1 #include <linux/kernel.h>
2 #include <linux/errno.h>
4 #include <linux/spinlock.h>
7 #include <linux/memremap.h>
8 #include <linux/pagemap.h>
9 #include <linux/rmap.h>
10 #include <linux/swap.h>
11 #include <linux/swapops.h>
13 #include <linux/sched/signal.h>
14 #include <linux/rwsem.h>
15 #include <linux/hugetlb.h>
17 #include <asm/mmu_context.h>
18 #include <asm/pgtable.h>
19 #include <asm/tlbflush.h>
23 static struct page
*no_page_table(struct vm_area_struct
*vma
,
27 * When core dumping an enormous anonymous area that nobody
28 * has touched so far, we don't want to allocate unnecessary pages or
29 * page tables. Return error instead of NULL to skip handle_mm_fault,
30 * then get_dump_page() will return NULL to leave a hole in the dump.
31 * But we can only make this optimization where a hole would surely
32 * be zero-filled if handle_mm_fault() actually did handle it.
34 if ((flags
& FOLL_DUMP
) && (!vma
->vm_ops
|| !vma
->vm_ops
->fault
))
35 return ERR_PTR(-EFAULT
);
39 static int follow_pfn_pte(struct vm_area_struct
*vma
, unsigned long address
,
40 pte_t
*pte
, unsigned int flags
)
42 /* No page to get reference */
46 if (flags
& FOLL_TOUCH
) {
49 if (flags
& FOLL_WRITE
)
50 entry
= pte_mkdirty(entry
);
51 entry
= pte_mkyoung(entry
);
53 if (!pte_same(*pte
, entry
)) {
54 set_pte_at(vma
->vm_mm
, address
, pte
, entry
);
55 update_mmu_cache(vma
, address
, pte
);
59 /* Proper page table entry exists, but no corresponding struct page */
64 * FOLL_FORCE can write to even unwritable pte's, but only
65 * after we've gone through a COW cycle and they are dirty.
67 static inline bool can_follow_write_pte(pte_t pte
, unsigned int flags
)
69 return pte_write(pte
) ||
70 ((flags
& FOLL_FORCE
) && (flags
& FOLL_COW
) && pte_dirty(pte
));
73 static struct page
*follow_page_pte(struct vm_area_struct
*vma
,
74 unsigned long address
, pmd_t
*pmd
, unsigned int flags
)
76 struct mm_struct
*mm
= vma
->vm_mm
;
77 struct dev_pagemap
*pgmap
= NULL
;
83 if (unlikely(pmd_bad(*pmd
)))
84 return no_page_table(vma
, flags
);
86 ptep
= pte_offset_map_lock(mm
, pmd
, address
, &ptl
);
88 if (!pte_present(pte
)) {
91 * KSM's break_ksm() relies upon recognizing a ksm page
92 * even while it is being migrated, so for that case we
93 * need migration_entry_wait().
95 if (likely(!(flags
& FOLL_MIGRATION
)))
99 entry
= pte_to_swp_entry(pte
);
100 if (!is_migration_entry(entry
))
102 pte_unmap_unlock(ptep
, ptl
);
103 migration_entry_wait(mm
, pmd
, address
);
106 if ((flags
& FOLL_NUMA
) && pte_protnone(pte
))
108 if ((flags
& FOLL_WRITE
) && !can_follow_write_pte(pte
, flags
)) {
109 pte_unmap_unlock(ptep
, ptl
);
113 page
= vm_normal_page(vma
, address
, pte
);
114 if (!page
&& pte_devmap(pte
) && (flags
& FOLL_GET
)) {
116 * Only return device mapping pages in the FOLL_GET case since
117 * they are only valid while holding the pgmap reference.
119 pgmap
= get_dev_pagemap(pte_pfn(pte
), NULL
);
121 page
= pte_page(pte
);
124 } else if (unlikely(!page
)) {
125 if (flags
& FOLL_DUMP
) {
126 /* Avoid special (like zero) pages in core dumps */
127 page
= ERR_PTR(-EFAULT
);
131 if (is_zero_pfn(pte_pfn(pte
))) {
132 page
= pte_page(pte
);
136 ret
= follow_pfn_pte(vma
, address
, ptep
, flags
);
142 if (flags
& FOLL_SPLIT
&& PageTransCompound(page
)) {
145 pte_unmap_unlock(ptep
, ptl
);
147 ret
= split_huge_page(page
);
155 if (flags
& FOLL_GET
) {
158 /* drop the pgmap reference now that we hold the page */
160 put_dev_pagemap(pgmap
);
164 if (flags
& FOLL_TOUCH
) {
165 if ((flags
& FOLL_WRITE
) &&
166 !pte_dirty(pte
) && !PageDirty(page
))
167 set_page_dirty(page
);
169 * pte_mkyoung() would be more correct here, but atomic care
170 * is needed to avoid losing the dirty bit: it is easier to use
171 * mark_page_accessed().
173 mark_page_accessed(page
);
175 if ((flags
& FOLL_MLOCK
) && (vma
->vm_flags
& VM_LOCKED
)) {
176 /* Do not mlock pte-mapped THP */
177 if (PageTransCompound(page
))
181 * The preliminary mapping check is mainly to avoid the
182 * pointless overhead of lock_page on the ZERO_PAGE
183 * which might bounce very badly if there is contention.
185 * If the page is already locked, we don't need to
186 * handle it now - vmscan will handle it later if and
187 * when it attempts to reclaim the page.
189 if (page
->mapping
&& trylock_page(page
)) {
190 lru_add_drain(); /* push cached pages to LRU */
192 * Because we lock page here, and migration is
193 * blocked by the pte's page reference, and we
194 * know the page is still mapped, we don't even
195 * need to check for file-cache page truncation.
197 mlock_vma_page(page
);
202 pte_unmap_unlock(ptep
, ptl
);
205 pte_unmap_unlock(ptep
, ptl
);
208 return no_page_table(vma
, flags
);
212 * follow_page_mask - look up a page descriptor from a user-virtual address
213 * @vma: vm_area_struct mapping @address
214 * @address: virtual address to look up
215 * @flags: flags modifying lookup behaviour
216 * @page_mask: on output, *page_mask is set according to the size of the page
218 * @flags can have FOLL_ flags set, defined in <linux/mm.h>
220 * Returns the mapped (struct page *), %NULL if no mapping exists, or
221 * an error pointer if there is a mapping to something not represented
222 * by a page descriptor (see also vm_normal_page()).
