1 // SPDX-License-Identifier: GPL-2.0
3 * Slab allocator functions that are independent of the allocator strategy
5 * (C) 2012 Christoph Lameter <cl@linux.com>
7 #include <linux/slab.h>
10 #include <linux/poison.h>
11 #include <linux/interrupt.h>
12 #include <linux/memory.h>
13 #include <linux/compiler.h>
14 #include <linux/module.h>
15 #include <linux/cpu.h>
16 #include <linux/uaccess.h>
17 #include <linux/seq_file.h>
18 #include <linux/proc_fs.h>
19 #include <asm/cacheflush.h>
20 #include <asm/tlbflush.h>
22 #include <linux/memcontrol.h>
24 #define CREATE_TRACE_POINTS
25 #include <trace/events/kmem.h>
29 enum slab_state slab_state
;
30 LIST_HEAD(slab_caches
);
31 DEFINE_MUTEX(slab_mutex
);
32 struct kmem_cache
*kmem_cache
;
34 #ifdef CONFIG_HARDENED_USERCOPY
35 bool usercopy_fallback __ro_after_init
=
36 IS_ENABLED(CONFIG_HARDENED_USERCOPY_FALLBACK
);
37 module_param(usercopy_fallback
, bool, 0400);
38 MODULE_PARM_DESC(usercopy_fallback
,
39 "WARN instead of reject usercopy whitelist violations");
42 static LIST_HEAD(slab_caches_to_rcu_destroy
);
43 static void slab_caches_to_rcu_destroy_workfn(struct work_struct
*work
);
44 static DECLARE_WORK(slab_caches_to_rcu_destroy_work
,
45 slab_caches_to_rcu_destroy_workfn
);
48 * Set of flags that will prevent slab merging
50 #define SLAB_NEVER_MERGE (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
51 SLAB_TRACE | SLAB_TYPESAFE_BY_RCU | SLAB_NOLEAKTRACE | \
52 SLAB_FAILSLAB | SLAB_KASAN)
54 #define SLAB_MERGE_SAME (SLAB_RECLAIM_ACCOUNT | SLAB_CACHE_DMA | \
58 * Merge control. If this is set then no merging of slab caches will occur.
60 static bool slab_nomerge
= !IS_ENABLED(CONFIG_SLAB_MERGE_DEFAULT
);
62 static int __init
setup_slab_nomerge(char *str
)
69 __setup_param("slub_nomerge", slub_nomerge
, setup_slab_nomerge
, 0);
72 __setup("slab_nomerge", setup_slab_nomerge
);
75 * Determine the size of a slab object
77 unsigned int kmem_cache_size(struct kmem_cache
*s
)
79 return s
->object_size
;
81 EXPORT_SYMBOL(kmem_cache_size
);
83 #ifdef CONFIG_DEBUG_VM
84 static int kmem_cache_sanity_check(const char *name
, size_t size
)
86 struct kmem_cache
*s
= NULL
;
88 if (!name
|| in_interrupt() || size
< sizeof(void *) ||
89 size
> KMALLOC_MAX_SIZE
) {
90 pr_err("kmem_cache_create(%s) integrity check failed\n", name
);
94 list_for_each_entry(s
, &slab_caches
, list
) {
99 * This happens when the module gets unloaded and doesn't
100 * destroy its slab cache and no-one else reuses the vmalloc
101 * area of the module. Print a warning.
103 res
= probe_kernel_address(s
->name
, tmp
);
105 pr_err("Slab cache with size %d has lost its name\n",
111 WARN_ON(strchr(name
, ' ')); /* It confuses parsers */
115 static inline int kmem_cache_sanity_check(const char *name
, size_t size
)
121 void __kmem_cache_free_bulk(struct kmem_cache
*s
, size_t nr
, void **p
)
125 for (i
= 0; i
< nr
; i
++) {
127 kmem_cache_free(s
, p
[i
]);
133 int __kmem_cache_alloc_bulk(struct kmem_cache
*s
, gfp_t flags
, size_t nr
,
138 for (i
= 0; i
< nr
; i
++) {
139 void *x
= p
[i
] = kmem_cache_alloc(s
, flags
);
141 __kmem_cache_free_bulk(s
, i
, p
);
148 #if defined(CONFIG_MEMCG) && !defined(CONFIG_SLOB)
150 LIST_HEAD(slab_root_caches
);
152 void slab_init_memcg_params(struct kmem_cache
*s
)
154 s
->memcg_params
.root_cache
= NULL
;
155 RCU_INIT_POINTER(s
->memcg_params
.memcg_caches
, NULL
);
156 INIT_LIST_HEAD(&s
->memcg_params
.children
);
159 static int init_memcg_params(struct kmem_cache
*s
,
160 struct mem_cgroup
*memcg
, struct kmem_cache
*root_cache
)
162 struct memcg_cache_array
*arr
;
165 s
->memcg_params
.root_cache
= root_cache
;
166 s
->memcg_params
.memcg
= memcg
;
167 INIT_LIST_HEAD(&s
->memcg_params
.children_node
);
168 INIT_LIST_HEAD(&s
->memcg_params
.kmem_caches_node
);
172 slab_init_memcg_params(s
);
174 if (!memcg_nr_cache_ids
)
177 arr
= kvzalloc(sizeof(struct memcg_cache_array
) +
178 memcg_nr_cache_ids
* sizeof(void *),
183 RCU_INIT_POINTER(s
->memcg_params
.memcg_caches
, arr
);
187 static void destroy_memcg_params(struct kmem_cache
*s
)
189 if (is_root_cache(s
))
190 kvfree(rcu_access_pointer(s
->memcg_params
.memcg_caches
));
193 static void free_memcg_params(struct rcu_head
*rcu
)
195 struct memcg_cache_array
*old
;
197 old
= container_of(rcu
, struct memcg_cache_array
, rcu
);
201 static int update_memcg_params(struct kmem_cache
*s
, int new_array_size
)
203 struct memcg_cache_array
*old
, *new;
205 new = kvzalloc(sizeof(struct memcg_cache_array
) +
206 new_array_size
* sizeof(void *), GFP_KERNEL
);
210 old
= rcu_dereference_protected(s
->memcg_params
.memcg_caches
,
211 lockdep_is_held(&slab_mutex
));
213 memcpy(new->entries
, old
->entries
,
214 memcg_nr_cache_ids
* sizeof(void *));
216 rcu_assign_pointer(s
->memcg_params
.memcg_caches
, new);
218 call_rcu(&old
->rcu
, free_memcg_params
);
222 int memcg_update_all_caches(int num_memcgs
)
224 struct kmem_cache
*s
;
227 mutex_lock(&slab_mutex
);
228 list_for_each_entry(s
, &slab_root_caches
, root_caches_node
) {
229 ret
= update_memcg_params(s
, num_memcgs
);
231 * Instead of freeing the memory, we'll just leave the caches
232 * up to this point in an updated state.
