2 * Copyright (c) 2008-2009 Atheros Communications Inc.
4 * Permission to use, copy, modify, and/or distribute this software for any
5 * purpose with or without fee is hereby granted, provided that the above
6 * copyright notice and this permission notice appear in all copies.
8 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
9 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
10 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
11 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
12 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
13 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
14 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
18 #include <asm/unaligned.h>
24 #define ATH9K_CLOCK_RATE_CCK 22
25 #define ATH9K_CLOCK_RATE_5GHZ_OFDM 40
26 #define ATH9K_CLOCK_RATE_2GHZ_OFDM 44
28 static bool ath9k_hw_set_reset_reg(struct ath_hw
*ah
, u32 type
);
29 static void ath9k_hw_set_regs(struct ath_hw
*ah
, struct ath9k_channel
*chan
);
30 static u32
ath9k_hw_ini_fixup(struct ath_hw
*ah
,
31 struct ar5416_eeprom_def
*pEepData
,
33 static void ath9k_hw_9280_spur_mitigate(struct ath_hw
*ah
, struct ath9k_channel
*chan
);
34 static void ath9k_hw_spur_mitigate(struct ath_hw
*ah
, struct ath9k_channel
*chan
);
36 MODULE_AUTHOR("Atheros Communications");
37 MODULE_DESCRIPTION("Support for Atheros 802.11n wireless LAN cards.");
38 MODULE_SUPPORTED_DEVICE("Atheros 802.11n WLAN cards");
39 MODULE_LICENSE("Dual BSD/GPL");
41 static int __init
ath9k_init(void)
45 module_init(ath9k_init
);
47 static void __exit
ath9k_exit(void)
51 module_exit(ath9k_exit
);
53 /********************/
54 /* Helper Functions */
55 /********************/
57 static u32
ath9k_hw_mac_usec(struct ath_hw
*ah
, u32 clks
)
59 struct ieee80211_conf
*conf
= &ath9k_hw_common(ah
)->hw
->conf
;
61 if (!ah
->curchan
) /* should really check for CCK instead */
62 return clks
/ ATH9K_CLOCK_RATE_CCK
;
63 if (conf
->channel
->band
== IEEE80211_BAND_2GHZ
)
64 return clks
/ ATH9K_CLOCK_RATE_2GHZ_OFDM
;
66 return clks
/ ATH9K_CLOCK_RATE_5GHZ_OFDM
;
69 static u32
ath9k_hw_mac_to_usec(struct ath_hw
*ah
, u32 clks
)
71 struct ieee80211_conf
*conf
= &ath9k_hw_common(ah
)->hw
->conf
;
73 if (conf_is_ht40(conf
))
74 return ath9k_hw_mac_usec(ah
, clks
) / 2;
76 return ath9k_hw_mac_usec(ah
, clks
);
79 static u32
ath9k_hw_mac_clks(struct ath_hw
*ah
, u32 usecs
)
81 struct ieee80211_conf
*conf
= &ath9k_hw_common(ah
)->hw
->conf
;
83 if (!ah
->curchan
) /* should really check for CCK instead */
84 return usecs
*ATH9K_CLOCK_RATE_CCK
;
85 if (conf
->channel
->band
== IEEE80211_BAND_2GHZ
)
86 return usecs
*ATH9K_CLOCK_RATE_2GHZ_OFDM
;
87 return usecs
*ATH9K_CLOCK_RATE_5GHZ_OFDM
;
90 static u32
ath9k_hw_mac_to_clks(struct ath_hw
*ah
, u32 usecs
)
92 struct ieee80211_conf
*conf
= &ath9k_hw_common(ah
)->hw
->conf
;
94 if (conf_is_ht40(conf
))
95 return ath9k_hw_mac_clks(ah
, usecs
) * 2;
97 return ath9k_hw_mac_clks(ah
, usecs
);
100 bool ath9k_hw_wait(struct ath_hw
*ah
, u32 reg
, u32 mask
, u32 val
, u32 timeout
)
104 BUG_ON(timeout
< AH_TIME_QUANTUM
);
106 for (i
= 0; i
< (timeout
/ AH_TIME_QUANTUM
); i
++) {
107 if ((REG_READ(ah
, reg
) & mask
) == val
)
110 udelay(AH_TIME_QUANTUM
);
113 ath_print(ath9k_hw_common(ah
), ATH_DBG_ANY
,
114 "timeout (%d us) on reg 0x%x: 0x%08x & 0x%08x != 0x%08x\n",
115 timeout
, reg
, REG_READ(ah
, reg
), mask
, val
);
119 EXPORT_SYMBOL(ath9k_hw_wait
);
121 u32
ath9k_hw_reverse_bits(u32 val
, u32 n
)
126 for (i
= 0, retval
= 0; i
< n
; i
++) {
127 retval
= (retval
<< 1) | (val
& 1);
133 bool ath9k_get_channel_edges(struct ath_hw
*ah
,
137 struct ath9k_hw_capabilities
*pCap
= &ah
->caps
;
139 if (flags
& CHANNEL_5GHZ
) {
140 *low
= pCap
->low_5ghz_chan
;
141 *high
= pCap
->high_5ghz_chan
;
144 if ((flags
& CHANNEL_2GHZ
)) {
145 *low
= pCap
->low_2ghz_chan
;
146 *high
= pCap
->high_2ghz_chan
;
152 u16
ath9k_hw_computetxtime(struct ath_hw
*ah
,
153 const struct ath_rate_table
*rates
,
154 u32 frameLen
, u16 rateix
,
157 u32 bitsPerSymbol
, numBits
, numSymbols
, phyTime
, txTime
;
160 kbps
= rates
->info
[rateix
].ratekbps
;
165 switch (rates
->info
[rateix
].phy
) {
166 case WLAN_RC_PHY_CCK
:
167 phyTime
= CCK_PREAMBLE_BITS
+ CCK_PLCP_BITS
;
168 if (shortPreamble
&& rates
->info
[rateix
].short_preamble
)
170 numBits
= frameLen
<< 3;
171 txTime
= CCK_SIFS_TIME
+ phyTime
+ ((numBits
* 1000) / kbps
);
173 case WLAN_RC_PHY_OFDM
:
174 if (ah
->curchan
&& IS_CHAN_QUARTER_RATE(ah
->curchan
)) {
175 bitsPerSymbol
= (kbps
* OFDM_SYMBOL_TIME_QUARTER
) / 1000;
176 numBits
= OFDM_PLCP_BITS
+ (frameLen
<< 3);
177 numSymbols
= DIV_ROUND_UP(numBits
, bitsPerSymbol
);
178 txTime
= OFDM_SIFS_TIME_QUARTER
179 + OFDM_PREAMBLE_TIME_QUARTER
180 + (numSymbols
* OFDM_SYMBOL_TIME_QUARTER
);
181 } else if (ah
->curchan
&&
182 IS_CHAN_HALF_RATE(ah
->curchan
)) {
183 bitsPerSymbol
= (kbps
* OFDM_SYMBOL_TIME_HALF
) / 1000;
184 numBits
= OFDM_PLCP_BITS
+ (frameLen
<< 3);
185 numSymbols
= DIV_ROUND_UP(numBits
, bitsPerSymbol
);
186 txTime
= OFDM_SIFS_TIME_HALF
+
187 OFDM_PREAMBLE_TIME_HALF
188 + (numSymbols
* OFDM_SYMBOL_TIME_HALF
);
190 bitsPerSymbol
= (kbps
* OFDM_SYMBOL_TIME
) / 1000;
191 numBits
= OFDM_PLCP_BITS
+ (frameLen
<< 3);
192 numSymbols
= DIV_ROUND_UP(numBits
, bitsPerSymbol
);
193 txTime
= OFDM_SIFS_TIME
+ OFDM_PREAMBLE_TIME
194 + (numSymbols
* OFDM_SYMBOL_TIME
);
198 ath_print(ath9k_hw_common(ah
), ATH_DBG_FATAL
,
199 "Unknown phy %u (rate ix %u)\n",
200 rates
->info
[rateix
].phy
, rateix
);
207 EXPORT_SYMBOL(ath9k_hw_computetxtime
);
209 void ath9k_hw_get_channel_centers(struct ath_hw
*ah
,
210 struct ath9k_channel
*chan
,
211 struct chan_centers
*centers
)
215 if (!IS_CHAN_HT40(chan
)) {
216 centers
->ctl_center
= centers
->ext_center
=
217 centers
->synth_center
= chan
->channel
;
221 if ((chan
->chanmode
== CHANNEL_A_HT40PLUS
) ||
222 (chan
->chanmode
== CHANNEL_G_HT40PLUS
)) {
223 centers
->synth_center
=
224 chan
->channel
+ HT40_CHANNEL_CENTER_SHIFT
;
227 centers
->synth_center
=
228 chan
->channel
- HT40_CHANNEL_CENTER_SHIFT
;
232 centers
->ctl_center
=
233 centers
->synth_center
- (extoff
* HT40_CHANNEL_CENTER_SHIFT
);
234 /* 25 MHz spacing is supported by hw but not on upper layers */
235 centers
->ext_center
=
236 centers
->synth_center
+ (extoff
* HT40_CHANNEL_CENTER_SHIFT
);
243 static void ath9k_hw_read_revisions(struct ath_hw
*ah
)
247 val
= REG_READ(ah
, AR_SREV
) & AR_SREV_ID
;
250 val
= REG_READ(ah
, AR_SREV
);
251 ah
->hw_version
.macVersion
=
252 (val
& AR_SREV_VERSION2
) >> AR_SREV_TYPE2_S
;
253 ah
->hw_version
.macRev
= MS(val
, AR_SREV_REVISION2
);
254 ah
->is_pciexpress
= (val
& AR_SREV_TYPE2_HOST_MODE
) ? 0 : 1;
256 if (!AR_SREV_9100(ah
))
257 ah
->hw_version
.macVersion
= MS(val
, AR_SREV_VERSION
);
259 ah
->hw_version
.macRev
= val
& AR_SREV_REVISION
;
261 if (ah
->hw_version
.macVersion
== AR_SREV_VERSION_5416_PCIE
)
262 ah
->is_pciexpress
= true;
266 static int ath9k_hw_get_radiorev(struct ath_hw
*ah
)
271 REG_WRITE(ah
, AR_PHY(0x36), 0x00007058);
273 for (i
= 0; i
< 8; i
++)
274 REG_WRITE(ah
, AR_PHY(0x20), 0x00010000);
275 val
= (REG_READ(ah
, AR_PHY(256)) >> 24) & 0xff;
276 val
= ((val
& 0xf0) >> 4) | ((val
& 0x0f) << 4);
278 return ath9k_hw_reverse_bits(val
, 8);
281 /************************************/
282 /* HW Attach, Detach, Init Routines */
283 /************************************/
285 static void ath9k_hw_disablepcie(struct ath_hw
*ah
)
287 if (AR_SREV_9100(ah
))
290 REG_WRITE(ah
, AR_PCIE_SERDES
, 0x9248fc00);
291 REG_WRITE(ah
, AR_PCIE_SERDES
, 0x24924924);
292 REG_WRITE(ah
, AR_PCIE_SERDES
, 0x28000029);
293 REG_WRITE(ah
, AR_PCIE_SERDES
, 0x57160824);
294 REG_WRITE(ah
, AR_PCIE_SERDES
, 0x25980579);
295 REG_WRITE(ah
, AR_PCIE_SERDES
, 0x00000000);
296 REG_WRITE(ah
, AR_PCIE_SERDES
, 0x1aaabe40);
297 REG_WRITE(ah
, AR_PCIE_SERDES
, 0xbe105554);
298 REG_WRITE(ah
, AR_PCIE_SERDES
, 0x000e1007);
300 REG_WRITE(ah
, AR_PCIE_SERDES2
, 0x00000000);
303 static bool ath9k_hw_chip_test(struct ath_hw
*ah
)
305 struct ath_common
*common
= ath9k_hw_common(ah
);
306 u32 regAddr
[2] = { AR_STA_ID0
, AR_PHY_BASE
+ (8 << 2) };
308 u32 patternData
[4] = { 0x55555555,
314 for (i
= 0; i
< 2; i
++) {
315 u32 addr
= regAddr
[i
];
318 regHold
[i
] = REG_READ(ah
, addr
);
319 for (j
= 0; j
< 0x100; j
++) {
320 wrData
= (j
<< 16) | j
;
321 REG_WRITE(ah
, addr
, wrData
);
322 rdData
= REG_READ(ah
, addr
);
323 if (rdData
!= wrData
) {
324 ath_print(common
, ATH_DBG_FATAL
,
325 "address test failed "
326 "addr: 0x%08x - wr:0x%08x != "
328 addr
, wrData
, rdData
);
332 for (j
= 0; j
< 4; j
++) {
333 wrData
= patternData
[j
];
334 REG_WRITE(ah
, addr
, wrData
);
335 rdData
= REG_READ(ah
, addr
);
336 if (wrData
!= rdData
) {
337 ath_print(common
, ATH_DBG_FATAL
,
338 "address test failed "
339 "addr: 0x%08x - wr:0x%08x != "
341 addr
, wrData
, rdData
);
345 REG_WRITE(ah
, regAddr
[i
], regHold
[i
]);
352 static const char *ath9k_hw_devname(u16 devid
)
355 case AR5416_DEVID_PCI
:
356 return "Atheros 5416";
357 case AR5416_DEVID_PCIE
:
358 return "Atheros 5418";
359 case AR9160_DEVID_PCI
:
360 return "Atheros 9160";
361 case AR5416_AR9100_DEVID
:
362 return "Atheros 9100";
363 case AR9280_DEVID_PCI
:
364 case AR9280_DEVID_PCIE
:
365 return "Atheros 9280";
366 case AR9285_DEVID_PCIE
:
367 return "Atheros 9285";
368 case AR5416_DEVID_AR9287_PCI
:
369 case AR5416_DEVID_AR9287_PCIE
:
370 return "Atheros 9287";
376 static void ath9k_hw_init_config(struct ath_hw
*ah
)
380 ah
->config
.dma_beacon_response_time
= 2;
381 ah
->config
.sw_beacon_response_time
= 10;
382 ah
->config
.additional_swba_backoff
= 0;
383 ah
->config
.ack_6mb
= 0x0;
384 ah
->config
.cwm_ignore_extcca
= 0;
385 ah
->config
.pcie_powersave_enable
= 0;
386 ah
->config
.pcie_clock_req
= 0;
387 ah
->config
.pcie_waen
= 0;
388 ah
->config
.analog_shiftreg
= 1;
389 ah
->config
.ht_enable
= 1;
390 ah
->config
.ofdm_trig_low
= 200;
391 ah
->config
.ofdm_trig_high
= 500;
392 ah
->config
.cck_trig_high
= 200;
393 ah
->config
.cck_trig_low
= 100;
394 ah
->config
.enable_ani
= 1;
395 ah
->config
.diversity_control
= ATH9K_ANT_VARIABLE
;
396 ah
->config
.antenna_switch_swap
= 0;
398 for (i
= 0; i
< AR_EEPROM_MODAL_SPURS
; i
++) {
399 ah
->config
.spurchans
[i
][0] = AR_NO_SPUR
;
400 ah
->config
.spurchans
[i
][1] = AR_NO_SPUR
;
403 ah
->config
.intr_mitigation
= true;
406 * We need this for PCI devices only (Cardbus, PCI, miniPCI)
407 * _and_ if on non-uniprocessor systems (Multiprocessor/HT).
408 * This means we use it for all AR5416 devices, and the few
409 * minor PCI AR9280 devices out there.
411 * Serialization is required because these devices do not handle
412 * well the case of two concurrent reads/writes due to the latency
413 * involved. During one read/write another read/write can be issued
414 * on another CPU while the previous read/write may still be working
415 * on our hardware, if we hit this case the hardware poops in a loop.
416 * We prevent this by serializing reads and writes.
418 * This issue is not present on PCI-Express devices or pre-AR5416
419 * devices (legacy, 802.11abg).
421 if (num_possible_cpus() > 1)
422 ah
->config
.serialize_regmode
= SER_REG_MODE_AUTO
;
424 EXPORT_SYMBOL(ath9k_hw_init
);
426 static void ath9k_hw_init_defaults(struct ath_hw
*ah
)
428 struct ath_regulatory
*regulatory
= ath9k_hw_regulatory(ah
);
430 regulatory
->country_code
= CTRY_DEFAULT
;
431 regulatory
->power_limit
= MAX_RATE_POWER
;
432 regulatory
->tp_scale
= ATH9K_TP_SCALE_MAX
;
434 ah
->hw_version
.magic
= AR5416_MAGIC
;
435 ah
->hw_version
.subvendorid
= 0;
438 if (ah
->hw_version
.devid
== AR5416_AR9100_DEVID
)
439 ah
->hw_version
.macVersion
= AR_SREV_VERSION_9100
;
440 if (!AR_SREV_9100(ah
))
441 ah
->ah_flags
= AH_USE_EEPROM
;
444 ah
->sta_id1_defaults
= AR_STA_ID1_CRPT_MIC_ENABLE
;
445 ah
->beacon_interval
= 100;
446 ah
->enable_32kHz_clock
= DONT_USE_32KHZ
;
447 ah
->slottime
= (u32
) -1;
448 ah
->acktimeout
= (u32
) -1;
449 ah
->ctstimeout
= (u32
) -1;
450 ah
->globaltxtimeout
= (u32
) -1;
452 ah
->gbeacon_rate
= 0;
454 ah
->power_mode
= ATH9K_PM_UNDEFINED
;
457 static int ath9k_hw_rf_claim(struct ath_hw
*ah
)
461 REG_WRITE(ah
, AR_PHY(0), 0x00000007);
463 val
= ath9k_hw_get_radiorev(ah
);
464 switch (val
& AR_RADIO_SREV_MAJOR
) {
466 val
= AR_RAD5133_SREV_MAJOR
;
468 case AR_RAD5133_SREV_MAJOR
:
469 case AR_RAD5122_SREV_MAJOR
:
470 case AR_RAD2133_SREV_MAJOR
:
471 case AR_RAD2122_SREV_MAJOR
:
474 ath_print(ath9k_hw_common(ah
), ATH_DBG_FATAL
,
475 "Radio Chip Rev 0x%02X not supported\n",
476 val
& AR_RADIO_SREV_MAJOR
);
480 ah
->hw_version
.analog5GhzRev
= val
;
485 static int ath9k_hw_init_macaddr(struct ath_hw
*ah
)
487 struct ath_common
*common
= ath9k_hw_common(ah
);
493 for (i
= 0; i
< 3; i
++) {
494 eeval
= ah
->eep_ops
->get_eeprom(ah
, AR_EEPROM_MAC(i
));
496 common
->macaddr
[2 * i
] = eeval
>> 8;
497 common
->macaddr
[2 * i
+ 1] = eeval
& 0xff;
499 if (sum
== 0 || sum
== 0xffff * 3)
500 return -EADDRNOTAVAIL
;
505 static void ath9k_hw_init_rxgain_ini(struct ath_hw
*ah
)
509 if (ah
->eep_ops
->get_eeprom(ah
, EEP_MINOR_REV
) >= AR5416_EEP_MINOR_VER_17
) {
510 rxgain_type
= ah
->eep_ops
->get_eeprom(ah
, EEP_RXGAIN_TYPE
);
512 if (rxgain_type
== AR5416_EEP_RXGAIN_13DB_BACKOFF
)
513 INIT_INI_ARRAY(&ah
->iniModesRxGain
,
514 ar9280Modes_backoff_13db_rxgain_9280_2
,
515 ARRAY_SIZE(ar9280Modes_backoff_13db_rxgain_9280_2
), 6);
516 else if (rxgain_type
== AR5416_EEP_RXGAIN_23DB_BACKOFF
)
517 INIT_INI_ARRAY(&ah
->iniModesRxGain
,
518 ar9280Modes_backoff_23db_rxgain_9280_2
,
519 ARRAY_SIZE(ar9280Modes_backoff_23db_rxgain_9280_2
), 6);
521 INIT_INI_ARRAY(&ah
->iniModesRxGain
,
522 ar9280Modes_original_rxgain_9280_2
,
523 ARRAY_SIZE(ar9280Modes_original_rxgain_9280_2
), 6);
525 INIT_INI_ARRAY(&ah
->iniModesRxGain
,
526 ar9280Modes_original_rxgain_9280_2
,
527 ARRAY_SIZE(ar9280Modes_original_rxgain_9280_2
), 6);
531 static void ath9k_hw_init_txgain_ini(struct ath_hw
*ah
)
535 if (ah
->eep_ops
->get_eeprom(ah
, EEP_MINOR_REV
) >= AR5416_EEP_MINOR_VER_19
) {
536 txgain_type
= ah
->eep_ops
->get_eeprom(ah
, EEP_TXGAIN_TYPE
);
538 if (txgain_type
== AR5416_EEP_TXGAIN_HIGH_POWER
)
539 INIT_INI_ARRAY(&ah
->iniModesTxGain
,
540 ar9280Modes_high_power_tx_gain_9280_2
,
541 ARRAY_SIZE(ar9280Modes_high_power_tx_gain_9280_2
), 6);
543 INIT_INI_ARRAY(&ah
->iniModesTxGain
,
544 ar9280Modes_original_tx_gain_9280_2
,
545 ARRAY_SIZE(ar9280Modes_original_tx_gain_9280_2
), 6);
547 INIT_INI_ARRAY(&ah
->iniModesTxGain
,
548 ar9280Modes_original_tx_gain_9280_2
,
549 ARRAY_SIZE(ar9280Modes_original_tx_gain_9280_2
), 6);
553 static int ath9k_hw_post_init(struct ath_hw
*ah
)
557 if (!ath9k_hw_chip_test(ah
))
560 ecode
= ath9k_hw_rf_claim(ah
);
564 ecode
= ath9k_hw_eeprom_init(ah
);
568 ath_print(ath9k_hw_common(ah
), ATH_DBG_CONFIG
,
569 "Eeprom VER: %d, REV: %d\n",
570 ah
->eep_ops
->get_eeprom_ver(ah
),
571 ah
->eep_ops
->get_eeprom_rev(ah
));
573 if (!AR_SREV_9280_10_OR_LATER(ah
)) {
574 ecode
= ath9k_hw_rf_alloc_ext_banks(ah
);
576 ath_print(ath9k_hw_common(ah
), ATH_DBG_FATAL
,
577 "Failed allocating banks for "
583 if (!AR_SREV_9100(ah
)) {
584 ath9k_hw_ani_setup(ah
);
585 ath9k_hw_ani_init(ah
);
591 static bool ath9k_hw_devid_supported(u16 devid
)
594 case AR5416_DEVID_PCI
:
595 case AR5416_DEVID_PCIE
:
596 case AR5416_AR9100_DEVID
:
597 case AR9160_DEVID_PCI
:
598 case AR9280_DEVID_PCI
:
599 case AR9280_DEVID_PCIE
:
600 case AR9285_DEVID_PCIE
:
601 case AR5416_DEVID_AR9287_PCI
:
602 case AR5416_DEVID_AR9287_PCIE
:
611 static bool ath9k_hw_macversion_supported(u32 macversion