224 struct page
*follow_page_mask(struct vm_area_struct
*vma
,
225 unsigned long address
, unsigned int flags
,
226 unsigned int *page_mask
)
234 struct mm_struct
*mm
= vma
->vm_mm
;
238 page
= follow_huge_addr(mm
, address
, flags
& FOLL_WRITE
);
240 BUG_ON(flags
& FOLL_GET
);
244 pgd
= pgd_offset(mm
, address
);
245 if (pgd_none(*pgd
) || unlikely(pgd_bad(*pgd
)))
246 return no_page_table(vma
, flags
);
247 p4d
= p4d_offset(pgd
, address
);
249 return no_page_table(vma
, flags
);
250 BUILD_BUG_ON(p4d_huge(*p4d
));
251 if (unlikely(p4d_bad(*p4d
)))
252 return no_page_table(vma
, flags
);
253 pud
= pud_offset(p4d
, address
);
255 return no_page_table(vma
, flags
);
256 if (pud_huge(*pud
) && vma
->vm_flags
& VM_HUGETLB
) {
257 page
= follow_huge_pud(mm
, address
, pud
, flags
);
260 return no_page_table(vma
, flags
);
262 if (pud_devmap(*pud
)) {
263 ptl
= pud_lock(mm
, pud
);
264 page
= follow_devmap_pud(vma
, address
, pud
, flags
);
269 if (unlikely(pud_bad(*pud
)))
270 return no_page_table(vma
, flags
);
272 pmd
= pmd_offset(pud
, address
);
274 return no_page_table(vma
, flags
);
275 if (pmd_huge(*pmd
) && vma
->vm_flags
& VM_HUGETLB
) {
276 page
= follow_huge_pmd(mm
, address
, pmd
, flags
);
279 return no_page_table(vma
, flags
);
281 if (pmd_devmap(*pmd
)) {
282 ptl
= pmd_lock(mm
, pmd
);
283 page
= follow_devmap_pmd(vma
, address
, pmd
, flags
);
288 if (likely(!pmd_trans_huge(*pmd
)))
289 return follow_page_pte(vma
, address
, pmd
, flags
);
291 if ((flags
& FOLL_NUMA
) && pmd_protnone(*pmd
))
292 return no_page_table(vma
, flags
);
294 ptl
= pmd_lock(mm
, pmd
);
295 if (unlikely(!pmd_trans_huge(*pmd
))) {
297 return follow_page_pte(vma
, address
, pmd
, flags
);
299 if (flags
& FOLL_SPLIT
) {
301 page
= pmd_page(*pmd
);
302 if (is_huge_zero_page(page
)) {
305 split_huge_pmd(vma
, pmd
, address
);
306 if (pmd_trans_unstable(pmd
))
312 ret
= split_huge_page(page
);
316 return no_page_table(vma
, flags
);
319 return ret
? ERR_PTR(ret
) :
320 follow_page_pte(vma
, address
, pmd
, flags
);
323 page
= follow_trans_huge_pmd(vma
, address
, pmd
, flags
);
325 *page_mask
= HPAGE_PMD_NR
- 1;
329 static int get_gate_page(struct mm_struct
*mm
, unsigned long address
,
330 unsigned int gup_flags
, struct vm_area_struct
**vma
,
340 /* user gate pages are read-only */
341 if (gup_flags
& FOLL_WRITE
)
343 if (address
> TASK_SIZE
)
344 pgd
= pgd_offset_k(address
);
346 pgd
= pgd_offset_gate(mm
, address
);
347 BUG_ON(pgd_none(*pgd
));
348 p4d
= p4d_offset(pgd
, address
);
349 BUG_ON(p4d_none(*p4d
));
350 pud
= pud_offset(p4d
, address
);
351 BUG_ON(pud_none(*pud
));
352 pmd
= pmd_offset(pud
, address
);
355 VM_BUG_ON(pmd_trans_huge(*pmd
));
356 pte
= pte_offset_map(pmd
, address
);
359 *vma
= get_gate_vma(mm
);
362 *page
= vm_normal_page(*vma
, address
, *pte
);
364 if ((gup_flags
& FOLL_DUMP
) || !is_zero_pfn(pte_pfn(*pte
)))
366 *page
= pte_page(*pte
);
377 * mmap_sem must be held on entry. If @nonblocking != NULL and
378 * *@flags does not include FOLL_NOWAIT, the mmap_sem may be released.
379 * If it is, *@nonblocking will be set to 0 and -EBUSY returned.
381 static int faultin_page(struct task_struct
*tsk
, struct vm_area_struct
*vma
,
382 unsigned long address
, unsigned int *flags
, int *nonblocking
)
384 unsigned int fault_flags
= 0;
387 /* mlock all present pages, but do not fault in new pages */
388 if ((*flags
& (FOLL_POPULATE
| FOLL_MLOCK
)) == FOLL_MLOCK
)
390 /* For mm_populate(), just skip the stack guard page. */
391 if ((*flags
& FOLL_POPULATE
) &&
392 (stack_guard_page_start(vma
, address
) ||
393 stack_guard_page_end(vma
, address
+ PAGE_SIZE
)))
395 if (*flags
& FOLL_WRITE
)
396 fault_flags
|= FAULT_FLAG_WRITE
;
397 if (*flags
& FOLL_REMOTE
)
398 fault_flags
|= FAULT_FLAG_REMOTE
;
400 fault_flags
|= FAULT_FLAG_ALLOW_RETRY
;
401 if (*flags
& FOLL_NOWAIT
)
402 fault_flags
|= FAULT_FLAG_ALLOW_RETRY
| FAULT_FLAG_RETRY_NOWAIT
;
403 if (*flags
& FOLL_TRIED
) {
404 VM_WARN_ON_ONCE(fault_flags
& FAULT_FLAG_ALLOW_RETRY
);
405 fault_flags
|= FAULT_FLAG_TRIED
;
408 ret
= handle_mm_fault(vma
, address
, fault_flags
);
409 if (ret
& VM_FAULT_ERROR
) {
410 if (ret
& VM_FAULT_OOM
)
412 if (ret
& (VM_FAULT_HWPOISON
| VM_FAULT_HWPOISON_LARGE
))
413 return *flags
& FOLL_HWPOISON
? -EHWPOISON
: -EFAULT
;
414 if (ret
& (VM_FAULT_SIGBUS
| VM_FAULT_SIGSEGV
))
420 if (ret
& VM_FAULT_MAJOR
)
426 if (ret
& VM_FAULT_RETRY
) {
433 * The VM_FAULT_WRITE bit tells us that do_wp_page has broken COW when
434 * necessary, even if maybe_mkwrite decided not to set pte_write. We
435 * can thus safely do subsequent page lookups as if they were reads.
