2 * CFQ, or complete fairness queueing, disk scheduler.
4 * Based on ideas from a previously unfinished io
5 * scheduler (round robin per-process disk scheduling) and Andrea Arcangeli.
7 * Copyright (C) 2003 Jens Axboe <axboe@kernel.dk>
9 #include <linux/module.h>
10 #include <linux/slab.h>
11 #include <linux/sched/clock.h>
12 #include <linux/blkdev.h>
13 #include <linux/elevator.h>
14 #include <linux/ktime.h>
15 #include <linux/rbtree.h>
16 #include <linux/ioprio.h>
17 #include <linux/blktrace_api.h>
18 #include <linux/blk-cgroup.h>
25 /* max queue in one round of service */
26 static const int cfq_quantum
= 8;
27 static const u64 cfq_fifo_expire
[2] = { NSEC_PER_SEC
/ 4, NSEC_PER_SEC
/ 8 };
28 /* maximum backwards seek, in KiB */
29 static const int cfq_back_max
= 16 * 1024;
30 /* penalty of a backwards seek */
31 static const int cfq_back_penalty
= 2;
32 static const u64 cfq_slice_sync
= NSEC_PER_SEC
/ 10;
33 static u64 cfq_slice_async
= NSEC_PER_SEC
/ 25;
34 static const int cfq_slice_async_rq
= 2;
35 static u64 cfq_slice_idle
= NSEC_PER_SEC
/ 125;
36 static u64 cfq_group_idle
= NSEC_PER_SEC
/ 125;
37 static const u64 cfq_target_latency
= (u64
)NSEC_PER_SEC
* 3/10; /* 300 ms */
38 static const int cfq_hist_divisor
= 4;
41 * offset from end of service tree
43 #define CFQ_IDLE_DELAY (NSEC_PER_SEC / 5)
46 * below this threshold, we consider thinktime immediate
48 #define CFQ_MIN_TT (2 * NSEC_PER_SEC / HZ)
50 #define CFQ_SLICE_SCALE (5)
51 #define CFQ_HW_QUEUE_MIN (5)
52 #define CFQ_SERVICE_SHIFT 12
54 #define CFQQ_SEEK_THR (sector_t)(8 * 100)
55 #define CFQQ_CLOSE_THR (sector_t)(8 * 1024)
56 #define CFQQ_SECT_THR_NONROT (sector_t)(2 * 32)
57 #define CFQQ_SEEKY(cfqq) (hweight32(cfqq->seek_history) > 32/8)
59 #define RQ_CIC(rq) icq_to_cic((rq)->elv.icq)
60 #define RQ_CFQQ(rq) (struct cfq_queue *) ((rq)->elv.priv[0])
61 #define RQ_CFQG(rq) (struct cfq_group *) ((rq)->elv.priv[1])
63 static struct kmem_cache
*cfq_pool
;
65 #define CFQ_PRIO_LISTS IOPRIO_BE_NR
66 #define cfq_class_idle(cfqq) ((cfqq)->ioprio_class == IOPRIO_CLASS_IDLE)
67 #define cfq_class_rt(cfqq) ((cfqq)->ioprio_class == IOPRIO_CLASS_RT)
69 #define sample_valid(samples) ((samples) > 80)
70 #define rb_entry_cfqg(node) rb_entry((node), struct cfq_group, rb_node)
72 /* blkio-related constants */
73 #define CFQ_WEIGHT_LEGACY_MIN 10
74 #define CFQ_WEIGHT_LEGACY_DFL 500
75 #define CFQ_WEIGHT_LEGACY_MAX 1000
82 unsigned long ttime_samples
;
86 * Most of our rbtree usage is for sorting with min extraction, so
87 * if we cache the leftmost node we don't have to walk down the tree
88 * to find it. Idea borrowed from Ingo Molnars CFS scheduler. We should
89 * move this into the elevator for the rq sorting as well.
96 struct cfq_ttime ttime
;
98 #define CFQ_RB_ROOT (struct cfq_rb_root) { .rb = RB_ROOT, \
99 .ttime = {.last_end_request = ktime_get_ns(),},}
102 * Per process-grouping structure
105 /* reference count */
107 /* various state flags, see below */
109 /* parent cfq_data */
110 struct cfq_data
*cfqd
;
111 /* service_tree member */
112 struct rb_node rb_node
;
113 /* service_tree key */
115 /* prio tree member */
116 struct rb_node p_node
;
117 /* prio tree root we belong to, if any */
118 struct rb_root
*p_root
;
119 /* sorted list of pending requests */
120 struct rb_root sort_list
;
121 /* if fifo isn't expired, next request to serve */
122 struct request
*next_rq
;
123 /* requests queued in sort_list */
125 /* currently allocated requests */
127 /* fifo list of requests in sort_list */
128 struct list_head fifo
;
130 /* time when queue got scheduled in to dispatch first request. */
134 /* time when first request from queue completed and slice started. */
139 /* pending priority requests */
141 /* number of requests that are on the dispatch list or inside driver */
144 /* io prio of this group */
145 unsigned short ioprio
, org_ioprio
;
146 unsigned short ioprio_class
, org_ioprio_class
;
151 sector_t last_request_pos
;
153 struct cfq_rb_root
*service_tree
;
154 struct cfq_queue
*new_cfqq
;
155 struct cfq_group
*cfqg
;
156 /* Number of sectors dispatched from queue in single dispatch round */
157 unsigned long nr_sectors
;
161 * First index in the service_trees.
162 * IDLE is handled separately, so it has negative index
172 * Second index in the service_trees.
176 SYNC_NOIDLE_WORKLOAD
= 1,
181 #ifdef CONFIG_CFQ_GROUP_IOSCHED
182 /* number of ios merged */
183 struct blkg_rwstat merged
;
184 /* total time spent on device in ns, may not be accurate w/ queueing */
185 struct blkg_rwstat service_time
;
186 /* total time spent waiting in scheduler queue in ns */
187 struct blkg_rwstat wait_time
;
188 /* number of IOs queued up */
189 struct blkg_rwstat queued
;
190 /* total disk time and nr sectors dispatched by this group */
191 struct blkg_stat time
;
192 #ifdef CONFIG_DEBUG_BLK_CGROUP
193 /* time not charged to this cgroup */
194 struct blkg_stat unaccounted_time
;
195 /* sum of number of ios queued across all samples */
196 struct blkg_stat avg_queue_size_sum
;
197 /* count of samples taken for average */
198 struct blkg_stat avg_queue_size_samples
;
199 /* how many times this group has been removed from service tree */
200 struct blkg_stat dequeue
;
201 /* total time spent waiting for it to be assigned a timeslice. */
202 struct blkg_stat group_wait_time
;
203 /* time spent idling for this blkcg_gq */
204 struct blkg_stat idle_time
;
205 /* total time with empty current active q with other requests queued */
206 struct blkg_stat empty_time
;
207 /* fields after this shouldn't be cleared on stat reset */
208 uint64_t start_group_wait_time
;
209 uint64_t start_idle_time
;
210 uint64_t start_empty_time
;
212 #endif /* CONFIG_DEBUG_BLK_CGROUP */
213 #endif /* CONFIG_CFQ_GROUP_IOSCHED */
216 /* Per-cgroup data */
217 struct cfq_group_data
{
218 /* must be the first member */
219 struct blkcg_policy_data cpd
;
222 unsigned int leaf_weight
;
225 /* This is per cgroup per device grouping structure */
227 /* must be the first member */
228 struct blkg_policy_data pd
;
230 /* group service_tree member */
231 struct rb_node rb_node
;
233 /* group service_tree key */
237 * The number of active cfqgs and sum of their weights under this
238 * cfqg. This covers this cfqg's leaf_weight and all children's
239 * weights, but does not cover weights of further descendants.
241 * If a cfqg is on the service tree, it's active. An active cfqg
242 * also activates its parent and contributes to the children_weight
246 unsigned int children_weight
;
249 * vfraction is the fraction of vdisktime that the tasks in this
250 * cfqg are entitled to. This is determined by compounding the
251 * ratios walking up from this cfqg to the root.
253 * It is in fixed point w/ CFQ_SERVICE_SHIFT and the sum of all
254 * vfractions on a service tree is approximately 1. The sum may
255 * deviate a bit due to rounding errors and fluctuations caused by
256 * cfqgs entering and leaving the service tree.
258 unsigned int vfraction
;
261 * There are two weights - (internal) weight is the weight of this
262 * cfqg against the sibling cfqgs. leaf_weight is the wight of
263 * this cfqg against the child cfqgs. For the root cfqg, both
264 * weights are kept in sync for backward compatibility.
267 unsigned int new_weight
;
268 unsigned int dev_weight
;
270 unsigned int leaf_weight
;
271 unsigned int new_leaf_weight
;
272 unsigned int dev_leaf_weight
;
274 /* number of cfqq currently on this group */
278 * Per group busy queues average. Useful for workload slice calc. We
279 * create the array for each prio class but at run time it is used
280 * only for RT and BE class and slot for IDLE class remains unused.
281 * This is primarily done to avoid confusion and a gcc warning.
283 unsigned int busy_queues_avg
[CFQ_PRIO_NR
];
285 * rr lists of queues with requests. We maintain service trees for
286 * RT and BE classes. These trees are subdivided in subclasses
287 * of SYNC, SYNC_NOIDLE and ASYNC based on workload type. For IDLE
288 * class there is no subclassification and all the cfq queues go on
289 * a single tree service_tree_idle.
290 * Counts are embedded in the cfq_rb_root
292 struct cfq_rb_root service_trees
[2][3];
293 struct cfq_rb_root service_tree_idle
;
296 enum wl_type_t saved_wl_type
;
297 enum wl_class_t saved_wl_class
;
299 /* number of requests that are on the dispatch list or inside driver */
301 struct cfq_ttime ttime
;
302 struct cfqg_stats stats
; /* stats for this cfqg */
304 /* async queue for each priority case */
305 struct cfq_queue
*async_cfqq
[2][IOPRIO_BE_NR
];
306 struct cfq_queue
*async_idle_cfqq
;
311 struct io_cq icq
; /* must be the first member */
312 struct cfq_queue
*cfqq
[2];
313 struct cfq_ttime ttime
;
314 int ioprio
; /* the current ioprio */
315 #ifdef CONFIG_CFQ_GROUP_IOSCHED
316 uint64_t blkcg_serial_nr
; /* the current blkcg serial */
321 * Per block device queue structure
324 struct request_queue
*queue
;
325 /* Root service tree for cfq_groups */
326 struct cfq_rb_root grp_service_tree
;
327 struct cfq_group
*root_group
;
330 * The priority currently being served
332 enum wl_class_t serving_wl_class
;
333 enum wl_type_t serving_wl_type
;
334 u64 workload_expires
;
335 struct cfq_group
*serving_group
;
338 * Each priority tree is sorted by next_request position. These
339 * trees are used when determining if two or more queues are
340 * interleaving requests (see cfq_close_cooperator).
342 struct rb_root prio_trees
[CFQ_PRIO_LISTS
];
344 unsigned int busy_queues
;
345 unsigned int busy_sync_queues
;
351 * queue-depth detection
357 * -1 => indeterminate, (cfq will behave as if NCQ is present, to allow better detection)
358 * 1 => NCQ is present (hw_tag_est_depth is the estimated max depth)
361 int hw_tag_est_depth
;
362 unsigned int hw_tag_samples
;
365 * idle window management
367 struct hrtimer idle_slice_timer
;
368 struct work_struct unplug_work
;
370 struct cfq_queue
*active_queue
;
371 struct cfq_io_cq
*active_cic
;
373 sector_t last_position
;
376 * tunables, see top of file
378 unsigned int cfq_quantum
;
379 unsigned int cfq_back_penalty
;
380 unsigned int cfq_back_max
;
381 unsigned int cfq_slice_async_rq
;
382 unsigned int cfq_latency
;
383 u64 cfq_fifo_expire
[2];
387 u64 cfq_target_latency
;
390 * Fallback dummy cfqq for extreme OOM conditions
392 struct cfq_queue oom_cfqq
;
394 u64 last_delayed_sync
;
397 static struct cfq_group
*cfq_get_next_cfqg(struct cfq_data
*cfqd
);
398 static void cfq_put_queue(struct cfq_queue
*cfqq
);
400 static struct cfq_rb_root
*st_for(struct cfq_group
*cfqg
,
401 enum wl_class_t
class,
407 if (class == IDLE_WORKLOAD
)
408 return &cfqg
->service_tree_idle
;
410 return &cfqg
->service_trees
[class][type
];
413 enum cfqq_state_flags
{
414 CFQ_CFQQ_FLAG_on_rr
= 0, /* on round-robin busy list */
415 CFQ_CFQQ_FLAG_wait_request
, /* waiting for a request */
416 CFQ_CFQQ_FLAG_must_dispatch
, /* must be allowed a dispatch */
417 CFQ_CFQQ_FLAG_must_alloc_slice
, /* per-slice must_alloc flag */
418 CFQ_CFQQ_FLAG_fifo_expire
, /* FIFO checked in this slice */
419 CFQ_CFQQ_FLAG_idle_window
, /* slice idling enabled */
420 CFQ_CFQQ_FLAG_prio_changed
, /* task priority has changed */
421 CFQ_CFQQ_FLAG_slice_new
, /* no requests dispatched in slice */
422 CFQ_CFQQ_FLAG_sync
, /* synchronous queue */
423 CFQ_CFQQ_FLAG_coop
, /* cfqq is shared */
424 CFQ_CFQQ_FLAG_split_coop
, /* shared cfqq will be splitted */
425 CFQ_CFQQ_FLAG_deep
, /* sync cfqq experienced large depth */
426 CFQ_CFQQ_FLAG_wait_busy
, /* Waiting for next request */
429 #define CFQ_CFQQ_FNS(name) \
430 static inline void cfq_mark_cfqq_##name(struct cfq_queue *cfqq) \
432 (cfqq)->flags |= (1 << CFQ_CFQQ_FLAG_##name); \
434 static inline void cfq_clear_cfqq_##name(struct cfq_queue *cfqq) \
436 (cfqq)->flags &= ~(1 << CFQ_CFQQ_FLAG_##name); \
438 static inline int cfq_cfqq_##name(const struct cfq_queue *cfqq) \
440 return ((cfqq)->flags & (1 << CFQ_CFQQ_FLAG_##name)) != 0; \
444 CFQ_CFQQ_FNS(wait_request
);
445 CFQ_CFQQ_FNS(must_dispatch
);
446 CFQ_CFQQ_FNS(must_alloc_slice
);
447 CFQ_CFQQ_FNS(fifo_expire
);
448 CFQ_CFQQ_FNS(idle_window
);
449 CFQ_CFQQ_FNS(prio_changed
);
450 CFQ_CFQQ_FNS(slice_new
);
453 CFQ_CFQQ_FNS(split_coop
);
455 CFQ_CFQQ_FNS(wait_busy
);
458 #if defined(CONFIG_CFQ_GROUP_IOSCHED) && defined(CONFIG_DEBUG_BLK_CGROUP)
460 /* cfqg stats flags */
461 enum cfqg_stats_flags
{
462 CFQG_stats_waiting
= 0,
467 #define CFQG_FLAG_FNS(name) \
468 static inline void cfqg_stats_mark_##name(struct cfqg_stats *stats) \
470 stats->flags |= (1 << CFQG_stats_##name); \
472 static inline void cfqg_stats_clear_##name(struct cfqg_stats *stats) \
474 stats->flags &= ~(1 << CFQG_stats_##name); \
476 static inline int cfqg_stats_##name(struct cfqg_stats *stats) \
478 return (stats->flags & (1 << CFQG_stats_##name)) != 0; \
481 CFQG_FLAG_FNS(waiting)
482 CFQG_FLAG_FNS(idling
)
486 /* This should be called with the queue_lock held. */
487 static void cfqg_stats_update_group_wait_time(struct cfqg_stats
*stats
)
489 unsigned long long now
;
491 if (!cfqg_stats_waiting(stats
))
495 if (time_after64(now
, stats
->start_group_wait_time
))
496 blkg_stat_add(&stats
->group_wait_time
,
497 now
- stats
->start_group_wait_time
);
498 cfqg_stats_clear_waiting(stats
);
501 /* This should be called with the queue_lock held. */
502 static void cfqg_stats_set_start_group_wait_time(struct cfq_group
*cfqg
,
503 struct cfq_group
*curr_cfqg
)
505 struct cfqg_stats
*stats
= &cfqg
->stats
;
507 if (cfqg_stats_waiting(stats
))
509 if (cfqg
== curr_cfqg
)
511 stats
->start_group_wait_time
= sched_clock();
512 cfqg_stats_mark_waiting(stats
);
515 /* This should be called with the queue_lock held. */
516 static void cfqg_stats_end_empty_time(struct cfqg_stats
*stats
)
518 unsigned long long now
;
520 if (!cfqg_stats_empty(stats
))
524 if (time_after64(now
, stats
->start_empty_time
))
525 blkg_stat_add(&stats
->empty_time
,
526 now
- stats
->start_empty_time
);
527 cfqg_stats_clear_empty(stats
);
530 static void cfqg_stats_update_dequeue(struct cfq_group
*cfqg
)
532 blkg_stat_add(&cfqg
->stats
.dequeue
, 1);
535 static void cfqg_stats_set_start_empty_time(struct cfq_group
*cfqg
)
537 struct cfqg_stats
*stats
= &cfqg
->stats
;
539 if (blkg_rwstat_total(&stats
->queued
))
543 * group is already marked empty. This can happen if cfqq got new
544 * request in parent group and moved to this group while being added
545 * to service tree. Just ignore the event and move on.
