2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
6 * Implementation of the Transmission Control Protocol(TCP).
9 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10 * Mark Evans, <evansmp@uhura.aston.ac.uk>
11 * Corey Minyard <wf-rch!minyard@relay.EU.net>
12 * Florian La Roche, <flla@stud.uni-sb.de>
13 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
14 * Linus Torvalds, <torvalds@cs.helsinki.fi>
15 * Alan Cox, <gw4pts@gw4pts.ampr.org>
16 * Matthew Dillon, <dillon@apollo.west.oic.com>
17 * Arnt Gulbrandsen, <agulbra@nvg.unit.no>
18 * Jorge Cwik, <jorge@laser.satlink.net>
22 #include <linux/module.h>
23 #include <linux/slab.h>
24 #include <linux/sysctl.h>
25 #include <linux/workqueue.h>
27 #include <net/inet_common.h>
30 int sysctl_tcp_syncookies __read_mostly
= 1;
31 EXPORT_SYMBOL(sysctl_tcp_syncookies
);
33 int sysctl_tcp_abort_on_overflow __read_mostly
;
35 struct inet_timewait_death_row tcp_death_row
= {
36 .sysctl_max_tw_buckets
= NR_FILE
* 2,
37 .period
= TCP_TIMEWAIT_LEN
/ INET_TWDR_TWKILL_SLOTS
,
38 .death_lock
= __SPIN_LOCK_UNLOCKED(tcp_death_row
.death_lock
),
39 .hashinfo
= &tcp_hashinfo
,
40 .tw_timer
= TIMER_INITIALIZER(inet_twdr_hangman
, 0,
41 (unsigned long)&tcp_death_row
),
42 .twkill_work
= __WORK_INITIALIZER(tcp_death_row
.twkill_work
,
43 inet_twdr_twkill_work
),
44 /* Short-time timewait calendar */
47 .twcal_timer
= TIMER_INITIALIZER(inet_twdr_twcal_tick
, 0,
48 (unsigned long)&tcp_death_row
),
50 EXPORT_SYMBOL_GPL(tcp_death_row
);
52 static bool tcp_in_window(u32 seq
, u32 end_seq
, u32 s_win
, u32 e_win
)
56 if (after(end_seq
, s_win
) && before(seq
, e_win
))
58 return seq
== e_win
&& seq
== end_seq
;
62 * * Main purpose of TIME-WAIT state is to close connection gracefully,
63 * when one of ends sits in LAST-ACK or CLOSING retransmitting FIN
64 * (and, probably, tail of data) and one or more our ACKs are lost.
65 * * What is TIME-WAIT timeout? It is associated with maximal packet
66 * lifetime in the internet, which results in wrong conclusion, that
67 * it is set to catch "old duplicate segments" wandering out of their path.
68 * It is not quite correct. This timeout is calculated so that it exceeds
69 * maximal retransmission timeout enough to allow to lose one (or more)
70 * segments sent by peer and our ACKs. This time may be calculated from RTO.
71 * * When TIME-WAIT socket receives RST, it means that another end
72 * finally closed and we are allowed to kill TIME-WAIT too.
73 * * Second purpose of TIME-WAIT is catching old duplicate segments.
74 * Well, certainly it is pure paranoia, but if we load TIME-WAIT
75 * with this semantics, we MUST NOT kill TIME-WAIT state with RSTs.
76 * * If we invented some more clever way to catch duplicates
77 * (f.e. based on PAWS), we could truncate TIME-WAIT to several RTOs.
79 * The algorithm below is based on FORMAL INTERPRETATION of RFCs.
80 * When you compare it to RFCs, please, read section SEGMENT ARRIVES
81 * from the very beginning.
