
->rcv_nxt
)) {
4399 /* Partial packet, seq < rcv_next < end_seq */
4400 SOCK_DEBUG(sk
, "partial packet: rcv_next %X seq %X - %X\n",
4401 tp
->rcv_nxt
, TCP_SKB_CB(skb
)->seq
,
4402 TCP_SKB_CB(skb
)->end_seq
);
4404 tcp_dsack_set(sk
, TCP_SKB_CB(skb
)->seq
, tp
->rcv_nxt
);
4406 /* If window is closed, drop tail of packet. But after
4407 * remembering D-SACK for its head made in previous line.
4409 if (!tcp_receive_window(tp
))
4414 tcp_data_queue_ofo(sk
, skb
);
4417 static struct sk_buff
*tcp_collapse_one(struct sock
*sk
, struct sk_buff
*skb
,
4418 struct sk_buff_head
*list
)
4420 struct sk_buff
*next
= NULL
;
4422 if (!skb_queue_is_last(list
, skb
))
4423 next
= skb_queue_next(list
, skb
);
4425 __skb_unlink(skb
, list
);
4427 NET_INC_STATS_BH(sock_net(sk
), LINUX_MIB_TCPRCVCOLLAPSED
);
4432 /* Collapse contiguous sequence of skbs head..tail with
4433 * sequence numbers start..end.
4435 * If tail is NULL, this means until the end of the list.
4437 * Segments with FIN/SYN are not collapsed (only because this
4441 tcp_collapse(struct sock
*sk
, struct sk_buff_head
*list
,
4442 struct sk_buff
*head
, struct sk_buff
*tail
,
4445 struct sk_buff
*skb
, *n
;
4448 /* First, check that queue is collapsible and find
4449 * the point where collapsing can be useful. */
4453 skb_queue_walk_from_safe(list
, skb
, n
) {
4456 /* No new bits? It is possible on ofo queue. */
4457 if (!before(start
, TCP_SKB_CB(skb
)->end_seq
)) {
4458 skb
= tcp_collapse_one(sk
, skb
, list
);
4464 /* The first skb to collapse is:
4466 * - bloated or contains data before "start" or
4467 * overlaps to the next one.
4469 if (!tcp_hdr(skb
)->syn
&& !tcp_hdr(skb
)->fin
&&
4470 (tcp_win_from_space(skb
->truesize
) > skb
->len
||
4471 before(TCP_SKB_CB(skb
)->seq
, start
))) {
4472 end_of_skbs
= false;
4476 if (!skb_queue_is_last(list
, skb
)) {
4477 struct sk_buff
*next
= skb_queue_next(list
, skb
);
4479 TCP_SKB_CB(skb
)->end_seq
!= TCP_SKB_CB(next
)->seq
) {
4480 end_of_skbs
= false;
4485 /* Decided to skip this, advance start seq. */
4486 start
= TCP_SKB_CB(skb
)->end_seq
;
4488 if (end_of_skbs
|| tcp_hdr(skb
)->syn
|| tcp_hdr(skb
)->fin
)
4491 while (before(start
, end
)) {
4492 struct sk_buff
*nskb
;
4493 unsigned int header
= skb_headroom(skb
);
4494 int copy
= SKB_MAX_ORDER(header
, 0);
4496 /* Too big header? This can happen with IPv6. */
4499 if (end
- start
< copy
)
4501 nskb
= alloc_skb(copy
+ header
, GFP_ATOMIC
);
4505 skb_set_mac_header(nskb
, skb_mac_header(skb
) - skb
->head
);
4506 skb_set_network_header(nskb
, (skb_network_header(skb
) -
4508 skb_set_transport_header(nskb
, (skb_transport_header(skb
) -
4510 skb_reserve(nskb
, header
);
4511 memcpy(nskb
->head
, skb
->head
, header
);
4512 memcpy(nskb
->cb
, skb
->cb
, sizeof(skb
->cb
));
4513 TCP_SKB_CB(nskb
)->seq
= TCP_SKB_CB(nskb
)->end_seq
= start
;
4514 __skb_queue_before(list
, skb
, nskb
);
4515 skb_set_owner_r(nskb
, sk
);
4517 /* Copy data, releasing collapsed skbs. */
4519 int offset
= start
- TCP_SKB_CB(skb
)->seq
;
4520 int size
= TCP_SKB_CB(skb
)->end_seq
- start
;
4524 size
= min(copy
, size
);
4525 if (skb_copy_bits(skb
, offset
, skb_put(nskb
, size
), size
))
4527 TCP_SKB_CB(nskb
)->end_seq
+= size
;
4531 if (!before(start
, TCP_SKB_CB(skb
)->end_seq
)) {
4532 skb
= tcp_collapse_one(sk
, skb
, list
);
4535 tcp_hdr(skb
)->syn
||
4543 /* Collapse ofo queue. Algorithm: select contiguous sequence of skbs
4544 * and tcp_collapse() them until all the queue is collapsed.
4546 static void tcp_collapse_ofo_queue(struct sock
*sk
)
4548 struct tcp_sock
*tp
= tcp_sk(sk
);
4549 struct sk_buff
*skb
= skb_peek(&tp
->out_of_order_queue
);
4550 struct sk_buff
*head
;
4556 start
= TCP_SKB_CB(skb
)->seq
;
4557 end
= TCP_SKB_CB(skb
)->end_seq
;
4561 struct sk_buff
*next
= NULL
;
4563 if (!skb_queue_is_last(&tp
->out_of_order_queue
, skb
))
4564 next
= skb_queue_next(&tp
->out_of_order_queue
, skb
);
4567 /* Segment is terminated when we see gap or when
4568 * we are at the end of all the queue. */
4570 after(TCP_SKB_CB(skb
)->seq
, end
) ||
4571 before(TCP_SKB_CB(skb
)->end_seq
, start
)) {
4572 tcp_collapse(sk
, &tp
->out_of_order_queue
,
4573 head
, skb
, start
, end
);
4577 /* Start new segment */
4578 start
= TCP_SKB_CB(skb
)->seq
;
4579 end
= TCP_SKB_CB(skb
)->end_seq
;
4581 if (before(TCP_SKB_CB(skb
)->seq
, start
))
4582 start
= TCP_SKB_CB(skb
)->seq
;
4583 if (after(TCP_SKB_CB(skb
)->end_seq
, end
))
4584 end
= TCP_SKB_CB(skb
)->end_seq
;
4590 * Purge the out-of-order queue.
