1 // SPDX-License-Identifier: GPL-2.0
3 * linux/mm/compaction.c
5 * Memory compaction for the reduction of external fragmentation. Note that
6 * this heavily depends upon page migration to do all the real heavy
9 * Copyright IBM Corp. 2007-2010 Mel Gorman <mel@csn.ul.ie>
11 #include <linux/cpu.h>
12 #include <linux/swap.h>
13 #include <linux/migrate.h>
14 #include <linux/compaction.h>
15 #include <linux/mm_inline.h>
16 #include <linux/sched/signal.h>
17 #include <linux/backing-dev.h>
18 #include <linux/sysctl.h>
19 #include <linux/sysfs.h>
20 #include <linux/page-isolation.h>
21 #include <linux/kasan.h>
22 #include <linux/kthread.h>
23 #include <linux/freezer.h>
24 #include <linux/page_owner.h>
27 #ifdef CONFIG_COMPACTION
28 static inline void count_compact_event(enum vm_event_item item
)
33 static inline void count_compact_events(enum vm_event_item item
, long delta
)
35 count_vm_events(item
, delta
);
38 #define count_compact_event(item) do { } while (0)
39 #define count_compact_events(item, delta) do { } while (0)
42 #if defined CONFIG_COMPACTION || defined CONFIG_CMA
44 #define CREATE_TRACE_POINTS
45 #include <trace/events/compaction.h>
47 #define block_start_pfn(pfn, order) round_down(pfn, 1UL << (order))
48 #define block_end_pfn(pfn, order) ALIGN((pfn) + 1, 1UL << (order))
49 #define pageblock_start_pfn(pfn) block_start_pfn(pfn, pageblock_order)
50 #define pageblock_end_pfn(pfn) block_end_pfn(pfn, pageblock_order)
52 static unsigned long release_freepages(struct list_head
*freelist
)
54 struct page
*page
, *next
;
55 unsigned long high_pfn
= 0;
57 list_for_each_entry_safe(page
, next
, freelist
, lru
) {
58 unsigned long pfn
= page_to_pfn(page
);
68 static void map_pages(struct list_head
*list
)
70 unsigned int i
, order
, nr_pages
;
71 struct page
*page
, *next
;
74 list_for_each_entry_safe(page
, next
, list
, lru
) {
77 order
= page_private(page
);
78 nr_pages
= 1 << order
;
80 post_alloc_hook(page
, order
, __GFP_MOVABLE
);
82 split_page(page
, order
);
84 for (i
= 0; i
< nr_pages
; i
++) {
85 list_add(&page
->lru
, &tmp_list
);
90 list_splice(&tmp_list
, list
);
93 #ifdef CONFIG_COMPACTION
95 int PageMovable(struct page
*page
)
97 struct address_space
*mapping
;
99 VM_BUG_ON_PAGE(!PageLocked(page
), page
);
100 if (!__PageMovable(page
))
103 mapping
= page_mapping(page
);
104 if (mapping
&& mapping
->a_ops
&& mapping
->a_ops
->isolate_page
)
109 EXPORT_SYMBOL(PageMovable
);
111 void __SetPageMovable(struct page
*page
, struct address_space
*mapping
)
113 VM_BUG_ON_PAGE(!PageLocked(page
), page
);
114 VM_BUG_ON_PAGE((unsigned long)mapping
& PAGE_MAPPING_MOVABLE
, page
);
115 page
->mapping
= (void *)((unsigned long)mapping
| PAGE_MAPPING_MOVABLE
);
117 EXPORT_SYMBOL(__SetPageMovable
);
119 void __ClearPageMovable(struct page
*page
)
121 VM_BUG_ON_PAGE(!PageLocked(page
), page
);
122 VM_BUG_ON_PAGE(!PageMovable(page
), page
);
124 * Clear registered address_space val with keeping PAGE_MAPPING_MOVABLE
125 * flag so that VM can catch up released page by driver after isolation.
126 * With it, VM migration doesn't try to put it back.
128 page
->mapping
= (void *)((unsigned long)page
->mapping
&
129 PAGE_MAPPING_MOVABLE
);
131 EXPORT_SYMBOL(__ClearPageMovable
);
133 /* Do not skip compaction more than 64 times */
134 #define COMPACT_MAX_DEFER_SHIFT 6
137 * Compaction is deferred when compaction fails to result in a page
138 * allocation success. 1 << compact_defer_limit compactions are skipped up
139 * to a limit of 1 << COMPACT_MAX_DEFER_SHIFT
141 void defer_compaction(struct zone
*zone
, int order
)
143 zone
->compact_considered
= 0;
144 zone
->compact_defer_shift
++;
146 if (order
< zone
->compact_order_failed
)
147 zone
->compact_order_failed
= order
;
149 if (zone
->compact_defer_shift
> COMPACT_MAX_DEFER_SHIFT
)
150 zone
->compact_defer_shift
= COMPACT_MAX_DEFER_SHIFT
;
152 trace_mm_compaction_defer_compaction(zone
, order
);
155 /* Returns true if compaction should be skipped this time */
156 bool compaction_deferred(struct zone
*zone
, int order
)
158 unsigned long defer_limit
= 1UL << zone
->compact_defer_shift
;
160 if (order
< zone
->compact_order_failed
)
163 /* Avoid possible overflow */
164 if (++zone
->compact_considered
> defer_limit
)
165 zone
->compact_considered
= defer_limit
;
167 if (zone
->compact_considered
>= defer_limit
)
170 trace_mm_compaction_deferred(zone
, order
);
176 * Update defer tracking counters after successful compaction of given order,
177 * which means an allocation either succeeded (alloc_success == true) or is
178 * expected to succeed.
180 void compaction_defer_reset(struct zone
*zone
, int order
,
184 zone
->compact_considered
= 0;
185 zone
->compact_defer_shift
= 0;
187 if (order
>= zone
->compact_order_failed
)
188 zone
->compact_order_failed
= order
+ 1;
190 trace_mm_compaction_defer_reset(zone
, order
);
193 /* Returns true if restarting compaction after many failures */
194 bool compaction_restarting(struct zone
*zone
, int order
)
196 if (order
< zone
->compact_order_failed
)
199 return zone
->compact_defer_shift
== COMPACT_MAX_DEFER_SHIFT
&&
200 zone
->compact_considered
>= 1UL << zone
->compact_defer_shift
;
203 /* Returns true if the pageblock should be scanned for pages to isolate. */
204 static inline bool isolation_suitable(struct compact_control
*cc
,
207 if (cc
->ignore_skip_hint
)
210 return !get_pageblock_skip(page
);
213 static void reset_cached_positions(struct zone
*zone
)
215 zone
->compact_cached_migrate_pfn
[0] = zone
->zone_start_pfn
;
216 zone
->compact_cached_migrate_pfn
[1] = zone
->zone_start_pfn
;
217 zone
->compact_cached_free_pfn
=
218 pageblock_start_pfn(zone_end_pfn(zone
) - 1);
222 * Compound pages of >= pageblock_order should consistenly be skipped until
223 * released. It is always pointless to compact pages of such order (if they are
224 * migratable), and the pageblocks they occupy cannot contain any free pages.
226 static bool pageblock_skip_persistent(struct page
*page
)
228 if (!PageCompound(page
))
231 page
= compound_head(page
);
233 if (compound_order(page
) >= pageblock_order
)
240 * This function is called to clear all cached information on pageblocks that
241 * should be skipped for page isolation when the migrate and free page scanner
244 static void __reset_isolation_suitable(struct zone
*zone
)
246 unsigned long start_pfn
= zone
->zone_start_pfn
;
247 unsigned long end_pfn
= zone_end_pfn(zone
);
250 zone
->compact_blockskip_flush
= false;
252 /* Walk the zone and mark every pageblock as suitable for isolation */
253 for (pfn
= start_pfn
; pfn
< end_pfn
; pfn
+= pageblock_nr_pages
) {
258 page
= pfn_to_online_page(pfn
);
261 if (zone
!= page_zone(page
))
263 if (pageblock_skip_persistent(page
))
266 clear_pageblock_skip(page
);
269 reset_cached_positions(zone
);
272 void reset_isolation_suitable(pg_data_t
*pgdat
)
276 for (zoneid
= 0; zoneid
< MAX_NR_ZONES
; zoneid
++) {
277 struct zone
*zone
= &pgdat
->node_zones
[zoneid
];
278 if (!populated_zone(zone
))
281 /* Only flush if a full compaction finished recently */
282 if (zone
->compact_blockskip_flush
)
283 __reset_isolation_suitable(zone
);
288 * If no pages were isolated then mark this pageblock to be skipped in the
289 * future. The information is later cleared by __reset_isolation_suitable().