547 if (cfqg_stats_empty(stats
))
550 stats
->start_empty_time
= sched_clock();
551 cfqg_stats_mark_empty(stats
);
554 static void cfqg_stats_update_idle_time(struct cfq_group
*cfqg
)
556 struct cfqg_stats
*stats
= &cfqg
->stats
;
558 if (cfqg_stats_idling(stats
)) {
559 unsigned long long now
= sched_clock();
561 if (time_after64(now
, stats
->start_idle_time
))
562 blkg_stat_add(&stats
->idle_time
,
563 now
- stats
->start_idle_time
);
564 cfqg_stats_clear_idling(stats
);
568 static void cfqg_stats_set_start_idle_time(struct cfq_group
*cfqg
)
570 struct cfqg_stats
*stats
= &cfqg
->stats
;
572 BUG_ON(cfqg_stats_idling(stats
));
574 stats
->start_idle_time
= sched_clock();
575 cfqg_stats_mark_idling(stats
);
578 static void cfqg_stats_update_avg_queue_size(struct cfq_group
*cfqg
)
580 struct cfqg_stats
*stats
= &cfqg
->stats
;
582 blkg_stat_add(&stats
->avg_queue_size_sum
,
583 blkg_rwstat_total(&stats
->queued
));
584 blkg_stat_add(&stats
->avg_queue_size_samples
, 1);
585 cfqg_stats_update_group_wait_time(stats
);
588 #else /* CONFIG_CFQ_GROUP_IOSCHED && CONFIG_DEBUG_BLK_CGROUP */
590 static inline void cfqg_stats_set_start_group_wait_time(struct cfq_group
*cfqg
, struct cfq_group
*curr_cfqg
) { }
591 static inline void cfqg_stats_end_empty_time(struct cfqg_stats
*stats
) { }
592 static inline void cfqg_stats_update_dequeue(struct cfq_group
*cfqg
) { }
593 static inline void cfqg_stats_set_start_empty_time(struct cfq_group
*cfqg
) { }
594 static inline void cfqg_stats_update_idle_time(struct cfq_group
*cfqg
) { }
595 static inline void cfqg_stats_set_start_idle_time(struct cfq_group
*cfqg
) { }
596 static inline void cfqg_stats_update_avg_queue_size(struct cfq_group
*cfqg
) { }
598 #endif /* CONFIG_CFQ_GROUP_IOSCHED && CONFIG_DEBUG_BLK_CGROUP */
600 #ifdef CONFIG_CFQ_GROUP_IOSCHED
602 static inline struct cfq_group
*pd_to_cfqg(struct blkg_policy_data
*pd
)
604 return pd
? container_of(pd
, struct cfq_group
, pd
) : NULL
;
607 static struct cfq_group_data
608 *cpd_to_cfqgd(struct blkcg_policy_data
*cpd
)
610 return cpd
? container_of(cpd
, struct cfq_group_data
, cpd
) : NULL
;
613 static inline struct blkcg_gq
*cfqg_to_blkg(struct cfq_group
*cfqg
)
615 return pd_to_blkg(&cfqg
->pd
);
618 static struct blkcg_policy blkcg_policy_cfq
;
620 static inline struct cfq_group
*blkg_to_cfqg(struct blkcg_gq
*blkg
)
622 return pd_to_cfqg(blkg_to_pd(blkg
, &blkcg_policy_cfq
));
625 static struct cfq_group_data
*blkcg_to_cfqgd(struct blkcg
*blkcg
)
627 return cpd_to_cfqgd(blkcg_to_cpd(blkcg
, &blkcg_policy_cfq
));
630 static inline struct cfq_group
*cfqg_parent(struct cfq_group
*cfqg
)
632 struct blkcg_gq
*pblkg
= cfqg_to_blkg(cfqg
)->parent
;
634 return pblkg
? blkg_to_cfqg(pblkg
) : NULL
;
637 static inline bool cfqg_is_descendant(struct cfq_group
*cfqg
,
638 struct cfq_group
*ancestor
)
640 return cgroup_is_descendant(cfqg_to_blkg(cfqg
)->blkcg
->css
.cgroup
,
641 cfqg_to_blkg(ancestor
)->blkcg
->css
.cgroup
);
644 static inline void cfqg_get(struct cfq_group
*cfqg
)
646 return blkg_get(cfqg_to_blkg(cfqg
));
649 static inline void cfqg_put(struct cfq_group
*cfqg
)
651 return blkg_put(cfqg_to_blkg(cfqg
));
654 #define cfq_log_cfqq(cfqd, cfqq, fmt, args...) do { \
657 blkg_path(cfqg_to_blkg((cfqq)->cfqg), __pbuf, sizeof(__pbuf)); \
658 blk_add_trace_msg((cfqd)->queue, "cfq%d%c%c %s " fmt, (cfqq)->pid, \
659 cfq_cfqq_sync((cfqq)) ? 'S' : 'A', \
660 cfqq_type((cfqq)) == SYNC_NOIDLE_WORKLOAD ? 'N' : ' ',\
664 #define cfq_log_cfqg(cfqd, cfqg, fmt, args...) do { \
667 blkg_path(cfqg_to_blkg(cfqg), __pbuf, sizeof(__pbuf)); \
668 blk_add_trace_msg((cfqd)->queue, "%s " fmt, __pbuf, ##args); \
671 static inline void cfqg_stats_update_io_add(struct cfq_group
*cfqg
,
672 struct cfq_group
*curr_cfqg
,
675 blkg_rwstat_add(&cfqg
->stats
.queued
, op
, 1);
676 cfqg_stats_end_empty_time(&cfqg
->stats
);
677 cfqg_stats_set_start_group_wait_time(cfqg
, curr_cfqg
);
680 static inline void cfqg_stats_update_timeslice_used(struct cfq_group
*cfqg
,
681 uint64_t time
, unsigned long unaccounted_time
)
683 blkg_stat_add(&cfqg
->stats
.time
, time
);
684 #ifdef CONFIG_DEBUG_BLK_CGROUP
685 blkg_stat_add(&cfqg
->stats
.unaccounted_time
, unaccounted_time
);
689 static inline void cfqg_stats_update_io_remove(struct cfq_group
*cfqg
,
692 blkg_rwstat_add(&cfqg
->stats
.queued
, op
, -1);
695 static inline void cfqg_stats_update_io_merged(struct cfq_group
*cfqg
,
698 blkg_rwstat_add(&cfqg
->stats
.merged
, op
, 1);
701 static inline void cfqg_stats_update_completion(struct cfq_group
*cfqg
,
702 uint64_t start_time
, uint64_t io_start_time
,
705 struct cfqg_stats
*stats
= &cfqg
->stats
;
706 unsigned long long now
= sched_clock();
708 if (time_after64(now
, io_start_time
))
709 blkg_rwstat_add(&stats
->service_time
, op
, now
- io_start_time
);
710 if (time_after64(io_start_time
, start_time
))
711 blkg_rwstat_add(&stats
->wait_time
, op
,
712 io_start_time
- start_time
);
716 static void cfqg_stats_reset(struct cfqg_stats
*stats
)
718 /* queued stats shouldn't be cleared */
719 blkg_rwstat_reset(&stats
->merged
);
720 blkg_rwstat_reset(&stats
->service_time
);
721 blkg_rwstat_reset(&stats
->wait_time
);
722 blkg_stat_reset(&stats
->time
);
723 #ifdef CONFIG_DEBUG_BLK_CGROUP
724 blkg_stat_reset(&stats
->unaccounted_time
);
725 blkg_stat_reset(&stats
->avg_queue_size_sum
);
726 blkg_stat_reset(&stats
->avg_queue_size_samples
);
727 blkg_stat_reset(&stats
->dequeue
);
728 blkg_stat_reset(&stats
->group_wait_time
);
729 blkg_stat_reset(&stats
->idle_time
);
730 blkg_stat_reset(&stats
->empty_time
);
735 static void cfqg_stats_add_aux(struct cfqg_stats
*to
, struct cfqg_stats
*from
)
737 /* queued stats shouldn't be cleared */
738 blkg_rwstat_add_aux(&to
->merged
, &from
->merged
);
739 blkg_rwstat_add_aux(&to
->service_time
, &from
->service_time
);
740 blkg_rwstat_add_aux(&to
->wait_time
, &from
->wait_time
);
741 blkg_stat_add_aux(&from
->time
, &from
->time
);
742 #ifdef CONFIG_DEBUG_BLK_CGROUP
743 blkg_stat_add_aux(&to
->unaccounted_time
, &from
->unaccounted_time
);
744 blkg_stat_add_aux(&to
->avg_queue_size_sum
, &from
->avg_queue_size_sum
);
745 blkg_stat_add_aux(&to
->avg_queue_size_samples
, &from
->avg_queue_size_samples
);
746 blkg_stat_add_aux(&to
->dequeue
, &from
->dequeue
);
747 blkg_stat_add_aux(&to
->group_wait_time
, &from
->group_wait_time
);
748 blkg_stat_add_aux(&to
->idle_time
, &from
->idle_time
);
749 blkg_stat_add_aux(&to
->empty_time
, &from
->empty_time
);
754 * Transfer @cfqg's stats to its parent's aux counts so that the ancestors'
755 * recursive stats can still account for the amount used by this cfqg after
758 static void cfqg_stats_xfer_dead(struct cfq_group
*cfqg
)
760 struct cfq_group
*parent
= cfqg_parent(cfqg
);
762 lockdep_assert_held(cfqg_to_blkg(cfqg
)->q
->queue_lock
);
764 if (unlikely(!parent
))
767 cfqg_stats_add_aux(&parent
->stats
, &cfqg
->stats
);
768 cfqg_stats_reset(&cfqg
->stats
);
771 #else /* CONFIG_CFQ_GROUP_IOSCHED */
773 static inline struct cfq_group
*cfqg_parent(struct cfq_group
*cfqg
) { return NULL
; }
774 static inline bool cfqg_is_descendant(struct cfq_group
*cfqg
,
775 struct cfq_group
*ancestor
)
779 static inline void cfqg_get(struct cfq_group
*cfqg
) { }
780 static inline void cfqg_put(struct cfq_group
*cfqg
) { }
782 #define cfq_log_cfqq(cfqd, cfqq, fmt, args...) \
783 blk_add_trace_msg((cfqd)->queue, "cfq%d%c%c " fmt, (cfqq)->pid, \
784 cfq_cfqq_sync((cfqq)) ? 'S' : 'A', \
785 cfqq_type((cfqq)) == SYNC_NOIDLE_WORKLOAD ? 'N' : ' ',\
787 #define cfq_log_cfqg(cfqd, cfqg, fmt, args...) do {} while (0)
789 static inline void cfqg_stats_update_io_add(struct cfq_group
*cfqg
,
790 struct cfq_group
*curr_cfqg
, unsigned int op
) { }
791 static inline void cfqg_stats_update_timeslice_used(struct cfq_group
*cfqg
,
792 uint64_t time
, unsigned long unaccounted_time
) { }
793 static inline void cfqg_stats_update_io_remove(struct cfq_group
*cfqg
,
795 static inline void cfqg_stats_update_io_merged(struct cfq_group
*cfqg
,
797 static inline void cfqg_stats_update_completion(struct cfq_group
*cfqg
,
798 uint64_t start_time
, uint64_t io_start_time
,
801 #endif /* CONFIG_CFQ_GROUP_IOSCHED */
803 #define cfq_log(cfqd, fmt, args...) \
804 blk_add_trace_msg((cfqd)->queue, "cfq " fmt, ##args)
806 /* Traverses through cfq group service trees */
807 #define for_each_cfqg_st(cfqg, i, j, st) \
808 for (i = 0; i <= IDLE_WORKLOAD; i++) \
809 for (j = 0, st = i < IDLE_WORKLOAD ? &cfqg->service_trees[i][j]\
810 : &cfqg->service_tree_idle; \
811 (i < IDLE_WORKLOAD && j <= SYNC_WORKLOAD) || \
812 (i == IDLE_WORKLOAD && j == 0); \
813 j++, st = i < IDLE_WORKLOAD ? \
814 &cfqg->service_trees[i][j]: NULL) \
816 static inline bool cfq_io_thinktime_big(struct cfq_data *cfqd,
817 struct cfq_ttime
*ttime
, bool group_idle
)
820 if (!sample_valid(ttime
->ttime_samples
))
823 slice
= cfqd
->cfq_group_idle
;
825 slice
= cfqd
->cfq_slice_idle
;
826 return ttime
->ttime_mean
> slice
;
829 static inline bool iops_mode(struct cfq_data
*cfqd
)
832 * If we are not idling on queues and it is a NCQ drive, parallel
833 * execution of requests is on and measuring time is not possible
834 * in most of the cases until and unless we drive shallower queue
835 * depths and that becomes a performance bottleneck. In such cases
836 * switch to start providing fairness in terms of number of IOs.
838 if (!cfqd
->cfq_slice_idle
&& cfqd
->hw_tag
)
844 static inline enum wl_class_t
cfqq_class(struct cfq_queue
*cfqq
)
846 if (cfq_class_idle(cfqq
))
847 return IDLE_WORKLOAD
;
848 if (cfq_class_rt(cfqq
))
854 static enum wl_type_t
cfqq_type(struct cfq_queue
*cfqq
)
856 if (!cfq_cfqq_sync(cfqq
))
857 return ASYNC_WORKLOAD
;
858 if (!cfq_cfqq_idle_window(cfqq
))
859 return SYNC_NOIDLE_WORKLOAD
;
860 return SYNC_WORKLOAD
;
863 static inline int cfq_group_busy_queues_wl(enum wl_class_t wl_class
,
864 struct cfq_data
*cfqd
,
865 struct cfq_group
*cfqg
)
867 if (wl_class
== IDLE_WORKLOAD
)
868 return cfqg
->service_tree_idle
.count
;
870 return cfqg
->service_trees
[wl_class
][ASYNC_WORKLOAD
].count
+
871 cfqg
->service_trees
[wl_class
][SYNC_NOIDLE_WORKLOAD
].count
+
872 cfqg
->service_trees
[wl_class
][SYNC_WORKLOAD
].count
;
875 static inline int cfqg_busy_async_queues(struct cfq_data
*cfqd
,
876 struct cfq_group
*cfqg
)
878 return cfqg
->service_trees
[RT_WORKLOAD
][ASYNC_WORKLOAD
].count
+
879 cfqg
->service_trees
[BE_WORKLOAD
][ASYNC_WORKLOAD
].count
;
882 static void cfq_dispatch_insert(struct request_queue
*, struct request
*);
883 static struct cfq_queue
*cfq_get_queue(struct cfq_data
*cfqd
, bool is_sync
,
884 struct cfq_io_cq
*cic
, struct bio
*bio
);
886 static inline struct cfq_io_cq
*icq_to_cic(struct io_cq
*icq
)
888 /* cic->icq is the first member, %NULL will convert to %NULL */
889 return container_of(icq
, struct cfq_io_cq
, icq
);
892 static inline struct cfq_io_cq
*cfq_cic_lookup(struct cfq_data
*cfqd
,
893 struct io_context
*ioc
)
896 return icq_to_cic(ioc_lookup_icq(ioc
, cfqd
->queue
));
900 static inline struct cfq_queue
*cic_to_cfqq(struct cfq_io_cq
*cic
, bool is_sync
)
902 return cic
->cfqq
[is_sync
];
905 static inline void cic_set_cfqq(struct cfq_io_cq
*cic
, struct cfq_queue
*cfqq
,
908 cic
->cfqq
[is_sync
] = cfqq
;
911 static inline struct cfq_data
*cic_to_cfqd(struct cfq_io_cq
*cic
)
913 return cic
->icq
.q
->elevator
->elevator_data
;
917 * scheduler run of queue, if there are requests pending and no one in the
918 * driver that will restart queueing
920 static inline void cfq_schedule_dispatch(struct cfq_data
*cfqd
)
922 if (cfqd
->busy_queues
) {
923 cfq_log(cfqd
, "schedule dispatch");
924 kblockd_schedule_work(&cfqd
->unplug_work
);
929 * Scale schedule slice based on io priority. Use the sync time slice only
930 * if a queue is marked sync and has sync io queued. A sync queue with async
931 * io only, should not get full sync slice length.
933 static inline u64
cfq_prio_slice(struct cfq_data
*cfqd
, bool sync
,
936 u64 base_slice
= cfqd
->cfq_slice
[sync
];
937 u64 slice
= div_u64(base_slice
, CFQ_SLICE_SCALE
);
939 WARN_ON(prio
>= IOPRIO_BE_NR
);
941 return base_slice
+ (slice
* (4 - prio
));
945 cfq_prio_to_slice(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
)
947 return cfq_prio_slice(cfqd
, cfq_cfqq_sync(cfqq
), cfqq
->ioprio
);
951 * cfqg_scale_charge - scale disk time charge according to cfqg weight
952 * @charge: disk time being charged
953 * @vfraction: vfraction of the cfqg, fixed point w/ CFQ_SERVICE_SHIFT
955 * Scale @charge according to @vfraction, which is in range (0, 1]. The
956 * scaling is inversely proportional.
958 * scaled = charge / vfraction
960 * The result is also in fixed point w/ CFQ_SERVICE_SHIFT.
962 static inline u64
cfqg_scale_charge(u64 charge
,
963 unsigned int vfraction
)
965 u64 c
= charge
<< CFQ_SERVICE_SHIFT
; /* make it fixed point */
967 /* charge / vfraction */
968 c
<<= CFQ_SERVICE_SHIFT
;
969 return div_u64(c
, vfraction
);
972 static inline u64
max_vdisktime(u64 min_vdisktime
, u64 vdisktime
)
974 s64 delta
= (s64
)(vdisktime
- min_vdisktime
);
976 min_vdisktime
= vdisktime
;
978 return min_vdisktime
;
981 static inline u64
min_vdisktime(u64 min_vdisktime
, u64 vdisktime
)
983 s64 delta
= (s64
)(vdisktime
- min_vdisktime
);
985 min_vdisktime
= vdisktime
;
987 return min_vdisktime
;
990 static void update_min_vdisktime(struct cfq_rb_root
*st
)
992 struct cfq_group
*cfqg
;
995 cfqg
= rb_entry_cfqg(st
->left
);
996 st
->min_vdisktime
= max_vdisktime(st
->min_vdisktime
,
1002 * get averaged number of queues of RT/BE priority.
1003 * average is updated, with a formula that gives more weight to higher numbers,
1004 * to quickly follows sudden increases and decrease slowly
1007 static inline unsigned cfq_group_get_avg_queues(struct cfq_data
*cfqd
,
1008 struct cfq_group
*cfqg
, bool rt
)
1010 unsigned min_q
, max_q
;
1011 unsigned mult
= cfq_hist_divisor
- 1;
1012 unsigned round
= cfq_hist_divisor
/ 2;
1013 unsigned busy
= cfq_group_busy_queues_wl(rt
, cfqd
, cfqg
);
1015 min_q
= min(cfqg
->busy_queues_avg
[rt
], busy
);
1016 max_q
= max(cfqg
->busy_queues_avg
[rt
], busy
);
1017 cfqg
->busy_queues_avg
[rt
] = (mult
* max_q
+ min_q
+ round
) /
1019 return cfqg
->busy_queues_avg
[rt
];
1023 cfq_group_slice(struct cfq_data
*cfqd
, struct cfq_group
*cfqg
)
1025 return cfqd
->cfq_target_latency
* cfqg
->vfraction
>> CFQ_SERVICE_SHIFT
;
1029 cfq_scaled_cfqq_slice(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
)
1031 u64 slice
= cfq_prio_to_slice(cfqd
, cfqq
);
1032 if (cfqd
->cfq_latency
) {
1034 * interested queues (we consider only the ones with the same
1035 * priority class in the cfq group)
1037 unsigned iq
= cfq_group_get_avg_queues(cfqd
, cfqq
->cfqg
,
1038 cfq_class_rt(cfqq
));
1039 u64 sync_slice
= cfqd
->cfq_slice
[1];
1040 u64 expect_latency
= sync_slice
* iq
;
1041 u64 group_slice
= cfq_group_slice(cfqd
, cfqq
->cfqg
);
1043 if (expect_latency
> group_slice
) {
1044 u64 base_low_slice
= 2 * cfqd
->cfq_slice_idle
;
1047 /* scale low_slice according to IO priority
1048 * and sync vs async */
1049 low_slice
= div64_u64(base_low_slice
*slice
, sync_slice
);
1050 low_slice
= min(slice
, low_slice
);
1051 /* the adapted slice value is scaled to fit all iqs
1052 * into the target latency */
1053 slice
= div64_u64(slice
*group_slice
, expect_latency
);
1054 slice
= max(slice
, low_slice
);
1061 cfq_set_prio_slice(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
)
1063 u64 slice
= cfq_scaled_cfqq_slice(cfqd
, cfqq
);
1064 u64 now
= ktime_get_ns();
1066 cfqq
->slice_start
= now
;
1067 cfqq
->slice_end
= now
+ slice
;
1068 cfqq
->allocated_slice
= slice
;
1069 cfq_log_cfqq(cfqd
, cfqq
, "set_slice=%llu", cfqq
->slice_end
- now
);
1073 * We need to wrap this check in cfq_cfqq_slice_new(), since ->slice_end
1074 * isn't valid until the first request from the dispatch is activated
1075 * and the slice time set.
1077 static inline bool cfq_slice_used(struct cfq_queue
*cfqq
)
1079 if (cfq_cfqq_slice_new(cfqq
))
1081 if (ktime_get_ns() < cfqq
->slice_end
)
1088 * Lifted from AS - choose which of rq1 and rq2 that is best served now.
1089 * We choose the request that is closest to the head right now. Distance
1090 * behind the head is penalized and only allowed to a certain extent.
1092 static struct request
*
1093 cfq_choose_req(struct cfq_data
*cfqd
, struct request
*rq1
, struct request
*rq2
, sector_t last
)
1095 sector_t s1
, s2
, d1
= 0, d2
= 0;
1096 unsigned long back_max
;
1097 #define CFQ_RQ1_WRAP 0x01 /* request 1 wraps */
1098 #define CFQ_RQ2_WRAP 0x02 /* request 2 wraps */
1099 unsigned wrap
= 0; /* bit mask: requests behind the disk head? */
1101 if (rq1
== NULL
|| rq1
== rq2
)
1106 if (rq_is_sync(rq1
) != rq_is_sync(rq2
))
1107 return rq_is_sync(rq1
) ? rq1
: rq2
;
1109 if ((rq1
->cmd_flags
^ rq2
->cmd_flags
) & REQ_PRIO
)
1110 return rq1
->cmd_flags
& REQ_PRIO
? rq1
: rq2
;
1112 s1
= blk_rq_pos(rq1
);
1113 s2
= blk_rq_pos(rq2
);
1116 * by definition, 1KiB is 2 sectors
1118 back_max
= cfqd
->cfq_back_max
* 2;
1121 * Strict one way elevator _except_ in the case where we allow
1122 * short backward seeks which are biased as twice the cost of a
1123 * similar forward seek.
1127 else if (s1
+ back_max
>= last
)
1128 d1
= (last
- s1
) * cfqd
->cfq_back_penalty
;
1130 wrap
|= CFQ_RQ1_WRAP
;
1134 else if (s2
+ back_max
>= last
)
1135 d2
= (last
- s2
) * cfqd
->cfq_back_penalty
;
1137 wrap
|= CFQ_RQ2_WRAP
;
1139 /* Found required data */
1142 * By doing switch() on the bit mask "wrap" we avoid having to
1143 * check two variables for all permutations: --> faster!
1146 case 0: /* common case for CFQ: rq1 and rq2 not wrapped */
1162 case (CFQ_RQ1_WRAP
|CFQ_RQ2_WRAP
): /* both rqs wrapped */
1165 * Since both rqs are wrapped,
1166 * start with the one that's further behind head
1167 * (--> only *one* back seek required),
1168 * since back seek takes more time than forward.
1178 * The below is leftmost cache rbtree addon
1180 static struct cfq_queue
*cfq_rb_first(struct cfq_rb_root
*root
)
1182 /* Service tree is empty */
1187 root
->left
= rb_first(&root
->rb
);
1190 return rb_entry(root
->left
, struct cfq_queue
, rb_node
);
1195 static struct cfq_group
*cfq_rb_first_group(struct cfq_rb_root
*root
)
1198 root
->left
= rb_first(&root
->rb
);
1201 return rb_entry_cfqg(root
->left
);
1206 static void rb_erase_init(struct rb_node
*n
, struct rb_root
*root
)
1212 static void cfq_rb_erase(struct rb_node
*n
, struct cfq_rb_root
*root
)
1214 if (root
->left
== n
)
1216 rb_erase_init(n
, &root
->rb
);
1221 * would be nice to take fifo expire time into account as well
1223 static struct request
*
1224 cfq_find_next_rq(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
,
1225 struct request
*last
)
1227 struct rb_node
*rbnext
= rb_next(&last
->rb_node
);
1228 struct rb_node
*rbprev
= rb_prev(&last
->rb_node
);
1229 struct request
*next
= NULL
, *prev
= NULL
;
1231 BUG_ON(RB_EMPTY_NODE(&last
->rb_node
));
1234 prev
= rb_entry_rq(rbprev
);
1237 next
= rb_entry_rq(rbnext
);
1239 rbnext
= rb_first(&cfqq
->sort_list
);
1240 if (rbnext
&& rbnext
!= &last
->rb_node
)
1241 next
= rb_entry_rq(rbnext
);
1244 return cfq_choose_req(cfqd
, next
, prev
, blk_rq_pos(last
));
1247 static u64
cfq_slice_offset(struct cfq_data
*cfqd
,
1248 struct cfq_queue
*cfqq
)
1251 * just an approximation, should be ok.