4591 * Return true if queue was pruned.
4593 static bool tcp_prune_ofo_queue(struct sock
*sk
)
4595 struct tcp_sock
*tp
= tcp_sk(sk
);
4598 if (!skb_queue_empty(&tp
->out_of_order_queue
)) {
4599 NET_INC_STATS_BH(sock_net(sk
), LINUX_MIB_OFOPRUNED
);
4600 __skb_queue_purge(&tp
->out_of_order_queue
);
4602 /* Reset SACK state. A conforming SACK implementation will
4603 * do the same at a timeout based retransmit. When a connection
4604 * is in a sad state like this, we care only about integrity
4605 * of the connection not performance.
4607 if (tp
->rx_opt
.sack_ok
)
4608 tcp_sack_reset(&tp
->rx_opt
);
4615 /* Reduce allocated memory if we can, trying to get
4616 * the socket within its memory limits again.
4618 * Return less than zero if we should start dropping frames
4619 * until the socket owning process reads some of the data
4620 * to stabilize the situation.
4622 static int tcp_prune_queue(struct sock
*sk
)
4624 struct tcp_sock
*tp
= tcp_sk(sk
);
4626 SOCK_DEBUG(sk
, "prune_queue: c=%x\n", tp
->copied_seq
);
4628 NET_INC_STATS_BH(sock_net(sk
), LINUX_MIB_PRUNECALLED
);
4630 if (atomic_read(&sk
->sk_rmem_alloc
) >= sk
->sk_rcvbuf
)
4631 tcp_clamp_window(sk
);
4632 else if (sk_under_memory_pressure(sk
))
4633 tp
->rcv_ssthresh
= min(tp
->rcv_ssthresh
, 4U * tp
->advmss
);
4635 tcp_collapse_ofo_queue(sk
);
4636 if (!skb_queue_empty(&sk
->sk_receive_queue
))
4637 tcp_collapse(sk
, &sk
->sk_receive_queue
,
4638 skb_peek(&sk
->sk_receive_queue
),
4640 tp
->copied_seq
, tp
->rcv_nxt
);
4643 if (atomic_read(&sk
->sk_rmem_alloc
) <= sk
->sk_rcvbuf
)
4646 /* Collapsing did not help, destructive actions follow.
4647 * This must not ever occur. */
4649 tcp_prune_ofo_queue(sk
);
4651 if (atomic_read(&sk
->sk_rmem_alloc
) <= sk
->sk_rcvbuf
)
4654 /* If we are really being abused, tell the caller to silently
4655 * drop receive data on the floor. It will get retransmitted
4656 * and hopefully then we'll have sufficient space.
4658 NET_INC_STATS_BH(sock_net(sk
), LINUX_MIB_RCVPRUNED
);
4660 /* Massive buffer overcommit. */
4665 /* RFC2861, slow part. Adjust cwnd, after it was not full during one rto.
4666 * As additional protections, we do not touch cwnd in retransmission phases,
4667 * and if application hit its sndbuf limit recently.
4669 void tcp_cwnd_application_limited(struct sock
*sk
)
4671 struct tcp_sock
*tp
= tcp_sk(sk
);
4673 if (inet_csk(sk
)->icsk_ca_state
== TCP_CA_Open
&&
4674 sk
->sk_socket
&& !test_bit(SOCK_NOSPACE
, &sk
->sk_socket
->flags
)) {
4675 /* Limited by application or receiver window. */
4676 u32 init_win
= tcp_init_cwnd(tp
, __sk_dst_get(sk
));
4677 u32 win_used
= max(tp
->snd_cwnd_used
, init_win
);
4678 if (win_used
< tp
->snd_cwnd
) {
4679 tp
->snd_ssthresh
= tcp_current_ssthresh(sk
);
4680 tp
->snd_cwnd
= (tp
->snd_cwnd
+ win_used
) >> 1;
4682 tp
->snd_cwnd_used
= 0;
4684 tp
->snd_cwnd_stamp
= tcp_time_stamp
;
4687 static bool tcp_should_expand_sndbuf(const struct sock
*sk
)
4689 const struct tcp_sock
*tp
= tcp_sk(sk
);
4691 /* If the user specified a specific send buffer setting, do
4694 if (sk
->sk_userlocks
& SOCK_SNDBUF_LOCK
)
4697 /* If we are under global TCP memory pressure, do not expand. */
4698 if (sk_under_memory_pressure(sk
))
4701 /* If we are under soft global TCP memory pressure, do not expand. */
4702 if (sk_memory_allocated(sk
) >= sk_prot_mem_limits(sk
, 0))
4705 /* If we filled the congestion window, do not expand. */
4706 if (tp
->packets_out
>= tp
->snd_cwnd
)
4712 /* When incoming ACK allowed to free some skb from write_queue,
4713 * we remember this event in flag SOCK_QUEUE_SHRUNK and wake up socket
4714 * on the exit from tcp input handler.
4716 * PROBLEM: sndbuf expansion does not work well with largesend.
4718 static void tcp_new_space(struct sock
*sk
)
4720 struct tcp_sock
*tp
= tcp_sk(sk
);
4722 if (tcp_should_expand_sndbuf(sk
)) {
4723 int sndmem
= SKB_TRUESIZE(max_t(u32
,
4724 tp
->rx_opt
.mss_clamp
,
4727 int demanded
= max_t(unsigned int, tp
->snd_cwnd
,
4728 tp
->reordering
+ 1);
4729 sndmem
*= 2 * demanded
;
4730 if (sndmem
> sk
->sk_sndbuf
)
4731 sk
->sk_sndbuf
= min(sndmem
, sysctl_tcp_wmem
[2]);
4732 tp
->snd_cwnd_stamp
= tcp_time_stamp
;
4735 sk
->sk_write_space(sk
);
4738 static void tcp_check_space(struct sock
*sk
)
4740 if (sock_flag(sk
, SOCK_QUEUE_SHRUNK
)) {
4741 sock_reset_flag(sk
, SOCK_QUEUE_SHRUNK
);
4742 if (sk
->sk_socket
&&
4743 test_bit(SOCK_NOSPACE
, &sk
->sk_socket
->flags
))
4748 static inline void tcp_data_snd_check(struct sock
*sk
)
4750 tcp_push_pending_frames(sk
);
4751 tcp_check_space(sk
);
4755 * Check if sending an ack is needed.
