mfd: wm8350-i2c: Make sure the i2c regmap functions are compiled
[linux/fpc-iii.git] / virt / kvm / arm / vgic.c
blobecea20153b42c6500a8f77e13a51640f7119bf61
1 /*
2 * Copyright (C) 2012 ARM Ltd.
3 * Author: Marc Zyngier <marc.zyngier@arm.com>
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License version 2 as
7 * published by the Free Software Foundation.
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software
16 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
19 #include <linux/cpu.h>
20 #include <linux/kvm.h>
21 #include <linux/kvm_host.h>
22 #include <linux/interrupt.h>
23 #include <linux/io.h>
24 #include <linux/of.h>
25 #include <linux/of_address.h>
26 #include <linux/of_irq.h>
28 #include <linux/irqchip/arm-gic.h>
30 #include <asm/kvm_emulate.h>
31 #include <asm/kvm_arm.h>
32 #include <asm/kvm_mmu.h>
35 * How the whole thing works (courtesy of Christoffer Dall):
37 * - At any time, the dist->irq_pending_on_cpu is the oracle that knows if
38 * something is pending
39 * - VGIC pending interrupts are stored on the vgic.irq_state vgic
40 * bitmap (this bitmap is updated by both user land ioctls and guest
41 * mmio ops, and other in-kernel peripherals such as the
42 * arch. timers) and indicate the 'wire' state.
43 * - Every time the bitmap changes, the irq_pending_on_cpu oracle is
44 * recalculated
45 * - To calculate the oracle, we need info for each cpu from
46 * compute_pending_for_cpu, which considers:
47 * - PPI: dist->irq_state & dist->irq_enable
48 * - SPI: dist->irq_state & dist->irq_enable & dist->irq_spi_target
49 * - irq_spi_target is a 'formatted' version of the GICD_ICFGR
50 * registers, stored on each vcpu. We only keep one bit of
51 * information per interrupt, making sure that only one vcpu can
52 * accept the interrupt.
53 * - The same is true when injecting an interrupt, except that we only
54 * consider a single interrupt at a time. The irq_spi_cpu array
55 * contains the target CPU for each SPI.
57 * The handling of level interrupts adds some extra complexity. We
58 * need to track when the interrupt has been EOIed, so we can sample
59 * the 'line' again. This is achieved as such:
61 * - When a level interrupt is moved onto a vcpu, the corresponding
62 * bit in irq_active is set. As long as this bit is set, the line
63 * will be ignored for further interrupts. The interrupt is injected
64 * into the vcpu with the GICH_LR_EOI bit set (generate a
65 * maintenance interrupt on EOI).
66 * - When the interrupt is EOIed, the maintenance interrupt fires,
67 * and clears the corresponding bit in irq_active. This allow the
68 * interrupt line to be sampled again.
71 #define VGIC_ADDR_UNDEF (-1)
72 #define IS_VGIC_ADDR_UNDEF(_x) ((_x) == VGIC_ADDR_UNDEF)
74 /* Physical address of vgic virtual cpu interface */
75 static phys_addr_t vgic_vcpu_base;
77 /* Virtual control interface base address */
78 static void __iomem *vgic_vctrl_base;
80 static struct device_node *vgic_node;
82 #define ACCESS_READ_VALUE (1 << 0)
83 #define ACCESS_READ_RAZ (0 << 0)
84 #define ACCESS_READ_MASK(x) ((x) & (1 << 0))
85 #define ACCESS_WRITE_IGNORED (0 << 1)
86 #define ACCESS_WRITE_SETBIT (1 << 1)
87 #define ACCESS_WRITE_CLEARBIT (2 << 1)
88 #define ACCESS_WRITE_VALUE (3 << 1)
89 #define ACCESS_WRITE_MASK(x) ((x) & (3 << 1))
91 static void vgic_retire_disabled_irqs(struct kvm_vcpu *vcpu);
92 static void vgic_update_state(struct kvm *kvm);
93 static void vgic_kick_vcpus(struct kvm *kvm);
94 static void vgic_dispatch_sgi(struct kvm_vcpu *vcpu, u32 reg);
95 static u32 vgic_nr_lr;
97 static unsigned int vgic_maint_irq;
99 static u32 *vgic_bitmap_get_reg(struct vgic_bitmap *x,
100 int cpuid, u32 offset)
102 offset >>= 2;
103 if (!offset)
104 return x->percpu[cpuid].reg;
105 else
106 return x->shared.reg + offset - 1;
109 static int vgic_bitmap_get_irq_val(struct vgic_bitmap *x,
110 int cpuid, int irq)
112 if (irq < VGIC_NR_PRIVATE_IRQS)
113 return test_bit(irq, x->percpu[cpuid].reg_ul);
115 return test_bit(irq - VGIC_NR_PRIVATE_IRQS, x->shared.reg_ul);
118 static void vgic_bitmap_set_irq_val(struct vgic_bitmap *x, int cpuid,
119 int irq, int val)
121 unsigned long *reg;
123 if (irq < VGIC_NR_PRIVATE_IRQS) {
124 reg = x->percpu[cpuid].reg_ul;
125 } else {
126 reg = x->shared.reg_ul;
127 irq -= VGIC_NR_PRIVATE_IRQS;
130 if (val)
131 set_bit(irq, reg);
132 else
133 clear_bit(irq, reg);
136 static unsigned long *vgic_bitmap_get_cpu_map(struct vgic_bitmap *x, int cpuid)
138 if (unlikely(cpuid >= VGIC_MAX_CPUS))
139 return NULL;
140 return x->percpu[cpuid].reg_ul;
143 static unsigned long *vgic_bitmap_get_shared_map(struct vgic_bitmap *x)
145 return x->shared.reg_ul;
148 static u32 *vgic_bytemap_get_reg(struct vgic_bytemap *x, int cpuid, u32 offset)
150 offset >>= 2;
151 BUG_ON(offset > (VGIC_NR_IRQS / 4));
152 if (offset < 8)
153 return x->percpu[cpuid] + offset;
154 else
155 return x->shared + offset - 8;
158 #define VGIC_CFG_LEVEL 0
159 #define VGIC_CFG_EDGE 1
161 static bool vgic_irq_is_edge(struct kvm_vcpu *vcpu, int irq)
163 struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
164 int irq_val;
166 irq_val = vgic_bitmap_get_irq_val(&dist->irq_cfg, vcpu->vcpu_id, irq);
167 return irq_val == VGIC_CFG_EDGE;
170 static int vgic_irq_is_enabled(struct kvm_vcpu *vcpu, int irq)
172 struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