436 * But only do so when looping for pte_write is futile: in some cases
437 * userspace may also be wanting to write to the gotten user page,
438 * which a read fault here might prevent (a readonly page might get
439 * reCOWed by userspace write).
441 if ((ret
& VM_FAULT_WRITE
) && !(vma
->vm_flags
& VM_WRITE
))
446 static int check_vma_flags(struct vm_area_struct
*vma
, unsigned long gup_flags
)
448 vm_flags_t vm_flags
= vma
->vm_flags
;
449 int write
= (gup_flags
& FOLL_WRITE
);
450 int foreign
= (gup_flags
& FOLL_REMOTE
);
452 if (vm_flags
& (VM_IO
| VM_PFNMAP
))
456 if (!(vm_flags
& VM_WRITE
)) {
457 if (!(gup_flags
& FOLL_FORCE
))
460 * We used to let the write,force case do COW in a
461 * VM_MAYWRITE VM_SHARED !VM_WRITE vma, so ptrace could
462 * set a breakpoint in a read-only mapping of an
463 * executable, without corrupting the file (yet only
464 * when that file had been opened for writing!).
465 * Anon pages in shared mappings are surprising: now
468 if (!is_cow_mapping(vm_flags
))
471 } else if (!(vm_flags
& VM_READ
)) {
472 if (!(gup_flags
& FOLL_FORCE
))
475 * Is there actually any vma we can reach here which does not
476 * have VM_MAYREAD set?
478 if (!(vm_flags
& VM_MAYREAD
))
482 * gups are always data accesses, not instruction
483 * fetches, so execute=false here
485 if (!arch_vma_access_permitted(vma
, write
, false, foreign
))
491 * __get_user_pages() - pin user pages in memory
492 * @tsk: task_struct of target task
493 * @mm: mm_struct of target mm
494 * @start: starting user address
495 * @nr_pages: number of pages from start to pin
496 * @gup_flags: flags modifying pin behaviour
497 * @pages: array that receives pointers to the pages pinned.
498 * Should be at least nr_pages long. Or NULL, if caller
499 * only intends to ensure the pages are faulted in.
500 * @vmas: array of pointers to vmas corresponding to each page.
501 * Or NULL if the caller does not require them.
502 * @nonblocking: whether waiting for disk IO or mmap_sem contention
504 * Returns number of pages pinned. This may be fewer than the number
505 * requested. If nr_pages is 0 or negative, returns 0. If no pages
506 * were pinned, returns -errno. Each page returned must be released
507 * with a put_page() call when it is finished with. vmas will only
508 * remain valid while mmap_sem is held.
510 * Must be called with mmap_sem held. It may be released. See below.
512 * __get_user_pages walks a process's page tables and takes a reference to
513 * each struct page that each user address corresponds to at a given
514 * instant. That is, it takes the page that would be accessed if a user
515 * thread accesses the given user virtual address at that instant.
517 * This does not guarantee that the page exists in the user mappings when
518 * __get_user_pages returns, and there may even be a completely different
519 * page there in some cases (eg. if mmapped pagecache has been invalidated
520 * and subsequently re faulted). However it does guarantee that the page
521 * won't be freed completely. And mostly callers simply care that the page
522 * contains data that was valid *at some point in time*. Typically, an IO
523 * or similar operation cannot guarantee anything stronger anyway because
524 * locks can't be held over the syscall boundary.
526 * If @gup_flags & FOLL_WRITE == 0, the page must not be written to. If
527 * the page is written to, set_page_dirty (or set_page_dirty_lock, as
528 * appropriate) must be called after the page is finished with, and
529 * before put_page is called.
531 * If @nonblocking != NULL, __get_user_pages will not wait for disk IO
532 * or mmap_sem contention, and if waiting is needed to pin all pages,
533 * *@nonblocking will be set to 0. Further, if @gup_flags does not
534 * include FOLL_NOWAIT, the mmap_sem will be released via up_read() in
537 * A caller using such a combination of @nonblocking and @gup_flags
538 * must therefore hold the mmap_sem for reading only, and recognize
539 * when it's been released. Otherwise, it must be held for either
540 * reading or writing and will not be released.
542 * In most cases, get_user_pages or get_user_pages_fast should be used
543 * instead of __get_user_pages. __get_user_pages should be used only if
544 * you need some special @gup_flags.
546 static long __get_user_pages(struct task_struct
*tsk
, struct mm_struct
*mm
,
547 unsigned long start
, unsigned long nr_pages
,
548 unsigned int gup_flags
, struct page
**pages
,
549 struct vm_area_struct
**vmas
, int *nonblocking
)
552 unsigned int page_mask
;
553 struct vm_area_struct
*vma
= NULL
;
558 VM_BUG_ON(!!pages
!= !!(gup_flags
& FOLL_GET
));
561 * If FOLL_FORCE is set then do not force a full fault as the hinting
562 * fault information is unrelated to the reference behaviour of a task
563 * using the address space
565 if (!(gup_flags
& FOLL_FORCE
))
566 gup_flags
|= FOLL_NUMA
;
570 unsigned int foll_flags
= gup_flags
;
571 unsigned int page_increm
;
573 /* first iteration or cross vma bound */
574 if (!vma
|| start
>= vma
->vm_end
) {
575 vma
= find_extend_vma(mm
, start
);
576 if (!vma
&& in_gate_area(mm
, start
)) {
578 ret
= get_gate_page(mm
, start
& PAGE_MASK
,
580 pages
? &pages
[i
] : NULL
);
587 if (!vma
|| check_vma_flags(vma
, gup_flags
))
588 return i
? : -EFAULT
;
589 if (is_vm_hugetlb_page(vma
)) {
590 i
= follow_hugetlb_page(mm
, vma
, pages
, vmas
,
591 &start
, &nr_pages
, i
,
592 gup_flags
, nonblocking
);
598 * If we have a pending SIGKILL, don't keep faulting pages and
599 * potentially allocating memory.