237 mutex_unlock(&slab_mutex
);
241 void memcg_link_cache(struct kmem_cache
*s
)
243 if (is_root_cache(s
)) {
244 list_add(&s
->root_caches_node
, &slab_root_caches
);
246 list_add(&s
->memcg_params
.children_node
,
247 &s
->memcg_params
.root_cache
->memcg_params
.children
);
248 list_add(&s
->memcg_params
.kmem_caches_node
,
249 &s
->memcg_params
.memcg
->kmem_caches
);
253 static void memcg_unlink_cache(struct kmem_cache
*s
)
255 if (is_root_cache(s
)) {
256 list_del(&s
->root_caches_node
);
258 list_del(&s
->memcg_params
.children_node
);
259 list_del(&s
->memcg_params
.kmem_caches_node
);
263 static inline int init_memcg_params(struct kmem_cache
*s
,
264 struct mem_cgroup
*memcg
, struct kmem_cache
*root_cache
)
269 static inline void destroy_memcg_params(struct kmem_cache
*s
)
273 static inline void memcg_unlink_cache(struct kmem_cache
*s
)
276 #endif /* CONFIG_MEMCG && !CONFIG_SLOB */
279 * Figure out what the alignment of the objects will be given a set of
280 * flags, a user specified alignment and the size of the objects.
282 static unsigned long calculate_alignment(unsigned long flags
,
283 unsigned long align
, unsigned long size
)
286 * If the user wants hardware cache aligned objects then follow that
287 * suggestion if the object is sufficiently large.
289 * The hardware cache alignment cannot override the specified
290 * alignment though. If that is greater then use it.
292 if (flags
& SLAB_HWCACHE_ALIGN
) {
293 unsigned long ralign
;
295 ralign
= cache_line_size();
296 while (size
<= ralign
/ 2)
298 align
= max(align
, ralign
);
301 if (align
< ARCH_SLAB_MINALIGN
)
302 align
= ARCH_SLAB_MINALIGN
;
304 return ALIGN(align
, sizeof(void *));
308 * Find a mergeable slab cache
310 int slab_unmergeable(struct kmem_cache
*s
)
312 if (slab_nomerge
|| (s
->flags
& SLAB_NEVER_MERGE
))
315 if (!is_root_cache(s
))
325 * We may have set a slab to be unmergeable during bootstrap.
333 struct kmem_cache
*find_mergeable(size_t size
, size_t align
,
334 slab_flags_t flags
, const char *name
, void (*ctor
)(void *))
336 struct kmem_cache
*s
;
344 size
= ALIGN(size
, sizeof(void *));
345 align
= calculate_alignment(flags
, align
, size
);
346 size
= ALIGN(size
, align
);
347 flags
= kmem_cache_flags(size
, flags
, name
, NULL
);
349 if (flags
& SLAB_NEVER_MERGE
)
352 list_for_each_entry_reverse(s
, &slab_root_caches
, root_caches_node
) {
353 if (slab_unmergeable(s
))
359 if ((flags
& SLAB_MERGE_SAME
) != (s
->flags
& SLAB_MERGE_SAME
))
362 * Check if alignment is compatible.
363 * Courtesy of Adrian Drzewiecki
365 if ((s
->size
& ~(align
- 1)) != s
->size
)
368 if (s
->size
- size
>= sizeof(void *))
371 if (IS_ENABLED(CONFIG_SLAB
) && align
&&
372 (align
> s
->align
|| s
->align
% align
))
380 static struct kmem_cache
*create_cache(const char *name
,
381 size_t object_size
, size_t size
, size_t align
,
382 slab_flags_t flags
, size_t useroffset
,
383 size_t usersize
, void (*ctor
)(void *),
384 struct mem_cgroup
*memcg
, struct kmem_cache
*root_cache
)
386 struct kmem_cache
*s
;
389 if (WARN_ON(useroffset
+ usersize
> object_size
))
390 useroffset
= usersize
= 0;
393 s
= kmem_cache_zalloc(kmem_cache
, GFP_KERNEL
);
398 s
->object_size
= object_size
;
402 s
->useroffset
= useroffset
;
403 s
->usersize
= usersize
;
405 err
= init_memcg_params(s
, memcg
, root_cache
);
409 err
= __kmem_cache_create(s
, flags
);
414 list_add(&s
->list
, &slab_caches
);
422 destroy_memcg_params(s
);
423 kmem_cache_free(kmem_cache
, s
);
428 * kmem_cache_create_usercopy - Create a cache.
