Linux 5.8-rc4
[linux/fpc-iii.git] / arch / sparc / kernel / wof.S
blob96a3a112423acefc61448db436f0ec1a320b3e71
1 /* SPDX-License-Identifier: GPL-2.0 */
2 /*
3  * wof.S: Sparc window overflow handler.
4  *
5  * Copyright (C) 1995 David S. Miller (davem@caip.rutgers.edu)
6  */
8 #include <asm/contregs.h>
9 #include <asm/page.h>
10 #include <asm/ptrace.h>
11 #include <asm/psr.h>
12 #include <asm/smp.h>
13 #include <asm/asi.h>
14 #include <asm/winmacro.h>
15 #include <asm/asmmacro.h>
16 #include <asm/thread_info.h>
18 /* WARNING: This routine is hairy and _very_ complicated, but it
19  *          must be as fast as possible as it handles the allocation
20  *          of register windows to the user and kernel.  If you touch
21  *          this code be _very_ careful as many other pieces of the
22  *          kernel depend upon how this code behaves.  You have been
23  *          duly warned...
24  */
26 /* We define macro's for registers which have a fixed
27  * meaning throughout this entire routine.  The 'T' in
28  * the comments mean that the register can only be
29  * accessed when in the 'trap' window, 'G' means
30  * accessible in any window.  Do not change these registers
31  * after they have been set, until you are ready to return
32  * from the trap.
33  */
34 #define t_psr       l0 /* %psr at trap time                     T */
35 #define t_pc        l1 /* PC for trap return                    T */
36 #define t_npc       l2 /* NPC for trap return                   T */
37 #define t_wim       l3 /* %wim at trap time                     T */
38 #define saved_g5    l5 /* Global save register                  T */
39 #define saved_g6    l6 /* Global save register                  T */
40 #define curptr      g6 /* Gets set to 'current' then stays      G */
42 /* Now registers whose values can change within the handler.      */
43 #define twin_tmp    l4 /* Temp reg, only usable in trap window  T */
44 #define glob_tmp    g5 /* Global temporary reg, usable anywhere G */
46         .text
47         .align  4
48         /* BEGINNING OF PATCH INSTRUCTIONS */
49         /* On a 7-window Sparc the boot code patches spnwin_*
50          * instructions with the following ones.
51          */
52         .globl  spnwin_patch1_7win, spnwin_patch2_7win, spnwin_patch3_7win
53 spnwin_patch1_7win:     sll     %t_wim, 6, %glob_tmp
54 spnwin_patch2_7win:     and     %glob_tmp, 0x7f, %glob_tmp
55 spnwin_patch3_7win:     and     %twin_tmp, 0x7f, %twin_tmp
56         /* END OF PATCH INSTRUCTIONS */
58         /* The trap entry point has done the following:
59          *
60          * rd    %psr, %l0
61          * rd    %wim, %l3
62          * b     spill_window_entry
63          * andcc %l0, PSR_PS, %g0
64          */
66         /* Datum current_thread_info->uwinmask contains at all times a bitmask
67          * where if any user windows are active, at least one bit will
68          * be set in to mask.  If no user windows are active, the bitmask
69          * will be all zeroes.
70          */
71         .globl  spill_window_entry 
72         .globl  spnwin_patch1, spnwin_patch2, spnwin_patch3
73 spill_window_entry:
74         /* LOCATION: Trap Window */
76         mov     %g5, %saved_g5          ! save away global temp register
77         mov     %g6, %saved_g6          ! save away 'current' ptr register
79         /* Compute what the new %wim will be if we save the
80          * window properly in this trap handler.
81          *
82          * newwim = ((%wim>>1) | (%wim<<(nwindows - 1)));
83          */
84                 srl     %t_wim, 0x1, %twin_tmp
85 spnwin_patch1:  sll     %t_wim, 7, %glob_tmp
86                 or      %glob_tmp, %twin_tmp, %glob_tmp
87 spnwin_patch2:  and     %glob_tmp, 0xff, %glob_tmp
89         /* The trap entry point has set the condition codes
90          * up for us to see if this is from user or kernel.
91          * Get the load of 'curptr' out of the way.
92          */
93         LOAD_CURRENT(curptr, twin_tmp)
95         andcc   %t_psr, PSR_PS, %g0
96         be,a    spwin_fromuser                          ! all user wins, branch
97          save   %g0, %g0, %g0                           ! Go where saving will occur
98         
99         /* See if any user windows are active in the set. */
100         ld      [%curptr + TI_UWINMASK], %twin_tmp      ! grab win mask
101         orcc    %g0, %twin_tmp, %g0                     ! check for set bits
102         bne     spwin_exist_uwins                       ! yep, there are some
103          andn   %twin_tmp, %glob_tmp, %twin_tmp         ! compute new uwinmask
105         /* Save into the window which must be saved and do it.
