2 * linux/kernel/posix_timers.c
5 * 2002-10-15 Posix Clocks & timers
6 * by George Anzinger george@mvista.com
8 * Copyright (C) 2002 2003 by MontaVista Software.
10 * 2004-06-01 Fix CLOCK_REALTIME clock/timer TIMER_ABSTIME bug.
11 * Copyright (C) 2004 Boris Hu
13 * This program is free software; you can redistribute it and/or modify
14 * it under the terms of the GNU General Public License as published by
15 * the Free Software Foundation; either version 2 of the License, or (at
16 * your option) any later version.
18 * This program is distributed in the hope that it will be useful, but
19 * WITHOUT ANY WARRANTY; without even the implied warranty of
20 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
21 * General Public License for more details.
23 * You should have received a copy of the GNU General Public License
24 * along with this program; if not, write to the Free Software
25 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
27 * MontaVista Software | 1237 East Arques Avenue | Sunnyvale | CA 94085 | USA
30 /* These are all the functions necessary to implement
31 * POSIX clocks & timers
34 #include <linux/smp_lock.h>
35 #include <linux/interrupt.h>
36 #include <linux/slab.h>
37 #include <linux/time.h>
38 #include <linux/mutex.h>
40 #include <asm/uaccess.h>
41 #include <asm/semaphore.h>
42 #include <linux/list.h>
43 #include <linux/init.h>
44 #include <linux/compiler.h>
45 #include <linux/idr.h>
46 #include <linux/posix-timers.h>
47 #include <linux/syscalls.h>
48 #include <linux/wait.h>
49 #include <linux/workqueue.h>
50 #include <linux/module.h>
53 * Management arrays for POSIX timers. Timers are kept in slab memory
54 * Timer ids are allocated by an external routine that keeps track of the
55 * id and the timer. The external interface is:
57 * void *idr_find(struct idr *idp, int id); to find timer_id <id>
58 * int idr_get_new(struct idr *idp, void *ptr); to get a new id and
60 * void idr_remove(struct idr *idp, int id); to release <id>
61 * void idr_init(struct idr *idp); to initialize <idp>
63 * The idr_get_new *may* call slab for more memory so it must not be
64 * called under a spin lock. Likewise idr_remore may release memory
65 * (but it may be ok to do this under a lock...).
66 * idr_find is just a memory look up and is quite fast. A -1 return
67 * indicates that the requested id does not exist.
71 * Lets keep our timers in a slab cache :-)
73 static kmem_cache_t
*posix_timers_cache
;
74 static struct idr posix_timers_id
;
75 static DEFINE_SPINLOCK(idr_lock
);
78 * we assume that the new SIGEV_THREAD_ID shares no bits with the other
79 * SIGEV values. Here we put out an error if this assumption fails.
81 #if SIGEV_THREAD_ID != (SIGEV_THREAD_ID & \
82 ~(SIGEV_SIGNAL | SIGEV_NONE | SIGEV_THREAD))
83 #error "SIGEV_THREAD_ID must not share bit with other SIGEV values!"
88 * The timer ID is turned into a timer address by idr_find().
89 * Verifying a valid ID consists of:
91 * a) checking that idr_find() returns other than -1.
92 * b) checking that the timer id matches the one in the timer itself.
93 * c) that the timer owner is in the callers thread group.
97 * CLOCKs: The POSIX standard calls for a couple of clocks and allows us
98 * to implement others. This structure defines the various
99 * clocks and allows the possibility of adding others. We
100 * provide an interface to add clocks to the table and expect
101 * the "arch" code to add at least one clock that is high
102 * resolution. Here we define the standard CLOCK_REALTIME as a
103 * 1/HZ resolution clock.
105 * RESOLUTION: Clock resolution is used to round up timer and interval
106 * times, NOT to report clock times, which are reported with as
107 * much resolution as the system can muster. In some cases this
108 * resolution may depend on the underlying clock hardware and
109 * may not be quantifiable until run time, and only then is the
110 * necessary code is written. The standard says we should say
111 * something about this issue in the documentation...