291 static void update_pageblock_skip(struct compact_control
*cc
,
292 struct page
*page
, unsigned long nr_isolated
,
293 bool migrate_scanner
)
295 struct zone
*zone
= cc
->zone
;
298 if (cc
->no_set_skip_hint
)
307 set_pageblock_skip(page
);
309 pfn
= page_to_pfn(page
);
311 /* Update where async and sync compaction should restart */
312 if (migrate_scanner
) {
313 if (pfn
> zone
->compact_cached_migrate_pfn
[0])
314 zone
->compact_cached_migrate_pfn
[0] = pfn
;
315 if (cc
->mode
!= MIGRATE_ASYNC
&&
316 pfn
> zone
->compact_cached_migrate_pfn
[1])
317 zone
->compact_cached_migrate_pfn
[1] = pfn
;
319 if (pfn
< zone
->compact_cached_free_pfn
)
320 zone
->compact_cached_free_pfn
= pfn
;
324 static inline bool isolation_suitable(struct compact_control
*cc
,
330 static inline bool pageblock_skip_persistent(struct page
*page
)
335 static inline void update_pageblock_skip(struct compact_control
*cc
,
336 struct page
*page
, unsigned long nr_isolated
,
337 bool migrate_scanner
)
340 #endif /* CONFIG_COMPACTION */
343 * Compaction requires the taking of some coarse locks that are potentially
344 * very heavily contended. For async compaction, back out if the lock cannot
345 * be taken immediately. For sync compaction, spin on the lock if needed.
347 * Returns true if the lock is held
348 * Returns false if the lock is not held and compaction should abort
350 static bool compact_trylock_irqsave(spinlock_t
*lock
, unsigned long *flags
,
351 struct compact_control
*cc
)
353 if (cc
->mode
== MIGRATE_ASYNC
) {
354 if (!spin_trylock_irqsave(lock
, *flags
)) {
355 cc
->contended
= true;
359 spin_lock_irqsave(lock
, *flags
);
366 * Compaction requires the taking of some coarse locks that are potentially
367 * very heavily contended. The lock should be periodically unlocked to avoid
368 * having disabled IRQs for a long time, even when there is nobody waiting on
369 * the lock. It might also be that allowing the IRQs will result in
370 * need_resched() becoming true. If scheduling is needed, async compaction
371 * aborts. Sync compaction schedules.
372 * Either compaction type will also abort if a fatal signal is pending.
373 * In either case if the lock was locked, it is dropped and not regained.
375 * Returns true if compaction should abort due to fatal signal pending, or
376 * async compaction due to need_resched()
377 * Returns false when compaction can continue (sync compaction might have
380 static bool compact_unlock_should_abort(spinlock_t
*lock
,
381 unsigned long flags
, bool *locked
, struct compact_control
*cc
)
384 spin_unlock_irqrestore(lock
, flags
);
388 if (fatal_signal_pending(current
)) {
389 cc
->contended
= true;
393 if (need_resched()) {
394 if (cc
->mode
== MIGRATE_ASYNC
) {
395 cc
->contended
= true;
405 * Aside from avoiding lock contention, compaction also periodically checks
406 * need_resched() and either schedules in sync compaction or aborts async
407 * compaction. This is similar to what compact_unlock_should_abort() does, but
408 * is used where no lock is concerned.
410 * Returns false when no scheduling was needed, or sync compaction scheduled.
411 * Returns true when async compaction should abort.
413 static inline bool compact_should_abort(struct compact_control
*cc
)
415 /* async compaction aborts if contended */
416 if (need_resched()) {
417 if (cc
->mode
== MIGRATE_ASYNC
) {
418 cc
->contended
= true;
429 * Isolate free pages onto a private freelist. If @strict is true, will abort
430 * returning 0 on any invalid PFNs or non-free pages inside of the pageblock
431 * (even though it may still end up isolating some pages).
433 static unsigned long isolate_freepages_block(struct compact_control
*cc
,
434 unsigned long *start_pfn
,
435 unsigned long end_pfn
,
436 struct list_head
*freelist
,
439 int nr_scanned
= 0, total_isolated
= 0;
440 struct page
*cursor
, *valid_page
= NULL
;
441 unsigned long flags
= 0;
443 unsigned long blockpfn
= *start_pfn
;
446 cursor
= pfn_to_page(blockpfn
);
448 /* Isolate free pages. */
449 for (; blockpfn
< end_pfn
; blockpfn
++, cursor
++) {
451 struct page
*page
= cursor
;
454 * Periodically drop the lock (if held) regardless of its
455 * contention, to give chance to IRQs. Abort if fatal signal
456 * pending or async compaction detects need_resched()
458 if (!(blockpfn
% SWAP_CLUSTER_MAX
)
459 && compact_unlock_should_abort(&cc
->zone
->lock
, flags
,
464 if (!pfn_valid_within(blockpfn
))
471 * For compound pages such as THP and hugetlbfs, we can save
472 * potentially a lot of iterations if we skip them at once.
473 * The check is racy, but we can consider only valid values
474 * and the only danger is skipping too much.
476 if (PageCompound(page
)) {
477 const unsigned int order
= compound_order(page
);
479 if (likely(order
< MAX_ORDER
)) {
480 blockpfn
+= (1UL << order
) - 1;
481 cursor
+= (1UL << order
) - 1;
486 if (!PageBuddy(page
))
490 * If we already hold the lock, we can skip some rechecking.
491 * Note that if we hold the lock now, checked_pageblock was
492 * already set in some previous iteration (or strict is true),
493 * so it is correct to skip the suitable migration target
498 * The zone lock must be held to isolate freepages.
499 * Unfortunately this is a very coarse lock and can be
500 * heavily contended if there are parallel allocations
501 * or parallel compactions. For async compaction do not
502 * spin on the lock and we acquire the lock as late as
505 locked
= compact_trylock_irqsave(&cc
->zone
->lock
,
510 /* Recheck this is a buddy page under lock */
511 if (!PageBuddy(page
))
515 /* Found a free page, will break it into order-0 pages */
516 order
= page_order(page
);
517 isolated
= __isolate_free_page(page
, order
);
520 set_page_private(page
, order
);
522 total_isolated
+= isolated
;
523 cc
->nr_freepages
+= isolated
;
524 list_add_tail(&page
->lru
, freelist
);
526 if (!strict
&& cc
->nr_migratepages
<= cc
->nr_freepages
) {
527 blockpfn
+= isolated
;
530 /* Advance to the end of split page */
531 blockpfn
+= isolated
- 1;
532 cursor
+= isolated
- 1;
544 spin_unlock_irqrestore(&cc
->zone
->lock
, flags
);
547 * There is a tiny chance that we have read bogus compound_order(),
548 * so be careful to not go outside of the pageblock.
550 if (unlikely(blockpfn
> end_pfn
))
553 trace_mm_compaction_isolate_freepages(*start_pfn
, blockpfn
,
554 nr_scanned
, total_isolated
);
556 /* Record how far we have got within the block */
557 *start_pfn
= blockpfn
;
560 * If strict isolation is requested by CMA then check that all the
561 * pages requested were isolated. If there were any failures, 0 is
562 * returned and CMA will fail.
564 if (strict
&& blockpfn
< end_pfn
)
567 /* Update the pageblock-skip if the whole pageblock was scanned */
568 if (blockpfn
== end_pfn
)
569 update_pageblock_skip(cc
, valid_page
, total_isolated
, false);
571 cc
->total_free_scanned
+= nr_scanned
;
573 count_compact_events(COMPACTISOLATED
, total_isolated
);
574 return total_isolated
;
578 * isolate_freepages_range() - isolate free pages.
579 * @start_pfn: The first PFN to start isolating.
580 * @end_pfn: The one-past-last PFN.
582 * Non-free pages, invalid PFNs, or zone boundaries within the
583 * [start_pfn, end_pfn) range are considered errors, cause function to
584 * undo its actions and return zero.