4757 static void __tcp_ack_snd_check(struct sock
*sk
, int ofo_possible
)
4759 struct tcp_sock
*tp
= tcp_sk(sk
);
4761 /* More than one full frame received... */
4762 if (((tp
->rcv_nxt
- tp
->rcv_wup
) > inet_csk(sk
)->icsk_ack
.rcv_mss
&&
4763 /* ... and right edge of window advances far enough.
4764 * (tcp_recvmsg() will send ACK otherwise). Or...
4766 __tcp_select_window(sk
) >= tp
->rcv_wnd
) ||
4767 /* We ACK each frame or... */
4768 tcp_in_quickack_mode(sk
) ||
4769 /* We have out of order data. */
4770 (ofo_possible
&& skb_peek(&tp
->out_of_order_queue
))) {
4771 /* Then ack it now */
4774 /* Else, send delayed ack. */
4775 tcp_send_delayed_ack(sk
);
4779 static inline void tcp_ack_snd_check(struct sock
*sk
)
4781 if (!inet_csk_ack_scheduled(sk
)) {
4782 /* We sent a data segment already. */
4785 __tcp_ack_snd_check(sk
, 1);
4789 * This routine is only called when we have urgent data
4790 * signaled. Its the 'slow' part of tcp_urg. It could be
4791 * moved inline now as tcp_urg is only called from one
4792 * place. We handle URGent data wrong. We have to - as
4793 * BSD still doesn't use the correction from RFC961.
4794 * For 1003.1g we should support a new option TCP_STDURG to permit
4795 * either form (or just set the sysctl tcp_stdurg).
4798 static void tcp_check_urg(struct sock
*sk
, const struct tcphdr
*th
)
4800 struct tcp_sock
*tp
= tcp_sk(sk
);
4801 u32 ptr
= ntohs(th
->urg_ptr
);
4803 if (ptr
&& !sysctl_tcp_stdurg
)
4805 ptr
+= ntohl(th
->seq
);
4807 /* Ignore urgent data that we've already seen and read. */
4808 if (after(tp
->copied_seq
, ptr
))
4811 /* Do not replay urg ptr.
4813 * NOTE: interesting situation not covered by specs.
4814 * Misbehaving sender may send urg ptr, pointing to segment,
4815 * which we already have in ofo queue. We are not able to fetch
4816 * such data and will stay in TCP_URG_NOTYET until will be eaten
4817 * by recvmsg(). Seems, we are not obliged to handle such wicked
4818 * situations. But it is worth to think about possibility of some
4819 * DoSes using some hypothetical application level deadlock.
4821 if (before(ptr
, tp
->rcv_nxt
))
4824 /* Do we already have a newer (or duplicate) urgent pointer? */
4825 if (tp
->urg_data
&& !after(ptr
, tp
->urg_seq
))
4828 /* Tell the world about our new urgent pointer. */
4831 /* We may be adding urgent data when the last byte read was
4832 * urgent. To do this requires some care. We cannot just ignore
4833 * tp->copied_seq since we would read the last urgent byte again
4834 * as data, nor can we alter copied_seq until this data arrives
4835 * or we break the semantics of SIOCATMARK (and thus sockatmark())
4837 * NOTE. Double Dutch. Rendering to plain English: author of comment
4838 * above did something sort of send("A", MSG_OOB); send("B", MSG_OOB);
4839 * and expect that both A and B disappear from stream. This is _wrong_.
4840 * Though this happens in BSD with high probability, this is occasional.
4841 * Any application relying on this is buggy. Note also, that fix "works"
4842 * only in this artificial test. Insert some normal data between A and B and we will
4843 * decline of BSD again. Verdict: it is better to remove to trap
4846 if (tp
->urg_seq
== tp
->copied_seq
&& tp
->urg_data
&&
4847 !sock_flag(sk
, SOCK_URGINLINE
) && tp
->copied_seq
!= tp
->rcv_nxt
) {
4848 struct sk_buff
*skb
= skb_peek(&sk
->sk_receive_queue
);
4850 if (skb
&& !before(tp
->copied_seq
, TCP_SKB_CB(skb
)->end_seq
)) {
4851 __skb_unlink(skb
, &sk
->sk_receive_queue
);
4856 tp
->urg_data
= TCP_URG_NOTYET
;
4859 /* Disable header prediction. */
4863 /* This is the 'fast' part of urgent handling. */
4864 static void tcp_urg(struct sock
*sk
, struct sk_buff
*skb
, const struct tcphdr
*th
)
4866 struct tcp_sock
*tp
= tcp_sk(sk
);
4868 /* Check if we get a new urgent pointer - normally not. */
4870 tcp_check_urg(sk
, th
);
4872 /* Do we wait for any urgent data? - normally not... */
4873 if (tp
->urg_data
== TCP_URG_NOTYET
) {
4874 u32 ptr
= tp
->urg_seq
- ntohl(th
->seq
) + (th
->doff
* 4) -
4877 /* Is the urgent pointer pointing into this packet? */
4878 if (ptr
< skb
->len
) {
4880 if (skb_copy_bits(skb
, ptr
, &tmp
, 1))
4882 tp
->urg_data
= TCP_URG_VALID
| tmp
;
4883 if (!sock_flag(sk
, SOCK_DEAD
))
4884 sk
->sk_data_ready(sk
, 0);
4889 static int tcp_copy_to_iovec(struct sock
*sk
, struct sk_buff
*skb
, int hlen
)
4891 struct tcp_sock
*tp
= tcp_sk(sk
);
4892 int chunk
= skb
->len
- hlen
;
4896 if (skb_csum_unnecessary(skb
))
4897 err
= skb_copy_datagram_iovec(skb
, hlen
, tp
->ucopy
.iov
, chunk
);
4899 err
= skb_copy_and_csum_datagram_iovec(skb
, hlen
,
4900 tp
->ucopy
.iov
, chunk
);
4903 tp
->ucopy
.len
-= chunk
;
4904 tp
->copied_seq
+= chunk
;
4905 tcp_rcv_space_adjust(sk
);
4912 static __sum16
__tcp_checksum_complete_user(struct sock
*sk
,
4913 struct sk_buff
*skb
)
4917 if (sock_owned_by_user(sk
)) {
4919 result
= __tcp_checksum_complete(skb
);
4922 result
= __tcp_checksum_complete(skb
);
4927 static inline bool tcp_checksum_complete_user(struct sock