113 * FUNCTIONS: The CLOCKs structure defines possible functions to handle
114 * various clock functions. For clocks that use the standard
115 * system timer code these entries should be NULL. This will
116 * allow dispatch without the overhead of indirect function
117 * calls. CLOCKS that depend on other sources (e.g. WWV or GPS)
118 * must supply functions here, even if the function just returns
119 * ENOSYS. The standard POSIX timer management code assumes the
120 * following: 1.) The k_itimer struct (sched.h) is used for the
121 * timer. 2.) The list, it_lock, it_clock, it_id and it_process
122 * fields are not modified by timer code.
124 * At this time all functions EXCEPT clock_nanosleep can be
125 * redirected by the CLOCKS structure. Clock_nanosleep is in
126 * there, but the code ignores it.
128 * Permissions: It is assumed that the clock_settime() function defined
129 * for each clock will take care of permission checks. Some
130 * clocks may be set able by any user (i.e. local process
131 * clocks) others not. Currently the only set able clock we
132 * have is CLOCK_REALTIME and its high res counter part, both of
133 * which we beg off on and pass to do_sys_settimeofday().
136 static struct k_clock posix_clocks
[MAX_CLOCKS
];
139 * These ones are defined below.
141 static int common_nsleep(const clockid_t
, int flags
, struct timespec
*t
,
142 struct timespec __user
*rmtp
);
143 static void common_timer_get(struct k_itimer
*, struct itimerspec
*);
144 static int common_timer_set(struct k_itimer
*, int,
145 struct itimerspec
*, struct itimerspec
*);
146 static int common_timer_del(struct k_itimer
*timer
);
148 static int posix_timer_fn(void *data
);
150 static struct k_itimer
*lock_timer(timer_t timer_id
, unsigned long *flags
);
152 static inline void unlock_timer(struct k_itimer
*timr
, unsigned long flags
)
154 spin_unlock_irqrestore(&timr
->it_lock
, flags
);
158 * Call the k_clock hook function if non-null, or the default function.
160 #define CLOCK_DISPATCH(clock, call, arglist) \
161 ((clock) < 0 ? posix_cpu_##call arglist : \
162 (posix_clocks[clock].call != NULL \
163 ? (*posix_clocks[clock].call) arglist : common_##call arglist))
166 * Default clock hook functions when the struct k_clock passed
167 * to register_posix_clock leaves a function pointer null.
169 * The function common_CALL is the default implementation for
170 * the function pointer CALL in struct k_clock.
173 static inline int common_clock_getres(const clockid_t which_clock
,
177 tp
->tv_nsec
= posix_clocks
[which_clock
].res
;
182 * Get real time for posix timers
184 static int common_clock_get(clockid_t which_clock
, struct timespec
*tp
)
186 ktime_get_real_ts(tp
);
190 static inline int common_clock_set(const clockid_t which_clock
,
193 return do_sys_settimeofday(tp
, NULL
);
196 static int common_timer_create(struct k_itimer
*new_timer
)
198 hrtimer_init(&new_timer
->it
.real
.timer
, new_timer
->it_clock
, 0);
203 * Return nonzero if we know a priori this clockid_t value is bogus.