1253 return (cfqq
->cfqg
->nr_cfqq
- 1) * (cfq_prio_slice(cfqd
, 1, 0) -
1254 cfq_prio_slice(cfqd
, cfq_cfqq_sync(cfqq
), cfqq
->ioprio
));
1258 cfqg_key(struct cfq_rb_root
*st
, struct cfq_group
*cfqg
)
1260 return cfqg
->vdisktime
- st
->min_vdisktime
;
1264 __cfq_group_service_tree_add(struct cfq_rb_root
*st
, struct cfq_group
*cfqg
)
1266 struct rb_node
**node
= &st
->rb
.rb_node
;
1267 struct rb_node
*parent
= NULL
;
1268 struct cfq_group
*__cfqg
;
1269 s64 key
= cfqg_key(st
, cfqg
);
1272 while (*node
!= NULL
) {
1274 __cfqg
= rb_entry_cfqg(parent
);
1276 if (key
< cfqg_key(st
, __cfqg
))
1277 node
= &parent
->rb_left
;
1279 node
= &parent
->rb_right
;
1285 st
->left
= &cfqg
->rb_node
;
1287 rb_link_node(&cfqg
->rb_node
, parent
, node
);
1288 rb_insert_color(&cfqg
->rb_node
, &st
->rb
);
1292 * This has to be called only on activation of cfqg
1295 cfq_update_group_weight(struct cfq_group
*cfqg
)
1297 if (cfqg
->new_weight
) {
1298 cfqg
->weight
= cfqg
->new_weight
;
1299 cfqg
->new_weight
= 0;
1304 cfq_update_group_leaf_weight(struct cfq_group
*cfqg
)
1306 BUG_ON(!RB_EMPTY_NODE(&cfqg
->rb_node
));
1308 if (cfqg
->new_leaf_weight
) {
1309 cfqg
->leaf_weight
= cfqg
->new_leaf_weight
;
1310 cfqg
->new_leaf_weight
= 0;
1315 cfq_group_service_tree_add(struct cfq_rb_root
*st
, struct cfq_group
*cfqg
)
1317 unsigned int vfr
= 1 << CFQ_SERVICE_SHIFT
; /* start with 1 */
1318 struct cfq_group
*pos
= cfqg
;
1319 struct cfq_group
*parent
;
1322 /* add to the service tree */
1323 BUG_ON(!RB_EMPTY_NODE(&cfqg
->rb_node
));
1326 * Update leaf_weight. We cannot update weight at this point
1327 * because cfqg might already have been activated and is
1328 * contributing its current weight to the parent's child_weight.
1330 cfq_update_group_leaf_weight(cfqg
);
1331 __cfq_group_service_tree_add(st
, cfqg
);
1334 * Activate @cfqg and calculate the portion of vfraction @cfqg is
1335 * entitled to. vfraction is calculated by walking the tree
1336 * towards the root calculating the fraction it has at each level.
1337 * The compounded ratio is how much vfraction @cfqg owns.
1339 * Start with the proportion tasks in this cfqg has against active
1340 * children cfqgs - its leaf_weight against children_weight.
1342 propagate
= !pos
->nr_active
++;
1343 pos
->children_weight
+= pos
->leaf_weight
;
1344 vfr
= vfr
* pos
->leaf_weight
/ pos
->children_weight
;
1347 * Compound ->weight walking up the tree. Both activation and
1348 * vfraction calculation are done in the same loop. Propagation
1349 * stops once an already activated node is met. vfraction
1350 * calculation should always continue to the root.
1352 while ((parent
= cfqg_parent(pos
))) {
1354 cfq_update_group_weight(pos
);
1355 propagate
= !parent
->nr_active
++;
1356 parent
->children_weight
+= pos
->weight
;
1358 vfr
= vfr
* pos
->weight
/ parent
->children_weight
;
1362 cfqg
->vfraction
= max_t(unsigned, vfr
, 1);
1366 cfq_group_notify_queue_add(struct cfq_data
*cfqd
, struct cfq_group
*cfqg
)
1368 struct cfq_rb_root
*st
= &cfqd
->grp_service_tree
;
1369 struct cfq_group
*__cfqg
;
1373 if (!RB_EMPTY_NODE(&cfqg
->rb_node
))
1377 * Currently put the group at the end. Later implement something
1378 * so that groups get lesser vtime based on their weights, so that
1379 * if group does not loose all if it was not continuously backlogged.
1381 n
= rb_last(&st
->rb
);
1383 __cfqg
= rb_entry_cfqg(n
);
1384 cfqg
->vdisktime
= __cfqg
->vdisktime
+ CFQ_IDLE_DELAY
;
1386 cfqg
->vdisktime
= st
->min_vdisktime
;
1387 cfq_group_service_tree_add(st
, cfqg
);
1391 cfq_group_service_tree_del(struct cfq_rb_root
*st
, struct cfq_group
*cfqg
)
1393 struct cfq_group
*pos
= cfqg
;
1397 * Undo activation from cfq_group_service_tree_add(). Deactivate
1398 * @cfqg and propagate deactivation upwards.
1400 propagate
= !--pos
->nr_active
;
1401 pos
->children_weight
-= pos
->leaf_weight
;
1404 struct cfq_group
*parent
= cfqg_parent(pos
);
1406 /* @pos has 0 nr_active at this point */
1407 WARN_ON_ONCE(pos
->children_weight
);
1413 propagate
= !--parent
->nr_active
;
1414 parent
->children_weight
-= pos
->weight
;
1418 /* remove from the service tree */
1419 if (!RB_EMPTY_NODE(&cfqg
->rb_node
))
1420 cfq_rb_erase(&cfqg
->rb_node
, st
);
1424 cfq_group_notify_queue_del(struct cfq_data
*cfqd
, struct cfq_group
*cfqg
)
1426 struct cfq_rb_root
*st
= &cfqd
->grp_service_tree
;
1428 BUG_ON(cfqg
->nr_cfqq
< 1);
1431 /* If there are other cfq queues under this group, don't delete it */
1435 cfq_log_cfqg(cfqd
, cfqg
, "del_from_rr group");
1436 cfq_group_service_tree_del(st
, cfqg
);
1437 cfqg
->saved_wl_slice
= 0;
1438 cfqg_stats_update_dequeue(cfqg
);
1441 static inline u64
cfq_cfqq_slice_usage(struct cfq_queue
*cfqq
,
1442 u64
*unaccounted_time
)
1445 u64 now
= ktime_get_ns();
1448 * Queue got expired before even a single request completed or
1449 * got expired immediately after first request completion.
1451 if (!cfqq
->slice_start
|| cfqq
->slice_start
== now
) {
1453 * Also charge the seek time incurred to the group, otherwise
1454 * if there are mutiple queues in the group, each can dispatch
1455 * a single request on seeky media and cause lots of seek time
1456 * and group will never know it.
1458 slice_used
= max_t(u64
, (now
- cfqq
->dispatch_start
),
1459 jiffies_to_nsecs(1));
1461 slice_used
= now
- cfqq
->slice_start
;
1462 if (slice_used
> cfqq
->allocated_slice
) {
1463 *unaccounted_time
= slice_used
- cfqq
->allocated_slice
;
1464 slice_used
= cfqq
->allocated_slice
;
1466 if (cfqq
->slice_start
> cfqq
->dispatch_start
)
1467 *unaccounted_time
+= cfqq
->slice_start
-
1468 cfqq
->dispatch_start
;
1474 static void cfq_group_served(struct cfq_data
*cfqd
, struct cfq_group
*cfqg
,
1475 struct cfq_queue
*cfqq
)
1477 struct cfq_rb_root
*st
= &cfqd
->grp_service_tree
;
1478 u64 used_sl
, charge
, unaccounted_sl
= 0;
1479 int nr_sync
= cfqg
->nr_cfqq
- cfqg_busy_async_queues(cfqd
, cfqg
)
1480 - cfqg
->service_tree_idle
.count
;
1482 u64 now
= ktime_get_ns();
1484 BUG_ON(nr_sync
< 0);
1485 used_sl
= charge
= cfq_cfqq_slice_usage(cfqq
, &unaccounted_sl
);
1487 if (iops_mode(cfqd
))
1488 charge
= cfqq
->slice_dispatch
;
1489 else if (!cfq_cfqq_sync(cfqq
) && !nr_sync
)
1490 charge
= cfqq
->allocated_slice
;
1493 * Can't update vdisktime while on service tree and cfqg->vfraction
1494 * is valid only while on it. Cache vfr, leave the service tree,
1495 * update vdisktime and go back on. The re-addition to the tree
1496 * will also update the weights as necessary.
1498 vfr
= cfqg
->vfraction
;
1499 cfq_group_service_tree_del(st
, cfqg
);
1500 cfqg
->vdisktime
+= cfqg_scale_charge(charge
, vfr
);
1501 cfq_group_service_tree_add(st
, cfqg
);
1503 /* This group is being expired. Save the context */
1504 if (cfqd
->workload_expires
> now
) {
1505 cfqg
->saved_wl_slice
= cfqd
->workload_expires
- now
;
1506 cfqg
->saved_wl_type
= cfqd
->serving_wl_type
;
1507 cfqg
->saved_wl_class
= cfqd
->serving_wl_class
;
1509 cfqg
->saved_wl_slice
= 0;
1511 cfq_log_cfqg(cfqd
, cfqg
, "served: vt=%llu min_vt=%llu", cfqg
->vdisktime
,
1513 cfq_log_cfqq(cfqq
->cfqd
, cfqq
,
1514 "sl_used=%llu disp=%llu charge=%llu iops=%u sect=%lu",
1515 used_sl
, cfqq
->slice_dispatch
, charge
,
1516 iops_mode(cfqd
), cfqq
->nr_sectors
);
1517 cfqg_stats_update_timeslice_used(cfqg
, used_sl
, unaccounted_sl
);
1518 cfqg_stats_set_start_empty_time(cfqg
);
1522 * cfq_init_cfqg_base - initialize base part of a cfq_group
1523 * @cfqg: cfq_group to initialize
1525 * Initialize the base part which is used whether %CONFIG_CFQ_GROUP_IOSCHED
1526 * is enabled or not.
1528 static void cfq_init_cfqg_base(struct cfq_group
*cfqg
)
1530 struct cfq_rb_root
*st
;
1533 for_each_cfqg_st(cfqg
, i
, j
, st
)
1535 RB_CLEAR_NODE(&cfqg
->rb_node
);
1537 cfqg
->ttime
.last_end_request
= ktime_get_ns();
1540 #ifdef CONFIG_CFQ_GROUP_IOSCHED
1541 static int __cfq_set_weight(struct cgroup_subsys_state
*css
, u64 val
,
1542 bool on_dfl
, bool reset_dev
, bool is_leaf_weight
);
1544 static void cfqg_stats_exit(struct cfqg_stats
*stats
)
1546 blkg_rwstat_exit(&stats
->merged
);
1547 blkg_rwstat_exit(&stats
->service_time
);
1548 blkg_rwstat_exit(&stats
->wait_time
);
1549 blkg_rwstat_exit(&stats
->queued
);
1550 blkg_stat_exit(&stats
->time
);
1551 #ifdef CONFIG_DEBUG_BLK_CGROUP
1552 blkg_stat_exit(&stats
->unaccounted_time
);
1553 blkg_stat_exit(&stats
->avg_queue_size_sum
);
1554 blkg_stat_exit(&stats
->avg_queue_size_samples
);
1555 blkg_stat_exit(&stats
->dequeue
);
1556 blkg_stat_exit(&stats
->group_wait_time
);
1557 blkg_stat_exit(&stats
->idle_time
);
1558 blkg_stat_exit(&stats
->empty_time
);
1562 static int cfqg_stats_init(struct cfqg_stats
*stats
, gfp_t gfp
)
1564 if (blkg_rwstat_init(&stats
->merged
, gfp
) ||
1565 blkg_rwstat_init(&stats
->service_time
, gfp
) ||
1566 blkg_rwstat_init(&stats
->wait_time
, gfp
) ||
1567 blkg_rwstat_init(&stats
->queued
, gfp
) ||
1568 blkg_stat_init(&stats
->time
, gfp
))
1571 #ifdef CONFIG_DEBUG_BLK_CGROUP
1572 if (blkg_stat_init(&stats
->unaccounted_time
, gfp
) ||
1573 blkg_stat_init(&stats
->avg_queue_size_sum
, gfp
) ||
1574 blkg_stat_init(&stats
->avg_queue_size_samples
, gfp
) ||
1575 blkg_stat_init(&stats
->dequeue
, gfp
) ||
1576 blkg_stat_init(&stats
->group_wait_time
, gfp
) ||
1577 blkg_stat_init(&stats
->idle_time
, gfp
) ||
1578 blkg_stat_init(&stats
->empty_time
, gfp
))
1583 cfqg_stats_exit(stats
);
1587 static struct blkcg_policy_data
*cfq_cpd_alloc(gfp_t gfp
)
1589 struct cfq_group_data
*cgd
;
1591 cgd
= kzalloc(sizeof(*cgd
), gfp
);
1597 static void cfq_cpd_init(struct blkcg_policy_data
*cpd
)
1599 struct cfq_group_data
*cgd
= cpd_to_cfqgd(cpd
);
1600 unsigned int weight
= cgroup_subsys_on_dfl(io_cgrp_subsys
) ?
1601 CGROUP_WEIGHT_DFL
: CFQ_WEIGHT_LEGACY_DFL
;
1603 if (cpd_to_blkcg(cpd
) == &blkcg_root
)
1606 cgd
->weight
= weight
;
1607 cgd
->leaf_weight
= weight
;
1610 static void cfq_cpd_free(struct blkcg_policy_data
*cpd
)
1612 kfree(cpd_to_cfqgd(cpd
));
1615 static void cfq_cpd_bind(struct blkcg_policy_data
*cpd
)
1617 struct blkcg
*blkcg
= cpd_to_blkcg(cpd
);
1618 bool on_dfl
= cgroup_subsys_on_dfl(io_cgrp_subsys
);
1619 unsigned int weight
= on_dfl
? CGROUP_WEIGHT_DFL
: CFQ_WEIGHT_LEGACY_DFL
;
1621 if (blkcg
== &blkcg_root
)
1624 WARN_ON_ONCE(__cfq_set_weight(&blkcg
->css
, weight
, on_dfl
, true, false));
1625 WARN_ON_ONCE(__cfq_set_weight(&blkcg
->css
, weight
, on_dfl
, true, true));
1628 static struct blkg_policy_data
*cfq_pd_alloc(gfp_t gfp
, int node
)
1630 struct cfq_group
*cfqg
;
1632 cfqg
= kzalloc_node(sizeof(*cfqg
), gfp
, node
);
1636 cfq_init_cfqg_base(cfqg
);
1637 if (cfqg_stats_init(&cfqg
->stats
, gfp
)) {
1645 static void cfq_pd_init(struct blkg_policy_data
*pd
)
1647 struct cfq_group
*cfqg
= pd_to_cfqg(pd
);
1648 struct cfq_group_data
*cgd
= blkcg_to_cfqgd(pd
->blkg
->blkcg
);
1650 cfqg
->weight
= cgd
->weight
;
1651 cfqg
->leaf_weight
= cgd
->leaf_weight
;
1654 static void cfq_pd_offline(struct blkg_policy_data
*pd
)
1656 struct cfq_group
*cfqg
= pd_to_cfqg(pd
);
1659 for (i
= 0; i
< IOPRIO_BE_NR
; i
++) {
1660 if (cfqg
->async_cfqq
[0][i
])
1661 cfq_put_queue(cfqg
->async_cfqq
[0][i
]);
1662 if (cfqg
->async_cfqq
[1][i
])
1663 cfq_put_queue(cfqg
->async_cfqq
[1][i
]);
1666 if (cfqg
->async_idle_cfqq
)
1667 cfq_put_queue(cfqg
->async_idle_cfqq
);
1670 * @blkg is going offline and will be ignored by
1671 * blkg_[rw]stat_recursive_sum(). Transfer stats to the parent so
1672 * that they don't get lost. If IOs complete after this point, the
1673 * stats for them will be lost. Oh well...