106          * Basically if we are here, this means that we trapped
107          * from kernel mode with only kernel windows in the register
108          * file.
109          */
110         save    %g0, %g0, %g0           ! save into the window to stash away
111         wr      %glob_tmp, 0x0, %wim    ! set new %wim, this is safe now
113 spwin_no_userwins_from_kernel:
114         /* LOCATION: Window to be saved */
116         STORE_WINDOW(sp)                ! stash the window
117         restore %g0, %g0, %g0           ! go back into trap window
119         /* LOCATION: Trap window */
120         mov     %saved_g5, %g5          ! restore %glob_tmp
121         mov     %saved_g6, %g6          ! restore %curptr
122         wr      %t_psr, 0x0, %psr       ! restore condition codes in %psr
123         WRITE_PAUSE                     ! waste some time
124         jmp     %t_pc                   ! Return from trap
125         rett    %t_npc                  ! we are done
127 spwin_exist_uwins:
128         /* LOCATION: Trap window */
130         /* Wow, user windows have to be dealt with, this is dirty
131          * and messy as all hell.  And difficult to follow if you
132          * are approaching the infamous register window trap handling
133          * problem for the first time. DON'T LOOK!
134          *
135          * Note that how the execution path works out, the new %wim
136          * will be left for us in the global temporary register,
137          * %glob_tmp.  We cannot set the new %wim first because we
138          * need to save into the appropriate window without inducing
139          * a trap (traps are off, we'd get a watchdog wheee)...
140          * But first, store the new user window mask calculated
141          * above.
142          */
143         st      %twin_tmp, [%curptr + TI_UWINMASK]
144         save    %g0, %g0, %g0           ! Go to where the saving will occur
146 spwin_fromuser:
147         /* LOCATION: Window to be saved */
148         wr      %glob_tmp, 0x0, %wim    ! Now it is safe to set new %wim
150         /* LOCATION: Window to be saved */
152         /* This instruction branches to a routine which will check
153          * to validity of the users stack pointer by whatever means
154          * are necessary.  This means that this is architecture
155          * specific and thus this branch instruction will need to
156          * be patched at boot time once the machine type is known.
157          * This routine _shall not_ touch %curptr under any
158          * circumstances whatsoever!  It will branch back to the
159          * label 'spwin_good_ustack' if the stack is ok but still
160          * needs to be dumped (SRMMU for instance will not need to
161          * do this) or 'spwin_finish_up' if the stack is ok and the
162          * registers have already been saved.  If the stack is found
163          * to be bogus for some reason the routine shall branch to
164          * the label 'spwin_user_stack_is_bolixed' which will take
165          * care of things at that point.
166          */
167         b       spwin_srmmu_stackchk
168          andcc  %sp, 0x7, %g0
170 spwin_good_ustack:
171         /* LOCATION: Window to be saved */
173         /* The users stack is ok and we can safely save it at
174          * %sp.
175          */
176         STORE_WINDOW(sp)
178 spwin_finish_up:
179         restore %g0, %g0, %g0           /* Back to trap window. */
181         /* LOCATION: Trap window */
183         /* We have spilled successfully, and we have properly stored
184          * the appropriate window onto the stack.
185          */
187         /* Restore saved globals */
188         mov     %saved_g5, %g5
189         mov     %saved_g6, %g6
191         wr      %t_psr, 0x0, %psr
192         WRITE_PAUSE
193         jmp     %t_pc
194         rett    %t_npc
196 spwin_user_stack_is_bolixed:
197         /* LOCATION: Window to be saved */
199         /* Wheee, user has trashed his/her stack.  We have to decide
200          * how to proceed based upon whether we came from kernel mode
201          * or not.  If we came from kernel mode, toss the window into
202          * a special buffer and proceed, the kernel _needs_ a window
203          * and we could be in an interrupt handler so timing is crucial.
204          * If we came from user land we build a full stack frame and call
205          * c-code to gun down the process.
206          */
207         rd      %psr, %glob_tmp
208         andcc   %glob_tmp, PSR_PS, %g0
209         bne     spwin_bad_ustack_from_kernel
210          nop
212         /* Oh well, throw this one window into the per-task window
213          * buffer, the first one.