83 * NOTE. With recycling (and later with fin-wait-2) TW bucket
84 * is _not_ stateless. It means, that strictly speaking we must
85 * spinlock it. I do not want! Well, probability of misbehaviour
86 * is ridiculously low and, seems, we could use some mb() tricks
87 * to avoid misread sequence numbers, states etc. --ANK
89 * We don't need to initialize tmp_out.sack_ok as we don't use the results
92 tcp_timewait_state_process(struct inet_timewait_sock
*tw
, struct sk_buff
*skb
,
93 const struct tcphdr
*th
)
95 struct tcp_options_received tmp_opt
;
96 struct tcp_timewait_sock
*tcptw
= tcp_twsk((struct sock
*)tw
);
97 bool paws_reject
= false;
99 tmp_opt
.saw_tstamp
= 0;
100 if (th
->doff
> (sizeof(*th
) >> 2) && tcptw
->tw_ts_recent_stamp
) {
101 tcp_parse_options(skb
, &tmp_opt
, 0, NULL
);
103 if (tmp_opt
.saw_tstamp
) {
104 tmp_opt
.rcv_tsecr
-= tcptw
->tw_ts_offset
;
105 tmp_opt
.ts_recent
= tcptw
->tw_ts_recent
;
106 tmp_opt
.ts_recent_stamp
= tcptw
->tw_ts_recent_stamp
;
107 paws_reject
= tcp_paws_reject(&tmp_opt
, th
->rst
);
111 if (tw
->tw_substate
== TCP_FIN_WAIT2
) {
112 /* Just repeat all the checks of tcp_rcv_state_process() */
114 /* Out of window, send ACK */
116 !tcp_in_window(TCP_SKB_CB(skb
)->seq
, TCP_SKB_CB(skb
)->end_seq
,
118 tcptw
->tw_rcv_nxt
+ tcptw
->tw_rcv_wnd
))
124 if (th
->syn
&& !before(TCP_SKB_CB(skb
)->seq
, tcptw
->tw_rcv_nxt
))
129 !after(TCP_SKB_CB(skb
)->end_seq
, tcptw
->tw_rcv_nxt
) ||
130 TCP_SKB_CB(skb
)->end_seq
== TCP_SKB_CB(skb
)->seq
) {
132 return TCP_TW_SUCCESS
;
135 /* New data or FIN. If new data arrive after half-duplex close,
139 TCP_SKB_CB(skb
)->end_seq
!= tcptw
->tw_rcv_nxt
+ 1) {
141 inet_twsk_deschedule(tw
, &tcp_death_row
);
146 /* FIN arrived, enter true time-wait state. */
147 tw
->tw_substate
= TCP_TIME_WAIT
;
148 tcptw
->tw_rcv_nxt
= TCP_SKB_CB(skb
)->end_seq
;
149 if (tmp_opt
.saw_tstamp
) {
150 tcptw
->tw_ts_recent_stamp
= get_seconds();
151 tcptw
->tw_ts_recent
= tmp_opt
.rcv_tsval
;
154 if (tcp_death_row
.sysctl_tw_recycle
&&
155 tcptw
->tw_ts_recent_stamp
&&
156 tcp_tw_remember_stamp(tw
))
157 inet_twsk_schedule(tw
, &tcp_death_row
, tw
->tw_timeout
,
160 inet_twsk_schedule(tw
, &tcp_death_row
, TCP_TIMEWAIT_LEN
,
166 * Now real TIME-WAIT state.
169 * "When a connection is [...] on TIME-WAIT state [...]
170 * [a TCP] MAY accept a new SYN from the remote TCP to
171 * reopen the connection directly, if it:
173 * (1) assigns its initial sequence number for the new
174 * connection to be larger than the largest sequence
175 * number it used on the previous connection incarnation,
178 * (2) returns to TIME-WAIT state if the SYN turns out
179 * to be an old duplicate".
183 (TCP_SKB_CB(skb
)->seq
== tcptw
->tw_rcv_nxt
&&
184 (TCP_SKB_CB(skb
)->seq
== TCP_SKB_CB(skb
)->end_seq
|| th
->rst
))) {
185 /* In window segment, it may be only reset or bare ack. */
188 /* This is TIME_WAIT assassination, in two flavors.