1675 cfqg_stats_xfer_dead(cfqg
);
1678 static void cfq_pd_free(struct blkg_policy_data
*pd
)
1680 struct cfq_group
*cfqg
= pd_to_cfqg(pd
);
1682 cfqg_stats_exit(&cfqg
->stats
);
1686 static void cfq_pd_reset_stats(struct blkg_policy_data
*pd
)
1688 struct cfq_group
*cfqg
= pd_to_cfqg(pd
);
1690 cfqg_stats_reset(&cfqg
->stats
);
1693 static struct cfq_group
*cfq_lookup_cfqg(struct cfq_data
*cfqd
,
1694 struct blkcg
*blkcg
)
1696 struct blkcg_gq
*blkg
;
1698 blkg
= blkg_lookup(blkcg
, cfqd
->queue
);
1700 return blkg_to_cfqg(blkg
);
1704 static void cfq_link_cfqq_cfqg(struct cfq_queue
*cfqq
, struct cfq_group
*cfqg
)
1707 /* cfqq reference on cfqg */
1711 static u64
cfqg_prfill_weight_device(struct seq_file
*sf
,
1712 struct blkg_policy_data
*pd
, int off
)
1714 struct cfq_group
*cfqg
= pd_to_cfqg(pd
);
1716 if (!cfqg
->dev_weight
)
1718 return __blkg_prfill_u64(sf
, pd
, cfqg
->dev_weight
);
1721 static int cfqg_print_weight_device(struct seq_file
*sf
, void *v
)
1723 blkcg_print_blkgs(sf
, css_to_blkcg(seq_css(sf
)),
1724 cfqg_prfill_weight_device
, &blkcg_policy_cfq
,
1729 static u64
cfqg_prfill_leaf_weight_device(struct seq_file
*sf
,
1730 struct blkg_policy_data
*pd
, int off
)
1732 struct cfq_group
*cfqg
= pd_to_cfqg(pd
);
1734 if (!cfqg
->dev_leaf_weight
)
1736 return __blkg_prfill_u64(sf
, pd
, cfqg
->dev_leaf_weight
);
1739 static int cfqg_print_leaf_weight_device(struct seq_file
*sf
, void *v
)
1741 blkcg_print_blkgs(sf
, css_to_blkcg(seq_css(sf
)),
1742 cfqg_prfill_leaf_weight_device
, &blkcg_policy_cfq
,
1747 static int cfq_print_weight(struct seq_file
*sf
, void *v
)
1749 struct blkcg
*blkcg
= css_to_blkcg(seq_css(sf
));
1750 struct cfq_group_data
*cgd
= blkcg_to_cfqgd(blkcg
);
1751 unsigned int val
= 0;
1756 seq_printf(sf
, "%u\n", val
);
1760 static int cfq_print_leaf_weight(struct seq_file
*sf
, void *v
)
1762 struct blkcg
*blkcg
= css_to_blkcg(seq_css(sf
));
1763 struct cfq_group_data
*cgd
= blkcg_to_cfqgd(blkcg
);
1764 unsigned int val
= 0;
1767 val
= cgd
->leaf_weight
;
1769 seq_printf(sf
, "%u\n", val
);
1773 static ssize_t
__cfqg_set_weight_device(struct kernfs_open_file
*of
,
1774 char *buf
, size_t nbytes
, loff_t off
,
1775 bool on_dfl
, bool is_leaf_weight
)
1777 unsigned int min
= on_dfl
? CGROUP_WEIGHT_MIN
: CFQ_WEIGHT_LEGACY_MIN
;
1778 unsigned int max
= on_dfl
? CGROUP_WEIGHT_MAX
: CFQ_WEIGHT_LEGACY_MAX
;
1779 struct blkcg
*blkcg
= css_to_blkcg(of_css(of
));
1780 struct blkg_conf_ctx ctx
;
1781 struct cfq_group
*cfqg
;
1782 struct cfq_group_data
*cfqgd
;
1786 ret
= blkg_conf_prep(blkcg
, &blkcg_policy_cfq
, buf
, &ctx
);
1790 if (sscanf(ctx
.body
, "%llu", &v
) == 1) {
1791 /* require "default" on dfl */
1795 } else if (!strcmp(strim(ctx
.body
), "default")) {
1802 cfqg
= blkg_to_cfqg(ctx
.blkg
);
1803 cfqgd
= blkcg_to_cfqgd(blkcg
);
1806 if (!v
|| (v
>= min
&& v
<= max
)) {
1807 if (!is_leaf_weight
) {
1808 cfqg
->dev_weight
= v
;
1809 cfqg
->new_weight
= v
?: cfqgd
->weight
;
1811 cfqg
->dev_leaf_weight
= v
;
1812 cfqg
->new_leaf_weight
= v
?: cfqgd
->leaf_weight
;
1817 blkg_conf_finish(&ctx
);
1818 return ret
?: nbytes
;
1821 static ssize_t
cfqg_set_weight_device(struct kernfs_open_file
*of
,
1822 char *buf
, size_t nbytes
, loff_t off
)
1824 return __cfqg_set_weight_device(of
, buf
, nbytes
, off
, false, false);
1827 static ssize_t
cfqg_set_leaf_weight_device(struct kernfs_open_file
*of
,
1828 char *buf
, size_t nbytes
, loff_t off
)
1830 return __cfqg_set_weight_device(of
, buf
, nbytes
, off
, false, true);
1833 static int __cfq_set_weight(struct cgroup_subsys_state
*css
, u64 val
,
1834 bool on_dfl
, bool reset_dev
, bool is_leaf_weight
)
1836 unsigned int min
= on_dfl
? CGROUP_WEIGHT_MIN
: CFQ_WEIGHT_LEGACY_MIN
;
1837 unsigned int max
= on_dfl
? CGROUP_WEIGHT_MAX
: CFQ_WEIGHT_LEGACY_MAX
;
1838 struct blkcg
*blkcg
= css_to_blkcg(css
);
1839 struct blkcg_gq
*blkg
;
1840 struct cfq_group_data
*cfqgd
;
1843 if (val
< min
|| val
> max
)
1846 spin_lock_irq(&blkcg
->lock
);
1847 cfqgd
= blkcg_to_cfqgd(blkcg
);
1853 if (!is_leaf_weight
)
1854 cfqgd
->weight
= val
;
1856 cfqgd
->leaf_weight
= val
;
1858 hlist_for_each_entry(blkg
, &blkcg
->blkg_list
, blkcg_node
) {
1859 struct cfq_group
*cfqg
= blkg_to_cfqg(blkg
);
1864 if (!is_leaf_weight
) {
1866 cfqg
->dev_weight
= 0;
1867 if (!cfqg
->dev_weight
)
1868 cfqg
->new_weight
= cfqgd
->weight
;
1871 cfqg
->dev_leaf_weight
= 0;
1872 if (!cfqg
->dev_leaf_weight
)
1873 cfqg
->new_leaf_weight
= cfqgd
->leaf_weight
;
1878 spin_unlock_irq(&blkcg
->lock
);
1882 static int cfq_set_weight(struct cgroup_subsys_state
*css
, struct cftype
*cft
,
1885 return __cfq_set_weight(css
, val
, false, false, false);
1888 static int cfq_set_leaf_weight(struct cgroup_subsys_state
*css
,
1889 struct cftype
*cft
, u64 val
)
1891 return __cfq_set_weight(css
, val
, false, false, true);
1894 static int cfqg_print_stat(struct seq_file
*sf
, void *v
)
1896 blkcg_print_blkgs(sf
, css_to_blkcg(seq_css(sf
)), blkg_prfill_stat
,
1897 &blkcg_policy_cfq
, seq_cft(sf
)->private, false);
1901 static int cfqg_print_rwstat(struct seq_file
*sf
, void *v
)
1903 blkcg_print_blkgs(sf
, css_to_blkcg(seq_css(sf
)), blkg_prfill_rwstat
,
1904 &blkcg_policy_cfq
, seq_cft(sf
)->private, true);
1908 static u64
cfqg_prfill_stat_recursive(struct seq_file
*sf
,
1909 struct blkg_policy_data
*pd
, int off
)
1911 u64 sum
= blkg_stat_recursive_sum(pd_to_blkg(pd
),
1912 &blkcg_policy_cfq
, off
);
1913 return __blkg_prfill_u64(sf
, pd
, sum
);
1916 static u64
cfqg_prfill_rwstat_recursive(struct seq_file
*sf
,
1917 struct blkg_policy_data
*pd
, int off
)
1919 struct blkg_rwstat sum
= blkg_rwstat_recursive_sum(pd_to_blkg(pd
),
1920 &blkcg_policy_cfq
, off
);
1921 return __blkg_prfill_rwstat(sf
, pd
, &sum
);
1924 static int cfqg_print_stat_recursive(struct seq_file
*sf
, void *v
)
1926 blkcg_print_blkgs(sf
, css_to_blkcg(seq_css(sf
)),
1927 cfqg_prfill_stat_recursive
, &blkcg_policy_cfq
,
1928 seq_cft(sf
)->private, false);
1932 static int cfqg_print_rwstat_recursive(struct seq_file
*sf
, void *v
)
1934 blkcg_print_blkgs(sf
, css_to_blkcg(seq_css(sf
)),
1935 cfqg_prfill_rwstat_recursive
, &blkcg_policy_cfq
,
1936 seq_cft(sf
)->private, true);
1940 static u64
cfqg_prfill_sectors(struct seq_file
*sf
, struct blkg_policy_data
*pd
,
1943 u64 sum
= blkg_rwstat_total(&pd
->blkg
->stat_bytes
);
1945 return __blkg_prfill_u64(sf
, pd
, sum
>> 9);
1948 static int cfqg_print_stat_sectors(struct seq_file
*sf
, void *v
)
1950 blkcg_print_blkgs(sf
, css_to_blkcg(seq_css(sf
)),
1951 cfqg_prfill_sectors
, &blkcg_policy_cfq
, 0, false);
1955 static u64
cfqg_prfill_sectors_recursive(struct seq_file
*sf
,
1956 struct blkg_policy_data
*pd
, int off
)
1958 struct blkg_rwstat tmp
= blkg_rwstat_recursive_sum(pd
->blkg
, NULL
,
1959 offsetof(struct blkcg_gq
, stat_bytes
));
1960 u64 sum
= atomic64_read(&tmp
.aux_cnt
[BLKG_RWSTAT_READ
]) +
1961 atomic64_read(&tmp
.aux_cnt
[BLKG_RWSTAT_WRITE
]);
1963 return __blkg_prfill_u64(sf
, pd
, sum
>> 9);
1966 static int cfqg_print_stat_sectors_recursive(struct seq_file
*sf
, void *v
)
1968 blkcg_print_blkgs(sf
, css_to_blkcg(seq_css(sf
)),
1969 cfqg_prfill_sectors_recursive
, &blkcg_policy_cfq
, 0,
1974 #ifdef CONFIG_DEBUG_BLK_CGROUP
1975 static u64
cfqg_prfill_avg_queue_size(struct seq_file
*sf
,
1976 struct blkg_policy_data
*pd
, int off
)
1978 struct cfq_group
*cfqg
= pd_to_cfqg(pd
);
1979 u64 samples
= blkg_stat_read(&cfqg
->stats
.avg_queue_size_samples
);
1983 v
= blkg_stat_read(&cfqg
->stats
.avg_queue_size_sum
);
1984 v
= div64_u64(v
, samples
);
1986 __blkg_prfill_u64(sf
, pd
, v
);
1990 /* print avg_queue_size */
1991 static int cfqg_print_avg_queue_size(struct seq_file
*sf
, void *v
)
1993 blkcg_print_blkgs(sf
, css_to_blkcg(seq_css(sf
)),
1994 cfqg_prfill_avg_queue_size
, &blkcg_policy_cfq
,
1998 #endif /* CONFIG_DEBUG_BLK_CGROUP */
2000 static struct cftype cfq_blkcg_legacy_files
[] = {
2001 /* on root, weight is mapped to leaf_weight */
2003 .name
= "weight_device",
2004 .flags
= CFTYPE_ONLY_ON_ROOT
,
2005 .seq_show
= cfqg_print_leaf_weight_device
,
2006 .write
= cfqg_set_leaf_weight_device
,
2010 .flags
= CFTYPE_ONLY_ON_ROOT
,
2011 .seq_show
= cfq_print_leaf_weight
,
2012 .write_u64
= cfq_set_leaf_weight
,
2015 /* no such mapping necessary for !roots */
2017 .name
= "weight_device",
2018 .flags
= CFTYPE_NOT_ON_ROOT
,
2019 .seq_show
= cfqg_print_weight_device
,
2020 .write
= cfqg_set_weight_device
,
2024 .flags
= CFTYPE_NOT_ON_ROOT
,
2025 .seq_show
= cfq_print_weight
,
2026 .write_u64
= cfq_set_weight
,
2030 .name
= "leaf_weight_device",
2031 .seq_show
= cfqg_print_leaf_weight_device
,
2032 .write
= cfqg_set_leaf_weight_device
,
2035 .name
= "leaf_weight",
2036 .seq_show
= cfq_print_leaf_weight
,
2037 .write_u64
= cfq_set_leaf_weight
,
2040 /* statistics, covers only the tasks in the cfqg */
2043 .private = offsetof(struct cfq_group
, stats
.time
),
2044 .seq_show
= cfqg_print_stat
,
2048 .seq_show
= cfqg_print_stat_sectors
,
2051 .name
= "io_service_bytes",
2052 .private = (unsigned long)&blkcg_policy_cfq
,
2053 .seq_show
= blkg_print_stat_bytes
,
2056 .name
= "io_serviced",
2057 .private = (unsigned long)&blkcg_policy_cfq
,
2058 .seq_show
= blkg_print_stat_ios
,
2061 .name
= "io_service_time",
2062 .private = offsetof(struct cfq_group
, stats
.service_time
),
2063 .seq_show
= cfqg_print_rwstat
,
2066 .name
= "io_wait_time",
2067 .private = offsetof(struct cfq_group
, stats
.wait_time
),
2068 .seq_show
= cfqg_print_rwstat
,
2071 .name
= "io_merged",
2072 .private = offsetof(struct cfq_group
, stats
.merged
),
2073 .seq_show
= cfqg_print_rwstat
,
2076 .name
= "io_queued",
2077 .private = offsetof(struct cfq_group
, stats
.queued
),
2078 .seq_show
= cfqg_print_rwstat
,
2081 /* the same statictics which cover the cfqg and its descendants */
2083 .name
= "time_recursive",
2084 .private = offsetof(struct cfq_group
, stats
.time
),
2085 .seq_show
= cfqg_print_stat_recursive
,
2088 .name
= "sectors_recursive",
2089 .seq_show
= cfqg_print_stat_sectors_recursive
,
2092 .name
= "io_service_bytes_recursive",
2093 .private = (unsigned long)&blkcg_policy_cfq
,
2094 .seq_show
= blkg_print_stat_bytes_recursive
,
2097 .name
= "io_serviced_recursive",
2098 .private = (unsigned long)&blkcg_policy_cfq
,
2099 .seq_show
= blkg_print_stat_ios_recursive
,
2102 .name
= "io_service_time_recursive",
2103 .private = offsetof(struct cfq_group
, stats
.service_time
),
2104 .seq_show
= cfqg_print_rwstat_recursive
,
2107 .name
= "io_wait_time_recursive",
2108 .private = offsetof(struct cfq_group
, stats
.wait_time
),
2109 .seq_show
= cfqg_print_rwstat_recursive
,
2112 .name
= "io_merged_recursive",
2113 .private = offsetof(struct cfq_group
, stats
.merged
),
2114 .seq_show
= cfqg_print_rwstat_recursive
,
2117 .name
= "io_queued_recursive",
2118 .private = offsetof(struct cfq_group
, stats
.queued
),
2119 .seq_show
= cfqg_print_rwstat_recursive
,
2121 #ifdef CONFIG_DEBUG_BLK_CGROUP
2123 .name
= "avg_queue_size",
2124 .seq_show
= cfqg_print_avg_queue_size
,
2127 .name
= "group_wait_time",
2128 .private = offsetof(struct cfq_group
, stats
.group_wait_time
),
2129 .seq_show
= cfqg_print_stat
,
2132 .name
= "idle_time",
2133 .private = offsetof(struct cfq_group
, stats
.idle_time
),
2134 .seq_show
= cfqg_print_stat
,
2137 .name
= "empty_time",
2138 .private = offsetof(struct cfq_group
, stats
.empty_time
),
2139 .seq_show
= cfqg_print_stat
,
2143 .private = offsetof(struct cfq_group
, stats
.dequeue
),
2144 .seq_show
= cfqg_print_stat
,
2147 .name
= "unaccounted_time",
2148 .private = offsetof(struct cfq_group
, stats
.unaccounted_time
),
2149 .seq_show
= cfqg_print_stat
,
2151 #endif /* CONFIG_DEBUG_BLK_CGROUP */
2155 static int cfq_print_weight_on_dfl(struct seq_file
*sf
, void *v
)
2157 struct blkcg
*blkcg
= css_to_blkcg(seq_css(sf
));
2158 struct cfq_group_data
*cgd
= blkcg_to_cfqgd(blkcg
);
2160 seq_printf(sf
, "default %u\n", cgd
->weight
);
2161 blkcg_print_blkgs(sf
, blkcg
, cfqg_prfill_weight_device
,
2162 &blkcg_policy_cfq
, 0, false);
2166 static ssize_t
cfq_set_weight_on_dfl(struct kernfs_open_file
*of
,
2167 char *buf
, size_t nbytes
, loff_t off
)
2175 /* "WEIGHT" or "default WEIGHT" sets the default weight */
2176 v
= simple_strtoull(buf
, &endp
, 0);
2177 if (*endp
== '\0' || sscanf(buf
, "default %llu", &v
) == 1) {
2178 ret
= __cfq_set_weight(of_css(of
), v
, true, false, false);
2179 return ret
?: nbytes
;
2182 /* "MAJ:MIN WEIGHT" */
2183 return __cfqg_set_weight_device(of
, buf
, nbytes
, off
, true, false);
2186 static struct cftype cfq_blkcg_files
[] = {
2189 .flags
= CFTYPE_NOT_ON_ROOT
,
2190 .seq_show
= cfq_print_weight_on_dfl
,
2191 .write
= cfq_set_weight_on_dfl
,
2196 #else /* GROUP_IOSCHED */
2197 static struct cfq_group
*cfq_lookup_cfqg(struct cfq_data
*cfqd
,
2198 struct blkcg
*blkcg
)
2200 return cfqd
->root_group
;
2204 cfq_link_cfqq_cfqg(struct cfq_queue
*cfqq
, struct cfq_group
*cfqg
) {
2208 #endif /* GROUP_IOSCHED */
2211 * The cfqd->service_trees holds all pending cfq_queue's that have
2212 * requests waiting to be processed. It is sorted in the order that
2213 * we will service the queues.
2215 static void cfq_service_tree_add(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
,
2218 struct rb_node
**p
, *parent
;
2219 struct cfq_queue
*__cfqq
;
2221 struct cfq_rb_root
*st
;
2224 u64 now
= ktime_get_ns();
2226 st
= st_for(cfqq
->cfqg
, cfqq_class(cfqq
), cfqq_type(cfqq
));
2227 if (cfq_class_idle(cfqq
)) {
2228 rb_key
= CFQ_IDLE_DELAY
;
2229 parent
= rb_last(&st
->rb
);
2230 if (parent
&& parent
!= &cfqq
->rb_node
) {
2231 __cfqq
= rb_entry(parent
, struct cfq_queue
, rb_node
);
2232 rb_key
+= __cfqq
->rb_key
;
2235 } else if (!add_front
) {
2237 * Get our rb key offset. Subtract any residual slice
2238 * value carried from last service. A negative resid
2239 * count indicates slice overrun, and this should position
2240 * the next service time further away in the tree.
2242 rb_key
= cfq_slice_offset(cfqd
, cfqq
) + now
;
2243 rb_key
-= cfqq
->slice_resid
;
2244 cfqq
->slice_resid
= 0;
2246 rb_key
= -NSEC_PER_SEC
;
2247 __cfqq
= cfq_rb_first(st
);
2248 rb_key
+= __cfqq
? __cfqq
->rb_key
: now
;
2251 if (!RB_EMPTY_NODE(&cfqq
->rb_node
)) {
2254 * same position, nothing more to do
2256 if (rb_key
== cfqq
->rb_key
&& cfqq
->service_tree
== st
)
2259 cfq_rb_erase(&cfqq
->rb_node
, cfqq
->service_tree
);
2260 cfqq
->service_tree
= NULL
;
2265 cfqq
->service_tree
= st
;
2266 p
= &st
->rb
.rb_node
;
2269 __cfqq
= rb_entry(parent
, struct cfq_queue
, rb_node
);
2272 * sort by key, that represents service time.
2274 if (rb_key
< __cfqq
->rb_key
)
2275 p
= &parent
->rb_left
;
2277 p
= &parent
->rb_right
;
2283 st
->left
= &cfqq
->rb_node
;
2285 cfqq
->rb_key
= rb_key
;
2286 rb_link_node(&cfqq
->rb_node
, parent
, p
);
2287 rb_insert_color(&cfqq
->rb_node
, &st
->rb
);
2289 if (add_front
|| !new_cfqq
)
2291 cfq_group_notify_queue_add(cfqd
, cfqq
->cfqg
);
2294 static struct cfq_queue
*
2295 cfq_prio_tree_lookup(struct cfq_data
*cfqd
, struct rb_root
*root
,
2296 sector_t sector
, struct rb_node
**ret_parent
,
2297 struct rb_node
***rb_link
)
2299 struct rb_node
**p
, *parent
;
2300 struct cfq_queue
*cfqq
= NULL
;
2308 cfqq
= rb_entry(parent
, struct cfq_queue
, p_node
);
2311 * Sort strictly based on sector. Smallest to the left,
2312 * largest to the right.
2314 if (sector
> blk_rq_pos(cfqq
->next_rq
))
2315 n
= &(*p
)->rb_right
;
2316 else if (sector
< blk_rq_pos(cfqq
->next_rq
))
2324 *ret_parent
= parent
;
2330 static void cfq_prio_tree_add(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
)
2332 struct rb_node
**p
, *parent
;
2333 struct cfq_queue
*__cfqq
;
2336 rb_erase(&cfqq
->p_node
, cfqq
->p_root
);
2337 cfqq
->p_root
= NULL
;
2340 if (cfq_class_idle(cfqq
))
2345 cfqq
->p_root
= &cfqd
->prio_trees
[cfqq
->org_ioprio
];
2346 __cfqq
= cfq_prio_tree_lookup(cfqd
, cfqq
->p_root
,
2347 blk_rq_pos(cfqq
->next_rq
), &parent
, &p
);
2349 rb_link_node(&cfqq
->p_node
, parent
, p
);
2350 rb_insert_color(&cfqq
->p_node
, cfqq
->p_root
);
2352 cfqq
->p_root
= NULL
;
2356 * Update cfqq's position in the service tree.
2358 static void cfq_resort_rr_list(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
)
2361 * Resorting requires the cfqq to be on the RR list already.