586 * Otherwise, function returns one-past-the-last PFN of isolated page
587 * (which may be greater then end_pfn if end fell in a middle of
591 isolate_freepages_range(struct compact_control
*cc
,
592 unsigned long start_pfn
, unsigned long end_pfn
)
594 unsigned long isolated
, pfn
, block_start_pfn
, block_end_pfn
;
598 block_start_pfn
= pageblock_start_pfn(pfn
);
599 if (block_start_pfn
< cc
->zone
->zone_start_pfn
)
600 block_start_pfn
= cc
->zone
->zone_start_pfn
;
601 block_end_pfn
= pageblock_end_pfn(pfn
);
603 for (; pfn
< end_pfn
; pfn
+= isolated
,
604 block_start_pfn
= block_end_pfn
,
605 block_end_pfn
+= pageblock_nr_pages
) {
606 /* Protect pfn from changing by isolate_freepages_block */
607 unsigned long isolate_start_pfn
= pfn
;
609 block_end_pfn
= min(block_end_pfn
, end_pfn
);
612 * pfn could pass the block_end_pfn if isolated freepage
613 * is more than pageblock order. In this case, we adjust
614 * scanning range to right one.
616 if (pfn
>= block_end_pfn
) {
617 block_start_pfn
= pageblock_start_pfn(pfn
);
618 block_end_pfn
= pageblock_end_pfn(pfn
);
619 block_end_pfn
= min(block_end_pfn
, end_pfn
);
622 if (!pageblock_pfn_to_page(block_start_pfn
,
623 block_end_pfn
, cc
->zone
))
626 isolated
= isolate_freepages_block(cc
, &isolate_start_pfn
,
627 block_end_pfn
, &freelist
, true);
630 * In strict mode, isolate_freepages_block() returns 0 if
631 * there are any holes in the block (ie. invalid PFNs or
638 * If we managed to isolate pages, it is always (1 << n) *
639 * pageblock_nr_pages for some non-negative n. (Max order
640 * page may span two pageblocks).
644 /* __isolate_free_page() does not map the pages */
645 map_pages(&freelist
);
648 /* Loop terminated early, cleanup. */
649 release_freepages(&freelist
);
653 /* We don't use freelists for anything. */
657 /* Similar to reclaim, but different enough that they don't share logic */
658 static bool too_many_isolated(struct zone
*zone
)
660 unsigned long active
, inactive
, isolated
;
662 inactive
= node_page_state(zone
->zone_pgdat
, NR_INACTIVE_FILE
) +
663 node_page_state(zone
->zone_pgdat
, NR_INACTIVE_ANON
);
664 active
= node_page_state(zone
->zone_pgdat
, NR_ACTIVE_FILE
) +
665 node_page_state(zone
->zone_pgdat
, NR_ACTIVE_ANON
);
666 isolated
= node_page_state(zone
->zone_pgdat
, NR_ISOLATED_FILE
) +
667 node_page_state(zone
->zone_pgdat
, NR_ISOLATED_ANON
);
669 return isolated
> (inactive
+ active
) / 2;
673 * isolate_migratepages_block() - isolate all migrate-able pages within
675 * @cc: Compaction control structure.
676 * @low_pfn: The first PFN to isolate
677 * @end_pfn: The one-past-the-last PFN to isolate, within same pageblock
678 * @isolate_mode: Isolation mode to be used.
680 * Isolate all pages that can be migrated from the range specified by
681 * [low_pfn, end_pfn). The range is expected to be within same pageblock.
682 * Returns zero if there is a fatal signal pending, otherwise PFN of the
683 * first page that was not scanned (which may be both less, equal to or more
686 * The pages are isolated on cc->migratepages list (not required to be empty),
687 * and cc->nr_migratepages is updated accordingly. The cc->migrate_pfn field
688 * is neither read nor updated.
691 isolate_migratepages_block(struct compact_control
*cc
, unsigned long low_pfn
,
692 unsigned long end_pfn
, isolate_mode_t isolate_mode
)
694 struct zone
*zone
= cc
->zone
;
695 unsigned long nr_scanned
= 0, nr_isolated
= 0;
696 struct lruvec
*lruvec
;
697 unsigned long flags
= 0;
699 struct page
*page
= NULL
, *valid_page
= NULL
;
700 unsigned long start_pfn
= low_pfn
;
701 bool skip_on_failure
= false;
702 unsigned long next_skip_pfn
= 0;
705 * Ensure that there are not too many pages isolated from the LRU
706 * list by either parallel reclaimers or compaction. If there are,
707 * delay for some time until fewer pages are isolated
709 while (unlikely(too_many_isolated(zone
))) {
710 /* async migration should just abort */
711 if (cc
->mode
== MIGRATE_ASYNC
)
714 congestion_wait(BLK_RW_ASYNC
, HZ
/10);
716 if (fatal_signal_pending(current
))
720 if (compact_should_abort(cc
))
723 if (cc
->direct_compaction
&& (cc
->mode
== MIGRATE_ASYNC
)) {
724 skip_on_failure
= true;
725 next_skip_pfn
= block_end_pfn(low_pfn
, cc
->order
);
728 /* Time to isolate some pages for migration */
729 for (; low_pfn
< end_pfn
; low_pfn
++) {
731 if (skip_on_failure
&& low_pfn
>= next_skip_pfn
) {
733 * We have isolated all migration candidates in the
734 * previous order-aligned block, and did not skip it due
735 * to failure. We should migrate the pages now and
736 * hopefully succeed compaction.
742 * We failed to isolate in the previous order-aligned
743 * block. Set the new boundary to the end of the
744 * current block. Note we can't simply increase
745 * next_skip_pfn by 1 << order, as low_pfn might have
746 * been incremented by a higher number due to skipping
747 * a compound or a high-order buddy page in the
748 * previous loop iteration.
750 next_skip_pfn
= block_end_pfn(low_pfn
, cc
->order
);
754 * Periodically drop the lock (if held) regardless of its
755 * contention, to give chance to IRQs. Abort async compaction
758 if (!(low_pfn
% SWAP_CLUSTER_MAX
)
759 && compact_unlock_should_abort(zone_lru_lock(zone
), flags
,
763 if (!pfn_valid_within(low_pfn
))
767 page
= pfn_to_page(low_pfn
);
773 * Skip if free. We read page order here without zone lock
774 * which is generally unsafe, but the race window is small and
775 * the worst thing that can happen is that we skip some
776 * potential isolation targets.
778 if (PageBuddy(page
)) {
779 unsigned long freepage_order
= page_order_unsafe(page
);
782 * Without lock, we cannot be sure that what we got is
783 * a valid page order. Consider only values in the
784 * valid order range to prevent low_pfn overflow.
786 if (freepage_order
> 0 && freepage_order
< MAX_ORDER
)
787 low_pfn
+= (1UL << freepage_order
) - 1;
792 * Regardless of being on LRU, compound pages such as THP and
793 * hugetlbfs are not to be compacted. We can potentially save
794 * a lot of iterations if we skip them at once. The check is
795 * racy, but we can consider only valid values and the only
796 * danger is skipping too much.
798 if (PageCompound(page
)) {
799 const unsigned int order
= compound_order(page
);
801 if (likely(order
< MAX_ORDER
))
802 low_pfn
+= (1UL << order
) - 1;
807 * Check may be lockless but that's ok as we recheck later.
808 * It's possible to migrate LRU and non-lru movable pages.
809 * Skip any other type of page
811 if (!PageLRU(page
)) {
813 * __PageMovable can return false positive so we need
814 * to verify it under page_lock.
816 if (unlikely(__PageMovable(page
)) &&
817 !PageIsolated(page
)) {
819 spin_unlock_irqrestore(zone_lru_lock(zone
),
824 if (!isolate_movable_page(page
, isolate_mode
))
825 goto isolate_success
;
832 * Migration will fail if an anonymous page is pinned in memory,
833 * so avoid taking lru_lock and isolating it unnecessarily in an
834 * admittedly racy check.
836 if (!page_mapping(page
) &&
837 page_count(page
) > page_mapcount(page
))
841 * Only allow to migrate anonymous pages in GFP_NOFS context
842 * because those do not depend on fs locks.
844 if (!(cc
->gfp_mask
& __GFP_FS
) && page_mapping(page
))
847 /* If we already hold the lock, we can skip some rechecking */
849 locked
= compact_trylock_irqsave(zone_lru_lock(zone
),
854 /* Recheck PageLRU and PageCompound under lock */
859 * Page become compound since the non-locked check,
860 * and it's on LRU. It can only be a THP so the order
861 * is safe to read and it's 0 for tail pages.
