4 * Copyright (C) 1991, 1992 Linus Torvalds
7 #include <linux/config.h>
9 #include <linux/slab.h>
10 #include <linux/interrupt.h>
11 #include <linux/smp_lock.h>
12 #include <linux/module.h>
13 #include <linux/capability.h>
14 #include <linux/completion.h>
15 #include <linux/personality.h>
16 #include <linux/tty.h>
17 #include <linux/namespace.h>
18 #include <linux/key.h>
19 #include <linux/security.h>
20 #include <linux/cpu.h>
21 #include <linux/acct.h>
22 #include <linux/file.h>
23 #include <linux/binfmts.h>
24 #include <linux/ptrace.h>
25 #include <linux/profile.h>
26 #include <linux/mount.h>
27 #include <linux/proc_fs.h>
28 #include <linux/mempolicy.h>
29 #include <linux/cpuset.h>
30 #include <linux/syscalls.h>
31 #include <linux/signal.h>
32 #include <linux/cn_proc.h>
33 #include <linux/mutex.h>
35 #include <asm/uaccess.h>
36 #include <asm/unistd.h>
37 #include <asm/pgtable.h>
38 #include <asm/mmu_context.h>
40 extern void sem_exit (void);
41 extern struct task_struct
*child_reaper
;
43 int getrusage(struct task_struct
*, int, struct rusage __user
*);
45 static void exit_mm(struct task_struct
* tsk
);
47 static void __unhash_process(struct task_struct
*p
)
50 detach_pid(p
, PIDTYPE_PID
);
51 detach_pid(p
, PIDTYPE_TGID
);
52 if (thread_group_leader(p
)) {
53 detach_pid(p
, PIDTYPE_PGID
);
54 detach_pid(p
, PIDTYPE_SID
);
56 __get_cpu_var(process_counts
)--;
62 void release_task(struct task_struct
* p
)
66 struct dentry
*proc_dentry
;
69 atomic_dec(&p
->user
->processes
);
70 spin_lock(&p
->proc_lock
);
71 proc_dentry
= proc_pid_unhash(p
);
72 write_lock_irq(&tasklist_lock
);
73 if (unlikely(p
->ptrace
))
75 BUG_ON(!list_empty(&p
->ptrace_list
) || !list_empty(&p
->ptrace_children
));
78 * Note that the fastpath in sys_times depends on __exit_signal having
79 * updated the counters before a task is removed from the tasklist of
80 * the process by __unhash_process.
85 * If we are the last non-leader member of the thread
86 * group, and the leader is zombie, then notify the
87 * group leader's parent process. (if it wants notification.)
90 leader
= p
->group_leader
;
91 if (leader
!= p
&& thread_group_empty(leader
) && leader
->exit_state
== EXIT_ZOMBIE
) {
92 BUG_ON(leader
->exit_signal
== -1);
93 do_notify_parent(leader
, leader
->exit_signal
);
95 * If we were the last child thread and the leader has
96 * exited already, and the leader's parent ignores SIGCHLD,
97 * then we are the one who should release the leader.
99 * do_notify_parent() will have marked it self-reaping in
102 zap_leader
= (leader
->exit_signal
== -1);
106 write_unlock_irq(&tasklist_lock
);
107 spin_unlock(&p
->proc_lock
);
108 proc_pid_flush(proc_dentry
);
113 if (unlikely(zap_leader
))
117 /* we are using it only for SMP init */
119 void unhash_process(struct task_struct
*p
)
121 struct dentry
*proc_dentry
;
123 spin_lock(&p
->proc_lock
);
124 proc_dentry
= proc_pid_unhash(p
);
125 write_lock_irq(&tasklist_lock
);
127 write_unlock_irq(&tasklist_lock
);
128 spin_unlock(&p
->proc_lock
);
129 proc_pid_flush(proc_dentry
);
133 * This checks not only the pgrp, but falls back on the pid if no
134 * satisfactory pgrp is found. I dunno - gdb doesn't work correctly
137 int session_of_pgrp(int pgrp
)
139 struct task_struct
*p
;
142 read_lock(&tasklist_lock
);
143 do_each_task_pid(pgrp
, PIDTYPE_PGID
, p
) {
144 if (p
->signal
->session
> 0) {
145 sid
= p
->signal
->session
;
148 } while_each_task_pid(pgrp
, PIDTYPE_PGID
, p
);
149 p
= find_task_by_pid(pgrp
);
151 sid
= p
->signal
->session
;
153 read_unlock(&tasklist_lock
);
159 * Determine if a process group is "orphaned", according to the POSIX
160 * definition in 2.2.2.52. Orphaned process groups are not to be affected
161 * by terminal-generated stop signals. Newly orphaned process groups are
162 * to receive a SIGHUP and a SIGCONT.
164 * "I ask you, have you ever known what it is to be an orphan?"
166 static int will_become_orphaned_pgrp(int pgrp
, task_t
*ignored_task
)
168 struct task_struct
*p
;
171 do_each_task_pid(pgrp
, PIDTYPE_PGID
, p
) {
172 if (p
== ignored_task
174 || p
->real_parent
->pid
== 1)
176 if (process_group(p
->real_parent
) != pgrp
177 && p
->real_parent
->signal
->session
== p
->signal
->session
) {
181 } while_each_task_pid(pgrp
, PIDTYPE_PGID
, p
);
182 return ret
; /* (sighing) "Often!" */
185 int is_orphaned_pgrp(int pgrp
)
189 read_lock(&tasklist_lock
);
190 retval
= will_become_orphaned_pgrp(pgrp
, NULL
);
191 read_unlock(&tasklist_lock
);
196 static int has_stopped_jobs(int pgrp
)
199 struct task_struct
*p
;
201 do_each_task_pid(pgrp
, PIDTYPE_PGID
, p
) {
202 if (p
->state
!= TASK_STOPPED
)
205 /* If p is stopped by a debugger on a signal that won't
206 stop it, then don't count p as stopped. This isn't
207 perfect but it's a good approximation. */
208 if (unlikely (p
->ptrace
)
209 && p
->exit_code
!= SIGSTOP
210 && p
->exit_code
!= SIGTSTP
211 && p
->exit_code
!= SIGTTOU
212 && p
->exit_code
!= SIGTTIN
)
217 } while_each_task_pid(pgrp
, PIDTYPE_PGID
, p
);
222 * reparent_to_init - Reparent the calling kernel thread to the init task.