601 if (unlikely(fatal_signal_pending(current
)))
602 return i
? i
: -ERESTARTSYS
;
604 page
= follow_page_mask(vma
, start
, foll_flags
, &page_mask
);
607 ret
= faultin_page(tsk
, vma
, start
, &foll_flags
,
622 } else if (PTR_ERR(page
) == -EEXIST
) {
624 * Proper page table entry exists, but no corresponding
628 } else if (IS_ERR(page
)) {
629 return i
? i
: PTR_ERR(page
);
633 flush_anon_page(vma
, page
, start
);
634 flush_dcache_page(page
);
642 page_increm
= 1 + (~(start
>> PAGE_SHIFT
) & page_mask
);
643 if (page_increm
> nr_pages
)
644 page_increm
= nr_pages
;
646 start
+= page_increm
* PAGE_SIZE
;
647 nr_pages
-= page_increm
;
652 static bool vma_permits_fault(struct vm_area_struct
*vma
,
653 unsigned int fault_flags
)
655 bool write
= !!(fault_flags
& FAULT_FLAG_WRITE
);
656 bool foreign
= !!(fault_flags
& FAULT_FLAG_REMOTE
);
657 vm_flags_t vm_flags
= write
? VM_WRITE
: VM_READ
;
659 if (!(vm_flags
& vma
->vm_flags
))
663 * The architecture might have a hardware protection
664 * mechanism other than read/write that can deny access.
666 * gup always represents data access, not instruction
667 * fetches, so execute=false here:
669 if (!arch_vma_access_permitted(vma
, write
, false, foreign
))
676 * fixup_user_fault() - manually resolve a user page fault
677 * @tsk: the task_struct to use for page fault accounting, or
678 * NULL if faults are not to be recorded.
679 * @mm: mm_struct of target mm
680 * @address: user address
681 * @fault_flags:flags to pass down to handle_mm_fault()
682 * @unlocked: did we unlock the mmap_sem while retrying, maybe NULL if caller
683 * does not allow retry
685 * This is meant to be called in the specific scenario where for locking reasons
686 * we try to access user memory in atomic context (within a pagefault_disable()
687 * section), this returns -EFAULT, and we want to resolve the user fault before
690 * Typically this is meant to be used by the futex code.
692 * The main difference with get_user_pages() is that this function will
693 * unconditionally call handle_mm_fault() which will in turn perform all the
694 * necessary SW fixup of the dirty and young bits in the PTE, while
695 * get_user_pages() only guarantees to update these in the struct page.
697 * This is important for some architectures where those bits also gate the
698 * access permission to the page because they are maintained in software. On
699 * such architectures, gup() will not be enough to make a subsequent access
702 * This function will not return with an unlocked mmap_sem. So it has not the
703 * same semantics wrt the @mm->mmap_sem as does filemap_fault().
705 int fixup_user_fault(struct task_struct
*tsk
, struct mm_struct
*mm
,
706 unsigned long address
, unsigned int fault_flags
,
709 struct vm_area_struct
*vma
;
713 fault_flags
|= FAULT_FLAG_ALLOW_RETRY
;
716 vma
= find_extend_vma(mm
, address
);
717 if (!vma
|| address
< vma
->vm_start
)
720 if (!vma_permits_fault(vma
, fault_flags
))
723 ret
= handle_mm_fault(vma
, address
, fault_flags
);
724 major
|= ret
& VM_FAULT_MAJOR
;
725 if (ret
& VM_FAULT_ERROR
) {
726 if (ret
& VM_FAULT_OOM
)
728 if (ret
& (VM_FAULT_HWPOISON
| VM_FAULT_HWPOISON_LARGE
))
730 if (ret
& (VM_FAULT_SIGBUS
| VM_FAULT_SIGSEGV
))
735 if (ret
& VM_FAULT_RETRY
) {
736 down_read(&mm
->mmap_sem
);
737 if (!(fault_flags
& FAULT_FLAG_TRIED
)) {
739 fault_flags
&= ~FAULT_FLAG_ALLOW_RETRY
;
740 fault_flags
|= FAULT_FLAG_TRIED
;
753 EXPORT_SYMBOL_GPL(fixup_user_fault
);
755 static __always_inline
long __get_user_pages_locked(struct task_struct
*tsk
,
756 struct mm_struct
*mm
,
758 unsigned long nr_pages
,
760 struct vm_area_struct
**vmas
,
761 int *locked
, bool notify_drop
,
764 long ret
, pages_done
;
768 /* if VM_FAULT_RETRY can be returned, vmas become invalid */
770 /* check caller initialized locked */
771 BUG_ON(*locked
!= 1);
778 lock_dropped
= false;
780 ret
= __get_user_pages(tsk
, mm
, start
, nr_pages
, flags
, pages
,
783 /* VM_FAULT_RETRY couldn't trigger, bypass */
786 /* VM_FAULT_RETRY cannot return errors */
789 BUG_ON(ret
>= nr_pages
);
793 /* If it's a prefault don't insist harder */
803 /* VM_FAULT_RETRY didn't trigger */
808 /* VM_FAULT_RETRY triggered, so seek to the faulting offset */
810 start
+= ret
<< PAGE_SHIFT
;
813 * Repeat on the address that fired VM_FAULT_RETRY
814 * without FAULT_FLAG_ALLOW_RETRY but with
819 down_read(&mm
->mmap_sem
);
820 ret
= __get_user_pages(tsk
, mm
, start
, 1, flags
| FOLL_TRIED
,
835 if (notify_drop
&& lock_dropped
&& *locked
) {
837 * We must let the caller know we temporarily dropped the lock
838 * and so the critical section protected by it was lost.
840 up_read(&mm
->mmap_sem
);
847 * We can leverage the VM_FAULT_RETRY functionality in the page fault
848 * paths better by using either get_user_pages_locked() or
849 * get_user_pages_unlocked().
851 * get_user_pages_locked() is suitable to replace the form:
853 * down_read(&mm->mmap_sem);
855 * get_user_pages(tsk, mm, ..., pages, NULL);
856 * up_read(&mm->mmap_sem);
861 * down_read(&mm->mmap_sem);
863 * get_user_pages_locked(tsk, mm, ..., pages, &locked);
865 * up_read(&mm->mmap_sem);
867 long get_user_pages_locked(unsigned long start
, unsigned long nr_pages
,
868 unsigned int gup_flags
, struct page
**pages
,
871 return __get_user_pages_locked(current
, current
->mm
, start
, nr_pages
,
872 pages
, NULL
, locked
, true,
873 gup_flags
| FOLL_TOUCH
);
875 EXPORT_SYMBOL(get_user_pages_locked
);
878 * Same as get_user_pages_unlocked(...., FOLL_TOUCH) but it allows for
879 * tsk, mm to be specified.
881 * NOTE: here FOLL_TOUCH is not set implicitly and must be set by the
882 * caller if required (just like with __get_user_pages). "FOLL_GET"
883 * is set implicitly if "pages" is non-NULL.