863 if (unlikely(PageCompound(page
))) {
864 low_pfn
+= (1UL << compound_order(page
)) - 1;
869 lruvec
= mem_cgroup_page_lruvec(page
, zone
->zone_pgdat
);
871 /* Try isolate the page */
872 if (__isolate_lru_page(page
, isolate_mode
) != 0)
875 VM_BUG_ON_PAGE(PageCompound(page
), page
);
877 /* Successfully isolated */
878 del_page_from_lru_list(page
, lruvec
, page_lru(page
));
879 inc_node_page_state(page
,
880 NR_ISOLATED_ANON
+ page_is_file_cache(page
));
883 list_add(&page
->lru
, &cc
->migratepages
);
884 cc
->nr_migratepages
++;
888 * Record where we could have freed pages by migration and not
889 * yet flushed them to buddy allocator.
890 * - this is the lowest page that was isolated and likely be
891 * then freed by migration.
893 if (!cc
->last_migrated_pfn
)
894 cc
->last_migrated_pfn
= low_pfn
;
896 /* Avoid isolating too much */
897 if (cc
->nr_migratepages
== COMPACT_CLUSTER_MAX
) {
904 if (!skip_on_failure
)
908 * We have isolated some pages, but then failed. Release them
909 * instead of migrating, as we cannot form the cc->order buddy
914 spin_unlock_irqrestore(zone_lru_lock(zone
), flags
);
917 putback_movable_pages(&cc
->migratepages
);
918 cc
->nr_migratepages
= 0;
919 cc
->last_migrated_pfn
= 0;
923 if (low_pfn
< next_skip_pfn
) {
924 low_pfn
= next_skip_pfn
- 1;
926 * The check near the loop beginning would have updated
927 * next_skip_pfn too, but this is a bit simpler.
929 next_skip_pfn
+= 1UL << cc
->order
;
934 * The PageBuddy() check could have potentially brought us outside
935 * the range to be scanned.
937 if (unlikely(low_pfn
> end_pfn
))
941 spin_unlock_irqrestore(zone_lru_lock(zone
), flags
);
944 * Update the pageblock-skip information and cached scanner pfn,
945 * if the whole pageblock was scanned without isolating any page.
947 if (low_pfn
== end_pfn
)
948 update_pageblock_skip(cc
, valid_page
, nr_isolated
, true);
950 trace_mm_compaction_isolate_migratepages(start_pfn
, low_pfn
,
951 nr_scanned
, nr_isolated
);
953 cc
->total_migrate_scanned
+= nr_scanned
;
955 count_compact_events(COMPACTISOLATED
, nr_isolated
);
961 * isolate_migratepages_range() - isolate migrate-able pages in a PFN range
962 * @cc: Compaction control structure.
963 * @start_pfn: The first PFN to start isolating.
964 * @end_pfn: The one-past-last PFN.
966 * Returns zero if isolation fails fatally due to e.g. pending signal.
967 * Otherwise, function returns one-past-the-last PFN of isolated page
968 * (which may be greater than end_pfn if end fell in a middle of a THP page).
971 isolate_migratepages_range(struct compact_control
*cc
, unsigned long start_pfn
,
972 unsigned long end_pfn
)
974 unsigned long pfn
, block_start_pfn
, block_end_pfn
;
976 /* Scan block by block. First and last block may be incomplete */
978 block_start_pfn
= pageblock_start_pfn(pfn
);
979 if (block_start_pfn
< cc
->zone
->zone_start_pfn
)
980 block_start_pfn
= cc
->zone
->zone_start_pfn
;
981 block_end_pfn
= pageblock_end_pfn(pfn
);
983 for (; pfn
< end_pfn
; pfn
= block_end_pfn
,
984 block_start_pfn
= block_end_pfn
,
985 block_end_pfn
+= pageblock_nr_pages
) {
987 block_end_pfn
= min(block_end_pfn
, end_pfn
);
989 if (!pageblock_pfn_to_page(block_start_pfn
,
990 block_end_pfn
, cc
->zone
))
993 pfn
= isolate_migratepages_block(cc
, pfn
, block_end_pfn
,
994 ISOLATE_UNEVICTABLE
);
999 if (cc
->nr_migratepages
== COMPACT_CLUSTER_MAX
)
1006 #endif /* CONFIG_COMPACTION || CONFIG_CMA */
1007 #ifdef CONFIG_COMPACTION
1009 static bool suitable_migration_source(struct compact_control
*cc
,
1014 if ((cc
->mode
!= MIGRATE_ASYNC
) || !cc
->direct_compaction
)
1017 block_mt
= get_pageblock_migratetype(page
);
1019 if (cc
->migratetype
== MIGRATE_MOVABLE
)
1020 return is_migrate_movable(block_mt
);
1022 return block_mt
== cc
->migratetype
;
1025 /* Returns true if the page is within a block suitable for migration to */
1026 static bool suitable_migration_target(struct compact_control
*cc
,
1029 /* If the page is a large free page, then disallow migration */
1030 if (PageBuddy(page
)) {
1032 * We are checking page_order without zone->lock taken. But
1033 * the only small danger is that we skip a potentially suitable
1034 * pageblock, so it's not worth to check order for valid range.
1036 if (page_order_unsafe(page
) >= pageblock_order
)
1040 if (cc
->ignore_block_suitable
)
1043 /* If the block is MIGRATE_MOVABLE or MIGRATE_CMA, allow migration */
1044 if (is_migrate_movable(get_pageblock_migratetype(page
)))
1047 /* Otherwise skip the block */
1052 * Test whether the free scanner has reached the same or lower pageblock than
1053 * the migration scanner, and compaction should thus terminate.
1055 static inline bool compact_scanners_met(struct compact_control
*cc
)
1057 return (cc
->free_pfn
>> pageblock_order
)
1058 <= (cc
->migrate_pfn
>> pageblock_order
);
1062 * Based on information in the current compact_control, find blocks
1063 * suitable for isolating free pages from and then isolate them.
1065 static void isolate_freepages(struct compact_control
*cc
)
1067 struct zone
*zone
= cc
->zone
;
1069 unsigned long block_start_pfn
; /* start of current pageblock */
1070 unsigned long isolate_start_pfn
; /* exact pfn we start at */
1071 unsigned long block_end_pfn
; /* end of current pageblock */
1072 unsigned long low_pfn
; /* lowest pfn scanner is able to scan */
1073 struct list_head
*freelist
= &cc
->freepages
;
1076 * Initialise the free scanner. The starting point is where we last
1077 * successfully isolated from, zone-cached value, or the end of the
1078 * zone when isolating for the first time. For looping we also need
1079 * this pfn aligned down to the pageblock boundary, because we do
1080 * block_start_pfn -= pageblock_nr_pages in the for loop.
1081 * For ending point, take care when isolating in last pageblock of a
1082 * a zone which ends in the middle of a pageblock.
1083 * The low boundary is the end of the pageblock the migration scanner
1086 isolate_start_pfn
= cc
->free_pfn
;
1087 block_start_pfn
= pageblock_start_pfn(cc
->free_pfn
);
1088 block_end_pfn
= min(block_start_pfn
+ pageblock_nr_pages
,
1089 zone_end_pfn(zone
));
1090 low_pfn
= pageblock_end_pfn(cc
->migrate_pfn
);
1093 * Isolate free pages until enough are available to migrate the
1094 * pages on cc->migratepages. We stop searching if the migrate
1095 * and free page scanners meet or enough free pages are isolated.
1097 for (; block_start_pfn
>= low_pfn
;
1098 block_end_pfn
= block_start_pfn
,
1099 block_start_pfn
-= pageblock_nr_pages
,
1100 isolate_start_pfn
= block_start_pfn
) {
1102 * This can iterate a massively long zone without finding any
1103 * suitable migration targets, so periodically check if we need
1104 * to schedule, or even abort async compaction.
1106 if (!(block_start_pfn
% (SWAP_CLUSTER_MAX
* pageblock_nr_pages
))
1107 && compact_should_abort(cc
))
1110 page
= pageblock_pfn_to_page(block_start_pfn
, block_end_pfn
,
1115 /* Check the block is suitable for migration */
1116 if (!suitable_migration_target(cc
, page
))
1119 /* If isolation recently failed, do not retry */
1120 if (!isolation_suitable(cc
, page
))
1123 /* Found a block suitable for isolating free pages from. */
1124 isolate_freepages_block(cc
, &isolate_start_pfn
, block_end_pfn
,
1128 * If we isolated enough freepages, or aborted due to lock
1129 * contention, terminate.