224 * If a kernel thread is launched as a result of a system call, or if
225 * it ever exits, it should generally reparent itself to init so that
226 * it is correctly cleaned up on exit.
228 * The various task state such as scheduling policy and priority may have
229 * been inherited from a user process, so we reset them to sane values here.
231 * NOTE that reparent_to_init() gives the caller full capabilities.
233 static void reparent_to_init(void)
235 write_lock_irq(&tasklist_lock
);
237 ptrace_unlink(current
);
238 /* Reparent to init */
239 REMOVE_LINKS(current
);
240 current
->parent
= child_reaper
;
241 current
->real_parent
= child_reaper
;
244 /* Set the exit signal to SIGCHLD so we signal init on exit */
245 current
->exit_signal
= SIGCHLD
;
247 if ((current
->policy
== SCHED_NORMAL
||
248 current
->policy
== SCHED_BATCH
)
249 && (task_nice(current
) < 0))
250 set_user_nice(current
, 0);
254 security_task_reparent_to_init(current
);
255 memcpy(current
->signal
->rlim
, init_task
.signal
->rlim
,
256 sizeof(current
->signal
->rlim
));
257 atomic_inc(&(INIT_USER
->__count
));
258 write_unlock_irq(&tasklist_lock
);
259 switch_uid(INIT_USER
);
262 void __set_special_pids(pid_t session
, pid_t pgrp
)
264 struct task_struct
*curr
= current
->group_leader
;
266 if (curr
->signal
->session
!= session
) {
267 detach_pid(curr
, PIDTYPE_SID
);
268 curr
->signal
->session
= session
;
269 attach_pid(curr
, PIDTYPE_SID
, session
);
271 if (process_group(curr
) != pgrp
) {
272 detach_pid(curr
, PIDTYPE_PGID
);
273 curr
->signal
->pgrp
= pgrp
;
274 attach_pid(curr
, PIDTYPE_PGID
, pgrp
);
278 void set_special_pids(pid_t session
, pid_t pgrp
)
280 write_lock_irq(&tasklist_lock
);
281 __set_special_pids(session
, pgrp
);
282 write_unlock_irq(&tasklist_lock
);
286 * Let kernel threads use this to say that they
287 * allow a certain signal (since daemonize() will
288 * have disabled all of them by default).
290 int allow_signal(int sig
)
292 if (!valid_signal(sig
) || sig
< 1)
295 spin_lock_irq(¤t
->sighand
->siglock
);
296 sigdelset(¤t
->blocked
, sig
);
298 /* Kernel threads handle their own signals.
299 Let the signal code know it'll be handled, so
300 that they don't get converted to SIGKILL or
301 just silently dropped */
302 current
->sighand
->action
[(sig
)-1].sa
.sa_handler
= (void __user
*)2;
305 spin_unlock_irq(¤t
->sighand
->siglock
);
309 EXPORT_SYMBOL(allow_signal
);
311 int disallow_signal(int sig
)
313 if (!valid_signal(sig
) || sig
< 1)
316 spin_lock_irq(¤t
->sighand
->siglock
);
317 sigaddset(¤t
->blocked
, sig
);
319 spin_unlock_irq(¤t
->sighand
->siglock
);
323 EXPORT_SYMBOL(disallow_signal
);
326 * Put all the gunge required to become a kernel thread without
327 * attached user resources in one place where it belongs.
330 void daemonize(const char *name
, ...)
333 struct fs_struct
*fs
;
336 va_start(args
, name
);
337 vsnprintf(current
->comm
, sizeof(current
->comm
), name
, args
);
341 * If we were started as result of loading a module, close all of the
342 * user space pages. We don't need them, and if we didn't close them
343 * they would be locked into memory.
347 set_special_pids(1, 1);
348 mutex_lock(&tty_mutex
);
349 current
->signal
->tty
= NULL
;
350 mutex_unlock(&tty_mutex
);
352 /* Block and flush all signals */
353 sigfillset(&blocked
);
354 sigprocmask(SIG_BLOCK
, &blocked
, NULL
);
355 flush_signals(current
);
357 /* Become as one with the init task */
359 exit_fs(current
); /* current->fs->count--; */
362 atomic_inc(&fs
->count
);
363 exit_namespace(current
);
364 current
->namespace = init_task
.namespace;
365 get_namespace(current
->namespace);
367 current
->files
= init_task
.files
;
368 atomic_inc(¤t
->files
->count
);
373 EXPORT_SYMBOL(daemonize
);
375 static void close_files(struct files_struct
* files
)
383 * It is safe to dereference the fd table without RCU or
384 * ->file_lock because this is the last reference to the
387 fdt
= files_fdtable(files
);
391 if (i
>= fdt
->max_fdset
|| i
>= fdt
->max_fds
)
393 set
= fdt
->open_fds
->fds_bits
[j
++];
396 struct file
* file
= xchg(&fdt
->fd
[i
], NULL
);
398 filp_close(file
, files
);
406 struct files_struct
*get_files_struct(struct task_struct
*task
)
408 struct files_struct
*files
;
413 atomic_inc(&files
->count
);
419 void fastcall
put_files_struct(struct files_struct
*files
)
423 if (atomic_dec_and_test(&files
->count
)) {
426 * Free the fd and fdset arrays if we expanded them.