174 return vgic_bitmap_get_irq_val(&dist->irq_enabled, vcpu->vcpu_id, irq);
177 static int vgic_irq_is_active(struct kvm_vcpu *vcpu, int irq)
179 struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
181 return vgic_bitmap_get_irq_val(&dist->irq_active, vcpu->vcpu_id, irq);
184 static void vgic_irq_set_active(struct kvm_vcpu *vcpu, int irq)
186 struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
188 vgic_bitmap_set_irq_val(&dist->irq_active, vcpu->vcpu_id, irq, 1);
191 static void vgic_irq_clear_active(struct kvm_vcpu *vcpu, int irq)
193 struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
195 vgic_bitmap_set_irq_val(&dist->irq_active, vcpu->vcpu_id, irq, 0);
198 static int vgic_dist_irq_is_pending(struct kvm_vcpu *vcpu, int irq)
200 struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
202 return vgic_bitmap_get_irq_val(&dist->irq_state, vcpu->vcpu_id, irq);
205 static void vgic_dist_irq_set(struct kvm_vcpu *vcpu, int irq)
207 struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
209 vgic_bitmap_set_irq_val(&dist->irq_state, vcpu->vcpu_id, irq, 1);
212 static void vgic_dist_irq_clear(struct kvm_vcpu *vcpu, int irq)
214 struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
216 vgic_bitmap_set_irq_val(&dist->irq_state, vcpu->vcpu_id, irq, 0);
219 static void vgic_cpu_irq_set(struct kvm_vcpu *vcpu, int irq)
221 if (irq < VGIC_NR_PRIVATE_IRQS)
222 set_bit(irq, vcpu->arch.vgic_cpu.pending_percpu);
223 else
224 set_bit(irq - VGIC_NR_PRIVATE_IRQS,
225 vcpu->arch.vgic_cpu.pending_shared);
228 static void vgic_cpu_irq_clear(struct kvm_vcpu *vcpu, int irq)
230 if (irq < VGIC_NR_PRIVATE_IRQS)
231 clear_bit(irq, vcpu->arch.vgic_cpu.pending_percpu);
232 else
233 clear_bit(irq - VGIC_NR_PRIVATE_IRQS,
234 vcpu->arch.vgic_cpu.pending_shared);
237 static u32 mmio_data_read(struct kvm_exit_mmio *mmio, u32 mask)
239 return *((u32 *)mmio->data) & mask;
242 static void mmio_data_write(struct kvm_exit_mmio *mmio, u32 mask, u32 value)
244 *((u32 *)mmio->data) = value & mask;
248 * vgic_reg_access - access vgic register
249 * @mmio: pointer to the data describing the mmio access
250 * @reg: pointer to the virtual backing of vgic distributor data
251 * @offset: least significant 2 bits used for word offset
252 * @mode: ACCESS_ mode (see defines above)
254 * Helper to make vgic register access easier using one of the access
255 * modes defined for vgic register access
256 * (read,raz,write-ignored,setbit,clearbit,write)
258 static void vgic_reg_access(struct kvm_exit_mmio *mmio, u32 *reg,
259 phys_addr_t offset, int mode)
261 int word_offset = (offset & 3) * 8;
262 u32 mask = (1UL << (mmio->len * 8)) - 1;
263 u32 regval;
266 * Any alignment fault should have been delivered to the guest
267 * directly (ARM ARM B3.12.7 "Prioritization of aborts").
270 if (reg) {
271 regval = *reg;
272 } else {
273 BUG_ON(mode != (ACCESS_READ_RAZ | ACCESS_WRITE_IGNORED));
274 regval = 0;
277 if (mmio->is_write) {
278 u32 data = mmio_data_read(mmio, mask) << word_offset;
279 switch (ACCESS_WRITE_MASK(mode)) {
280 case ACCESS_WRITE_IGNORED:
281 return;
283 case ACCESS_WRITE_SETBIT:
284 regval |= data;
285 break;
287 case ACCESS_WRITE_CLEARBIT:
288 regval &= ~data;
289 break;
291 case ACCESS_WRITE_VALUE:
292 regval = (regval & ~(mask << word_offset)) | data;
293 break;
295 *reg = regval;
296 } else {
297 switch (ACCESS_READ_MASK(mode)) {
298 case ACCESS_READ_RAZ:
299 regval = 0;
300 /* fall through */
302 case ACCESS_READ_VALUE:
303 mmio_data_write(mmio, mask, regval >> word_offset);
308 static bool handle_mmio_misc(struct kvm_vcpu *vcpu,
309 struct kvm_exit_mmio *mmio, phys_addr_t offset)
311 u32 reg;
312 u32 word_offset = offset & 3;
314 switch (offset & ~3) {
315 case 0: /* CTLR */
316 reg = vcpu->kvm->arch.vgic.enabled;
317 vgic_reg_access(mmio, &reg, word_offset,
318 ACCESS_READ_VALUE | ACCESS_WRITE_VALUE);
319 if (mmio->is_write) {
320 vcpu->kvm->arch.vgic.enabled = reg & 1;
321 vgic_update_state(vcpu->kvm);
322 return true;
324 break;
326 case 4: /* TYPER */
327 reg = (atomic_read(&vcpu->kvm->online_vcpus) - 1) << 5;
328 reg |= (VGIC_NR_IRQS >> 5) - 1;
329 vgic_reg_access(mmio, &reg, word_offset,
330 ACCESS_READ_VALUE | ACCESS_WRITE_IGNORED);
331 break;
333 case 8: /* IIDR */
334 reg = 0x4B00043B;
335 vgic_reg_access(mmio, &reg, word_offset,
336 ACCESS_READ_VALUE | ACCESS_WRITE_IGNORED);
337 break;
340 return false;
343 static bool handle_mmio_raz_wi(struct kvm_vcpu *vcpu,
344 struct kvm_exit_mmio *mmio, phys_addr_t offset)
346 vgic_reg_access(mmio, NULL, offset,
347 ACCESS_READ_RAZ | ACCESS_WRITE_IGNORED);
348 return false;
351 static bool handle_mmio_set_enable_reg(struct kvm_vcpu *vcpu,
352 struct kvm_exit_mmio *mmio,
353 phys_addr_t offset)
355 u32 *reg = vgic_bitmap_get_reg(&vcpu->kvm->arch.vgic.irq_enabled,
356 vcpu->vcpu_id, offset);
357 vgic_reg_access(mmio, reg, offset,
358 ACCESS_READ_VALUE | ACCESS_WRITE_SETBIT);
359 if (mmio->is_write) {
360 vgic_update_state(vcpu->kvm);
361 return true;
364 return false;
367 static bool handle_mmio_clear_enable_reg(struct kvm_vcpu *vcpu,
368 struct kvm_exit_mmio *mmio,
369 phys_addr_t offset)
371 u32 *reg = vgic_bitmap_get_reg(&vcpu->kvm->arch.vgic.irq_enabled,
372 vcpu->vcpu_id, offset);
373 vgic_reg_access(mmio, reg, offset,
374 ACCESS_READ_VALUE | ACCESS_WRITE_CLEARBIT);