*sk
,
4928 struct sk_buff
*skb
)
4930 return !skb_csum_unnecessary(skb
) &&
4931 __tcp_checksum_complete_user(sk
, skb
);
4934 #ifdef CONFIG_NET_DMA
4935 static bool tcp_dma_try_early_copy(struct sock
*sk
, struct sk_buff
*skb
,
4938 struct tcp_sock
*tp
= tcp_sk(sk
);
4939 int chunk
= skb
->len
- hlen
;
4941 bool copied_early
= false;
4943 if (tp
->ucopy
.wakeup
)
4946 if (!tp
->ucopy
.dma_chan
&& tp
->ucopy
.pinned_list
)
4947 tp
->ucopy
.dma_chan
= net_dma_find_channel();
4949 if (tp
->ucopy
.dma_chan
&& skb_csum_unnecessary(skb
)) {
4951 dma_cookie
= dma_skb_copy_datagram_iovec(tp
->ucopy
.dma_chan
,
4953 tp
->ucopy
.iov
, chunk
,
4954 tp
->ucopy
.pinned_list
);
4959 tp
->ucopy
.dma_cookie
= dma_cookie
;
4960 copied_early
= true;
4962 tp
->ucopy
.len
-= chunk
;
4963 tp
->copied_seq
+= chunk
;
4964 tcp_rcv_space_adjust(sk
);
4966 if ((tp
->ucopy
.len
== 0) ||
4967 (tcp_flag_word(tcp_hdr(skb
)) & TCP_FLAG_PSH
) ||
4968 (atomic_read(&sk
->sk_rmem_alloc
) > (sk
->sk_rcvbuf
>> 1))) {
4969 tp
->ucopy
.wakeup
= 1;
4970 sk
->sk_data_ready(sk
, 0);
4972 } else if (chunk
> 0) {
4973 tp
->ucopy
.wakeup
= 1;
4974 sk
->sk_data_ready(sk
, 0);
4977 return copied_early
;
4979 #endif /* CONFIG_NET_DMA */
4981 /* Does PAWS and seqno based validation of an incoming segment, flags will
4982 * play significant role here.
4984 static bool tcp_validate_incoming(struct sock
*sk
, struct sk_buff
*skb
,
4985 const struct tcphdr
*th
, int syn_inerr
)
4987 struct tcp_sock
*tp
= tcp_sk(sk
);
4989 /* RFC1323: H1. Apply PAWS check first. */
4990 if (tcp_fast_parse_options(skb
, th
, tp
) && tp
->rx_opt
.saw_tstamp
&&
4991 tcp_paws_discard(sk
, skb
)) {
4993 NET_INC_STATS_BH(sock_net(sk
), LINUX_MIB_PAWSESTABREJECTED
);
4994 tcp_send_dupack(sk
, skb
);
4997 /* Reset is accepted even if it did not pass PAWS. */
5000 /* Step 1: check sequence number */
5001 if (!tcp_sequence(tp
, TCP_SKB_CB(skb
)->seq
, TCP_SKB_CB(skb
)->end_seq
)) {
5002 /* RFC793, page 37: "In all states except SYN-SENT, all reset
5003 * (RST) segments are validated by checking their SEQ-fields."
5004 * And page 69: "If an incoming segment is not acceptable,
5005 * an acknowledgment should be sent in reply (unless the RST
5006 * bit is set, if so drop the segment and return)".
5011 tcp_send_dupack(sk
, skb
);
5016 /* Step 2: check RST bit */
5019 * If sequence number exactly matches RCV.NXT, then
5020 * RESET the connection
5022 * Send a challenge ACK
5024 if (TCP_SKB_CB(skb
)->seq
== tp
->rcv_nxt
)
5027 tcp_send_challenge_ack(sk
);
5031 /* step 3: check security and precedence [ignored] */
5033 /* step 4: Check for a SYN
5034 * RFC 5691 4.2 : Send a challenge ack
5039 TCP_INC_STATS_BH(sock_net(sk
), TCP_MIB_INERRS
);
5040 NET_INC_STATS_BH(sock_net(sk
), LINUX_MIB_TCPSYNCHALLENGE
);
5041 tcp_send_challenge_ack(sk
);
5053 * TCP receive function for the ESTABLISHED state.
5055 * It is split into a fast path and a slow path. The fast path is
5057 * - A zero window was announced from us - zero window probing
5058 * is only handled properly in the slow path.
5059 * - Out of order segments arrived.
5060 * - Urgent data is expected.
5061 * - There is no buffer space left
5062 * - Unexpected TCP flags/window values/header lengths are received
5063 * (detected by checking the TCP header against pred_flags)
5064 * - Data is sent in both directions. Fast path only supports pure senders
5065 * or pure receivers (this means either the sequence number or the ack
5066 * value must stay constant)
5067 * - Unexpected TCP option.
5069 * When these conditions are not satisfied it drops into a standard
5070 * receive procedure patterned after RFC793 to handle all cases.
5071 * The first three cases are guaranteed by proper pred_flags setting,
5072 * the rest is checked inline. Fast processing is turned on in
5073 * tcp_data_queue when everything is OK.
5075 void tcp_rcv_established(struct sock
*sk
, struct sk_buff
*skb
,
5076 const struct tcphdr
*th
, unsigned int len
)
5078 struct tcp_sock
*tp
= tcp_sk(sk
);
5080 if (unlikely(sk
->sk_rx_dst
== NULL
))
5081 inet_csk(sk
)->icsk_af_ops
->sk_rx_dst_set(sk
, skb
);
5083 * Header prediction.
5084 * The code loosely follows the one in the famous
5085 * "30 instruction TCP receive" Van Jacobson mail.
5087 * Van's trick is to deposit buffers into socket queue
5088 * on a device interrupt, to call tcp_recv function
5089 * on the receive process context and checksum and copy
5090 * the buffer to user space. smart...
5092 * Our current scheme is not silly either but we take the
5093 * extra cost of the net_bh soft interrupt processing...
5094 * We do checksum and copy also but from device to kernel.
5097 tp
->rx_opt
.saw_tstamp
= 0;
5099 /* pred_flags is 0xS?10 << 16 + snd_wnd
5100 * if header_prediction is to be made
5101 * 'S' will always be tp->tcp_header_len >> 2
5102 * '?' will be 0 for the fast path, otherwise pred_flags is 0 to
5103 * turn it off (when there are holes in the receive
5104 * space for instance)
5105 * PSH flag is ignored.