2363 if (cfq_cfqq_on_rr(cfqq
)) {
2364 cfq_service_tree_add(cfqd
, cfqq
, 0);
2365 cfq_prio_tree_add(cfqd
, cfqq
);
2370 * add to busy list of queues for service, trying to be fair in ordering
2371 * the pending list according to last request service
2373 static void cfq_add_cfqq_rr(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
)
2375 cfq_log_cfqq(cfqd
, cfqq
, "add_to_rr");
2376 BUG_ON(cfq_cfqq_on_rr(cfqq
));
2377 cfq_mark_cfqq_on_rr(cfqq
);
2378 cfqd
->busy_queues
++;
2379 if (cfq_cfqq_sync(cfqq
))
2380 cfqd
->busy_sync_queues
++;
2382 cfq_resort_rr_list(cfqd
, cfqq
);
2386 * Called when the cfqq no longer has requests pending, remove it from
2389 static void cfq_del_cfqq_rr(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
)
2391 cfq_log_cfqq(cfqd
, cfqq
, "del_from_rr");
2392 BUG_ON(!cfq_cfqq_on_rr(cfqq
));
2393 cfq_clear_cfqq_on_rr(cfqq
);
2395 if (!RB_EMPTY_NODE(&cfqq
->rb_node
)) {
2396 cfq_rb_erase(&cfqq
->rb_node
, cfqq
->service_tree
);
2397 cfqq
->service_tree
= NULL
;
2400 rb_erase(&cfqq
->p_node
, cfqq
->p_root
);
2401 cfqq
->p_root
= NULL
;
2404 cfq_group_notify_queue_del(cfqd
, cfqq
->cfqg
);
2405 BUG_ON(!cfqd
->busy_queues
);
2406 cfqd
->busy_queues
--;
2407 if (cfq_cfqq_sync(cfqq
))
2408 cfqd
->busy_sync_queues
--;
2412 * rb tree support functions
2414 static void cfq_del_rq_rb(struct request
*rq
)
2416 struct cfq_queue
*cfqq
= RQ_CFQQ(rq
);
2417 const int sync
= rq_is_sync(rq
);
2419 BUG_ON(!cfqq
->queued
[sync
]);
2420 cfqq
->queued
[sync
]--;
2422 elv_rb_del(&cfqq
->sort_list
, rq
);
2424 if (cfq_cfqq_on_rr(cfqq
) && RB_EMPTY_ROOT(&cfqq
->sort_list
)) {
2426 * Queue will be deleted from service tree when we actually
2427 * expire it later. Right now just remove it from prio tree
2431 rb_erase(&cfqq
->p_node
, cfqq
->p_root
);
2432 cfqq
->p_root
= NULL
;
2437 static void cfq_add_rq_rb(struct request
*rq
)
2439 struct cfq_queue
*cfqq
= RQ_CFQQ(rq
);
2440 struct cfq_data
*cfqd
= cfqq
->cfqd
;
2441 struct request
*prev
;
2443 cfqq
->queued
[rq_is_sync(rq
)]++;
2445 elv_rb_add(&cfqq
->sort_list
, rq
);
2447 if (!cfq_cfqq_on_rr(cfqq
))
2448 cfq_add_cfqq_rr(cfqd
, cfqq
);
2451 * check if this request is a better next-serve candidate
2453 prev
= cfqq
->next_rq
;
2454 cfqq
->next_rq
= cfq_choose_req(cfqd
, cfqq
->next_rq
, rq
, cfqd
->last_position
);
2457 * adjust priority tree position, if ->next_rq changes
2459 if (prev
!= cfqq
->next_rq
)
2460 cfq_prio_tree_add(cfqd
, cfqq
);
2462 BUG_ON(!cfqq
->next_rq
);
2465 static void cfq_reposition_rq_rb(struct cfq_queue
*cfqq
, struct request
*rq
)
2467 elv_rb_del(&cfqq
->sort_list
, rq
);
2468 cfqq
->queued
[rq_is_sync(rq
)]--;
2469 cfqg_stats_update_io_remove(RQ_CFQG(rq
), rq
->cmd_flags
);
2471 cfqg_stats_update_io_add(RQ_CFQG(rq
), cfqq
->cfqd
->serving_group
,
2475 static struct request
*
2476 cfq_find_rq_fmerge(struct cfq_data
*cfqd
, struct bio
*bio
)
2478 struct task_struct
*tsk
= current
;
2479 struct cfq_io_cq
*cic
;
2480 struct cfq_queue
*cfqq
;
2482 cic
= cfq_cic_lookup(cfqd
, tsk
->io_context
);
2486 cfqq
= cic_to_cfqq(cic
, op_is_sync(bio
->bi_opf
));
2488 return elv_rb_find(&cfqq
->sort_list
, bio_end_sector(bio
));
2493 static void cfq_activate_request(struct request_queue
*q
, struct request
*rq
)
2495 struct cfq_data
*cfqd
= q
->elevator
->elevator_data
;
2497 cfqd
->rq_in_driver
++;
2498 cfq_log_cfqq(cfqd
, RQ_CFQQ(rq
), "activate rq, drv=%d",
2499 cfqd
->rq_in_driver
);
2501 cfqd
->last_position
= blk_rq_pos(rq
) + blk_rq_sectors(rq
);
2504 static void cfq_deactivate_request(struct request_queue
*q
, struct request
*rq
)
2506 struct cfq_data
*cfqd
= q
->elevator
->elevator_data
;
2508 WARN_ON(!cfqd
->rq_in_driver
);
2509 cfqd
->rq_in_driver
--;
2510 cfq_log_cfqq(cfqd
, RQ_CFQQ(rq
), "deactivate rq, drv=%d",
2511 cfqd
->rq_in_driver
);
2514 static void cfq_remove_request(struct request
*rq
)
2516 struct cfq_queue
*cfqq
= RQ_CFQQ(rq
);
2518 if (cfqq
->next_rq
== rq
)
2519 cfqq
->next_rq
= cfq_find_next_rq(cfqq
->cfqd
, cfqq
, rq
);
2521 list_del_init(&rq
->queuelist
);
2524 cfqq
->cfqd
->rq_queued
--;
2525 cfqg_stats_update_io_remove(RQ_CFQG(rq
), rq
->cmd_flags
);
2526 if (rq
->cmd_flags
& REQ_PRIO
) {
2527 WARN_ON(!cfqq
->prio_pending
);
2528 cfqq
->prio_pending
--;
2532 static enum elv_merge
cfq_merge(struct request_queue
*q
, struct request
**req
,
2535 struct cfq_data
*cfqd
= q
->elevator
->elevator_data
;
2536 struct request
*__rq
;
2538 __rq
= cfq_find_rq_fmerge(cfqd
, bio
);
2539 if (__rq
&& elv_bio_merge_ok(__rq
, bio
)) {
2541 return ELEVATOR_FRONT_MERGE
;
2544 return ELEVATOR_NO_MERGE
;
2547 static void cfq_merged_request(struct request_queue
*q
, struct request
*req
,
2548 enum elv_merge type
)
2550 if (type
== ELEVATOR_FRONT_MERGE
) {
2551 struct cfq_queue
*cfqq
= RQ_CFQQ(req
);
2553 cfq_reposition_rq_rb(cfqq
, req
);
2557 static void cfq_bio_merged(struct request_queue
*q
, struct request
*req
,
2560 cfqg_stats_update_io_merged(RQ_CFQG(req
), bio
->bi_opf
);
2564 cfq_merged_requests(struct request_queue
*q
, struct request
*rq
,
2565 struct request
*next
)
2567 struct cfq_queue
*cfqq
= RQ_CFQQ(rq
);
2568 struct cfq_data
*cfqd
= q
->elevator
->elevator_data
;
2571 * reposition in fifo if next is older than rq
2573 if (!list_empty(&rq
->queuelist
) && !list_empty(&next
->queuelist
) &&
2574 next
->fifo_time
< rq
->fifo_time
&&
2575 cfqq
== RQ_CFQQ(next
)) {
2576 list_move(&rq
->queuelist
, &next
->queuelist
);
2577 rq
->fifo_time
= next
->fifo_time
;
2580 if (cfqq
->next_rq
== next
)
2582 cfq_remove_request(next
);
2583 cfqg_stats_update_io_merged(RQ_CFQG(rq
), next
->cmd_flags
);
2585 cfqq
= RQ_CFQQ(next
);
2587 * all requests of this queue are merged to other queues, delete it
2588 * from the service tree. If it's the active_queue,
2589 * cfq_dispatch_requests() will choose to expire it or do idle
2591 if (cfq_cfqq_on_rr(cfqq
) && RB_EMPTY_ROOT(&cfqq
->sort_list
) &&
2592 cfqq
!= cfqd
->active_queue
)
2593 cfq_del_cfqq_rr(cfqd
, cfqq
);
2596 static int cfq_allow_bio_merge(struct request_queue
*q
, struct request
*rq
,
2599 struct cfq_data
*cfqd
= q
->elevator
->elevator_data
;
2600 bool is_sync
= op_is_sync(bio
->bi_opf
);
2601 struct cfq_io_cq
*cic
;
2602 struct cfq_queue
*cfqq
;
2605 * Disallow merge of a sync bio into an async request.
2607 if (is_sync
&& !rq_is_sync(rq
))
2611 * Lookup the cfqq that this bio will be queued with and allow
2612 * merge only if rq is queued there.
2614 cic
= cfq_cic_lookup(cfqd
, current
->io_context
);
2618 cfqq
= cic_to_cfqq(cic
, is_sync
);
2619 return cfqq
== RQ_CFQQ(rq
);
2622 static int cfq_allow_rq_merge(struct request_queue
*q
, struct request
*rq
,
2623 struct request
*next
)
2625 return RQ_CFQQ(rq
) == RQ_CFQQ(next
);
2628 static inline void cfq_del_timer(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
)
2630 hrtimer_try_to_cancel(&cfqd
->idle_slice_timer
);
2631 cfqg_stats_update_idle_time(cfqq
->cfqg
);
2634 static void __cfq_set_active_queue(struct cfq_data
*cfqd
,
2635 struct cfq_queue
*cfqq
)
2638 cfq_log_cfqq(cfqd
, cfqq
, "set_active wl_class:%d wl_type:%d",
2639 cfqd
->serving_wl_class
, cfqd
->serving_wl_type
);
2640 cfqg_stats_update_avg_queue_size(cfqq
->cfqg
);
2641 cfqq
->slice_start
= 0;
2642 cfqq
->dispatch_start
= ktime_get_ns();
2643 cfqq
->allocated_slice
= 0;
2644 cfqq
->slice_end
= 0;
2645 cfqq
->slice_dispatch
= 0;
2646 cfqq
->nr_sectors
= 0;
2648 cfq_clear_cfqq_wait_request(cfqq
);
2649 cfq_clear_cfqq_must_dispatch(cfqq
);
2650 cfq_clear_cfqq_must_alloc_slice(cfqq
);
2651 cfq_clear_cfqq_fifo_expire(cfqq
);
2652 cfq_mark_cfqq_slice_new(cfqq
);
2654 cfq_del_timer(cfqd
, cfqq
);
2657 cfqd
->active_queue
= cfqq
;
2661 * current cfqq expired its slice (or was too idle), select new one
2664 __cfq_slice_expired(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
,
2667 cfq_log_cfqq(cfqd
, cfqq
, "slice expired t=%d", timed_out
);
2669 if (cfq_cfqq_wait_request(cfqq
))
2670 cfq_del_timer(cfqd
, cfqq
);
2672 cfq_clear_cfqq_wait_request(cfqq
);
2673 cfq_clear_cfqq_wait_busy(cfqq
);
2676 * If this cfqq is shared between multiple processes, check to
2677 * make sure that those processes are still issuing I/Os within
2678 * the mean seek distance. If not, it may be time to break the
2679 * queues apart again.
2681 if (cfq_cfqq_coop(cfqq
) && CFQQ_SEEKY(cfqq
))
2682 cfq_mark_cfqq_split_coop(cfqq
);
2685 * store what was left of this slice, if the queue idled/timed out
2688 if (cfq_cfqq_slice_new(cfqq
))
2689 cfqq
->slice_resid
= cfq_scaled_cfqq_slice(cfqd
, cfqq
);
2691 cfqq
->slice_resid
= cfqq
->slice_end
- ktime_get_ns();
2692 cfq_log_cfqq(cfqd
, cfqq
, "resid=%lld", cfqq
->slice_resid
);
2695 cfq_group_served(cfqd
, cfqq
->cfqg
, cfqq
);
2697 if (cfq_cfqq_on_rr(cfqq
) && RB_EMPTY_ROOT(&cfqq
->sort_list
))
2698 cfq_del_cfqq_rr(cfqd
, cfqq
);
2700 cfq_resort_rr_list(cfqd
, cfqq
);
2702 if (cfqq
== cfqd
->active_queue
)
2703 cfqd
->active_queue
= NULL
;
2705 if (cfqd
->active_cic
) {
2706 put_io_context(cfqd
->active_cic
->icq
.ioc
);
2707 cfqd
->active_cic
= NULL
;
2711 static inline void cfq_slice_expired(struct cfq_data
*cfqd
, bool timed_out
)
2713 struct cfq_queue
*cfqq
= cfqd
->active_queue
;
2716 __cfq_slice_expired(cfqd
, cfqq
, timed_out
);
2720 * Get next queue for service. Unless we have a queue preemption,
2721 * we'll simply select the first cfqq in the service tree.
2723 static struct cfq_queue
*cfq_get_next_queue(struct cfq_data
*cfqd
)
2725 struct cfq_rb_root
*st
= st_for(cfqd
->serving_group
,
2726 cfqd
->serving_wl_class
, cfqd
->serving_wl_type
);
2728 if (!cfqd
->rq_queued
)
2731 /* There is nothing to dispatch */
2734 if (RB_EMPTY_ROOT(&st
->rb
))
2736 return cfq_rb_first(st
);
2739 static struct cfq_queue
*cfq_get_next_queue_forced(struct cfq_data
*cfqd
)
2741 struct cfq_group
*cfqg
;
2742 struct cfq_queue
*cfqq
;
2744 struct cfq_rb_root
*st
;
2746 if (!cfqd
->rq_queued
)
2749 cfqg
= cfq_get_next_cfqg(cfqd
);
2753 for_each_cfqg_st(cfqg
, i
, j
, st
) {
2754 cfqq
= cfq_rb_first(st
);
2762 * Get and set a new active queue for service.
2764 static struct cfq_queue
*cfq_set_active_queue(struct cfq_data
*cfqd
,
2765 struct cfq_queue
*cfqq
)
2768 cfqq
= cfq_get_next_queue(cfqd
);
2770 __cfq_set_active_queue(cfqd
, cfqq
);
2774 static inline sector_t
cfq_dist_from_last(struct cfq_data
*cfqd
,
2777 if (blk_rq_pos(rq
) >= cfqd
->last_position
)
2778 return blk_rq_pos(rq
) - cfqd
->last_position
;
2780 return cfqd
->last_position
- blk_rq_pos(rq
);
2783 static inline int cfq_rq_close(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
,
2786 return cfq_dist_from_last(cfqd
, rq
) <= CFQQ_CLOSE_THR
;
2789 static struct cfq_queue
*cfqq_close(struct cfq_data
*cfqd
,
2790 struct cfq_queue
*cur_cfqq
)
2792 struct rb_root
*root
= &cfqd
->prio_trees
[cur_cfqq
->org_ioprio
];
2793 struct rb_node
*parent
, *node
;
2794 struct cfq_queue
*__cfqq
;
2795 sector_t sector
= cfqd
->last_position
;
2797 if (RB_EMPTY_ROOT(root
))
2801 * First, if we find a request starting at the end of the last
2802 * request, choose it.
2804 __cfqq
= cfq_prio_tree_lookup(cfqd
, root
, sector
, &parent
, NULL
);
2809 * If the exact sector wasn't found, the parent of the NULL leaf
2810 * will contain the closest sector.
2812 __cfqq
= rb_entry(parent
, struct cfq_queue
, p_node
);
2813 if (cfq_rq_close(cfqd
, cur_cfqq
, __cfqq
->next_rq
))
2816 if (blk_rq_pos(__cfqq
->next_rq
) < sector
)
2817 node
= rb_next(&__cfqq
->p_node
);
2819 node
= rb_prev(&__cfqq
->p_node
);
2823 __cfqq
= rb_entry(node
, struct cfq_queue
, p_node
);
2824 if (cfq_rq_close(cfqd
, cur_cfqq
, __cfqq
->next_rq
))
2832 * cur_cfqq - passed in so that we don't decide that the current queue is
2833 * closely cooperating with itself.
2835 * So, basically we're assuming that that cur_cfqq has dispatched at least
2836 * one request, and that cfqd->last_position reflects a position on the disk
2837 * associated with the I/O issued by cur_cfqq. I'm not sure this is a valid
2840 static struct cfq_queue
*cfq_close_cooperator(struct cfq_data
*cfqd
,
2841 struct cfq_queue
*cur_cfqq
)
2843 struct cfq_queue
*cfqq
;
2845 if (cfq_class_idle(cur_cfqq
))
2847 if (!cfq_cfqq_sync(cur_cfqq
))
2849 if (CFQQ_SEEKY(cur_cfqq
))
2853 * Don't search priority tree if it's the only queue in the group.
2855 if (cur_cfqq
->cfqg
->nr_cfqq
== 1)
2859 * We should notice if some of the queues are cooperating, eg
2860 * working closely on the same area of the disk. In that case,
2861 * we can group them together and don't waste time idling.
2863 cfqq
= cfqq_close(cfqd
, cur_cfqq
);
2867 /* If new queue belongs to different cfq_group, don't choose it */
2868 if (cur_cfqq
->cfqg
!= cfqq
->cfqg
)
2872 * It only makes sense to merge sync queues.
2874 if (!cfq_cfqq_sync(cfqq
))
2876 if (CFQQ_SEEKY(cfqq
))
2880 * Do not merge queues of different priority classes
2882 if (cfq_class_rt(cfqq
) != cfq_class_rt(cur_cfqq
))
2889 * Determine whether we should enforce idle window for this queue.
2892 static bool cfq_should_idle(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
)
2894 enum wl_class_t wl_class
= cfqq_class(cfqq
);
2895 struct cfq_rb_root
*st
= cfqq
->service_tree
;
2900 if (!cfqd
->cfq_slice_idle
)
2903 /* We never do for idle class queues. */
2904 if (wl_class
== IDLE_WORKLOAD
)
2907 /* We do for queues that were marked with idle window flag. */
2908 if (cfq_cfqq_idle_window(cfqq
) &&
2909 !(blk_queue_nonrot(cfqd
->queue
) && cfqd
->hw_tag
))
2913 * Otherwise, we do only if they are the last ones
2914 * in their service tree.
2916 if (st
->count
== 1 && cfq_cfqq_sync(cfqq
) &&
2917 !cfq_io_thinktime_big(cfqd
, &st
->ttime
, false))
2919 cfq_log_cfqq(cfqd
, cfqq
, "Not idling. st->count:%d", st
->count
);
2923 static void cfq_arm_slice_timer(struct cfq_data
*cfqd
)
2925 struct cfq_queue
*cfqq
= cfqd
->active_queue
;
2926 struct cfq_rb_root
*st
= cfqq
->service_tree
;
2927 struct cfq_io_cq
*cic
;
2928 u64 sl
, group_idle
= 0;
2929 u64 now
= ktime_get_ns();
2932 * SSD device without seek penalty, disable idling. But only do so
2933 * for devices that support queuing, otherwise we still have a problem
2934 * with sync vs async workloads.
2936 if (blk_queue_nonrot(cfqd
->queue
) && cfqd
->hw_tag
)
2939 WARN_ON(!RB_EMPTY_ROOT(&cfqq
->sort_list
));
2940 WARN_ON(cfq_cfqq_slice_new(cfqq
));
2943 * idle is disabled, either manually or by past process history
2945 if (!cfq_should_idle(cfqd
, cfqq
)) {
2946 /* no queue idling. Check for group idling */
2947 if (cfqd
->cfq_group_idle
)
2948 group_idle
= cfqd
->cfq_group_idle
;
2954 * still active requests from this queue, don't idle
2956 if (cfqq
->dispatched
)
2960 * task has exited, don't wait
2962 cic
= cfqd
->active_cic
;
2963 if (!cic
|| !atomic_read(&cic
->icq
.ioc
->active_ref
))
2967 * If our average think time is larger than the remaining time
2968 * slice, then don't idle. This avoids overrunning the allotted
2971 if (sample_valid(cic
->ttime
.ttime_samples
) &&
2972 (cfqq
->slice_end
- now
< cic
->ttime
.ttime_mean
)) {
2973 cfq_log_cfqq(cfqd
, cfqq
, "Not idling. think_time:%llu",
2974 cic
->ttime
.ttime_mean
);
2979 * There are other queues in the group or this is the only group and
2980 * it has too big thinktime, don't do group idle.
2983 (cfqq
->cfqg
->nr_cfqq
> 1 ||
2984 cfq_io_thinktime_big(cfqd
, &st
->ttime
, true)))
2987 cfq_mark_cfqq_wait_request(cfqq
);
2990 sl
= cfqd
->cfq_group_idle
;
2992 sl
= cfqd
->cfq_slice_idle
;
2994 hrtimer_start(&cfqd
->idle_slice_timer
, ns_to_ktime(sl
),
2996 cfqg_stats_set_start_idle_time(cfqq
->cfqg
);
2997 cfq_log_cfqq(cfqd
, cfqq
, "arm_idle: %llu group_idle: %d", sl
,
2998 group_idle
? 1 : 0);
3002 * Move request from internal lists to the request queue dispatch list.
3004 static void cfq_dispatch_insert(struct request_queue
*q
, struct request
*rq
)
3006 struct cfq_data
*cfqd
= q
->elevator
->elevator_data
;
3007 struct cfq_queue
*cfqq
= RQ_CFQQ(rq
);
3009 cfq_log_cfqq(cfqd
, cfqq
, "dispatch_insert");
3011 cfqq
->next_rq
= cfq_find_next_rq(cfqd
, cfqq
, rq
);
3012 cfq_remove_request(rq
);
3014 (RQ_CFQG(rq
))->dispatched
++;
3015 elv_dispatch_sort(q
, rq
);
3017 cfqd
->rq_in_flight
[cfq_cfqq_sync(cfqq
)]++;
3018 cfqq
->nr_sectors
+= blk_rq_sectors(rq
);
3022 * return expired entry, or NULL to just start from scratch in rbtree
3024 static struct request
*cfq_check_fifo(struct cfq_queue
*cfqq
)
3026 struct request
*rq
= NULL
;
3028 if (cfq_cfqq_fifo_expire(cfqq
))
3031 cfq_mark_cfqq_fifo_expire(cfqq
);
3033 if (list_empty(&cfqq
->fifo
))
3036 rq
= rq_entry_fifo(cfqq
->fifo
.next
);
3037 if (ktime_get_ns() < rq
->fifo_time
)
3044 cfq_prio_to_maxrq(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
)
3046 const int base_rq
= cfqd
->cfq_slice_async_rq
;
3048 WARN_ON(cfqq
->ioprio
>= IOPRIO_BE_NR
);
3050 return 2 * base_rq
* (IOPRIO_BE_NR
- cfqq
->ioprio
);
3054 * Must be called with the queue_lock held.
3056 static int cfqq_process_refs(struct cfq_queue
*cfqq
)
3058 int process_refs
, io_refs
;
3060 io_refs
= cfqq
->allocated
[READ
] + cfqq
->allocated
[WRITE
];
3061 process_refs
= cfqq
->ref
- io_refs
;
3062 BUG_ON(process_refs
< 0);
3063 return process_refs
;
3066 static void cfq_setup_merge(struct cfq_queue
*cfqq
, struct cfq_queue
*new_cfqq
)
3068 int process_refs
, new_process_refs
;
3069 struct cfq_queue
*__cfqq
;
3072 * If there are no process references on the new_cfqq, then it is
3073 * unsafe to follow the ->new_cfqq chain as other cfqq's in the
3074 * chain may have dropped their last reference (not just their
3075 * last process reference).
3077 if (!cfqq_process_refs(new_cfqq
))
3080 /* Avoid a circular list and skip interim queue merges */
3081 while ((__cfqq
= new_cfqq
->new_cfqq
)) {
3087 process_refs
= cfqq_process_refs(cfqq
);
3088 new_process_refs
= cfqq_process_refs(new_cfqq
);
3090 * If the process for the cfqq has gone away, there is no
3091 * sense in merging the queues.
3093 if (process_refs
== 0 || new_process_refs
== 0)
3097 * Merge in the direction of the lesser amount of work.