429 * @name: A string which is used in /proc/slabinfo to identify this cache.
430 * @size: The size of objects to be created in this cache.
431 * @align: The required alignment for the objects.
433 * @useroffset: Usercopy region offset
434 * @usersize: Usercopy region size
435 * @ctor: A constructor for the objects.
437 * Returns a ptr to the cache on success, NULL on failure.
438 * Cannot be called within a interrupt, but can be interrupted.
439 * The @ctor is run when new pages are allocated by the cache.
443 * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
444 * to catch references to uninitialised memory.
446 * %SLAB_RED_ZONE - Insert `Red' zones around the allocated memory to check
447 * for buffer overruns.
449 * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
450 * cacheline. This can be beneficial if you're counting cycles as closely
454 kmem_cache_create_usercopy(const char *name
, size_t size
, size_t align
,
455 slab_flags_t flags
, size_t useroffset
, size_t usersize
,
456 void (*ctor
)(void *))
458 struct kmem_cache
*s
= NULL
;
459 const char *cache_name
;
464 memcg_get_cache_ids();
466 mutex_lock(&slab_mutex
);
468 err
= kmem_cache_sanity_check(name
, size
);
473 /* Refuse requests with allocator specific flags */
474 if (flags
& ~SLAB_FLAGS_PERMITTED
) {
480 * Some allocators will constraint the set of valid flags to a subset
481 * of all flags. We expect them to define CACHE_CREATE_MASK in this
482 * case, and we'll just provide them with a sanitized version of the
485 flags
&= CACHE_CREATE_MASK
;
487 /* Fail closed on bad usersize of useroffset values. */
488 if (WARN_ON(!usersize
&& useroffset
) ||
489 WARN_ON(size
< usersize
|| size
- usersize
< useroffset
))
490 usersize
= useroffset
= 0;
493 s
= __kmem_cache_alias(name
, size
, align
, flags
, ctor
);
497 cache_name
= kstrdup_const(name
, GFP_KERNEL
);
503 s
= create_cache(cache_name
, size
, size
,
504 calculate_alignment(flags
, align
, size
),
505 flags
, useroffset
, usersize
, ctor
, NULL
, NULL
);
508 kfree_const(cache_name
);
512 mutex_unlock(&slab_mutex
);
514 memcg_put_cache_ids();
519 if (flags
& SLAB_PANIC
)
520 panic("kmem_cache_create: Failed to create slab '%s'. Error %d\n",
523 pr_warn("kmem_cache_create(%s) failed with error %d\n",
531 EXPORT_SYMBOL(kmem_cache_create_usercopy
);
534 kmem_cache_create(const char *name
, size_t size
, size_t align
,
535 slab_flags_t flags
, void (*ctor
)(void *))
537 return kmem_cache_create_usercopy(name
, size
, align
, flags
, 0, 0,
540 EXPORT_SYMBOL(kmem_cache_create
);
542 static void slab_caches_to_rcu_destroy_workfn(struct work_struct
*work
)
544 LIST_HEAD(to_destroy
);
545 struct kmem_cache
*s
, *s2
;
548 * On destruction, SLAB_TYPESAFE_BY_RCU kmem_caches are put on the
549 * @slab_caches_to_rcu_destroy list. The slab pages are freed
550 * through RCU and and the associated kmem_cache are dereferenced
551 * while freeing the pages, so the kmem_caches should be freed only
552 * after the pending RCU operations are finished. As rcu_barrier()
553 * is a pretty slow operation, we batch all pending destructions
556 mutex_lock(&slab_mutex
);
557 list_splice_init(&slab_caches_to_rcu_destroy
, &to_destroy
);
558 mutex_unlock(&slab_mutex
);
560 if (list_empty(&to_destroy
))
565 list_for_each_entry_safe(s
, s2
, &to_destroy
, list
) {
566 #ifdef SLAB_SUPPORTS_SYSFS
567 sysfs_slab_release(s
);
569 slab_kmem_cache_release(s
);
574 static int shutdown_cache(struct kmem_cache
*s
)
576 /* free asan quarantined objects */
577 kasan_cache_shutdown(s
);
579 if (__kmem_cache_shutdown(s
) != 0)
582 memcg_unlink_cache(s
);
585 if (s
->flags
& SLAB_TYPESAFE_BY_RCU
) {
586 list_add_tail(&s
->list
, &slab_caches_to_rcu_destroy
);
587 schedule_work(&slab_caches_to_rcu_destroy_work
);
589 #ifdef SLAB_SUPPORTS_SYSFS
590 sysfs_slab_release(s
);
592 slab_kmem_cache_release(s
);
599 #if defined(CONFIG_MEMCG) && !defined(CONFIG_SLOB)
601 * memcg_create_kmem_cache - Create a cache for a memory cgroup.
602 * @memcg: The memory cgroup the new cache is for.
603 * @root_cache: The parent of the new cache.
605 * This function attempts to create a kmem cache that will serve allocation
606 * requests going from @memcg to @root_cache. The new cache inherits properties
609 void memcg_create_kmem_cache(struct mem_cgroup
*memcg
,
610 struct kmem_cache
*root_cache
)
612 static char memcg_name_buf
[NAME_MAX
+ 1]; /* protected by slab_mutex */
613 struct cgroup_subsys_state
*css
= &memcg
->css
;
614 struct memcg_cache_array
*arr
;
615 struct kmem_cache
*s
= NULL
;
622 mutex_lock(&slab_mutex
);
625 * The memory cgroup could have been offlined while the cache
626 * creation work was pending.