205 static inline int invalid_clockid(const clockid_t which_clock
)
207 if (which_clock
< 0) /* CPU clock, posix_cpu_* will check it */
209 if ((unsigned) which_clock
>= MAX_CLOCKS
)
211 if (posix_clocks
[which_clock
].clock_getres
!= NULL
)
213 if (posix_clocks
[which_clock
].res
!= 0)
219 * Get monotonic time for posix timers
221 static int posix_ktime_get_ts(clockid_t which_clock
, struct timespec
*tp
)
228 * Initialize everything, well, just everything in Posix clocks/timers ;)
230 static __init
int init_posix_timers(void)
232 struct k_clock clock_realtime
= {
233 .clock_getres
= hrtimer_get_res
,
235 struct k_clock clock_monotonic
= {
236 .clock_getres
= hrtimer_get_res
,
237 .clock_get
= posix_ktime_get_ts
,
238 .clock_set
= do_posix_clock_nosettime
,
241 register_posix_clock(CLOCK_REALTIME
, &clock_realtime
);
242 register_posix_clock(CLOCK_MONOTONIC
, &clock_monotonic
);
244 posix_timers_cache
= kmem_cache_create("posix_timers_cache",
245 sizeof (struct k_itimer
), 0, 0, NULL
, NULL
);
246 idr_init(&posix_timers_id
);
250 __initcall(init_posix_timers
);
252 static void schedule_next_timer(struct k_itimer
*timr
)
254 if (timr
->it
.real
.interval
.tv64
== 0)
257 timr
->it_overrun
+= hrtimer_forward(&timr
->it
.real
.timer
,
258 timr
->it
.real
.interval
);
259 timr
->it_overrun_last
= timr
->it_overrun
;
260 timr
->it_overrun
= -1;
261 ++timr
->it_requeue_pending
;
262 hrtimer_restart(&timr
->it
.real
.timer
);
266 * This function is exported for use by the signal deliver code. It is
267 * called just prior to the info block being released and passes that
268 * block to us. It's function is to update the overrun entry AND to
269 * restart the timer. It should only be called if the timer is to be
270 * restarted (i.e. we have flagged this in the sys_private entry of the
273 * To protect aginst the timer going away while the interrupt is queued,
274 * we require that the it_requeue_pending flag be set.
276 void do_schedule_next_timer(struct siginfo
*info
)
278 struct k_itimer
*timr
;
281 timr
= lock_timer(info
->si_tid
, &flags
);
283 if (timr
&& timr
->it_requeue_pending
== info
->si_sys_private
) {
284 if (timr
->it_clock
< 0)
285 posix_cpu_timer_schedule(timr
);
287 schedule_next_timer(timr
);
289 info
->si_overrun
= timr
->it_overrun_last
;
293 unlock_timer(timr
, flags
);
296 int posix_timer_event(struct k_itimer
*timr
,int si_private
)
298 memset(&timr
->sigq
->info
, 0, sizeof(siginfo_t
));
299 timr
->sigq
->info
.si_sys_private
= si_private
;
300 /* Send signal to the process that owns this timer.*/
302 timr
->sigq
->info
.si_signo
= timr
->it_sigev_signo
;
303 timr
->sigq
->info
.si_errno
= 0;
304 timr
->sigq
->info
.si_code
= SI_TIMER
;
305 timr
->sigq
->info
.si_tid
= timr
->it_id
;
306 timr
->sigq
->info
.si_value
= timr
->it_sigev_value
;
308 if (timr
->it_sigev_notify
& SIGEV_THREAD_ID
) {
309 struct task_struct
*leader
;
310 int ret
= send_sigqueue(timr
->it_sigev_signo
, timr
->sigq
,
313 if (likely(ret
>= 0))
316 timr
->it_sigev_notify
= SIGEV_SIGNAL
;
317 leader
= timr
->it_process
->group_leader
;
318 put_task_struct(timr
->it_process
);
319 timr
->it_process
= leader
;
322 return send_group_sigqueue(timr
->it_sigev_signo
, timr
->sigq
,
325 EXPORT_SYMBOL_GPL(posix_timer_event
);
328 * This function gets called when a POSIX.1b interval timer expires. It
329 * is used as a callback from the kernel internal timer. The
330 * run_timer_list code ALWAYS calls with interrupts on.
332 * This code is for CLOCK_REALTIME* and CLOCK_MONOTONIC* timers.