3099 if (new_process_refs
>= process_refs
) {
3100 cfqq
->new_cfqq
= new_cfqq
;
3101 new_cfqq
->ref
+= process_refs
;
3103 new_cfqq
->new_cfqq
= cfqq
;
3104 cfqq
->ref
+= new_process_refs
;
3108 static enum wl_type_t
cfq_choose_wl_type(struct cfq_data
*cfqd
,
3109 struct cfq_group
*cfqg
, enum wl_class_t wl_class
)
3111 struct cfq_queue
*queue
;
3113 bool key_valid
= false;
3115 enum wl_type_t cur_best
= SYNC_NOIDLE_WORKLOAD
;
3117 for (i
= 0; i
<= SYNC_WORKLOAD
; ++i
) {
3118 /* select the one with lowest rb_key */
3119 queue
= cfq_rb_first(st_for(cfqg
, wl_class
, i
));
3121 (!key_valid
|| queue
->rb_key
< lowest_key
)) {
3122 lowest_key
= queue
->rb_key
;
3132 choose_wl_class_and_type(struct cfq_data
*cfqd
, struct cfq_group
*cfqg
)
3136 struct cfq_rb_root
*st
;
3138 enum wl_class_t original_class
= cfqd
->serving_wl_class
;
3139 u64 now
= ktime_get_ns();
3141 /* Choose next priority. RT > BE > IDLE */
3142 if (cfq_group_busy_queues_wl(RT_WORKLOAD
, cfqd
, cfqg
))
3143 cfqd
->serving_wl_class
= RT_WORKLOAD
;
3144 else if (cfq_group_busy_queues_wl(BE_WORKLOAD
, cfqd
, cfqg
))
3145 cfqd
->serving_wl_class
= BE_WORKLOAD
;
3147 cfqd
->serving_wl_class
= IDLE_WORKLOAD
;
3148 cfqd
->workload_expires
= now
+ jiffies_to_nsecs(1);
3152 if (original_class
!= cfqd
->serving_wl_class
)
3156 * For RT and BE, we have to choose also the type
3157 * (SYNC, SYNC_NOIDLE, ASYNC), and to compute a workload
3160 st
= st_for(cfqg
, cfqd
->serving_wl_class
, cfqd
->serving_wl_type
);
3164 * check workload expiration, and that we still have other queues ready
3166 if (count
&& !(now
> cfqd
->workload_expires
))
3170 /* otherwise select new workload type */
3171 cfqd
->serving_wl_type
= cfq_choose_wl_type(cfqd
, cfqg
,
3172 cfqd
->serving_wl_class
);
3173 st
= st_for(cfqg
, cfqd
->serving_wl_class
, cfqd
->serving_wl_type
);
3177 * the workload slice is computed as a fraction of target latency
3178 * proportional to the number of queues in that workload, over
3179 * all the queues in the same priority class
3181 group_slice
= cfq_group_slice(cfqd
, cfqg
);
3183 slice
= div_u64(group_slice
* count
,
3184 max_t(unsigned, cfqg
->busy_queues_avg
[cfqd
->serving_wl_class
],
3185 cfq_group_busy_queues_wl(cfqd
->serving_wl_class
, cfqd
,
3188 if (cfqd
->serving_wl_type
== ASYNC_WORKLOAD
) {
3192 * Async queues are currently system wide. Just taking
3193 * proportion of queues with-in same group will lead to higher
3194 * async ratio system wide as generally root group is going
3195 * to have higher weight. A more accurate thing would be to
3196 * calculate system wide asnc/sync ratio.
3198 tmp
= cfqd
->cfq_target_latency
*
3199 cfqg_busy_async_queues(cfqd
, cfqg
);
3200 tmp
= div_u64(tmp
, cfqd
->busy_queues
);
3201 slice
= min_t(u64
, slice
, tmp
);
3203 /* async workload slice is scaled down according to
3204 * the sync/async slice ratio. */
3205 slice
= div64_u64(slice
*cfqd
->cfq_slice
[0], cfqd
->cfq_slice
[1]);
3207 /* sync workload slice is at least 2 * cfq_slice_idle */
3208 slice
= max(slice
, 2 * cfqd
->cfq_slice_idle
);
3210 slice
= max_t(u64
, slice
, CFQ_MIN_TT
);
3211 cfq_log(cfqd
, "workload slice:%llu", slice
);
3212 cfqd
->workload_expires
= now
+ slice
;
3215 static struct cfq_group
*cfq_get_next_cfqg(struct cfq_data
*cfqd
)
3217 struct cfq_rb_root
*st
= &cfqd
->grp_service_tree
;
3218 struct cfq_group
*cfqg
;
3220 if (RB_EMPTY_ROOT(&st
->rb
))
3222 cfqg
= cfq_rb_first_group(st
);
3223 update_min_vdisktime(st
);
3227 static void cfq_choose_cfqg(struct cfq_data
*cfqd
)
3229 struct cfq_group
*cfqg
= cfq_get_next_cfqg(cfqd
);
3230 u64 now
= ktime_get_ns();
3232 cfqd
->serving_group
= cfqg
;
3234 /* Restore the workload type data */
3235 if (cfqg
->saved_wl_slice
) {
3236 cfqd
->workload_expires
= now
+ cfqg
->saved_wl_slice
;
3237 cfqd
->serving_wl_type
= cfqg
->saved_wl_type
;
3238 cfqd
->serving_wl_class
= cfqg
->saved_wl_class
;
3240 cfqd
->workload_expires
= now
- 1;
3242 choose_wl_class_and_type(cfqd
, cfqg
);
3246 * Select a queue for service. If we have a current active queue,
3247 * check whether to continue servicing it, or retrieve and set a new one.
3249 static struct cfq_queue
*cfq_select_queue(struct cfq_data
*cfqd
)
3251 struct cfq_queue
*cfqq
, *new_cfqq
= NULL
;
3252 u64 now
= ktime_get_ns();
3254 cfqq
= cfqd
->active_queue
;
3258 if (!cfqd
->rq_queued
)
3262 * We were waiting for group to get backlogged. Expire the queue
3264 if (cfq_cfqq_wait_busy(cfqq
) && !RB_EMPTY_ROOT(&cfqq
->sort_list
))
3268 * The active queue has run out of time, expire it and select new.
3270 if (cfq_slice_used(cfqq
) && !cfq_cfqq_must_dispatch(cfqq
)) {
3272 * If slice had not expired at the completion of last request
3273 * we might not have turned on wait_busy flag. Don't expire
3274 * the queue yet. Allow the group to get backlogged.
3276 * The very fact that we have used the slice, that means we
3277 * have been idling all along on this queue and it should be
3278 * ok to wait for this request to complete.
3280 if (cfqq
->cfqg
->nr_cfqq
== 1 && RB_EMPTY_ROOT(&cfqq
->sort_list
)
3281 && cfqq
->dispatched
&& cfq_should_idle(cfqd
, cfqq
)) {
3285 goto check_group_idle
;
3289 * The active queue has requests and isn't expired, allow it to
3292 if (!RB_EMPTY_ROOT(&cfqq
->sort_list
))
3296 * If another queue has a request waiting within our mean seek
3297 * distance, let it run. The expire code will check for close
3298 * cooperators and put the close queue at the front of the service
3299 * tree. If possible, merge the expiring queue with the new cfqq.
3301 new_cfqq
= cfq_close_cooperator(cfqd
, cfqq
);
3303 if (!cfqq
->new_cfqq
)
3304 cfq_setup_merge(cfqq
, new_cfqq
);
3309 * No requests pending. If the active queue still has requests in
3310 * flight or is idling for a new request, allow either of these
3311 * conditions to happen (or time out) before selecting a new queue.
3313 if (hrtimer_active(&cfqd
->idle_slice_timer
)) {
3319 * This is a deep seek queue, but the device is much faster than
3320 * the queue can deliver, don't idle
3322 if (CFQQ_SEEKY(cfqq
) && cfq_cfqq_idle_window(cfqq
) &&
3323 (cfq_cfqq_slice_new(cfqq
) ||
3324 (cfqq
->slice_end
- now
> now
- cfqq
->slice_start
))) {
3325 cfq_clear_cfqq_deep(cfqq
);
3326 cfq_clear_cfqq_idle_window(cfqq
);
3329 if (cfqq
->dispatched
&& cfq_should_idle(cfqd
, cfqq
)) {
3335 * If group idle is enabled and there are requests dispatched from
3336 * this group, wait for requests to complete.
3339 if (cfqd
->cfq_group_idle
&& cfqq
->cfqg
->nr_cfqq
== 1 &&
3340 cfqq
->cfqg
->dispatched
&&
3341 !cfq_io_thinktime_big(cfqd
, &cfqq
->cfqg
->ttime
, true)) {
3347 cfq_slice_expired(cfqd
, 0);
3350 * Current queue expired. Check if we have to switch to a new
3354 cfq_choose_cfqg(cfqd
);
3356 cfqq
= cfq_set_active_queue(cfqd
, new_cfqq
);
3361 static int __cfq_forced_dispatch_cfqq(struct cfq_queue
*cfqq
)
3365 while (cfqq
->next_rq
) {
3366 cfq_dispatch_insert(cfqq
->cfqd
->queue
, cfqq
->next_rq
);
3370 BUG_ON(!list_empty(&cfqq
->fifo
));
3372 /* By default cfqq is not expired if it is empty. Do it explicitly */
3373 __cfq_slice_expired(cfqq
->cfqd
, cfqq
, 0);
3378 * Drain our current requests. Used for barriers and when switching
3379 * io schedulers on-the-fly.
3381 static int cfq_forced_dispatch(struct cfq_data
*cfqd
)
3383 struct cfq_queue
*cfqq
;
3386 /* Expire the timeslice of the current active queue first */
3387 cfq_slice_expired(cfqd
, 0);
3388 while ((cfqq
= cfq_get_next_queue_forced(cfqd
)) != NULL
) {
3389 __cfq_set_active_queue(cfqd
, cfqq
);
3390 dispatched
+= __cfq_forced_dispatch_cfqq(cfqq
);
3393 BUG_ON(cfqd
->busy_queues
);
3395 cfq_log(cfqd
, "forced_dispatch=%d", dispatched
);
3399 static inline bool cfq_slice_used_soon(struct cfq_data
*cfqd
,
3400 struct cfq_queue
*cfqq
)
3402 u64 now
= ktime_get_ns();
3404 /* the queue hasn't finished any request, can't estimate */
3405 if (cfq_cfqq_slice_new(cfqq
))
3407 if (now
+ cfqd
->cfq_slice_idle
* cfqq
->dispatched
> cfqq
->slice_end
)
3413 static bool cfq_may_dispatch(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
)
3415 unsigned int max_dispatch
;
3417 if (cfq_cfqq_must_dispatch(cfqq
))
3421 * Drain async requests before we start sync IO
3423 if (cfq_should_idle(cfqd
, cfqq
) && cfqd
->rq_in_flight
[BLK_RW_ASYNC
])
3427 * If this is an async queue and we have sync IO in flight, let it wait
3429 if (cfqd
->rq_in_flight
[BLK_RW_SYNC
] && !cfq_cfqq_sync(cfqq
))
3432 max_dispatch
= max_t(unsigned int, cfqd
->cfq_quantum
/ 2, 1);
3433 if (cfq_class_idle(cfqq
))
3437 * Does this cfqq already have too much IO in flight?
3439 if (cfqq
->dispatched
>= max_dispatch
) {
3440 bool promote_sync
= false;
3442 * idle queue must always only have a single IO in flight
3444 if (cfq_class_idle(cfqq
))
3448 * If there is only one sync queue
3449 * we can ignore async queue here and give the sync
3450 * queue no dispatch limit. The reason is a sync queue can
3451 * preempt async queue, limiting the sync queue doesn't make
3452 * sense. This is useful for aiostress test.
3454 if (cfq_cfqq_sync(cfqq
) && cfqd
->busy_sync_queues
== 1)
3455 promote_sync
= true;
3458 * We have other queues, don't allow more IO from this one
3460 if (cfqd
->busy_queues
> 1 && cfq_slice_used_soon(cfqd
, cfqq
) &&
3465 * Sole queue user, no limit
3467 if (cfqd
->busy_queues
== 1 || promote_sync
)
3471 * Normally we start throttling cfqq when cfq_quantum/2
3472 * requests have been dispatched. But we can drive
3473 * deeper queue depths at the beginning of slice
3474 * subjected to upper limit of cfq_quantum.
3476 max_dispatch
= cfqd
->cfq_quantum
;
3480 * Async queues must wait a bit before being allowed dispatch.
3481 * We also ramp up the dispatch depth gradually for async IO,
3482 * based on the last sync IO we serviced
3484 if (!cfq_cfqq_sync(cfqq
) && cfqd
->cfq_latency
) {
3485 u64 last_sync
= ktime_get_ns() - cfqd
->last_delayed_sync
;
3488 depth
= div64_u64(last_sync
, cfqd
->cfq_slice
[1]);
3489 if (!depth
&& !cfqq
->dispatched
)
3491 if (depth
< max_dispatch
)
3492 max_dispatch
= depth
;
3496 * If we're below the current max, allow a dispatch
3498 return cfqq
->dispatched
< max_dispatch
;
3502 * Dispatch a request from cfqq, moving them to the request queue
3505 static bool cfq_dispatch_request(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
)
3509 BUG_ON(RB_EMPTY_ROOT(&cfqq
->sort_list
));
3511 rq
= cfq_check_fifo(cfqq
);
3513 cfq_mark_cfqq_must_dispatch(cfqq
);
3515 if (!cfq_may_dispatch(cfqd
, cfqq
))
3519 * follow expired path, else get first next available
3524 cfq_log_cfqq(cfqq
->cfqd
, cfqq
, "fifo=%p", rq
);
3527 * insert request into driver dispatch list
3529 cfq_dispatch_insert(cfqd
->queue
, rq
);
3531 if (!cfqd
->active_cic
) {
3532 struct cfq_io_cq
*cic
= RQ_CIC(rq
);
3534 atomic_long_inc(&cic
->icq
.ioc
->refcount
);
3535 cfqd
->active_cic
= cic
;
3542 * Find the cfqq that we need to service and move a request from that to the
3545 static int cfq_dispatch_requests(struct request_queue
*q
, int force
)
3547 struct cfq_data
*cfqd
= q
->elevator
->elevator_data
;
3548 struct cfq_queue
*cfqq
;
3550 if (!cfqd
->busy_queues
)
3553 if (unlikely(force
))
3554 return cfq_forced_dispatch(cfqd
);
3556 cfqq
= cfq_select_queue(cfqd
);
3561 * Dispatch a request from this cfqq, if it is allowed
3563 if (!cfq_dispatch_request(cfqd
, cfqq
))
3566 cfqq
->slice_dispatch
++;
3567 cfq_clear_cfqq_must_dispatch(cfqq
);
3570 * expire an async queue immediately if it has used up its slice. idle
3571 * queue always expire after 1 dispatch round.
3573 if (cfqd
->busy_queues
> 1 && ((!cfq_cfqq_sync(cfqq
) &&
3574 cfqq
->slice_dispatch
>= cfq_prio_to_maxrq(cfqd
, cfqq
)) ||
3575 cfq_class_idle(cfqq
))) {
3576 cfqq
->slice_end
= ktime_get_ns() + 1;
3577 cfq_slice_expired(cfqd
, 0);
3580 cfq_log_cfqq(cfqd
, cfqq
, "dispatched a request");
3585 * task holds one reference to the queue, dropped when task exits. each rq
3586 * in-flight on this queue also holds a reference, dropped when rq is freed.
3588 * Each cfq queue took a reference on the parent group. Drop it now.
3589 * queue lock must be held here.
3591 static void cfq_put_queue(struct cfq_queue
*cfqq
)
3593 struct cfq_data
*cfqd
= cfqq
->cfqd
;
3594 struct cfq_group
*cfqg
;
3596 BUG_ON(cfqq
->ref
<= 0);
3602 cfq_log_cfqq(cfqd
, cfqq
, "put_queue");
3603 BUG_ON(rb_first(&cfqq
->sort_list
));
3604 BUG_ON(cfqq
->allocated
[READ
] + cfqq
->allocated
[WRITE
]);
3607 if (unlikely(cfqd
->active_queue
== cfqq
)) {
3608 __cfq_slice_expired(cfqd
, cfqq
, 0);
3609 cfq_schedule_dispatch(cfqd
);
3612 BUG_ON(cfq_cfqq_on_rr(cfqq
));
3613 kmem_cache_free(cfq_pool
, cfqq
);
3617 static void cfq_put_cooperator(struct cfq_queue
*cfqq
)
3619 struct cfq_queue
*__cfqq
, *next
;
3622 * If this queue was scheduled to merge with another queue, be
3623 * sure to drop the reference taken on that queue (and others in
3624 * the merge chain). See cfq_setup_merge and cfq_merge_cfqqs.
3626 __cfqq
= cfqq
->new_cfqq
;
3628 if (__cfqq
== cfqq
) {
3629 WARN(1, "cfqq->new_cfqq loop detected\n");
3632 next
= __cfqq
->new_cfqq
;
3633 cfq_put_queue(__cfqq
);
3638 static void cfq_exit_cfqq(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
)
3640 if (unlikely(cfqq
== cfqd
->active_queue
)) {
3641 __cfq_slice_expired(cfqd
, cfqq
, 0);
3642 cfq_schedule_dispatch(cfqd
);
3645 cfq_put_cooperator(cfqq
);
3647 cfq_put_queue(cfqq
);
3650 static void cfq_init_icq(struct io_cq
*icq
)
3652 struct cfq_io_cq
*cic
= icq_to_cic(icq
);
3654 cic
->ttime
.last_end_request
= ktime_get_ns();
3657 static void cfq_exit_icq(struct io_cq
*icq
)
3659 struct cfq_io_cq
*cic
= icq_to_cic(icq
);
3660 struct cfq_data
*cfqd
= cic_to_cfqd(cic
);
3662 if (cic_to_cfqq(cic
, false)) {
3663 cfq_exit_cfqq(cfqd
, cic_to_cfqq(cic
, false));
3664 cic_set_cfqq(cic
, NULL
, false);
3667 if (cic_to_cfqq(cic
, true)) {
3668 cfq_exit_cfqq(cfqd
, cic_to_cfqq(cic
, true));
3669 cic_set_cfqq(cic
, NULL
, true);
3673 static void cfq_init_prio_data(struct cfq_queue
*cfqq
, struct cfq_io_cq
*cic
)
3675 struct task_struct
*tsk
= current
;
3678 if (!cfq_cfqq_prio_changed(cfqq
))
3681 ioprio_class
= IOPRIO_PRIO_CLASS(cic
->ioprio
);
3682 switch (ioprio_class
) {
3684 printk(KERN_ERR
"cfq: bad prio %x\n", ioprio_class
);
3685 case IOPRIO_CLASS_NONE
:
3687 * no prio set, inherit CPU scheduling settings
3689 cfqq
->ioprio
= task_nice_ioprio(tsk
);
3690 cfqq
->ioprio_class
= task_nice_ioclass(tsk
);
3692 case IOPRIO_CLASS_RT
:
3693 cfqq
->ioprio
= IOPRIO_PRIO_DATA(cic
->ioprio
);
3694 cfqq
->ioprio_class
= IOPRIO_CLASS_RT
;
3696 case IOPRIO_CLASS_BE
:
3697 cfqq
->ioprio
= IOPRIO_PRIO_DATA(cic
->ioprio
);
3698 cfqq
->ioprio_class
= IOPRIO_CLASS_BE
;
3700 case IOPRIO_CLASS_IDLE
:
3701 cfqq
->ioprio_class
= IOPRIO_CLASS_IDLE
;
3703 cfq_clear_cfqq_idle_window(cfqq
);
3708 * keep track of original prio settings in case we have to temporarily
3709 * elevate the priority of this queue
3711 cfqq
->org_ioprio
= cfqq
->ioprio
;
3712 cfqq
->org_ioprio_class
= cfqq
->ioprio_class
;
3713 cfq_clear_cfqq_prio_changed(cfqq
);
3716 static void check_ioprio_changed(struct cfq_io_cq
*cic
, struct bio
*bio
)
3718 int ioprio
= cic
->icq
.ioc
->ioprio
;
3719 struct cfq_data
*cfqd
= cic_to_cfqd(cic
);
3720 struct cfq_queue
*cfqq
;
3723 * Check whether ioprio has changed. The condition may trigger
3724 * spuriously on a newly created cic but there's no harm.
3726 if (unlikely(!cfqd
) || likely(cic
->ioprio
== ioprio
))
3729 cfqq
= cic_to_cfqq(cic
, false);
3731 cfq_put_queue(cfqq
);
3732 cfqq
= cfq_get_queue(cfqd
, BLK_RW_ASYNC
, cic
, bio
);
3733 cic_set_cfqq(cic
, cfqq
, false);
3736 cfqq
= cic_to_cfqq(cic
, true);
3738 cfq_mark_cfqq_prio_changed(cfqq
);
3740 cic
->ioprio
= ioprio
;
3743 static void cfq_init_cfqq(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
,
3744 pid_t pid
, bool is_sync
)
3746 RB_CLEAR_NODE(&cfqq
->rb_node
);
3747 RB_CLEAR_NODE(&cfqq
->p_node
);
3748 INIT_LIST_HEAD(&cfqq
->fifo
);
3753 cfq_mark_cfqq_prio_changed(cfqq
);
3756 if (!cfq_class_idle(cfqq
))
3757 cfq_mark_cfqq_idle_window(cfqq
);
3758 cfq_mark_cfqq_sync(cfqq
);
3763 #ifdef CONFIG_CFQ_GROUP_IOSCHED
3764 static void check_blkcg_changed(struct cfq_io_cq
*cic
, struct bio
*bio
)
3766 struct cfq_data
*cfqd
= cic_to_cfqd(cic
);
3767 struct cfq_queue
*cfqq
;
3771 serial_nr
= bio_blkcg(bio
)->css
.serial_nr
;
3775 * Check whether blkcg has changed. The condition may trigger
3776 * spuriously on a newly created cic but there's no harm.
3778 if (unlikely(!cfqd
) || likely(cic
->blkcg_serial_nr
== serial_nr
))
3782 * Drop reference to queues. New queues will be assigned in new
3783 * group upon arrival of fresh requests.