)
613 switch (macversion
) {
614 case AR_SREV_VERSION_5416_PCI
:
615 case AR_SREV_VERSION_5416_PCIE
:
616 case AR_SREV_VERSION_9160
:
617 case AR_SREV_VERSION_9100
:
618 case AR_SREV_VERSION_9280
:
619 case AR_SREV_VERSION_9285
:
620 case AR_SREV_VERSION_9287
:
621 case AR_SREV_VERSION_9271
:
629 static void ath9k_hw_init_cal_settings(struct ath_hw
*ah
)
631 if (AR_SREV_9160_10_OR_LATER(ah
)) {
632 if (AR_SREV_9280_10_OR_LATER(ah
)) {
633 ah
->iq_caldata
.calData
= &iq_cal_single_sample
;
634 ah
->adcgain_caldata
.calData
=
635 &adc_gain_cal_single_sample
;
636 ah
->adcdc_caldata
.calData
=
637 &adc_dc_cal_single_sample
;
638 ah
->adcdc_calinitdata
.calData
=
641 ah
->iq_caldata
.calData
= &iq_cal_multi_sample
;
642 ah
->adcgain_caldata
.calData
=
643 &adc_gain_cal_multi_sample
;
644 ah
->adcdc_caldata
.calData
=
645 &adc_dc_cal_multi_sample
;
646 ah
->adcdc_calinitdata
.calData
=
649 ah
->supp_cals
= ADC_GAIN_CAL
| ADC_DC_CAL
| IQ_MISMATCH_CAL
;
653 static void ath9k_hw_init_mode_regs(struct ath_hw
*ah
)
655 if (AR_SREV_9271(ah
)) {
656 INIT_INI_ARRAY(&ah
->iniModes
, ar9271Modes_9271
,
657 ARRAY_SIZE(ar9271Modes_9271
), 6);
658 INIT_INI_ARRAY(&ah
->iniCommon
, ar9271Common_9271
,
659 ARRAY_SIZE(ar9271Common_9271
), 2);
660 INIT_INI_ARRAY(&ah
->iniModes_9271_1_0_only
,
661 ar9271Modes_9271_1_0_only
,
662 ARRAY_SIZE(ar9271Modes_9271_1_0_only
), 6);
666 if (AR_SREV_9287_11_OR_LATER(ah
)) {
667 INIT_INI_ARRAY(&ah
->iniModes
, ar9287Modes_9287_1_1
,
668 ARRAY_SIZE(ar9287Modes_9287_1_1
), 6);
669 INIT_INI_ARRAY(&ah
->iniCommon
, ar9287Common_9287_1_1
,
670 ARRAY_SIZE(ar9287Common_9287_1_1
), 2);
671 if (ah
->config
.pcie_clock_req
)
672 INIT_INI_ARRAY(&ah
->iniPcieSerdes
,
673 ar9287PciePhy_clkreq_off_L1_9287_1_1
,
674 ARRAY_SIZE(ar9287PciePhy_clkreq_off_L1_9287_1_1
), 2);
676 INIT_INI_ARRAY(&ah
->iniPcieSerdes
,
677 ar9287PciePhy_clkreq_always_on_L1_9287_1_1
,
678 ARRAY_SIZE(ar9287PciePhy_clkreq_always_on_L1_9287_1_1
),
680 } else if (AR_SREV_9287_10_OR_LATER(ah
)) {
681 INIT_INI_ARRAY(&ah
->iniModes
, ar9287Modes_9287_1_0
,
682 ARRAY_SIZE(ar9287Modes_9287_1_0
), 6);
683 INIT_INI_ARRAY(&ah
->iniCommon
, ar9287Common_9287_1_0
,
684 ARRAY_SIZE(ar9287Common_9287_1_0
), 2);
686 if (ah
->config
.pcie_clock_req
)
687 INIT_INI_ARRAY(&ah
->iniPcieSerdes
,
688 ar9287PciePhy_clkreq_off_L1_9287_1_0
,
689 ARRAY_SIZE(ar9287PciePhy_clkreq_off_L1_9287_1_0
), 2);
691 INIT_INI_ARRAY(&ah
->iniPcieSerdes
,
692 ar9287PciePhy_clkreq_always_on_L1_9287_1_0
,
693 ARRAY_SIZE(ar9287PciePhy_clkreq_always_on_L1_9287_1_0
),
695 } else if (AR_SREV_9285_12_OR_LATER(ah
)) {
698 INIT_INI_ARRAY(&ah
->iniModes
, ar9285Modes_9285_1_2
,
699 ARRAY_SIZE(ar9285Modes_9285_1_2
), 6);
700 INIT_INI_ARRAY(&ah
->iniCommon
, ar9285Common_9285_1_2
,
701 ARRAY_SIZE(ar9285Common_9285_1_2
), 2);
703 if (ah
->config
.pcie_clock_req
) {
704 INIT_INI_ARRAY(&ah
->iniPcieSerdes
,
705 ar9285PciePhy_clkreq_off_L1_9285_1_2
,
706 ARRAY_SIZE(ar9285PciePhy_clkreq_off_L1_9285_1_2
), 2);
708 INIT_INI_ARRAY(&ah
->iniPcieSerdes
,
709 ar9285PciePhy_clkreq_always_on_L1_9285_1_2
,
710 ARRAY_SIZE(ar9285PciePhy_clkreq_always_on_L1_9285_1_2
),
713 } else if (AR_SREV_9285_10_OR_LATER(ah
)) {
714 INIT_INI_ARRAY(&ah
->iniModes
, ar9285Modes_9285
,
715 ARRAY_SIZE(ar9285Modes_9285
), 6);
716 INIT_INI_ARRAY(&ah
->iniCommon
, ar9285Common_9285
,
717 ARRAY_SIZE(ar9285Common_9285
), 2);
719 if (ah
->config
.pcie_clock_req
) {
720 INIT_INI_ARRAY(&ah
->iniPcieSerdes
,
721 ar9285PciePhy_clkreq_off_L1_9285
,
722 ARRAY_SIZE(ar9285PciePhy_clkreq_off_L1_9285
), 2);
724 INIT_INI_ARRAY(&ah
->iniPcieSerdes
,
725 ar9285PciePhy_clkreq_always_on_L1_9285
,
726 ARRAY_SIZE(ar9285PciePhy_clkreq_always_on_L1_9285
), 2);
728 } else if (AR_SREV_9280_20_OR_LATER(ah
)) {
729 INIT_INI_ARRAY(&ah
->iniModes
, ar9280Modes_9280_2
,
730 ARRAY_SIZE(ar9280Modes_9280_2
), 6);
731 INIT_INI_ARRAY(&ah
->iniCommon
, ar9280Common_9280_2
,
732 ARRAY_SIZE(ar9280Common_9280_2
), 2);
734 if (ah
->config
.pcie_clock_req
) {
735 INIT_INI_ARRAY(&ah
->iniPcieSerdes
,
736 ar9280PciePhy_clkreq_off_L1_9280
,
737 ARRAY_SIZE(ar9280PciePhy_clkreq_off_L1_9280
),2);
739 INIT_INI_ARRAY(&ah
->iniPcieSerdes
,
740 ar9280PciePhy_clkreq_always_on_L1_9280
,
741 ARRAY_SIZE(ar9280PciePhy_clkreq_always_on_L1_9280
), 2);
743 INIT_INI_ARRAY(&ah
->iniModesAdditional
,
744 ar9280Modes_fast_clock_9280_2
,
745 ARRAY_SIZE(ar9280Modes_fast_clock_9280_2
), 3);
746 } else if (AR_SREV_9280_10_OR_LATER(ah
)) {
747 INIT_INI_ARRAY(&ah
->iniModes
, ar9280Modes_9280
,
748 ARRAY_SIZE(ar9280Modes_9280
), 6);
749 INIT_INI_ARRAY(&ah
->iniCommon
, ar9280Common_9280
,
750 ARRAY_SIZE(ar9280Common_9280
), 2);
751 } else if (AR_SREV_9160_10_OR_LATER(ah
)) {
752 INIT_INI_ARRAY(&ah
->iniModes
, ar5416Modes_9160
,
753 ARRAY_SIZE(ar5416Modes_9160
), 6);
754 INIT_INI_ARRAY(&ah
->iniCommon
, ar5416Common_9160
,
755 ARRAY_SIZE(ar5416Common_9160
), 2);
756 INIT_INI_ARRAY(&ah
->iniBank0
, ar5416Bank0_9160
,
757 ARRAY_SIZE(ar5416Bank0_9160
), 2);
758 INIT_INI_ARRAY(&ah
->iniBB_RfGain
, ar5416BB_RfGain_9160
,
759 ARRAY_SIZE(ar5416BB_RfGain_9160
), 3);
760 INIT_INI_ARRAY(&ah
->iniBank1
, ar5416Bank1_9160
,
761 ARRAY_SIZE(ar5416Bank1_9160
), 2);
762 INIT_INI_ARRAY(&ah
->iniBank2
, ar5416Bank2_9160
,
763 ARRAY_SIZE(ar5416Bank2_9160
), 2);
764 INIT_INI_ARRAY(&ah
->iniBank3
, ar5416Bank3_9160
,
765 ARRAY_SIZE(ar5416Bank3_9160
), 3);
766 INIT_INI_ARRAY(&ah
->iniBank6
, ar5416Bank6_9160
,
767 ARRAY_SIZE(ar5416Bank6_9160
), 3);
768 INIT_INI_ARRAY(&ah
->iniBank6TPC
, ar5416Bank6TPC_9160
,
769 ARRAY_SIZE(ar5416Bank6TPC_9160
), 3);
770 INIT_INI_ARRAY(&ah
->iniBank7
, ar5416Bank7_9160
,
771 ARRAY_SIZE(ar5416Bank7_9160
), 2);
772 if (AR_SREV_9160_11(ah
)) {
773 INIT_INI_ARRAY(&ah
->iniAddac
,
775 ARRAY_SIZE(ar5416Addac_91601_1
), 2);
777 INIT_INI_ARRAY(&ah
->iniAddac
, ar5416Addac_9160
,
778 ARRAY_SIZE(ar5416Addac_9160
), 2);
780 } else if (AR_SREV_9100_OR_LATER(ah
)) {
781 INIT_INI_ARRAY(&ah
->iniModes
, ar5416Modes_9100
,
782 ARRAY_SIZE(ar5416Modes_9100
), 6);
783 INIT_INI_ARRAY(&ah
->iniCommon
, ar5416Common_9100
,
784 ARRAY_SIZE(ar5416Common_9100
), 2);
785 INIT_INI_ARRAY(&ah
->iniBank0
, ar5416Bank0_9100
,
786 ARRAY_SIZE(ar5416Bank0_9100
), 2);
787 INIT_INI_ARRAY(&ah
->iniBB_RfGain
, ar5416BB_RfGain_9100
,
788 ARRAY_SIZE(ar5416BB_RfGain_9100
), 3);
789 INIT_INI_ARRAY(&ah
->iniBank1
, ar5416Bank1_9100
,
790 ARRAY_SIZE(ar5416Bank1_9100
), 2);
791 INIT_INI_ARRAY(&ah
->iniBank2
, ar5416Bank2_9100
,
792 ARRAY_SIZE(ar5416Bank2_9100
), 2);
793 INIT_INI_ARRAY(&ah
->iniBank3
, ar5416Bank3_9100
,
794 ARRAY_SIZE(ar5416Bank3_9100
), 3);
795 INIT_INI_ARRAY(&ah
->iniBank6
, ar5416Bank6_9100
,
796 ARRAY_SIZE(ar5416Bank6_9100
), 3);
797 INIT_INI_ARRAY(&ah
->iniBank6TPC
, ar5416Bank6TPC_9100
,
798 ARRAY_SIZE(ar5416Bank6TPC_9100
), 3);
799 INIT_INI_ARRAY(&ah
->iniBank7
, ar5416Bank7_9100
,
800 ARRAY_SIZE(ar5416Bank7_9100
), 2);
801 INIT_INI_ARRAY(&ah
->iniAddac
, ar5416Addac_9100
,
802 ARRAY_SIZE(ar5416Addac_9100
), 2);
804 INIT_INI_ARRAY(&ah
->iniModes
, ar5416Modes
,
805 ARRAY_SIZE(ar5416Modes
), 6);
806 INIT_INI_ARRAY(&ah
->iniCommon
, ar5416Common
,
807 ARRAY_SIZE(ar5416Common
), 2);
808 INIT_INI_ARRAY(&ah
->iniBank0
, ar5416Bank0
,
809 ARRAY_SIZE(ar5416Bank0
), 2);
810 INIT_INI_ARRAY(&ah
->iniBB_RfGain
, ar5416BB_RfGain
,
811 ARRAY_SIZE(ar5416BB_RfGain
), 3);
812 INIT_INI_ARRAY(&ah
->iniBank1
, ar5416Bank1
,
813 ARRAY_SIZE(ar5416Bank1
), 2);
814 INIT_INI_ARRAY(&ah
->iniBank2
, ar5416Bank2
,
815 ARRAY_SIZE(ar5416Bank2
), 2);
816 INIT_INI_ARRAY(&ah
->iniBank3
, ar5416Bank3
,
817 ARRAY_SIZE(ar5416Bank3
), 3);
818 INIT_INI_ARRAY(&ah
->iniBank6
, ar5416Bank6
,
819 ARRAY_SIZE(ar5416Bank6
), 3);
820 INIT_INI_ARRAY(&ah
->iniBank6TPC
, ar5416Bank6TPC
,
821 ARRAY_SIZE(ar5416Bank6TPC
), 3);
822 INIT_INI_ARRAY(&ah
->iniBank7
, ar5416Bank7
,
823 ARRAY_SIZE(ar5416Bank7
), 2);
824 INIT_INI_ARRAY(&ah
->iniAddac
, ar5416Addac
,
825 ARRAY_SIZE(ar5416Addac
), 2);
829 static void ath9k_hw_init_mode_gain_regs(struct ath_hw
*ah
)
831 if (AR_SREV_9287_11_OR_LATER(ah
))
832 INIT_INI_ARRAY(&ah
->iniModesRxGain
,
833 ar9287Modes_rx_gain_9287_1_1
,
834 ARRAY_SIZE(ar9287Modes_rx_gain_9287_1_1
), 6);
835 else if (AR_SREV_9287_10(ah
))
836 INIT_INI_ARRAY(&ah
->iniModesRxGain
,
837 ar9287Modes_rx_gain_9287_1_0
,
838 ARRAY_SIZE(ar9287Modes_rx_gain_9287_1_0
), 6);
839 else if (AR_SREV_9280_20(ah
))
840 ath9k_hw_init_rxgain_ini(ah
);
842 if (AR_SREV_9287_11_OR_LATER(ah
)) {
843 INIT_INI_ARRAY(&ah
->iniModesTxGain
,
844 ar9287Modes_tx_gain_9287_1_1
,
845 ARRAY_SIZE(ar9287Modes_tx_gain_9287_1_1
), 6);
846 } else if (AR_SREV_9287_10(ah
)) {
847 INIT_INI_ARRAY(&ah
->iniModesTxGain
,
848 ar9287Modes_tx_gain_9287_1_0
,
849 ARRAY_SIZE(ar9287Modes_tx_gain_9287_1_0
), 6);
850 } else if (AR_SREV_9280_20(ah
)) {
851 ath9k_hw_init_txgain_ini(ah
);
852 } else if (AR_SREV_9285_12_OR_LATER(ah
)) {
853 u32 txgain_type
= ah
->eep_ops
->get_eeprom(ah
, EEP_TXGAIN_TYPE
);
856 if (txgain_type
== AR5416_EEP_TXGAIN_HIGH_POWER
) {
857 INIT_INI_ARRAY(&ah
->iniModesTxGain
,
858 ar9285Modes_high_power_tx_gain_9285_1_2
,
859 ARRAY_SIZE(ar9285Modes_high_power_tx_gain_9285_1_2
), 6);
861 INIT_INI_ARRAY(&ah
->iniModesTxGain
,
862 ar9285Modes_original_tx_gain_9285_1_2
,
863 ARRAY_SIZE(ar9285Modes_original_tx_gain_9285_1_2
), 6);
869 static void ath9k_hw_init_11a_eeprom_fix(struct ath_hw
*ah
)
873 if ((ah
->hw_version
.devid
== AR9280_DEVID_PCI
) &&
874 test_bit(ATH9K_MODE_11A
, ah
->caps
.wireless_modes
)) {
877 for (i
= 0; i
< ah
->iniModes
.ia_rows
; i
++) {
878 u32 reg
= INI_RA(&ah
->iniModes
, i
, 0);
880 for (j
= 1; j
< ah
->iniModes
.ia_columns
; j
++) {
881 u32 val
= INI_RA(&ah
->iniModes
, i
, j
);
883 INI_RA(&ah
->iniModes
, i
, j
) =
884 ath9k_hw_ini_fixup(ah
,
892 int ath9k_hw_init(struct ath_hw
*ah
)
894 struct ath_common
*common
= ath9k_hw_common(ah
);
897 if (!ath9k_hw_devid_supported(ah
->hw_version
.devid
)) {
898 ath_print(common
, ATH_DBG_FATAL
,
899 "Unsupported device ID: 0x%0x\n",
900 ah
->hw_version
.devid
);
904 ath9k_hw_init_defaults(ah
);
905 ath9k_hw_init_config(ah
);
907 if (!ath9k_hw_set_reset_reg(ah
, ATH9K_RESET_POWER_ON
)) {
908 ath_print(common
, ATH_DBG_FATAL
,
909 "Couldn't reset chip\n");
913 if (!ath9k_hw_setpower(ah
, ATH9K_PM_AWAKE
)) {
914 ath_print(common
, ATH_DBG_FATAL
, "Couldn't wakeup chip\n");
918 if (ah
->config
.serialize_regmode
== SER_REG_MODE_AUTO
) {
919 if (ah
->hw_version
.macVersion
== AR_SREV_VERSION_5416_PCI
||
920 (AR_SREV_9280(ah
) && !ah
->is_pciexpress
)) {
921 ah
->config
.serialize_regmode
=
924 ah
->config
.serialize_regmode
=
929 ath_print(common
, ATH_DBG_RESET
, "serialize_regmode is %d\n",
930 ah
->config
.serialize_regmode
);
932 if (!ath9k_hw_macversion_supported(ah
->hw_version
.macVersion
)) {
933 ath_print(common
, ATH_DBG_FATAL
,
934 "Mac Chip Rev 0x%02x.%x is not supported by "
935 "this driver\n", ah
->hw_version
.macVersion
,
936 ah
->hw_version
.macRev
);
940 if (AR_SREV_9100(ah
)) {
941 ah
->iq_caldata
.calData
= &iq_cal_multi_sample
;
942 ah
->supp_cals
= IQ_MISMATCH_CAL
;
943 ah
->is_pciexpress
= false;
946 if (AR_SREV_9271(ah
))
947 ah
->is_pciexpress
= false;
949 ah
->hw_version
.phyRev
= REG_READ(ah
, AR_PHY_CHIP_ID
);
951 ath9k_hw_init_cal_settings(ah
);
953 ah
->ani_function
= ATH9K_ANI_ALL
;
954 if (AR_SREV_9280_10_OR_LATER(ah
))
955 ah
->ani_function
&= ~ATH9K_ANI_NOISE_IMMUNITY_LEVEL
;
957 ath9k_hw_init_mode_regs(ah
);
959 if (ah
->is_pciexpress
)
960 ath9k_hw_configpcipowersave(ah
, 0, 0);
962 ath9k_hw_disablepcie(ah
);
964 /* Support for Japan ch.14 (2484) spread */
965 if (AR_SREV_9287_11_OR_LATER(ah
)) {
966 INIT_INI_ARRAY(&ah
->iniCckfirNormal
,
967 ar9287Common_normal_cck_fir_coeff_92871_1
,
968 ARRAY_SIZE(ar9287Common_normal_cck_fir_coeff_92871_1
), 2);
969 INIT_INI_ARRAY(&ah
->iniCckfirJapan2484
,
970 ar9287Common_japan_2484_cck_fir_coeff_92871_1
,
971 ARRAY_SIZE(ar9287Common_japan_2484_cck_fir_coeff_92871_1
), 2);
974 r
= ath9k_hw_post_init(ah
);
978 ath9k_hw_init_mode_gain_regs(ah
);
979 ath9k_hw_fill_cap_info(ah
);
980 ath9k_hw_init_11a_eeprom_fix(ah
);
982 r
= ath9k_hw_init_macaddr(ah
);
984 ath_print(common
, ATH_DBG_FATAL
,
985 "Failed to initialize MAC address\n");
989 if (AR_SREV_9285(ah
) || AR_SREV_9271(ah
))
990 ah
->tx_trig_level
= (AR_FTRIG_256B
>> AR_FTRIG_S
);
992 ah
->tx_trig_level
= (AR_FTRIG_512B
>> AR_FTRIG_S
);
994 ath9k_init_nfcal_hist_buffer(ah
);
996 common
->state
= ATH_HW_INITIALIZED
;
1001 static void ath9k_hw_init_bb(struct ath_hw
*ah
,
1002 struct ath9k_channel
*chan
)
1006 synthDelay
= REG_READ(ah
, AR_PHY_RX_DELAY
) & AR_PHY_RX_DELAY_DELAY
;
1007 if (IS_CHAN_B(chan
))
1008 synthDelay
= (4 * synthDelay
) / 22;
1012 REG_WRITE(ah
, AR_PHY_ACTIVE
, AR_PHY_ACTIVE_EN
);
1014 udelay(synthDelay
+ BASE_ACTIVATE_DELAY
);
1017 static void ath9k_hw_init_qos(struct ath_hw
*ah
)
1019 REG_WRITE(ah
, AR_MIC_QOS_CONTROL
, 0x100aa);
1020 REG_WRITE(ah
, AR_MIC_QOS_SELECT
, 0x3210);
1022 REG_WRITE(ah
, AR_QOS_NO_ACK
,
1023 SM(2, AR_QOS_NO_ACK_TWO_BIT
) |
1024 SM(5, AR_QOS_NO_ACK_BIT_OFF
) |
1025 SM(0, AR_QOS_NO_ACK_BYTE_OFF
));
1027 REG_WRITE(ah
, AR_TXOP_X
, AR_TXOP_X_VAL
);
1028 REG_WRITE(ah
, AR_TXOP_0_3
, 0xFFFFFFFF);
1029 REG_WRITE(ah
, AR_TXOP_4_7
, 0xFFFFFFFF);
1030 REG_WRITE(ah
, AR_TXOP_8_11
, 0xFFFFFFFF);
1031 REG_WRITE(ah
, AR_TXOP_12_15
, 0xFFFFFFFF);
1034 static void ath9k_hw_change_target_baud(struct ath_hw
*ah
, u32 freq
, u32 baud
)
1037 u32 baud_divider
= freq
* 1000 * 1000 / 16 / baud
;
1039 lcr
= REG_READ(ah
, 0x5100c);
1042 REG_WRITE(ah
, 0x5100c, lcr
);
1043 REG_WRITE(ah
, 0x51004, (baud_divider
>> 8));
1044 REG_WRITE(ah
, 0x51000, (baud_divider
& 0xff));
1047 REG_WRITE(ah
, 0x5100c, lcr
);
1050 static void ath9k_hw_init_pll(struct ath_hw
*ah
,
1051 struct ath9k_channel
*chan
)
1055 if (AR_SREV_9100(ah
)) {
1056 if (chan
&& IS_CHAN_5GHZ(chan
))
1061 if (AR_SREV_9280_10_OR_LATER(ah
)) {
1062 pll
= SM(0x5, AR_RTC_9160_PLL_REFDIV
);
1064 if (chan
&& IS_CHAN_HALF_RATE(chan
))
1065 pll
|= SM(0x1, AR_RTC_9160_PLL_CLKSEL
);
1066 else if (chan
&& IS_CHAN_QUARTER_RATE(chan
))
1067 pll
|= SM(0x2, AR_RTC_9160_PLL_CLKSEL
);
1069 if (chan
&& IS_CHAN_5GHZ(chan
)) {
1070 pll
|= SM(0x28, AR_RTC_9160_PLL_DIV
);
1073 if (AR_SREV_9280_20(ah
)) {
1074 if (((chan
->channel
% 20) == 0)
1075 || ((chan
->channel
% 10) == 0))
1081 pll
|= SM(0x2c, AR_RTC_9160_PLL_DIV
);
1084 } else if (AR_SREV_9160_10_OR_LATER(ah
)) {
1086 pll
= SM(0x5, AR_RTC_9160_PLL_REFDIV
);
1088 if (chan
&& IS_CHAN_HALF_RATE(chan
))
1089 pll
|= SM(0x1, AR_RTC_9160_PLL_CLKSEL
);
1090 else if (chan
&& IS_CHAN_QUARTER_RATE(chan
))
1091 pll
|= SM(0x2, AR_RTC_9160_PLL_CLKSEL
);
1093 if (chan
&& IS_CHAN_5GHZ(chan
))
1094 pll
|= SM(0x50, AR_RTC_9160_PLL_DIV
);
1096 pll
|= SM(0x58, AR_RTC_9160_PLL_DIV
);
1098 pll
= AR_RTC_PLL_REFDIV_5
| AR_RTC_PLL_DIV2
;
1100 if (chan
&& IS_CHAN_HALF_RATE(chan
))
1101 pll
|= SM(0x1, AR_RTC_PLL_CLKSEL
);
1102 else if (chan
&& IS_CHAN_QUARTER_RATE(chan
))
1103 pll
|= SM(0x2, AR_RTC_PLL_CLKSEL
);
1105 if (chan
&& IS_CHAN_5GHZ(chan
))
1106 pll
|= SM(0xa, AR_RTC_PLL_DIV
);
1108 pll
|= SM(0xb, AR_RTC_PLL_DIV
);
1111 REG_WRITE(ah
, AR_RTC_PLL_CONTROL
, pll
);
1113 /* Switch the core clock for ar9271 to 117Mhz */
1114 if (AR_SREV_9271(ah
)) {
1115 if ((pll
== 0x142c) || (pll
== 0x2850) ) {
1117 /* set CLKOBS to output AHB clock */
1118 REG_WRITE(ah
, 0x7020, 0xe);
1120 * 0x304: 117Mhz, ahb_ratio: 1x1
1121 * 0x306: 40Mhz, ahb_ratio: 1x1
1123 REG_WRITE(ah
, 0x50040, 0x304);
1125 * makes adjustments for the baud dividor to keep the
1126 * targetted baud rate based on the used core clock.