375 if (mmio->is_write) {
376 if (offset < 4) /* Force SGI enabled */
377 *reg |= 0xffff;
378 vgic_retire_disabled_irqs(vcpu);
379 vgic_update_state(vcpu->kvm);
380 return true;
383 return false;
386 static bool handle_mmio_set_pending_reg(struct kvm_vcpu *vcpu,
387 struct kvm_exit_mmio *mmio,
388 phys_addr_t offset)
390 u32 *reg = vgic_bitmap_get_reg(&vcpu->kvm->arch.vgic.irq_state,
391 vcpu->vcpu_id, offset);
392 vgic_reg_access(mmio, reg, offset,
393 ACCESS_READ_VALUE | ACCESS_WRITE_SETBIT);
394 if (mmio->is_write) {
395 vgic_update_state(vcpu->kvm);
396 return true;
399 return false;
402 static bool handle_mmio_clear_pending_reg(struct kvm_vcpu *vcpu,
403 struct kvm_exit_mmio *mmio,
404 phys_addr_t offset)
406 u32 *reg = vgic_bitmap_get_reg(&vcpu->kvm->arch.vgic.irq_state,
407 vcpu->vcpu_id, offset);
408 vgic_reg_access(mmio, reg, offset,
409 ACCESS_READ_VALUE | ACCESS_WRITE_CLEARBIT);
410 if (mmio->is_write) {
411 vgic_update_state(vcpu->kvm);
412 return true;
415 return false;
418 static bool handle_mmio_priority_reg(struct kvm_vcpu *vcpu,
419 struct kvm_exit_mmio *mmio,
420 phys_addr_t offset)
422 u32 *reg = vgic_bytemap_get_reg(&vcpu->kvm->arch.vgic.irq_priority,
423 vcpu->vcpu_id, offset);
424 vgic_reg_access(mmio, reg, offset,
425 ACCESS_READ_VALUE | ACCESS_WRITE_VALUE);
426 return false;
429 #define GICD_ITARGETSR_SIZE 32
430 #define GICD_CPUTARGETS_BITS 8
431 #define GICD_IRQS_PER_ITARGETSR (GICD_ITARGETSR_SIZE / GICD_CPUTARGETS_BITS)
432 static u32 vgic_get_target_reg(struct kvm *kvm, int irq)
434 struct vgic_dist *dist = &kvm->arch.vgic;
435 int i;
436 u32 val = 0;
438 irq -= VGIC_NR_PRIVATE_IRQS;
440 for (i = 0; i < GICD_IRQS_PER_ITARGETSR; i++)
441 val |= 1 << (dist->irq_spi_cpu[irq + i] + i * 8);
443 return val;
446 static void vgic_set_target_reg(struct kvm *kvm, u32 val, int irq)
448 struct vgic_dist *dist = &kvm->arch.vgic;
449 struct kvm_vcpu *vcpu;
450 int i, c;
451 unsigned long *bmap;
452 u32 target;
454 irq -= VGIC_NR_PRIVATE_IRQS;
457 * Pick the LSB in each byte. This ensures we target exactly
458 * one vcpu per IRQ. If the byte is null, assume we target
459 * CPU0.
461 for (i = 0; i < GICD_IRQS_PER_ITARGETSR; i++) {
462 int shift = i * GICD_CPUTARGETS_BITS;
463 target = ffs((val >> shift) & 0xffU);
464 target = target ? (target - 1) : 0;
465 dist->irq_spi_cpu[irq + i] = target;
466 kvm_for_each_vcpu(c, vcpu, kvm) {
467 bmap = vgic_bitmap_get_shared_map(&dist->irq_spi_target[c]);
468 if (c == target)
469 set_bit(irq + i, bmap);
470 else
471 clear_bit(irq + i, bmap);
476 static bool handle_mmio_target_reg(struct kvm_vcpu *vcpu,
477 struct kvm_exit_mmio *mmio,
478 phys_addr_t offset)
480 u32 reg;
482 /* We treat the banked interrupts targets as read-only */
483 if (offset < 32) {
484 u32 roreg = 1 << vcpu->vcpu_id;
485 roreg |= roreg << 8;
486 roreg |= roreg << 16;
488 vgic_reg_access(mmio, &roreg, offset,
489 ACCESS_READ_VALUE | ACCESS_WRITE_IGNORED);
490 return false;
493 reg = vgic_get_target_reg(vcpu->kvm, offset & ~3U);
494 vgic_reg_access(mmio, &reg, offset,
495 ACCESS_READ_VALUE | ACCESS_WRITE_VALUE);
496 if (mmio->is_write) {
497 vgic_set_target_reg(vcpu->kvm, reg, offset & ~3U);
498 vgic_update_state(vcpu->kvm);
499 return true;
502 return false;
505 static u32 vgic_cfg_expand(u16 val)
507 u32 res = 0;
508 int i;
511 * Turn a 16bit value like abcd...mnop into a 32bit word
512 * a0b0c0d0...m0n0o0p0, which is what the HW cfg register is.
514 for (i = 0; i < 16; i++)
515 res |= ((val >> i) & VGIC_CFG_EDGE) << (2 * i + 1);
517 return res;
520 static u16 vgic_cfg_compress(u32 val)
522 u16 res = 0;
523 int i;
526 * Turn a 32bit word a0b0c0d0...m0n0o0p0 into 16bit value like
527 * abcd...mnop which is what we really care about.
529 for (i = 0; i < 16; i++)
530 res |= ((val >> (i * 2 + 1)) & VGIC_CFG_EDGE) << i;
532 return res;
536 * The distributor uses 2 bits per IRQ for the CFG register, but the
537 * LSB is always 0. As such, we only keep the upper bit, and use the
538 * two above functions to compress/expand the bits
540 static bool handle_mmio_cfg_reg(struct kvm_vcpu *vcpu,
541 struct kvm_exit_mmio *mmio, phys_addr_t offset)
543 u32 val;
544 u32 *reg;
546 reg = vgic_bitmap_get_reg(&vcpu->kvm->arch.vgic.irq_cfg,
547 vcpu->vcpu_id, offset >> 1);
549 if (offset & 4)
550 val = *reg >> 16;
551 else
552 val = *reg & 0xffff;
554 val = vgic_cfg_expand(val);
555 vgic_reg_access(mmio, &val, offset,
556 ACCESS_READ_VALUE | ACCESS_WRITE_VALUE);
557 if (mmio->is_write) {
558 if (offset < 8) {
559 *reg = ~0U; /* Force PPIs/SGIs to 1 */
560 return false;
563 val = vgic_cfg_compress(val);
564 if (offset & 4) {
565 *reg &= 0xffff;
566 *reg |= val << 16;
567 } else {
568 *reg &= 0xffff << 16;
569 *reg |= val;
573 return false;
576 static bool handle_mmio_sgi_reg(struct kvm_vcpu *vcpu,
577 struct kvm_exit_mmio *mmio, phys_addr_t offset)
579 u32 reg;
580 vgic_reg_access(mmio, &reg, offset,
581 ACCESS_READ_RAZ | ACCESS_WRITE_VALUE);
582 if (mmio->is_write) {
583 vgic_dispatch_sgi(vcpu, reg);
584 vgic_update_state(vcpu->kvm);
585 return true;
588 return false;
592 * I would have liked to use the kvm_bus_io_*() API instead, but it
593 * cannot cope with banked registers (only the VM pointer is passed
594 * around, and we need the vcpu). One of these days, someone please
595 * fix it!