427 * If the fdtable was embedded, pass files for freeing
428 * at the end of the RCU grace period. Otherwise,
429 * you can free files immediately.
431 fdt
= files_fdtable(files
);
432 if (fdt
== &files
->fdtab
)
433 fdt
->free_files
= files
;
435 kmem_cache_free(files_cachep
, files
);
440 EXPORT_SYMBOL(put_files_struct
);
442 static inline void __exit_files(struct task_struct
*tsk
)
444 struct files_struct
* files
= tsk
->files
;
450 put_files_struct(files
);
454 void exit_files(struct task_struct
*tsk
)
459 static inline void __put_fs_struct(struct fs_struct
*fs
)
461 /* No need to hold fs->lock if we are killing it */
462 if (atomic_dec_and_test(&fs
->count
)) {
469 mntput(fs
->altrootmnt
);
471 kmem_cache_free(fs_cachep
, fs
);
475 void put_fs_struct(struct fs_struct
*fs
)
480 static inline void __exit_fs(struct task_struct
*tsk
)
482 struct fs_struct
* fs
= tsk
->fs
;
492 void exit_fs(struct task_struct
*tsk
)
497 EXPORT_SYMBOL_GPL(exit_fs
);
500 * Turn us into a lazy TLB process if we
503 static void exit_mm(struct task_struct
* tsk
)
505 struct mm_struct
*mm
= tsk
->mm
;
511 * Serialize with any possible pending coredump.
512 * We must hold mmap_sem around checking core_waiters
513 * and clearing tsk->mm. The core-inducing thread
514 * will increment core_waiters for each thread in the
515 * group with ->mm != NULL.
517 down_read(&mm
->mmap_sem
);
518 if (mm
->core_waiters
) {
519 up_read(&mm
->mmap_sem
);
520 down_write(&mm
->mmap_sem
);
521 if (!--mm
->core_waiters
)
522 complete(mm
->core_startup_done
);
523 up_write(&mm
->mmap_sem
);
525 wait_for_completion(&mm
->core_done
);
526 down_read(&mm
->mmap_sem
);
528 atomic_inc(&mm
->mm_count
);
529 if (mm
!= tsk
->active_mm
) BUG();
530 /* more a memory barrier than a real lock */
533 up_read(&mm
->mmap_sem
);
534 enter_lazy_tlb(mm
, current
);
539 static inline void choose_new_parent(task_t
*p
, task_t
*reaper
, task_t
*child_reaper
)
542 * Make sure we're not reparenting to ourselves and that
543 * the parent is not a zombie.
545 BUG_ON(p
== reaper
|| reaper
->exit_state
>= EXIT_ZOMBIE
);
546 p
->real_parent
= reaper
;
549 static void reparent_thread(task_t
*p
, task_t
*father
, int traced
)
551 /* We don't want people slaying init. */
552 if (p
->exit_signal
!= -1)
553 p
->exit_signal
= SIGCHLD
;
555 if (p
->pdeath_signal
)
556 /* We already hold the tasklist_lock here. */
557 group_send_sig_info(p
->pdeath_signal
, SEND_SIG_NOINFO
, p
);
559 /* Move the child from its dying parent to the new one. */
560 if (unlikely(traced
)) {
561 /* Preserve ptrace links if someone else is tracing this child. */
562 list_del_init(&p
->ptrace_list
);
563 if (p
->parent
!= p
->real_parent
)
564 list_add(&p
->ptrace_list
, &p
->real_parent
->ptrace_children
);
566 /* If this child is being traced, then we're the one tracing it
567 * anyway, so let go of it.
570 list_del_init(&p
->sibling
);
571 p
->parent
= p
->real_parent
;
572 list_add_tail(&p
->sibling
, &p
->parent
->children
);
574 /* If we'd notified the old parent about this child's death,
575 * also notify the new parent.
577 if (p
->exit_state
== EXIT_ZOMBIE
&& p
->exit_signal
!= -1 &&
578 thread_group_empty(p
))
579 do_notify_parent(p
, p
->exit_signal
);
580 else if (p
->state
== TASK_TRACED
) {
582 * If it was at a trace stop, turn it into
583 * a normal stop since it's no longer being
591 * process group orphan check
592 * Case ii: Our child is in a different pgrp
593 * than we are, and it was the only connection
594 * outside, so the child pgrp is now orphaned.
596 if ((process_group(p
) != process_group(father
)) &&
597 (p
->signal
->session
== father
->signal
->session
)) {
598 int pgrp
= process_group(p
);
600 if (will_become_orphaned_pgrp(pgrp
, NULL
) && has_stopped_jobs(pgrp
)) {
601 __kill_pg_info(SIGHUP
, SEND_SIG_PRIV
, pgrp
);
602 __kill_pg_info(SIGCONT
, SEND_SIG_PRIV
, pgrp
);
608 * When we die, we re-parent all our children.
609 * Try to give them to another thread in our thread
610 * group, and if no such member exists, give it to
611 * the global child reaper process (ie "init")
613 static void forget_original_parent(struct task_struct
* father
,
614 struct list_head
*to_release
)
616 struct task_struct
*p
, *reaper
= father
;
617 struct list_head
*_p
, *_n
;
620 reaper
= next_thread(reaper
);
621 if (reaper
== father
) {
622 reaper
= child_reaper
;
625 } while (reaper
->exit_state
);
628 * There are only two places where our children can be:
630 * - in our child list
631 * - in our ptraced child list
633 * Search them and reparent children.