189 * Oh well... nobody has a sufficient solution to this
192 if (sysctl_tcp_rfc1337
== 0) {
194 inet_twsk_deschedule(tw
, &tcp_death_row
);
196 return TCP_TW_SUCCESS
;
199 inet_twsk_schedule(tw
, &tcp_death_row
, TCP_TIMEWAIT_LEN
,
202 if (tmp_opt
.saw_tstamp
) {
203 tcptw
->tw_ts_recent
= tmp_opt
.rcv_tsval
;
204 tcptw
->tw_ts_recent_stamp
= get_seconds();
208 return TCP_TW_SUCCESS
;
211 /* Out of window segment.
213 All the segments are ACKed immediately.
215 The only exception is new SYN. We accept it, if it is
216 not old duplicate and we are not in danger to be killed
217 by delayed old duplicates. RFC check is that it has
218 newer sequence number works at rates <40Mbit/sec.
219 However, if paws works, it is reliable AND even more,
220 we even may relax silly seq space cutoff.
222 RED-PEN: we violate main RFC requirement, if this SYN will appear
223 old duplicate (i.e. we receive RST in reply to SYN-ACK),
224 we must return socket to time-wait state. It is not good,
228 if (th
->syn
&& !th
->rst
&& !th
->ack
&& !paws_reject
&&
229 (after(TCP_SKB_CB(skb
)->seq
, tcptw
->tw_rcv_nxt
) ||
230 (tmp_opt
.saw_tstamp
&&
231 (s32
)(tcptw
->tw_ts_recent
- tmp_opt
.rcv_tsval
) < 0))) {
232 u32 isn
= tcptw
->tw_snd_nxt
+ 65535 + 2;
235 TCP_SKB_CB(skb
)->when
= isn
;
240 NET_INC_STATS_BH(twsk_net(tw
), LINUX_MIB_PAWSESTABREJECTED
);
243 /* In this case we must reset the TIMEWAIT timer.
245 * If it is ACKless SYN it may be both old duplicate
246 * and new good SYN with random sequence number <rcv_nxt.
247 * Do not reschedule in the last case.
249 if (paws_reject
|| th
->ack
)
250 inet_twsk_schedule(tw
, &tcp_death_row
, TCP_TIMEWAIT_LEN
,
253 /* Send ACK. Note, we do not put the bucket,
254 * it will be released by caller.
259 return TCP_TW_SUCCESS
;
261 EXPORT_SYMBOL(tcp_timewait_state_process
);
264 * Move a socket to time-wait or dead fin-wait-2 state.
266 void tcp_time_wait(struct sock
*sk
, int state
, int timeo
)
268 struct inet_timewait_sock
*tw
= NULL
;
269 const struct inet_connection_sock
*icsk
= inet_csk(sk
);
270 const struct tcp_sock
*tp
= tcp_sk(sk
);
271 bool recycle_ok
= false;
273 if (tcp_death_row
.sysctl_tw_recycle
&& tp
->rx_opt
.ts_recent_stamp
)
274 recycle_ok
= tcp_remember_stamp(sk
);
276 if (tcp_death_row
.tw_count
< tcp_death_row
.sysctl_max_tw_buckets
)
277 tw
= inet_twsk_alloc(sk
, state
);
280 struct tcp_timewait_sock
*tcptw
= tcp_twsk((struct sock
*)tw
);
281 const int rto
= (icsk
->icsk_rto
<< 2) - (icsk
->icsk_rto
>> 1);
282 struct inet_sock
*inet
= inet_sk(sk