597 struct mmio_range {
598 phys_addr_t base;
599 unsigned long len;
600 bool (*handle_mmio)(struct kvm_vcpu *vcpu, struct kvm_exit_mmio *mmio,
601 phys_addr_t offset);
604 static const struct mmio_range vgic_ranges[] = {
606 .base = GIC_DIST_CTRL,
607 .len = 12,
608 .handle_mmio = handle_mmio_misc,
611 .base = GIC_DIST_IGROUP,
612 .len = VGIC_NR_IRQS / 8,
613 .handle_mmio = handle_mmio_raz_wi,
616 .base = GIC_DIST_ENABLE_SET,
617 .len = VGIC_NR_IRQS / 8,
618 .handle_mmio = handle_mmio_set_enable_reg,
621 .base = GIC_DIST_ENABLE_CLEAR,
622 .len = VGIC_NR_IRQS / 8,
623 .handle_mmio = handle_mmio_clear_enable_reg,
626 .base = GIC_DIST_PENDING_SET,
627 .len = VGIC_NR_IRQS / 8,
628 .handle_mmio = handle_mmio_set_pending_reg,
631 .base = GIC_DIST_PENDING_CLEAR,
632 .len = VGIC_NR_IRQS / 8,
633 .handle_mmio = handle_mmio_clear_pending_reg,
636 .base = GIC_DIST_ACTIVE_SET,
637 .len = VGIC_NR_IRQS / 8,
638 .handle_mmio = handle_mmio_raz_wi,
641 .base = GIC_DIST_ACTIVE_CLEAR,
642 .len = VGIC_NR_IRQS / 8,
643 .handle_mmio = handle_mmio_raz_wi,
646 .base = GIC_DIST_PRI,
647 .len = VGIC_NR_IRQS,
648 .handle_mmio = handle_mmio_priority_reg,
651 .base = GIC_DIST_TARGET,
652 .len = VGIC_NR_IRQS,
653 .handle_mmio = handle_mmio_target_reg,
656 .base = GIC_DIST_CONFIG,
657 .len = VGIC_NR_IRQS / 4,
658 .handle_mmio = handle_mmio_cfg_reg,
661 .base = GIC_DIST_SOFTINT,
662 .len = 4,
663 .handle_mmio = handle_mmio_sgi_reg,
668 static const
669 struct mmio_range *find_matching_range(const struct mmio_range *ranges,
670 struct kvm_exit_mmio *mmio,
671 phys_addr_t base)
673 const struct mmio_range *r = ranges;
674 phys_addr_t addr = mmio->phys_addr - base;
676 while (r->len) {
677 if (addr >= r->base &&
678 (addr + mmio->len) <= (r->base + r->len))
679 return r;
680 r++;
683 return NULL;
687 * vgic_handle_mmio - handle an in-kernel MMIO access
688 * @vcpu: pointer to the vcpu performing the access
689 * @run: pointer to the kvm_run structure
690 * @mmio: pointer to the data describing the access
692 * returns true if the MMIO access has been performed in kernel space,
693 * and false if it needs to be emulated in user space.
695 bool vgic_handle_mmio(struct kvm_vcpu *vcpu, struct kvm_run *run,
696 struct kvm_exit_mmio *mmio)
698 const struct mmio_range *range;
699 struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
700 unsigned long base = dist->vgic_dist_base;
701 bool updated_state;
702 unsigned long offset;
704 if (!irqchip_in_kernel(vcpu->kvm) ||
705 mmio->phys_addr < base ||
706 (mmio->phys_addr + mmio->len) > (base + KVM_VGIC_V2_DIST_SIZE))
707 return false;
709 /* We don't support ldrd / strd or ldm / stm to the emulated vgic */
710 if (mmio->len > 4) {
711 kvm_inject_dabt(vcpu, mmio->phys_addr);
712 return true;
715 range = find_matching_range(vgic_ranges, mmio, base);
716 if (unlikely(!range || !range->handle_mmio)) {
717 pr_warn("Unhandled access %d %08llx %d\n",
718 mmio->is_write, mmio->phys_addr, mmio->len);
719 return false;
722 spin_lock(&vcpu->kvm->arch.vgic.lock);
723 offset = mmio->phys_addr - range->base - base;
724 updated_state = range->handle_mmio(vcpu, mmio, offset);
725 spin_unlock(&vcpu->kvm->arch.vgic.lock);
726 kvm_prepare_mmio(run, mmio);
727 kvm_handle_mmio_return(vcpu, run);
729 if (updated_state)
730 vgic_kick_vcpus(vcpu->kvm);
732 return true;
735 static void vgic_dispatch_sgi(struct kvm_vcpu *vcpu, u32 reg)
737 struct kvm *kvm = vcpu->kvm;
738 struct vgic_dist *dist = &kvm->arch.vgic;
739 int nrcpus = atomic_read(&kvm->online_vcpus);
740 u8 target_cpus;
741 int sgi, mode, c, vcpu_id;
743 vcpu_id = vcpu->vcpu_id;
745 sgi = reg & 0xf;
746 target_cpus = (reg >> 16) & 0xff;
747 mode = (reg >> 24) & 3;
749 switch (mode) {
750 case 0:
751 if (!target_cpus)
752 return;
753 break;
755 case 1:
756 target_cpus = ((1 << nrcpus) - 1) & ~(1 << vcpu_id) & 0xff;
757 break;
759 case 2:
760 target_cpus = 1 << vcpu_id;
761 break;
764 kvm_for_each_vcpu(c, vcpu, kvm) {
765 if (target_cpus & 1) {
766 /* Flag the SGI as pending */
767 vgic_dist_irq_set(vcpu, sgi);
768 dist->irq_sgi_sources[c][sgi] |= 1 << vcpu_id;
769 kvm_debug("SGI%d from CPU%d to CPU%d\n", sgi, vcpu_id, c);
772 target_cpus >>= 1;
776 static int compute_pending_for_cpu(struct kvm_vcpu *vcpu)
778 struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
779 unsigned long *pending, *enabled, *pend_percpu, *pend_shared;
780 unsigned long pending_private, pending_shared;
781 int vcpu_id;
783 vcpu_id = vcpu->vcpu_id;
784 pend_percpu = vcpu->arch.vgic_cpu.pending_percpu;
785 pend_shared = vcpu->arch.vgic_cpu.pending_shared;
787 pending = vgic_bitmap_get_cpu_map(&dist->irq_state, vcpu_id);
788 enabled = vgic_bitmap_get_cpu_map(&dist->irq_enabled, vcpu_id);
789 bitmap_and(pend_percpu, pending, enabled, VGIC_NR_PRIVATE_IRQS);
791 pending = vgic_bitmap_get_shared_map(&dist->irq_state);
792 enabled = vgic_bitmap_get_shared_map(&dist->irq_enabled);
793 bitmap_and(pend_shared, pending, enabled, VGIC_NR_SHARED_IRQS);
794 bitmap_and(pend_shared, pend_shared,
795 vgic_bitmap_get_shared_map(&dist->irq_spi_target[vcpu_id]),
796 VGIC_NR_SHARED_IRQS);
798 pending_private = find_first_bit(pend_percpu, VGIC_NR_PRIVATE_IRQS);
799 pending_shared = find_first_bit(pend_shared, VGIC_NR_SHARED_IRQS);
800 return (pending_private < VGIC_NR_PRIVATE_IRQS ||
801 pending_shared < VGIC_NR_SHARED_IRQS);
805 * Update the interrupt state and determine which CPUs have pending
806 * interrupts. Must be called with distributor lock held.