3785 cfqq
= cic_to_cfqq(cic
, false);
3787 cfq_log_cfqq(cfqd
, cfqq
, "changed cgroup");
3788 cic_set_cfqq(cic
, NULL
, false);
3789 cfq_put_queue(cfqq
);
3792 cfqq
= cic_to_cfqq(cic
, true);
3794 cfq_log_cfqq(cfqd
, cfqq
, "changed cgroup");
3795 cic_set_cfqq(cic
, NULL
, true);
3796 cfq_put_queue(cfqq
);
3799 cic
->blkcg_serial_nr
= serial_nr
;
3802 static inline void check_blkcg_changed(struct cfq_io_cq
*cic
, struct bio
*bio
)
3805 #endif /* CONFIG_CFQ_GROUP_IOSCHED */
3807 static struct cfq_queue
**
3808 cfq_async_queue_prio(struct cfq_group
*cfqg
, int ioprio_class
, int ioprio
)
3810 switch (ioprio_class
) {
3811 case IOPRIO_CLASS_RT
:
3812 return &cfqg
->async_cfqq
[0][ioprio
];
3813 case IOPRIO_CLASS_NONE
:
3814 ioprio
= IOPRIO_NORM
;
3816 case IOPRIO_CLASS_BE
:
3817 return &cfqg
->async_cfqq
[1][ioprio
];
3818 case IOPRIO_CLASS_IDLE
:
3819 return &cfqg
->async_idle_cfqq
;
3825 static struct cfq_queue
*
3826 cfq_get_queue(struct cfq_data
*cfqd
, bool is_sync
, struct cfq_io_cq
*cic
,
3829 int ioprio_class
= IOPRIO_PRIO_CLASS(cic
->ioprio
);
3830 int ioprio
= IOPRIO_PRIO_DATA(cic
->ioprio
);
3831 struct cfq_queue
**async_cfqq
= NULL
;
3832 struct cfq_queue
*cfqq
;
3833 struct cfq_group
*cfqg
;
3836 cfqg
= cfq_lookup_cfqg(cfqd
, bio_blkcg(bio
));
3838 cfqq
= &cfqd
->oom_cfqq
;
3843 if (!ioprio_valid(cic
->ioprio
)) {
3844 struct task_struct
*tsk
= current
;
3845 ioprio
= task_nice_ioprio(tsk
);
3846 ioprio_class
= task_nice_ioclass(tsk
);
3848 async_cfqq
= cfq_async_queue_prio(cfqg
, ioprio_class
, ioprio
);
3854 cfqq
= kmem_cache_alloc_node(cfq_pool
,
3855 GFP_NOWAIT
| __GFP_ZERO
| __GFP_NOWARN
,
3858 cfqq
= &cfqd
->oom_cfqq
;
3862 /* cfq_init_cfqq() assumes cfqq->ioprio_class is initialized. */
3863 cfqq
->ioprio_class
= IOPRIO_CLASS_NONE
;
3864 cfq_init_cfqq(cfqd
, cfqq
, current
->pid
, is_sync
);
3865 cfq_init_prio_data(cfqq
, cic
);
3866 cfq_link_cfqq_cfqg(cfqq
, cfqg
);
3867 cfq_log_cfqq(cfqd
, cfqq
, "alloced");
3870 /* a new async queue is created, pin and remember */
3881 __cfq_update_io_thinktime(struct cfq_ttime
*ttime
, u64 slice_idle
)
3883 u64 elapsed
= ktime_get_ns() - ttime
->last_end_request
;
3884 elapsed
= min(elapsed
, 2UL * slice_idle
);
3886 ttime
->ttime_samples
= (7*ttime
->ttime_samples
+ 256) / 8;
3887 ttime
->ttime_total
= div_u64(7*ttime
->ttime_total
+ 256*elapsed
, 8);
3888 ttime
->ttime_mean
= div64_ul(ttime
->ttime_total
+ 128,
3889 ttime
->ttime_samples
);
3893 cfq_update_io_thinktime(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
,
3894 struct cfq_io_cq
*cic
)
3896 if (cfq_cfqq_sync(cfqq
)) {
3897 __cfq_update_io_thinktime(&cic
->ttime
, cfqd
->cfq_slice_idle
);
3898 __cfq_update_io_thinktime(&cfqq
->service_tree
->ttime
,
3899 cfqd
->cfq_slice_idle
);
3901 #ifdef CONFIG_CFQ_GROUP_IOSCHED
3902 __cfq_update_io_thinktime(&cfqq
->cfqg
->ttime
, cfqd
->cfq_group_idle
);
3907 cfq_update_io_seektime(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
,
3911 sector_t n_sec
= blk_rq_sectors(rq
);
3912 if (cfqq
->last_request_pos
) {
3913 if (cfqq
->last_request_pos
< blk_rq_pos(rq
))
3914 sdist
= blk_rq_pos(rq
) - cfqq
->last_request_pos
;
3916 sdist
= cfqq
->last_request_pos
- blk_rq_pos(rq
);
3919 cfqq
->seek_history
<<= 1;
3920 if (blk_queue_nonrot(cfqd
->queue
))
3921 cfqq
->seek_history
|= (n_sec
< CFQQ_SECT_THR_NONROT
);
3923 cfqq
->seek_history
|= (sdist
> CFQQ_SEEK_THR
);
3926 static inline bool req_noidle(struct request
*req
)
3928 return req_op(req
) == REQ_OP_WRITE
&&
3929 (req
->cmd_flags
& (REQ_SYNC
| REQ_IDLE
)) == REQ_SYNC
;
3933 * Disable idle window if the process thinks too long or seeks so much that
3937 cfq_update_idle_window(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
,
3938 struct cfq_io_cq
*cic
)
3940 int old_idle
, enable_idle
;
3943 * Don't idle for async or idle io prio class
3945 if (!cfq_cfqq_sync(cfqq
) || cfq_class_idle(cfqq
))
3948 enable_idle
= old_idle
= cfq_cfqq_idle_window(cfqq
);
3950 if (cfqq
->queued
[0] + cfqq
->queued
[1] >= 4)
3951 cfq_mark_cfqq_deep(cfqq
);
3953 if (cfqq
->next_rq
&& req_noidle(cfqq
->next_rq
))
3955 else if (!atomic_read(&cic
->icq
.ioc
->active_ref
) ||
3956 !cfqd
->cfq_slice_idle
||
3957 (!cfq_cfqq_deep(cfqq
) && CFQQ_SEEKY(cfqq
)))
3959 else if (sample_valid(cic
->ttime
.ttime_samples
)) {
3960 if (cic
->ttime
.ttime_mean
> cfqd
->cfq_slice_idle
)
3966 if (old_idle
!= enable_idle
) {
3967 cfq_log_cfqq(cfqd
, cfqq
, "idle=%d", enable_idle
);
3969 cfq_mark_cfqq_idle_window(cfqq
);
3971 cfq_clear_cfqq_idle_window(cfqq
);
3976 * Check if new_cfqq should preempt the currently active queue. Return 0 for
3977 * no or if we aren't sure, a 1 will cause a preempt.
3980 cfq_should_preempt(struct cfq_data
*cfqd
, struct cfq_queue
*new_cfqq
,
3983 struct cfq_queue
*cfqq
;
3985 cfqq
= cfqd
->active_queue
;
3989 if (cfq_class_idle(new_cfqq
))
3992 if (cfq_class_idle(cfqq
))
3996 * Don't allow a non-RT request to preempt an ongoing RT cfqq timeslice.
3998 if (cfq_class_rt(cfqq
) && !cfq_class_rt(new_cfqq
))
4002 * if the new request is sync, but the currently running queue is
4003 * not, let the sync request have priority.
4005 if (rq_is_sync(rq
) && !cfq_cfqq_sync(cfqq
) && !cfq_cfqq_must_dispatch(cfqq
))
4009 * Treat ancestors of current cgroup the same way as current cgroup.
4010 * For anybody else we disallow preemption to guarantee service
4011 * fairness among cgroups.
4013 if (!cfqg_is_descendant(cfqq
->cfqg
, new_cfqq
->cfqg
))
4016 if (cfq_slice_used(cfqq
))
4020 * Allow an RT request to pre-empt an ongoing non-RT cfqq timeslice.
4022 if (cfq_class_rt(new_cfqq
) && !cfq_class_rt(cfqq
))
4025 WARN_ON_ONCE(cfqq
->ioprio_class
!= new_cfqq
->ioprio_class
);
4026 /* Allow preemption only if we are idling on sync-noidle tree */
4027 if (cfqd
->serving_wl_type
== SYNC_NOIDLE_WORKLOAD
&&
4028 cfqq_type(new_cfqq
) == SYNC_NOIDLE_WORKLOAD
&&
4029 RB_EMPTY_ROOT(&cfqq
->sort_list
))
4033 * So both queues are sync. Let the new request get disk time if
4034 * it's a metadata request and the current queue is doing regular IO.
4036 if ((rq
->cmd_flags
& REQ_PRIO
) && !cfqq
->prio_pending
)
4039 /* An idle queue should not be idle now for some reason */
4040 if (RB_EMPTY_ROOT(&cfqq
->sort_list
) && !cfq_should_idle(cfqd
, cfqq
))
4043 if (!cfqd
->active_cic
|| !cfq_cfqq_wait_request(cfqq
))
4047 * if this request is as-good as one we would expect from the
4048 * current cfqq, let it preempt
4050 if (cfq_rq_close(cfqd
, cfqq
, rq
))
4057 * cfqq preempts the active queue. if we allowed preempt with no slice left,
4058 * let it have half of its nominal slice.
4060 static void cfq_preempt_queue(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
)
4062 enum wl_type_t old_type
= cfqq_type(cfqd
->active_queue
);
4064 cfq_log_cfqq(cfqd
, cfqq
, "preempt");
4065 cfq_slice_expired(cfqd
, 1);
4068 * workload type is changed, don't save slice, otherwise preempt
4071 if (old_type
!= cfqq_type(cfqq
))
4072 cfqq
->cfqg
->saved_wl_slice
= 0;
4075 * Put the new queue at the front of the of the current list,
4076 * so we know that it will be selected next.
4078 BUG_ON(!cfq_cfqq_on_rr(cfqq
));
4080 cfq_service_tree_add(cfqd
, cfqq
, 1);
4082 cfqq
->slice_end
= 0;
4083 cfq_mark_cfqq_slice_new(cfqq
);
4087 * Called when a new fs request (rq) is added (to cfqq). Check if there's
4088 * something we should do about it
4091 cfq_rq_enqueued(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
,
4094 struct cfq_io_cq
*cic
= RQ_CIC(rq
);
4097 if (rq
->cmd_flags
& REQ_PRIO
)
4098 cfqq
->prio_pending
++;
4100 cfq_update_io_thinktime(cfqd
, cfqq
, cic
);
4101 cfq_update_io_seektime(cfqd
, cfqq
, rq
);
4102 cfq_update_idle_window(cfqd
, cfqq
, cic
);
4104 cfqq
->last_request_pos
= blk_rq_pos(rq
) + blk_rq_sectors(rq
);
4106 if (cfqq
== cfqd
->active_queue
) {
4108 * Remember that we saw a request from this process, but
4109 * don't start queuing just yet. Otherwise we risk seeing lots
4110 * of tiny requests, because we disrupt the normal plugging
4111 * and merging. If the request is already larger than a single
4112 * page, let it rip immediately. For that case we assume that
4113 * merging is already done. Ditto for a busy system that
4114 * has other work pending, don't risk delaying until the
4115 * idle timer unplug to continue working.
4117 if (cfq_cfqq_wait_request(cfqq
)) {
4118 if (blk_rq_bytes(rq
) > PAGE_SIZE
||
4119 cfqd
->busy_queues
> 1) {
4120 cfq_del_timer(cfqd
, cfqq
);
4121 cfq_clear_cfqq_wait_request(cfqq
);
4122 __blk_run_queue(cfqd
->queue
);
4124 cfqg_stats_update_idle_time(cfqq
->cfqg
);
4125 cfq_mark_cfqq_must_dispatch(cfqq
);
4128 } else if (cfq_should_preempt(cfqd
, cfqq
, rq
)) {
4130 * not the active queue - expire current slice if it is
4131 * idle and has expired it's mean thinktime or this new queue
4132 * has some old slice time left and is of higher priority or
4133 * this new queue is RT and the current one is BE
4135 cfq_preempt_queue(cfqd
, cfqq
);
4136 __blk_run_queue(cfqd
->queue
);
4140 static void cfq_insert_request(struct request_queue
*q
, struct request
*rq
)
4142 struct cfq_data
*cfqd
= q
->elevator
->elevator_data
;
4143 struct cfq_queue
*cfqq
= RQ_CFQQ(rq
);
4145 cfq_log_cfqq(cfqd
, cfqq
, "insert_request");
4146 cfq_init_prio_data(cfqq
, RQ_CIC(rq
));
4148 rq
->fifo_time
= ktime_get_ns() + cfqd
->cfq_fifo_expire
[rq_is_sync(rq
)];
4149 list_add_tail(&rq
->queuelist
, &cfqq
->fifo
);
4151 cfqg_stats_update_io_add(RQ_CFQG(rq
), cfqd
->serving_group
,
4153 cfq_rq_enqueued(cfqd
, cfqq
, rq
);
4157 * Update hw_tag based on peak queue depth over 50 samples under
4160 static void cfq_update_hw_tag(struct cfq_data
*cfqd
)
4162 struct cfq_queue
*cfqq
= cfqd
->active_queue
;
4164 if (cfqd
->rq_in_driver
> cfqd
->hw_tag_est_depth
)
4165 cfqd
->hw_tag_est_depth
= cfqd
->rq_in_driver
;
4167 if (cfqd
->hw_tag
== 1)
4170 if (cfqd
->rq_queued
<= CFQ_HW_QUEUE_MIN
&&
4171 cfqd
->rq_in_driver
<= CFQ_HW_QUEUE_MIN
)
4175 * If active queue hasn't enough requests and can idle, cfq might not
4176 * dispatch sufficient requests to hardware. Don't zero hw_tag in this
4179 if (cfqq
&& cfq_cfqq_idle_window(cfqq
) &&
4180 cfqq
->dispatched
+ cfqq
->queued
[0] + cfqq
->queued
[1] <
4181 CFQ_HW_QUEUE_MIN
&& cfqd
->rq_in_driver
< CFQ_HW_QUEUE_MIN
)
4184 if (cfqd
->hw_tag_samples
++ < 50)
4187 if (cfqd
->hw_tag_est_depth
>= CFQ_HW_QUEUE_MIN
)
4193 static bool cfq_should_wait_busy(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
)
4195 struct cfq_io_cq
*cic
= cfqd
->active_cic
;
4196 u64 now
= ktime_get_ns();
4198 /* If the queue already has requests, don't wait */
4199 if (!RB_EMPTY_ROOT(&cfqq
->sort_list
))
4202 /* If there are other queues in the group, don't wait */
4203 if (cfqq
->cfqg
->nr_cfqq
> 1)
4206 /* the only queue in the group, but think time is big */
4207 if (cfq_io_thinktime_big(cfqd
, &cfqq
->cfqg
->ttime
, true))
4210 if (cfq_slice_used(cfqq
))
4213 /* if slice left is less than think time, wait busy */
4214 if (cic
&& sample_valid(cic
->ttime
.ttime_samples
)
4215 && (cfqq
->slice_end
- now
< cic
->ttime
.ttime_mean
))
4219 * If think times is less than a jiffy than ttime_mean=0 and above
4220 * will not be true. It might happen that slice has not expired yet
4221 * but will expire soon (4-5 ns) during select_queue(). To cover the
4222 * case where think time is less than a jiffy, mark the queue wait
4223 * busy if only 1 jiffy is left in the slice.
4225 if (cfqq
->slice_end
- now
<= jiffies_to_nsecs(1))
4231 static void cfq_completed_request(struct request_queue
*q
, struct request
*rq
)
4233 struct cfq_queue
*cfqq
= RQ_CFQQ(rq
);
4234 struct cfq_data
*cfqd
= cfqq
->cfqd
;
4235 const int sync
= rq_is_sync(rq
);
4236 u64 now
= ktime_get_ns();
4238 cfq_log_cfqq(cfqd
, cfqq
, "complete rqnoidle %d", req_noidle(rq
));
4240 cfq_update_hw_tag(cfqd
);
4242 WARN_ON(!cfqd
->rq_in_driver
);
4243 WARN_ON(!cfqq
->dispatched
);
4244 cfqd
->rq_in_driver
--;
4246 (RQ_CFQG(rq
))->dispatched
--;
4247 cfqg_stats_update_completion(cfqq
->cfqg
, rq_start_time_ns(rq
),
4248 rq_io_start_time_ns(rq
), rq
->cmd_flags
);
4250 cfqd
->rq_in_flight
[cfq_cfqq_sync(cfqq
)]--;
4253 struct cfq_rb_root
*st
;
4255 RQ_CIC(rq
)->ttime
.last_end_request
= now
;
4257 if (cfq_cfqq_on_rr(cfqq
))
4258 st
= cfqq
->service_tree
;
4260 st
= st_for(cfqq
->cfqg
, cfqq_class(cfqq
),
4263 st
->ttime
.last_end_request
= now
;
4265 * We have to do this check in jiffies since start_time is in
4266 * jiffies and it is not trivial to convert to ns. If
4267 * cfq_fifo_expire[1] ever comes close to 1 jiffie, this test
4268 * will become problematic but so far we are fine (the default
4271 if (!time_after(rq
->start_time
+
4272 nsecs_to_jiffies(cfqd
->cfq_fifo_expire
[1]),
4274 cfqd
->last_delayed_sync
= now
;
4277 #ifdef CONFIG_CFQ_GROUP_IOSCHED
4278 cfqq
->cfqg
->ttime
.last_end_request
= now
;
4282 * If this is the active queue, check if it needs to be expired,
4283 * or if we want to idle in case it has no pending requests.
4285 if (cfqd
->active_queue
== cfqq
) {
4286 const bool cfqq_empty
= RB_EMPTY_ROOT(&cfqq
->sort_list
);
4288 if (cfq_cfqq_slice_new(cfqq
)) {
4289 cfq_set_prio_slice(cfqd
, cfqq
);
4290 cfq_clear_cfqq_slice_new(cfqq
);
4294 * Should we wait for next request to come in before we expire
4297 if (cfq_should_wait_busy(cfqd
, cfqq
)) {
4298 u64 extend_sl
= cfqd
->cfq_slice_idle
;
4299 if (!cfqd
->cfq_slice_idle
)
4300 extend_sl
= cfqd
->cfq_group_idle
;
4301 cfqq
->slice_end
= now
+ extend_sl
;
4302 cfq_mark_cfqq_wait_busy(cfqq
);
4303 cfq_log_cfqq(cfqd
, cfqq
, "will busy wait");
4307 * Idling is not enabled on:
4309 * - idle-priority queues
4311 * - queues with still some requests queued
4312 * - when there is a close cooperator
4314 if (cfq_slice_used(cfqq
) || cfq_class_idle(cfqq
))
4315 cfq_slice_expired(cfqd
, 1);
4316 else if (sync
&& cfqq_empty
&&
4317 !cfq_close_cooperator(cfqd
, cfqq
)) {
4318 cfq_arm_slice_timer(cfqd
);
4322 if (!cfqd
->rq_in_driver
)
4323 cfq_schedule_dispatch(cfqd
);
4326 static void cfqq_boost_on_prio(struct cfq_queue
*cfqq
, unsigned int op
)
4329 * If REQ_PRIO is set, boost class and prio level, if it's below
4330 * BE/NORM. If prio is not set, restore the potentially boosted
4333 if (!(op
& REQ_PRIO
)) {
4334 cfqq
->ioprio_class
= cfqq
->org_ioprio_class
;
4335 cfqq
->ioprio
= cfqq
->org_ioprio
;
4337 if (cfq_class_idle(cfqq
))
4338 cfqq
->ioprio_class
= IOPRIO_CLASS_BE
;
4339 if (cfqq
->ioprio
> IOPRIO_NORM
)
4340 cfqq
->ioprio
= IOPRIO_NORM
;
4344 static inline int __cfq_may_queue(struct cfq_queue
*cfqq
)
4346 if (cfq_cfqq_wait_request(cfqq
) && !cfq_cfqq_must_alloc_slice(cfqq
)) {
4347 cfq_mark_cfqq_must_alloc_slice(cfqq
);
4348 return ELV_MQUEUE_MUST
;
4351 return ELV_MQUEUE_MAY
;
4354 static int cfq_may_queue(struct request_queue
*q
, unsigned int op
)
4356 struct cfq_data
*cfqd
= q
->elevator
->elevator_data
;
4357 struct task_struct
*tsk
= current
;
4358 struct cfq_io_cq
*cic
;
4359 struct cfq_queue
*cfqq
;
4362 * don't force setup of a queue from here, as a call to may_queue
4363 * does not necessarily imply that a request actually will be queued.
4364 * so just lookup a possibly existing queue, or return 'may queue'
4367 cic
= cfq_cic_lookup(cfqd
, tsk
->io_context
);
4369 return ELV_MQUEUE_MAY
;
4371 cfqq
= cic_to_cfqq(cic
, op_is_sync(op
));
4373 cfq_init_prio_data(cfqq
, cic
);
4374 cfqq_boost_on_prio(cfqq
, op
);
4376 return __cfq_may_queue(cfqq
);
4379 return ELV_MQUEUE_MAY
;
4383 * queue lock held here
4385 static void cfq_put_request(struct request
*rq
)
4387 struct cfq_queue
*cfqq
= RQ_CFQQ(rq
);
4390 const int rw
= rq_data_dir(rq
);
4392 BUG_ON(!cfqq
->allocated
[rw
]);
4393 cfqq
->allocated
[rw
]--;
4395 /* Put down rq reference on cfqg */
4396 cfqg_put(RQ_CFQG(rq
));
4397 rq
->elv
.priv
[0] = NULL
;
4398 rq
->elv
.priv
[1] = NULL
;
4400 cfq_put_queue(cfqq
);
4404 static struct cfq_queue
*
4405 cfq_merge_cfqqs(struct cfq_data
*cfqd
, struct cfq_io_cq
*cic
,
4406 struct cfq_queue
*cfqq
)
4408 cfq_log_cfqq(cfqd
, cfqq
, "merging with queue %p", cfqq
->new_cfqq
);
4409 cic_set_cfqq(cic
, cfqq
->new_cfqq
, 1);
4410 cfq_mark_cfqq_coop(cfqq
->new_cfqq
);
4411 cfq_put_queue(cfqq
);
4412 return cic_to_cfqq(cic
, 1);
4416 * Returns NULL if a new cfqq should be allocated, or the old cfqq if this
4417 * was the last process referring to said cfqq.