885 static __always_inline
long __get_user_pages_unlocked(struct task_struct
*tsk
,
886 struct mm_struct
*mm
, unsigned long start
,
887 unsigned long nr_pages
, struct page
**pages
,
888 unsigned int gup_flags
)
893 down_read(&mm
->mmap_sem
);
894 ret
= __get_user_pages_locked(tsk
, mm
, start
, nr_pages
, pages
, NULL
,
895 &locked
, false, gup_flags
);
897 up_read(&mm
->mmap_sem
);
902 * get_user_pages_unlocked() is suitable to replace the form:
904 * down_read(&mm->mmap_sem);
905 * get_user_pages(tsk, mm, ..., pages, NULL);
906 * up_read(&mm->mmap_sem);
910 * get_user_pages_unlocked(tsk, mm, ..., pages);
912 * It is functionally equivalent to get_user_pages_fast so
913 * get_user_pages_fast should be used instead if specific gup_flags
914 * (e.g. FOLL_FORCE) are not required.
916 long get_user_pages_unlocked(unsigned long start
, unsigned long nr_pages
,
917 struct page
**pages
, unsigned int gup_flags
)
919 return __get_user_pages_unlocked(current
, current
->mm
, start
, nr_pages
,
920 pages
, gup_flags
| FOLL_TOUCH
);
922 EXPORT_SYMBOL(get_user_pages_unlocked
);
925 * get_user_pages_remote() - pin user pages in memory
926 * @tsk: the task_struct to use for page fault accounting, or
927 * NULL if faults are not to be recorded.
928 * @mm: mm_struct of target mm
929 * @start: starting user address
930 * @nr_pages: number of pages from start to pin
931 * @gup_flags: flags modifying lookup behaviour
932 * @pages: array that receives pointers to the pages pinned.
933 * Should be at least nr_pages long. Or NULL, if caller
934 * only intends to ensure the pages are faulted in.
935 * @vmas: array of pointers to vmas corresponding to each page.
936 * Or NULL if the caller does not require them.
937 * @locked: pointer to lock flag indicating whether lock is held and
938 * subsequently whether VM_FAULT_RETRY functionality can be
939 * utilised. Lock must initially be held.
941 * Returns number of pages pinned. This may be fewer than the number
942 * requested. If nr_pages is 0 or negative, returns 0. If no pages
943 * were pinned, returns -errno. Each page returned must be released
944 * with a put_page() call when it is finished with. vmas will only
945 * remain valid while mmap_sem is held.
947 * Must be called with mmap_sem held for read or write.
949 * get_user_pages walks a process's page tables and takes a reference to
950 * each struct page that each user address corresponds to at a given
951 * instant. That is, it takes the page that would be accessed if a user
952 * thread accesses the given user virtual address at that instant.
954 * This does not guarantee that the page exists in the user mappings when
955 * get_user_pages returns, and there may even be a completely different
956 * page there in some cases (eg. if mmapped pagecache has been invalidated
957 * and subsequently re faulted). However it does guarantee that the page
958 * won't be freed completely. And mostly callers simply care that the page
959 * contains data that was valid *at some point in time*. Typically, an IO
960 * or similar operation cannot guarantee anything stronger anyway because
961 * locks can't be held over the syscall boundary.
963 * If gup_flags & FOLL_WRITE == 0, the page must not be written to. If the page
964 * is written to, set_page_dirty (or set_page_dirty_lock, as appropriate) must
965 * be called after the page is finished with, and before put_page is called.
967 * get_user_pages is typically used for fewer-copy IO operations, to get a
968 * handle on the memory by some means other than accesses via the user virtual
969 * addresses. The pages may be submitted for DMA to devices or accessed via
970 * their kernel linear mapping (via the kmap APIs). Care should be taken to
971 * use the correct cache flushing APIs.
973 * See also get_user_pages_fast, for performance critical applications.
975 * get_user_pages should be phased out in favor of
976 * get_user_pages_locked|unlocked or get_user_pages_fast. Nothing
977 * should use get_user_pages because it cannot pass
978 * FAULT_FLAG_ALLOW_RETRY to handle_mm_fault.
980 long get_user_pages_remote(struct task_struct
*tsk
, struct mm_struct
*mm
,
981 unsigned long start
, unsigned long nr_pages
,
982 unsigned int gup_flags
, struct page
**pages
,
983 struct vm_area_struct
**vmas
, int *locked
)
985 return __get_user_pages_locked(tsk
, mm
, start
, nr_pages
, pages
, vmas
,
987 gup_flags
| FOLL_TOUCH
| FOLL_REMOTE
);
989 EXPORT_SYMBOL(get_user_pages_remote
);
992 * This is the same as get_user_pages_remote(), just with a
993 * less-flexible calling convention where we assume that the task
994 * and mm being operated on are the current task's and don't allow
995 * passing of a locked parameter. We also obviously don't pass
996 * FOLL_REMOTE in here.
998 long get_user_pages(unsigned long start
, unsigned long nr_pages
,
999 unsigned int gup_flags
, struct page
**pages
,
1000 struct vm_area_struct
**vmas
)
1002 return __get_user_pages_locked(current
, current
->mm
, start
, nr_pages
,
1003 pages
, vmas
, NULL
, false,
1004 gup_flags
| FOLL_TOUCH
);
1006 EXPORT_SYMBOL(get_user_pages
);
1009 * populate_vma_page_range() - populate a range of pages in the vma.
1011 * @start: start address
1015 * This takes care of mlocking the pages too if VM_LOCKED is set.
1017 * return 0 on success, negative error code on error.
1019 * vma->vm_mm->mmap_sem must be held.
1021 * If @nonblocking is NULL, it may be held for read or write and will
1024 * If @nonblocking is non-NULL, it must held for read only and may be
1025 * released. If it's released, *@nonblocking will be set to 0.
1027 long populate_vma_page_range(struct vm_area_struct
*vma
,
1028 unsigned long start
, unsigned long end
, int *nonblocking
)
1030 struct mm_struct
*mm
= vma
->vm_mm
;
1031 unsigned long nr_pages
= (end
- start
) / PAGE_SIZE
;
1034 VM_BUG_ON(start
& ~PAGE_MASK
);
1035 VM_BUG_ON(end
& ~PAGE_MASK
);
1036 VM_BUG_ON_VMA(start
< vma
->vm_start
, vma
);
1037 VM_BUG_ON_VMA(end
> vma
->vm_end
, vma
);
1038 VM_BUG_ON_MM(!rwsem_is_locked(&mm
->mmap_sem
), mm
);
1040 gup_flags
= FOLL_TOUCH
| FOLL_POPULATE
| FOLL_MLOCK
;
1041 if (vma
->vm_flags
& VM_LOCKONFAULT
)
1042 gup_flags
&= ~FOLL_POPULATE
;
1044 * We want to touch writable mappings with a write fault in order
1045 * to break COW, except for shared mappings because these don't COW
1046 * and we would not want to dirty them for nothing.