);
284 tw
->tw_transparent
= inet
->transparent
;
285 tw
->tw_rcv_wscale
= tp
->rx_opt
.rcv_wscale
;
286 tcptw
->tw_rcv_nxt
= tp
->rcv_nxt
;
287 tcptw
->tw_snd_nxt
= tp
->snd_nxt
;
288 tcptw
->tw_rcv_wnd
= tcp_receive_window(tp
);
289 tcptw
->tw_ts_recent
= tp
->rx_opt
.ts_recent
;
290 tcptw
->tw_ts_recent_stamp
= tp
->rx_opt
.ts_recent_stamp
;
291 tcptw
->tw_ts_offset
= tp
->tsoffset
;
293 #if IS_ENABLED(CONFIG_IPV6)
294 if (tw
->tw_family
== PF_INET6
) {
295 struct ipv6_pinfo
*np
= inet6_sk(sk
);
296 struct inet6_timewait_sock
*tw6
;
298 tw
->tw_ipv6_offset
= inet6_tw_offset(sk
->sk_prot
);
299 tw6
= inet6_twsk((struct sock
*)tw
);
300 tw6
->tw_v6_daddr
= np
->daddr
;
301 tw6
->tw_v6_rcv_saddr
= np
->rcv_saddr
;
302 tw
->tw_tclass
= np
->tclass
;
303 tw
->tw_ipv6only
= np
->ipv6only
;
307 #ifdef CONFIG_TCP_MD5SIG
309 * The timewait bucket does not have the key DB from the
310 * sock structure. We just make a quick copy of the
311 * md5 key being used (if indeed we are using one)
312 * so the timewait ack generating code has the key.
315 struct tcp_md5sig_key
*key
;
316 tcptw
->tw_md5_key
= NULL
;
317 key
= tp
->af_specific
->md5_lookup(sk
, sk
);
319 tcptw
->tw_md5_key
= kmemdup(key
, sizeof(*key
), GFP_ATOMIC
);
320 if (tcptw
->tw_md5_key
&& !tcp_alloc_md5sig_pool())
326 /* Linkage updates. */
327 __inet_twsk_hashdance(tw
, sk
, &tcp_hashinfo
);
329 /* Get the TIME_WAIT timeout firing. */
334 tw
->tw_timeout
= rto
;
336 tw
->tw_timeout
= TCP_TIMEWAIT_LEN
;
337 if (state
== TCP_TIME_WAIT
)
338 timeo
= TCP_TIMEWAIT_LEN
;
341 inet_twsk_schedule(tw
, &tcp_death_row
, timeo
,
345 /* Sorry, if we're out of memory, just CLOSE this
346 * socket up. We've got bigger problems than
347 * non-graceful socket closings.
349 NET_INC_STATS_BH(sock_net(sk
), LINUX_MIB_TCPTIMEWAITOVERFLOW
);
352 tcp_update_metrics(sk
);
356 void tcp_twsk_destructor(struct sock
*sk
)
358 #ifdef CONFIG_TCP_MD5SIG
359 struct tcp_timewait_sock
*twsk
= tcp_twsk(sk
);
361 if (twsk
->tw_md5_key
)
362 kfree_rcu(twsk
->tw_md5_key
, rcu
);
365 EXPORT_SYMBOL_GPL(tcp_twsk_destructor
);
367 static inline void TCP_ECN_openreq_child(struct tcp_sock
*tp
,
368 struct request_sock
*req
)
370 tp
->ecn_flags
= inet_rsk(req
)->ecn_ok
? TCP_ECN_OK
: 0;
373 /* This is not only more efficient than what we used to do, it eliminates
374 * a lot of code duplication between IPv4/IPv6 SYN recv processing. -DaveM
376 * Actually, we could lots of memory writes here. tp of listening
377 * socket contains all necessary default parameters.