1131 if ((cc
->nr_freepages
>= cc
->nr_migratepages
)
1133 if (isolate_start_pfn
>= block_end_pfn
) {
1135 * Restart at previous pageblock if more
1136 * freepages can be isolated next time.
1139 block_start_pfn
- pageblock_nr_pages
;
1142 } else if (isolate_start_pfn
< block_end_pfn
) {
1144 * If isolation failed early, do not continue
1151 /* __isolate_free_page() does not map the pages */
1152 map_pages(freelist
);
1155 * Record where the free scanner will restart next time. Either we
1156 * broke from the loop and set isolate_start_pfn based on the last
1157 * call to isolate_freepages_block(), or we met the migration scanner
1158 * and the loop terminated due to isolate_start_pfn < low_pfn
1160 cc
->free_pfn
= isolate_start_pfn
;
1164 * This is a migrate-callback that "allocates" freepages by taking pages
1165 * from the isolated freelists in the block we are migrating to.
1167 static struct page
*compaction_alloc(struct page
*migratepage
,
1171 struct compact_control
*cc
= (struct compact_control
*)data
;
1172 struct page
*freepage
;
1175 * Isolate free pages if necessary, and if we are not aborting due to
1178 if (list_empty(&cc
->freepages
)) {
1180 isolate_freepages(cc
);
1182 if (list_empty(&cc
->freepages
))
1186 freepage
= list_entry(cc
->freepages
.next
, struct page
, lru
);
1187 list_del(&freepage
->lru
);
1194 * This is a migrate-callback that "frees" freepages back to the isolated
1195 * freelist. All pages on the freelist are from the same zone, so there is no
1196 * special handling needed for NUMA.
1198 static void compaction_free(struct page
*page
, unsigned long data
)
1200 struct compact_control
*cc
= (struct compact_control
*)data
;
1202 list_add(&page
->lru
, &cc
->freepages
);
1206 /* possible outcome of isolate_migratepages */
1208 ISOLATE_ABORT
, /* Abort compaction now */
1209 ISOLATE_NONE
, /* No pages isolated, continue scanning */
1210 ISOLATE_SUCCESS
, /* Pages isolated, migrate */
1211 } isolate_migrate_t
;
1214 * Allow userspace to control policy on scanning the unevictable LRU for
1215 * compactable pages.
1217 int sysctl_compact_unevictable_allowed __read_mostly
= 1;
1220 * Isolate all pages that can be migrated from the first suitable block,
1221 * starting at the block pointed to by the migrate scanner pfn within
1224 static isolate_migrate_t
isolate_migratepages(struct zone
*zone
,
1225 struct compact_control
*cc
)
1227 unsigned long block_start_pfn
;
1228 unsigned long block_end_pfn
;
1229 unsigned long low_pfn
;
1231 const isolate_mode_t isolate_mode
=
1232 (sysctl_compact_unevictable_allowed
? ISOLATE_UNEVICTABLE
: 0) |
1233 (cc
->mode
!= MIGRATE_SYNC
? ISOLATE_ASYNC_MIGRATE
: 0);
1236 * Start at where we last stopped, or beginning of the zone as
1237 * initialized by compact_zone()
1239 low_pfn
= cc
->migrate_pfn
;
1240 block_start_pfn
= pageblock_start_pfn(low_pfn
);
1241 if (block_start_pfn
< zone
->zone_start_pfn
)
1242 block_start_pfn
= zone
->zone_start_pfn
;
1244 /* Only scan within a pageblock boundary */
1245 block_end_pfn
= pageblock_end_pfn(low_pfn
);
1248 * Iterate over whole pageblocks until we find the first suitable.
1249 * Do not cross the free scanner.
1251 for (; block_end_pfn
<= cc
->free_pfn
;
1252 low_pfn
= block_end_pfn
,
1253 block_start_pfn
= block_end_pfn
,
1254 block_end_pfn
+= pageblock_nr_pages
) {
1257 * This can potentially iterate a massively long zone with
1258 * many pageblocks unsuitable, so periodically check if we
1259 * need to schedule, or even abort async compaction.
1261 if (!(low_pfn
% (SWAP_CLUSTER_MAX
* pageblock_nr_pages
))
1262 && compact_should_abort(cc
))
1265 page
= pageblock_pfn_to_page(block_start_pfn
, block_end_pfn
,
1270 /* If isolation recently failed, do not retry */
1271 if (!isolation_suitable(cc
, page
))
1275 * For async compaction, also only scan in MOVABLE blocks.
1276 * Async compaction is optimistic to see if the minimum amount
1277 * of work satisfies the allocation.
1279 if (!suitable_migration_source(cc
, page
))
1282 /* Perform the isolation */
1283 low_pfn
= isolate_migratepages_block(cc
, low_pfn
,
1284 block_end_pfn
, isolate_mode
);
1286 if (!low_pfn
|| cc
->contended
)
1287 return ISOLATE_ABORT
;
1290 * Either we isolated something and proceed with migration. Or
1291 * we failed and compact_zone should decide if we should
1297 /* Record where migration scanner will be restarted. */
1298 cc
->migrate_pfn
= low_pfn
;
1300 return cc
->nr_migratepages
? ISOLATE_SUCCESS
: ISOLATE_NONE
;
1304 * order == -1 is expected when compacting via
1305 * /proc/sys/vm/compact_memory
1307 static inline bool is_via_compact_memory(int order
)
1312 static enum compact_result
__compact_finished(struct zone
*zone
,
1313 struct compact_control
*cc
)
1316 const int migratetype
= cc
->migratetype
;
1318 if (cc
->contended
|| fatal_signal_pending(current
))
1319 return COMPACT_CONTENDED
;
1321 /* Compaction run completes if the migrate and free scanner meet */
1322 if (compact_scanners_met(cc
)) {
1323 /* Let the next compaction start anew. */
1324 reset_cached_positions(zone
);
1327 * Mark that the PG_migrate_skip information should be cleared
1328 * by kswapd when it goes to sleep. kcompactd does not set the
1329 * flag itself as the decision to be clear should be directly
1330 * based on an allocation request.
1332 if (cc
->direct_compaction
)
1333 zone
->compact_blockskip_flush
= true;
1336 return COMPACT_COMPLETE
;
1338 return COMPACT_PARTIAL_SKIPPED
;
1341 if (is_via_compact_memory(cc
->order
))
1342 return COMPACT_CONTINUE
;
1344 if (cc
->finishing_block
) {
1346 * We have finished the pageblock, but better check again that
1347 * we really succeeded.
1349 if (IS_ALIGNED(cc
->migrate_pfn
, pageblock_nr_pages
))
1350 cc
->finishing_block
= false;
1352 return COMPACT_CONTINUE
;
1355 /* Direct compactor: Is a suitable page free? */
1356 for (order
= cc
->order
; order
< MAX_ORDER
; order
++) {
1357 struct free_area
*area
= &zone
->free_area
[order
];
1360 /* Job done if page is free of the right migratetype */
1361 if (!list_empty(&area
->free_list
[migratetype
]))
1362 return COMPACT_SUCCESS
;
1365 /* MIGRATE_MOVABLE can fallback on MIGRATE_CMA */
1366 if (migratetype
== MIGRATE_MOVABLE
&&
1367 !list_empty(&area
->free_list
[MIGRATE_CMA
]))
1368 return COMPACT_SUCCESS
;
1371 * Job done if allocation would steal freepages from
1372 * other migratetype buddy lists.
1374 if (find_suitable_fallback(area
, order
, migratetype
,
1375 true, &can_steal
) != -1) {
1377 /* movable pages are OK in any pageblock */
1378 if (migratetype
== MIGRATE_MOVABLE
)
1379 return COMPACT_SUCCESS
;
1382 * We are stealing for a non-movable allocation. Make
1383 * sure we finish compacting the current pageblock
1384 * first so it is as free as possible and we won't
1385 * have to steal another one soon. This only applies
1386 * to sync compaction, as async compaction operates
1387 * on pageblocks of the same migratetype.
1389 if (cc
->mode
== MIGRATE_ASYNC
||
1390 IS_ALIGNED(cc
->migrate_pfn
,
1391 pageblock_nr_pages
)) {
1392 return COMPACT_SUCCESS
;
1395 cc
->finishing_block
= true;
1396 return COMPACT_CONTINUE
;
1400 return COMPACT_NO_SUITABLE_PAGE
;
1403 static enum compact_result
compact_finished(struct zone
*zone
,
1404 struct compact_control
*cc
)
1408 ret
= __compact_finished(zone
, cc
);
1409 trace_mm_compaction_finished(zone
, cc
->order
, ret
);
1410 if (ret
== COMPACT_NO_SUITABLE_PAGE
)
1411 ret
= COMPACT_CONTINUE
;
1417 * compaction_suitable: Is this suitable to run compaction on this zone now?