334 static int posix_timer_fn(void *data
)
336 struct k_itimer
*timr
= data
;
339 int ret
= HRTIMER_NORESTART
;
341 spin_lock_irqsave(&timr
->it_lock
, flags
);
343 if (timr
->it
.real
.interval
.tv64
!= 0)
344 si_private
= ++timr
->it_requeue_pending
;
346 if (posix_timer_event(timr
, si_private
)) {
348 * signal was not sent because of sig_ignor
349 * we will not get a call back to restart it AND
350 * it should be restarted.
352 if (timr
->it
.real
.interval
.tv64
!= 0) {
354 hrtimer_forward(&timr
->it
.real
.timer
,
355 timr
->it
.real
.interval
);
356 ret
= HRTIMER_RESTART
;
357 ++timr
->it_requeue_pending
;
361 unlock_timer(timr
, flags
);
365 static struct task_struct
* good_sigevent(sigevent_t
* event
)
367 struct task_struct
*rtn
= current
->group_leader
;
369 if ((event
->sigev_notify
& SIGEV_THREAD_ID
) &&
370 (!(rtn
= find_task_by_pid(event
->sigev_notify_thread_id
)) ||
371 rtn
->tgid
!= current
->tgid
||
372 (event
->sigev_notify
& ~SIGEV_THREAD_ID
) != SIGEV_SIGNAL
))
375 if (((event
->sigev_notify
& ~SIGEV_THREAD_ID
) != SIGEV_NONE
) &&
376 ((event
->sigev_signo
<= 0) || (event
->sigev_signo
> SIGRTMAX
)))
382 void register_posix_clock(const clockid_t clock_id
, struct k_clock
*new_clock
)
384 if ((unsigned) clock_id
>= MAX_CLOCKS
) {
385 printk("POSIX clock register failed for clock_id %d\n",
390 posix_clocks
[clock_id
] = *new_clock
;
392 EXPORT_SYMBOL_GPL(register_posix_clock
);
394 static struct k_itimer
* alloc_posix_timer(void)
396 struct k_itimer
*tmr
;
397 tmr
= kmem_cache_alloc(posix_timers_cache
, GFP_KERNEL
);
400 memset(tmr
, 0, sizeof (struct k_itimer
));
401 if (unlikely(!(tmr
->sigq
= sigqueue_alloc()))) {
402 kmem_cache_free(posix_timers_cache
, tmr
);
409 #define IT_ID_NOT_SET 0
410 static void release_posix_timer(struct k_itimer
*tmr
, int it_id_set
)
414 spin_lock_irqsave(&idr_lock
, flags
);
415 idr_remove(&posix_timers_id
, tmr
->it_id
);
416 spin_unlock_irqrestore(&idr_lock
, flags
);
418 sigqueue_free(tmr
->sigq
);
419 if (unlikely(tmr
->it_process
) &&
420 tmr
->it_sigev_notify
== (SIGEV_SIGNAL
|SIGEV_THREAD_ID
))
421 put_task_struct(tmr
->it_process
);
422 kmem_cache_free(posix_timers_cache
, tmr
);
425 /* Create a POSIX.1b interval timer. */
428 sys_timer_create(const clockid_t which_clock
,
429 struct sigevent __user
*timer_event_spec
,
430 timer_t __user
* created_timer_id
)
433 struct k_itimer
*new_timer
= NULL
;
435 struct task_struct
*process
= NULL
;
438 int it_id_set
= IT_ID_NOT_SET
;
440 if (invalid_clockid(which_clock
))
443 new_timer
= alloc_posix_timer();
444 if (unlikely(!new_timer
))
447 spin_lock_init(&new_timer
->it_lock
);
449 if (unlikely(!idr_pre_get(&posix_timers_id
, GFP_KERNEL
))) {
453 spin_lock_irq(&idr_lock
);
454 error
= idr_get_new(&posix_timers_id
, (void *) new_timer
,
456 spin_unlock_irq(&idr_lock
);
457 if (error
== -EAGAIN
)
461 * Wierd looking, but we return EAGAIN if the IDR is
462 * full (proper POSIX return value for this)
468 it_id_set
= IT_ID_SET
;
469 new_timer
->it_id
= (timer_t
) new_timer_id
;
470 new_timer
->it_clock
= which_clock
;
471 new_timer
->it_overrun
= -1;
472 error
= CLOCK_DISPATCH(which_clock
, timer_create
, (new_timer
));
477 * return the timer_id now. The next step is hard to
478 * back out if there is an error.