1128 ath9k_hw_change_target_baud(ah
, AR9271_CORE_CLOCK
,
1129 AR9271_TARGET_BAUD_RATE
);
1133 udelay(RTC_PLL_SETTLE_DELAY
);
1135 REG_WRITE(ah
, AR_RTC_SLEEP_CLK
, AR_RTC_FORCE_DERIVED_CLK
);
1138 static void ath9k_hw_init_chain_masks(struct ath_hw
*ah
)
1140 int rx_chainmask
, tx_chainmask
;
1142 rx_chainmask
= ah
->rxchainmask
;
1143 tx_chainmask
= ah
->txchainmask
;
1145 switch (rx_chainmask
) {
1147 REG_SET_BIT(ah
, AR_PHY_ANALOG_SWAP
,
1148 AR_PHY_SWAP_ALT_CHAIN
);
1150 if (((ah
)->hw_version
.macVersion
<= AR_SREV_VERSION_9160
)) {
1151 REG_WRITE(ah
, AR_PHY_RX_CHAINMASK
, 0x7);
1152 REG_WRITE(ah
, AR_PHY_CAL_CHAINMASK
, 0x7);
1158 REG_WRITE(ah
, AR_PHY_RX_CHAINMASK
, rx_chainmask
);
1159 REG_WRITE(ah
, AR_PHY_CAL_CHAINMASK
, rx_chainmask
);
1165 REG_WRITE(ah
, AR_SELFGEN_MASK
, tx_chainmask
);
1166 if (tx_chainmask
== 0x5) {
1167 REG_SET_BIT(ah
, AR_PHY_ANALOG_SWAP
,
1168 AR_PHY_SWAP_ALT_CHAIN
);
1170 if (AR_SREV_9100(ah
))
1171 REG_WRITE(ah
, AR_PHY_ANALOG_SWAP
,
1172 REG_READ(ah
, AR_PHY_ANALOG_SWAP
) | 0x00000001);
1175 static void ath9k_hw_init_interrupt_masks(struct ath_hw
*ah
,
1176 enum nl80211_iftype opmode
)
1178 ah
->mask_reg
= AR_IMR_TXERR
|
1184 if (ah
->config
.intr_mitigation
)
1185 ah
->mask_reg
|= AR_IMR_RXINTM
| AR_IMR_RXMINTR
;
1187 ah
->mask_reg
|= AR_IMR_RXOK
;
1189 ah
->mask_reg
|= AR_IMR_TXOK
;
1191 if (opmode
== NL80211_IFTYPE_AP
)
1192 ah
->mask_reg
|= AR_IMR_MIB
;
1194 REG_WRITE(ah
, AR_IMR
, ah
->mask_reg
);
1195 REG_WRITE(ah
, AR_IMR_S2
, REG_READ(ah
, AR_IMR_S2
) | AR_IMR_S2_GTT
);
1197 if (!AR_SREV_9100(ah
)) {
1198 REG_WRITE(ah
, AR_INTR_SYNC_CAUSE
, 0xFFFFFFFF);
1199 REG_WRITE(ah
, AR_INTR_SYNC_ENABLE
, AR_INTR_SYNC_DEFAULT
);
1200 REG_WRITE(ah
, AR_INTR_SYNC_MASK
, 0);
1204 static bool ath9k_hw_set_ack_timeout(struct ath_hw
*ah
, u32 us
)
1206 if (us
> ath9k_hw_mac_to_usec(ah
, MS(0xffffffff, AR_TIME_OUT_ACK
))) {
1207 ath_print(ath9k_hw_common(ah
), ATH_DBG_RESET
,
1208 "bad ack timeout %u\n", us
);
1209 ah
->acktimeout
= (u32
) -1;
1212 REG_RMW_FIELD(ah
, AR_TIME_OUT
,
1213 AR_TIME_OUT_ACK
, ath9k_hw_mac_to_clks(ah
, us
));
1214 ah
->acktimeout
= us
;
1219 static bool ath9k_hw_set_cts_timeout(struct ath_hw
*ah
, u32 us
)
1221 if (us
> ath9k_hw_mac_to_usec(ah
, MS(0xffffffff, AR_TIME_OUT_CTS
))) {
1222 ath_print(ath9k_hw_common(ah
), ATH_DBG_RESET
,
1223 "bad cts timeout %u\n", us
);
1224 ah
->ctstimeout
= (u32
) -1;
1227 REG_RMW_FIELD(ah
, AR_TIME_OUT
,
1228 AR_TIME_OUT_CTS
, ath9k_hw_mac_to_clks(ah
, us
));
1229 ah
->ctstimeout
= us
;
1234 static bool ath9k_hw_set_global_txtimeout(struct ath_hw
*ah
, u32 tu
)
1237 ath_print(ath9k_hw_common(ah
), ATH_DBG_XMIT
,
1238 "bad global tx timeout %u\n", tu
);
1239 ah
->globaltxtimeout
= (u32
) -1;
1242 REG_RMW_FIELD(ah
, AR_GTXTO
, AR_GTXTO_TIMEOUT_LIMIT
, tu
);
1243 ah
->globaltxtimeout
= tu
;
1248 static void ath9k_hw_init_user_settings(struct ath_hw
*ah
)
1250 ath_print(ath9k_hw_common(ah
), ATH_DBG_RESET
, "ah->misc_mode 0x%x\n",
1253 if (ah
->misc_mode
!= 0)
1254 REG_WRITE(ah
, AR_PCU_MISC
,
1255 REG_READ(ah
, AR_PCU_MISC
) | ah
->misc_mode
);
1256 if (ah
->slottime
!= (u32
) -1)
1257 ath9k_hw_setslottime(ah
, ah
->slottime
);
1258 if (ah
->acktimeout
!= (u32
) -1)
1259 ath9k_hw_set_ack_timeout(ah
, ah
->acktimeout
);
1260 if (ah
->ctstimeout
!= (u32
) -1)
1261 ath9k_hw_set_cts_timeout(ah
, ah
->ctstimeout
);
1262 if (ah
->globaltxtimeout
!= (u32
) -1)
1263 ath9k_hw_set_global_txtimeout(ah
, ah
->globaltxtimeout
);
1266 const char *ath9k_hw_probe(u16 vendorid
, u16 devid
)
1268 return vendorid
== ATHEROS_VENDOR_ID
?
1269 ath9k_hw_devname(devid
) : NULL
;
1272 void ath9k_hw_detach(struct ath_hw
*ah
)
1274 struct ath_common
*common
= ath9k_hw_common(ah
);
1276 if (common
->state
<= ATH_HW_INITIALIZED
)
1279 if (!AR_SREV_9100(ah
))
1280 ath9k_hw_ani_disable(ah
);
1282 ath9k_hw_setpower(ah
, ATH9K_PM_FULL_SLEEP
);
1285 if (!AR_SREV_9280_10_OR_LATER(ah
))
1286 ath9k_hw_rf_free_ext_banks(ah
);
1290 EXPORT_SYMBOL(ath9k_hw_detach
);
1296 static void ath9k_hw_override_ini(struct ath_hw
*ah
,
1297 struct ath9k_channel
*chan
)
1301 if (AR_SREV_9271(ah
)) {
1303 * Enable spectral scan to solution for issues with stuck
1304 * beacons on AR9271 1.0. The beacon stuck issue is not seeon on
1307 if (AR_SREV_9271_10(ah
)) {
1308 val
= REG_READ(ah
, AR_PHY_SPECTRAL_SCAN
) |
1309 AR_PHY_SPECTRAL_SCAN_ENABLE
;
1310 REG_WRITE(ah
, AR_PHY_SPECTRAL_SCAN
, val
);
1312 else if (AR_SREV_9271_11(ah
))
1314 * change AR_PHY_RF_CTL3 setting to fix MAC issue
1315 * present on AR9271 1.1
1317 REG_WRITE(ah
, AR_PHY_RF_CTL3
, 0x3a020001);
1322 * Set the RX_ABORT and RX_DIS and clear if off only after
1323 * RXE is set for MAC. This prevents frames with corrupted
1324 * descriptor status.
1326 REG_SET_BIT(ah
, AR_DIAG_SW
, (AR_DIAG_RX_DIS
| AR_DIAG_RX_ABORT
));
1328 if (AR_SREV_9280_10_OR_LATER(ah
)) {
1329 val
= REG_READ(ah
, AR_PCU_MISC_MODE2
) &
1330 (~AR_PCU_MISC_MODE2_HWWAR1
);
1332 if (AR_SREV_9287_10_OR_LATER(ah
))
1333 val
= val
& (~AR_PCU_MISC_MODE2_HWWAR2
);
1335 REG_WRITE(ah
, AR_PCU_MISC_MODE2
, val
);
1338 if (!AR_SREV_5416_20_OR_LATER(ah
) ||
1339 AR_SREV_9280_10_OR_LATER(ah
))
1342 * Disable BB clock gating
1343 * Necessary to avoid issues on AR5416 2.0
1345 REG_WRITE(ah
, 0x9800 + (651 << 2), 0x11);
1348 static u32
ath9k_hw_def_ini_fixup(struct ath_hw
*ah
,
1349 struct ar5416_eeprom_def
*pEepData
,
1352 struct base_eep_header
*pBase
= &(pEepData
->baseEepHeader
);
1353 struct ath_common
*common
= ath9k_hw_common(ah
);
1355 switch (ah
->hw_version
.devid
) {
1356 case AR9280_DEVID_PCI
:
1357 if (reg
== 0x7894) {
1358 ath_print(common
, ATH_DBG_EEPROM
,
1359 "ini VAL: %x EEPROM: %x\n", value
,
1360 (pBase
->version
& 0xff));
1362 if ((pBase
->version
& 0xff) > 0x0a) {
1363 ath_print(common
, ATH_DBG_EEPROM
,
1366 value
&= ~AR_AN_TOP2_PWDCLKIND
;
1367 value
|= AR_AN_TOP2_PWDCLKIND
&
1368 (pBase
->pwdclkind
<< AR_AN_TOP2_PWDCLKIND_S
);
1370 ath_print(common
, ATH_DBG_EEPROM
,
1371 "PWDCLKIND Earlier Rev\n");
1374 ath_print(common
, ATH_DBG_EEPROM
,
1375 "final ini VAL: %x\n", value
);
1383 static u32
ath9k_hw_ini_fixup(struct ath_hw
*ah
,
1384 struct ar5416_eeprom_def
*pEepData
,
1387 if (ah
->eep_map
== EEP_MAP_4KBITS
)
1390 return ath9k_hw_def_ini_fixup(ah
, pEepData
, reg
, value
);
1393 static void ath9k_olc_init(struct ath_hw
*ah
)
1397 if (OLC_FOR_AR9287_10_LATER
) {
1398 REG_SET_BIT(ah
, AR_PHY_TX_PWRCTRL9
,
1399 AR_PHY_TX_PWRCTRL9_RES_DC_REMOVAL
);
1400 ath9k_hw_analog_shift_rmw(ah
, AR9287_AN_TXPC0
,
1401 AR9287_AN_TXPC0_TXPCMODE
,
1402 AR9287_AN_TXPC0_TXPCMODE_S
,
1403 AR9287_AN_TXPC0_TXPCMODE_TEMPSENSE
);
1406 for (i
= 0; i
< AR9280_TX_GAIN_TABLE_SIZE
; i
++)
1407 ah
->originalGain
[i
] =
1408 MS(REG_READ(ah
, AR_PHY_TX_GAIN_TBL1
+ i
* 4),
1414 static u32
ath9k_regd_get_ctl(struct ath_regulatory
*reg
,
1415 struct ath9k_channel
*chan
)
1417 u32 ctl
= ath_regd_get_band_ctl(reg
, chan
->chan
->band
);
1419 if (IS_CHAN_B(chan
))
1421 else if (IS_CHAN_G(chan
))
1429 static int ath9k_hw_process_ini(struct ath_hw
*ah
,
1430 struct ath9k_channel
*chan
)
1432 struct ath_regulatory
*regulatory
= ath9k_hw_regulatory(ah
);
1433 int i
, regWrites
= 0;
1434 struct ieee80211_channel
*channel
= chan
->chan
;
1435 u32 modesIndex
, freqIndex
;
1437 switch (chan
->chanmode
) {
1439 case CHANNEL_A_HT20
:
1443 case CHANNEL_A_HT40PLUS
:
1444 case CHANNEL_A_HT40MINUS
:
1449 case CHANNEL_G_HT20
:
1454 case CHANNEL_G_HT40PLUS
:
1455 case CHANNEL_G_HT40MINUS
:
1464 REG_WRITE(ah
, AR_PHY(0), 0x00000007);
1465 REG_WRITE(ah
, AR_PHY_ADC_SERIAL_CTL
, AR_PHY_SEL_EXTERNAL_RADIO
);
1466 ah
->eep_ops
->set_addac(ah
, chan
);
1468 if (AR_SREV_5416_22_OR_LATER(ah
)) {
1469 REG_WRITE_ARRAY(&ah
->iniAddac
, 1, regWrites
);
1471 struct ar5416IniArray temp
;
1473 sizeof(u32
) * ah
->iniAddac
.ia_rows
*
1474 ah
->iniAddac
.ia_columns
;
1476 memcpy(ah
->addac5416_21
,
1477 ah
->iniAddac
.ia_array
, addacSize
);
1479 (ah
->addac5416_21
)[31 * ah
->iniAddac
.ia_columns
+ 1] = 0;
1481 temp
.ia_array
= ah
->addac5416_21
;
1482 temp
.ia_columns
= ah
->iniAddac
.ia_columns
;
1483 temp
.ia_rows
= ah
->iniAddac
.ia_rows
;
1484 REG_WRITE_ARRAY(&temp
, 1, regWrites
);
1487 REG_WRITE(ah
, AR_PHY_ADC_SERIAL_CTL
, AR_PHY_SEL_INTERNAL_ADDAC
);
1489 for (i
= 0; i
< ah
->iniModes
.ia_rows
; i
++) {
1490 u32 reg
= INI_RA(&ah
->iniModes
, i
, 0);
1491 u32 val
= INI_RA(&ah
->iniModes
, i
, modesIndex
);
1493 REG_WRITE(ah
, reg
, val
);
1495 if (reg
>= 0x7800 && reg
< 0x78a0
1496 && ah
->config
.analog_shiftreg
) {
1500 DO_DELAY(regWrites
);
1503 if (AR_SREV_9280(ah
) || AR_SREV_9287_10_OR_LATER(ah
))
1504 REG_WRITE_ARRAY(&ah
->iniModesRxGain
, modesIndex
, regWrites
);
1506 if (AR_SREV_9280(ah
) || AR_SREV_9285_12_OR_LATER(ah
) ||
1507 AR_SREV_9287_10_OR_LATER(ah
))
1508 REG_WRITE_ARRAY(&ah
->iniModesTxGain
, modesIndex
, regWrites
);
1510 for (i
= 0; i
< ah
->iniCommon
.ia_rows
; i
++) {
1511 u32 reg
= INI_RA(&ah
->iniCommon
, i
, 0);
1512 u32 val
= INI_RA(&ah
->iniCommon
, i
, 1);
1514 REG_WRITE(ah
, reg
, val
);
1516 if (reg
>= 0x7800 && reg
< 0x78a0
1517 && ah
->config
.analog_shiftreg
) {
1521 DO_DELAY(regWrites
);
1524 ath9k_hw_write_regs(ah
, modesIndex
, freqIndex
, regWrites
);
1526 if (AR_SREV_9271_10(ah
))
1527 REG_WRITE_ARRAY(&ah
->iniModes_9271_1_0_only
,
1528 modesIndex
, regWrites
);
1530 if (AR_SREV_9280_20(ah
) && IS_CHAN_A_5MHZ_SPACED(chan
)) {
1531 REG_WRITE_ARRAY(&ah
->iniModesAdditional
, modesIndex
,
1535 ath9k_hw_override_ini(ah
, chan
);
1536 ath9k_hw_set_regs(ah
, chan
);
1537 ath9k_hw_init_chain_masks(ah
);
1539 if (OLC_FOR_AR9280_20_LATER
)
1542 ah
->eep_ops
->set_txpower(ah
, chan
,
1543 ath9k_regd_get_ctl(regulatory
, chan
),
1544 channel
->max_antenna_gain
* 2,
1545 channel
->max_power
* 2,
1546 min((u32
) MAX_RATE_POWER
,
1547 (u32
) regulatory
->power_limit
));
1549 if (!ath9k_hw_set_rf_regs(ah
, chan
, freqIndex
)) {
1550 ath_print(ath9k_hw_common(ah
), ATH_DBG_FATAL
,
1551 "ar5416SetRfRegs failed\n");
1558 /****************************************/
1559 /* Reset and Channel Switching Routines */
1560 /****************************************/
1562 static void ath9k_hw_set_rfmode(struct ath_hw
*ah
, struct ath9k_channel
*chan
)
1569 rfMode
|= (IS_CHAN_B(chan
) || IS_CHAN_G(chan
))
1570 ? AR_PHY_MODE_DYNAMIC
: AR_PHY_MODE_OFDM
;
1572 if (!AR_SREV_9280_10_OR_LATER(ah
))
1573 rfMode
|= (IS_CHAN_5GHZ(chan
)) ?
1574 AR_PHY_MODE_RF5GHZ
: AR_PHY_MODE_RF2GHZ
;
1576 if (AR_SREV_9280_20(ah
) && IS_CHAN_A_5MHZ_SPACED(chan
))
1577 rfMode
|= (AR_PHY_MODE_DYNAMIC
| AR_PHY_MODE_DYN_CCK_DISABLE
);
1579 REG_WRITE(ah
, AR_PHY_MODE
, rfMode
);
1582 static void ath9k_hw_mark_phy_inactive(struct ath_hw
*ah
)
1584 REG_WRITE(ah
, AR_PHY_ACTIVE
, AR_PHY_ACTIVE_DIS
);
1587 static inline void ath9k_hw_set_dma(struct ath_hw
*ah
)
1592 * set AHB_MODE not to do cacheline prefetches
1594 regval
= REG_READ(ah
, AR_AHB_MODE
);
1595 REG_WRITE(ah
, AR_AHB_MODE
, regval
| AR_AHB_PREFETCH_RD_EN
);
1598 * let mac dma reads be in 128 byte chunks
1600 regval
= REG_READ(ah
, AR_TXCFG
) & ~AR_TXCFG_DMASZ_MASK
;
1601 REG_WRITE(ah
, AR_TXCFG
, regval
| AR_TXCFG_DMASZ_128B
);
1604 * Restore TX Trigger Level to its pre-reset value.
1605 * The initial value depends on whether aggregation is enabled, and is
1606 * adjusted whenever underruns are detected.
1608 REG_RMW_FIELD(ah
, AR_TXCFG
, AR_FTRIG
, ah
->tx_trig_level
);
1611 * let mac dma writes be in 128 byte chunks
1613 regval
= REG_READ(ah
, AR_RXCFG
) & ~AR_RXCFG_DMASZ_MASK
;
1614 REG_WRITE(ah
, AR_RXCFG
, regval
| AR_RXCFG_DMASZ_128B
);
1617 * Setup receive FIFO threshold to hold off TX activities
1619 REG_WRITE(ah
, AR_RXFIFO_CFG
, 0x200);
1622 * reduce the number of usable entries in PCU TXBUF to avoid
1623 * wrap around issues.
1625 if (AR_SREV_9285(ah
)) {
1626 /* For AR9285 the number of Fifos are reduced to half.