1419 * COMPACT_SKIPPED - If there are too few free pages for compaction
1420 * COMPACT_SUCCESS - If the allocation would succeed without compaction
1421 * COMPACT_CONTINUE - If compaction should run now
1423 static enum compact_result
__compaction_suitable(struct zone
*zone
, int order
,
1424 unsigned int alloc_flags
,
1426 unsigned long wmark_target
)
1428 unsigned long watermark
;
1430 if (is_via_compact_memory(order
))
1431 return COMPACT_CONTINUE
;
1433 watermark
= zone
->watermark
[alloc_flags
& ALLOC_WMARK_MASK
];
1435 * If watermarks for high-order allocation are already met, there
1436 * should be no need for compaction at all.
1438 if (zone_watermark_ok(zone
, order
, watermark
, classzone_idx
,
1440 return COMPACT_SUCCESS
;
1443 * Watermarks for order-0 must be met for compaction to be able to
1444 * isolate free pages for migration targets. This means that the
1445 * watermark and alloc_flags have to match, or be more pessimistic than
1446 * the check in __isolate_free_page(). We don't use the direct
1447 * compactor's alloc_flags, as they are not relevant for freepage
1448 * isolation. We however do use the direct compactor's classzone_idx to
1449 * skip over zones where lowmem reserves would prevent allocation even
1450 * if compaction succeeds.
1451 * For costly orders, we require low watermark instead of min for
1452 * compaction to proceed to increase its chances.
1453 * ALLOC_CMA is used, as pages in CMA pageblocks are considered
1454 * suitable migration targets
1456 watermark
= (order
> PAGE_ALLOC_COSTLY_ORDER
) ?
1457 low_wmark_pages(zone
) : min_wmark_pages(zone
);
1458 watermark
+= compact_gap(order
);
1459 if (!__zone_watermark_ok(zone
, 0, watermark
, classzone_idx
,
1460 ALLOC_CMA
, wmark_target
))
1461 return COMPACT_SKIPPED
;
1463 return COMPACT_CONTINUE
;
1466 enum compact_result
compaction_suitable(struct zone
*zone
, int order
,
1467 unsigned int alloc_flags
,
1470 enum compact_result ret
;
1473 ret
= __compaction_suitable(zone
, order
, alloc_flags
, classzone_idx
,
1474 zone_page_state(zone
, NR_FREE_PAGES
));
1476 * fragmentation index determines if allocation failures are due to
1477 * low memory or external fragmentation
1479 * index of -1000 would imply allocations might succeed depending on
1480 * watermarks, but we already failed the high-order watermark check
1481 * index towards 0 implies failure is due to lack of memory
1482 * index towards 1000 implies failure is due to fragmentation
1484 * Only compact if a failure would be due to fragmentation. Also
1485 * ignore fragindex for non-costly orders where the alternative to
1486 * a successful reclaim/compaction is OOM. Fragindex and the
1487 * vm.extfrag_threshold sysctl is meant as a heuristic to prevent
1488 * excessive compaction for costly orders, but it should not be at the
1489 * expense of system stability.
1491 if (ret
== COMPACT_CONTINUE
&& (order
> PAGE_ALLOC_COSTLY_ORDER
)) {
1492 fragindex
= fragmentation_index(zone
, order
);
1493 if (fragindex
>= 0 && fragindex
<= sysctl_extfrag_threshold
)
1494 ret
= COMPACT_NOT_SUITABLE_ZONE
;
1497 trace_mm_compaction_suitable(zone
, order
, ret
);
1498 if (ret
== COMPACT_NOT_SUITABLE_ZONE
)
1499 ret
= COMPACT_SKIPPED
;
1504 bool compaction_zonelist_suitable(struct alloc_context
*ac
, int order
,
1511 * Make sure at least one zone would pass __compaction_suitable if we continue
1512 * retrying the reclaim.
1514 for_each_zone_zonelist_nodemask(zone
, z
, ac
->zonelist
, ac
->high_zoneidx
,
1516 unsigned long available
;
1517 enum compact_result compact_result
;
1520 * Do not consider all the reclaimable memory because we do not
1521 * want to trash just for a single high order allocation which
1522 * is even not guaranteed to appear even if __compaction_suitable
1523 * is happy about the watermark check.
1525 available
= zone_reclaimable_pages(zone
) / order
;
1526 available
+= zone_page_state_snapshot(zone
, NR_FREE_PAGES
);
1527 compact_result
= __compaction_suitable(zone
, order
, alloc_flags
,
1528 ac_classzone_idx(ac
), available
);
1529 if (compact_result
!= COMPACT_SKIPPED
)
1536 static enum compact_result
compact_zone(struct zone
*zone
, struct compact_control
*cc
)
1538 enum compact_result ret
;
1539 unsigned long start_pfn
= zone
->zone_start_pfn
;
1540 unsigned long end_pfn
= zone_end_pfn(zone
);
1541 const bool sync
= cc
->mode
!= MIGRATE_ASYNC
;
1543 cc
->migratetype
= gfpflags_to_migratetype(cc
->gfp_mask
);
1544 ret
= compaction_suitable(zone
, cc
->order
, cc
->alloc_flags
,
1546 /* Compaction is likely to fail */
1547 if (ret
== COMPACT_SUCCESS
|| ret
== COMPACT_SKIPPED
)
1550 /* huh, compaction_suitable is returning something unexpected */
1551 VM_BUG_ON(ret
!= COMPACT_CONTINUE
);
1554 * Clear pageblock skip if there were failures recently and compaction
1555 * is about to be retried after being deferred.
1557 if (compaction_restarting(zone
, cc
->order
))
1558 __reset_isolation_suitable(zone
);
1561 * Setup to move all movable pages to the end of the zone. Used cached
1562 * information on where the scanners should start (unless we explicitly
1563 * want to compact the whole zone), but check that it is initialised
1564 * by ensuring the values are within zone boundaries.
1566 if (cc
->whole_zone
) {
1567 cc
->migrate_pfn
= start_pfn
;
1568 cc
->free_pfn
= pageblock_start_pfn(end_pfn
- 1);
1570 cc
->migrate_pfn
= zone
->compact_cached_migrate_pfn
[sync
];
1571 cc
->free_pfn
= zone
->compact_cached_free_pfn
;
1572 if (cc
->free_pfn
< start_pfn
|| cc
->free_pfn
>= end_pfn
) {
1573 cc
->free_pfn
= pageblock_start_pfn(end_pfn
- 1);
1574 zone
->compact_cached_free_pfn
= cc
->free_pfn
;
1576 if (cc
->migrate_pfn
< start_pfn
|| cc
->migrate_pfn
>= end_pfn
) {
1577 cc
->migrate_pfn
= start_pfn
;
1578 zone
->compact_cached_migrate_pfn
[0] = cc
->migrate_pfn
;
1579 zone
->compact_cached_migrate_pfn
[1] = cc
->migrate_pfn
;
1582 if (cc
->migrate_pfn
== start_pfn
)
1583 cc
->whole_zone
= true;
1586 cc
->last_migrated_pfn
= 0;
1588 trace_mm_compaction_begin(start_pfn
, cc
->migrate_pfn
,
1589 cc
->free_pfn
, end_pfn
, sync
);
1591 migrate_prep_local();
1593 while ((ret
= compact_finished(zone
, cc
)) == COMPACT_CONTINUE
) {
1596 switch (isolate_migratepages(zone
, cc
)) {
1598 ret
= COMPACT_CONTENDED
;
1599 putback_movable_pages(&cc
->migratepages
);
1600 cc
->nr_migratepages
= 0;
1604 * We haven't isolated and migrated anything, but
1605 * there might still be unflushed migrations from
1606 * previous cc->order aligned block.
1609 case ISOLATE_SUCCESS
:
1613 err
= migrate_pages(&cc
->migratepages
, compaction_alloc
,
1614 compaction_free
, (unsigned long)cc
, cc
->mode
,
1617 trace_mm_compaction_migratepages(cc
->nr_migratepages
, err
,
1620 /* All pages were either migrated or will be released */
1621 cc
->nr_migratepages
= 0;
1623 putback_movable_pages(&cc
->migratepages
);
1625 * migrate_pages() may return -ENOMEM when scanners meet
1626 * and we want compact_finished() to detect it
1628 if (err
== -ENOMEM
&& !compact_scanners_met(cc
)) {
1629 ret
= COMPACT_CONTENDED
;
1633 * We failed to migrate at least one page in the current
1634 * order-aligned block, so skip the rest of it.