1048 if ((vma
->vm_flags
& (VM_WRITE
| VM_SHARED
)) == VM_WRITE
)
1049 gup_flags
|= FOLL_WRITE
;
1052 * We want mlock to succeed for regions that have any permissions
1053 * other than PROT_NONE.
1055 if (vma
->vm_flags
& (VM_READ
| VM_WRITE
| VM_EXEC
))
1056 gup_flags
|= FOLL_FORCE
;
1059 * We made sure addr is within a VMA, so the following will
1060 * not result in a stack expansion that recurses back here.
1062 return __get_user_pages(current
, mm
, start
, nr_pages
, gup_flags
,
1063 NULL
, NULL
, nonblocking
);
1067 * __mm_populate - populate and/or mlock pages within a range of address space.
1069 * This is used to implement mlock() and the MAP_POPULATE / MAP_LOCKED mmap
1070 * flags. VMAs must be already marked with the desired vm_flags, and
1071 * mmap_sem must not be held.
1073 int __mm_populate(unsigned long start
, unsigned long len
, int ignore_errors
)
1075 struct mm_struct
*mm
= current
->mm
;
1076 unsigned long end
, nstart
, nend
;
1077 struct vm_area_struct
*vma
= NULL
;
1081 VM_BUG_ON(start
& ~PAGE_MASK
);
1082 VM_BUG_ON(len
!= PAGE_ALIGN(len
));
1085 for (nstart
= start
; nstart
< end
; nstart
= nend
) {
1087 * We want to fault in pages for [nstart; end) address range.
1088 * Find first corresponding VMA.
1092 down_read(&mm
->mmap_sem
);
1093 vma
= find_vma(mm
, nstart
);
1094 } else if (nstart
>= vma
->vm_end
)
1096 if (!vma
|| vma
->vm_start
>= end
)
1099 * Set [nstart; nend) to intersection of desired address
1100 * range with the first VMA. Also, skip undesirable VMA types.
1102 nend
= min(end
, vma
->vm_end
);
1103 if (vma
->vm_flags
& (VM_IO
| VM_PFNMAP
))
1105 if (nstart
< vma
->vm_start
)
1106 nstart
= vma
->vm_start
;
1108 * Now fault in a range of pages. populate_vma_page_range()
1109 * double checks the vma flags, so that it won't mlock pages
1110 * if the vma was already munlocked.
1112 ret
= populate_vma_page_range(vma
, nstart
, nend
, &locked
);
1114 if (ignore_errors
) {
1116 continue; /* continue at next VMA */
1120 nend
= nstart
+ ret
* PAGE_SIZE
;
1124 up_read(&mm
->mmap_sem
);
1125 return ret
; /* 0 or negative error code */
1129 * get_dump_page() - pin user page in memory while writing it to core dump
1130 * @addr: user address
1132 * Returns struct page pointer of user page pinned for dump,
1133 * to be freed afterwards by put_page().
1135 * Returns NULL on any kind of failure - a hole must then be inserted into
1136 * the corefile, to preserve alignment with its headers; and also returns
1137 * NULL wherever the ZERO_PAGE, or an anonymous pte_none, has been found -
1138 * allowing a hole to be left in the corefile to save diskspace.
1140 * Called without mmap_sem, but after all other threads have been killed.
1142 #ifdef CONFIG_ELF_CORE
1143 struct page
*get_dump_page(unsigned long addr
)
1145 struct vm_area_struct
*vma
;
1148 if (__get_user_pages(current
, current
->mm
, addr
, 1,
1149 FOLL_FORCE
| FOLL_DUMP
| FOLL_GET
, &page
, &vma
,
1152 flush_cache_page(vma
, addr
, page_to_pfn(page
));
1155 #endif /* CONFIG_ELF_CORE */
1158 * Generic RCU Fast GUP
1160 * get_user_pages_fast attempts to pin user pages by walking the page
1161 * tables directly and avoids taking locks. Thus the walker needs to be
1162 * protected from page table pages being freed from under it, and should
1163 * block any THP splits.
1165 * One way to achieve this is to have the walker disable interrupts, and
1166 * rely on IPIs from the TLB flushing code blocking before the page table
1167 * pages are freed. This is unsuitable for architectures that do not need
1168 * to broadcast an IPI when invalidating TLBs.
1170 * Another way to achieve this is to batch up page table containing pages
1171 * belonging to more than one mm_user, then rcu_sched a callback to free those
1172 * pages. Disabling interrupts will allow the fast_gup walker to both block
1173 * the rcu_sched callback, and an IPI that we broadcast for splitting THPs
1174 * (which is a relatively rare event). The code below adopts this strategy.
1176 * Before activating this code, please be aware that the following assumptions
1177 * are currently made:
1179 * *) HAVE_RCU_TABLE_FREE is enabled, and tlb_remove_table is used to free
1180 * pages containing page tables.
1182 * *) ptes can be read atomically by the architecture.
1184 * *) access_ok is sufficient to validate userspace address ranges.
1186 * The last two assumptions can be relaxed by the addition of helper functions.
1188 * This code is based heavily on the PowerPC implementation by Nick Piggin.
1190 #ifdef CONFIG_HAVE_GENERIC_RCU_GUP
1194 * We assume that the PTE can be read atomically. If this is not the case for
1195 * your architecture, please provide the helper.
1197 static inline pte_t
gup_get_pte(pte_t
*ptep
)
1199 return READ_ONCE(*ptep
);
1203 static void undo_dev_pagemap(int *nr
, int nr_start
, struct page
**pages
)
1205 while ((*nr
) - nr_start
) {
1206 struct page
*page
= pages
[--(*nr
)];
1208 ClearPageReferenced(page
);
1213 #ifdef __HAVE_ARCH_PTE_SPECIAL
1214 static int gup_pte_range(pmd_t pmd
, unsigned long addr
, unsigned long end
,
1215 int write
, struct page
**pages
, int *nr
)
1217 struct dev_pagemap
*pgmap
= NULL
;
1218 int nr_start
= *nr
, ret
= 0;
1221 ptem
= ptep
= pte_offset_map(&pmd
, addr
);
1223 pte_t pte
= gup_get_pte(ptep
);
1224 struct page
*head
, *page
;
1227 * Similar to the PMD case below, NUMA hinting must take slow
1228 * path using the pte_protnone check.