635 list_for_each_safe(_p
, _n
, &father
->children
) {
637 p
= list_entry(_p
,struct task_struct
,sibling
);
641 /* if father isn't the real parent, then ptrace must be enabled */
642 BUG_ON(father
!= p
->real_parent
&& !ptrace
);
644 if (father
== p
->real_parent
) {
645 /* reparent with a reaper, real father it's us */
646 choose_new_parent(p
, reaper
, child_reaper
);
647 reparent_thread(p
, father
, 0);
649 /* reparent ptraced task to its real parent */
651 if (p
->exit_state
== EXIT_ZOMBIE
&& p
->exit_signal
!= -1 &&
652 thread_group_empty(p
))
653 do_notify_parent(p
, p
->exit_signal
);
657 * if the ptraced child is a zombie with exit_signal == -1
658 * we must collect it before we exit, or it will remain
659 * zombie forever since we prevented it from self-reap itself
660 * while it was being traced by us, to be able to see it in wait4.
662 if (unlikely(ptrace
&& p
->exit_state
== EXIT_ZOMBIE
&& p
->exit_signal
== -1))
663 list_add(&p
->ptrace_list
, to_release
);
665 list_for_each_safe(_p
, _n
, &father
->ptrace_children
) {
666 p
= list_entry(_p
,struct task_struct
,ptrace_list
);
667 choose_new_parent(p
, reaper
, child_reaper
);
668 reparent_thread(p
, father
, 1);
673 * Send signals to all our closest relatives so that they know
674 * to properly mourn us..
676 static void exit_notify(struct task_struct
*tsk
)
679 struct task_struct
*t
;
680 struct list_head ptrace_dead
, *_p
, *_n
;
682 if (signal_pending(tsk
) && !(tsk
->signal
->flags
& SIGNAL_GROUP_EXIT
)
683 && !thread_group_empty(tsk
)) {
685 * This occurs when there was a race between our exit
686 * syscall and a group signal choosing us as the one to
687 * wake up. It could be that we are the only thread
688 * alerted to check for pending signals, but another thread
689 * should be woken now to take the signal since we will not.
690 * Now we'll wake all the threads in the group just to make
691 * sure someone gets all the pending signals.
693 read_lock(&tasklist_lock
);
694 spin_lock_irq(&tsk
->sighand
->siglock
);
695 for (t
= next_thread(tsk
); t
!= tsk
; t
= next_thread(t
))
696 if (!signal_pending(t
) && !(t
->flags
& PF_EXITING
)) {
697 recalc_sigpending_tsk(t
);
698 if (signal_pending(t
))
699 signal_wake_up(t
, 0);
701 spin_unlock_irq(&tsk
->sighand
->siglock
);
702 read_unlock(&tasklist_lock
);
705 write_lock_irq(&tasklist_lock
);
708 * This does two things:
710 * A. Make init inherit all the child processes
711 * B. Check to see if any process groups have become orphaned
712 * as a result of our exiting, and if they have any stopped
713 * jobs, send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2)
716 INIT_LIST_HEAD(&ptrace_dead
);
717 forget_original_parent(tsk
, &ptrace_dead
);
718 BUG_ON(!list_empty(&tsk
->children
));
719 BUG_ON(!list_empty(&tsk
->ptrace_children
));
722 * Check to see if any process groups have become orphaned
723 * as a result of our exiting, and if they have any stopped
724 * jobs, send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2)
726 * Case i: Our father is in a different pgrp than we are
727 * and we were the only connection outside, so our pgrp
728 * is about to become orphaned.
731 t
= tsk
->real_parent
;
733 if ((process_group(t
) != process_group(tsk
)) &&
734 (t
->signal
->session
== tsk
->signal
->session
) &&
735 will_become_orphaned_pgrp(process_group(tsk
), tsk
) &&
736 has_stopped_jobs(process_group(tsk
))) {
737 __kill_pg_info(SIGHUP
, SEND_SIG_PRIV
, process_group(tsk
));
738 __kill_pg_info(SIGCONT
, SEND_SIG_PRIV
, process_group(tsk
));
741 /* Let father know we died
743 * Thread signals are configurable, but you aren't going to use
744 * that to send signals to arbitary processes.
745 * That stops right now.
747 * If the parent exec id doesn't match the exec id we saved
748 * when we started then we know the parent has changed security
751 * If our self_exec id doesn't match our parent_exec_id then
752 * we have changed execution domain as these two values started
753 * the same after a fork.
757 if (tsk
->exit_signal
!= SIGCHLD
&& tsk
->exit_signal
!= -1 &&
758 ( tsk
->parent_exec_id
!= t
->self_exec_id
||
759 tsk
->self_exec_id
!= tsk
->parent_exec_id
)
760 && !capable(CAP_KILL
))
761 tsk
->exit_signal
= SIGCHLD
;
764 /* If something other than our normal parent is ptracing us, then
765 * send it a SIGCHLD instead of honoring exit_signal. exit_signal
766 * only has special meaning to our real parent.