480 if (copy_to_user(created_timer_id
,
481 &new_timer_id
, sizeof (new_timer_id
))) {
485 if (timer_event_spec
) {
486 if (copy_from_user(&event
, timer_event_spec
, sizeof (event
))) {
490 new_timer
->it_sigev_notify
= event
.sigev_notify
;
491 new_timer
->it_sigev_signo
= event
.sigev_signo
;
492 new_timer
->it_sigev_value
= event
.sigev_value
;
494 read_lock(&tasklist_lock
);
495 if ((process
= good_sigevent(&event
))) {
497 * We may be setting up this process for another
498 * thread. It may be exiting. To catch this
499 * case the we check the PF_EXITING flag. If
500 * the flag is not set, the siglock will catch
501 * him before it is too late (in exit_itimers).
503 * The exec case is a bit more invloved but easy
504 * to code. If the process is in our thread
505 * group (and it must be or we would not allow
506 * it here) and is doing an exec, it will cause
507 * us to be killed. In this case it will wait
508 * for us to die which means we can finish this
509 * linkage with our last gasp. I.e. no code :)
511 spin_lock_irqsave(&process
->sighand
->siglock
, flags
);
512 if (!(process
->flags
& PF_EXITING
)) {
513 new_timer
->it_process
= process
;
514 list_add(&new_timer
->list
,
515 &process
->signal
->posix_timers
);
516 spin_unlock_irqrestore(&process
->sighand
->siglock
, flags
);
517 if (new_timer
->it_sigev_notify
== (SIGEV_SIGNAL
|SIGEV_THREAD_ID
))
518 get_task_struct(process
);
520 spin_unlock_irqrestore(&process
->sighand
->siglock
, flags
);
524 read_unlock(&tasklist_lock
);
530 new_timer
->it_sigev_notify
= SIGEV_SIGNAL
;
531 new_timer
->it_sigev_signo
= SIGALRM
;
532 new_timer
->it_sigev_value
.sival_int
= new_timer
->it_id
;
533 process
= current
->group_leader
;
534 spin_lock_irqsave(&process
->sighand
->siglock
, flags
);
535 new_timer
->it_process
= process
;
536 list_add(&new_timer
->list
, &process
->signal
->posix_timers
);
537 spin_unlock_irqrestore(&process
->sighand
->siglock
, flags
);
541 * In the case of the timer belonging to another task, after
542 * the task is unlocked, the timer is owned by the other task
543 * and may cease to exist at any time. Don't use or modify
544 * new_timer after the unlock call.
549 release_posix_timer(new_timer
, it_id_set
);
555 * Locking issues: We need to protect the result of the id look up until
556 * we get the timer locked down so it is not deleted under us. The
557 * removal is done under the idr spinlock so we use that here to bridge
558 * the find to the timer lock. To avoid a dead lock, the timer id MUST
559 * be release with out holding the timer lock.
561 static struct k_itimer
* lock_timer(timer_t timer_id
, unsigned long *flags
)
563 struct k_itimer
*timr
;
565 * Watch out here. We do a irqsave on the idr_lock and pass the
566 * flags part over to the timer lock. Must not let interrupts in
567 * while we are moving the lock.