1230 if (pte_protnone(pte
))
1233 if (!pte_access_permitted(pte
, write
))
1236 if (pte_devmap(pte
)) {
1237 pgmap
= get_dev_pagemap(pte_pfn(pte
), pgmap
);
1238 if (unlikely(!pgmap
)) {
1239 undo_dev_pagemap(nr
, nr_start
, pages
);
1242 } else if (pte_special(pte
))
1245 VM_BUG_ON(!pfn_valid(pte_pfn(pte
)));
1246 page
= pte_page(pte
);
1247 head
= compound_head(page
);
1249 if (!page_cache_get_speculative(head
))
1252 if (unlikely(pte_val(pte
) != pte_val(*ptep
))) {
1257 VM_BUG_ON_PAGE(compound_head(page
) != head
, page
);
1259 put_dev_pagemap(pgmap
);
1260 SetPageReferenced(page
);
1264 } while (ptep
++, addr
+= PAGE_SIZE
, addr
!= end
);
1275 * If we can't determine whether or not a pte is special, then fail immediately
1276 * for ptes. Note, we can still pin HugeTLB and THP as these are guaranteed not
1279 * For a futex to be placed on a THP tail page, get_futex_key requires a
1280 * __get_user_pages_fast implementation that can pin pages. Thus it's still
1281 * useful to have gup_huge_pmd even if we can't operate on ptes.
1283 static int gup_pte_range(pmd_t pmd
, unsigned long addr
, unsigned long end
,
1284 int write
, struct page
**pages
, int *nr
)
1288 #endif /* __HAVE_ARCH_PTE_SPECIAL */
1290 #ifdef __HAVE_ARCH_PTE_DEVMAP
1291 static int __gup_device_huge(unsigned long pfn
, unsigned long addr
,
1292 unsigned long end
, struct page
**pages
, int *nr
)
1295 struct dev_pagemap
*pgmap
= NULL
;
1298 struct page
*page
= pfn_to_page(pfn
);
1300 pgmap
= get_dev_pagemap(pfn
, pgmap
);
1301 if (unlikely(!pgmap
)) {
1302 undo_dev_pagemap(nr
, nr_start
, pages
);
1305 SetPageReferenced(page
);
1308 put_dev_pagemap(pgmap
);
1311 } while (addr
+= PAGE_SIZE
, addr
!= end
);
1315 static int __gup_device_huge_pmd(pmd_t pmd
, unsigned long addr
,
1316 unsigned long end
, struct page
**pages
, int *nr
)
1318 unsigned long fault_pfn
;
1320 fault_pfn
= pmd_pfn(pmd
) + ((addr
& ~PMD_MASK
) >> PAGE_SHIFT
);
1321 return __gup_device_huge(fault_pfn
, addr
, end
, pages
, nr
);
1324 static int __gup_device_huge_pud(pud_t pud
, unsigned long addr
,
1325 unsigned long end
, struct page
**pages
, int *nr
)
1327 unsigned long fault_pfn
;
1329 fault_pfn
= pud_pfn(pud
) + ((addr
& ~PUD_MASK
) >> PAGE_SHIFT
);
1330 return __gup_device_huge(fault_pfn
, addr
, end
, pages
, nr
);
1333 static int __gup_device_huge_pmd(pmd_t pmd
, unsigned long addr
,
1334 unsigned long end
, struct page
**pages
, int *nr
)
1340 static int __gup_device_huge_pud(pud_t pud
, unsigned long addr
,
1341 unsigned long end
, struct page
**pages
, int *nr
)
1348 static int gup_huge_pmd(pmd_t orig
, pmd_t
*pmdp
, unsigned long addr
,
1349 unsigned long end
, int write
, struct page
**pages
, int *nr
)
1351 struct page
*head
, *page
;
1354 if (!pmd_access_permitted(orig
, write
))
1357 if (pmd_devmap(orig
))
1358 return __gup_device_huge_pmd(orig
, addr
, end
, pages
, nr
);
1361 head
= pmd_page(orig
);
1362 page
= head
+ ((addr
& ~PMD_MASK
) >> PAGE_SHIFT
);
1364 VM_BUG_ON_PAGE(compound_head(page
) != head
, page
);
1369 } while (addr
+= PAGE_SIZE
, addr
!= end
);
1371 if (!page_cache_add_speculative(head
, refs
)) {
1376 if (unlikely(pmd_val(orig
) != pmd_val(*pmdp
))) {
1383 SetPageReferenced(head
);
1387 static int gup_huge_pud(pud_t orig
, pud_t
*pudp
, unsigned long addr
,
1388 unsigned long end
, int write
, struct page
**pages
, int *nr
)
1390 struct page
*head
, *page
;
1393 if (!pud_access_permitted(orig
, write
))
1396 if (pud_devmap(orig
))
1397 return __gup_device_huge_pud(orig
, addr
, end
, pages
, nr
);
1400 head
= pud_page(orig
);
1401 page
= head
+ ((addr
& ~PUD_MASK
) >> PAGE_SHIFT
);
1403 VM_BUG_ON_PAGE(compound_head(page
) != head
, page
);
1408 } while (addr
+= PAGE_SIZE
, addr
!= end
);
1410 if (!page_cache_add_speculative(head
, refs
)) {
1415 if (unlikely(pud_val(orig
) != pud_val(*pudp
))) {
1422 SetPageReferenced(head
);
1426 static int gup_huge_pgd(pgd_t orig
, pgd_t
*pgdp
, unsigned long addr
,
1427 unsigned long end
, int write
,
1428 struct page
**pages
, int *nr
)
1431 struct page
*head
, *page
;
1433 if (!pgd_access_permitted(orig
, write
))
1436 BUILD_BUG_ON(pgd_devmap(orig
));
1438 head
= pgd_page(orig
);
1439 page
= head
+ ((addr
& ~PGDIR_MASK
) >> PAGE_SHIFT
);
1441 VM_BUG_ON_PAGE(compound_head(page
) != head
, page
);
1446 } while (addr
+= PAGE_SIZE
, addr
!= end
);
1448 if (!page_cache_add_speculative(head
, refs
)) {
1453 if (unlikely(pgd_val(orig
) != pgd_val(*pgdp
))) {
1460 SetPageReferenced(head
);
1464 static int gup_pmd_range(pud_t pud
, unsigned long addr
, unsigned long end
,
1465 int write
, struct page
**pages
, int *nr
)
1470 pmdp
= pmd_offset(&pud
, addr
);
1472 pmd_t pmd
= READ_ONCE(*pmdp
);
1474 next
= pmd_addr_end(addr
, end
);
1478 if (unlikely(pmd_trans_huge(pmd
) || pmd_huge(pmd
))) {
1480 * NUMA hinting faults need to be handled in the GUP
1481 * slowpath for accounting purposes and so that they
1482 * can be serialised against THP migration.