628 if (memcg
->kmem_state
!= KMEM_ONLINE
)
631 idx
= memcg_cache_id(memcg
);
632 arr
= rcu_dereference_protected(root_cache
->memcg_params
.memcg_caches
,
633 lockdep_is_held(&slab_mutex
));
636 * Since per-memcg caches are created asynchronously on first
637 * allocation (see memcg_kmem_get_cache()), several threads can try to
638 * create the same cache, but only one of them may succeed.
640 if (arr
->entries
[idx
])
643 cgroup_name(css
->cgroup
, memcg_name_buf
, sizeof(memcg_name_buf
));
644 cache_name
= kasprintf(GFP_KERNEL
, "%s(%llu:%s)", root_cache
->name
,
645 css
->serial_nr
, memcg_name_buf
);
649 s
= create_cache(cache_name
, root_cache
->object_size
,
650 root_cache
->size
, root_cache
->align
,
651 root_cache
->flags
& CACHE_CREATE_MASK
,
652 root_cache
->useroffset
, root_cache
->usersize
,
653 root_cache
->ctor
, memcg
, root_cache
);
655 * If we could not create a memcg cache, do not complain, because
656 * that's not critical at all as we can always proceed with the root
665 * Since readers won't lock (see cache_from_memcg_idx()), we need a
666 * barrier here to ensure nobody will see the kmem_cache partially
670 arr
->entries
[idx
] = s
;
673 mutex_unlock(&slab_mutex
);
679 static void kmemcg_deactivate_workfn(struct work_struct
*work
)
681 struct kmem_cache
*s
= container_of(work
, struct kmem_cache
,
682 memcg_params
.deact_work
);
687 mutex_lock(&slab_mutex
);
689 s
->memcg_params
.deact_fn(s
);
691 mutex_unlock(&slab_mutex
);
696 /* done, put the ref from slab_deactivate_memcg_cache_rcu_sched() */
697 css_put(&s
->memcg_params
.memcg
->css
);
700 static void kmemcg_deactivate_rcufn(struct rcu_head
*head
)
702 struct kmem_cache
*s
= container_of(head
, struct kmem_cache
,
703 memcg_params
.deact_rcu_head
);
706 * We need to grab blocking locks. Bounce to ->deact_work. The
707 * work item shares the space with the RCU head and can't be
708 * initialized eariler.
710 INIT_WORK(&s
->memcg_params
.deact_work
, kmemcg_deactivate_workfn
);
711 queue_work(memcg_kmem_cache_wq
, &s
->memcg_params
.deact_work
);
715 * slab_deactivate_memcg_cache_rcu_sched - schedule deactivation after a
716 * sched RCU grace period
717 * @s: target kmem_cache
718 * @deact_fn: deactivation function to call
720 * Schedule @deact_fn to be invoked with online cpus, mems and slab_mutex
721 * held after a sched RCU grace period. The slab is guaranteed to stay
722 * alive until @deact_fn is finished. This is to be used from
723 * __kmemcg_cache_deactivate().
725 void slab_deactivate_memcg_cache_rcu_sched(struct kmem_cache
*s
,
726 void (*deact_fn
)(struct kmem_cache
*))
728 if (WARN_ON_ONCE(is_root_cache(s
)) ||
729 WARN_ON_ONCE(s
->memcg_params
.deact_fn
))
732 /* pin memcg so that @s doesn't get destroyed in the middle */
733 css_get(&s
->memcg_params
.memcg
->css
);
735 s
->memcg_params
.deact_fn
= deact_fn
;
736 call_rcu_sched(&s
->memcg_params
.deact_rcu_head
, kmemcg_deactivate_rcufn
);
739 void memcg_deactivate_kmem_caches(struct mem_cgroup
*memcg
)
742 struct memcg_cache_array
*arr
;
743 struct kmem_cache
*s
, *c
;
745 idx
= memcg_cache_id(memcg
);
750 mutex_lock(&slab_mutex
);
751 list_for_each_entry(s
, &slab_root_caches
, root_caches_node
) {
752 arr
= rcu_dereference_protected(s
->memcg_params
.memcg_caches
,
753 lockdep_is_held(&slab_mutex
));
754 c
= arr
->entries
[idx
];
758 __kmemcg_cache_deactivate(c
);
759 arr
->entries
[idx
] = NULL
;
761 mutex_unlock(&slab_mutex
);
767 void memcg_destroy_kmem_caches(struct mem_cgroup
*memcg
)
769 struct kmem_cache
*s
, *s2
;
774 mutex_lock(&slab_mutex
);
775 list_for_each_entry_safe(s
, s2
, &memcg
->kmem_caches
,
776 memcg_params
.kmem_caches_node
) {
778 * The cgroup is about to be freed and therefore has no charges
779 * left. Hence, all its caches must be empty by now.
781 BUG_ON(shutdown_cache(s
));
783 mutex_unlock(&slab_mutex
);
789 static int shutdown_memcg_caches(struct kmem_cache
*s
)
791 struct memcg_cache_array
*arr
;
792 struct kmem_cache
*c
, *c2
;
796 BUG_ON(!is_root_cache(s
));
799 * First, shutdown active caches, i.e. caches that belong to online
802 arr
= rcu_dereference_protected(s
->memcg_params
.memcg_caches
,
803 lockdep_is_held(&slab_mutex
));
804 for_each_memcg_cache_index(i
) {
808 if (shutdown_cache(c
))
810 * The cache still has objects. Move it to a temporary
811 * list so as not to try to destroy it for a second
812 * time while iterating over inactive caches below.