570 spin_lock_irqsave(&idr_lock
, *flags
);
571 timr
= (struct k_itimer
*) idr_find(&posix_timers_id
, (int) timer_id
);
573 spin_lock(&timr
->it_lock
);
574 spin_unlock(&idr_lock
);
576 if ((timr
->it_id
!= timer_id
) || !(timr
->it_process
) ||
577 timr
->it_process
->tgid
!= current
->tgid
) {
578 unlock_timer(timr
, *flags
);
582 spin_unlock_irqrestore(&idr_lock
, *flags
);
588 * Get the time remaining on a POSIX.1b interval timer. This function
589 * is ALWAYS called with spin_lock_irq on the timer, thus it must not
592 * We have a couple of messes to clean up here. First there is the case
593 * of a timer that has a requeue pending. These timers should appear to
594 * be in the timer list with an expiry as if we were to requeue them
597 * The second issue is the SIGEV_NONE timer which may be active but is
598 * not really ever put in the timer list (to save system resources).
599 * This timer may be expired, and if so, we will do it here. Otherwise
600 * it is the same as a requeue pending timer WRT to what we should
604 common_timer_get(struct k_itimer
*timr
, struct itimerspec
*cur_setting
)
607 struct hrtimer
*timer
= &timr
->it
.real
.timer
;
609 memset(cur_setting
, 0, sizeof(struct itimerspec
));
610 remaining
= hrtimer_get_remaining(timer
);
612 /* Time left ? or timer pending */
613 if (remaining
.tv64
> 0 || hrtimer_active(timer
))
615 /* interval timer ? */
616 if (timr
->it
.real
.interval
.tv64
== 0)
619 * When a requeue is pending or this is a SIGEV_NONE timer
620 * move the expiry time forward by intervals, so expiry is >
623 if (timr
->it_requeue_pending
& REQUEUE_PENDING
||
624 (timr
->it_sigev_notify
& ~SIGEV_THREAD_ID
) == SIGEV_NONE
) {
626 hrtimer_forward(timer
, timr
->it
.real
.interval
);
627 remaining
= hrtimer_get_remaining(timer
);
630 /* interval timer ? */
631 if (timr
->it
.real
.interval
.tv64
!= 0)
632 cur_setting
->it_interval
=
633 ktime_to_timespec(timr
->it
.real
.interval
);
634 /* Return 0 only, when the timer is expired and not pending */
635 if (remaining
.tv64
<= 0)
636 cur_setting
->it_value
.tv_nsec
= 1;
638 cur_setting
->it_value
= ktime_to_timespec(remaining
);
641 /* Get the time remaining on a POSIX.1b interval timer. */
643 sys_timer_gettime(timer_t timer_id
, struct itimerspec __user
*setting
)
645 struct k_itimer
*timr
;
646 struct itimerspec cur_setting
;
649 timr
= lock_timer(timer_id
, &flags
);
653 CLOCK_DISPATCH(timr
->it_clock
, timer_get
, (timr
, &cur_setting
));
655 unlock_timer(timr
, flags
);
657 if (copy_to_user(setting
, &cur_setting
, sizeof (cur_setting
)))
664 * Get the number of overruns of a POSIX.1b interval timer. This is to
665 * be the overrun of the timer last delivered. At the same time we are
666 * accumulating overruns on the next timer. The overrun is frozen when
667 * the signal is delivered, either at the notify time (if the info block
668 * is not queued) or at the actual delivery time (as we are informed by
669 * the call back to do_schedule_next_timer(). So all we need to do is
670 * to pick up the frozen overrun.
673 sys_timer_getoverrun(timer_t timer_id
)
675 struct k_itimer
*timr
;
679 timr
= lock_timer(timer_id
, &flags
);
683 overrun
= timr
->it_overrun_last
;
684 unlock_timer(timr
, flags
);
689 /* Set a POSIX.1b interval timer. */
690 /* timr->it_lock is taken. */
692 common_timer_set(struct k_itimer
*timr
, int flags
,
693 struct itimerspec
*new_setting
, struct itimerspec
*old_setting
)
695 struct hrtimer
*timer
= &timr
->it
.real
.timer
;
696 enum hrtimer_mode mode
;
699 common_timer_get(timr
, old_setting
);
701 /* disable the timer */
702 timr
->it
.real
.interval
.tv64
= 0;
704 * careful here. If smp we could be in the "fire" routine which will
705 * be spinning as we hold the lock. But this is ONLY an SMP issue.