5108 if ((tcp_flag_word(th
) & TCP_HP_BITS
) == tp
->pred_flags
&&
5109 TCP_SKB_CB(skb
)->seq
== tp
->rcv_nxt
&&
5110 !after(TCP_SKB_CB(skb
)->ack_seq
, tp
->snd_nxt
)) {
5111 int tcp_header_len
= tp
->tcp_header_len
;
5113 /* Timestamp header prediction: tcp_header_len
5114 * is automatically equal to th->doff*4 due to pred_flags
5118 /* Check timestamp */
5119 if (tcp_header_len
== sizeof(struct tcphdr
) + TCPOLEN_TSTAMP_ALIGNED
) {
5120 /* No? Slow path! */
5121 if (!tcp_parse_aligned_timestamp(tp
, th
))
5124 /* If PAWS failed, check it more carefully in slow path */
5125 if ((s32
)(tp
->rx_opt
.rcv_tsval
- tp
->rx_opt
.ts_recent
) < 0)
5128 /* DO NOT update ts_recent here, if checksum fails
5129 * and timestamp was corrupted part, it will result
5130 * in a hung connection since we will drop all
5131 * future packets due to the PAWS test.
5135 if (len
<= tcp_header_len
) {
5136 /* Bulk data transfer: sender */
5137 if (len
== tcp_header_len
) {
5138 /* Predicted packet is in window by definition.
5139 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5140 * Hence, check seq<=rcv_wup reduces to:
5142 if (tcp_header_len
==
5143 (sizeof(struct tcphdr
) + TCPOLEN_TSTAMP_ALIGNED
) &&
5144 tp
->rcv_nxt
== tp
->rcv_wup
)
5145 tcp_store_ts_recent(tp
);
5147 /* We know that such packets are checksummed
5150 tcp_ack(sk
, skb
, 0);
5152 tcp_data_snd_check(sk
);
5154 } else { /* Header too small */
5155 TCP_INC_STATS_BH(sock_net(sk
), TCP_MIB_INERRS
);
5160 int copied_early
= 0;
5161 bool fragstolen
= false;
5163 if (tp
->copied_seq
== tp
->rcv_nxt
&&
5164 len
- tcp_header_len
<= tp
->ucopy
.len
) {
5165 #ifdef CONFIG_NET_DMA
5166 if (tp
->ucopy
.task
== current
&&
5167 sock_owned_by_user(sk
) &&
5168 tcp_dma_try_early_copy(sk
, skb
, tcp_header_len
)) {
5173 if (tp
->ucopy
.task
== current
&&
5174 sock_owned_by_user(sk
) && !copied_early
) {
5175 __set_current_state(TASK_RUNNING
);
5177 if (!tcp_copy_to_iovec(sk
, skb
, tcp_header_len
))
5181 /* Predicted packet is in window by definition.
5182 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5183 * Hence, check seq<=rcv_wup reduces to:
5185 if (tcp_header_len
==
5186 (sizeof(struct tcphdr
) +
5187 TCPOLEN_TSTAMP_ALIGNED
) &&
5188 tp
->rcv_nxt
== tp
->rcv_wup
)
5189 tcp_store_ts_recent(tp
);
5191 tcp_rcv_rtt_measure_ts(sk
, skb
);
5193 __skb_pull(skb
, tcp_header_len
);
5194 tp
->rcv_nxt
= TCP_SKB_CB(skb
)->end_seq
;
5195 NET_INC_STATS_BH(sock_net(sk
), LINUX_MIB_TCPHPHITSTOUSER
);
5198 tcp_cleanup_rbuf(sk
, skb
->len
);
5201 if (tcp_checksum_complete_user(sk
, skb
))
5204 if ((int)skb
->truesize
> sk
->sk_forward_alloc
)
5207 /* Predicted packet is in window by definition.
5208 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5209 * Hence, check seq<=rcv_wup reduces to:
5211 if (tcp_header_len
==
5212 (sizeof(struct tcphdr
) + TCPOLEN_TSTAMP_ALIGNED
) &&
5213 tp
->rcv_nxt
== tp
->rcv_wup
)
5214 tcp_store_ts_recent(tp
);
5216 tcp_rcv_rtt_measure_ts(sk
, skb
);
5218 NET_INC_STATS_BH(sock_net(sk
), LINUX_MIB_TCPHPHITS
);
5220 /* Bulk data transfer: receiver */
5221 eaten
= tcp_queue_rcv(sk
, skb
, tcp_header_len
,
5225 tcp_event_data_recv(sk
, skb
);
5227 if (TCP_SKB_CB(skb
)->ack_seq
!= tp
->snd_una
) {
5228 /* Well, only one small jumplet in fast path... */
5229 tcp_ack(sk
, skb
, FLAG_DATA
);
5230 tcp_data_snd_check(sk
);
5231 if (!inet_csk_ack_scheduled(sk
))
5235 if (!copied_early
|| tp
->rcv_nxt
!= tp
->rcv_wup
)
5236 __tcp_ack_snd_check(sk
, 0);
5238 #ifdef CONFIG_NET_DMA
5240 __skb_queue_tail(&sk
->sk_async_wait_queue
, skb
);
5244 kfree_skb_partial(skb
, fragstolen
);
5245 sk
->sk_data_ready(sk
, 0);
5251 if (len
< (th
->doff
<< 2) || tcp_checksum_complete_user(sk
, skb
))
5254 if (!th
->ack
&& !th
->rst
)
5258 * Standard slow path.