1627 * So set the usable tx buf size also to half to
1628 * avoid data/delimiter underruns
1630 REG_WRITE(ah
, AR_PCU_TXBUF_CTRL
,
1631 AR_9285_PCU_TXBUF_CTRL_USABLE_SIZE
);
1632 } else if (!AR_SREV_9271(ah
)) {
1633 REG_WRITE(ah
, AR_PCU_TXBUF_CTRL
,
1634 AR_PCU_TXBUF_CTRL_USABLE_SIZE
);
1638 static void ath9k_hw_set_operating_mode(struct ath_hw
*ah
, int opmode
)
1642 val
= REG_READ(ah
, AR_STA_ID1
);
1643 val
&= ~(AR_STA_ID1_STA_AP
| AR_STA_ID1_ADHOC
);
1645 case NL80211_IFTYPE_AP
:
1646 REG_WRITE(ah
, AR_STA_ID1
, val
| AR_STA_ID1_STA_AP
1647 | AR_STA_ID1_KSRCH_MODE
);
1648 REG_CLR_BIT(ah
, AR_CFG
, AR_CFG_AP_ADHOC_INDICATION
);
1650 case NL80211_IFTYPE_ADHOC
:
1651 case NL80211_IFTYPE_MESH_POINT
:
1652 REG_WRITE(ah
, AR_STA_ID1
, val
| AR_STA_ID1_ADHOC
1653 | AR_STA_ID1_KSRCH_MODE
);
1654 REG_SET_BIT(ah
, AR_CFG
, AR_CFG_AP_ADHOC_INDICATION
);
1656 case NL80211_IFTYPE_STATION
:
1657 case NL80211_IFTYPE_MONITOR
:
1658 REG_WRITE(ah
, AR_STA_ID1
, val
| AR_STA_ID1_KSRCH_MODE
);
1663 static inline void ath9k_hw_get_delta_slope_vals(struct ath_hw
*ah
,
1668 u32 coef_exp
, coef_man
;
1670 for (coef_exp
= 31; coef_exp
> 0; coef_exp
--)
1671 if ((coef_scaled
>> coef_exp
) & 0x1)
1674 coef_exp
= 14 - (coef_exp
- COEF_SCALE_S
);
1676 coef_man
= coef_scaled
+ (1 << (COEF_SCALE_S
- coef_exp
- 1));
1678 *coef_mantissa
= coef_man
>> (COEF_SCALE_S
- coef_exp
);
1679 *coef_exponent
= coef_exp
- 16;
1682 static void ath9k_hw_set_delta_slope(struct ath_hw
*ah
,
1683 struct ath9k_channel
*chan
)
1685 u32 coef_scaled
, ds_coef_exp
, ds_coef_man
;
1686 u32 clockMhzScaled
= 0x64000000;
1687 struct chan_centers centers
;
1689 if (IS_CHAN_HALF_RATE(chan
))
1690 clockMhzScaled
= clockMhzScaled
>> 1;
1691 else if (IS_CHAN_QUARTER_RATE(chan
))
1692 clockMhzScaled
= clockMhzScaled
>> 2;
1694 ath9k_hw_get_channel_centers(ah
, chan
, ¢ers
);
1695 coef_scaled
= clockMhzScaled
/ centers
.synth_center
;
1697 ath9k_hw_get_delta_slope_vals(ah
, coef_scaled
, &ds_coef_man
,
1700 REG_RMW_FIELD(ah
, AR_PHY_TIMING3
,
1701 AR_PHY_TIMING3_DSC_MAN
, ds_coef_man
);
1702 REG_RMW_FIELD(ah
, AR_PHY_TIMING3
,
1703 AR_PHY_TIMING3_DSC_EXP
, ds_coef_exp
);
1705 coef_scaled
= (9 * coef_scaled
) / 10;
1707 ath9k_hw_get_delta_slope_vals(ah
, coef_scaled
, &ds_coef_man
,
1710 REG_RMW_FIELD(ah
, AR_PHY_HALFGI
,
1711 AR_PHY_HALFGI_DSC_MAN
, ds_coef_man
);
1712 REG_RMW_FIELD(ah
, AR_PHY_HALFGI
,
1713 AR_PHY_HALFGI_DSC_EXP
, ds_coef_exp
);
1716 static bool ath9k_hw_set_reset(struct ath_hw
*ah
, int type
)
1721 if (AR_SREV_9100(ah
)) {
1722 u32 val
= REG_READ(ah
, AR_RTC_DERIVED_CLK
);
1723 val
&= ~AR_RTC_DERIVED_CLK_PERIOD
;
1724 val
|= SM(1, AR_RTC_DERIVED_CLK_PERIOD
);
1725 REG_WRITE(ah
, AR_RTC_DERIVED_CLK
, val
);
1726 (void)REG_READ(ah
, AR_RTC_DERIVED_CLK
);
1729 REG_WRITE(ah
, AR_RTC_FORCE_WAKE
, AR_RTC_FORCE_WAKE_EN
|
1730 AR_RTC_FORCE_WAKE_ON_INT
);
1732 if (AR_SREV_9100(ah
)) {
1733 rst_flags
= AR_RTC_RC_MAC_WARM
| AR_RTC_RC_MAC_COLD
|
1734 AR_RTC_RC_COLD_RESET
| AR_RTC_RC_WARM_RESET
;
1736 tmpReg
= REG_READ(ah
, AR_INTR_SYNC_CAUSE
);
1738 (AR_INTR_SYNC_LOCAL_TIMEOUT
|
1739 AR_INTR_SYNC_RADM_CPL_TIMEOUT
)) {
1740 REG_WRITE(ah
, AR_INTR_SYNC_ENABLE
, 0);
1741 REG_WRITE(ah
, AR_RC
, AR_RC_AHB
| AR_RC_HOSTIF
);
1743 REG_WRITE(ah
, AR_RC
, AR_RC_AHB
);
1746 rst_flags
= AR_RTC_RC_MAC_WARM
;
1747 if (type
== ATH9K_RESET_COLD
)
1748 rst_flags
|= AR_RTC_RC_MAC_COLD
;
1751 REG_WRITE(ah
, AR_RTC_RC
, rst_flags
);
1754 REG_WRITE(ah
, AR_RTC_RC
, 0);
1755 if (!ath9k_hw_wait(ah
, AR_RTC_RC
, AR_RTC_RC_M
, 0, AH_WAIT_TIMEOUT
)) {
1756 ath_print(ath9k_hw_common(ah
), ATH_DBG_RESET
,
1757 "RTC stuck in MAC reset\n");
1761 if (!AR_SREV_9100(ah
))
1762 REG_WRITE(ah
, AR_RC
, 0);
1764 if (AR_SREV_9100(ah
))
1770 static bool ath9k_hw_set_reset_power_on(struct ath_hw
*ah
)
1772 REG_WRITE(ah
, AR_RTC_FORCE_WAKE
, AR_RTC_FORCE_WAKE_EN
|
1773 AR_RTC_FORCE_WAKE_ON_INT
);
1775 if (!AR_SREV_9100(ah
))
1776 REG_WRITE(ah
, AR_RC
, AR_RC_AHB
);
1778 REG_WRITE(ah
, AR_RTC_RESET
, 0);
1781 if (!AR_SREV_9100(ah
))
1782 REG_WRITE(ah
, AR_RC
, 0);
1784 REG_WRITE(ah
, AR_RTC_RESET
, 1);
1786 if (!ath9k_hw_wait(ah
,
1791 ath_print(ath9k_hw_common(ah
), ATH_DBG_RESET
,
1792 "RTC not waking up\n");
1796 ath9k_hw_read_revisions(ah
);
1798 return ath9k_hw_set_reset(ah
, ATH9K_RESET_WARM
);
1801 static bool ath9k_hw_set_reset_reg(struct ath_hw
*ah
, u32 type
)
1803 REG_WRITE(ah
, AR_RTC_FORCE_WAKE
,
1804 AR_RTC_FORCE_WAKE_EN
| AR_RTC_FORCE_WAKE_ON_INT
);
1807 case ATH9K_RESET_POWER_ON
:
1808 return ath9k_hw_set_reset_power_on(ah
);
1809 case ATH9K_RESET_WARM
:
1810 case ATH9K_RESET_COLD
:
1811 return ath9k_hw_set_reset(ah
, type
);
1817 static void ath9k_hw_set_regs(struct ath_hw
*ah
, struct ath9k_channel
*chan
)
1820 u32 enableDacFifo
= 0;
1822 if (AR_SREV_9285_10_OR_LATER(ah
))
1823 enableDacFifo
= (REG_READ(ah
, AR_PHY_TURBO
) &
1824 AR_PHY_FC_ENABLE_DAC_FIFO
);
1826 phymode
= AR_PHY_FC_HT_EN
| AR_PHY_FC_SHORT_GI_40
1827 | AR_PHY_FC_SINGLE_HT_LTF1
| AR_PHY_FC_WALSH
| enableDacFifo
;
1829 if (IS_CHAN_HT40(chan
)) {
1830 phymode
|= AR_PHY_FC_DYN2040_EN
;
1832 if ((chan
->chanmode
== CHANNEL_A_HT40PLUS
) ||
1833 (chan
->chanmode
== CHANNEL_G_HT40PLUS
))
1834 phymode
|= AR_PHY_FC_DYN2040_PRI_CH
;
1837 REG_WRITE(ah
, AR_PHY_TURBO
, phymode
);
1839 ath9k_hw_set11nmac2040(ah
);
1841 REG_WRITE(ah
, AR_GTXTO
, 25 << AR_GTXTO_TIMEOUT_LIMIT_S
);
1842 REG_WRITE(ah
, AR_CST
, 0xF << AR_CST_TIMEOUT_LIMIT_S
);
1845 static bool ath9k_hw_chip_reset(struct ath_hw
*ah
,
1846 struct ath9k_channel
*chan
)
1848 if (AR_SREV_9280(ah
) && ah
->eep_ops
->get_eeprom(ah
, EEP_OL_PWRCTRL
)) {
1849 if (!ath9k_hw_set_reset_reg(ah
, ATH9K_RESET_POWER_ON
))
1851 } else if (!ath9k_hw_set_reset_reg(ah
, ATH9K_RESET_WARM
))
1854 if (!ath9k_hw_setpower(ah
, ATH9K_PM_AWAKE
))
1857 ah
->chip_fullsleep
= false;
1858 ath9k_hw_init_pll(ah
, chan
);
1859 ath9k_hw_set_rfmode(ah
, chan
);
1864 static bool ath9k_hw_channel_change(struct ath_hw
*ah
,
1865 struct ath9k_channel
*chan
)
1867 struct ath_regulatory
*regulatory
= ath9k_hw_regulatory(ah
);
1868 struct ath_common
*common
= ath9k_hw_common(ah
);
1869 struct ieee80211_channel
*channel
= chan
->chan
;
1870 u32 synthDelay
, qnum
;
1872 for (qnum
= 0; qnum
< AR_NUM_QCU
; qnum
++) {
1873 if (ath9k_hw_numtxpending(ah
, qnum
)) {
1874 ath_print(common
, ATH_DBG_QUEUE
,
1875 "Transmit frames pending on "
1876 "queue %d\n", qnum
);
1881 REG_WRITE(ah
, AR_PHY_RFBUS_REQ
, AR_PHY_RFBUS_REQ_EN
);
1882 if (!ath9k_hw_wait(ah
, AR_PHY_RFBUS_GRANT
, AR_PHY_RFBUS_GRANT_EN
,
1883 AR_PHY_RFBUS_GRANT_EN
, AH_WAIT_TIMEOUT
)) {
1884 ath_print(common
, ATH_DBG_FATAL
,
1885 "Could not kill baseband RX\n");
1889 ath9k_hw_set_regs(ah
, chan
);
1891 if (AR_SREV_9280_10_OR_LATER(ah
)) {
1892 ath9k_hw_ar9280_set_channel(ah
, chan
);
1894 if (!(ath9k_hw_set_channel(ah
, chan
))) {
1895 ath_print(common
, ATH_DBG_FATAL
,
1896 "Failed to set channel\n");
1901 ah
->eep_ops
->set_txpower(ah
, chan
,
1902 ath9k_regd_get_ctl(regulatory
, chan
),
1903 channel
->max_antenna_gain
* 2,
1904 channel
->max_power
* 2,
1905 min((u32
) MAX_RATE_POWER
,
1906 (u32
) regulatory
->power_limit
));
1908 synthDelay
= REG_READ(ah
, AR_PHY_RX_DELAY
) & AR_PHY_RX_DELAY_DELAY
;
1909 if (IS_CHAN_B(chan
))
1910 synthDelay
= (4 * synthDelay
) / 22;
1914 udelay(synthDelay
+ BASE_ACTIVATE_DELAY
);
1916 REG_WRITE(ah
, AR_PHY_RFBUS_REQ
, 0);
1918 if (IS_CHAN_OFDM(chan
) || IS_CHAN_HT(chan
))
1919 ath9k_hw_set_delta_slope(ah
, chan
);
1921 if (AR_SREV_9280_10_OR_LATER(ah
))
1922 ath9k_hw_9280_spur_mitigate(ah
, chan
);
1924 ath9k_hw_spur_mitigate(ah
, chan
);
1926 if (!chan
->oneTimeCalsDone
)
1927 chan
->oneTimeCalsDone
= true;
1932 static void ath9k_hw_9280_spur_mitigate(struct ath_hw
*ah
, struct ath9k_channel
*chan
)
1934 int bb_spur
= AR_NO_SPUR
;
1937 int bb_spur_off
, spur_subchannel_sd
;
1939 int spur_delta_phase
;
1941 int upper
, lower
, cur_vit_mask
;
1944 int pilot_mask_reg
[4] = { AR_PHY_TIMING7
, AR_PHY_TIMING8
,
1945 AR_PHY_PILOT_MASK_01_30
, AR_PHY_PILOT_MASK_31_60
1947 int chan_mask_reg
[4] = { AR_PHY_TIMING9
, AR_PHY_TIMING10
,
1948 AR_PHY_CHANNEL_MASK_01_30
, AR_PHY_CHANNEL_MASK_31_60
1950 int inc
[4] = { 0, 100, 0, 0 };
1951 struct chan_centers centers
;
1958 bool is2GHz
= IS_CHAN_2GHZ(chan
);
1960 memset(&mask_m
, 0, sizeof(int8_t) * 123);
1961 memset(&mask_p
, 0, sizeof(int8_t) * 123);
1963 ath9k_hw_get_channel_centers(ah
, chan
, ¢ers
);
1964 freq
= centers
.synth_center
;
1966 ah
->config
.spurmode
= SPUR_ENABLE_EEPROM
;
1967 for (i
= 0; i
< AR_EEPROM_MODAL_SPURS
; i
++) {
1968 cur_bb_spur
= ah
->eep_ops
->get_spur_channel(ah
, i
, is2GHz
);
1971 cur_bb_spur
= (cur_bb_spur
/ 10) + AR_BASE_FREQ_2GHZ
;
1973 cur_bb_spur
= (cur_bb_spur
/ 10) + AR_BASE_FREQ_5GHZ
;
1975 if (AR_NO_SPUR
== cur_bb_spur
)
1977 cur_bb_spur
= cur_bb_spur
- freq
;
1979 if (IS_CHAN_HT40(chan
)) {
1980 if ((cur_bb_spur
> -AR_SPUR_FEEQ_BOUND_HT40
) &&
1981 (cur_bb_spur
< AR_SPUR_FEEQ_BOUND_HT40
)) {
1982 bb_spur
= cur_bb_spur
;
1985 } else if ((cur_bb_spur
> -AR_SPUR_FEEQ_BOUND_HT20
) &&
1986 (cur_bb_spur
< AR_SPUR_FEEQ_BOUND_HT20
)) {
1987 bb_spur
= cur_bb_spur
;
1992 if (AR_NO_SPUR
== bb_spur
) {
1993 REG_CLR_BIT(ah
, AR_PHY_FORCE_CLKEN_CCK
,
1994 AR_PHY_FORCE_CLKEN_CCK_MRC_MUX
);
1997 REG_CLR_BIT(ah
, AR_PHY_FORCE_CLKEN_CCK
,
1998 AR_PHY_FORCE_CLKEN_CCK_MRC_MUX
);
2001 bin
= bb_spur
* 320;
2003 tmp
= REG_READ(ah
, AR_PHY_TIMING_CTRL4(0));
2005 newVal
= tmp
| (AR_PHY_TIMING_CTRL4_ENABLE_SPUR_RSSI
|
2006 AR_PHY_TIMING_CTRL4_ENABLE_SPUR_FILTER
|
2007 AR_PHY_TIMING_CTRL4_ENABLE_CHAN_MASK
|
2008 AR_PHY_TIMING_CTRL4_ENABLE_PILOT_MASK
);
2009 REG_WRITE(ah
, AR_PHY_TIMING_CTRL4(0), newVal
);
2011 newVal
= (AR_PHY_SPUR_REG_MASK_RATE_CNTL
|
2012 AR_PHY_SPUR_REG_ENABLE_MASK_PPM
|
2013 AR_PHY_SPUR_REG_MASK_RATE_SELECT
|
2014 AR_PHY_SPUR_REG_ENABLE_VIT_SPUR_RSSI
|
2015 SM(SPUR_RSSI_THRESH
, AR_PHY_SPUR_REG_SPUR_RSSI_THRESH
));
2016 REG_WRITE(ah
, AR_PHY_SPUR_REG
, newVal
);
2018 if (IS_CHAN_HT40(chan
)) {
2020 spur_subchannel_sd
= 1;
2021 bb_spur_off
= bb_spur
+ 10;
2023 spur_subchannel_sd
= 0;
2024 bb_spur_off
= bb_spur
- 10;
2027 spur_subchannel_sd
= 0;
2028 bb_spur_off
= bb_spur
;
2031 if (IS_CHAN_HT40(chan
))
2033 ((bb_spur
* 262144) /
2034 10) & AR_PHY_TIMING11_SPUR_DELTA_PHASE
;
2037 ((bb_spur
* 524288) /
2038 10) & AR_PHY_TIMING11_SPUR_DELTA_PHASE
;
2040 denominator
= IS_CHAN_2GHZ(chan
) ? 44 : 40;
2041 spur_freq_sd
= ((bb_spur_off
* 2048) / denominator
) & 0x3ff;
2043 newVal
= (AR_PHY_TIMING11_USE_SPUR_IN_AGC
|
2044 SM(spur_freq_sd
, AR_PHY_TIMING11_SPUR_FREQ_SD
) |
2045 SM(spur_delta_phase
, AR_PHY_TIMING11_SPUR_DELTA_PHASE
));
2046 REG_WRITE(ah
, AR_PHY_TIMING11
, newVal
);
2048 newVal
= spur_subchannel_sd
<< AR_PHY_SFCORR_SPUR_SUBCHNL_SD_S
;
2049 REG_WRITE(ah
, AR_PHY_SFCORR_EXT
, newVal
);
2055 for (i
= 0; i
< 4; i
++) {
2059 for (bp
= 0; bp
< 30; bp
++) {
2060 if ((cur_bin
> lower
) && (cur_bin
< upper
)) {
2061 pilot_mask
= pilot_mask
| 0x1 << bp
;
2062 chan_mask
= chan_mask
| 0x1 << bp
;
2067 REG_WRITE(ah
, pilot_mask_reg
[i
], pilot_mask
);
2068 REG_WRITE(ah
, chan_mask_reg
[i
], chan_mask
);
2071 cur_vit_mask
= 6100;
2075 for (i
= 0; i
< 123; i
++) {
2076 if ((cur_vit_mask
> lower
) && (cur_vit_mask
< upper
)) {
2078 /* workaround for gcc bug #37014 */
2079 volatile int tmp_v
= abs(cur_vit_mask
- bin
);
2085 if (cur_vit_mask
< 0)
2086 mask_m
[abs(cur_vit_mask
/ 100)] = mask_amt
;
2088 mask_p
[cur_vit_mask
/ 100] = mask_amt
;
2090 cur_vit_mask
-= 100;
2093 tmp_mask
= (mask_m
[46] << 30) | (mask_m
[47] << 28)
2094 | (mask_m
[48] << 26) | (mask_m
[49] << 24)
2095 | (mask_m
[50] << 22) | (mask_m
[51] << 20)
2096 | (mask_m
[52] << 18) | (mask_m
[53] << 16)
2097 | (mask_m
[54] << 14) | (mask_m
[55] << 12)
2098 | (mask_m
[56] << 10) | (mask_m
[57] << 8)
2099 | (mask_m
[58] << 6) | (mask_m
[59] << 4)
2100 | (mask_m
[60] << 2) | (mask_m
[61] << 0);
2101 REG_WRITE(ah
, AR_PHY_BIN_MASK_1
, tmp_mask
);
2102 REG_WRITE(ah
, AR_PHY_VIT_MASK2_M_46_61
, tmp_mask
);
2104 tmp_mask
= (mask_m
[31] << 28)
2105 | (mask_m
[32] << 26) | (mask_m
[33] << 24)
2106 | (mask_m
[34] << 22) | (mask_m
[35] << 20)
2107 | (mask_m
[36] << 18) | (mask_m
[37] << 16)
2108 | (mask_m
[48] << 14) | (mask_m
[39] << 12)
2109 | (mask_m
[40] << 10) | (mask_m
[41] << 8)
2110 | (mask_m
[42] << 6) | (mask_m
[43] << 4)
2111 | (mask_m
[44] << 2) | (mask_m
[45] << 0);
2112 REG_WRITE(ah
, AR_PHY_BIN_MASK_2
, tmp_mask
);
2113 REG_WRITE(ah
, AR_PHY_MASK2_M_31_45
, tmp_mask
);
2115 tmp_mask
= (mask_m
[16] << 30) | (mask_m
[16] << 28)
2116 | (mask_m
[18] << 26) | (mask_m
[18] << 24)
2117 | (mask_m
[20] << 22) | (mask_m
[20] << 20)
2118 | (mask_m
[22] << 18) | (mask_m
[22] << 16)
2119 | (mask_m
[24] << 14) | (mask_m
[24] << 12)
2120 | (mask_m
[25] << 10) | (mask_m
[26] << 8)
2121 | (mask_m
[27] << 6) | (mask_m
[28] << 4)
2122 | (mask_m
[29] << 2) | (mask_m
[30] << 0);
2123 REG_WRITE(ah
, AR_PHY_BIN_MASK_3
, tmp_mask
);
2124 REG_WRITE(ah
, AR_PHY_MASK2_M_16_30
, tmp_mask
);
2126 tmp_mask
= (mask_m
[0] << 30) | (mask_m
[1] << 28)
2127 | (mask_m
[2] << 26) | (mask_m
[3] << 24)
2128 | (mask_m
[4] << 22) | (mask_m
[5] << 20)
2129 | (mask_m
[6] << 18) | (mask_m
[7] << 16)
2130 | (mask_m
[8] << 14) | (mask_m
[9] << 12)
2131 | (mask_m
[10] << 10) | (mask_m
[11] << 8)
2132 | (mask_m
[12] << 6) | (mask_m
[13] << 4)
2133 | (mask_m
[14] << 2) | (mask_m
[15] << 0);
2134 REG_WRITE(ah
, AR_PHY_MASK_CTL
, tmp_mask
);
2135 REG_WRITE(ah
, AR_PHY_MASK2_M_00_15
, tmp_mask
);
2137 tmp_mask
= (mask_p
[15] << 28)
2138 | (mask_p
[14] << 26) | (mask_p
[13] << 24)
2139 | (mask_p
[12] << 22) | (mask_p
[11] << 20)
2140 | (mask_p
[10] << 18) | (mask_p
[9] << 16)
2141 | (mask_p
[8] << 14) | (mask_p
[7] << 12)
2142 | (mask_p
[6] << 10) | (mask_p
[5] << 8)
2143 | (mask_p
[4] << 6) | (mask_p
[3] << 4)
2144 | (mask_p
[2] << 2) | (mask_p
[1] << 0);
2145 REG_WRITE(ah
, AR_PHY_BIN_MASK2_1
, tmp_mask
);
2146 REG_WRITE(ah
, AR_PHY_MASK2_P_15_01
, tmp_mask
);
2148 tmp_mask
= (mask_p
[30] << 28)
2149 | (mask_p
[29] << 26) | (mask_p
[28] << 24)
2150 | (mask_p
[27] << 22) | (mask_p
[26] << 20)
2151 | (mask_p
[25] << 18) | (mask_p
[24] << 16)
2152 | (mask_p
[23] << 14) | (mask_p
[22] << 12)
2153 | (mask_p
[21] << 10) | (mask_p
[20] << 8)
2154 | (mask_p
[19] << 6) | (mask_p
[18] << 4)
2155 | (mask_p
[17] << 2) | (mask_p
[16] << 0);
2156 REG_WRITE(ah
, AR_PHY_BIN_MASK2_2
, tmp_mask
);
2157 REG_WRITE(ah
, AR_PHY_MASK2_P_30_16
, tmp_mask
);
2159 tmp_mask
= (mask_p
[45] << 28)
2160 | (mask_p
[44] << 26) | (mask_p
[43] << 24)
2161 | (mask_p
[42] << 22) | (mask_p
[41] << 20)
2162 | (mask_p
[40] << 18) | (mask_p
[39] << 16)
2163 | (mask_p
[38] << 14) | (mask_p
[37] << 12)
2164 | (mask_p
[36] << 10) | (mask_p
[35] << 8)
2165 | (mask_p
[34] << 6) | (mask_p
[33] << 4)
2166 | (mask_p
[32] << 2) | (mask_p
[31] << 0);
2167 REG_WRITE(ah
, AR_PHY_BIN_MASK2_3
, tmp_mask
);
2168 REG_WRITE(ah
, AR_PHY_MASK2_P_45_31
, tmp_mask
);
2170 tmp_mask
= (mask_p
[61] << 30) | (mask_p
[60] << 28)
2171 | (mask_p
[59] << 26) | (mask_p
[58] << 24)
2172 | (mask_p
[57] << 22) | (mask_p
[56] << 20)
2173 | (mask_p
[55] << 18) | (mask_p
[54] << 16)
2174 | (mask_p
[53] << 14) | (mask_p
[52] << 12)
2175 | (mask_p
[51] << 10) | (mask_p
[50] << 8)
2176 | (mask_p
[49] << 6) | (mask_p
[48] << 4)
2177 | (mask_p
[47] << 2) | (mask_p
[46] << 0);
2178 REG_WRITE(ah
, AR_PHY_BIN_MASK2_4
, tmp_mask
);
2179 REG_WRITE(ah
, AR_PHY_MASK2_P_61_45
, tmp_mask
);
2182 static void ath9k_hw_spur_mitigate(struct ath_hw
*ah
, struct ath9k_channel
*chan
)
2184 int bb_spur
= AR_NO_SPUR
;
2187 int spur_delta_phase
;
2189 int upper
, lower
, cur_vit_mask
;
2192 int pilot_mask_reg
[4] = { AR_PHY_TIMING7
, AR_PHY_TIMING8
,
2193 AR_PHY_PILOT_MASK_01_30
, AR_PHY_PILOT_MASK_31_60
2195 int chan_mask_reg
[4] = { AR_PHY_TIMING9
, AR_PHY_TIMING10
,
2196 AR_PHY_CHANNEL_MASK_01_30
, AR_PHY_CHANNEL_MASK_31_60
2198 int inc
[4] = { 0, 100, 0, 0 };
2205 bool is2GHz
= IS_CHAN_2GHZ(chan
);
2207 memset(&mask_m
, 0, sizeof(int8_t) * 123);
2208 memset(&mask_p
, 0, sizeof(int8_t) * 123);
2210 for (i
= 0; i
< AR_EEPROM_MODAL_SPURS
; i
++) {
2211 cur_bb_spur
= ah
->eep_ops
->get_spur_channel(ah
, i
, is2GHz
);
2212 if (AR_NO_SPUR
== cur_bb_spur
)
2214 cur_bb_spur
= cur_bb_spur
- (chan
->channel
* 10);
2215 if ((cur_bb_spur
> -95) && (cur_bb_spur
< 95)) {
2216 bb_spur
= cur_bb_spur
;
2221 if (AR_NO_SPUR
== bb_spur
)
2226 tmp
= REG_READ(ah
, AR_PHY_TIMING_CTRL4(0));
2227 new = tmp
| (AR_PHY_TIMING_CTRL4_ENABLE_SPUR_RSSI
|