808 static void vgic_update_state(struct kvm *kvm)
810 struct vgic_dist *dist = &kvm->arch.vgic;
811 struct kvm_vcpu *vcpu;
812 int c;
814 if (!dist->enabled) {
815 set_bit(0, &dist->irq_pending_on_cpu);
816 return;
819 kvm_for_each_vcpu(c, vcpu, kvm) {
820 if (compute_pending_for_cpu(vcpu)) {
821 pr_debug("CPU%d has pending interrupts\n", c);
822 set_bit(c, &dist->irq_pending_on_cpu);
827 #define LR_CPUID(lr) \
828 (((lr) & GICH_LR_PHYSID_CPUID) >> GICH_LR_PHYSID_CPUID_SHIFT)
829 #define MK_LR_PEND(src, irq) \
830 (GICH_LR_PENDING_BIT | ((src) << GICH_LR_PHYSID_CPUID_SHIFT) | (irq))
833 * An interrupt may have been disabled after being made pending on the
834 * CPU interface (the classic case is a timer running while we're
835 * rebooting the guest - the interrupt would kick as soon as the CPU
836 * interface gets enabled, with deadly consequences).
838 * The solution is to examine already active LRs, and check the
839 * interrupt is still enabled. If not, just retire it.
841 static void vgic_retire_disabled_irqs(struct kvm_vcpu *vcpu)
843 struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
844 int lr;
846 for_each_set_bit(lr, vgic_cpu->lr_used, vgic_cpu->nr_lr) {
847 int irq = vgic_cpu->vgic_lr[lr] & GICH_LR_VIRTUALID;
849 if (!vgic_irq_is_enabled(vcpu, irq)) {
850 vgic_cpu->vgic_irq_lr_map[irq] = LR_EMPTY;
851 clear_bit(lr, vgic_cpu->lr_used);
852 vgic_cpu->vgic_lr[lr] &= ~GICH_LR_STATE;
853 if (vgic_irq_is_active(vcpu, irq))
854 vgic_irq_clear_active(vcpu, irq);
860 * Queue an interrupt to a CPU virtual interface. Return true on success,
861 * or false if it wasn't possible to queue it.
863 static bool vgic_queue_irq(struct kvm_vcpu *vcpu, u8 sgi_source_id, int irq)
865 struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
866 int lr;
868 /* Sanitize the input... */
869 BUG_ON(sgi_source_id & ~7);
870 BUG_ON(sgi_source_id && irq >= VGIC_NR_SGIS);
871 BUG_ON(irq >= VGIC_NR_IRQS);
873 kvm_debug("Queue IRQ%d\n", irq);
875 lr = vgic_cpu->vgic_irq_lr_map[irq];
877 /* Do we have an active interrupt for the same CPUID? */
878 if (lr != LR_EMPTY &&
879 (LR_CPUID(vgic_cpu->vgic_lr[lr]) == sgi_source_id)) {
880 kvm_debug("LR%d piggyback for IRQ%d %x\n",
881 lr, irq, vgic_cpu->vgic_lr[lr]);
882 BUG_ON(!test_bit(lr, vgic_cpu->lr_used));
883 vgic_cpu->vgic_lr[lr] |= GICH_LR_PENDING_BIT;
884 __clear_bit(lr, (unsigned long *)vgic_cpu->vgic_elrsr);
885 return true;
888 /* Try to use another LR for this interrupt */
889 lr = find_first_zero_bit((unsigned long *)vgic_cpu->lr_used,
890 vgic_cpu->nr_lr);
891 if (lr >= vgic_cpu->nr_lr)
892 return false;
894 kvm_debug("LR%d allocated for IRQ%d %x\n", lr, irq, sgi_source_id);
895 vgic_cpu->vgic_lr[lr] = MK_LR_PEND(sgi_source_id, irq);
896 vgic_cpu->vgic_irq_lr_map[irq] = lr;
897 set_bit(lr, vgic_cpu->lr_used);
898 __clear_bit(lr, (unsigned long *)vgic_cpu->vgic_elrsr);
900 if (!vgic_irq_is_edge(vcpu, irq))
901 vgic_cpu->vgic_lr[lr] |= GICH_LR_EOI;
903 return true;
906 static bool vgic_queue_sgi(struct kvm_vcpu *vcpu, int irq)
908 struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
909 unsigned long sources;
910 int vcpu_id = vcpu->vcpu_id;
911 int c;
913 sources = dist->irq_sgi_sources[vcpu_id][irq];
915 for_each_set_bit(c, &sources, VGIC_MAX_CPUS) {
916 if (vgic_queue_irq(vcpu, c, irq))
917 clear_bit(c, &sources);
920 dist->irq_sgi_sources[vcpu_id][irq] = sources;
923 * If the sources bitmap has been cleared it means that we
924 * could queue all the SGIs onto link registers (see the
925 * clear_bit above), and therefore we are done with them in
926 * our emulated gic and can get rid of them.
928 if (!sources) {
929 vgic_dist_irq_clear(vcpu, irq);
930 vgic_cpu_irq_clear(vcpu, irq);
931 return true;
934 return false;
937 static bool vgic_queue_hwirq(struct kvm_vcpu *vcpu, int irq)
939 if (vgic_irq_is_active(vcpu, irq))
940 return true; /* level interrupt, already queued */
942 if (vgic_queue_irq(vcpu, 0, irq)) {
943 if (vgic_irq_is_edge(vcpu, irq)) {
944 vgic_dist_irq_clear(vcpu, irq);
945 vgic_cpu_irq_clear(vcpu, irq);
946 } else {
947 vgic_irq_set_active(vcpu, irq);
950 return true;
953 return false;
957 * Fill the list registers with pending interrupts before running the
958 * guest.