5261 if (!tcp_validate_incoming(sk
, skb
, th
, 1))
5265 if (tcp_ack(sk
, skb
, FLAG_SLOWPATH
| FLAG_UPDATE_TS_RECENT
) < 0)
5268 tcp_rcv_rtt_measure_ts(sk
, skb
);
5270 /* Process urgent data. */
5271 tcp_urg(sk
, skb
, th
);
5273 /* step 7: process the segment text */
5274 tcp_data_queue(sk
, skb
);
5276 tcp_data_snd_check(sk
);
5277 tcp_ack_snd_check(sk
);
5281 TCP_INC_STATS_BH(sock_net(sk
), TCP_MIB_CSUMERRORS
);
5282 TCP_INC_STATS_BH(sock_net(sk
), TCP_MIB_INERRS
);
5287 EXPORT_SYMBOL(tcp_rcv_established
);
5289 void tcp_finish_connect(struct sock
*sk
, struct sk_buff
*skb
)
5291 struct tcp_sock
*tp
= tcp_sk(sk
);
5292 struct inet_connection_sock
*icsk
= inet_csk(sk
);
5294 tcp_set_state(sk
, TCP_ESTABLISHED
);
5297 icsk
->icsk_af_ops
->sk_rx_dst_set(sk
, skb
);
5298 security_inet_conn_established(sk
, skb
);
5301 /* Make sure socket is routed, for correct metrics. */
5302 icsk
->icsk_af_ops
->rebuild_header(sk
);
5304 tcp_init_metrics(sk
);
5306 tcp_init_congestion_control(sk
);
5308 /* Prevent spurious tcp_cwnd_restart() on first data
5311 tp
->lsndtime
= tcp_time_stamp
;
5313 tcp_init_buffer_space(sk
);
5315 if (sock_flag(sk
, SOCK_KEEPOPEN
))
5316 inet_csk_reset_keepalive_timer(sk
, keepalive_time_when(tp
));
5318 if (!tp
->rx_opt
.snd_wscale
)
5319 __tcp_fast_path_on(tp
, tp
->snd_wnd
);
5323 if (!sock_flag(sk
, SOCK_DEAD
)) {
5324 sk
->sk_state_change(sk
);
5325 sk_wake_async(sk
, SOCK_WAKE_IO
, POLL_OUT
);
5329 static bool tcp_rcv_fastopen_synack(struct sock
*sk
, struct sk_buff
*synack
,
5330 struct tcp_fastopen_cookie
*cookie
)
5332 struct tcp_sock
*tp
= tcp_sk(sk
);
5333 struct sk_buff
*data
= tp
->syn_data
? tcp_write_queue_head(sk
) : NULL
;
5334 u16 mss
= tp
->rx_opt
.mss_clamp
;
5337 if (mss
== tp
->rx_opt
.user_mss
) {
5338 struct tcp_options_received opt
;
5340 /* Get original SYNACK MSS value if user MSS sets mss_clamp */
5341 tcp_clear_options(&opt
);
5342 opt
.user_mss
= opt
.mss_clamp
= 0;
5343 tcp_parse_options(synack
, &opt
, 0, NULL
);
5344 mss
= opt
.mss_clamp
;
5347 if (!tp
->syn_fastopen
) /* Ignore an unsolicited cookie */
5350 /* The SYN-ACK neither has cookie nor acknowledges the data. Presumably
5351 * the remote receives only the retransmitted (regular) SYNs: either
5352 * the original SYN-data or the corresponding SYN-ACK is lost.
5354 syn_drop
= (cookie
->len
<= 0 && data
&& tp
->total_retrans
);
5356 tcp_fastopen_cache_set(sk
, mss
, cookie
, syn_drop
);
5358 if (data
) { /* Retransmit unacked data in SYN */
5359 tcp_for_write_queue_from(data
, sk
) {
5360 if (data
== tcp_send_head(sk
) ||
5361 __tcp_retransmit_skb(sk
, data
))
5367 tp
->syn_data_acked
= tp
->syn_data
;
5371 static int tcp_rcv_synsent_state_process(struct sock
*sk
, struct sk_buff
*skb
,
5372 const struct tcphdr
*th
, unsigned int len
)
5374 struct inet_connection_sock
*icsk
= inet_csk(sk
);
5375 struct tcp_sock
*tp
= tcp_sk(sk
);
5376 struct tcp_fastopen_cookie foc
= { .len
= -1 };
5377 int saved_clamp
= tp
->rx_opt
.mss_clamp
;
5379 tcp_parse_options(skb
, &tp
->rx_opt
, 0, &foc
);
5380 if (tp
->rx_opt
.saw_tstamp
&& tp
->rx_opt
.rcv_tsecr
)
5381 tp
->rx_opt
.rcv_tsecr
-= tp
->tsoffset
;
5385 * "If the state is SYN-SENT then
5386 * first check the ACK bit
5387 * If the ACK bit is set
5388 * If SEG.ACK =< ISS, or SEG.ACK > SND.NXT, send
5389 * a reset (unless the RST bit is set, if so drop
5390 * the segment and return)"
5392 if (!after(TCP_SKB_CB(skb
)->ack_seq
, tp
->snd_una
) ||
5393 after(TCP_SKB_CB(skb
)->ack_seq
, tp
->snd_nxt
))
5394 goto reset_and_undo
;
5396 if (tp
->rx_opt
.saw_tstamp
&& tp
->rx_opt
.rcv_tsecr
&&
5397 !between(tp
->rx_opt
.rcv_tsecr
, tp
->retrans_stamp
,
5399 NET_INC_STATS_BH(sock_net(sk
), LINUX_MIB_PAWSACTIVEREJECTED
);
5400 goto reset_and_undo
;
5403 /* Now ACK is acceptable.
5405 * "If the RST bit is set
5406 * If the ACK was acceptable then signal the user "error:
5407 * connection reset", drop the segment, enter CLOSED state,
5408 * delete TCB, and return."
5417 * "fifth, if neither of the SYN or RST bits is set then
5418 * drop the segment and return."
5424 goto discard_and_undo
;
5427 * "If the SYN bit is on ...
5428 * are acceptable then ...
5429 * (our SYN has been ACKed), change the connection
5430 * state to ESTABLISHED..."
5433 TCP_ECN_rcv_synack(tp
, th
);
5435 tcp_init_wl(tp
, TCP_SKB_CB(skb
)->seq
);
5436 tcp_ack(sk
, skb
, FLAG_SLOWPATH
);
5438 /* Ok.. it's good. Set up sequence numbers and
5439 * move to established.
5441 tp
->rcv_nxt
= TCP_SKB_CB(skb
)->seq
+ 1;
5442 tp
->rcv_wup
= TCP_SKB_CB(skb
)->seq
+ 1;
5444 /* RFC1323: The window in SYN & SYN/ACK segments is
5447 tp
->snd_wnd
= ntohs(th
->window
);
5449 if (!tp
->rx_opt
.wscale_ok
) {
5450 tp
->rx_opt
.snd_wscale
= tp
->rx_opt
.rcv_wscale
= 0;
5451 tp
->window_clamp
= min(tp
->window_clamp
, 65535U);
5454 if (tp
->rx_opt
.saw_tstamp
) {
5455 tp
->rx_opt
.tstamp_ok
= 1;
5456 tp
->tcp_header_len
=
5457 sizeof(struct tcphdr
) + TCPOLEN_TSTAMP_ALIGNED
;
5458 tp
->advmss
-= TCPOLEN_TSTAMP_ALIGNED
;
5459 tcp_store_ts_recent(tp
);
5461 tp
->tcp_header_len
= sizeof(struct tcphdr
);
5464 if (tcp_is_sack(tp
) && sysctl_tcp_fack
)
5465 tcp_enable_fack(tp
);
5468 tcp_sync_mss(sk
, icsk
->icsk_pmtu_cookie
);
5469 tcp_initialize_rcv_mss(sk
);
5471 /* Remember, tcp_poll() does not lock socket!