2228 AR_PHY_TIMING_CTRL4_ENABLE_SPUR_FILTER
|
2229 AR_PHY_TIMING_CTRL4_ENABLE_CHAN_MASK
|
2230 AR_PHY_TIMING_CTRL4_ENABLE_PILOT_MASK
);
2232 REG_WRITE(ah
, AR_PHY_TIMING_CTRL4(0), new);
2234 new = (AR_PHY_SPUR_REG_MASK_RATE_CNTL
|
2235 AR_PHY_SPUR_REG_ENABLE_MASK_PPM
|
2236 AR_PHY_SPUR_REG_MASK_RATE_SELECT
|
2237 AR_PHY_SPUR_REG_ENABLE_VIT_SPUR_RSSI
|
2238 SM(SPUR_RSSI_THRESH
, AR_PHY_SPUR_REG_SPUR_RSSI_THRESH
));
2239 REG_WRITE(ah
, AR_PHY_SPUR_REG
, new);
2241 spur_delta_phase
= ((bb_spur
* 524288) / 100) &
2242 AR_PHY_TIMING11_SPUR_DELTA_PHASE
;
2244 denominator
= IS_CHAN_2GHZ(chan
) ? 440 : 400;
2245 spur_freq_sd
= ((bb_spur
* 2048) / denominator
) & 0x3ff;
2247 new = (AR_PHY_TIMING11_USE_SPUR_IN_AGC
|
2248 SM(spur_freq_sd
, AR_PHY_TIMING11_SPUR_FREQ_SD
) |
2249 SM(spur_delta_phase
, AR_PHY_TIMING11_SPUR_DELTA_PHASE
));
2250 REG_WRITE(ah
, AR_PHY_TIMING11
, new);
2256 for (i
= 0; i
< 4; i
++) {
2260 for (bp
= 0; bp
< 30; bp
++) {
2261 if ((cur_bin
> lower
) && (cur_bin
< upper
)) {
2262 pilot_mask
= pilot_mask
| 0x1 << bp
;
2263 chan_mask
= chan_mask
| 0x1 << bp
;
2268 REG_WRITE(ah
, pilot_mask_reg
[i
], pilot_mask
);
2269 REG_WRITE(ah
, chan_mask_reg
[i
], chan_mask
);
2272 cur_vit_mask
= 6100;
2276 for (i
= 0; i
< 123; i
++) {
2277 if ((cur_vit_mask
> lower
) && (cur_vit_mask
< upper
)) {
2279 /* workaround for gcc bug #37014 */
2280 volatile int tmp_v
= abs(cur_vit_mask
- bin
);
2286 if (cur_vit_mask
< 0)
2287 mask_m
[abs(cur_vit_mask
/ 100)] = mask_amt
;
2289 mask_p
[cur_vit_mask
/ 100] = mask_amt
;
2291 cur_vit_mask
-= 100;
2294 tmp_mask
= (mask_m
[46] << 30) | (mask_m
[47] << 28)
2295 | (mask_m
[48] << 26) | (mask_m
[49] << 24)
2296 | (mask_m
[50] << 22) | (mask_m
[51] << 20)
2297 | (mask_m
[52] << 18) | (mask_m
[53] << 16)
2298 | (mask_m
[54] << 14) | (mask_m
[55] << 12)
2299 | (mask_m
[56] << 10) | (mask_m
[57] << 8)
2300 | (mask_m
[58] << 6) | (mask_m
[59] << 4)
2301 | (mask_m
[60] << 2) | (mask_m
[61] << 0);
2302 REG_WRITE(ah
, AR_PHY_BIN_MASK_1
, tmp_mask
);
2303 REG_WRITE(ah
, AR_PHY_VIT_MASK2_M_46_61
, tmp_mask
);
2305 tmp_mask
= (mask_m
[31] << 28)
2306 | (mask_m
[32] << 26) | (mask_m
[33] << 24)
2307 | (mask_m
[34] << 22) | (mask_m
[35] << 20)
2308 | (mask_m
[36] << 18) | (mask_m
[37] << 16)
2309 | (mask_m
[48] << 14) | (mask_m
[39] << 12)
2310 | (mask_m
[40] << 10) | (mask_m
[41] << 8)
2311 | (mask_m
[42] << 6) | (mask_m
[43] << 4)
2312 | (mask_m
[44] << 2) | (mask_m
[45] << 0);
2313 REG_WRITE(ah
, AR_PHY_BIN_MASK_2
, tmp_mask
);
2314 REG_WRITE(ah
, AR_PHY_MASK2_M_31_45
, tmp_mask
);
2316 tmp_mask
= (mask_m
[16] << 30) | (mask_m
[16] << 28)
2317 | (mask_m
[18] << 26) | (mask_m
[18] << 24)
2318 | (mask_m
[20] << 22) | (mask_m
[20] << 20)
2319 | (mask_m
[22] << 18) | (mask_m
[22] << 16)
2320 | (mask_m
[24] << 14) | (mask_m
[24] << 12)
2321 | (mask_m
[25] << 10) | (mask_m
[26] << 8)
2322 | (mask_m
[27] << 6) | (mask_m
[28] << 4)
2323 | (mask_m
[29] << 2) | (mask_m
[30] << 0);
2324 REG_WRITE(ah
, AR_PHY_BIN_MASK_3
, tmp_mask
);
2325 REG_WRITE(ah
, AR_PHY_MASK2_M_16_30
, tmp_mask
);
2327 tmp_mask
= (mask_m
[0] << 30) | (mask_m
[1] << 28)
2328 | (mask_m
[2] << 26) | (mask_m
[3] << 24)
2329 | (mask_m
[4] << 22) | (mask_m
[5] << 20)
2330 | (mask_m
[6] << 18) | (mask_m
[7] << 16)
2331 | (mask_m
[8] << 14) | (mask_m
[9] << 12)
2332 | (mask_m
[10] << 10) | (mask_m
[11] << 8)
2333 | (mask_m
[12] << 6) | (mask_m
[13] << 4)
2334 | (mask_m
[14] << 2) | (mask_m
[15] << 0);
2335 REG_WRITE(ah
, AR_PHY_MASK_CTL
, tmp_mask
);
2336 REG_WRITE(ah
, AR_PHY_MASK2_M_00_15
, tmp_mask
);
2338 tmp_mask
= (mask_p
[15] << 28)
2339 | (mask_p
[14] << 26) | (mask_p
[13] << 24)
2340 | (mask_p
[12] << 22) | (mask_p
[11] << 20)
2341 | (mask_p
[10] << 18) | (mask_p
[9] << 16)
2342 | (mask_p
[8] << 14) | (mask_p
[7] << 12)
2343 | (mask_p
[6] << 10) | (mask_p
[5] << 8)
2344 | (mask_p
[4] << 6) | (mask_p
[3] << 4)
2345 | (mask_p
[2] << 2) | (mask_p
[1] << 0);
2346 REG_WRITE(ah
, AR_PHY_BIN_MASK2_1
, tmp_mask
);
2347 REG_WRITE(ah
, AR_PHY_MASK2_P_15_01
, tmp_mask
);
2349 tmp_mask
= (mask_p
[30] << 28)
2350 | (mask_p
[29] << 26) | (mask_p
[28] << 24)
2351 | (mask_p
[27] << 22) | (mask_p
[26] << 20)
2352 | (mask_p
[25] << 18) | (mask_p
[24] << 16)
2353 | (mask_p
[23] << 14) | (mask_p
[22] << 12)
2354 | (mask_p
[21] << 10) | (mask_p
[20] << 8)
2355 | (mask_p
[19] << 6) | (mask_p
[18] << 4)
2356 | (mask_p
[17] << 2) | (mask_p
[16] << 0);
2357 REG_WRITE(ah
, AR_PHY_BIN_MASK2_2
, tmp_mask
);
2358 REG_WRITE(ah
, AR_PHY_MASK2_P_30_16
, tmp_mask
);
2360 tmp_mask
= (mask_p
[45] << 28)
2361 | (mask_p
[44] << 26) | (mask_p
[43] << 24)
2362 | (mask_p
[42] << 22) | (mask_p
[41] << 20)
2363 | (mask_p
[40] << 18) | (mask_p
[39] << 16)
2364 | (mask_p
[38] << 14) | (mask_p
[37] << 12)
2365 | (mask_p
[36] << 10) | (mask_p
[35] << 8)
2366 | (mask_p
[34] << 6) | (mask_p
[33] << 4)
2367 | (mask_p
[32] << 2) | (mask_p
[31] << 0);
2368 REG_WRITE(ah
, AR_PHY_BIN_MASK2_3
, tmp_mask
);
2369 REG_WRITE(ah
, AR_PHY_MASK2_P_45_31
, tmp_mask
);
2371 tmp_mask
= (mask_p
[61] << 30) | (mask_p
[60] << 28)
2372 | (mask_p
[59] << 26) | (mask_p
[58] << 24)
2373 | (mask_p
[57] << 22) | (mask_p
[56] << 20)
2374 | (mask_p
[55] << 18) | (mask_p
[54] << 16)
2375 | (mask_p
[53] << 14) | (mask_p
[52] << 12)
2376 | (mask_p
[51] << 10) | (mask_p
[50] << 8)
2377 | (mask_p
[49] << 6) | (mask_p
[48] << 4)
2378 | (mask_p
[47] << 2) | (mask_p
[46] << 0);
2379 REG_WRITE(ah
, AR_PHY_BIN_MASK2_4
, tmp_mask
);
2380 REG_WRITE(ah
, AR_PHY_MASK2_P_61_45
, tmp_mask
);
2383 static void ath9k_enable_rfkill(struct ath_hw
*ah
)
2385 REG_SET_BIT(ah
, AR_GPIO_INPUT_EN_VAL
,
2386 AR_GPIO_INPUT_EN_VAL_RFSILENT_BB
);
2388 REG_CLR_BIT(ah
, AR_GPIO_INPUT_MUX2
,
2389 AR_GPIO_INPUT_MUX2_RFSILENT
);
2391 ath9k_hw_cfg_gpio_input(ah
, ah
->rfkill_gpio
);
2392 REG_SET_BIT(ah
, AR_PHY_TEST
, RFSILENT_BB
);
2395 int ath9k_hw_reset(struct ath_hw
*ah
, struct ath9k_channel
*chan
,
2396 bool bChannelChange
)
2398 struct ath_common
*common
= ath9k_hw_common(ah
);
2400 struct ath9k_channel
*curchan
= ah
->curchan
;
2404 int i
, rx_chainmask
, r
;
2406 ah
->txchainmask
= common
->tx_chainmask
;
2407 ah
->rxchainmask
= common
->rx_chainmask
;
2409 if (!ath9k_hw_setpower(ah
, ATH9K_PM_AWAKE
))
2412 if (curchan
&& !ah
->chip_fullsleep
)
2413 ath9k_hw_getnf(ah
, curchan
);
2415 if (bChannelChange
&&
2416 (ah
->chip_fullsleep
!= true) &&
2417 (ah
->curchan
!= NULL
) &&
2418 (chan
->channel
!= ah
->curchan
->channel
) &&
2419 ((chan
->channelFlags
& CHANNEL_ALL
) ==
2420 (ah
->curchan
->channelFlags
& CHANNEL_ALL
)) &&
2421 !(AR_SREV_9280(ah
) || IS_CHAN_A_5MHZ_SPACED(chan
) ||
2422 IS_CHAN_A_5MHZ_SPACED(ah
->curchan
))) {
2424 if (ath9k_hw_channel_change(ah
, chan
)) {
2425 ath9k_hw_loadnf(ah
, ah
->curchan
);
2426 ath9k_hw_start_nfcal(ah
);
2431 saveDefAntenna
= REG_READ(ah
, AR_DEF_ANTENNA
);
2432 if (saveDefAntenna
== 0)
2435 macStaId1
= REG_READ(ah
, AR_STA_ID1
) & AR_STA_ID1_BASE_RATE_11B
;
2437 /* For chips on which RTC reset is done, save TSF before it gets cleared */
2438 if (AR_SREV_9280(ah
) && ah
->eep_ops
->get_eeprom(ah
, EEP_OL_PWRCTRL
))
2439 tsf
= ath9k_hw_gettsf64(ah
);
2441 saveLedState
= REG_READ(ah
, AR_CFG_LED
) &
2442 (AR_CFG_LED_ASSOC_CTL
| AR_CFG_LED_MODE_SEL
|
2443 AR_CFG_LED_BLINK_THRESH_SEL
| AR_CFG_LED_BLINK_SLOW
);
2445 ath9k_hw_mark_phy_inactive(ah
);
2447 if (AR_SREV_9271(ah
) && ah
->htc_reset_init
) {
2449 AR9271_RESET_POWER_DOWN_CONTROL
,
2450 AR9271_RADIO_RF_RST
);
2454 if (!ath9k_hw_chip_reset(ah
, chan
)) {
2455 ath_print(common
, ATH_DBG_FATAL
, "Chip reset failed\n");
2459 if (AR_SREV_9271(ah
) && ah
->htc_reset_init
) {
2460 ah
->htc_reset_init
= false;
2462 AR9271_RESET_POWER_DOWN_CONTROL
,
2463 AR9271_GATE_MAC_CTL
);
2468 if (tsf
&& AR_SREV_9280(ah
) && ah
->eep_ops
->get_eeprom(ah
, EEP_OL_PWRCTRL
))
2469 ath9k_hw_settsf64(ah
, tsf
);
2471 if (AR_SREV_9280_10_OR_LATER(ah
))
2472 REG_SET_BIT(ah
, AR_GPIO_INPUT_EN_VAL
, AR_GPIO_JTAG_DISABLE
);
2474 if (AR_SREV_9287_12_OR_LATER(ah
)) {
2475 /* Enable ASYNC FIFO */
2476 REG_SET_BIT(ah
, AR_MAC_PCU_ASYNC_FIFO_REG3
,
2477 AR_MAC_PCU_ASYNC_FIFO_REG3_DATAPATH_SEL
);
2478 REG_SET_BIT(ah
, AR_PHY_MODE
, AR_PHY_MODE_ASYNCFIFO
);
2479 REG_CLR_BIT(ah
, AR_MAC_PCU_ASYNC_FIFO_REG3
,
2480 AR_MAC_PCU_ASYNC_FIFO_REG3_SOFT_RESET
);
2481 REG_SET_BIT(ah
, AR_MAC_PCU_ASYNC_FIFO_REG3
,
2482 AR_MAC_PCU_ASYNC_FIFO_REG3_SOFT_RESET
);
2484 r
= ath9k_hw_process_ini(ah
, chan
);
2488 /* Setup MFP options for CCMP */
2489 if (AR_SREV_9280_20_OR_LATER(ah
)) {
2490 /* Mask Retry(b11), PwrMgt(b12), MoreData(b13) to 0 in mgmt
2491 * frames when constructing CCMP AAD. */
2492 REG_RMW_FIELD(ah
, AR_AES_MUTE_MASK1
, AR_AES_MUTE_MASK1_FC_MGMT
,
2494 ah
->sw_mgmt_crypto
= false;
2495 } else if (AR_SREV_9160_10_OR_LATER(ah
)) {
2496 /* Disable hardware crypto for management frames */
2497 REG_CLR_BIT(ah
, AR_PCU_MISC_MODE2
,
2498 AR_PCU_MISC_MODE2_MGMT_CRYPTO_ENABLE
);
2499 REG_SET_BIT(ah
, AR_PCU_MISC_MODE2
,
2500 AR_PCU_MISC_MODE2_NO_CRYPTO_FOR_NON_DATA_PKT
);
2501 ah
->sw_mgmt_crypto
= true;
2503 ah
->sw_mgmt_crypto
= true;
2505 if (IS_CHAN_OFDM(chan
) || IS_CHAN_HT(chan
))
2506 ath9k_hw_set_delta_slope(ah
, chan
);
2508 if (AR_SREV_9280_10_OR_LATER(ah
))
2509 ath9k_hw_9280_spur_mitigate(ah
, chan
);
2511 ath9k_hw_spur_mitigate(ah
, chan
);
2513 ah
->eep_ops
->set_board_values(ah
, chan
);
2515 ath9k_hw_decrease_chain_power(ah
, chan
);
2517 REG_WRITE(ah
, AR_STA_ID0
, get_unaligned_le32(common
->macaddr
));
2518 REG_WRITE(ah
, AR_STA_ID1
, get_unaligned_le16(common
->macaddr
+ 4)
2520 | AR_STA_ID1_RTS_USE_DEF
2522 ack_6mb
? AR_STA_ID1_ACKCTS_6MB
: 0)
2523 | ah
->sta_id1_defaults
);
2524 ath9k_hw_set_operating_mode(ah
, ah
->opmode
);
2526 ath_hw_setbssidmask(common
);
2528 REG_WRITE(ah
, AR_DEF_ANTENNA
, saveDefAntenna
);
2530 ath9k_hw_write_associd(ah
);
2532 REG_WRITE(ah
, AR_ISR
, ~0);
2534 REG_WRITE(ah
, AR_RSSI_THR
, INIT_RSSI_THR
);
2536 if (AR_SREV_9280_10_OR_LATER(ah
))
2537 ath9k_hw_ar9280_set_channel(ah
, chan
);
2539 if (!(ath9k_hw_set_channel(ah
, chan
)))
2542 for (i
= 0; i
< AR_NUM_DCU
; i
++)
2543 REG_WRITE(ah
, AR_DQCUMASK(i
), 1 << i
);
2546 for (i
= 0; i
< ah
->caps
.total_queues
; i
++)
2547 ath9k_hw_resettxqueue(ah
, i
);
2549 ath9k_hw_init_interrupt_masks(ah
, ah
->opmode
);
2550 ath9k_hw_init_qos(ah
);
2552 if (ah
->caps
.hw_caps
& ATH9K_HW_CAP_RFSILENT
)
2553 ath9k_enable_rfkill(ah
);
2555 ath9k_hw_init_user_settings(ah
);
2557 if (AR_SREV_9287_12_OR_LATER(ah
)) {
2558 REG_WRITE(ah
, AR_D_GBL_IFS_SIFS
,
2559 AR_D_GBL_IFS_SIFS_ASYNC_FIFO_DUR
);
2560 REG_WRITE(ah
, AR_D_GBL_IFS_SLOT
,
2561 AR_D_GBL_IFS_SLOT_ASYNC_FIFO_DUR
);
2562 REG_WRITE(ah
, AR_D_GBL_IFS_EIFS
,
2563 AR_D_GBL_IFS_EIFS_ASYNC_FIFO_DUR
);
2565 REG_WRITE(ah
, AR_TIME_OUT
, AR_TIME_OUT_ACK_CTS_ASYNC_FIFO_DUR
);
2566 REG_WRITE(ah
, AR_USEC
, AR_USEC_ASYNC_FIFO_DUR
);
2568 REG_SET_BIT(ah
, AR_MAC_PCU_LOGIC_ANALYZER
,
2569 AR_MAC_PCU_LOGIC_ANALYZER_DISBUG20768
);
2570 REG_RMW_FIELD(ah
, AR_AHB_MODE
, AR_AHB_CUSTOM_BURST_EN
,
2571 AR_AHB_CUSTOM_BURST_ASYNC_FIFO_VAL
);
2573 if (AR_SREV_9287_12_OR_LATER(ah
)) {
2574 REG_SET_BIT(ah
, AR_PCU_MISC_MODE2
,
2575 AR_PCU_MISC_MODE2_ENABLE_AGGWEP
);
2578 REG_WRITE(ah
, AR_STA_ID1
,
2579 REG_READ(ah
, AR_STA_ID1
) | AR_STA_ID1_PRESERVE_SEQNUM
);
2581 ath9k_hw_set_dma(ah
);
2583 REG_WRITE(ah
, AR_OBS
, 8);
2585 if (ah
->config
.intr_mitigation
) {
2586 REG_RMW_FIELD(ah
, AR_RIMT
, AR_RIMT_LAST
, 500);
2587 REG_RMW_FIELD(ah
, AR_RIMT
, AR_RIMT_FIRST
, 2000);
2590 ath9k_hw_init_bb(ah
, chan
);
2592 if (!ath9k_hw_init_cal(ah
, chan
))
2595 rx_chainmask
= ah
->rxchainmask
;
2596 if ((rx_chainmask
== 0x5) || (rx_chainmask
== 0x3)) {
2597 REG_WRITE(ah
, AR_PHY_RX_CHAINMASK
, rx_chainmask
);
2598 REG_WRITE(ah
, AR_PHY_CAL_CHAINMASK
, rx_chainmask
);
2601 REG_WRITE(ah
, AR_CFG_LED
, saveLedState
| AR_CFG_SCLK_32KHZ
);
2604 * For big endian systems turn on swapping for descriptors
2606 if (AR_SREV_9100(ah
)) {
2608 mask
= REG_READ(ah
, AR_CFG
);
2609 if (mask
& (AR_CFG_SWRB
| AR_CFG_SWTB
| AR_CFG_SWRG
)) {
2610 ath_print(common
, ATH_DBG_RESET
,
2611 "CFG Byte Swap Set 0x%x\n", mask
);
2614 INIT_CONFIG_STATUS
| AR_CFG_SWRB
| AR_CFG_SWTB
;
2615 REG_WRITE(ah
, AR_CFG
, mask
);
2616 ath_print(common
, ATH_DBG_RESET
,
2617 "Setting CFG 0x%x\n", REG_READ(ah
, AR_CFG
));
2620 /* Configure AR9271 target WLAN */
2621 if (AR_SREV_9271(ah
))
2622 REG_WRITE(ah
, AR_CFG
, AR_CFG_SWRB
| AR_CFG_SWTB
);
2625 REG_WRITE(ah
, AR_CFG
, AR_CFG_SWTD
| AR_CFG_SWRD
);
2629 if (ah
->btcoex_hw
.enabled
)
2630 ath9k_hw_btcoex_enable(ah
);
2634 EXPORT_SYMBOL(ath9k_hw_reset
);
2636 /************************/
2637 /* Key Cache Management */
2638 /************************/
2640 bool ath9k_hw_keyreset(struct ath_hw
*ah
, u16 entry
)
2644 if (entry
>= ah
->caps
.keycache_size
) {
2645 ath_print(ath9k_hw_common(ah
), ATH_DBG_FATAL
,
2646 "keychache entry %u out of range\n", entry
);
2650 keyType
= REG_READ(ah
, AR_KEYTABLE_TYPE(entry
));
2652 REG_WRITE(ah
, AR_KEYTABLE_KEY0(entry
), 0);
2653 REG_WRITE(ah
, AR_KEYTABLE_KEY1(entry
), 0);
2654 REG_WRITE(ah
, AR_KEYTABLE_KEY2(entry
), 0);
2655 REG_WRITE(ah
, AR_KEYTABLE_KEY3(entry
), 0);
2656 REG_WRITE(ah
, AR_KEYTABLE_KEY4(entry
), 0);
2657 REG_WRITE(ah
, AR_KEYTABLE_TYPE(entry
), AR_KEYTABLE_TYPE_CLR
);
2658 REG_WRITE(ah
, AR_KEYTABLE_MAC0(entry
), 0);
2659 REG_WRITE(ah
, AR_KEYTABLE_MAC1(entry
), 0);
2661 if (keyType
== AR_KEYTABLE_TYPE_TKIP
&& ATH9K_IS_MIC_ENABLED(ah
)) {
2662 u16 micentry
= entry
+ 64;
2664 REG_WRITE(ah
, AR_KEYTABLE_KEY0(micentry
), 0);
2665 REG_WRITE(ah
, AR_KEYTABLE_KEY1(micentry
), 0);
2666 REG_WRITE(ah
, AR_KEYTABLE_KEY2(micentry
), 0);
2667 REG_WRITE(ah
, AR_KEYTABLE_KEY3(micentry
), 0);
2673 EXPORT_SYMBOL(ath9k_hw_keyreset
);
2675 bool ath9k_hw_keysetmac(struct ath_hw
*ah
, u16 entry
, const u8
*mac
)
2679 if (entry
>= ah
->caps
.keycache_size
) {
2680 ath_print(ath9k_hw_common(ah
), ATH_DBG_FATAL
,
2681 "keychache entry %u out of range\n", entry
);
2686 macHi
= (mac
[5] << 8) | mac
[4];
2687 macLo
= (mac
[3] << 24) |
2692 macLo
|= (macHi
& 1) << 31;
2697 REG_WRITE(ah
, AR_KEYTABLE_MAC0(entry
), macLo
);
2698 REG_WRITE(ah
, AR_KEYTABLE_MAC1(entry
), macHi
| AR_KEYTABLE_VALID
);
2702 EXPORT_SYMBOL(ath9k_hw_keysetmac
);
2704 bool ath9k_hw_set_keycache_entry(struct ath_hw
*ah
, u16 entry
,
2705 const struct ath9k_keyval
*k
,
2708 const struct ath9k_hw_capabilities
*pCap
= &ah
->caps
;
2709 struct ath_common
*common
= ath9k_hw_common(ah
);
2710 u32 key0
, key1
, key2
, key3
, key4
;
2713 if (entry
>= pCap
->keycache_size
) {
2714 ath_print(common
, ATH_DBG_FATAL
,
2715 "keycache entry %u out of range\n", entry
);
2719 switch (k
->kv_type
) {
2720 case ATH9K_CIPHER_AES_OCB
:
2721 keyType
= AR_KEYTABLE_TYPE_AES
;
2723 case ATH9K_CIPHER_AES_CCM
:
2724 if (!(pCap
->hw_caps
& ATH9K_HW_CAP_CIPHER_AESCCM
)) {
2725 ath_print(common
, ATH_DBG_ANY
,
2726 "AES-CCM not supported by mac rev 0x%x\n",
2727 ah
->hw_version
.macRev
);
2730 keyType
= AR_KEYTABLE_TYPE_CCM
;
2732 case ATH9K_CIPHER_TKIP
:
2733 keyType
= AR_KEYTABLE_TYPE_TKIP
;
2734 if (ATH9K_IS_MIC_ENABLED(ah
)
2735 && entry
+ 64 >= pCap
->keycache_size
) {
2736 ath_print(common
, ATH_DBG_ANY
,
2737 "entry %u inappropriate for TKIP\n", entry
);
2741 case ATH9K_CIPHER_WEP
:
2742 if (k
->kv_len
< WLAN_KEY_LEN_WEP40
) {
2743 ath_print(common
, ATH_DBG_ANY
,
2744 "WEP key length %u too small\n", k
->kv_len
);
2747 if (k
->kv_len
<= WLAN_KEY_LEN_WEP40
)
2748 keyType
= AR_KEYTABLE_TYPE_40
;
2749 else if (k
->kv_len
<= WLAN_KEY_LEN_WEP104
)
2750 keyType
= AR_KEYTABLE_TYPE_104
;
2752 keyType
= AR_KEYTABLE_TYPE_128
;
2754 case ATH9K_CIPHER_CLR
:
2755 keyType
= AR_KEYTABLE_TYPE_CLR
;
2758 ath_print(common
, ATH_DBG_FATAL
,
2759 "cipher %u not supported\n", k
->kv_type
);
2763 key0
= get_unaligned_le32(k
->kv_val
+ 0);
2764 key1
= get_unaligned_le16(k
->kv_val
+ 4);
2765 key2
= get_unaligned_le32(k
->kv_val
+ 6);
2766 key3
= get_unaligned_le16(k
->kv_val
+ 10);
2767 key4
= get_unaligned_le32(k
->kv_val
+ 12);
2768 if (k
->kv_len
<= WLAN_KEY_LEN_WEP104
)
2772 * Note: Key cache registers access special memory area that requires
2773 * two 32-bit writes to actually update the values in the internal
2774 * memory. Consequently, the exact order and pairs used here must be
2778 if (keyType
== AR_KEYTABLE_TYPE_TKIP
&& ATH9K_IS_MIC_ENABLED(ah
)) {
2779 u16 micentry
= entry
+ 64;
2782 * Write inverted key[47:0] first to avoid Michael MIC errors
2783 * on frames that could be sent or received at the same time.