960 static void __kvm_vgic_flush_hwstate(struct kvm_vcpu *vcpu)
962 struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
963 struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
964 int i, vcpu_id;
965 int overflow = 0;
967 vcpu_id = vcpu->vcpu_id;
970 * We may not have any pending interrupt, or the interrupts
971 * may have been serviced from another vcpu. In all cases,
972 * move along.
974 if (!kvm_vgic_vcpu_pending_irq(vcpu)) {
975 pr_debug("CPU%d has no pending interrupt\n", vcpu_id);
976 goto epilog;
979 /* SGIs */
980 for_each_set_bit(i, vgic_cpu->pending_percpu, VGIC_NR_SGIS) {
981 if (!vgic_queue_sgi(vcpu, i))
982 overflow = 1;
985 /* PPIs */
986 for_each_set_bit_from(i, vgic_cpu->pending_percpu, VGIC_NR_PRIVATE_IRQS) {
987 if (!vgic_queue_hwirq(vcpu, i))
988 overflow = 1;
991 /* SPIs */
992 for_each_set_bit(i, vgic_cpu->pending_shared, VGIC_NR_SHARED_IRQS) {
993 if (!vgic_queue_hwirq(vcpu, i + VGIC_NR_PRIVATE_IRQS))
994 overflow = 1;
997 epilog:
998 if (overflow) {
999 vgic_cpu->vgic_hcr |= GICH_HCR_UIE;
1000 } else {
1001 vgic_cpu->vgic_hcr &= ~GICH_HCR_UIE;
1003 * We're about to run this VCPU, and we've consumed
1004 * everything the distributor had in store for
1005 * us. Claim we don't have anything pending. We'll
1006 * adjust that if needed while exiting.
1008 clear_bit(vcpu_id, &dist->irq_pending_on_cpu);
1012 static bool vgic_process_maintenance(struct kvm_vcpu *vcpu)
1014 struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
1015 bool level_pending = false;
1017 kvm_debug("MISR = %08x\n", vgic_cpu->vgic_misr);
1019 if (vgic_cpu->vgic_misr & GICH_MISR_EOI) {
1021 * Some level interrupts have been EOIed. Clear their
1022 * active bit.
1024 int lr, irq;
1026 for_each_set_bit(lr, (unsigned long *)vgic_cpu->vgic_eisr,
1027 vgic_cpu->nr_lr) {
1028 irq = vgic_cpu->vgic_lr[lr] & GICH_LR_VIRTUALID;
1030 vgic_irq_clear_active(vcpu, irq);
1031 vgic_cpu->vgic_lr[lr] &= ~GICH_LR_EOI;
1033 /* Any additional pending interrupt? */
1034 if (vgic_dist_irq_is_pending(vcpu, irq)) {
1035 vgic_cpu_irq_set(vcpu, irq);
1036 level_pending = true;
1037 } else {
1038 vgic_cpu_irq_clear(vcpu, irq);
1042 * Despite being EOIed, the LR may not have
1043 * been marked as empty.
1045 set_bit(lr, (unsigned long *)vgic_cpu->vgic_elrsr);
1046 vgic_cpu->vgic_lr[lr] &= ~GICH_LR_ACTIVE_BIT;
1050 if (vgic_cpu->vgic_misr & GICH_MISR_U)
1051 vgic_cpu->vgic_hcr &= ~GICH_HCR_UIE;
1054 * In the next iterations of the vcpu loop, if we sync the vgic state
1055 * after flushing it, but before entering the guest (this happens for
1056 * pending signals and vmid rollovers), then make sure we don't pick
1057 * up any old maintenance interrupts here.
1059 memset(vgic_cpu->vgic_eisr, 0, sizeof(vgic_cpu->vgic_eisr[0]) * 2);
1061 return level_pending;
1065 * Sync back the VGIC state after a guest run. The distributor lock is
1066 * needed so we don't get preempted in the middle of the state processing.
1068 static void __kvm_vgic_sync_hwstate(struct kvm_vcpu *vcpu)
1070 struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
1071 struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
1072 int lr, pending;
1073 bool level_pending;
1075 level_pending = vgic_process_maintenance(vcpu);
1077 /* Clear mappings for empty LRs */
1078 for_each_set_bit(lr, (unsigned long *)vgic_cpu->vgic_elrsr,
1079 vgic_cpu->nr_lr) {
1080 int irq;
1082 if (!test_and_clear_bit(lr, vgic_cpu->lr_used))
1083 continue;
1085 irq = vgic_cpu->vgic_lr[lr] & GICH_LR_VIRTUALID;
1087 BUG_ON(irq >= VGIC_NR_IRQS);
1088 vgic_cpu->vgic_irq_lr_map[irq] = LR_EMPTY;
1091 /* Check if we still have something up our sleeve... */
1092 pending = find_first_zero_bit((unsigned long *)vgic_cpu->vgic_elrsr,
1093 vgic_cpu->nr_lr);
1094 if (level_pending || pending < vgic_cpu->nr_lr)
1095 set_bit(vcpu->vcpu_id, &dist->irq_pending_on_cpu);
1098 void kvm_vgic_flush_hwstate(struct kvm_vcpu *vcpu)
1100 struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
1102 if (!irqchip_in_kernel(vcpu->kvm))
1103 return;
1105 spin_lock(&dist->lock);
1106 __kvm_vgic_flush_hwstate(vcpu);
1107 spin_unlock(&dist->lock);
1110 void kvm_vgic_sync_hwstate(struct kvm_vcpu *vcpu)
1112 struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
1114 if (!irqchip_in_kernel(vcpu->kvm))
1115 return;
1117 spin_lock(&dist->lock);
1118 __kvm_vgic_sync_hwstate(vcpu);
1119 spin_unlock(&dist->lock);
1122 int kvm_vgic_vcpu_pending_irq(struct kvm_vcpu *vcpu)
1124 struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
1126 if (!irqchip_in_kernel(vcpu->kvm))
1127 return 0;
1129 return test_bit(vcpu->vcpu_id, &dist->irq_pending_on_cpu);
1132 static void vgic_kick_vcpus(struct kvm *kvm)
1134 struct kvm_vcpu *vcpu;
1135 int c;
1138 * We've injected an interrupt, time to find out who deserves
1139 * a good kick...