379 struct sock
*tcp_create_openreq_child(struct sock
*sk
, struct request_sock
*req
, struct sk_buff
*skb
)
381 struct sock
*newsk
= inet_csk_clone_lock(sk
, req
, GFP_ATOMIC
);
384 const struct inet_request_sock
*ireq
= inet_rsk(req
);
385 struct tcp_request_sock
*treq
= tcp_rsk(req
);
386 struct inet_connection_sock
*newicsk
= inet_csk(newsk
);
387 struct tcp_sock
*newtp
= tcp_sk(newsk
);
389 /* Now setup tcp_sock */
390 newtp
->pred_flags
= 0;
392 newtp
->rcv_wup
= newtp
->copied_seq
=
393 newtp
->rcv_nxt
= treq
->rcv_isn
+ 1;
395 newtp
->snd_sml
= newtp
->snd_una
=
396 newtp
->snd_nxt
= newtp
->snd_up
= treq
->snt_isn
+ 1;
398 tcp_prequeue_init(newtp
);
399 INIT_LIST_HEAD(&newtp
->tsq_node
);
401 tcp_init_wl(newtp
, treq
->rcv_isn
);
404 newtp
->mdev
= TCP_TIMEOUT_INIT
;
405 newicsk
->icsk_rto
= TCP_TIMEOUT_INIT
;
407 newtp
->packets_out
= 0;
408 newtp
->retrans_out
= 0;
409 newtp
->sacked_out
= 0;
410 newtp
->fackets_out
= 0;
411 newtp
->snd_ssthresh
= TCP_INFINITE_SSTHRESH
;
412 tcp_enable_early_retrans(newtp
);
413 newtp
->tlp_high_seq
= 0;
414 newtp
->lsndtime
= treq
->snt_synack
;
415 newtp
->total_retrans
= req
->num_retrans
;
417 /* So many TCP implementations out there (incorrectly) count the
418 * initial SYN frame in their delayed-ACK and congestion control
419 * algorithms that we must have the following bandaid to talk
420 * efficiently to them. -DaveM
422 newtp
->snd_cwnd
= TCP_INIT_CWND
;
423 newtp
->snd_cwnd_cnt
= 0;
425 if (newicsk
->icsk_ca_ops
!= &tcp_init_congestion_ops
&&
426 !try_module_get(newicsk
->icsk_ca_ops
->owner
))
427 newicsk
->icsk_ca_ops
= &tcp_init_congestion_ops
;
429 tcp_set_ca_state(newsk
, TCP_CA_Open
);
430 tcp_init_xmit_timers(newsk
);
431 skb_queue_head_init(&newtp
->out_of_order_queue
);
432 newtp
->write_seq
= newtp
->pushed_seq
= treq
->snt_isn
+ 1;
434 newtp
->rx_opt
.saw_tstamp
= 0;
436 newtp
->rx_opt
.dsack
= 0;
437 newtp
->rx_opt
.num_sacks
= 0;
441 if (sock_flag(newsk
, SOCK_KEEPOPEN
))
442 inet_csk_reset_keepalive_timer(newsk
,
443 keepalive_time_when(newtp
));
445 newtp
->rx_opt
.tstamp_ok
= ireq
->tstamp_ok
;
446 if ((newtp
->rx_opt
.sack_ok
= ireq
->sack_ok
) != 0) {
448 tcp_enable_fack(newtp
);
450 newtp
->window_clamp
= req
->window_clamp
;
451 newtp
->rcv_ssthresh
= req
->rcv_wnd
;
452 newtp
->rcv_wnd
= req
->rcv_wnd
;
453 newtp
->rx_opt
.wscale_ok
= ireq
->wscale_ok
;
454 if (newtp
->rx_opt
.wscale_ok
) {
455 newtp
->rx_opt
.snd_wscale
= ireq
->snd_wscale
;
456 newtp
->rx_opt
.rcv_wscale
= ireq
->rcv_wscale
;
458 newtp
->rx_opt
.snd_wscale
= newtp
->rx_opt
.rcv_wscale
= 0;
459 newtp
->window_clamp
= min(newtp
->window_clamp
, 65535U);
461 newtp
->snd_wnd
= (ntohs(tcp_hdr(skb
)->window
) <<
462 newtp
->rx_opt
.snd_wscale
);
463 newtp
->max_window
= newtp
->snd_wnd
;
465 if (newtp
->rx_opt
.tstamp_ok
) {
466 newtp
->rx_opt
.ts_recent
= req