814 list_move(&c
->memcg_params
.children_node
, &busy
);
817 * The cache is empty and will be destroyed soon. Clear
818 * the pointer to it in the memcg_caches array so that
819 * it will never be accessed even if the root cache
822 arr
->entries
[i
] = NULL
;
826 * Second, shutdown all caches left from memory cgroups that are now
829 list_for_each_entry_safe(c
, c2
, &s
->memcg_params
.children
,
830 memcg_params
.children_node
)
833 list_splice(&busy
, &s
->memcg_params
.children
);
836 * A cache being destroyed must be empty. In particular, this means
837 * that all per memcg caches attached to it must be empty too.
839 if (!list_empty(&s
->memcg_params
.children
))
844 static inline int shutdown_memcg_caches(struct kmem_cache
*s
)
848 #endif /* CONFIG_MEMCG && !CONFIG_SLOB */
850 void slab_kmem_cache_release(struct kmem_cache
*s
)
852 __kmem_cache_release(s
);
853 destroy_memcg_params(s
);
854 kfree_const(s
->name
);
855 kmem_cache_free(kmem_cache
, s
);
858 void kmem_cache_destroy(struct kmem_cache
*s
)
868 mutex_lock(&slab_mutex
);
874 err
= shutdown_memcg_caches(s
);
876 err
= shutdown_cache(s
);
879 pr_err("kmem_cache_destroy %s: Slab cache still has objects\n",
884 mutex_unlock(&slab_mutex
);
889 EXPORT_SYMBOL(kmem_cache_destroy
);
892 * kmem_cache_shrink - Shrink a cache.
893 * @cachep: The cache to shrink.
895 * Releases as many slabs as possible for a cache.
896 * To help debugging, a zero exit status indicates all slabs were released.
898 int kmem_cache_shrink(struct kmem_cache
*cachep
)
904 kasan_cache_shrink(cachep
);
905 ret
= __kmem_cache_shrink(cachep
);
910 EXPORT_SYMBOL(kmem_cache_shrink
);
912 bool slab_is_available(void)
914 return slab_state
>= UP
;
918 /* Create a cache during boot when no slab services are available yet */
919 void __init
create_boot_cache(struct kmem_cache
*s
, const char *name
, size_t size
,
920 slab_flags_t flags
, size_t useroffset
, size_t usersize
)
925 s
->size
= s
->object_size
= size
;
926 s
->align
= calculate_alignment(flags
, ARCH_KMALLOC_MINALIGN
, size
);
927 s
->useroffset
= useroffset
;
928 s
->usersize
= usersize
;
930 slab_init_memcg_params(s
);
932 err
= __kmem_cache_create(s
, flags
);
935 panic("Creation of kmalloc slab %s size=%zu failed. Reason %d\n",
938 s
->refcount
= -1; /* Exempt from merging for now */
941 struct kmem_cache
*__init
create_kmalloc_cache(const char *name
, size_t size
,
942 slab_flags_t flags
, size_t useroffset
,
945 struct kmem_cache
*s
= kmem_cache_zalloc(kmem_cache
, GFP_NOWAIT
);
948 panic("Out of memory when creating slab %s\n", name
);
950 create_boot_cache(s
, name
, size
, flags
, useroffset
, usersize
);
951 list_add(&s
->list
, &slab_caches
);
957 struct kmem_cache
*kmalloc_caches
[KMALLOC_SHIFT_HIGH
+ 1];
958 EXPORT_SYMBOL(kmalloc_caches
);
960 #ifdef CONFIG_ZONE_DMA
961 struct kmem_cache
*kmalloc_dma_caches
[KMALLOC_SHIFT_HIGH
+ 1];
962 EXPORT_SYMBOL(kmalloc_dma_caches
);
966 * Conversion table for small slabs sizes / 8 to the index in the
967 * kmalloc array. This is necessary for slabs < 192 since we have non power
968 * of two cache sizes there. The size of larger slabs can be determined using
971 static s8 size_index
[24] = {
998 static inline int size_index_elem(size_t bytes
)
1000 return (bytes
- 1) / 8;
1004 * Find the kmem_cache structure that serves a given size of
1007 struct kmem_cache
*kmalloc_slab(size_t size
, gfp_t flags
)
1011 if (unlikely(size
> KMALLOC_MAX_SIZE
)) {
1012 WARN_ON_ONCE(!(flags
& __GFP_NOWARN
));
1018 return ZERO_SIZE_PTR
;
1020 index
= size_index
[size_index_elem(size
)];
1022 index
= fls(size
- 1);
1024 #ifdef CONFIG_ZONE_DMA
1025 if (unlikely((flags
& GFP_DMA
)))
1026 return kmalloc_dma_caches
[index
];
1029 return kmalloc_caches
[index
];
1033 * kmalloc_info[] is to make slub_debug=,kmalloc-xx option work at boot time.