1636 if (cc
->direct_compaction
&&
1637 (cc
->mode
== MIGRATE_ASYNC
)) {
1638 cc
->migrate_pfn
= block_end_pfn(
1639 cc
->migrate_pfn
- 1, cc
->order
);
1640 /* Draining pcplists is useless in this case */
1641 cc
->last_migrated_pfn
= 0;
1648 * Has the migration scanner moved away from the previous
1649 * cc->order aligned block where we migrated from? If yes,
1650 * flush the pages that were freed, so that they can merge and
1651 * compact_finished() can detect immediately if allocation
1654 if (cc
->order
> 0 && cc
->last_migrated_pfn
) {
1656 unsigned long current_block_start
=
1657 block_start_pfn(cc
->migrate_pfn
, cc
->order
);
1659 if (cc
->last_migrated_pfn
< current_block_start
) {
1661 lru_add_drain_cpu(cpu
);
1662 drain_local_pages(zone
);
1664 /* No more flushing until we migrate again */
1665 cc
->last_migrated_pfn
= 0;
1673 * Release free pages and update where the free scanner should restart,
1674 * so we don't leave any returned pages behind in the next attempt.
1676 if (cc
->nr_freepages
> 0) {
1677 unsigned long free_pfn
= release_freepages(&cc
->freepages
);
1679 cc
->nr_freepages
= 0;
1680 VM_BUG_ON(free_pfn
== 0);
1681 /* The cached pfn is always the first in a pageblock */
1682 free_pfn
= pageblock_start_pfn(free_pfn
);
1684 * Only go back, not forward. The cached pfn might have been
1685 * already reset to zone end in compact_finished()
1687 if (free_pfn
> zone
->compact_cached_free_pfn
)
1688 zone
->compact_cached_free_pfn
= free_pfn
;
1691 count_compact_events(COMPACTMIGRATE_SCANNED
, cc
->total_migrate_scanned
);
1692 count_compact_events(COMPACTFREE_SCANNED
, cc
->total_free_scanned
);
1694 trace_mm_compaction_end(start_pfn
, cc
->migrate_pfn
,
1695 cc
->free_pfn
, end_pfn
, sync
, ret
);
1700 static enum compact_result
compact_zone_order(struct zone
*zone
, int order
,
1701 gfp_t gfp_mask
, enum compact_priority prio
,
1702 unsigned int alloc_flags
, int classzone_idx
)
1704 enum compact_result ret
;
1705 struct compact_control cc
= {
1707 .nr_migratepages
= 0,
1708 .total_migrate_scanned
= 0,
1709 .total_free_scanned
= 0,
1711 .gfp_mask
= gfp_mask
,
1713 .mode
= (prio
== COMPACT_PRIO_ASYNC
) ?
1714 MIGRATE_ASYNC
: MIGRATE_SYNC_LIGHT
,
1715 .alloc_flags
= alloc_flags
,
1716 .classzone_idx
= classzone_idx
,
1717 .direct_compaction
= true,
1718 .whole_zone
= (prio
== MIN_COMPACT_PRIORITY
),
1719 .ignore_skip_hint
= (prio
== MIN_COMPACT_PRIORITY
),
1720 .ignore_block_suitable
= (prio
== MIN_COMPACT_PRIORITY
)
1722 INIT_LIST_HEAD(&cc
.freepages
);
1723 INIT_LIST_HEAD(&cc
.migratepages
);
1725 ret
= compact_zone(zone
, &cc
);
1727 VM_BUG_ON(!list_empty(&cc
.freepages
));
1728 VM_BUG_ON(!list_empty(&cc
.migratepages
));
1733 int sysctl_extfrag_threshold
= 500;
1736 * try_to_compact_pages - Direct compact to satisfy a high-order allocation
1737 * @gfp_mask: The GFP mask of the current allocation
1738 * @order: The order of the current allocation
1739 * @alloc_flags: The allocation flags of the current allocation
1740 * @ac: The context of current allocation
1741 * @prio: Determines how hard direct compaction should try to succeed
1743 * This is the main entry point for direct page compaction.
1745 enum compact_result
try_to_compact_pages(gfp_t gfp_mask
, unsigned int order
,
1746 unsigned int alloc_flags
, const struct alloc_context
*ac
,
1747 enum compact_priority prio
)
1749 int may_perform_io
= gfp_mask
& __GFP_IO
;
1752 enum compact_result rc
= COMPACT_SKIPPED
;
1755 * Check if the GFP flags allow compaction - GFP_NOIO is really
1756 * tricky context because the migration might require IO
1758 if (!may_perform_io
)
1759 return COMPACT_SKIPPED
;
1761 trace_mm_compaction_try_to_compact_pages(order
, gfp_mask
, prio
);
1763 /* Compact each zone in the list */
1764 for_each_zone_zonelist_nodemask(zone
, z
, ac
->zonelist
, ac
->high_zoneidx
,
1766 enum compact_result status
;
1768 if (prio
> MIN_COMPACT_PRIORITY
1769 && compaction_deferred(zone
, order
)) {
1770 rc
= max_t(enum compact_result
, COMPACT_DEFERRED
, rc
);
1774 status
= compact_zone_order(zone
, order
, gfp_mask
, prio
,
1775 alloc_flags
, ac_classzone_idx(ac
));
1776 rc
= max(status
, rc
);
1778 /* The allocation should succeed, stop compacting */
1779 if (status
== COMPACT_SUCCESS
) {
1781 * We think the allocation will succeed in this zone,
1782 * but it is not certain, hence the false. The caller
1783 * will repeat this with true if allocation indeed
1784 * succeeds in this zone.
1786 compaction_defer_reset(zone
, order
, false);
1791 if (prio
!= COMPACT_PRIO_ASYNC
&& (status
== COMPACT_COMPLETE
||
1792 status
== COMPACT_PARTIAL_SKIPPED
))
1794 * We think that allocation won't succeed in this zone
1795 * so we defer compaction there. If it ends up
1796 * succeeding after all, it will be reset.
1798 defer_compaction(zone
, order
);
1801 * We might have stopped compacting due to need_resched() in
1802 * async compaction, or due to a fatal signal detected. In that
1803 * case do not try further zones
1805 if ((prio
== COMPACT_PRIO_ASYNC
&& need_resched())
1806 || fatal_signal_pending(current
))
1814 /* Compact all zones within a node */
1815 static void compact_node(int nid
)
1817 pg_data_t
*pgdat
= NODE_DATA(nid
);
1820 struct compact_control cc
= {
1822 .total_migrate_scanned
= 0,
1823 .total_free_scanned
= 0,
1824 .mode
= MIGRATE_SYNC
,
1825 .ignore_skip_hint
= true,
1827 .gfp_mask
= GFP_KERNEL
,
1831 for (zoneid
= 0; zoneid
< MAX_NR_ZONES
; zoneid
++) {
1833 zone
= &pgdat
->node_zones
[zoneid
];
1834 if (!populated_zone(zone
))
1837 cc
.nr_freepages
= 0;
1838 cc
.nr_migratepages
= 0;
1840 INIT_LIST_HEAD(&cc
.freepages
);
1841 INIT_LIST_HEAD(&cc
.migratepages
);
1843 compact_zone(zone
, &cc
);
1845 VM_BUG_ON(!list_empty(&cc
.freepages
));
1846 VM_BUG_ON(!list_empty(&cc
.migratepages
));
1850 /* Compact all nodes in the system */
1851 static void compact_nodes(void)
1855 /* Flush pending updates to the LRU lists */
1856 lru_add_drain_all();
1858 for_each_online_node(nid
)
1862 /* The written value is actually unused, all memory is compacted */
1863 int sysctl_compact_memory
;
1866 * This is the entry point for compacting all nodes via
1867 * /proc/sys/vm/compact_memory
1869 int sysctl_compaction_handler(struct ctl_table
*table
, int write
,
1870 void __user
*buffer
, size_t *length
, loff_t
*ppos
)
1878 int sysctl_extfrag_handler(struct ctl_table
*table
, int write
,
1879 void __user
*buffer
, size_t *length
, loff_t
*ppos
)
1881 proc_dointvec_minmax(table
, write
, buffer
, length
, ppos
);
1886 #if defined(CONFIG_SYSFS) && defined(CONFIG_NUMA)
1887 static ssize_t
sysfs_compact_node(struct device
*dev
,
1888 struct device_attribute
*attr
,
1889 const char *buf
, size_t count
)
1893 if (nid
>= 0 && nid
< nr_node_ids
&& node_online(nid
)) {
1894 /* Flush pending updates to the LRU lists */
1895 lru_add_drain_all();
1902 static DEVICE_ATTR(compact
, S_IWUSR
, NULL
, sysfs_compact_node
);
1904 int compaction_register_node(struct node
*node
)
1906 return device_create_file(&node
->dev
, &dev_attr_compact
);
1909 void compaction_unregister_node(struct node
*node
)
1911 return device_remove_file(&node
->dev
, &dev_attr_compact
);
1913 #endif /* CONFIG_SYSFS && CONFIG_NUMA */
1915 static inline bool kcompactd_work_requested(pg_data_t
*pgdat
)
1917 return pgdat
->kcompactd_max_order
> 0 || kthread_should_stop();
1920 static bool kcompactd_node_suitable(pg_data_t
*pgdat
)
1924 enum zone_type classzone_idx
= pgdat
->kcompactd_classzone_idx
;
1926 for (zoneid
= 0; zoneid
<= classzone_idx
; zoneid
++) {
1927 zone
= &pgdat
->node_zones
[zoneid
];
1929 if (!populated_zone(zone
))
1932 if (compaction_suitable(zone
, pgdat
->kcompactd_max_order
, 0,
1933 classzone_idx
) == COMPACT_CONTINUE
)
1940 static void kcompactd_do_work(pg_data_t
*pgdat
)
1943 * With no special task, compact all zones so that a page of requested
1944 * order is allocatable.