1141 kvm_for_each_vcpu(c, vcpu, kvm) {
1142 if (kvm_vgic_vcpu_pending_irq(vcpu))
1143 kvm_vcpu_kick(vcpu);
1147 static int vgic_validate_injection(struct kvm_vcpu *vcpu, int irq, int level)
1149 int is_edge = vgic_irq_is_edge(vcpu, irq);
1150 int state = vgic_dist_irq_is_pending(vcpu, irq);
1153 * Only inject an interrupt if:
1154 * - edge triggered and we have a rising edge
1155 * - level triggered and we change level
1157 if (is_edge)
1158 return level > state;
1159 else
1160 return level != state;
1163 static bool vgic_update_irq_state(struct kvm *kvm, int cpuid,
1164 unsigned int irq_num, bool level)
1166 struct vgic_dist *dist = &kvm->arch.vgic;
1167 struct kvm_vcpu *vcpu;
1168 int is_edge, is_level;
1169 int enabled;
1170 bool ret = true;
1172 spin_lock(&dist->lock);
1174 vcpu = kvm_get_vcpu(kvm, cpuid);
1175 is_edge = vgic_irq_is_edge(vcpu, irq_num);
1176 is_level = !is_edge;
1178 if (!vgic_validate_injection(vcpu, irq_num, level)) {
1179 ret = false;
1180 goto out;
1183 if (irq_num >= VGIC_NR_PRIVATE_IRQS) {
1184 cpuid = dist->irq_spi_cpu[irq_num - VGIC_NR_PRIVATE_IRQS];
1185 vcpu = kvm_get_vcpu(kvm, cpuid);
1188 kvm_debug("Inject IRQ%d level %d CPU%d\n", irq_num, level, cpuid);
1190 if (level)
1191 vgic_dist_irq_set(vcpu, irq_num);
1192 else
1193 vgic_dist_irq_clear(vcpu, irq_num);
1195 enabled = vgic_irq_is_enabled(vcpu, irq_num);
1197 if (!enabled) {
1198 ret = false;
1199 goto out;
1202 if (is_level && vgic_irq_is_active(vcpu, irq_num)) {
1204 * Level interrupt in progress, will be picked up
1205 * when EOId.
1207 ret = false;
1208 goto out;
1211 if (level) {
1212 vgic_cpu_irq_set(vcpu, irq_num);
1213 set_bit(cpuid, &dist->irq_pending_on_cpu);
1216 out:
1217 spin_unlock(&dist->lock);
1219 return ret;
1223 * kvm_vgic_inject_irq - Inject an IRQ from a device to the vgic
1224 * @kvm: The VM structure pointer
1225 * @cpuid: The CPU for PPIs
1226 * @irq_num: The IRQ number that is assigned to the device
1227 * @level: Edge-triggered: true: to trigger the interrupt
1228 * false: to ignore the call
1229 * Level-sensitive true: activates an interrupt
1230 * false: deactivates an interrupt
1232 * The GIC is not concerned with devices being active-LOW or active-HIGH for
1233 * level-sensitive interrupts. You can think of the level parameter as 1
1234 * being HIGH and 0 being LOW and all devices being active-HIGH.
1236 int kvm_vgic_inject_irq(struct kvm *kvm, int cpuid, unsigned int irq_num,
1237 bool level)
1239 if (likely(vgic_initialized(kvm)) &&
1240 vgic_update_irq_state(kvm, cpuid, irq_num, level))
1241 vgic_kick_vcpus(kvm);
1243 return 0;
1246 static irqreturn_t vgic_maintenance_handler(int irq, void *data)
1249 * We cannot rely on the vgic maintenance interrupt to be
1250 * delivered synchronously. This means we can only use it to
1251 * exit the VM, and we perform the handling of EOIed
1252 * interrupts on the exit path (see vgic_process_maintenance).
1254 return IRQ_HANDLED;
1258 * kvm_vgic_vcpu_init - Initialize per-vcpu VGIC state
1259 * @vcpu: pointer to the vcpu struct
1261 * Initialize the vgic_cpu struct and vgic_dist struct fields pertaining to
1262 * this vcpu and enable the VGIC for this VCPU
1264 int kvm_vgic_vcpu_init(struct kvm_vcpu *vcpu)
1266 struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
1267 struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
1268 int i;
1270 if (vcpu->vcpu_id >= VGIC_MAX_CPUS)
1271 return -EBUSY;
1273 for (i = 0; i < VGIC_NR_IRQS; i++) {
1274 if (i < VGIC_NR_PPIS)
1275 vgic_bitmap_set_irq_val(&dist->irq_enabled,
1276 vcpu->vcpu_id, i, 1);
1277 if (i < VGIC_NR_PRIVATE_IRQS)
1278 vgic_bitmap_set_irq_val(&dist->irq_cfg,
1279 vcpu->vcpu_id, i, VGIC_CFG_EDGE);
1281 vgic_cpu->vgic_irq_lr_map[i] = LR_EMPTY;
1285 * By forcing VMCR to zero, the GIC will restore the binary
1286 * points to their reset values. Anything else resets to zero
1287 * anyway.
1289 vgic_cpu->vgic_vmcr = 0;
1291 vgic_cpu->nr_lr = vgic_nr_lr;
1292 vgic_cpu->vgic_hcr = GICH_HCR_EN; /* Get the show on the road... */
1294 return 0;
1297 static void vgic_init_maintenance_interrupt(void *info)
1299 enable_percpu_irq(vgic_maint_irq, 0);
1302 static int vgic_cpu_notify(struct notifier_block *self,
1303 unsigned long action, void *cpu)
1305 switch (action) {
1306 case CPU_STARTING:
1307 case CPU_STARTING_FROZEN:
1308 vgic_init_maintenance_interrupt(NULL);
1309 break;
1310 case CPU_DYING:
1311 case CPU_DYING_FROZEN:
1312 disable_percpu_irq(vgic_maint_irq);
1313 break;
1316 return NOTIFY_OK;
1319 static struct notifier_block vgic_cpu_nb = {
1320 .notifier_call = vgic_cpu_notify,
1323 int kvm_vgic_hyp_init(void)
1325 int ret;
1326 struct resource vctrl_res;
1327 struct resource vcpu_res;
1329 vgic_node = of_find_compatible_node(NULL, NULL, "arm,cortex-a15-gic");
1330 if (!vgic_node) {
1331 kvm_err("error: no compatible vgic node in DT\n");
1332 return -ENODEV;
1335 vgic_maint_irq = irq_of_parse_and_map(vgic_node, 0);
1336 if (!vgic_maint_irq) {
1337 kvm_err("error getting vgic maintenance irq from DT\n");