5472 * Change state from SYN-SENT only after copied_seq
5473 * is initialized. */
5474 tp
->copied_seq
= tp
->rcv_nxt
;
5478 tcp_finish_connect(sk
, skb
);
5480 if ((tp
->syn_fastopen
|| tp
->syn_data
) &&
5481 tcp_rcv_fastopen_synack(sk
, skb
, &foc
))
5484 if (sk
->sk_write_pending
||
5485 icsk
->icsk_accept_queue
.rskq_defer_accept
||
5486 icsk
->icsk_ack
.pingpong
) {
5487 /* Save one ACK. Data will be ready after
5488 * several ticks, if write_pending is set.
5490 * It may be deleted, but with this feature tcpdumps
5491 * look so _wonderfully_ clever, that I was not able
5492 * to stand against the temptation 8) --ANK
5494 inet_csk_schedule_ack(sk
);
5495 icsk
->icsk_ack
.lrcvtime
= tcp_time_stamp
;
5496 tcp_enter_quickack_mode(sk
);
5497 inet_csk_reset_xmit_timer(sk
, ICSK_TIME_DACK
,
5498 TCP_DELACK_MAX
, TCP_RTO_MAX
);
5509 /* No ACK in the segment */
5513 * "If the RST bit is set
5515 * Otherwise (no ACK) drop the segment and return."
5518 goto discard_and_undo
;
5522 if (tp
->rx_opt
.ts_recent_stamp
&& tp
->rx_opt
.saw_tstamp
&&
5523 tcp_paws_reject(&tp
->rx_opt
, 0))
5524 goto discard_and_undo
;
5527 /* We see SYN without ACK. It is attempt of
5528 * simultaneous connect with crossed SYNs.
5529 * Particularly, it can be connect to self.
5531 tcp_set_state(sk
, TCP_SYN_RECV
);
5533 if (tp
->rx_opt
.saw_tstamp
) {
5534 tp
->rx_opt
.tstamp_ok
= 1;
5535 tcp_store_ts_recent(tp
);
5536 tp
->tcp_header_len
=
5537 sizeof(struct tcphdr
) + TCPOLEN_TSTAMP_ALIGNED
;
5539 tp
->tcp_header_len
= sizeof(struct tcphdr
);
5542 tp
->rcv_nxt
= TCP_SKB_CB(skb
)->seq
+ 1;
5543 tp
->copied_seq
= tp
->rcv_nxt
;
5544 tp
->rcv_wup
= TCP_SKB_CB(skb
)->seq
+ 1;
5546 /* RFC1323: The window in SYN & SYN/ACK segments is
5549 tp
->snd_wnd
= ntohs(th
->window
);
5550 tp
->snd_wl1
= TCP_SKB_CB(skb
)->seq
;
5551 tp
->max_window
= tp
->snd_wnd
;
5553 TCP_ECN_rcv_syn(tp
, th
);
5556 tcp_sync_mss(sk
, icsk
->icsk_pmtu_cookie
);
5557 tcp_initialize_rcv_mss(sk
);
5559 tcp_send_synack(sk
);
5561 /* Note, we could accept data and URG from this segment.
5562 * There are no obstacles to make this (except that we must
5563 * either change tcp_recvmsg() to prevent it from returning data
5564 * before 3WHS completes per RFC793, or employ TCP Fast Open).
5566 * However, if we ignore data in ACKless segments sometimes,
5567 * we have no reasons to accept it sometimes.
5568 * Also, seems the code doing it in step6 of tcp_rcv_state_process
5569 * is not flawless. So, discard packet for sanity.
5570 * Uncomment this return to process the data.
5577 /* "fifth, if neither of the SYN or RST bits is set then
5578 * drop the segment and return."
5582 tcp_clear_options(&tp
->rx_opt
);
5583 tp
->rx_opt
.mss_clamp
= saved_clamp
;
5587 tcp_clear_options(&tp
->rx_opt
);
5588 tp
->rx_opt
.mss_clamp
= saved_clamp
;
5593 * This function implements the receiving procedure of RFC 793 for
5594 * all states except ESTABLISHED and TIME_WAIT.
5595 * It's called from both tcp_v4_rcv and tcp_v6_rcv and should be
5596 * address independent.
5599 int tcp_rcv_state_process(struct sock
*sk
, struct sk_buff
*skb
,
5600 const struct tcphdr
*th
, unsigned int len
)
5602 struct tcp_sock
*tp
= tcp_sk(sk
);
5603 struct inet_connection_sock
*icsk
= inet_csk(sk
);
5604 struct request_sock
*req
;
5609 tp
->rx_opt
.saw_tstamp
= 0;
5611 switch (sk
->sk_state
) {
5625 if (icsk
->icsk_af_ops
->conn_request(sk
, skb
) < 0)
5628 /* Now we have several options: In theory there is
5629 * nothing else in the frame. KA9Q has an option to
5630 * send data with the syn, BSD accepts data with the
5631 * syn up to the [to be] advertised window and
5632 * Solaris 2.1 gives you a protocol error. For now
5633 * we just ignore it, that fits the spec precisely
5634 * and avoids incompatibilities. It would be nice in
5635 * future to drop through and process the data.
5637 * Now that TTCP is starting to be used we ought to
5639 * But, this leaves one open to an easy denial of
5640 * service attack, and SYN cookies can't defend
5641 * against this problem. So, we drop the data
5642 * in the interest of security over speed unless
5643 * it's still in use.