1948 struct compact_control cc
= {
1949 .order
= pgdat
->kcompactd_max_order
,
1950 .total_migrate_scanned
= 0,
1951 .total_free_scanned
= 0,
1952 .classzone_idx
= pgdat
->kcompactd_classzone_idx
,
1953 .mode
= MIGRATE_SYNC_LIGHT
,
1954 .ignore_skip_hint
= false,
1955 .gfp_mask
= GFP_KERNEL
,
1957 trace_mm_compaction_kcompactd_wake(pgdat
->node_id
, cc
.order
,
1959 count_compact_event(KCOMPACTD_WAKE
);
1961 for (zoneid
= 0; zoneid
<= cc
.classzone_idx
; zoneid
++) {
1964 zone
= &pgdat
->node_zones
[zoneid
];
1965 if (!populated_zone(zone
))
1968 if (compaction_deferred(zone
, cc
.order
))
1971 if (compaction_suitable(zone
, cc
.order
, 0, zoneid
) !=
1975 cc
.nr_freepages
= 0;
1976 cc
.nr_migratepages
= 0;
1977 cc
.total_migrate_scanned
= 0;
1978 cc
.total_free_scanned
= 0;
1980 INIT_LIST_HEAD(&cc
.freepages
);
1981 INIT_LIST_HEAD(&cc
.migratepages
);
1983 if (kthread_should_stop())
1985 status
= compact_zone(zone
, &cc
);
1987 if (status
== COMPACT_SUCCESS
) {
1988 compaction_defer_reset(zone
, cc
.order
, false);
1989 } else if (status
== COMPACT_PARTIAL_SKIPPED
|| status
== COMPACT_COMPLETE
) {
1991 * We use sync migration mode here, so we defer like
1992 * sync direct compaction does.
1994 defer_compaction(zone
, cc
.order
);
1997 count_compact_events(KCOMPACTD_MIGRATE_SCANNED
,
1998 cc
.total_migrate_scanned
);
1999 count_compact_events(KCOMPACTD_FREE_SCANNED
,
2000 cc
.total_free_scanned
);
2002 VM_BUG_ON(!list_empty(&cc
.freepages
));
2003 VM_BUG_ON(!list_empty(&cc
.migratepages
));
2007 * Regardless of success, we are done until woken up next. But remember
2008 * the requested order/classzone_idx in case it was higher/tighter than
2011 if (pgdat
->kcompactd_max_order
<= cc
.order
)
2012 pgdat
->kcompactd_max_order
= 0;
2013 if (pgdat
->kcompactd_classzone_idx
>= cc
.classzone_idx
)
2014 pgdat
->kcompactd_classzone_idx
= pgdat
->nr_zones
- 1;
2017 void wakeup_kcompactd(pg_data_t
*pgdat
, int order
, int classzone_idx
)
2022 if (pgdat
->kcompactd_max_order
< order
)
2023 pgdat
->kcompactd_max_order
= order
;
2025 if (pgdat
->kcompactd_classzone_idx
> classzone_idx
)
2026 pgdat
->kcompactd_classzone_idx
= classzone_idx
;
2029 * Pairs with implicit barrier in wait_event_freezable()
2030 * such that wakeups are not missed.
2032 if (!wq_has_sleeper(&pgdat
->kcompactd_wait
))
2035 if (!kcompactd_node_suitable(pgdat
))
2038 trace_mm_compaction_wakeup_kcompactd(pgdat
->node_id
, order
,
2040 wake_up_interruptible(&pgdat
->kcompactd_wait
);
2044 * The background compaction daemon, started as a kernel thread
2045 * from the init process.
2047 static int kcompactd(void *p
)
2049 pg_data_t
*pgdat
= (pg_data_t
*)p
;
2050 struct task_struct
*tsk
= current
;
2052 const struct cpumask
*cpumask
= cpumask_of_node(pgdat
->node_id
);
2054 if (!cpumask_empty(cpumask
))
2055 set_cpus_allowed_ptr(tsk
, cpumask
);
2059 pgdat
->kcompactd_max_order
= 0;
2060 pgdat
->kcompactd_classzone_idx
= pgdat
->nr_zones
- 1;
2062 while (!kthread_should_stop()) {
2063 trace_mm_compaction_kcompactd_sleep(pgdat
->node_id
);
2064 wait_event_freezable(pgdat
->kcompactd_wait
,
2065 kcompactd_work_requested(pgdat
));
2067 kcompactd_do_work(pgdat
);
2074 * This kcompactd start function will be called by init and node-hot-add.
2075 * On node-hot-add, kcompactd will moved to proper cpus if cpus are hot-added.
2077 int kcompactd_run(int nid
)
2079 pg_data_t
*pgdat
= NODE_DATA(nid
);
2082 if (pgdat
->kcompactd
)
2085 pgdat
->kcompactd
= kthread_run(kcompactd
, pgdat
, "kcompactd%d", nid
);
2086 if (IS_ERR(pgdat
->kcompactd
)) {
2087 pr_err("Failed to start kcompactd on node %d\n", nid
);
2088 ret
= PTR_ERR(pgdat
->kcompactd
);
2089 pgdat
->kcompactd
= NULL
;
2095 * Called by memory hotplug when all memory in a node is offlined. Caller must
2096 * hold mem_hotplug_begin/end().
2098 void kcompactd_stop(int nid
)
2100 struct task_struct
*kcompactd
= NODE_DATA(nid
)->kcompactd
;
2103 kthread_stop(kcompactd
);
2104 NODE_DATA(nid
)->kcompactd
= NULL
;
2109 * It's optimal to keep kcompactd on the same CPUs as their memory, but
2110 * not required for correctness. So if the last cpu in a node goes
2111 * away, we get changed to run anywhere: as the first one comes back,
2112 * restore their cpu bindings.
2114 static int kcompactd_cpu_online(unsigned int cpu
)
2118 for_each_node_state(nid
, N_MEMORY
) {
2119 pg_data_t
*pgdat
= NODE_DATA(nid
);
2120 const struct cpumask
*mask
;
2122 mask
= cpumask_of_node(pgdat
->node_id
);
2124 if (cpumask_any_and(cpu_online_mask
, mask
) < nr_cpu_ids
)
2125 /* One of our CPUs online: restore mask */
2126 set_cpus_allowed_ptr(pgdat
->kcompactd
, mask
);
2131 static int __init
kcompactd_init(void)
2136 ret
= cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN
,
2137 "mm/compaction:online",
2138 kcompactd_cpu_online
, NULL
);
2140 pr_err("kcompactd: failed to register hotplug callbacks.\n");
2144 for_each_node_state(nid
, N_MEMORY
)
2148 subsys_initcall(kcompactd_init
)
2150 #endif /* CONFIG_COMPACTION */