707 if (hrtimer_try_to_cancel(timer
) < 0)
710 timr
->it_requeue_pending
= (timr
->it_requeue_pending
+ 2) &
712 timr
->it_overrun_last
= 0;
714 /* switch off the timer when it_value is zero */
715 if (!new_setting
->it_value
.tv_sec
&& !new_setting
->it_value
.tv_nsec
)
718 mode
= flags
& TIMER_ABSTIME
? HRTIMER_ABS
: HRTIMER_REL
;
719 hrtimer_init(&timr
->it
.real
.timer
, timr
->it_clock
, mode
);
720 timr
->it
.real
.timer
.data
= timr
;
721 timr
->it
.real
.timer
.function
= posix_timer_fn
;
723 timer
->expires
= timespec_to_ktime(new_setting
->it_value
);
725 /* Convert interval */
726 timr
->it
.real
.interval
= timespec_to_ktime(new_setting
->it_interval
);
728 /* SIGEV_NONE timers are not queued ! See common_timer_get */
729 if (((timr
->it_sigev_notify
& ~SIGEV_THREAD_ID
) == SIGEV_NONE
)) {
730 /* Setup correct expiry time for relative timers */
731 if (mode
== HRTIMER_REL
)
732 timer
->expires
= ktime_add(timer
->expires
,
733 timer
->base
->get_time());
737 hrtimer_start(timer
, timer
->expires
, mode
);
741 /* Set a POSIX.1b interval timer */
743 sys_timer_settime(timer_t timer_id
, int flags
,
744 const struct itimerspec __user
*new_setting
,
745 struct itimerspec __user
*old_setting
)
747 struct k_itimer
*timr
;
748 struct itimerspec new_spec
, old_spec
;
751 struct itimerspec
*rtn
= old_setting
? &old_spec
: NULL
;
756 if (copy_from_user(&new_spec
, new_setting
, sizeof (new_spec
)))
759 if (!timespec_valid(&new_spec
.it_interval
) ||
760 !timespec_valid(&new_spec
.it_value
))
763 timr
= lock_timer(timer_id
, &flag
);
767 error
= CLOCK_DISPATCH(timr
->it_clock
, timer_set
,
768 (timr
, flags
, &new_spec
, rtn
));
770 unlock_timer(timr
, flag
);
771 if (error
== TIMER_RETRY
) {
772 rtn
= NULL
; // We already got the old time...
776 if (old_setting
&& !error
&&
777 copy_to_user(old_setting
, &old_spec
, sizeof (old_spec
)))
783 static inline int common_timer_del(struct k_itimer
*timer
)
785 timer
->it
.real
.interval
.tv64
= 0;
787 if (hrtimer_try_to_cancel(&timer
->it
.real
.timer
) < 0)
792 static inline int timer_delete_hook(struct k_itimer
*timer
)
794 return CLOCK_DISPATCH(timer
->it_clock
, timer_del
, (timer
));
797 /* Delete a POSIX.1b interval timer. */
799 sys_timer_delete(timer_t timer_id
)
801 struct k_itimer
*timer
;
805 timer
= lock_timer(timer_id
, &flags
);
809 if (timer_delete_hook(timer
) == TIMER_RETRY
) {
810 unlock_timer(timer
, flags
);
814 spin_lock(¤t
->sighand
->siglock
);
815 list_del(&timer
->list
);
816 spin_unlock(¤t
->sighand
->siglock
);
818 * This keeps any tasks waiting on the spin lock from thinking
819 * they got something (see the lock code above).