->ts_recent
;
467 newtp
->rx_opt
.ts_recent_stamp
= get_seconds();
468 newtp
->tcp_header_len
= sizeof(struct tcphdr
) + TCPOLEN_TSTAMP_ALIGNED
;
470 newtp
->rx_opt
.ts_recent_stamp
= 0;
471 newtp
->tcp_header_len
= sizeof(struct tcphdr
);
474 #ifdef CONFIG_TCP_MD5SIG
475 newtp
->md5sig_info
= NULL
; /*XXX*/
476 if (newtp
->af_specific
->md5_lookup(sk
, newsk
))
477 newtp
->tcp_header_len
+= TCPOLEN_MD5SIG_ALIGNED
;
479 if (skb
->len
>= TCP_MSS_DEFAULT
+ newtp
->tcp_header_len
)
480 newicsk
->icsk_ack
.last_seg_size
= skb
->len
- newtp
->tcp_header_len
;
481 newtp
->rx_opt
.mss_clamp
= req
->mss
;
482 TCP_ECN_openreq_child(newtp
, req
);
483 newtp
->fastopen_rsk
= NULL
;
484 newtp
->syn_data_acked
= 0;
486 TCP_INC_STATS_BH(sock_net(sk
), TCP_MIB_PASSIVEOPENS
);
490 EXPORT_SYMBOL(tcp_create_openreq_child
);
493 * Process an incoming packet for SYN_RECV sockets represented as a
494 * request_sock. Normally sk is the listener socket but for TFO it
495 * points to the child socket.
497 * XXX (TFO) - The current impl contains a special check for ack
498 * validation and inside tcp_v4_reqsk_send_ack(). Can we do better?
500 * We don't need to initialize tmp_opt.sack_ok as we don't use the results
503 struct sock
*tcp_check_req(struct sock
*sk
, struct sk_buff
*skb
,
504 struct request_sock
*req
,
505 struct request_sock
**prev
,
508 struct tcp_options_received tmp_opt
;
510 const struct tcphdr
*th
= tcp_hdr(skb
);
511 __be32 flg
= tcp_flag_word(th
) & (TCP_FLAG_RST
|TCP_FLAG_SYN
|TCP_FLAG_ACK
);
512 bool paws_reject
= false;
514 BUG_ON(fastopen
== (sk
->sk_state
== TCP_LISTEN
));
516 tmp_opt
.saw_tstamp
= 0;
517 if (th
->doff
> (sizeof(struct tcphdr
)>>2)) {
518 tcp_parse_options(skb
, &tmp_opt
, 0, NULL
);
520 if (tmp_opt
.saw_tstamp
) {
521 tmp_opt
.ts_recent
= req
->ts_recent
;
522 /* We do not store true stamp, but it is not required,
523 * it can be estimated (approximately)
526 tmp_opt
.ts_recent_stamp
= get_seconds() - ((TCP_TIMEOUT_INIT
/HZ
)<<req
->num_timeout
);
527 paws_reject
= tcp_paws_reject(&tmp_opt
, th
->rst
);
531 /* Check for pure retransmitted SYN. */
532 if (TCP_SKB_CB(skb
)->seq
== tcp_rsk(req
)->rcv_isn
&&
533 flg
== TCP_FLAG_SYN
&&
536 * RFC793 draws (Incorrectly! It was fixed in RFC1122)
537 * this case on figure 6 and figure 8, but formal
538 * protocol description says NOTHING.
539 * To be more exact, it says that we should send ACK,
540 * because this segment (at least, if it has no data)
543 * CONCLUSION: RFC793 (even with RFC1122) DOES NOT
544 * describe SYN-RECV state. All the description
545 * is wrong, we cannot believe to it and should
546 * rely only on common sense and implementation
549 * Enforce "SYN-ACK" according to figure 8, figure 6
550 * of RFC793, fixed by RFC1122.
552 * Note that even if there is new data in the SYN packet
553 * they will be thrown away too.