2784 * The correct key will be written in the end once everything
2787 REG_WRITE(ah
, AR_KEYTABLE_KEY0(entry
), ~key0
);
2788 REG_WRITE(ah
, AR_KEYTABLE_KEY1(entry
), ~key1
);
2790 /* Write key[95:48] */
2791 REG_WRITE(ah
, AR_KEYTABLE_KEY2(entry
), key2
);
2792 REG_WRITE(ah
, AR_KEYTABLE_KEY3(entry
), key3
);
2794 /* Write key[127:96] and key type */
2795 REG_WRITE(ah
, AR_KEYTABLE_KEY4(entry
), key4
);
2796 REG_WRITE(ah
, AR_KEYTABLE_TYPE(entry
), keyType
);
2798 /* Write MAC address for the entry */
2799 (void) ath9k_hw_keysetmac(ah
, entry
, mac
);
2801 if (ah
->misc_mode
& AR_PCU_MIC_NEW_LOC_ENA
) {
2803 * TKIP uses two key cache entries:
2804 * Michael MIC TX/RX keys in the same key cache entry
2805 * (idx = main index + 64):
2806 * key0 [31:0] = RX key [31:0]
2807 * key1 [15:0] = TX key [31:16]
2808 * key1 [31:16] = reserved
2809 * key2 [31:0] = RX key [63:32]
2810 * key3 [15:0] = TX key [15:0]
2811 * key3 [31:16] = reserved
2812 * key4 [31:0] = TX key [63:32]
2814 u32 mic0
, mic1
, mic2
, mic3
, mic4
;
2816 mic0
= get_unaligned_le32(k
->kv_mic
+ 0);
2817 mic2
= get_unaligned_le32(k
->kv_mic
+ 4);
2818 mic1
= get_unaligned_le16(k
->kv_txmic
+ 2) & 0xffff;
2819 mic3
= get_unaligned_le16(k
->kv_txmic
+ 0) & 0xffff;
2820 mic4
= get_unaligned_le32(k
->kv_txmic
+ 4);
2822 /* Write RX[31:0] and TX[31:16] */
2823 REG_WRITE(ah
, AR_KEYTABLE_KEY0(micentry
), mic0
);
2824 REG_WRITE(ah
, AR_KEYTABLE_KEY1(micentry
), mic1
);
2826 /* Write RX[63:32] and TX[15:0] */
2827 REG_WRITE(ah
, AR_KEYTABLE_KEY2(micentry
), mic2
);
2828 REG_WRITE(ah
, AR_KEYTABLE_KEY3(micentry
), mic3
);
2830 /* Write TX[63:32] and keyType(reserved) */
2831 REG_WRITE(ah
, AR_KEYTABLE_KEY4(micentry
), mic4
);
2832 REG_WRITE(ah
, AR_KEYTABLE_TYPE(micentry
),
2833 AR_KEYTABLE_TYPE_CLR
);
2837 * TKIP uses four key cache entries (two for group
2839 * Michael MIC TX/RX keys are in different key cache
2840 * entries (idx = main index + 64 for TX and
2841 * main index + 32 + 96 for RX):
2842 * key0 [31:0] = TX/RX MIC key [31:0]
2843 * key1 [31:0] = reserved
2844 * key2 [31:0] = TX/RX MIC key [63:32]
2845 * key3 [31:0] = reserved
2846 * key4 [31:0] = reserved
2848 * Upper layer code will call this function separately
2849 * for TX and RX keys when these registers offsets are
2854 mic0
= get_unaligned_le32(k
->kv_mic
+ 0);
2855 mic2
= get_unaligned_le32(k
->kv_mic
+ 4);
2857 /* Write MIC key[31:0] */
2858 REG_WRITE(ah
, AR_KEYTABLE_KEY0(micentry
), mic0
);
2859 REG_WRITE(ah
, AR_KEYTABLE_KEY1(micentry
), 0);
2861 /* Write MIC key[63:32] */
2862 REG_WRITE(ah
, AR_KEYTABLE_KEY2(micentry
), mic2
);
2863 REG_WRITE(ah
, AR_KEYTABLE_KEY3(micentry
), 0);
2865 /* Write TX[63:32] and keyType(reserved) */
2866 REG_WRITE(ah
, AR_KEYTABLE_KEY4(micentry
), 0);
2867 REG_WRITE(ah
, AR_KEYTABLE_TYPE(micentry
),
2868 AR_KEYTABLE_TYPE_CLR
);
2871 /* MAC address registers are reserved for the MIC entry */
2872 REG_WRITE(ah
, AR_KEYTABLE_MAC0(micentry
), 0);
2873 REG_WRITE(ah
, AR_KEYTABLE_MAC1(micentry
), 0);
2876 * Write the correct (un-inverted) key[47:0] last to enable
2877 * TKIP now that all other registers are set with correct
2880 REG_WRITE(ah
, AR_KEYTABLE_KEY0(entry
), key0
);
2881 REG_WRITE(ah
, AR_KEYTABLE_KEY1(entry
), key1
);
2883 /* Write key[47:0] */
2884 REG_WRITE(ah
, AR_KEYTABLE_KEY0(entry
), key0
);
2885 REG_WRITE(ah
, AR_KEYTABLE_KEY1(entry
), key1
);
2887 /* Write key[95:48] */
2888 REG_WRITE(ah
, AR_KEYTABLE_KEY2(entry
), key2
);
2889 REG_WRITE(ah
, AR_KEYTABLE_KEY3(entry
), key3
);
2891 /* Write key[127:96] and key type */
2892 REG_WRITE(ah
, AR_KEYTABLE_KEY4(entry
), key4
);
2893 REG_WRITE(ah
, AR_KEYTABLE_TYPE(entry
), keyType
);
2895 /* Write MAC address for the entry */
2896 (void) ath9k_hw_keysetmac(ah
, entry
, mac
);
2901 EXPORT_SYMBOL(ath9k_hw_set_keycache_entry
);
2903 bool ath9k_hw_keyisvalid(struct ath_hw
*ah
, u16 entry
)
2905 if (entry
< ah
->caps
.keycache_size
) {
2906 u32 val
= REG_READ(ah
, AR_KEYTABLE_MAC1(entry
));
2907 if (val
& AR_KEYTABLE_VALID
)
2912 EXPORT_SYMBOL(ath9k_hw_keyisvalid
);
2914 /******************************/
2915 /* Power Management (Chipset) */
2916 /******************************/
2918 static void ath9k_set_power_sleep(struct ath_hw
*ah
, int setChip
)
2920 REG_SET_BIT(ah
, AR_STA_ID1
, AR_STA_ID1_PWR_SAV
);
2922 REG_CLR_BIT(ah
, AR_RTC_FORCE_WAKE
,
2923 AR_RTC_FORCE_WAKE_EN
);
2924 if (!AR_SREV_9100(ah
))
2925 REG_WRITE(ah
, AR_RC
, AR_RC_AHB
| AR_RC_HOSTIF
);
2927 if(!AR_SREV_5416(ah
))
2928 REG_CLR_BIT(ah
, (AR_RTC_RESET
),
2933 static void ath9k_set_power_network_sleep(struct ath_hw
*ah
, int setChip
)
2935 REG_SET_BIT(ah
, AR_STA_ID1
, AR_STA_ID1_PWR_SAV
);
2937 struct ath9k_hw_capabilities
*pCap
= &ah
->caps
;
2939 if (!(pCap
->hw_caps
& ATH9K_HW_CAP_AUTOSLEEP
)) {
2940 REG_WRITE(ah
, AR_RTC_FORCE_WAKE
,
2941 AR_RTC_FORCE_WAKE_ON_INT
);
2943 REG_CLR_BIT(ah
, AR_RTC_FORCE_WAKE
,
2944 AR_RTC_FORCE_WAKE_EN
);
2949 static bool ath9k_hw_set_power_awake(struct ath_hw
*ah
, int setChip
)
2955 if ((REG_READ(ah
, AR_RTC_STATUS
) &
2956 AR_RTC_STATUS_M
) == AR_RTC_STATUS_SHUTDOWN
) {
2957 if (ath9k_hw_set_reset_reg(ah
,
2958 ATH9K_RESET_POWER_ON
) != true) {
2961 ath9k_hw_init_pll(ah
, NULL
);
2963 if (AR_SREV_9100(ah
))
2964 REG_SET_BIT(ah
, AR_RTC_RESET
,
2967 REG_SET_BIT(ah
, AR_RTC_FORCE_WAKE
,
2968 AR_RTC_FORCE_WAKE_EN
);
2971 for (i
= POWER_UP_TIME
/ 50; i
> 0; i
--) {
2972 val
= REG_READ(ah
, AR_RTC_STATUS
) & AR_RTC_STATUS_M
;
2973 if (val
== AR_RTC_STATUS_ON
)
2976 REG_SET_BIT(ah
, AR_RTC_FORCE_WAKE
,
2977 AR_RTC_FORCE_WAKE_EN
);
2980 ath_print(ath9k_hw_common(ah
), ATH_DBG_FATAL
,
2981 "Failed to wakeup in %uus\n",
2982 POWER_UP_TIME
/ 20);
2987 REG_CLR_BIT(ah
, AR_STA_ID1
, AR_STA_ID1_PWR_SAV
);
2992 bool ath9k_hw_setpower(struct ath_hw
*ah
, enum ath9k_power_mode mode
)
2994 struct ath_common
*common
= ath9k_hw_common(ah
);
2995 int status
= true, setChip
= true;
2996 static const char *modes
[] = {
3003 if (ah
->power_mode
== mode
)
3006 ath_print(common
, ATH_DBG_RESET
, "%s -> %s\n",
3007 modes
[ah
->power_mode
], modes
[mode
]);
3010 case ATH9K_PM_AWAKE
:
3011 status
= ath9k_hw_set_power_awake(ah
, setChip
);
3013 case ATH9K_PM_FULL_SLEEP
:
3014 ath9k_set_power_sleep(ah
, setChip
);
3015 ah
->chip_fullsleep
= true;
3017 case ATH9K_PM_NETWORK_SLEEP
:
3018 ath9k_set_power_network_sleep(ah
, setChip
);
3021 ath_print(common
, ATH_DBG_FATAL
,
3022 "Unknown power mode %u\n", mode
);
3025 ah
->power_mode
= mode
;
3029 EXPORT_SYMBOL(ath9k_hw_setpower
);
3032 * Helper for ASPM support.
3034 * Disable PLL when in L0s as well as receiver clock when in L1.
3035 * This power saving option must be enabled through the SerDes.
3037 * Programming the SerDes must go through the same 288 bit serial shift
3038 * register as the other analog registers. Hence the 9 writes.
3040 void ath9k_hw_configpcipowersave(struct ath_hw
*ah
, int restore
, int power_off
)
3045 if (ah
->is_pciexpress
!= true)
3048 /* Do not touch SerDes registers */
3049 if (ah
->config
.pcie_powersave_enable
== 2)
3052 /* Nothing to do on restore for 11N */
3054 if (AR_SREV_9280_20_OR_LATER(ah
)) {
3056 * AR9280 2.0 or later chips use SerDes values from the
3057 * initvals.h initialized depending on chipset during
3060 for (i
= 0; i
< ah
->iniPcieSerdes
.ia_rows
; i
++) {
3061 REG_WRITE(ah
, INI_RA(&ah
->iniPcieSerdes
, i
, 0),
3062 INI_RA(&ah
->iniPcieSerdes
, i
, 1));
3064 } else if (AR_SREV_9280(ah
) &&
3065 (ah
->hw_version
.macRev
== AR_SREV_REVISION_9280_10
)) {
3066 REG_WRITE(ah
, AR_PCIE_SERDES
, 0x9248fd00);
3067 REG_WRITE(ah
, AR_PCIE_SERDES
, 0x24924924);
3069 /* RX shut off when elecidle is asserted */
3070 REG_WRITE(ah
, AR_PCIE_SERDES
, 0xa8000019);
3071 REG_WRITE(ah
, AR_PCIE_SERDES
, 0x13160820);
3072 REG_WRITE(ah
, AR_PCIE_SERDES
, 0xe5980560);
3074 /* Shut off CLKREQ active in L1 */
3075 if (ah
->config
.pcie_clock_req
)
3076 REG_WRITE(ah
, AR_PCIE_SERDES
, 0x401deffc);
3078 REG_WRITE(ah
, AR_PCIE_SERDES
, 0x401deffd);
3080 REG_WRITE(ah
, AR_PCIE_SERDES
, 0x1aaabe40);
3081 REG_WRITE(ah
, AR_PCIE_SERDES
, 0xbe105554);
3082 REG_WRITE(ah
, AR_PCIE_SERDES
, 0x00043007);
3084 /* Load the new settings */
3085 REG_WRITE(ah
, AR_PCIE_SERDES2
, 0x00000000);
3088 REG_WRITE(ah
, AR_PCIE_SERDES
, 0x9248fc00);
3089 REG_WRITE(ah
, AR_PCIE_SERDES
, 0x24924924);
3091 /* RX shut off when elecidle is asserted */
3092 REG_WRITE(ah
, AR_PCIE_SERDES
, 0x28000039);
3093 REG_WRITE(ah
, AR_PCIE_SERDES
, 0x53160824);
3094 REG_WRITE(ah
, AR_PCIE_SERDES
, 0xe5980579);
3097 * Ignore ah->ah_config.pcie_clock_req setting for
3100 REG_WRITE(ah
, AR_PCIE_SERDES
, 0x001defff);
3102 REG_WRITE(ah
, AR_PCIE_SERDES
, 0x1aaabe40);
3103 REG_WRITE(ah
, AR_PCIE_SERDES
, 0xbe105554);
3104 REG_WRITE(ah
, AR_PCIE_SERDES
, 0x000e3007);
3106 /* Load the new settings */
3107 REG_WRITE(ah
, AR_PCIE_SERDES2
, 0x00000000);
3112 /* set bit 19 to allow forcing of pcie core into L1 state */
3113 REG_SET_BIT(ah
, AR_PCIE_PM_CTRL
, AR_PCIE_PM_CTRL_ENA
);
3115 /* Several PCIe massages to ensure proper behaviour */
3116 if (ah
->config
.pcie_waen
) {
3117 val
= ah
->config
.pcie_waen
;
3119 val
&= (~AR_WA_D3_L1_DISABLE
);
3121 if (AR_SREV_9285(ah
) || AR_SREV_9271(ah
) ||
3123 val
= AR9285_WA_DEFAULT
;
3125 val
&= (~AR_WA_D3_L1_DISABLE
);
3126 } else if (AR_SREV_9280(ah
)) {
3128 * On AR9280 chips bit 22 of 0x4004 needs to be
3129 * set otherwise card may disappear.
3131 val
= AR9280_WA_DEFAULT
;
3133 val
&= (~AR_WA_D3_L1_DISABLE
);
3135 val
= AR_WA_DEFAULT
;
3138 REG_WRITE(ah
, AR_WA
, val
);
3143 * Set PCIe workaround bits
3144 * bit 14 in WA register (disable L1) should only
3145 * be set when device enters D3 and be cleared
3146 * when device comes back to D0.
3148 if (ah
->config
.pcie_waen
) {
3149 if (ah
->config
.pcie_waen
& AR_WA_D3_L1_DISABLE
)
3150 REG_SET_BIT(ah
, AR_WA
, AR_WA_D3_L1_DISABLE
);
3152 if (((AR_SREV_9285(ah
) || AR_SREV_9271(ah
) ||
3153 AR_SREV_9287(ah
)) &&
3154 (AR9285_WA_DEFAULT
& AR_WA_D3_L1_DISABLE
)) ||
3155 (AR_SREV_9280(ah
) &&
3156 (AR9280_WA_DEFAULT
& AR_WA_D3_L1_DISABLE
))) {
3157 REG_SET_BIT(ah
, AR_WA
, AR_WA_D3_L1_DISABLE
);
3162 EXPORT_SYMBOL(ath9k_hw_configpcipowersave
);
3164 /**********************/
3165 /* Interrupt Handling */
3166 /**********************/
3168 bool ath9k_hw_intrpend(struct ath_hw
*ah
)
3172 if (AR_SREV_9100(ah
))
3175 host_isr
= REG_READ(ah
, AR_INTR_ASYNC_CAUSE
);
3176 if ((host_isr
& AR_INTR_MAC_IRQ
) && (host_isr
!= AR_INTR_SPURIOUS
))
3179 host_isr
= REG_READ(ah
, AR_INTR_SYNC_CAUSE
);
3180 if ((host_isr
& AR_INTR_SYNC_DEFAULT
)
3181 && (host_isr
!= AR_INTR_SPURIOUS
))
3186 EXPORT_SYMBOL(ath9k_hw_intrpend
);
3188 bool ath9k_hw_getisr(struct ath_hw
*ah
, enum ath9k_int
*masked
)
3192 struct ath9k_hw_capabilities
*pCap
= &ah
->caps
;
3194 bool fatal_int
= false;
3195 struct ath_common
*common
= ath9k_hw_common(ah
);
3197 if (!AR_SREV_9100(ah
)) {
3198 if (REG_READ(ah
, AR_INTR_ASYNC_CAUSE
) & AR_INTR_MAC_IRQ
) {
3199 if ((REG_READ(ah
, AR_RTC_STATUS
) & AR_RTC_STATUS_M
)
3200 == AR_RTC_STATUS_ON
) {
3201 isr
= REG_READ(ah
, AR_ISR
);
3205 sync_cause
= REG_READ(ah
, AR_INTR_SYNC_CAUSE
) &
3206 AR_INTR_SYNC_DEFAULT
;
3210 if (!isr
&& !sync_cause
)
3214 isr
= REG_READ(ah
, AR_ISR
);
3218 if (isr
& AR_ISR_BCNMISC
) {
3220 isr2
= REG_READ(ah
, AR_ISR_S2
);
3221 if (isr2
& AR_ISR_S2_TIM
)
3222 mask2
|= ATH9K_INT_TIM
;
3223 if (isr2
& AR_ISR_S2_DTIM
)
3224 mask2
|= ATH9K_INT_DTIM
;
3225 if (isr2
& AR_ISR_S2_DTIMSYNC
)
3226 mask2
|= ATH9K_INT_DTIMSYNC
;
3227 if (isr2
& (AR_ISR_S2_CABEND
))
3228 mask2
|= ATH9K_INT_CABEND
;
3229 if (isr2
& AR_ISR_S2_GTT
)
3230 mask2
|= ATH9K_INT_GTT
;
3231 if (isr2
& AR_ISR_S2_CST
)
3232 mask2
|= ATH9K_INT_CST
;
3233 if (isr2
& AR_ISR_S2_TSFOOR
)
3234 mask2
|= ATH9K_INT_TSFOOR
;
3237 isr
= REG_READ(ah
, AR_ISR_RAC
);
3238 if (isr
== 0xffffffff) {
3243 *masked
= isr
& ATH9K_INT_COMMON
;
3245 if (ah
->config
.intr_mitigation
) {
3246 if (isr
& (AR_ISR_RXMINTR
| AR_ISR_RXINTM
))
3247 *masked
|= ATH9K_INT_RX
;
3250 if (isr
& (AR_ISR_RXOK
| AR_ISR_RXERR
))
3251 *masked
|= ATH9K_INT_RX
;
3253 (AR_ISR_TXOK
| AR_ISR_TXDESC
| AR_ISR_TXERR
|
3257 *masked
|= ATH9K_INT_TX
;
3259 s0_s
= REG_READ(ah
, AR_ISR_S0_S
);
3260 ah
->intr_txqs
|= MS(s0_s
, AR_ISR_S0_QCU_TXOK
);
3261 ah
->intr_txqs
|= MS(s0_s
, AR_ISR_S0_QCU_TXDESC
);
3263 s1_s
= REG_READ(ah
, AR_ISR_S1_S
);
3264 ah
->intr_txqs
|= MS(s1_s
, AR_ISR_S1_QCU_TXERR
);
3265 ah
->intr_txqs
|= MS(s1_s
, AR_ISR_S1_QCU_TXEOL
);
3268 if (isr
& AR_ISR_RXORN
) {
3269 ath_print(common
, ATH_DBG_INTERRUPT
,
3270 "receive FIFO overrun interrupt\n");
3273 if (!AR_SREV_9100(ah
)) {
3274 if (!(pCap
->hw_caps
& ATH9K_HW_CAP_AUTOSLEEP
)) {
3275 u32 isr5
= REG_READ(ah
, AR_ISR_S5_S
);
3276 if (isr5
& AR_ISR_S5_TIM_TIMER
)
3277 *masked
|= ATH9K_INT_TIM_TIMER
;
3284 if (AR_SREV_9100(ah
))
3287 if (isr
& AR_ISR_GENTMR
) {
3290 s5_s
= REG_READ(ah
, AR_ISR_S5_S
);
3291 if (isr
& AR_ISR_GENTMR
) {
3292 ah
->intr_gen_timer_trigger
=
3293 MS(s5_s
, AR_ISR_S5_GENTIMER_TRIG
);
3295 ah
->intr_gen_timer_thresh
=
3296 MS(s5_s
, AR_ISR_S5_GENTIMER_THRESH
);
3298 if (ah
->intr_gen_timer_trigger
)
3299 *masked
|= ATH9K_INT_GENTIMER
;
3307 (AR_INTR_SYNC_HOST1_FATAL
| AR_INTR_SYNC_HOST1_PERR
))
3311 if (sync_cause
& AR_INTR_SYNC_HOST1_FATAL
) {
3312 ath_print(common
, ATH_DBG_ANY
,
3313 "received PCI FATAL interrupt\n");
3315 if (sync_cause
& AR_INTR_SYNC_HOST1_PERR
) {
3316 ath_print(common
, ATH_DBG_ANY
,
3317 "received PCI PERR interrupt\n");
3319 *masked
|= ATH9K_INT_FATAL
;
3321 if (sync_cause
& AR_INTR_SYNC_RADM_CPL_TIMEOUT
) {
3322 ath_print(common
, ATH_DBG_INTERRUPT
,
3323 "AR_INTR_SYNC_RADM_CPL_TIMEOUT\n");
3324 REG_WRITE(ah
, AR_RC
, AR_RC_HOSTIF
);
3325 REG_WRITE(ah
, AR_RC
, 0);
3326 *masked
|= ATH9K_INT_FATAL
;
3328 if (sync_cause
& AR_INTR_SYNC_LOCAL_TIMEOUT
) {
3329 ath_print(common
, ATH_DBG_INTERRUPT
,
3330 "AR_INTR_SYNC_LOCAL_TIMEOUT\n");
3333 REG_WRITE(ah
, AR_INTR_SYNC_CAUSE_CLR
, sync_cause
);
3334 (void) REG_READ(ah
, AR_INTR_SYNC_CAUSE_CLR