768 if (tsk
->exit_signal
!= -1 && thread_group_empty(tsk
)) {
769 int signal
= tsk
->parent
== tsk
->real_parent
? tsk
->exit_signal
: SIGCHLD
;
770 do_notify_parent(tsk
, signal
);
771 } else if (tsk
->ptrace
) {
772 do_notify_parent(tsk
, SIGCHLD
);
776 if (tsk
->exit_signal
== -1 &&
777 (likely(tsk
->ptrace
== 0) ||
778 unlikely(tsk
->parent
->signal
->flags
& SIGNAL_GROUP_EXIT
)))
780 tsk
->exit_state
= state
;
782 write_unlock_irq(&tasklist_lock
);
784 list_for_each_safe(_p
, _n
, &ptrace_dead
) {
786 t
= list_entry(_p
,struct task_struct
,ptrace_list
);
790 /* If the process is dead, release it - nobody will wait for it */
791 if (state
== EXIT_DEAD
)
795 fastcall NORET_TYPE
void do_exit(long code
)
797 struct task_struct
*tsk
= current
;
800 profile_task_exit(tsk
);
802 WARN_ON(atomic_read(&tsk
->fs_excl
));
804 if (unlikely(in_interrupt()))
805 panic("Aiee, killing interrupt handler!");
806 if (unlikely(!tsk
->pid
))
807 panic("Attempted to kill the idle task!");
808 if (unlikely(tsk
->pid
== 1))
809 panic("Attempted to kill init!");
811 if (unlikely(current
->ptrace
& PT_TRACE_EXIT
)) {
812 current
->ptrace_message
= code
;
813 ptrace_notify((PTRACE_EVENT_EXIT
<< 8) | SIGTRAP
);
817 * We're taking recursive faults here in do_exit. Safest is to just
818 * leave this task alone and wait for reboot.
820 if (unlikely(tsk
->flags
& PF_EXITING
)) {
822 "Fixing recursive fault but reboot is needed!\n");
825 set_current_state(TASK_UNINTERRUPTIBLE
);
829 tsk
->flags
|= PF_EXITING
;
832 * Make sure we don't try to process any timer firings
833 * while we are already exiting.
835 tsk
->it_virt_expires
= cputime_zero
;
836 tsk
->it_prof_expires
= cputime_zero
;
837 tsk
->it_sched_expires
= 0;
839 if (unlikely(in_atomic()))
840 printk(KERN_INFO
"note: %s[%d] exited with preempt_count %d\n",
841 current
->comm
, current
->pid
,
844 acct_update_integrals(tsk
);
846 update_hiwater_rss(tsk
->mm
);
847 update_hiwater_vm(tsk
->mm
);
849 group_dead
= atomic_dec_and_test(&tsk
->signal
->live
);
851 hrtimer_cancel(&tsk
->signal
->real_timer
);
852 exit_itimers(tsk
->signal
);
865 if (group_dead
&& tsk
->signal
->leader
)
866 disassociate_ctty(1);
868 module_put(task_thread_info(tsk
)->exec_domain
->module
);
870 module_put(tsk
->binfmt
->module
);
872 tsk
->exit_code
= code
;
873 proc_exit_connector(tsk
);
876 mpol_free(tsk
->mempolicy
);
877 tsk
->mempolicy
= NULL
;
880 * If DEBUG_MUTEXES is on, make sure we are holding no locks:
882 mutex_debug_check_no_locks_held(tsk
);
887 /* PF_DEAD causes final put_task_struct after we schedule. */
889 BUG_ON(tsk
->flags
& PF_DEAD
);
890 tsk
->flags
|= PF_DEAD
;
894 /* Avoid "noreturn function does return". */
898 EXPORT_SYMBOL_GPL(do_exit
);
900 NORET_TYPE
void complete_and_exit(struct completion
*comp
, long code
)
908 EXPORT_SYMBOL(complete_and_exit
);
910 asmlinkage
long sys_exit(int error_code
)
912 do_exit((error_code
&0xff)<<8);
915 task_t fastcall
*next_thread(const task_t
*p
)
917 return pid_task(p
->pids
[PIDTYPE_TGID
].pid_list
.next
, PIDTYPE_TGID
);
920 EXPORT_SYMBOL(next_thread
);
923 * Take down every thread in the group. This is called by fatal signals
924 * as well as by sys_exit_group (below).
927 do_group_exit(int exit_code
)
929 BUG_ON(exit_code
& 0x80); /* core dumps don't get here */
931 if (current
->signal
->flags
& SIGNAL_GROUP_EXIT
)
932 exit_code
= current
->signal
->group_exit_code
;
933 else if (!thread_group_empty(current
)) {
934 struct signal_struct
*const sig
= current
->signal
;
935 struct sighand_struct
*const sighand
= current
->sighand
;
936 read_lock(&tasklist_lock
);
937 spin_lock_irq(&sighand
->siglock
);
938 if (sig
->flags
& SIGNAL_GROUP_EXIT
)
939 /* Another thread got here before we took the lock. */
940 exit_code
= sig
->group_exit_code
;
942 sig
->group_exit_code
= exit_code
;
943 zap_other_threads(current
);
945 spin_unlock_irq(&sighand
->siglock
);
946 read_unlock(&tasklist_lock
);
954 * this kills every thread in the thread group. Note that any externally
955 * wait4()-ing process will get the correct exit code - even if this
956 * thread is not the thread group leader.