1338 ret = -ENXIO;
1339 goto out;
1342 ret = request_percpu_irq(vgic_maint_irq, vgic_maintenance_handler,
1343 "vgic", kvm_get_running_vcpus());
1344 if (ret) {
1345 kvm_err("Cannot register interrupt %d\n", vgic_maint_irq);
1346 goto out;
1349 ret = register_cpu_notifier(&vgic_cpu_nb);
1350 if (ret) {
1351 kvm_err("Cannot register vgic CPU notifier\n");
1352 goto out_free_irq;
1355 ret = of_address_to_resource(vgic_node, 2, &vctrl_res);
1356 if (ret) {
1357 kvm_err("Cannot obtain VCTRL resource\n");
1358 goto out_free_irq;
1361 vgic_vctrl_base = of_iomap(vgic_node, 2);
1362 if (!vgic_vctrl_base) {
1363 kvm_err("Cannot ioremap VCTRL\n");
1364 ret = -ENOMEM;
1365 goto out_free_irq;
1368 vgic_nr_lr = readl_relaxed(vgic_vctrl_base + GICH_VTR);
1369 vgic_nr_lr = (vgic_nr_lr & 0x3f) + 1;
1371 ret = create_hyp_io_mappings(vgic_vctrl_base,
1372 vgic_vctrl_base + resource_size(&vctrl_res),
1373 vctrl_res.start);
1374 if (ret) {
1375 kvm_err("Cannot map VCTRL into hyp\n");
1376 goto out_unmap;
1379 if (of_address_to_resource(vgic_node, 3, &vcpu_res)) {
1380 kvm_err("Cannot obtain VCPU resource\n");
1381 ret = -ENXIO;
1382 goto out_unmap;
1385 if (!PAGE_ALIGNED(vcpu_res.start)) {
1386 kvm_err("GICV physical address 0x%llx not page aligned\n",
1387 (unsigned long long)vcpu_res.start);
1388 ret = -ENXIO;
1389 goto out_unmap;
1392 if (!PAGE_ALIGNED(resource_size(&vcpu_res))) {
1393 kvm_err("GICV size 0x%llx not a multiple of page size 0x%lx\n",
1394 (unsigned long long)resource_size(&vcpu_res),
1395 PAGE_SIZE);
1396 ret = -ENXIO;
1397 goto out_unmap;
1400 vgic_vcpu_base = vcpu_res.start;
1402 kvm_info("%s@%llx IRQ%d\n", vgic_node->name,
1403 vctrl_res.start, vgic_maint_irq);
1404 on_each_cpu(vgic_init_maintenance_interrupt, NULL, 1);
1406 goto out;
1408 out_unmap:
1409 iounmap(vgic_vctrl_base);
1410 out_free_irq:
1411 free_percpu_irq(vgic_maint_irq, kvm_get_running_vcpus());
1412 out:
1413 of_node_put(vgic_node);
1414 return ret;
1418 * kvm_vgic_init - Initialize global VGIC state before running any VCPUs
1419 * @kvm: pointer to the kvm struct
1421 * Map the virtual CPU interface into the VM before running any VCPUs. We
1422 * can't do this at creation time, because user space must first set the
1423 * virtual CPU interface address in the guest physical address space. Also
1424 * initialize the ITARGETSRn regs to 0 on the emulated distributor.
1426 int kvm_vgic_init(struct kvm *kvm)
1428 int ret = 0, i;
1430 if (!irqchip_in_kernel(kvm))
1431 return 0;
1433 mutex_lock(&kvm->lock);
1435 if (vgic_initialized(kvm))
1436 goto out;
1438 if (IS_VGIC_ADDR_UNDEF(kvm->arch.vgic.vgic_dist_base) ||
1439 IS_VGIC_ADDR_UNDEF(kvm->arch.vgic.vgic_cpu_base)) {
1440 kvm_err("Need to set vgic cpu and dist addresses first\n");
1441 ret = -ENXIO;
1442 goto out;
1445 ret = kvm_phys_addr_ioremap(kvm, kvm->arch.vgic.vgic_cpu_base,
1446 vgic_vcpu_base, KVM_VGIC_V2_CPU_SIZE);
1447 if (ret) {
1448 kvm_err("Unable to remap VGIC CPU to VCPU\n");
1449 goto out;
1452 for (i = VGIC_NR_PRIVATE_IRQS; i < VGIC_NR_IRQS; i += 4)
1453 vgic_set_target_reg(kvm, 0, i);
1455 kvm->arch.vgic.ready = true;
1456 out:
1457 mutex_unlock(&kvm->lock);
1458 return ret;
1461 int kvm_vgic_create(struct kvm *kvm)
1463 int ret = 0;
1465 mutex_lock(&kvm->lock);
1467 if (atomic_read(&kvm->online_vcpus) || kvm->arch.vgic.vctrl_base) {
1468 ret = -EEXIST;
1469 goto out;
1472 spin_lock_init(&kvm->arch.vgic.lock);
1473 kvm->arch.vgic.vctrl_base = vgic_vctrl_base;
1474 kvm->arch.vgic.vgic_dist_base = VGIC_ADDR_UNDEF;
1475 kvm->arch.vgic.vgic_cpu_base = VGIC_ADDR_UNDEF;
1477 out:
1478 mutex_unlock(&kvm->lock);
1479 return ret;
1482 static int vgic_ioaddr_overlap(struct kvm *kvm)
1484 phys_addr_t dist = kvm->arch.vgic.vgic_dist_base;
1485 phys_addr_t cpu = kvm->arch.vgic.vgic_cpu_base;
1487 if (IS_VGIC_ADDR_UNDEF(dist) || IS_VGIC_ADDR_UNDEF(cpu))
1488 return 0;
1489 if ((dist <= cpu && dist + KVM_VGIC_V2_DIST_SIZE > cpu) ||
1490 (cpu <= dist && cpu + KVM_VGIC_V2_CPU_SIZE > dist))
1491 return -EBUSY;
1492 return 0;
1495 static int vgic_ioaddr_assign(struct kvm *kvm, phys_addr_t *ioaddr,
1496 phys_addr_t addr, phys_addr_t size)
1498 int ret;
1500 if (!IS_VGIC_ADDR_UNDEF(*ioaddr))
1501 return -EEXIST;
1502 if (addr + size < addr)
1503 return -EINVAL;
1505 *ioaddr = addr;
1506 ret = vgic_ioaddr_overlap(kvm);
1507 if (ret)
1508 *ioaddr = VGIC_ADDR_UNDEF;
1510 return ret;
1513 int kvm_vgic_set_addr(struct kvm *kvm, unsigned long type, u64 addr)
1515 int r = 0;
1516 struct vgic_dist *vgic = &kvm->arch.vgic;
1518 if (addr & ~KVM_PHYS_MASK)
1519 return -E2BIG;
1521 if (addr & (SZ_4K - 1))
1522 return -EINVAL;
1524 mutex_lock(&kvm->lock);
1525 switch (type) {
1526 case KVM_VGIC_V2_ADDR_TYPE_DIST:
1527 r = vgic_ioaddr_assign(kvm, &vgic->vgic_dist_base,
1528 addr, KVM_VGIC_V2_DIST_SIZE);
1529 break;
1530 case KVM_VGIC_V2_ADDR_TYPE_CPU:
1531 r = vgic_ioaddr_assign(kvm, &vgic->vgic_cpu_base,
1532 addr, KVM_VGIC_V2_CPU_SIZE);
1533 break;
1534 default:
1535 r = -ENODEV;
1538 mutex_unlock(&kvm->lock);
1539 return r;