);
3339 EXPORT_SYMBOL(ath9k_hw_getisr
);
3341 enum ath9k_int
ath9k_hw_set_interrupts(struct ath_hw
*ah
, enum ath9k_int ints
)
3343 u32 omask
= ah
->mask_reg
;
3345 struct ath9k_hw_capabilities
*pCap
= &ah
->caps
;
3346 struct ath_common
*common
= ath9k_hw_common(ah
);
3348 ath_print(common
, ATH_DBG_INTERRUPT
, "0x%x => 0x%x\n", omask
, ints
);
3350 if (omask
& ATH9K_INT_GLOBAL
) {
3351 ath_print(common
, ATH_DBG_INTERRUPT
, "disable IER\n");
3352 REG_WRITE(ah
, AR_IER
, AR_IER_DISABLE
);
3353 (void) REG_READ(ah
, AR_IER
);
3354 if (!AR_SREV_9100(ah
)) {
3355 REG_WRITE(ah
, AR_INTR_ASYNC_ENABLE
, 0);
3356 (void) REG_READ(ah
, AR_INTR_ASYNC_ENABLE
);
3358 REG_WRITE(ah
, AR_INTR_SYNC_ENABLE
, 0);
3359 (void) REG_READ(ah
, AR_INTR_SYNC_ENABLE
);
3363 mask
= ints
& ATH9K_INT_COMMON
;
3366 if (ints
& ATH9K_INT_TX
) {
3367 if (ah
->txok_interrupt_mask
)
3368 mask
|= AR_IMR_TXOK
;
3369 if (ah
->txdesc_interrupt_mask
)
3370 mask
|= AR_IMR_TXDESC
;
3371 if (ah
->txerr_interrupt_mask
)
3372 mask
|= AR_IMR_TXERR
;
3373 if (ah
->txeol_interrupt_mask
)
3374 mask
|= AR_IMR_TXEOL
;
3376 if (ints
& ATH9K_INT_RX
) {
3377 mask
|= AR_IMR_RXERR
;
3378 if (ah
->config
.intr_mitigation
)
3379 mask
|= AR_IMR_RXMINTR
| AR_IMR_RXINTM
;
3381 mask
|= AR_IMR_RXOK
| AR_IMR_RXDESC
;
3382 if (!(pCap
->hw_caps
& ATH9K_HW_CAP_AUTOSLEEP
))
3383 mask
|= AR_IMR_GENTMR
;
3386 if (ints
& (ATH9K_INT_BMISC
)) {
3387 mask
|= AR_IMR_BCNMISC
;
3388 if (ints
& ATH9K_INT_TIM
)
3389 mask2
|= AR_IMR_S2_TIM
;
3390 if (ints
& ATH9K_INT_DTIM
)
3391 mask2
|= AR_IMR_S2_DTIM
;
3392 if (ints
& ATH9K_INT_DTIMSYNC
)
3393 mask2
|= AR_IMR_S2_DTIMSYNC
;
3394 if (ints
& ATH9K_INT_CABEND
)
3395 mask2
|= AR_IMR_S2_CABEND
;
3396 if (ints
& ATH9K_INT_TSFOOR
)
3397 mask2
|= AR_IMR_S2_TSFOOR
;
3400 if (ints
& (ATH9K_INT_GTT
| ATH9K_INT_CST
)) {
3401 mask
|= AR_IMR_BCNMISC
;
3402 if (ints
& ATH9K_INT_GTT
)
3403 mask2
|= AR_IMR_S2_GTT
;
3404 if (ints
& ATH9K_INT_CST
)
3405 mask2
|= AR_IMR_S2_CST
;
3408 ath_print(common
, ATH_DBG_INTERRUPT
, "new IMR 0x%x\n", mask
);
3409 REG_WRITE(ah
, AR_IMR
, mask
);
3410 mask
= REG_READ(ah
, AR_IMR_S2
) & ~(AR_IMR_S2_TIM
|
3412 AR_IMR_S2_DTIMSYNC
|
3416 AR_IMR_S2_GTT
| AR_IMR_S2_CST
);
3417 REG_WRITE(ah
, AR_IMR_S2
, mask
| mask2
);
3418 ah
->mask_reg
= ints
;
3420 if (!(pCap
->hw_caps
& ATH9K_HW_CAP_AUTOSLEEP
)) {
3421 if (ints
& ATH9K_INT_TIM_TIMER
)
3422 REG_SET_BIT(ah
, AR_IMR_S5
, AR_IMR_S5_TIM_TIMER
);
3424 REG_CLR_BIT(ah
, AR_IMR_S5
, AR_IMR_S5_TIM_TIMER
);
3427 if (ints
& ATH9K_INT_GLOBAL
) {
3428 ath_print(common
, ATH_DBG_INTERRUPT
, "enable IER\n");
3429 REG_WRITE(ah
, AR_IER
, AR_IER_ENABLE
);
3430 if (!AR_SREV_9100(ah
)) {
3431 REG_WRITE(ah
, AR_INTR_ASYNC_ENABLE
,
3433 REG_WRITE(ah
, AR_INTR_ASYNC_MASK
, AR_INTR_MAC_IRQ
);
3436 REG_WRITE(ah
, AR_INTR_SYNC_ENABLE
,
3437 AR_INTR_SYNC_DEFAULT
);
3438 REG_WRITE(ah
, AR_INTR_SYNC_MASK
,
3439 AR_INTR_SYNC_DEFAULT
);
3441 ath_print(common
, ATH_DBG_INTERRUPT
, "AR_IMR 0x%x IER 0x%x\n",
3442 REG_READ(ah
, AR_IMR
), REG_READ(ah
, AR_IER
));
3447 EXPORT_SYMBOL(ath9k_hw_set_interrupts
);
3449 /*******************/
3450 /* Beacon Handling */
3451 /*******************/
3453 void ath9k_hw_beaconinit(struct ath_hw
*ah
, u32 next_beacon
, u32 beacon_period
)
3457 ah
->beacon_interval
= beacon_period
;
3459 switch (ah
->opmode
) {
3460 case NL80211_IFTYPE_STATION
:
3461 case NL80211_IFTYPE_MONITOR
:
3462 REG_WRITE(ah
, AR_NEXT_TBTT_TIMER
, TU_TO_USEC(next_beacon
));
3463 REG_WRITE(ah
, AR_NEXT_DMA_BEACON_ALERT
, 0xffff);
3464 REG_WRITE(ah
, AR_NEXT_SWBA
, 0x7ffff);
3465 flags
|= AR_TBTT_TIMER_EN
;
3467 case NL80211_IFTYPE_ADHOC
:
3468 case NL80211_IFTYPE_MESH_POINT
:
3469 REG_SET_BIT(ah
, AR_TXCFG
,
3470 AR_TXCFG_ADHOC_BEACON_ATIM_TX_POLICY
);
3471 REG_WRITE(ah
, AR_NEXT_NDP_TIMER
,
3472 TU_TO_USEC(next_beacon
+
3473 (ah
->atim_window
? ah
->
3475 flags
|= AR_NDP_TIMER_EN
;
3476 case NL80211_IFTYPE_AP
:
3477 REG_WRITE(ah
, AR_NEXT_TBTT_TIMER
, TU_TO_USEC(next_beacon
));
3478 REG_WRITE(ah
, AR_NEXT_DMA_BEACON_ALERT
,
3479 TU_TO_USEC(next_beacon
-
3481 dma_beacon_response_time
));
3482 REG_WRITE(ah
, AR_NEXT_SWBA
,
3483 TU_TO_USEC(next_beacon
-
3485 sw_beacon_response_time
));
3487 AR_TBTT_TIMER_EN
| AR_DBA_TIMER_EN
| AR_SWBA_TIMER_EN
;
3490 ath_print(ath9k_hw_common(ah
), ATH_DBG_BEACON
,
3491 "%s: unsupported opmode: %d\n",
3492 __func__
, ah
->opmode
);
3497 REG_WRITE(ah
, AR_BEACON_PERIOD
, TU_TO_USEC(beacon_period
));
3498 REG_WRITE(ah
, AR_DMA_BEACON_PERIOD
, TU_TO_USEC(beacon_period
));
3499 REG_WRITE(ah
, AR_SWBA_PERIOD
, TU_TO_USEC(beacon_period
));
3500 REG_WRITE(ah
, AR_NDP_PERIOD
, TU_TO_USEC(beacon_period
));
3502 beacon_period
&= ~ATH9K_BEACON_ENA
;
3503 if (beacon_period
& ATH9K_BEACON_RESET_TSF
) {
3504 ath9k_hw_reset_tsf(ah
);
3507 REG_SET_BIT(ah
, AR_TIMER_MODE
, flags
);
3509 EXPORT_SYMBOL(ath9k_hw_beaconinit
);
3511 void ath9k_hw_set_sta_beacon_timers(struct ath_hw
*ah
,
3512 const struct ath9k_beacon_state
*bs
)
3514 u32 nextTbtt
, beaconintval
, dtimperiod
, beacontimeout
;
3515 struct ath9k_hw_capabilities
*pCap
= &ah
->caps
;
3516 struct ath_common
*common
= ath9k_hw_common(ah
);
3518 REG_WRITE(ah
, AR_NEXT_TBTT_TIMER
, TU_TO_USEC(bs
->bs_nexttbtt
));
3520 REG_WRITE(ah
, AR_BEACON_PERIOD
,
3521 TU_TO_USEC(bs
->bs_intval
& ATH9K_BEACON_PERIOD
));
3522 REG_WRITE(ah
, AR_DMA_BEACON_PERIOD
,
3523 TU_TO_USEC(bs
->bs_intval
& ATH9K_BEACON_PERIOD
));
3525 REG_RMW_FIELD(ah
, AR_RSSI_THR
,
3526 AR_RSSI_THR_BM_THR
, bs
->bs_bmissthreshold
);
3528 beaconintval
= bs
->bs_intval
& ATH9K_BEACON_PERIOD
;
3530 if (bs
->bs_sleepduration
> beaconintval
)
3531 beaconintval
= bs
->bs_sleepduration
;
3533 dtimperiod
= bs
->bs_dtimperiod
;
3534 if (bs
->bs_sleepduration
> dtimperiod
)
3535 dtimperiod
= bs
->bs_sleepduration
;
3537 if (beaconintval
== dtimperiod
)
3538 nextTbtt
= bs
->bs_nextdtim
;
3540 nextTbtt
= bs
->bs_nexttbtt
;
3542 ath_print(common
, ATH_DBG_BEACON
, "next DTIM %d\n", bs
->bs_nextdtim
);
3543 ath_print(common
, ATH_DBG_BEACON
, "next beacon %d\n", nextTbtt
);
3544 ath_print(common
, ATH_DBG_BEACON
, "beacon period %d\n", beaconintval
);
3545 ath_print(common
, ATH_DBG_BEACON
, "DTIM period %d\n", dtimperiod
);
3547 REG_WRITE(ah
, AR_NEXT_DTIM
,
3548 TU_TO_USEC(bs
->bs_nextdtim
- SLEEP_SLOP
));
3549 REG_WRITE(ah
, AR_NEXT_TIM
, TU_TO_USEC(nextTbtt
- SLEEP_SLOP
));
3551 REG_WRITE(ah
, AR_SLEEP1
,
3552 SM((CAB_TIMEOUT_VAL
<< 3), AR_SLEEP1_CAB_TIMEOUT
)
3553 | AR_SLEEP1_ASSUME_DTIM
);
3555 if (pCap
->hw_caps
& ATH9K_HW_CAP_AUTOSLEEP
)
3556 beacontimeout
= (BEACON_TIMEOUT_VAL
<< 3);
3558 beacontimeout
= MIN_BEACON_TIMEOUT_VAL
;
3560 REG_WRITE(ah
, AR_SLEEP2
,
3561 SM(beacontimeout
, AR_SLEEP2_BEACON_TIMEOUT
));
3563 REG_WRITE(ah
, AR_TIM_PERIOD
, TU_TO_USEC(beaconintval
));
3564 REG_WRITE(ah
, AR_DTIM_PERIOD
, TU_TO_USEC(dtimperiod
));
3566 REG_SET_BIT(ah
, AR_TIMER_MODE
,
3567 AR_TBTT_TIMER_EN
| AR_TIM_TIMER_EN
|
3570 /* TSF Out of Range Threshold */
3571 REG_WRITE(ah
, AR_TSFOOR_THRESHOLD
, bs
->bs_tsfoor_threshold
);
3573 EXPORT_SYMBOL(ath9k_hw_set_sta_beacon_timers
);
3575 /*******************/
3576 /* HW Capabilities */
3577 /*******************/
3579 void ath9k_hw_fill_cap_info(struct ath_hw
*ah
)
3581 struct ath9k_hw_capabilities
*pCap
= &ah
->caps
;
3582 struct ath_regulatory
*regulatory
= ath9k_hw_regulatory(ah
);
3583 struct ath_common
*common
= ath9k_hw_common(ah
);
3584 struct ath_btcoex_hw
*btcoex_hw
= &ah
->btcoex_hw
;
3586 u16 capField
= 0, eeval
;
3588 eeval
= ah
->eep_ops
->get_eeprom(ah
, EEP_REG_0
);
3589 regulatory
->current_rd
= eeval
;
3591 eeval
= ah
->eep_ops
->get_eeprom(ah
, EEP_REG_1
);
3592 if (AR_SREV_9285_10_OR_LATER(ah
))
3593 eeval
|= AR9285_RDEXT_DEFAULT
;
3594 regulatory
->current_rd_ext
= eeval
;
3596 capField
= ah
->eep_ops
->get_eeprom(ah
, EEP_OP_CAP
);
3598 if (ah
->opmode
!= NL80211_IFTYPE_AP
&&
3599 ah
->hw_version
.subvendorid
== AR_SUBVENDOR_ID_NEW_A
) {
3600 if (regulatory
->current_rd
== 0x64 ||
3601 regulatory
->current_rd
== 0x65)
3602 regulatory
->current_rd
+= 5;
3603 else if (regulatory
->current_rd
== 0x41)
3604 regulatory
->current_rd
= 0x43;
3605 ath_print(common
, ATH_DBG_REGULATORY
,
3606 "regdomain mapped to 0x%x\n", regulatory
->current_rd
);
3609 eeval
= ah
->eep_ops
->get_eeprom(ah
, EEP_OP_MODE
);
3610 bitmap_zero(pCap
->wireless_modes
, ATH9K_MODE_MAX
);
3612 if (eeval
& AR5416_OPFLAGS_11A
) {
3613 set_bit(ATH9K_MODE_11A
, pCap
->wireless_modes
);
3614 if (ah
->config
.ht_enable
) {
3615 if (!(eeval
& AR5416_OPFLAGS_N_5G_HT20
))
3616 set_bit(ATH9K_MODE_11NA_HT20
,
3617 pCap
->wireless_modes
);
3618 if (!(eeval
& AR5416_OPFLAGS_N_5G_HT40
)) {
3619 set_bit(ATH9K_MODE_11NA_HT40PLUS
,
3620 pCap
->wireless_modes
);
3621 set_bit(ATH9K_MODE_11NA_HT40MINUS
,
3622 pCap
->wireless_modes
);
3627 if (eeval
& AR5416_OPFLAGS_11G
) {
3628 set_bit(ATH9K_MODE_11G
, pCap
->wireless_modes
);
3629 if (ah
->config
.ht_enable
) {
3630 if (!(eeval
& AR5416_OPFLAGS_N_2G_HT20
))
3631 set_bit(ATH9K_MODE_11NG_HT20
,
3632 pCap
->wireless_modes
);
3633 if (!(eeval
& AR5416_OPFLAGS_N_2G_HT40
)) {
3634 set_bit(ATH9K_MODE_11NG_HT40PLUS
,
3635 pCap
->wireless_modes
);
3636 set_bit(ATH9K_MODE_11NG_HT40MINUS
,
3637 pCap
->wireless_modes
);
3642 pCap
->tx_chainmask
= ah
->eep_ops
->get_eeprom(ah
, EEP_TX_MASK
);
3644 * For AR9271 we will temporarilly uses the rx chainmax as read from
3647 if ((ah
->hw_version
.devid
== AR5416_DEVID_PCI
) &&
3648 !(eeval
& AR5416_OPFLAGS_11A
) &&
3649 !(AR_SREV_9271(ah
)))
3650 /* CB71: GPIO 0 is pulled down to indicate 3 rx chains */
3651 pCap
->rx_chainmask
= ath9k_hw_gpio_get(ah
, 0) ? 0x5 : 0x7;
3653 /* Use rx_chainmask from EEPROM. */
3654 pCap
->rx_chainmask
= ah
->eep_ops
->get_eeprom(ah
, EEP_RX_MASK
);
3656 if (!(AR_SREV_9280(ah
) && (ah
->hw_version
.macRev
== 0)))
3657 ah
->misc_mode
|= AR_PCU_MIC_NEW_LOC_ENA
;
3659 pCap
->low_2ghz_chan
= 2312;
3660 pCap
->high_2ghz_chan
= 2732;
3662 pCap
->low_5ghz_chan
= 4920;
3663 pCap
->high_5ghz_chan
= 6100;
3665 pCap
->hw_caps
&= ~ATH9K_HW_CAP_CIPHER_CKIP
;
3666 pCap
->hw_caps
|= ATH9K_HW_CAP_CIPHER_TKIP
;
3667 pCap
->hw_caps
|= ATH9K_HW_CAP_CIPHER_AESCCM
;
3669 pCap
->hw_caps
&= ~ATH9K_HW_CAP_MIC_CKIP
;
3670 pCap
->hw_caps
|= ATH9K_HW_CAP_MIC_TKIP
;
3671 pCap
->hw_caps
|= ATH9K_HW_CAP_MIC_AESCCM
;
3673 if (ah
->config
.ht_enable
)
3674 pCap
->hw_caps
|= ATH9K_HW_CAP_HT
;
3676 pCap
->hw_caps
&= ~ATH9K_HW_CAP_HT
;
3678 pCap
->hw_caps
|= ATH9K_HW_CAP_GTT
;
3679 pCap
->hw_caps
|= ATH9K_HW_CAP_VEOL
;
3680 pCap
->hw_caps
|= ATH9K_HW_CAP_BSSIDMASK
;
3681 pCap
->hw_caps
&= ~ATH9K_HW_CAP_MCAST_KEYSEARCH
;
3683 if (capField
& AR_EEPROM_EEPCAP_MAXQCU
)
3684 pCap
->total_queues
=
3685 MS(capField
, AR_EEPROM_EEPCAP_MAXQCU
);
3687 pCap
->total_queues
= ATH9K_NUM_TX_QUEUES
;
3689 if (capField
& AR_EEPROM_EEPCAP_KC_ENTRIES
)
3690 pCap
->keycache_size
=
3691 1 << MS(capField
, AR_EEPROM_EEPCAP_KC_ENTRIES
);
3693 pCap
->keycache_size
= AR_KEYTABLE_SIZE
;
3695 pCap
->hw_caps
|= ATH9K_HW_CAP_FASTCC
;
3696 pCap
->tx_triglevel_max
= MAX_TX_FIFO_THRESHOLD
;
3698 if (AR_SREV_9285_10_OR_LATER(ah
))
3699 pCap
->num_gpio_pins
= AR9285_NUM_GPIO
;
3700 else if (AR_SREV_9280_10_OR_LATER(ah
))
3701 pCap
->num_gpio_pins
= AR928X_NUM_GPIO
;
3703 pCap
->num_gpio_pins
= AR_NUM_GPIO
;
3705 if (AR_SREV_9160_10_OR_LATER(ah
) || AR_SREV_9100(ah
)) {
3706 pCap
->hw_caps
|= ATH9K_HW_CAP_CST
;
3707 pCap
->rts_aggr_limit
= ATH_AMPDU_LIMIT_MAX
;
3709 pCap
->rts_aggr_limit
= (8 * 1024);
3712 pCap
->hw_caps
|= ATH9K_HW_CAP_ENHANCEDPM
;
3714 #if defined(CONFIG_RFKILL) || defined(CONFIG_RFKILL_MODULE)
3715 ah
->rfsilent
= ah
->eep_ops
->get_eeprom(ah
, EEP_RF_SILENT
);
3716 if (ah
->rfsilent
& EEP_RFSILENT_ENABLED
) {
3718 MS(ah
->rfsilent
, EEP_RFSILENT_GPIO_SEL
);
3719 ah
->rfkill_polarity
=
3720 MS(ah
->rfsilent
, EEP_RFSILENT_POLARITY
);
3722 pCap
->hw_caps
|= ATH9K_HW_CAP_RFSILENT
;
3726 pCap
->hw_caps
&= ~ATH9K_HW_CAP_AUTOSLEEP
;
3728 if (AR_SREV_9280(ah
) || AR_SREV_9285(ah
))
3729 pCap
->hw_caps
&= ~ATH9K_HW_CAP_4KB_SPLITTRANS
;
3731 pCap
->hw_caps
|= ATH9K_HW_CAP_4KB_SPLITTRANS
;
3733 if (regulatory
->current_rd_ext
& (1 << REG_EXT_JAPAN_MIDBAND
)) {
3735 AR_EEPROM_EEREGCAP_EN_KK_NEW_11A
|
3736 AR_EEPROM_EEREGCAP_EN_KK_U1_EVEN
|
3737 AR_EEPROM_EEREGCAP_EN_KK_U2
|
3738 AR_EEPROM_EEREGCAP_EN_KK_MIDBAND
;
3741 AR_EEPROM_EEREGCAP_EN_KK_NEW_11A
|
3742 AR_EEPROM_EEREGCAP_EN_KK_U1_EVEN
;
3745 /* Advertise midband for AR5416 with FCC midband set in eeprom */
3746 if (regulatory
->current_rd_ext
& (1 << REG_EXT_FCC_MIDBAND
) &&
3748 pCap
->reg_cap
|= AR_EEPROM_EEREGCAP_EN_FCC_MIDBAND
;
3750 pCap
->num_antcfg_5ghz
=
3751 ah
->eep_ops
->get_num_ant_config(ah
, ATH9K_HAL_FREQ_BAND_5GHZ
);
3752 pCap
->num_antcfg_2ghz
=
3753 ah
->eep_ops
->get_num_ant_config(ah
, ATH9K_HAL_FREQ_BAND_2GHZ
);
3755 if (AR_SREV_9280_10_OR_LATER(ah
) &&
3756 ath9k_hw_btcoex_supported(ah
)) {
3757 btcoex_hw
->btactive_gpio
= ATH_BTACTIVE_GPIO
;
3758 btcoex_hw
->wlanactive_gpio
= ATH_WLANACTIVE_GPIO
;
3760 if (AR_SREV_9285(ah
)) {
3761 btcoex_hw
->scheme
= ATH_BTCOEX_CFG_3WIRE
;
3762 btcoex_hw
->btpriority_gpio
= ATH_BTPRIORITY_GPIO
;
3764 btcoex_hw
->scheme
= ATH_BTCOEX_CFG_2WIRE
;
3767 btcoex_hw
->scheme
= ATH_BTCOEX_CFG_NONE
;
3771 bool ath9k_hw_getcapability(struct ath_hw
*ah
, enum ath9k_capability_type type
,
3772 u32 capability
, u32
*result
)
3774 struct ath_regulatory
*regulatory
= ath9k_hw_regulatory(ah
);
3776 case ATH9K_CAP_CIPHER
:
3777 switch (capability
) {
3778 case ATH9K_CIPHER_AES_CCM
:
3779 case ATH9K_CIPHER_AES_OCB
:
3780 case ATH9K_CIPHER_TKIP
:
3781 case ATH9K_CIPHER_WEP
:
3782 case ATH9K_CIPHER_MIC
:
3783 case ATH9K_CIPHER_CLR
:
3788 case ATH9K_CAP_TKIP_MIC
:
3789 switch (capability
) {
3793 return (ah
->sta_id1_defaults
&
3794 AR_STA_ID1_CRPT_MIC_ENABLE
) ? true :
3797 case ATH9K_CAP_TKIP_SPLIT
:
3798 return (ah
->misc_mode
& AR_PCU_MIC_NEW_LOC_ENA
) ?
3800 case ATH9K_CAP_DIVERSITY
:
3801 return (REG_READ(ah
, AR_PHY_CCK_DETECT
) &
3802 AR_PHY_CCK_DETECT_BB_ENABLE_ANT_FAST_DIV
) ?