958 asmlinkage
void sys_exit_group(int error_code
)
960 do_group_exit((error_code
& 0xff) << 8);
963 static int eligible_child(pid_t pid
, int options
, task_t
*p
)
969 if (process_group(p
) != process_group(current
))
971 } else if (pid
!= -1) {
972 if (process_group(p
) != -pid
)
977 * Do not consider detached threads that are
980 if (p
->exit_signal
== -1 && !p
->ptrace
)
983 /* Wait for all children (clone and not) if __WALL is set;
984 * otherwise, wait for clone children *only* if __WCLONE is
985 * set; otherwise, wait for non-clone children *only*. (Note:
986 * A "clone" child here is one that reports to its parent
987 * using a signal other than SIGCHLD.) */
988 if (((p
->exit_signal
!= SIGCHLD
) ^ ((options
& __WCLONE
) != 0))
989 && !(options
& __WALL
))
992 * Do not consider thread group leaders that are
993 * in a non-empty thread group:
995 if (current
->tgid
!= p
->tgid
&& delay_group_leader(p
))
998 if (security_task_wait(p
))
1004 static int wait_noreap_copyout(task_t
*p
, pid_t pid
, uid_t uid
,
1005 int why
, int status
,
1006 struct siginfo __user
*infop
,
1007 struct rusage __user
*rusagep
)
1009 int retval
= rusagep
? getrusage(p
, RUSAGE_BOTH
, rusagep
) : 0;
1012 retval
= put_user(SIGCHLD
, &infop
->si_signo
);
1014 retval
= put_user(0, &infop
->si_errno
);
1016 retval
= put_user((short)why
, &infop
->si_code
);
1018 retval
= put_user(pid
, &infop
->si_pid
);
1020 retval
= put_user(uid
, &infop
->si_uid
);
1022 retval
= put_user(status
, &infop
->si_status
);
1029 * Handle sys_wait4 work for one task in state EXIT_ZOMBIE. We hold
1030 * read_lock(&tasklist_lock) on entry. If we return zero, we still hold
1031 * the lock and this task is uninteresting. If we return nonzero, we have
1032 * released the lock and the system call should return.
1034 static int wait_task_zombie(task_t
*p
, int noreap
,
1035 struct siginfo __user
*infop
,
1036 int __user
*stat_addr
, struct rusage __user
*ru
)
1038 unsigned long state
;
1042 if (unlikely(noreap
)) {
1045 int exit_code
= p
->exit_code
;
1048 if (unlikely(p
->exit_state
!= EXIT_ZOMBIE
))
1050 if (unlikely(p
->exit_signal
== -1 && p
->ptrace
== 0))
1053 read_unlock(&tasklist_lock
);
1054 if ((exit_code
& 0x7f) == 0) {
1056 status
= exit_code
>> 8;
1058 why
= (exit_code
& 0x80) ? CLD_DUMPED
: CLD_KILLED
;
1059 status
= exit_code
& 0x7f;
1061 return wait_noreap_copyout(p
, pid
, uid
, why
,
1066 * Try to move the task's state to DEAD
1067 * only one thread is allowed to do this:
1069 state
= xchg(&p
->exit_state
, EXIT_DEAD
);
1070 if (state
!= EXIT_ZOMBIE
) {
1071 BUG_ON(state
!= EXIT_DEAD
);
1074 if (unlikely(p
->exit_signal
== -1 && p
->ptrace
== 0)) {
1076 * This can only happen in a race with a ptraced thread
1077 * dying on another processor.
1082 if (likely(p
->real_parent
== p
->parent
) && likely(p
->signal
)) {
1083 struct signal_struct
*psig
;
1084 struct signal_struct
*sig
;
1087 * The resource counters for the group leader are in its
1088 * own task_struct. Those for dead threads in the group
1089 * are in its signal_struct, as are those for the child
1090 * processes it has previously reaped. All these
1091 * accumulate in the parent's signal_struct c* fields.
1093 * We don't bother to take a lock here to protect these
1094 * p->signal fields, because they are only touched by
1095 * __exit_signal, which runs with tasklist_lock
1096 * write-locked anyway, and so is excluded here. We do
1097 * need to protect the access to p->parent->signal fields,
1098 * as other threads in the parent group can be right
1099 * here reaping other children at the same time.
1101 spin_lock_irq(&p
->parent
->sighand
->siglock
);
1102 psig
= p
->parent
->signal
;
1105 cputime_add(psig
->cutime
,
1106 cputime_add(p
->utime
,
1107 cputime_add(sig
->utime
,
1110 cputime_add(psig
->cstime
,
1111 cputime_add(p
->stime
,
1112 cputime_add(sig
->stime
,
1115 p
->min_flt
+ sig
->min_flt
+ sig
->cmin_flt
;
1117 p
->maj_flt
+ sig
->maj_flt
+ sig
->cmaj_flt
;
1119 p
->nvcsw
+ sig
->nvcsw
+ sig
->cnvcsw
;
1121 p
->nivcsw
+ sig
->nivcsw
+ sig
->cnivcsw
;
1122 spin_unlock_irq(&p
->parent
->sighand
->siglock
);
1126 * Now we are sure this task is interesting, and no other
1127 * thread can reap it because we set its state to EXIT_DEAD.
1129 read_unlock(&tasklist_lock
);
1131 retval
= ru
? getrusage(p
, RUSAGE_BOTH
, ru
) : 0;
1132 status
= (p
->signal
->flags
& SIGNAL_GROUP_EXIT
)
1133 ? p
->signal
->group_exit_code
: p
->exit_code
;
1134 if (!retval
&& stat_addr
)
1135 retval
= put_user(status
, stat_addr
);
1136 if (!retval
&& infop
)
1137 retval
= put_user(SIGCHLD
, &infop
->si_signo
);
1138 if (!retval
&& infop
)
1139 retval
= put_user(0, &infop
->si_errno
);
1140 if (!retval
&& infop
) {
1143 if ((status
& 0x7f) == 0) {
1147 why
= (status
& 0x80) ? CLD_DUMPED
: CLD_KILLED
;
1150 retval
= put_user((short)why
, &infop
->si_code
);
1152 retval
= put_user(status
, &infop
->si_status
);
1154 if (!retval
&& infop
)
1155 retval
= put_user(p
->pid
, &infop
->si_pid
);
1156 if (!retval
&& infop
)
1157 retval
= put_user(p
->uid
, &infop
->si_uid
);
1159 // TODO: is this safe?
1160 p
->exit_state
= EXIT_ZOMBIE
;
1164 if (p
->real_parent
!= p
->parent
) {
1165 write_lock_irq(&tasklist_lock
);
1166 /* Double-check with lock held. */
1167 if (p
->real_parent
!= p
->parent
) {
1169 // TODO: is this safe?