4419 static struct cfq_queue
*
4420 split_cfqq(struct cfq_io_cq
*cic
, struct cfq_queue
*cfqq
)
4422 if (cfqq_process_refs(cfqq
) == 1) {
4423 cfqq
->pid
= current
->pid
;
4424 cfq_clear_cfqq_coop(cfqq
);
4425 cfq_clear_cfqq_split_coop(cfqq
);
4429 cic_set_cfqq(cic
, NULL
, 1);
4431 cfq_put_cooperator(cfqq
);
4433 cfq_put_queue(cfqq
);
4437 * Allocate cfq data structures associated with this request.
4440 cfq_set_request(struct request_queue
*q
, struct request
*rq
, struct bio
*bio
,
4443 struct cfq_data
*cfqd
= q
->elevator
->elevator_data
;
4444 struct cfq_io_cq
*cic
= icq_to_cic(rq
->elv
.icq
);
4445 const int rw
= rq_data_dir(rq
);
4446 const bool is_sync
= rq_is_sync(rq
);
4447 struct cfq_queue
*cfqq
;
4449 spin_lock_irq(q
->queue_lock
);
4451 check_ioprio_changed(cic
, bio
);
4452 check_blkcg_changed(cic
, bio
);
4454 cfqq
= cic_to_cfqq(cic
, is_sync
);
4455 if (!cfqq
|| cfqq
== &cfqd
->oom_cfqq
) {
4457 cfq_put_queue(cfqq
);
4458 cfqq
= cfq_get_queue(cfqd
, is_sync
, cic
, bio
);
4459 cic_set_cfqq(cic
, cfqq
, is_sync
);
4462 * If the queue was seeky for too long, break it apart.
4464 if (cfq_cfqq_coop(cfqq
) && cfq_cfqq_split_coop(cfqq
)) {
4465 cfq_log_cfqq(cfqd
, cfqq
, "breaking apart cfqq");
4466 cfqq
= split_cfqq(cic
, cfqq
);
4472 * Check to see if this queue is scheduled to merge with
4473 * another, closely cooperating queue. The merging of
4474 * queues happens here as it must be done in process context.
4475 * The reference on new_cfqq was taken in merge_cfqqs.
4478 cfqq
= cfq_merge_cfqqs(cfqd
, cic
, cfqq
);
4481 cfqq
->allocated
[rw
]++;
4484 cfqg_get(cfqq
->cfqg
);
4485 rq
->elv
.priv
[0] = cfqq
;
4486 rq
->elv
.priv
[1] = cfqq
->cfqg
;
4487 spin_unlock_irq(q
->queue_lock
);
4492 static void cfq_kick_queue(struct work_struct
*work
)
4494 struct cfq_data
*cfqd
=
4495 container_of(work
, struct cfq_data
, unplug_work
);
4496 struct request_queue
*q
= cfqd
->queue
;
4498 spin_lock_irq(q
->queue_lock
);
4499 __blk_run_queue(cfqd
->queue
);
4500 spin_unlock_irq(q
->queue_lock
);
4504 * Timer running if the active_queue is currently idling inside its time slice
4506 static enum hrtimer_restart
cfq_idle_slice_timer(struct hrtimer
*timer
)
4508 struct cfq_data
*cfqd
= container_of(timer
, struct cfq_data
,
4510 struct cfq_queue
*cfqq
;
4511 unsigned long flags
;
4514 cfq_log(cfqd
, "idle timer fired");
4516 spin_lock_irqsave(cfqd
->queue
->queue_lock
, flags
);
4518 cfqq
= cfqd
->active_queue
;
4523 * We saw a request before the queue expired, let it through
4525 if (cfq_cfqq_must_dispatch(cfqq
))
4531 if (cfq_slice_used(cfqq
))
4535 * only expire and reinvoke request handler, if there are
4536 * other queues with pending requests
4538 if (!cfqd
->busy_queues
)
4542 * not expired and it has a request pending, let it dispatch
4544 if (!RB_EMPTY_ROOT(&cfqq
->sort_list
))
4548 * Queue depth flag is reset only when the idle didn't succeed
4550 cfq_clear_cfqq_deep(cfqq
);
4553 cfq_slice_expired(cfqd
, timed_out
);
4555 cfq_schedule_dispatch(cfqd
);
4557 spin_unlock_irqrestore(cfqd
->queue
->queue_lock
, flags
);
4558 return HRTIMER_NORESTART
;
4561 static void cfq_shutdown_timer_wq(struct cfq_data
*cfqd
)
4563 hrtimer_cancel(&cfqd
->idle_slice_timer
);
4564 cancel_work_sync(&cfqd
->unplug_work
);
4567 static void cfq_exit_queue(struct elevator_queue
*e
)
4569 struct cfq_data
*cfqd
= e
->elevator_data
;
4570 struct request_queue
*q
= cfqd
->queue
;
4572 cfq_shutdown_timer_wq(cfqd
);
4574 spin_lock_irq(q
->queue_lock
);
4576 if (cfqd
->active_queue
)
4577 __cfq_slice_expired(cfqd
, cfqd
->active_queue
, 0);
4579 spin_unlock_irq(q
->queue_lock
);
4581 cfq_shutdown_timer_wq(cfqd
);
4583 #ifdef CONFIG_CFQ_GROUP_IOSCHED
4584 blkcg_deactivate_policy(q
, &blkcg_policy_cfq
);
4586 kfree(cfqd
->root_group
);
4591 static int cfq_init_queue(struct request_queue
*q
, struct elevator_type
*e
)
4593 struct cfq_data
*cfqd
;
4594 struct blkcg_gq
*blkg __maybe_unused
;
4596 struct elevator_queue
*eq
;
4598 eq
= elevator_alloc(q
, e
);
4602 cfqd
= kzalloc_node(sizeof(*cfqd
), GFP_KERNEL
, q
->node
);
4604 kobject_put(&eq
->kobj
);
4607 eq
->elevator_data
= cfqd
;
4610 spin_lock_irq(q
->queue_lock
);
4612 spin_unlock_irq(q
->queue_lock
);
4614 /* Init root service tree */
4615 cfqd
->grp_service_tree
= CFQ_RB_ROOT
;
4617 /* Init root group and prefer root group over other groups by default */
4618 #ifdef CONFIG_CFQ_GROUP_IOSCHED
4619 ret
= blkcg_activate_policy(q
, &blkcg_policy_cfq
);
4623 cfqd
->root_group
= blkg_to_cfqg(q
->root_blkg
);
4626 cfqd
->root_group
= kzalloc_node(sizeof(*cfqd
->root_group
),
4627 GFP_KERNEL
, cfqd
->queue
->node
);
4628 if (!cfqd
->root_group
)
4631 cfq_init_cfqg_base(cfqd
->root_group
);
4632 cfqd
->root_group
->weight
= 2 * CFQ_WEIGHT_LEGACY_DFL
;
4633 cfqd
->root_group
->leaf_weight
= 2 * CFQ_WEIGHT_LEGACY_DFL
;
4637 * Not strictly needed (since RB_ROOT just clears the node and we
4638 * zeroed cfqd on alloc), but better be safe in case someone decides
4639 * to add magic to the rb code
4641 for (i
= 0; i
< CFQ_PRIO_LISTS
; i
++)
4642 cfqd
->prio_trees
[i
] = RB_ROOT
;
4645 * Our fallback cfqq if cfq_get_queue() runs into OOM issues.
4646 * Grab a permanent reference to it, so that the normal code flow
4647 * will not attempt to free it. oom_cfqq is linked to root_group
4648 * but shouldn't hold a reference as it'll never be unlinked. Lose
4649 * the reference from linking right away.
4651 cfq_init_cfqq(cfqd
, &cfqd
->oom_cfqq
, 1, 0);
4652 cfqd
->oom_cfqq
.ref
++;
4654 spin_lock_irq(q
->queue_lock
);
4655 cfq_link_cfqq_cfqg(&cfqd
->oom_cfqq
, cfqd
->root_group
);
4656 cfqg_put(cfqd
->root_group
);
4657 spin_unlock_irq(q
->queue_lock
);
4659 hrtimer_init(&cfqd
->idle_slice_timer
, CLOCK_MONOTONIC
,
4661 cfqd
->idle_slice_timer
.function
= cfq_idle_slice_timer
;
4663 INIT_WORK(&cfqd
->unplug_work
, cfq_kick_queue
);
4665 cfqd
->cfq_quantum
= cfq_quantum
;
4666 cfqd
->cfq_fifo_expire
[0] = cfq_fifo_expire
[0];
4667 cfqd
->cfq_fifo_expire
[1] = cfq_fifo_expire
[1];
4668 cfqd
->cfq_back_max
= cfq_back_max
;
4669 cfqd
->cfq_back_penalty
= cfq_back_penalty
;
4670 cfqd
->cfq_slice
[0] = cfq_slice_async
;
4671 cfqd
->cfq_slice
[1] = cfq_slice_sync
;
4672 cfqd
->cfq_target_latency
= cfq_target_latency
;
4673 cfqd
->cfq_slice_async_rq
= cfq_slice_async_rq
;
4674 cfqd
->cfq_slice_idle
= cfq_slice_idle
;
4675 cfqd
->cfq_group_idle
= cfq_group_idle
;
4676 cfqd
->cfq_latency
= 1;
4679 * we optimistically start assuming sync ops weren't delayed in last
4680 * second, in order to have larger depth for async operations.
4682 cfqd
->last_delayed_sync
= ktime_get_ns() - NSEC_PER_SEC
;
4687 kobject_put(&eq
->kobj
);
4691 static void cfq_registered_queue(struct request_queue
*q
)
4693 struct elevator_queue
*e
= q
->elevator
;
4694 struct cfq_data
*cfqd
= e
->elevator_data
;
4697 * Default to IOPS mode with no idling for SSDs
4699 if (blk_queue_nonrot(q
))
4700 cfqd
->cfq_slice_idle
= 0;
4701 wbt_disable_default(q
);
4705 * sysfs parts below -->
4708 cfq_var_show(unsigned int var
, char *page
)
4710 return sprintf(page
, "%u\n", var
);
4714 cfq_var_store(unsigned int *var
, const char *page
, size_t count
)
4716 char *p
= (char *) page
;
4718 *var
= simple_strtoul(p
, &p
, 10);
4722 #define SHOW_FUNCTION(__FUNC, __VAR, __CONV) \
4723 static ssize_t __FUNC(struct elevator_queue *e, char *page) \
4725 struct cfq_data *cfqd = e->elevator_data; \
4726 u64 __data = __VAR; \
4728 __data = div_u64(__data, NSEC_PER_MSEC); \
4729 return cfq_var_show(__data, (page)); \
4731 SHOW_FUNCTION(cfq_quantum_show
, cfqd
->cfq_quantum
, 0);
4732 SHOW_FUNCTION(cfq_fifo_expire_sync_show
, cfqd
->cfq_fifo_expire
[1], 1);
4733 SHOW_FUNCTION(cfq_fifo_expire_async_show
, cfqd
->cfq_fifo_expire
[0], 1);
4734 SHOW_FUNCTION(cfq_back_seek_max_show
, cfqd
->cfq_back_max
, 0);
4735 SHOW_FUNCTION(cfq_back_seek_penalty_show
, cfqd
->cfq_back_penalty
, 0);
4736 SHOW_FUNCTION(cfq_slice_idle_show
, cfqd
->cfq_slice_idle
, 1);
4737 SHOW_FUNCTION(cfq_group_idle_show
, cfqd
->cfq_group_idle
, 1);
4738 SHOW_FUNCTION(cfq_slice_sync_show
, cfqd
->cfq_slice
[1], 1);
4739 SHOW_FUNCTION(cfq_slice_async_show
, cfqd
->cfq_slice
[0], 1);
4740 SHOW_FUNCTION(cfq_slice_async_rq_show
, cfqd
->cfq_slice_async_rq
, 0);
4741 SHOW_FUNCTION(cfq_low_latency_show
, cfqd
->cfq_latency
, 0);
4742 SHOW_FUNCTION(cfq_target_latency_show
, cfqd
->cfq_target_latency
, 1);
4743 #undef SHOW_FUNCTION
4745 #define USEC_SHOW_FUNCTION(__FUNC, __VAR) \
4746 static ssize_t __FUNC(struct elevator_queue *e, char *page) \
4748 struct cfq_data *cfqd = e->elevator_data; \
4749 u64 __data = __VAR; \
4750 __data = div_u64(__data, NSEC_PER_USEC); \
4751 return cfq_var_show(__data, (page)); \
4753 USEC_SHOW_FUNCTION(cfq_slice_idle_us_show
, cfqd
->cfq_slice_idle
);
4754 USEC_SHOW_FUNCTION(cfq_group_idle_us_show
, cfqd
->cfq_group_idle
);
4755 USEC_SHOW_FUNCTION(cfq_slice_sync_us_show
, cfqd
->cfq_slice
[1]);
4756 USEC_SHOW_FUNCTION(cfq_slice_async_us_show
, cfqd
->cfq_slice
[0]);
4757 USEC_SHOW_FUNCTION(cfq_target_latency_us_show
, cfqd
->cfq_target_latency
);
4758 #undef USEC_SHOW_FUNCTION
4760 #define STORE_FUNCTION(__FUNC, __PTR, MIN, MAX, __CONV) \
4761 static ssize_t __FUNC(struct elevator_queue *e, const char *page, size_t count) \
4763 struct cfq_data *cfqd = e->elevator_data; \
4764 unsigned int __data; \
4765 int ret = cfq_var_store(&__data, (page), count); \
4766 if (__data < (MIN)) \
4768 else if (__data > (MAX)) \
4771 *(__PTR) = (u64)__data * NSEC_PER_MSEC; \
4773 *(__PTR) = __data; \
4776 STORE_FUNCTION(cfq_quantum_store
, &cfqd
->cfq_quantum
, 1, UINT_MAX
, 0);
4777 STORE_FUNCTION(cfq_fifo_expire_sync_store
, &cfqd
->cfq_fifo_expire
[1], 1,
4779 STORE_FUNCTION(cfq_fifo_expire_async_store
, &cfqd
->cfq_fifo_expire
[0], 1,
4781 STORE_FUNCTION(cfq_back_seek_max_store
, &cfqd
->cfq_back_max
, 0, UINT_MAX
, 0);
4782 STORE_FUNCTION(cfq_back_seek_penalty_store
, &cfqd
->cfq_back_penalty
, 1,
4784 STORE_FUNCTION(cfq_slice_idle_store
, &cfqd
->cfq_slice_idle
, 0, UINT_MAX
, 1);
4785 STORE_FUNCTION(cfq_group_idle_store
, &cfqd
->cfq_group_idle
, 0, UINT_MAX
, 1);
4786 STORE_FUNCTION(cfq_slice_sync_store
, &cfqd
->cfq_slice
[1], 1, UINT_MAX
, 1);
4787 STORE_FUNCTION(cfq_slice_async_store
, &cfqd
->cfq_slice
[0], 1, UINT_MAX
, 1);
4788 STORE_FUNCTION(cfq_slice_async_rq_store
, &cfqd
->cfq_slice_async_rq
, 1,
4790 STORE_FUNCTION(cfq_low_latency_store
, &cfqd
->cfq_latency
, 0, 1, 0);
4791 STORE_FUNCTION(cfq_target_latency_store
, &cfqd
->cfq_target_latency
, 1, UINT_MAX
, 1);
4792 #undef STORE_FUNCTION
4794 #define USEC_STORE_FUNCTION(__FUNC, __PTR, MIN, MAX) \
4795 static ssize_t __FUNC(struct elevator_queue *e, const char *page, size_t count) \
4797 struct cfq_data *cfqd = e->elevator_data; \
4798 unsigned int __data; \
4799 int ret = cfq_var_store(&__data, (page), count); \
4800 if (__data < (MIN)) \
4802 else if (__data > (MAX)) \
4804 *(__PTR) = (u64)__data * NSEC_PER_USEC; \
4807 USEC_STORE_FUNCTION(cfq_slice_idle_us_store
, &cfqd
->cfq_slice_idle
, 0, UINT_MAX
);
4808 USEC_STORE_FUNCTION(cfq_group_idle_us_store
, &cfqd
->cfq_group_idle
, 0, UINT_MAX
);
4809 USEC_STORE_FUNCTION(cfq_slice_sync_us_store
, &cfqd
->cfq_slice
[1], 1, UINT_MAX
);
4810 USEC_STORE_FUNCTION(cfq_slice_async_us_store
, &cfqd
->cfq_slice
[0], 1, UINT_MAX
);
4811 USEC_STORE_FUNCTION(cfq_target_latency_us_store
, &cfqd
->cfq_target_latency
, 1, UINT_MAX
);
4812 #undef USEC_STORE_FUNCTION
4814 #define CFQ_ATTR(name) \
4815 __ATTR(name, S_IRUGO|S_IWUSR, cfq_##name##_show, cfq_##name##_store)
4817 static struct elv_fs_entry cfq_attrs
[] = {
4819 CFQ_ATTR(fifo_expire_sync
),
4820 CFQ_ATTR(fifo_expire_async
),
4821 CFQ_ATTR(back_seek_max
),
4822 CFQ_ATTR(back_seek_penalty
),
4823 CFQ_ATTR(slice_sync
),
4824 CFQ_ATTR(slice_sync_us
),
4825 CFQ_ATTR(slice_async
),
4826 CFQ_ATTR(slice_async_us
),
4827 CFQ_ATTR(slice_async_rq
),
4828 CFQ_ATTR(slice_idle
),
4829 CFQ_ATTR(slice_idle_us
),
4830 CFQ_ATTR(group_idle
),
4831 CFQ_ATTR(group_idle_us
),
4832 CFQ_ATTR(low_latency
),
4833 CFQ_ATTR(target_latency
),
4834 CFQ_ATTR(target_latency_us
),
4838 static struct elevator_type iosched_cfq
= {
4840 .elevator_merge_fn
= cfq_merge
,
4841 .elevator_merged_fn
= cfq_merged_request
,
4842 .elevator_merge_req_fn
= cfq_merged_requests
,
4843 .elevator_allow_bio_merge_fn
= cfq_allow_bio_merge
,
4844 .elevator_allow_rq_merge_fn
= cfq_allow_rq_merge
,
4845 .elevator_bio_merged_fn
= cfq_bio_merged
,
4846 .elevator_dispatch_fn
= cfq_dispatch_requests
,
4847 .elevator_add_req_fn
= cfq_insert_request
,
4848 .elevator_activate_req_fn
= cfq_activate_request
,
4849 .elevator_deactivate_req_fn
= cfq_deactivate_request
,
4850 .elevator_completed_req_fn
= cfq_completed_request
,
4851 .elevator_former_req_fn
= elv_rb_former_request
,
4852 .elevator_latter_req_fn
= elv_rb_latter_request
,
4853 .elevator_init_icq_fn
= cfq_init_icq
,
4854 .elevator_exit_icq_fn
= cfq_exit_icq
,
4855 .elevator_set_req_fn
= cfq_set_request
,
4856 .elevator_put_req_fn
= cfq_put_request
,
4857 .elevator_may_queue_fn
= cfq_may_queue
,
4858 .elevator_init_fn
= cfq_init_queue
,
4859 .elevator_exit_fn
= cfq_exit_queue
,
4860 .elevator_registered_fn
= cfq_registered_queue
,
4862 .icq_size
= sizeof(struct cfq_io_cq
),
4863 .icq_align
= __alignof__(struct cfq_io_cq
),
4864 .elevator_attrs
= cfq_attrs
,
4865 .elevator_name
= "cfq",
4866 .elevator_owner
= THIS_MODULE
,
4869 #ifdef CONFIG_CFQ_GROUP_IOSCHED
4870 static struct blkcg_policy blkcg_policy_cfq
= {
4871 .dfl_cftypes
= cfq_blkcg_files
,
4872 .legacy_cftypes
= cfq_blkcg_legacy_files
,
4874 .cpd_alloc_fn
= cfq_cpd_alloc
,
4875 .cpd_init_fn
= cfq_cpd_init
,
4876 .cpd_free_fn
= cfq_cpd_free
,
4877 .cpd_bind_fn
= cfq_cpd_bind
,
4879 .pd_alloc_fn
= cfq_pd_alloc
,
4880 .pd_init_fn
= cfq_pd_init
,
4881 .pd_offline_fn
= cfq_pd_offline
,
4882 .pd_free_fn
= cfq_pd_free
,
4883 .pd_reset_stats_fn
= cfq_pd_reset_stats
,
4887 static int __init
cfq_init(void)
4891 #ifdef CONFIG_CFQ_GROUP_IOSCHED
4892 ret
= blkcg_policy_register(&blkcg_policy_cfq
);
4900 cfq_pool
= KMEM_CACHE(cfq_queue
, 0);
4904 ret
= elv_register(&iosched_cfq
);
4911 kmem_cache_destroy(cfq_pool
);
4913 #ifdef CONFIG_CFQ_GROUP_IOSCHED
4914 blkcg_policy_unregister(&blkcg_policy_cfq
);
4919 static void __exit
cfq_exit(void)
4921 #ifdef CONFIG_CFQ_GROUP_IOSCHED
4922 blkcg_policy_unregister(&blkcg_policy_cfq
);
4924 elv_unregister(&iosched_cfq
);
4925 kmem_cache_destroy(cfq_pool
);
4928 module_init(cfq_init
);
4929 module_exit(cfq_exit
);
4931 MODULE_AUTHOR("Jens Axboe");
4932 MODULE_LICENSE("GPL");
4933 MODULE_DESCRIPTION("Completely Fair Queueing IO scheduler");