1034 * kmalloc_index() supports up to 2^26=64MB, so the final entry of the table is
1037 const struct kmalloc_info_struct kmalloc_info
[] __initconst
= {
1038 {NULL
, 0}, {"kmalloc-96", 96},
1039 {"kmalloc-192", 192}, {"kmalloc-8", 8},
1040 {"kmalloc-16", 16}, {"kmalloc-32", 32},
1041 {"kmalloc-64", 64}, {"kmalloc-128", 128},
1042 {"kmalloc-256", 256}, {"kmalloc-512", 512},
1043 {"kmalloc-1024", 1024}, {"kmalloc-2048", 2048},
1044 {"kmalloc-4096", 4096}, {"kmalloc-8192", 8192},
1045 {"kmalloc-16384", 16384}, {"kmalloc-32768", 32768},
1046 {"kmalloc-65536", 65536}, {"kmalloc-131072", 131072},
1047 {"kmalloc-262144", 262144}, {"kmalloc-524288", 524288},
1048 {"kmalloc-1048576", 1048576}, {"kmalloc-2097152", 2097152},
1049 {"kmalloc-4194304", 4194304}, {"kmalloc-8388608", 8388608},
1050 {"kmalloc-16777216", 16777216}, {"kmalloc-33554432", 33554432},
1051 {"kmalloc-67108864", 67108864}
1055 * Patch up the size_index table if we have strange large alignment
1056 * requirements for the kmalloc array. This is only the case for
1057 * MIPS it seems. The standard arches will not generate any code here.
1059 * Largest permitted alignment is 256 bytes due to the way we
1060 * handle the index determination for the smaller caches.
1062 * Make sure that nothing crazy happens if someone starts tinkering
1063 * around with ARCH_KMALLOC_MINALIGN
1065 void __init
setup_kmalloc_cache_index_table(void)
1069 BUILD_BUG_ON(KMALLOC_MIN_SIZE
> 256 ||
1070 (KMALLOC_MIN_SIZE
& (KMALLOC_MIN_SIZE
- 1)));
1072 for (i
= 8; i
< KMALLOC_MIN_SIZE
; i
+= 8) {
1073 int elem
= size_index_elem(i
);
1075 if (elem
>= ARRAY_SIZE(size_index
))
1077 size_index
[elem
] = KMALLOC_SHIFT_LOW
;
1080 if (KMALLOC_MIN_SIZE
>= 64) {
1082 * The 96 byte size cache is not used if the alignment
1085 for (i
= 64 + 8; i
<= 96; i
+= 8)
1086 size_index
[size_index_elem(i
)] = 7;
1090 if (KMALLOC_MIN_SIZE
>= 128) {
1092 * The 192 byte sized cache is not used if the alignment
1093 * is 128 byte. Redirect kmalloc to use the 256 byte cache
1096 for (i
= 128 + 8; i
<= 192; i
+= 8)
1097 size_index
[size_index_elem(i
)] = 8;
1101 static void __init
new_kmalloc_cache(int idx
, slab_flags_t flags
)
1103 kmalloc_caches
[idx
] = create_kmalloc_cache(kmalloc_info
[idx
].name
,
1104 kmalloc_info
[idx
].size
, flags
, 0,
1105 kmalloc_info
[idx
].size
);
1109 * Create the kmalloc array. Some of the regular kmalloc arrays
1110 * may already have been created because they were needed to
1111 * enable allocations for slab creation.
1113 void __init
create_kmalloc_caches(slab_flags_t flags
)
1117 for (i
= KMALLOC_SHIFT_LOW
; i
<= KMALLOC_SHIFT_HIGH
; i
++) {
1118 if (!kmalloc_caches
[i
])
1119 new_kmalloc_cache(i
, flags
);
1122 * Caches that are not of the two-to-the-power-of size.
1123 * These have to be created immediately after the
1124 * earlier power of two caches
1126 if (KMALLOC_MIN_SIZE
<= 32 && !kmalloc_caches
[1] && i
== 6)
1127 new_kmalloc_cache(1, flags
);
1128 if (KMALLOC_MIN_SIZE
<= 64 && !kmalloc_caches
[2] && i
== 7)
1129 new_kmalloc_cache(2, flags
);
1132 /* Kmalloc array is now usable */
1135 #ifdef CONFIG_ZONE_DMA
1136 for (i
= 0; i
<= KMALLOC_SHIFT_HIGH
; i
++) {
1137 struct kmem_cache
*s
= kmalloc_caches
[i
];
1140 int size
= kmalloc_size(i
);
1141 char *n
= kasprintf(GFP_NOWAIT
,
1142 "dma-kmalloc-%d", size
);
1145 kmalloc_dma_caches
[i
] = create_kmalloc_cache(n
,
1146 size
, SLAB_CACHE_DMA
| flags
, 0, 0);
1151 #endif /* !CONFIG_SLOB */
1154 * To avoid unnecessary overhead, we pass through large allocation requests
1155 * directly to the page allocator. We use __GFP_COMP, because we will need to
1156 * know the allocation order to free the pages properly in kfree.