1484 if (pmd_protnone(pmd
))
1487 if (!gup_huge_pmd(pmd
, pmdp
, addr
, next
, write
,
1491 } else if (unlikely(is_hugepd(__hugepd(pmd_val(pmd
))))) {
1493 * architecture have different format for hugetlbfs
1494 * pmd format and THP pmd format
1496 if (!gup_huge_pd(__hugepd(pmd_val(pmd
)), addr
,
1497 PMD_SHIFT
, next
, write
, pages
, nr
))
1499 } else if (!gup_pte_range(pmd
, addr
, next
, write
, pages
, nr
))
1501 } while (pmdp
++, addr
= next
, addr
!= end
);
1506 static int gup_pud_range(p4d_t p4d
, unsigned long addr
, unsigned long end
,
1507 int write
, struct page
**pages
, int *nr
)
1512 pudp
= pud_offset(&p4d
, addr
);
1514 pud_t pud
= READ_ONCE(*pudp
);
1516 next
= pud_addr_end(addr
, end
);
1519 if (unlikely(pud_huge(pud
))) {
1520 if (!gup_huge_pud(pud
, pudp
, addr
, next
, write
,
1523 } else if (unlikely(is_hugepd(__hugepd(pud_val(pud
))))) {
1524 if (!gup_huge_pd(__hugepd(pud_val(pud
)), addr
,
1525 PUD_SHIFT
, next
, write
, pages
, nr
))
1527 } else if (!gup_pmd_range(pud
, addr
, next
, write
, pages
, nr
))
1529 } while (pudp
++, addr
= next
, addr
!= end
);
1534 static int gup_p4d_range(pgd_t pgd
, unsigned long addr
, unsigned long end
,
1535 int write
, struct page
**pages
, int *nr
)
1540 p4dp
= p4d_offset(&pgd
, addr
);
1542 p4d_t p4d
= READ_ONCE(*p4dp
);
1544 next
= p4d_addr_end(addr
, end
);
1547 BUILD_BUG_ON(p4d_huge(p4d
));
1548 if (unlikely(is_hugepd(__hugepd(p4d_val(p4d
))))) {
1549 if (!gup_huge_pd(__hugepd(p4d_val(p4d
)), addr
,
1550 P4D_SHIFT
, next
, write
, pages
, nr
))
1552 } else if (!gup_pud_range(p4d
, addr
, next
, write
, pages
, nr
))
1554 } while (p4dp
++, addr
= next
, addr
!= end
);
1560 * Like get_user_pages_fast() except it's IRQ-safe in that it won't fall back to
1561 * the regular GUP. It will only return non-negative values.
1563 int __get_user_pages_fast(unsigned long start
, int nr_pages
, int write
,
1564 struct page
**pages
)
1566 struct mm_struct
*mm
= current
->mm
;
1567 unsigned long addr
, len
, end
;
1568 unsigned long next
, flags
;
1574 len
= (unsigned long) nr_pages
<< PAGE_SHIFT
;
1577 if (unlikely(!access_ok(write
? VERIFY_WRITE
: VERIFY_READ
,
1578 (void __user
*)start
, len
)))
1582 * Disable interrupts. We use the nested form as we can already have
1583 * interrupts disabled by get_futex_key.
1585 * With interrupts disabled, we block page table pages from being
1586 * freed from under us. See mmu_gather_tlb in asm-generic/tlb.h
1589 * We do not adopt an rcu_read_lock(.) here as we also want to
1590 * block IPIs that come from THPs splitting.
1593 local_irq_save(flags
);
1594 pgdp
= pgd_offset(mm
, addr
);
1596 pgd_t pgd
= READ_ONCE(*pgdp
);
1598 next
= pgd_addr_end(addr
, end
);
1601 if (unlikely(pgd_huge(pgd
))) {
1602 if (!gup_huge_pgd(pgd
, pgdp
, addr
, next
, write
,
1605 } else if (unlikely(is_hugepd(__hugepd(pgd_val(pgd
))))) {
1606 if (!gup_huge_pd(__hugepd(pgd_val(pgd
)), addr
,
1607 PGDIR_SHIFT
, next
, write
, pages
, &nr
))
1609 } else if (!gup_p4d_range(pgd
, addr
, next
, write
, pages
, &nr
))
1611 } while (pgdp
++, addr
= next
, addr
!= end
);
1612 local_irq_restore(flags
);
1617 #ifndef gup_fast_permitted
1619 * Check if it's allowed to use __get_user_pages_fast() for the range, or
1620 * we need to fall back to the slow version:
1622 bool gup_fast_permitted(unsigned long start
, int nr_pages
, int write
)
1624 unsigned long len
, end
;
1626 len
= (unsigned long) nr_pages
<< PAGE_SHIFT
;
1628 return end
>= start
;
1633 * get_user_pages_fast() - pin user pages in memory
1634 * @start: starting user address
1635 * @nr_pages: number of pages from start to pin
1636 * @write: whether pages will be written to
1637 * @pages: array that receives pointers to the pages pinned.
1638 * Should be at least nr_pages long.
1640 * Attempt to pin user pages in memory without taking mm->mmap_sem.
1641 * If not successful, it will fall back to taking the lock and
1642 * calling get_user_pages().
1644 * Returns number of pages pinned. This may be fewer than the number
1645 * requested. If nr_pages is 0 or negative, returns 0. If no pages
1646 * were pinned, returns -errno.
1648 int get_user_pages_fast(unsigned long start
, int nr_pages
, int write
,
1649 struct page
**pages
)
1651 int nr
= 0, ret
= 0;
1655 if (gup_fast_permitted(start
, nr_pages
, write
)) {
1656 nr
= __get_user_pages_fast(start
, nr_pages
, write
, pages
);
1660 if (nr
< nr_pages
) {
1661 /* Try to get the remaining pages with get_user_pages */
1662 start
+= nr
<< PAGE_SHIFT
;
1665 ret
= get_user_pages_unlocked(start
, nr_pages
- nr
, pages
,
1666 write
? FOLL_WRITE
: 0);
1668 /* Have to be a bit careful with return values */
1680 #endif /* CONFIG_HAVE_GENERIC_RCU_GUP */