555 * Reset timer after retransmitting SYNACK, similar to
556 * the idea of fast retransmit in recovery.
558 if (!inet_rtx_syn_ack(sk
, req
))
559 req
->expires
= min(TCP_TIMEOUT_INIT
<< req
->num_timeout
,
560 TCP_RTO_MAX
) + jiffies
;
564 /* Further reproduces section "SEGMENT ARRIVES"
565 for state SYN-RECEIVED of RFC793.
566 It is broken, however, it does not work only
567 when SYNs are crossed.
569 You would think that SYN crossing is impossible here, since
570 we should have a SYN_SENT socket (from connect()) on our end,
571 but this is not true if the crossed SYNs were sent to both
572 ends by a malicious third party. We must defend against this,
573 and to do that we first verify the ACK (as per RFC793, page
574 36) and reset if it is invalid. Is this a true full defense?
575 To convince ourselves, let us consider a way in which the ACK
576 test can still pass in this 'malicious crossed SYNs' case.
577 Malicious sender sends identical SYNs (and thus identical sequence
578 numbers) to both A and B:
583 By our good fortune, both A and B select the same initial
584 send sequence number of seven :-)
586 A: sends SYN|ACK, seq=7, ack_seq=8
587 B: sends SYN|ACK, seq=7, ack_seq=8
589 So we are now A eating this SYN|ACK, ACK test passes. So
590 does sequence test, SYN is truncated, and thus we consider
593 If icsk->icsk_accept_queue.rskq_defer_accept, we silently drop this
594 bare ACK. Otherwise, we create an established connection. Both
595 ends (listening sockets) accept the new incoming connection and try
596 to talk to each other. 8-)
598 Note: This case is both harmless, and rare. Possibility is about the
599 same as us discovering intelligent life on another plant tomorrow.
601 But generally, we should (RFC lies!) to accept ACK
602 from SYNACK both here and in tcp_rcv_state_process().
603 tcp_rcv_state_process() does not, hence, we do not too.
605 Note that the case is absolutely generic:
606 we cannot optimize anything here without
607 violating protocol. All the checks must be made
608 before attempt to create socket.
611 /* RFC793 page 36: "If the connection is in any non-synchronized state ...
612 * and the incoming segment acknowledges something not yet
613 * sent (the segment carries an unacceptable ACK) ...
616 * Invalid ACK: reset will be sent by listening socket.
617 * Note that the ACK validity check for a Fast Open socket is done
618 * elsewhere and is checked directly against the child socket rather
619 * than req because user data may have been sent out.
621 if ((flg
& TCP_FLAG_ACK
) && !fastopen
&&
622 (TCP_SKB_CB(skb
)->ack_seq
!=
623 tcp_rsk(req
)->snt_isn
+ 1))
626 /* Also, it would be not so bad idea to check rcv_tsecr, which
627 * is essentially ACK extension and too early or too late values
628 * should cause reset in unsynchronized states.
631 /* RFC793: "first check sequence number". */
633 if (paws_reject
|| !tcp_in_window(TCP_SKB_CB(skb
)->seq
, TCP_SKB_CB(skb
)->end_seq
,
634 tcp_rsk(req
)->rcv_nxt
, tcp_rsk(req
)->rcv_nxt
+ req
->rcv_wnd
)) {
635 /* Out of window: send ACK and drop. */
636 if (!(flg
& TCP_FLAG_RST
))
637 req
->rsk_ops
->send_ack(sk
, skb
, req
);
639 NET_INC_STATS_BH(sock_net(sk
), LINUX_MIB_PAWSESTABREJECTED
);
643 /* In sequence, PAWS is OK. */
645 if (tmp_opt
.saw_tstamp
&& !after(TCP_SKB_CB(skb
)->seq
, tcp_rsk(req
)->rcv_nxt
))
646 req
->ts_recent
= tmp_opt
.rcv_tsval
;
648 if (TCP_SKB_CB(skb
)->seq
== tcp_rsk(req
)->rcv_isn
) {
649 /* Truncate SYN, it is out of window starting
650 at tcp_rsk(req)->rcv_isn + 1. */
651 flg
&= ~TCP_FLAG_SYN
;
654 /* RFC793: "second check the RST bit" and
655 * "fourth, check the SYN bit"
657 if (flg
& (TCP_FLAG_RST
|TCP_FLAG_SYN
)) {
658 TCP_INC_STATS_BH(sock_net(sk
), TCP_MIB_ATTEMPTFAILS
);
659 goto embryonic_reset
;
662 /* ACK sequence verified above, just make sure ACK is
663 * set. If ACK not set, just silently drop the packet.