1158 void *kmalloc_order(size_t size
, gfp_t flags
, unsigned int order
)
1163 flags
|= __GFP_COMP
;
1164 page
= alloc_pages(flags
, order
);
1165 ret
= page
? page_address(page
) : NULL
;
1166 kmemleak_alloc(ret
, size
, 1, flags
);
1167 kasan_kmalloc_large(ret
, size
, flags
);
1170 EXPORT_SYMBOL(kmalloc_order
);
1172 #ifdef CONFIG_TRACING
1173 void *kmalloc_order_trace(size_t size
, gfp_t flags
, unsigned int order
)
1175 void *ret
= kmalloc_order(size
, flags
, order
);
1176 trace_kmalloc(_RET_IP_
, ret
, size
, PAGE_SIZE
<< order
, flags
);
1179 EXPORT_SYMBOL(kmalloc_order_trace
);
1182 #ifdef CONFIG_SLAB_FREELIST_RANDOM
1183 /* Randomize a generic freelist */
1184 static void freelist_randomize(struct rnd_state
*state
, unsigned int *list
,
1190 for (i
= 0; i
< count
; i
++)
1193 /* Fisher-Yates shuffle */
1194 for (i
= count
- 1; i
> 0; i
--) {
1195 rand
= prandom_u32_state(state
);
1197 swap(list
[i
], list
[rand
]);
1201 /* Create a random sequence per cache */
1202 int cache_random_seq_create(struct kmem_cache
*cachep
, unsigned int count
,
1205 struct rnd_state state
;
1207 if (count
< 2 || cachep
->random_seq
)
1210 cachep
->random_seq
= kcalloc(count
, sizeof(unsigned int), gfp
);
1211 if (!cachep
->random_seq
)
1214 /* Get best entropy at this stage of boot */
1215 prandom_seed_state(&state
, get_random_long());
1217 freelist_randomize(&state
, cachep
->random_seq
, count
);
1221 /* Destroy the per-cache random freelist sequence */
1222 void cache_random_seq_destroy(struct kmem_cache
*cachep
)
1224 kfree(cachep
->random_seq
);
1225 cachep
->random_seq
= NULL
;
1227 #endif /* CONFIG_SLAB_FREELIST_RANDOM */
1229 #if defined(CONFIG_SLAB) || defined(CONFIG_SLUB_DEBUG)
1231 #define SLABINFO_RIGHTS (S_IWUSR | S_IRUSR)
1233 #define SLABINFO_RIGHTS S_IRUSR
1236 static void print_slabinfo_header(struct seq_file
*m
)
1239 * Output format version, so at least we can change it
1240 * without _too_ many complaints.
1242 #ifdef CONFIG_DEBUG_SLAB
1243 seq_puts(m
, "slabinfo - version: 2.1 (statistics)\n");
1245 seq_puts(m
, "slabinfo - version: 2.1\n");
1247 seq_puts(m
, "# name <active_objs> <num_objs> <objsize> <objperslab> <pagesperslab>");
1248 seq_puts(m
, " : tunables <limit> <batchcount> <sharedfactor>");
1249 seq_puts(m
, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
1250 #ifdef CONFIG_DEBUG_SLAB
1251 seq_puts(m
, " : globalstat <listallocs> <maxobjs> <grown> <reaped> <error> <maxfreeable> <nodeallocs> <remotefrees> <alienoverflow>");
1252 seq_puts(m
, " : cpustat <allochit> <allocmiss> <freehit> <freemiss>");
1257 void *slab_start(struct seq_file
*m
, loff_t
*pos
)
1259 mutex_lock(&slab_mutex
);
1260 return seq_list_start(&slab_root_caches
, *pos
);
1263 void *slab_next(struct seq_file
*m
, void *p
, loff_t
*pos
)
1265 return seq_list_next(p
, &slab_root_caches
, pos
);
1268 void slab_stop(struct seq_file
*m
, void *p
)
1270 mutex_unlock(&slab_mutex
);
1274 memcg_accumulate_slabinfo(struct kmem_cache
*s
, struct slabinfo
*info
)
1276 struct kmem_cache
*c
;
1277 struct slabinfo sinfo
;
1279 if (!is_root_cache(s
))
1282 for_each_memcg_cache(c
, s
) {
1283 memset(&sinfo
, 0, sizeof(sinfo
));
1284 get_slabinfo(c
, &sinfo
);
1286 info
->active_slabs
+= sinfo
.active_slabs
;
1287 info
->num_slabs
+= sinfo
.num_slabs
;
1288 info
->shared_avail
+= sinfo
.shared_avail
;
1289 info
->active_objs
+= sinfo
.active_objs
;
1290 info
->num_objs
+= sinfo
.num_objs
;
1294 static void cache_show(struct kmem_cache
*s
, struct seq_file
*m
)
1296 struct slabinfo sinfo
;
1298 memset(&sinfo
, 0, sizeof(sinfo
));
1299 get_slabinfo(s
, &sinfo
);
1301 memcg_accumulate_slabinfo(s
, &sinfo
);
1303 seq_printf(m
, "%-17s %6lu %6lu %6u %4u %4d",
1304 cache_name(s
), sinfo
.active_objs
, sinfo
.num_objs
, s
->size
,
1305 sinfo
.objects_per_slab
, (1 << sinfo
.cache_order
));
1307 seq_printf(m
, " : tunables %4u %4u %4u",
1308 sinfo
.limit
, sinfo
.batchcount
, sinfo
.shared
);
1309 seq_printf(m
, " : slabdata %6lu %6lu %6lu",
1310 sinfo
.active_slabs
, sinfo
.num_slabs
, sinfo
.shared_avail
);
1311 slabinfo_show_stats(m
, s
);
1315 static int slab_show(struct seq_file
*m
, void *p
)
1317 struct kmem_cache
*s
= list_entry(p
, struct kmem_cache
, root_caches_node
);
1319 if (p
== slab_root_caches
.next
)
1320 print_slabinfo_header(m
);
1325 void dump_unreclaimable_slab(void)
1327 struct kmem_cache
*s
, *s2
;
1328 struct slabinfo sinfo
;
1331 * Here acquiring slab_mutex is risky since we don't prefer to get
1332 * sleep in oom path. But, without mutex hold, it may introduce a
1334 * Use mutex_trylock to protect the list traverse, dump nothing
1335 * without acquiring the mutex.