5651 queued
= tcp_rcv_synsent_state_process(sk
, skb
, th
, len
);
5655 /* Do step6 onward by hand. */
5656 tcp_urg(sk
, skb
, th
);
5658 tcp_data_snd_check(sk
);
5662 req
= tp
->fastopen_rsk
;
5664 WARN_ON_ONCE(sk
->sk_state
!= TCP_SYN_RECV
&&
5665 sk
->sk_state
!= TCP_FIN_WAIT1
);
5667 if (tcp_check_req(sk
, skb
, req
, NULL
, true) == NULL
)
5671 if (!th
->ack
&& !th
->rst
)
5674 if (!tcp_validate_incoming(sk
, skb
, th
, 0))
5677 /* step 5: check the ACK field */
5678 acceptable
= tcp_ack(sk
, skb
, FLAG_SLOWPATH
|
5679 FLAG_UPDATE_TS_RECENT
) > 0;
5681 switch (sk
->sk_state
) {
5686 /* Once we leave TCP_SYN_RECV, we no longer need req
5690 synack_stamp
= tcp_rsk(req
)->snt_synack
;
5691 tp
->total_retrans
= req
->num_retrans
;
5692 reqsk_fastopen_remove(sk
, req
, false);
5694 synack_stamp
= tp
->lsndtime
;
5695 /* Make sure socket is routed, for correct metrics. */
5696 icsk
->icsk_af_ops
->rebuild_header(sk
);
5697 tcp_init_congestion_control(sk
);
5700 tcp_init_buffer_space(sk
);
5701 tp
->copied_seq
= tp
->rcv_nxt
;
5704 tcp_set_state(sk
, TCP_ESTABLISHED
);
5705 sk
->sk_state_change(sk
);
5707 /* Note, that this wakeup is only for marginal crossed SYN case.
5708 * Passively open sockets are not waked up, because
5709 * sk->sk_sleep == NULL and sk->sk_socket == NULL.
5712 sk_wake_async(sk
, SOCK_WAKE_IO
, POLL_OUT
);
5714 tp
->snd_una
= TCP_SKB_CB(skb
)->ack_seq
;
5715 tp
->snd_wnd
= ntohs(th
->window
) << tp
->rx_opt
.snd_wscale
;
5716 tcp_init_wl(tp
, TCP_SKB_CB(skb
)->seq
);
5717 tcp_synack_rtt_meas(sk
, synack_stamp
);
5719 if (tp
->rx_opt
.tstamp_ok
)
5720 tp
->advmss
-= TCPOLEN_TSTAMP_ALIGNED
;
5723 /* Re-arm the timer because data may have been sent out.
5724 * This is similar to the regular data transmission case
5725 * when new data has just been ack'ed.
5727 * (TFO) - we could try to be more aggressive and
5728 * retransmitting any data sooner based on when they
5733 tcp_init_metrics(sk
);
5735 tcp_update_pacing_rate(sk
);
5737 /* Prevent spurious tcp_cwnd_restart() on first data packet */
5738 tp
->lsndtime
= tcp_time_stamp
;
5740 tcp_initialize_rcv_mss(sk
);
5741 tcp_fast_path_on(tp
);
5744 case TCP_FIN_WAIT1
: {
5745 struct dst_entry
*dst
;
5748 /* If we enter the TCP_FIN_WAIT1 state and we are a
5749 * Fast Open socket and this is the first acceptable
5750 * ACK we have received, this would have acknowledged
5751 * our SYNACK so stop the SYNACK timer.
5754 /* Return RST if ack_seq is invalid.
5755 * Note that RFC793 only says to generate a
5756 * DUPACK for it but for TCP Fast Open it seems
5757 * better to treat this case like TCP_SYN_RECV
5762 /* We no longer need the request sock. */
5763 reqsk_fastopen_remove(sk
, req
, false);
5766 if (tp
->snd_una
!= tp
->write_seq
)
5769 tcp_set_state(sk
, TCP_FIN_WAIT2
);
5770 sk
->sk_shutdown
|= SEND_SHUTDOWN
;
5772 dst
= __sk_dst_get(sk
);
5776 if (!sock_flag(sk
, SOCK_DEAD
)) {
5777 /* Wake up lingering close() */
5778 sk
->sk_state_change(sk
);
5782 if (tp
->linger2
< 0 ||
5783 (TCP_SKB_CB(skb
)->end_seq
!= TCP_SKB_CB(skb
)->seq
&&
5784 after(TCP_SKB_CB(skb
)->end_seq
- th
->fin
, tp
->rcv_nxt
))) {
5786 NET_INC_STATS_BH(sock_net(sk
), LINUX_MIB_TCPABORTONDATA
);
5790 tmo
= tcp_fin_time(sk
);
5791 if (tmo
> TCP_TIMEWAIT_LEN
) {
5792 inet_csk_reset_keepalive_timer(sk
, tmo
- TCP_TIMEWAIT_LEN
);
5793 } else if (th
->fin
|| sock_owned_by_user(sk
)) {
5794 /* Bad case. We could lose such FIN otherwise.
5795 * It is not a big problem, but it looks confusing
5796 * and not so rare event. We still can lose it now,
5797 * if it spins in bh_lock_sock(), but it is really
5800 inet_csk_reset_keepalive_timer(sk
, tmo
);
5802 tcp_time_wait(sk
, TCP_FIN_WAIT2
, tmo
);
5809 if (tp
->snd_una
== tp
->write_seq
) {
5810 tcp_time_wait(sk
, TCP_TIME_WAIT
, 0);
5816 if (tp
->snd_una
== tp
->write_seq
) {
5817 tcp_update_metrics(sk
);
5824 /* step 6: check the URG bit */
5825 tcp_urg(sk
, skb
, th
);
5827 /* step 7: process the segment text */
5828 switch (sk
->sk_state
) {
5829 case TCP_CLOSE_WAIT
:
5832 if (!before(TCP_SKB_CB(skb
)->seq
, tp
->rcv_nxt
))
5836 /* RFC 793 says to queue data in these states,
5837 * RFC 1122 says we MUST send a reset.
5838 * BSD 4.4 also does reset.
5840 if (sk
->sk_shutdown
& RCV_SHUTDOWN
) {
5841 if (TCP_SKB_CB(skb
)->end_seq
!= TCP_SKB_CB(skb
)->seq
&&
5842 after(TCP_SKB_CB(skb
)->end_seq
- th
->fin
, tp
->rcv_nxt
)) {
5843 NET_INC_STATS_BH(sock_net(sk
), LINUX_MIB_TCPABORTONDATA
);
5849 case TCP_ESTABLISHED
:
5850 tcp_data_queue(sk
, skb
);
5855 /* tcp_data could move socket to TIME-WAIT */
5856 if (sk
->sk_state
!= TCP_CLOSE
) {
5857 tcp_data_snd_check(sk
);
5858 tcp_ack_snd_check(sk
);
5867 EXPORT_SYMBOL(tcp_rcv_state_process
);