1170 p
->exit_state
= EXIT_ZOMBIE
;
1172 * If this is not a detached task, notify the parent.
1173 * If it's still not detached after that, don't release
1176 if (p
->exit_signal
!= -1) {
1177 do_notify_parent(p
, p
->exit_signal
);
1178 if (p
->exit_signal
!= -1)
1182 write_unlock_irq(&tasklist_lock
);
1191 * Handle sys_wait4 work for one task in state TASK_STOPPED. We hold
1192 * read_lock(&tasklist_lock) on entry. If we return zero, we still hold
1193 * the lock and this task is uninteresting. If we return nonzero, we have
1194 * released the lock and the system call should return.
1196 static int wait_task_stopped(task_t
*p
, int delayed_group_leader
, int noreap
,
1197 struct siginfo __user
*infop
,
1198 int __user
*stat_addr
, struct rusage __user
*ru
)
1200 int retval
, exit_code
;
1204 if (delayed_group_leader
&& !(p
->ptrace
& PT_PTRACED
) &&
1205 p
->signal
&& p
->signal
->group_stop_count
> 0)
1207 * A group stop is in progress and this is the group leader.
1208 * We won't report until all threads have stopped.
1213 * Now we are pretty sure this task is interesting.
1214 * Make sure it doesn't get reaped out from under us while we
1215 * give up the lock and then examine it below. We don't want to
1216 * keep holding onto the tasklist_lock while we call getrusage and
1217 * possibly take page faults for user memory.
1220 read_unlock(&tasklist_lock
);
1222 if (unlikely(noreap
)) {
1225 int why
= (p
->ptrace
& PT_PTRACED
) ? CLD_TRAPPED
: CLD_STOPPED
;
1227 exit_code
= p
->exit_code
;
1228 if (unlikely(!exit_code
) ||
1229 unlikely(p
->state
& TASK_TRACED
))
1231 return wait_noreap_copyout(p
, pid
, uid
,
1232 why
, (exit_code
<< 8) | 0x7f,
1236 write_lock_irq(&tasklist_lock
);
1239 * This uses xchg to be atomic with the thread resuming and setting
1240 * it. It must also be done with the write lock held to prevent a
1241 * race with the EXIT_ZOMBIE case.
1243 exit_code
= xchg(&p
->exit_code
, 0);
1244 if (unlikely(p
->exit_state
)) {
1246 * The task resumed and then died. Let the next iteration
1247 * catch it in EXIT_ZOMBIE. Note that exit_code might
1248 * already be zero here if it resumed and did _exit(0).
1249 * The task itself is dead and won't touch exit_code again;
1250 * other processors in this function are locked out.
1252 p
->exit_code
= exit_code
;
1255 if (unlikely(exit_code
== 0)) {
1257 * Another thread in this function got to it first, or it
1258 * resumed, or it resumed and then died.
1260 write_unlock_irq(&tasklist_lock
);
1264 * We are returning to the wait loop without having successfully
1265 * removed the process and having released the lock. We cannot
1266 * continue, since the "p" task pointer is potentially stale.
1268 * Return -EAGAIN, and do_wait() will restart the loop from the
1269 * beginning. Do _not_ re-acquire the lock.
1274 /* move to end of parent's list to avoid starvation */
1276 add_parent(p
, p
->parent
);
1278 write_unlock_irq(&tasklist_lock
);
1280 retval
= ru
? getrusage(p
, RUSAGE_BOTH
, ru
) : 0;
1281 if (!retval
&& stat_addr
)
1282 retval
= put_user((exit_code
<< 8) | 0x7f, stat_addr
);
1283 if (!retval
&& infop
)
1284 retval
= put_user(SIGCHLD
, &infop
->si_signo
);
1285 if (!retval
&& infop
)
1286 retval
= put_user(0, &infop
->si_errno
);
1287 if (!retval
&& infop
)
1288 retval
= put_user((short)((p
->ptrace
& PT_PTRACED
)
1289 ? CLD_TRAPPED
: CLD_STOPPED
),
1291 if (!retval
&& infop
)
1292 retval
= put_user(exit_code
, &infop
->si_status
);
1293 if (!retval
&& infop
)
1294 retval
= put_user(p
->pid
, &infop
->si_pid
);
1295 if (!retval
&& infop
)
1296 retval
= put_user(p
->uid
, &infop
->si_uid
);
1306 * Handle do_wait work for one task in a live, non-stopped state.
1307 * read_lock(&tasklist_lock) on entry. If we return zero, we still hold
1308 * the lock and this task is uninteresting. If we return nonzero, we have
1309 * released the lock and the system call should return.
1311 static int wait_task_continued(task_t
*p
, int noreap
,
1312 struct siginfo __user
*infop
,
1313 int __user
*stat_addr
, struct rusage __user
*ru
)
1319 if (unlikely(!p
->signal
))
1322 if (!(p
->signal
->flags
& SIGNAL_STOP_CONTINUED
))
1325 spin_lock_irq(&p
->sighand
->siglock
);
1326 /* Re-check with the lock held. */
1327 if (!(p
->signal
->flags
& SIGNAL_STOP_CONTINUED
)) {
1328 spin_unlock_irq(&p
->sighand
->siglock
);
1332 p
->signal
->flags
&= ~SIGNAL_STOP_CONTINUED
;
1333 spin_unlock_irq(&p
->sighand
->siglock
);
1338 read_unlock(&tasklist_lock
);
1341 retval
= ru
? getrusage(p
, RUSAGE_BOTH
, ru
) : 0;
1343 if (!retval
&& stat_addr
)
1344 retval
= put_user(0xffff, stat_addr
);
1348 retval
= wait_noreap_copyout(p
, pid
, uid
,
1349 CLD_CONTINUED
, SIGCONT
,
1351 BUG_ON(retval
== 0);
1358 static inline int my_ptrace_child(struct task_struct
*p
)
1360 if (!(p
->ptrace
& PT_PTRACED
))
1362 if (!(p
->ptrace
& PT_ATTACHED
))
1365 * This child was PTRACE_ATTACH'd. We should be seeing it only if
1366 * we are the attacher. If we are the real parent, this is a race
1367 * inside ptrace_attach. It is waiting for the tasklist_lock,
1368 * which we have to switch the parent links, but has already set
1369 * the flags in p->ptrace.