1337 if (!mutex_trylock(&slab_mutex
)) {
1338 pr_warn("excessive unreclaimable slab but cannot dump stats\n");
1342 pr_info("Unreclaimable slab info:\n");
1343 pr_info("Name Used Total\n");
1345 list_for_each_entry_safe(s
, s2
, &slab_caches
, list
) {
1346 if (!is_root_cache(s
) || (s
->flags
& SLAB_RECLAIM_ACCOUNT
))
1349 get_slabinfo(s
, &sinfo
);
1351 if (sinfo
.num_objs
> 0)
1352 pr_info("%-17s %10luKB %10luKB\n", cache_name(s
),
1353 (sinfo
.active_objs
* s
->size
) / 1024,
1354 (sinfo
.num_objs
* s
->size
) / 1024);
1356 mutex_unlock(&slab_mutex
);
1359 #if defined(CONFIG_MEMCG)
1360 void *memcg_slab_start(struct seq_file
*m
, loff_t
*pos
)
1362 struct mem_cgroup
*memcg
= mem_cgroup_from_css(seq_css(m
));
1364 mutex_lock(&slab_mutex
);
1365 return seq_list_start(&memcg
->kmem_caches
, *pos
);
1368 void *memcg_slab_next(struct seq_file
*m
, void *p
, loff_t
*pos
)
1370 struct mem_cgroup
*memcg
= mem_cgroup_from_css(seq_css(m
));
1372 return seq_list_next(p
, &memcg
->kmem_caches
, pos
);
1375 void memcg_slab_stop(struct seq_file
*m
, void *p
)
1377 mutex_unlock(&slab_mutex
);
1380 int memcg_slab_show(struct seq_file
*m
, void *p
)
1382 struct kmem_cache
*s
= list_entry(p
, struct kmem_cache
,
1383 memcg_params
.kmem_caches_node
);
1384 struct mem_cgroup
*memcg
= mem_cgroup_from_css(seq_css(m
));
1386 if (p
== memcg
->kmem_caches
.next
)
1387 print_slabinfo_header(m
);
1394 * slabinfo_op - iterator that generates /proc/slabinfo
1403 * num-pages-per-slab
1404 * + further values on SMP and with statistics enabled
1406 static const struct seq_operations slabinfo_op
= {
1407 .start
= slab_start
,
1413 static int slabinfo_open(struct inode
*inode
, struct file
*file
)
1415 return seq_open(file
, &slabinfo_op
);
1418 static const struct file_operations proc_slabinfo_operations
= {
1419 .open
= slabinfo_open
,
1421 .write
= slabinfo_write
,
1422 .llseek
= seq_lseek
,
1423 .release
= seq_release
,
1426 static int __init
slab_proc_init(void)
1428 proc_create("slabinfo", SLABINFO_RIGHTS
, NULL
,
1429 &proc_slabinfo_operations
);
1432 module_init(slab_proc_init
);
1433 #endif /* CONFIG_SLAB || CONFIG_SLUB_DEBUG */
1435 static __always_inline
void *__do_krealloc(const void *p
, size_t new_size
,
1444 if (ks
>= new_size
) {
1445 kasan_krealloc((void *)p
, new_size
, flags
);
1449 ret
= kmalloc_track_caller(new_size
, flags
);
1457 * __krealloc - like krealloc() but don't free @p.
1458 * @p: object to reallocate memory for.
1459 * @new_size: how many bytes of memory are required.
1460 * @flags: the type of memory to allocate.
1462 * This function is like krealloc() except it never frees the originally
1463 * allocated buffer. Use this if you don't want to free the buffer immediately
1464 * like, for example, with RCU.
1466 void *__krealloc(const void *p
, size_t new_size
, gfp_t flags
)
1468 if (unlikely(!new_size
))
1469 return ZERO_SIZE_PTR
;
1471 return __do_krealloc(p
, new_size
, flags
);
1474 EXPORT_SYMBOL(__krealloc
);
1477 * krealloc - reallocate memory. The contents will remain unchanged.
1478 * @p: object to reallocate memory for.
1479 * @new_size: how many bytes of memory are required.
1480 * @flags: the type of memory to allocate.
1482 * The contents of the object pointed to are preserved up to the
1483 * lesser of the new and old sizes. If @p is %NULL, krealloc()
1484 * behaves exactly like kmalloc(). If @new_size is 0 and @p is not a
1485 * %NULL pointer, the object pointed to is freed.
1487 void *krealloc(const void *p
, size_t new_size
, gfp_t flags
)
1491 if (unlikely(!new_size
)) {
1493 return ZERO_SIZE_PTR
;
1496 ret
= __do_krealloc(p
, new_size
, flags
);
1497 if (ret
&& p
!= ret
)
1502 EXPORT_SYMBOL(krealloc
);
1505 * kzfree - like kfree but zero memory
1506 * @p: object to free memory of
1508 * The memory of the object @p points to is zeroed before freed.
1509 * If @p is %NULL, kzfree() does nothing.
1511 * Note: this function zeroes the whole allocated buffer which can be a good
1512 * deal bigger than the requested buffer size passed to kmalloc(). So be
1513 * careful when using this function in performance sensitive code.
1515 void kzfree(const void *p
)
1518 void *mem
= (void *)p
;
1520 if (unlikely(ZERO_OR_NULL_PTR(mem
)))
1526 EXPORT_SYMBOL(kzfree
);
1528 /* Tracepoints definitions. */
1529 EXPORT_TRACEPOINT_SYMBOL(kmalloc
);
1530 EXPORT_TRACEPOINT_SYMBOL(kmem_cache_alloc
);
1531 EXPORT_TRACEPOINT_SYMBOL(kmalloc_node
);
1532 EXPORT_TRACEPOINT_SYMBOL(kmem_cache_alloc_node
);
1533 EXPORT_TRACEPOINT_SYMBOL(kfree
);
1534 EXPORT_TRACEPOINT_SYMBOL(kmem_cache_free
);