821 if (timer
->it_process
) {
822 if (timer
->it_sigev_notify
== (SIGEV_SIGNAL
|SIGEV_THREAD_ID
))
823 put_task_struct(timer
->it_process
);
824 timer
->it_process
= NULL
;
826 unlock_timer(timer
, flags
);
827 release_posix_timer(timer
, IT_ID_SET
);
832 * return timer owned by the process, used by exit_itimers
834 static void itimer_delete(struct k_itimer
*timer
)
839 spin_lock_irqsave(&timer
->it_lock
, flags
);
841 if (timer_delete_hook(timer
) == TIMER_RETRY
) {
842 unlock_timer(timer
, flags
);
845 list_del(&timer
->list
);
847 * This keeps any tasks waiting on the spin lock from thinking
848 * they got something (see the lock code above).
850 if (timer
->it_process
) {
851 if (timer
->it_sigev_notify
== (SIGEV_SIGNAL
|SIGEV_THREAD_ID
))
852 put_task_struct(timer
->it_process
);
853 timer
->it_process
= NULL
;
855 unlock_timer(timer
, flags
);
856 release_posix_timer(timer
, IT_ID_SET
);
860 * This is called by do_exit or de_thread, only when there are no more
861 * references to the shared signal_struct.
863 void exit_itimers(struct signal_struct
*sig
)
865 struct k_itimer
*tmr
;
867 while (!list_empty(&sig
->posix_timers
)) {
868 tmr
= list_entry(sig
->posix_timers
.next
, struct k_itimer
, list
);
873 /* Not available / possible... functions */
874 int do_posix_clock_nosettime(const clockid_t clockid
, struct timespec
*tp
)
878 EXPORT_SYMBOL_GPL(do_posix_clock_nosettime
);
880 int do_posix_clock_nonanosleep(const clockid_t clock
, int flags
,
881 struct timespec
*t
, struct timespec __user
*r
)
884 return -EOPNOTSUPP
; /* aka ENOTSUP in userland for POSIX */
885 #else /* parisc does define it separately. */
889 EXPORT_SYMBOL_GPL(do_posix_clock_nonanosleep
);
891 asmlinkage
long sys_clock_settime(const clockid_t which_clock
,
892 const struct timespec __user
*tp
)
894 struct timespec new_tp
;
896 if (invalid_clockid(which_clock
))
898 if (copy_from_user(&new_tp
, tp
, sizeof (*tp
)))
901 return CLOCK_DISPATCH(which_clock
, clock_set
, (which_clock
, &new_tp
));
905 sys_clock_gettime(const clockid_t which_clock
, struct timespec __user
*tp
)
907 struct timespec kernel_tp
;
910 if (invalid_clockid(which_clock
))
912 error
= CLOCK_DISPATCH(which_clock
, clock_get
,
913 (which_clock
, &kernel_tp
));
914 if (!error
&& copy_to_user(tp
, &kernel_tp
, sizeof (kernel_tp
)))
922 sys_clock_getres(const clockid_t which_clock
, struct timespec __user
*tp
)
924 struct timespec rtn_tp
;
927 if (invalid_clockid(which_clock
))
930 error
= CLOCK_DISPATCH(which_clock
, clock_getres
,
931 (which_clock
, &rtn_tp
));
933 if (!error
&& tp
&& copy_to_user(tp
, &rtn_tp
, sizeof (rtn_tp
))) {
941 * nanosleep for monotonic and realtime clocks
943 static int common_nsleep(const clockid_t which_clock
, int flags
,
944 struct timespec
*tsave
, struct timespec __user
*rmtp
)
946 return hrtimer_nanosleep(tsave
, rmtp
, flags
& TIMER_ABSTIME
?
947 HRTIMER_ABS
: HRTIMER_REL
, which_clock
);
951 sys_clock_nanosleep(const clockid_t which_clock
, int flags
,
952 const struct timespec __user
*rqtp
,
953 struct timespec __user
*rmtp
)
957 if (invalid_clockid(which_clock
))
960 if (copy_from_user(&t
, rqtp
, sizeof (struct timespec
)))
963 if (!timespec_valid(&t
))
966 return CLOCK_DISPATCH(which_clock
, nsleep
,
967 (which_clock
, flags
, &t
, rmtp
));