3804 case ATH9K_CAP_MCAST_KEYSRCH
:
3805 switch (capability
) {
3809 if (REG_READ(ah
, AR_STA_ID1
) & AR_STA_ID1_ADHOC
) {
3812 return (ah
->sta_id1_defaults
&
3813 AR_STA_ID1_MCAST_KSRCH
) ? true :
3818 case ATH9K_CAP_TXPOW
:
3819 switch (capability
) {
3823 *result
= regulatory
->power_limit
;
3826 *result
= regulatory
->max_power_level
;
3829 *result
= regulatory
->tp_scale
;
3834 return (AR_SREV_9280_20_OR_LATER(ah
) &&
3835 (ah
->eep_ops
->get_eeprom(ah
, EEP_RC_CHAIN_MASK
) == 1))
3841 EXPORT_SYMBOL(ath9k_hw_getcapability
);
3843 bool ath9k_hw_setcapability(struct ath_hw
*ah
, enum ath9k_capability_type type
,
3844 u32 capability
, u32 setting
, int *status
)
3849 case ATH9K_CAP_TKIP_MIC
:
3851 ah
->sta_id1_defaults
|=
3852 AR_STA_ID1_CRPT_MIC_ENABLE
;
3854 ah
->sta_id1_defaults
&=
3855 ~AR_STA_ID1_CRPT_MIC_ENABLE
;
3857 case ATH9K_CAP_DIVERSITY
:
3858 v
= REG_READ(ah
, AR_PHY_CCK_DETECT
);
3860 v
|= AR_PHY_CCK_DETECT_BB_ENABLE_ANT_FAST_DIV
;
3862 v
&= ~AR_PHY_CCK_DETECT_BB_ENABLE_ANT_FAST_DIV
;
3863 REG_WRITE(ah
, AR_PHY_CCK_DETECT
, v
);
3865 case ATH9K_CAP_MCAST_KEYSRCH
:
3867 ah
->sta_id1_defaults
|= AR_STA_ID1_MCAST_KSRCH
;
3869 ah
->sta_id1_defaults
&= ~AR_STA_ID1_MCAST_KSRCH
;
3875 EXPORT_SYMBOL(ath9k_hw_setcapability
);
3877 /****************************/
3878 /* GPIO / RFKILL / Antennae */
3879 /****************************/
3881 static void ath9k_hw_gpio_cfg_output_mux(struct ath_hw
*ah
,
3885 u32 gpio_shift
, tmp
;
3888 addr
= AR_GPIO_OUTPUT_MUX3
;
3890 addr
= AR_GPIO_OUTPUT_MUX2
;
3892 addr
= AR_GPIO_OUTPUT_MUX1
;
3894 gpio_shift
= (gpio
% 6) * 5;
3896 if (AR_SREV_9280_20_OR_LATER(ah
)
3897 || (addr
!= AR_GPIO_OUTPUT_MUX1
)) {
3898 REG_RMW(ah
, addr
, (type
<< gpio_shift
),
3899 (0x1f << gpio_shift
));
3901 tmp
= REG_READ(ah
, addr
);
3902 tmp
= ((tmp
& 0x1F0) << 1) | (tmp
& ~0x1F0);
3903 tmp
&= ~(0x1f << gpio_shift
);
3904 tmp
|= (type
<< gpio_shift
);
3905 REG_WRITE(ah
, addr
, tmp
);
3909 void ath9k_hw_cfg_gpio_input(struct ath_hw
*ah
, u32 gpio
)
3913 BUG_ON(gpio
>= ah
->caps
.num_gpio_pins
);
3915 gpio_shift
= gpio
<< 1;
3919 (AR_GPIO_OE_OUT_DRV_NO
<< gpio_shift
),
3920 (AR_GPIO_OE_OUT_DRV
<< gpio_shift
));
3922 EXPORT_SYMBOL(ath9k_hw_cfg_gpio_input
);
3924 u32
ath9k_hw_gpio_get(struct ath_hw
*ah
, u32 gpio
)
3926 #define MS_REG_READ(x, y) \
3927 (MS(REG_READ(ah, AR_GPIO_IN_OUT), x##_GPIO_IN_VAL) & (AR_GPIO_BIT(y)))
3929 if (gpio
>= ah
->caps
.num_gpio_pins
)
3932 if (AR_SREV_9287_10_OR_LATER(ah
))
3933 return MS_REG_READ(AR9287
, gpio
) != 0;
3934 else if (AR_SREV_9285_10_OR_LATER(ah
))
3935 return MS_REG_READ(AR9285
, gpio
) != 0;
3936 else if (AR_SREV_9280_10_OR_LATER(ah
))
3937 return MS_REG_READ(AR928X
, gpio
) != 0;
3939 return MS_REG_READ(AR
, gpio
) != 0;
3941 EXPORT_SYMBOL(ath9k_hw_gpio_get
);
3943 void ath9k_hw_cfg_output(struct ath_hw
*ah
, u32 gpio
,
3948 ath9k_hw_gpio_cfg_output_mux(ah
, gpio
, ah_signal_type
);
3950 gpio_shift
= 2 * gpio
;
3954 (AR_GPIO_OE_OUT_DRV_ALL
<< gpio_shift
),
3955 (AR_GPIO_OE_OUT_DRV
<< gpio_shift
));
3957 EXPORT_SYMBOL(ath9k_hw_cfg_output
);
3959 void ath9k_hw_set_gpio(struct ath_hw
*ah
, u32 gpio
, u32 val
)
3961 REG_RMW(ah
, AR_GPIO_IN_OUT
, ((val
& 1) << gpio
),
3964 EXPORT_SYMBOL(ath9k_hw_set_gpio
);
3966 u32
ath9k_hw_getdefantenna(struct ath_hw
*ah
)
3968 return REG_READ(ah
, AR_DEF_ANTENNA
) & 0x7;
3970 EXPORT_SYMBOL(ath9k_hw_getdefantenna
);
3972 void ath9k_hw_setantenna(struct ath_hw
*ah
, u32 antenna
)
3974 REG_WRITE(ah
, AR_DEF_ANTENNA
, (antenna
& 0x7));
3976 EXPORT_SYMBOL(ath9k_hw_setantenna
);
3978 bool ath9k_hw_setantennaswitch(struct ath_hw
*ah
,
3979 enum ath9k_ant_setting settings
,
3980 struct ath9k_channel
*chan
,
3985 static u8 tx_chainmask_cfg
, rx_chainmask_cfg
;
3987 if (AR_SREV_9280(ah
)) {
3988 if (!tx_chainmask_cfg
) {
3990 tx_chainmask_cfg
= *tx_chainmask
;
3991 rx_chainmask_cfg
= *rx_chainmask
;
3995 case ATH9K_ANT_FIXED_A
:
3996 *tx_chainmask
= ATH9K_ANTENNA0_CHAINMASK
;
3997 *rx_chainmask
= ATH9K_ANTENNA0_CHAINMASK
;
3998 *antenna_cfgd
= true;
4000 case ATH9K_ANT_FIXED_B
:
4001 if (ah
->caps
.tx_chainmask
>
4002 ATH9K_ANTENNA1_CHAINMASK
) {
4003 *tx_chainmask
= ATH9K_ANTENNA1_CHAINMASK
;
4005 *rx_chainmask
= ATH9K_ANTENNA1_CHAINMASK
;
4006 *antenna_cfgd
= true;
4008 case ATH9K_ANT_VARIABLE
:
4009 *tx_chainmask
= tx_chainmask_cfg
;
4010 *rx_chainmask
= rx_chainmask_cfg
;
4011 *antenna_cfgd
= true;
4017 ah
->config
.diversity_control
= settings
;
4023 /*********************/
4024 /* General Operation */
4025 /*********************/
4027 u32
ath9k_hw_getrxfilter(struct ath_hw
*ah
)
4029 u32 bits
= REG_READ(ah
, AR_RX_FILTER
);
4030 u32 phybits
= REG_READ(ah
, AR_PHY_ERR
);
4032 if (phybits
& AR_PHY_ERR_RADAR
)
4033 bits
|= ATH9K_RX_FILTER_PHYRADAR
;
4034 if (phybits
& (AR_PHY_ERR_OFDM_TIMING
| AR_PHY_ERR_CCK_TIMING
))
4035 bits
|= ATH9K_RX_FILTER_PHYERR
;
4039 EXPORT_SYMBOL(ath9k_hw_getrxfilter
);
4041 void ath9k_hw_setrxfilter(struct ath_hw
*ah
, u32 bits
)
4045 REG_WRITE(ah
, AR_RX_FILTER
, bits
);
4048 if (bits
& ATH9K_RX_FILTER_PHYRADAR
)
4049 phybits
|= AR_PHY_ERR_RADAR
;
4050 if (bits
& ATH9K_RX_FILTER_PHYERR
)
4051 phybits
|= AR_PHY_ERR_OFDM_TIMING
| AR_PHY_ERR_CCK_TIMING
;
4052 REG_WRITE(ah
, AR_PHY_ERR
, phybits
);
4055 REG_WRITE(ah
, AR_RXCFG
,
4056 REG_READ(ah
, AR_RXCFG
) | AR_RXCFG_ZLFDMA
);
4058 REG_WRITE(ah
, AR_RXCFG
,
4059 REG_READ(ah
, AR_RXCFG
) & ~AR_RXCFG_ZLFDMA
);
4061 EXPORT_SYMBOL(ath9k_hw_setrxfilter
);
4063 bool ath9k_hw_phy_disable(struct ath_hw
*ah
)
4065 if (!ath9k_hw_set_reset_reg(ah
, ATH9K_RESET_WARM
))
4068 ath9k_hw_init_pll(ah
, NULL
);
4071 EXPORT_SYMBOL(ath9k_hw_phy_disable
);
4073 bool ath9k_hw_disable(struct ath_hw
*ah
)
4075 if (!ath9k_hw_setpower(ah
, ATH9K_PM_AWAKE
))
4078 if (!ath9k_hw_set_reset_reg(ah
, ATH9K_RESET_COLD
))
4081 ath9k_hw_init_pll(ah
, NULL
);
4084 EXPORT_SYMBOL(ath9k_hw_disable
);
4086 void ath9k_hw_set_txpowerlimit(struct ath_hw
*ah
, u32 limit
)
4088 struct ath_regulatory
*regulatory
= ath9k_hw_regulatory(ah
);
4089 struct ath9k_channel
*chan
= ah
->curchan
;
4090 struct ieee80211_channel
*channel
= chan
->chan
;
4092 regulatory
->power_limit
= min(limit
, (u32
) MAX_RATE_POWER
);
4094 ah
->eep_ops
->set_txpower(ah
, chan
,
4095 ath9k_regd_get_ctl(regulatory
, chan
),
4096 channel
->max_antenna_gain
* 2,
4097 channel
->max_power
* 2,
4098 min((u32
) MAX_RATE_POWER
,
4099 (u32
) regulatory
->power_limit
));
4101 EXPORT_SYMBOL(ath9k_hw_set_txpowerlimit
);
4103 void ath9k_hw_setmac(struct ath_hw
*ah
, const u8
*mac
)
4105 memcpy(ath9k_hw_common(ah
)->macaddr
, mac
, ETH_ALEN
);
4107 EXPORT_SYMBOL(ath9k_hw_setmac
);
4109 void ath9k_hw_setopmode(struct ath_hw
*ah
)
4111 ath9k_hw_set_operating_mode(ah
, ah
->opmode
);
4113 EXPORT_SYMBOL(ath9k_hw_setopmode
);
4115 void ath9k_hw_setmcastfilter(struct ath_hw
*ah
, u32 filter0
, u32 filter1
)
4117 REG_WRITE(ah
, AR_MCAST_FIL0
, filter0
);
4118 REG_WRITE(ah
, AR_MCAST_FIL1
, filter1
);
4120 EXPORT_SYMBOL(ath9k_hw_setmcastfilter
);
4122 void ath9k_hw_write_associd(struct ath_hw
*ah
)
4124 struct ath_common
*common
= ath9k_hw_common(ah
);
4126 REG_WRITE(ah
, AR_BSS_ID0
, get_unaligned_le32(common
->curbssid
));
4127 REG_WRITE(ah
, AR_BSS_ID1
, get_unaligned_le16(common
->curbssid
+ 4) |
4128 ((common
->curaid
& 0x3fff) << AR_BSS_ID1_AID_S
));
4130 EXPORT_SYMBOL(ath9k_hw_write_associd
);
4132 u64
ath9k_hw_gettsf64(struct ath_hw
*ah
)
4136 tsf
= REG_READ(ah
, AR_TSF_U32
);
4137 tsf
= (tsf
<< 32) | REG_READ(ah
, AR_TSF_L32
);
4141 EXPORT_SYMBOL(ath9k_hw_gettsf64
);
4143 void ath9k_hw_settsf64(struct ath_hw
*ah
, u64 tsf64
)
4145 REG_WRITE(ah
, AR_TSF_L32
, tsf64
& 0xffffffff);
4146 REG_WRITE(ah
, AR_TSF_U32
, (tsf64
>> 32) & 0xffffffff);
4148 EXPORT_SYMBOL(ath9k_hw_settsf64
);
4150 void ath9k_hw_reset_tsf(struct ath_hw
*ah
)
4152 if (!ath9k_hw_wait(ah
, AR_SLP32_MODE
, AR_SLP32_TSF_WRITE_STATUS
, 0,
4153 AH_TSF_WRITE_TIMEOUT
))
4154 ath_print(ath9k_hw_common(ah
), ATH_DBG_RESET
,
4155 "AR_SLP32_TSF_WRITE_STATUS limit exceeded\n");
4157 REG_WRITE(ah
, AR_RESET_TSF
, AR_RESET_TSF_ONCE
);
4159 EXPORT_SYMBOL(ath9k_hw_reset_tsf
);
4161 void ath9k_hw_set_tsfadjust(struct ath_hw
*ah
, u32 setting
)
4164 ah
->misc_mode
|= AR_PCU_TX_ADD_TSF
;
4166 ah
->misc_mode
&= ~AR_PCU_TX_ADD_TSF
;
4168 EXPORT_SYMBOL(ath9k_hw_set_tsfadjust
);
4170 bool ath9k_hw_setslottime(struct ath_hw
*ah
, u32 us
)
4172 if (us
< ATH9K_SLOT_TIME_9
|| us
> ath9k_hw_mac_to_usec(ah
, 0xffff)) {
4173 ath_print(ath9k_hw_common(ah
), ATH_DBG_RESET
,
4174 "bad slot time %u\n", us
);
4175 ah
->slottime
= (u32
) -1;
4178 REG_WRITE(ah
, AR_D_GBL_IFS_SLOT
, ath9k_hw_mac_to_clks(ah
, us
));
4183 EXPORT_SYMBOL(ath9k_hw_setslottime
);
4185 void ath9k_hw_set11nmac2040(struct ath_hw
*ah
)
4187 struct ieee80211_conf
*conf
= &ath9k_hw_common(ah
)->hw
->conf
;
4190 if (conf_is_ht40(conf
) && !ah
->config
.cwm_ignore_extcca
)
4191 macmode
= AR_2040_JOINED_RX_CLEAR
;
4195 REG_WRITE(ah
, AR_2040_MODE
, macmode
);
4198 /* HW Generic timers configuration */
4200 static const struct ath_gen_timer_configuration gen_tmr_configuration
[] =
4202 {AR_NEXT_NDP_TIMER
, AR_NDP_PERIOD
, AR_TIMER_MODE
, 0x0080},
4203 {AR_NEXT_NDP_TIMER
, AR_NDP_PERIOD
, AR_TIMER_MODE
, 0x0080},
4204 {AR_NEXT_NDP_TIMER
, AR_NDP_PERIOD
, AR_TIMER_MODE
, 0x0080},
4205 {AR_NEXT_NDP_TIMER
, AR_NDP_PERIOD
, AR_TIMER_MODE
, 0x0080},
4206 {AR_NEXT_NDP_TIMER
, AR_NDP_PERIOD
, AR_TIMER_MODE
, 0x0080},
4207 {AR_NEXT_NDP_TIMER
, AR_NDP_PERIOD
, AR_TIMER_MODE
, 0x0080},
4208 {AR_NEXT_NDP_TIMER
, AR_NDP_PERIOD
, AR_TIMER_MODE
, 0x0080},
4209 {AR_NEXT_NDP_TIMER
, AR_NDP_PERIOD
, AR_TIMER_MODE
, 0x0080},
4210 {AR_NEXT_NDP2_TIMER
, AR_NDP2_PERIOD
, AR_NDP2_TIMER_MODE
, 0x0001},
4211 {AR_NEXT_NDP2_TIMER
+ 1*4, AR_NDP2_PERIOD
+ 1*4,
4212 AR_NDP2_TIMER_MODE
, 0x0002},
4213 {AR_NEXT_NDP2_TIMER
+ 2*4, AR_NDP2_PERIOD
+ 2*4,
4214 AR_NDP2_TIMER_MODE
, 0x0004},
4215 {AR_NEXT_NDP2_TIMER
+ 3*4, AR_NDP2_PERIOD
+ 3*4,
4216 AR_NDP2_TIMER_MODE
, 0x0008},
4217 {AR_NEXT_NDP2_TIMER
+ 4*4, AR_NDP2_PERIOD
+ 4*4,
4218 AR_NDP2_TIMER_MODE
, 0x0010},
4219 {AR_NEXT_NDP2_TIMER
+ 5*4, AR_NDP2_PERIOD
+ 5*4,
4220 AR_NDP2_TIMER_MODE
, 0x0020},
4221 {AR_NEXT_NDP2_TIMER
+ 6*4, AR_NDP2_PERIOD
+ 6*4,
4222 AR_NDP2_TIMER_MODE
, 0x0040},
4223 {AR_NEXT_NDP2_TIMER
+ 7*4, AR_NDP2_PERIOD
+ 7*4,
4224 AR_NDP2_TIMER_MODE
, 0x0080}
4227 /* HW generic timer primitives */
4229 /* compute and clear index of rightmost 1 */
4230 static u32
rightmost_index(struct ath_gen_timer_table
*timer_table
, u32
*mask
)
4240 return timer_table
->gen_timer_index
[b
];
4243 u32
ath9k_hw_gettsf32(struct ath_hw
*ah
)
4245 return REG_READ(ah
, AR_TSF_L32
);
4247 EXPORT_SYMBOL(ath9k_hw_gettsf32
);
4249 struct ath_gen_timer
*ath_gen_timer_alloc(struct ath_hw
*ah
,
4250 void (*trigger
)(void *),
4251 void (*overflow
)(void *),
4255 struct ath_gen_timer_table
*timer_table
= &ah
->hw_gen_timers
;
4256 struct ath_gen_timer
*timer
;
4258 timer
= kzalloc(sizeof(struct ath_gen_timer
), GFP_KERNEL
);
4260 if (timer
== NULL
) {
4261 ath_print(ath9k_hw_common(ah
), ATH_DBG_FATAL
,
4262 "Failed to allocate memory"
4263 "for hw timer[%d]\n", timer_index
);
4267 /* allocate a hardware generic timer slot */
4268 timer_table
->timers
[timer_index
] = timer
;
4269 timer
->index
= timer_index
;
4270 timer
->trigger
= trigger
;
4271 timer
->overflow
= overflow
;
4276 EXPORT_SYMBOL(ath_gen_timer_alloc
);
4278 void ath9k_hw_gen_timer_start(struct ath_hw
*ah
,
4279 struct ath_gen_timer
*timer
,
4283 struct ath_gen_timer_table
*timer_table
= &ah
->hw_gen_timers
;
4286 BUG_ON(!timer_period
);
4288 set_bit(timer
->index
, &timer_table
->timer_mask
.timer_bits
);
4290 tsf
= ath9k_hw_gettsf32(ah
);
4292 ath_print(ath9k_hw_common(ah
), ATH_DBG_HWTIMER
,
4293 "curent tsf %x period %x"
4294 "timer_next %x\n", tsf
, timer_period
, timer_next
);
4297 * Pull timer_next forward if the current TSF already passed it
4298 * because of software latency
4300 if (timer_next
< tsf
)
4301 timer_next
= tsf
+ timer_period
;
4304 * Program generic timer registers
4306 REG_WRITE(ah
, gen_tmr_configuration
[timer
->index
].next_addr
,
4308 REG_WRITE(ah
, gen_tmr_configuration
[timer
->index
].period_addr
,
4310 REG_SET_BIT(ah
, gen_tmr_configuration
[timer
->index
].mode_addr
,
4311 gen_tmr_configuration
[timer
->index
].mode_mask
);
4313 /* Enable both trigger and thresh interrupt masks */
4314 REG_SET_BIT(ah
, AR_IMR_S5
,
4315 (SM(AR_GENTMR_BIT(timer
->index
), AR_IMR_S5_GENTIMER_THRESH
) |
4316 SM(AR_GENTMR_BIT(timer
->index
), AR_IMR_S5_GENTIMER_TRIG
)));
4318 EXPORT_SYMBOL(ath9k_hw_gen_timer_start
);
4320 void ath9k_hw_gen_timer_stop(struct ath_hw
*ah
, struct ath_gen_timer
*timer
)
4322 struct ath_gen_timer_table
*timer_table
= &ah
->hw_gen_timers
;
4324 if ((timer
->index
< AR_FIRST_NDP_TIMER
) ||
4325 (timer
->index
>= ATH_MAX_GEN_TIMER
)) {
4329 /* Clear generic timer enable bits. */
4330 REG_CLR_BIT(ah
, gen_tmr_configuration
[timer
->index
].mode_addr
,
4331 gen_tmr_configuration
[timer
->index
].mode_mask
);
4333 /* Disable both trigger and thresh interrupt masks */
4334 REG_CLR_BIT(ah
, AR_IMR_S5
,
4335 (SM(AR_GENTMR_BIT(timer
->index
), AR_IMR_S5_GENTIMER_THRESH
) |
4336 SM(AR_GENTMR_BIT(timer
->index
), AR_IMR_S5_GENTIMER_TRIG
)));
4338 clear_bit(timer
->index
, &timer_table
->timer_mask
.timer_bits
);
4340 EXPORT_SYMBOL(ath9k_hw_gen_timer_stop
);
4342 void ath_gen_timer_free(struct ath_hw
*ah
, struct ath_gen_timer
*timer
)
4344 struct ath_gen_timer_table
*timer_table
= &ah
->hw_gen_timers
;
4346 /* free the hardware generic timer slot */
4347 timer_table
->timers
[timer
->index
] = NULL
;
4350 EXPORT_SYMBOL(ath_gen_timer_free
);
4353 * Generic Timer Interrupts handling
4355 void ath_gen_timer_isr(struct ath_hw
*ah
)
4357 struct ath_gen_timer_table
*timer_table
= &ah
->hw_gen_timers
;
4358 struct ath_gen_timer
*timer
;
4359 struct ath_common
*common
= ath9k_hw_common(ah
);
4360 u32 trigger_mask
, thresh_mask
, index
;
4362 /* get hardware generic timer interrupt status */
4363 trigger_mask
= ah
->intr_gen_timer_trigger
;
4364 thresh_mask
= ah
->intr_gen_timer_thresh
;
4365 trigger_mask
&= timer_table
->timer_mask
.val
;
4366 thresh_mask
&= timer_table
->timer_mask
.val
;
4368 trigger_mask
&= ~thresh_mask
;
4370 while (thresh_mask
) {
4371 index
= rightmost_index(timer_table
, &thresh_mask
);
4372 timer
= timer_table
->timers
[index
];
4374 ath_print(common
, ATH_DBG_HWTIMER
,
4375 "TSF overflow for Gen timer %d\n", index
);
4376 timer
->overflow(timer
->arg
);
4379 while (trigger_mask
) {
4380 index
= rightmost_index(timer_table
, &trigger_mask
);
4381 timer
= timer_table
->timers
[index
];
4383 ath_print(common
, ATH_DBG_HWTIMER
,
4384 "Gen timer[%d] trigger\n", index
);
4385 timer
->trigger(timer
->arg
);
4388 EXPORT_SYMBOL(ath_gen_timer_isr
);
4393 } ath_mac_bb_names
[] = {
4394 /* Devices with external radios */
4395 { AR_SREV_VERSION_5416_PCI
, "5416" },
4396 { AR_SREV_VERSION_5416_PCIE
, "5418" },
4397 { AR_SREV_VERSION_9100
, "9100" },
4398 { AR_SREV_VERSION_9160
, "9160" },
4399 /* Single-chip solutions */
4400 { AR_SREV_VERSION_9280
, "9280" },
4401 { AR_SREV_VERSION_9285
, "9285" },
4402 { AR_SREV_VERSION_9287
, "9287" },
4403 { AR_SREV_VERSION_9271
, "9271" },
4406 /* For devices with external radios */
4410 } ath_rf_names
[] = {
4412 { AR_RAD5133_SREV_MAJOR
, "5133" },
4413 { AR_RAD5122_SREV_MAJOR
, "5122" },
4414 { AR_RAD2133_SREV_MAJOR
, "2133" },
4415 { AR_RAD2122_SREV_MAJOR
, "2122" }
4419 * Return the MAC/BB name. "????" is returned if the MAC/BB is unknown.
4421 static const char *ath9k_hw_mac_bb_name(u32 mac_bb_version
)
4425 for (i
=0; i
<ARRAY_SIZE(ath_mac_bb_names
); i
++) {
4426 if (ath_mac_bb_names
[i
].version
== mac_bb_version
) {
4427 return ath_mac_bb_names
[i
].name
;
4435 * Return the RF name. "????" is returned if the RF is unknown.
4436 * Used for devices with external radios.
4438 static const char *ath9k_hw_rf_name(u16 rf_version
)
4442 for (i
=0; i
<ARRAY_SIZE(ath_rf_names
); i
++) {
4443 if (ath_rf_names
[i
].version
== rf_version
) {
4444 return ath_rf_names
[i
].name
;
4451 void ath9k_hw_name(struct ath_hw
*ah
, char *hw_name
, size_t len
)
4455 /* chipsets >= AR9280 are single-chip */
4456 if (AR_SREV_9280_10_OR_LATER(ah
)) {
4457 used
= snprintf(hw_name
, len
,
4458 "Atheros AR%s Rev:%x",
4459 ath9k_hw_mac_bb_name(ah
->hw_version
.macVersion
),
4460 ah
->hw_version
.macRev
);
4463 used
= snprintf(hw_name
, len
,
4464 "Atheros AR%s MAC/BB Rev:%x AR%s RF Rev:%x",
4465 ath9k_hw_mac_bb_name(ah
->hw_version
.macVersion
),
4466 ah
->hw_version
.macRev
,
4467 ath9k_hw_rf_name((ah
->hw_version
.analog5GhzRev
&
4468 AR_RADIO_SREV_MAJOR
)),
4469 ah
->hw_version
.phyRev
);
4472 hw_name
[used
] = '\0';
4474 EXPORT_SYMBOL(ath9k_hw_name
);