1371 return (p
->parent
!= p
->real_parent
);
1374 static long do_wait(pid_t pid
, int options
, struct siginfo __user
*infop
,
1375 int __user
*stat_addr
, struct rusage __user
*ru
)
1377 DECLARE_WAITQUEUE(wait
, current
);
1378 struct task_struct
*tsk
;
1381 add_wait_queue(¤t
->signal
->wait_chldexit
,&wait
);
1384 * We will set this flag if we see any child that might later
1385 * match our criteria, even if we are not able to reap it yet.
1388 current
->state
= TASK_INTERRUPTIBLE
;
1389 read_lock(&tasklist_lock
);
1392 struct task_struct
*p
;
1393 struct list_head
*_p
;
1396 list_for_each(_p
,&tsk
->children
) {
1397 p
= list_entry(_p
,struct task_struct
,sibling
);
1399 ret
= eligible_child(pid
, options
, p
);
1406 * When we hit the race with PTRACE_ATTACH,
1407 * we will not report this child. But the
1408 * race means it has not yet been moved to
1409 * our ptrace_children list, so we need to
1410 * set the flag here to avoid a spurious ECHILD
1411 * when the race happens with the only child.
1414 if (!my_ptrace_child(p
))
1419 * It's stopped now, so it might later
1420 * continue, exit, or stop again.
1423 if (!(options
& WUNTRACED
) &&
1424 !my_ptrace_child(p
))
1426 retval
= wait_task_stopped(p
, ret
== 2,
1427 (options
& WNOWAIT
),
1430 if (retval
== -EAGAIN
)
1432 if (retval
!= 0) /* He released the lock. */
1437 if (p
->exit_state
== EXIT_DEAD
)
1439 // case EXIT_ZOMBIE:
1440 if (p
->exit_state
== EXIT_ZOMBIE
) {
1442 * Eligible but we cannot release
1446 goto check_continued
;
1447 if (!likely(options
& WEXITED
))
1449 retval
= wait_task_zombie(
1450 p
, (options
& WNOWAIT
),
1451 infop
, stat_addr
, ru
);
1452 /* He released the lock. */
1459 * It's running now, so it might later
1460 * exit, stop, or stop and then continue.
1463 if (!unlikely(options
& WCONTINUED
))
1465 retval
= wait_task_continued(
1466 p
, (options
& WNOWAIT
),
1467 infop
, stat_addr
, ru
);
1468 if (retval
!= 0) /* He released the lock. */
1474 list_for_each(_p
, &tsk
->ptrace_children
) {
1475 p
= list_entry(_p
, struct task_struct
,
1477 if (!eligible_child(pid
, options
, p
))
1483 if (options
& __WNOTHREAD
)
1485 tsk
= next_thread(tsk
);
1486 if (tsk
->signal
!= current
->signal
)
1488 } while (tsk
!= current
);
1490 read_unlock(&tasklist_lock
);
1493 if (options
& WNOHANG
)
1495 retval
= -ERESTARTSYS
;
1496 if (signal_pending(current
))
1503 current
->state
= TASK_RUNNING
;
1504 remove_wait_queue(¤t
->signal
->wait_chldexit
,&wait
);
1510 * For a WNOHANG return, clear out all the fields
1511 * we would set so the user can easily tell the
1515 retval
= put_user(0, &infop
->si_signo
);
1517 retval
= put_user(0, &infop
->si_errno
);
1519 retval
= put_user(0, &infop
->si_code
);
1521 retval
= put_user(0, &infop
->si_pid
);
1523 retval
= put_user(0, &infop
->si_uid
);
1525 retval
= put_user(0, &infop
->si_status
);
1531 asmlinkage
long sys_waitid(int which
, pid_t pid
,
1532 struct siginfo __user
*infop
, int options
,
1533 struct rusage __user
*ru
)
1537 if (options
& ~(WNOHANG
|WNOWAIT
|WEXITED
|WSTOPPED
|WCONTINUED
))
1539 if (!(options
& (WEXITED
|WSTOPPED
|WCONTINUED
)))
1559 ret
= do_wait(pid
, options
, infop
, NULL
, ru
);
1561 /* avoid REGPARM breakage on x86: */
1562 prevent_tail_call(ret
);
1566 asmlinkage
long sys_wait4(pid_t pid
, int __user
*stat_addr
,
1567 int options
, struct rusage __user
*ru
)
1571 if (options
& ~(WNOHANG
|WUNTRACED
|WCONTINUED
|
1572 __WNOTHREAD
|__WCLONE
|__WALL
))
1574 ret
= do_wait(pid
, options
| WEXITED
, NULL
, stat_addr
, ru
);
1576 /* avoid REGPARM breakage on x86: */
1577 prevent_tail_call(ret
);
1581 #ifdef __ARCH_WANT_SYS_WAITPID
1584 * sys_waitpid() remains for compatibility. waitpid() should be
1585 * implemented by calling sys_wait4() from libc.a.
1587 asmlinkage
long sys_waitpid(pid_t pid
, int __user
*stat_addr
, int options
)
1589 return sys_wait4(pid
, stat_addr
, options
, NULL
);