665 * XXX (TFO) - if we ever allow "data after SYN", the
666 * following check needs to be removed.
668 if (!(flg
& TCP_FLAG_ACK
))
671 /* For Fast Open no more processing is needed (sk is the
677 /* While TCP_DEFER_ACCEPT is active, drop bare ACK. */
678 if (req
->num_timeout
< inet_csk(sk
)->icsk_accept_queue
.rskq_defer_accept
&&
679 TCP_SKB_CB(skb
)->end_seq
== tcp_rsk(req
)->rcv_isn
+ 1) {
680 inet_rsk(req
)->acked
= 1;
681 NET_INC_STATS_BH(sock_net(sk
), LINUX_MIB_TCPDEFERACCEPTDROP
);
685 /* OK, ACK is valid, create big socket and
686 * feed this segment to it. It will repeat all
687 * the tests. THIS SEGMENT MUST MOVE SOCKET TO
688 * ESTABLISHED STATE. If it will be dropped after
689 * socket is created, wait for troubles.
691 child
= inet_csk(sk
)->icsk_af_ops
->syn_recv_sock(sk
, skb
, req
, NULL
);
693 goto listen_overflow
;
695 inet_csk_reqsk_queue_unlink(sk
, req
, prev
);
696 inet_csk_reqsk_queue_removed(sk
, req
);
698 inet_csk_reqsk_queue_add(sk
, req
, child
);
702 if (!sysctl_tcp_abort_on_overflow
) {
703 inet_rsk(req
)->acked
= 1;
708 if (!(flg
& TCP_FLAG_RST
)) {
709 /* Received a bad SYN pkt - for TFO We try not to reset
710 * the local connection unless it's really necessary to
711 * avoid becoming vulnerable to outside attack aiming at
712 * resetting legit local connections.
714 req
->rsk_ops
->send_reset(sk
, skb
);
715 } else if (fastopen
) { /* received a valid RST pkt */
716 reqsk_fastopen_remove(sk
, req
, true);
720 inet_csk_reqsk_queue_drop(sk
, req
, prev
);
721 NET_INC_STATS_BH(sock_net(sk
), LINUX_MIB_EMBRYONICRSTS
);
725 EXPORT_SYMBOL(tcp_check_req
);
728 * Queue segment on the new socket if the new socket is active,
729 * otherwise we just shortcircuit this and continue with
732 * For the vast majority of cases child->sk_state will be TCP_SYN_RECV
733 * when entering. But other states are possible due to a race condition
734 * where after __inet_lookup_established() fails but before the listener
735 * locked is obtained, other packets cause the same connection to
739 int tcp_child_process(struct sock
*parent
, struct sock
*child
,
743 int state
= child
->sk_state
;
745 if (!sock_owned_by_user(child
)) {
746 ret
= tcp_rcv_state_process(child
, skb
, tcp_hdr(skb
),
748 /* Wakeup parent, send SIGIO */
749 if (state
== TCP_SYN_RECV
&& child
->sk_state
!= state
)
750 parent
->sk_data_ready(parent
, 0);
752 /* Alas, it is possible again, because we do lookup
753 * in main socket hash table and lock on listening
754 * socket does not protect us more.
756 __sk_add_backlog(child
, skb
);
759 bh_unlock_sock(child
);
763 EXPORT_SYMBOL(tcp_child_process
);