214          */
215         st      %sp, [%curptr + TI_RWIN_SPTRS]
216         STORE_WINDOW(curptr + TI_REG_WINDOW)
217         restore %g0, %g0, %g0
219         /* LOCATION: Trap Window */
221         /* Back in the trap window, update winbuffer save count. */
222         mov     1, %twin_tmp
223         st      %twin_tmp, [%curptr + TI_W_SAVED]
225                 /* Compute new user window mask.  What we are basically
226                  * doing is taking two windows, the invalid one at trap
227                  * time and the one we attempted to throw onto the users
228                  * stack, and saying that everything else is an ok user
229                  * window.  umask = ((~(%t_wim | %wim)) & valid_wim_bits)
230                  */
231                 rd      %wim, %twin_tmp
232                 or      %twin_tmp, %t_wim, %twin_tmp
233                 not     %twin_tmp
234 spnwin_patch3:  and     %twin_tmp, 0xff, %twin_tmp      ! patched on 7win Sparcs
235                 st      %twin_tmp, [%curptr + TI_UWINMASK]
237 #define STACK_OFFSET (THREAD_SIZE - TRACEREG_SZ - STACKFRAME_SZ)
239         sethi   %hi(STACK_OFFSET), %sp
240         or      %sp, %lo(STACK_OFFSET), %sp
241         add     %curptr, %sp, %sp
243         /* Restore the saved globals and build a pt_regs frame. */
244         mov     %saved_g5, %g5
245         mov     %saved_g6, %g6
246         STORE_PT_ALL(sp, t_psr, t_pc, t_npc, g1)
248         sethi   %hi(STACK_OFFSET), %g6
249         or      %g6, %lo(STACK_OFFSET), %g6
250         sub     %sp, %g6, %g6           ! curptr
252         /* Turn on traps and call c-code to deal with it. */
253         wr      %t_psr, PSR_ET, %psr
254         nop
255         call    window_overflow_fault
256          nop
258         /* Return from trap if C-code actually fixes things, if it
259          * doesn't then we never get this far as the process will
260          * be given the look of death from Commander Peanut.
261          */
262         b       ret_trap_entry
263          clr    %l6
265 spwin_bad_ustack_from_kernel:
266         /* LOCATION: Window to be saved */
268         /* The kernel provoked a spill window trap, but the window we
269          * need to save is a user one and the process has trashed its
270          * stack pointer.  We need to be quick, so we throw it into
271          * a per-process window buffer until we can properly handle
272          * this later on.
273          */
274         SAVE_BOLIXED_USER_STACK(curptr, glob_tmp)
275         restore %g0, %g0, %g0
277         /* LOCATION: Trap window */
279         /* Restore globals, condition codes in the %psr and
280          * return from trap.  Note, restoring %g6 when returning
281          * to kernel mode is not necessarily these days. ;-)
282          */
283         mov     %saved_g5, %g5
284         mov     %saved_g6, %g6
286         wr      %t_psr, 0x0, %psr
287         WRITE_PAUSE
289         jmp     %t_pc
290         rett    %t_npc
292 /* Undefine the register macros which would only cause trouble
293  * if used below.  This helps find 'stupid' coding errors that
294  * produce 'odd' behavior.  The routines below are allowed to
295  * make usage of glob_tmp and t_psr so we leave them defined.
296  */
297 #undef twin_tmp
298 #undef curptr
299 #undef t_pc
300 #undef t_npc
301 #undef t_wim
302 #undef saved_g5
303 #undef saved_g6
305 /* Now come the per-architecture window overflow stack checking routines.
306  * As noted above %curptr cannot be touched by this routine at all.
307  */
309         /* This is a generic SRMMU routine.  As far as I know this
310          * works for all current v8/srmmu implementations, we'll
311          * see...
312          */
313         .globl  spwin_srmmu_stackchk
314 spwin_srmmu_stackchk:
315         /* LOCATION: Window to be saved on the stack */
317         /* Because of SMP concerns and speed we play a trick.
318          * We disable fault traps in the MMU control register,
319          * Execute the stores, then check the fault registers
320          * to see what happens.  I can hear Linus now
321          * "disgusting... broken hardware...".
322          *
323          * But first, check to see if the users stack has ended
324          * up in kernel vma, then we would succeed for the 'wrong'
325          * reason... ;(  Note that the 'sethi' below assumes the
326          * kernel is page aligned, which should always be the case.
327          */
328         /* Check results of callers andcc %sp, 0x7, %g0 */
329         bne     spwin_user_stack_is_bolixed
330          sethi   %hi(PAGE_OFFSET), %glob_tmp
331         cmp     %glob_tmp, %sp
332         bleu    spwin_user_stack_is_bolixed
333          mov    AC_M_SFSR, %glob_tmp
335         /* Clear the fault status and turn on the no_fault bit. */
336 LEON_PI(lda     [%glob_tmp] ASI_LEON_MMUREGS, %g0)      ! eat SFSR
337 SUN_PI_(lda     [%glob_tmp] ASI_M_MMUREGS, %g0)         ! eat SFSR
339 LEON_PI(lda     [%g0] ASI_LEON_MMUREGS, %glob_tmp)      ! read MMU control
340 SUN_PI_(lda     [%g0] ASI_M_MMUREGS, %glob_tmp)         ! read MMU control
341         or      %glob_tmp, 0x2, %glob_tmp               ! or in no_fault bit
342 LEON_PI(sta     %glob_tmp, [%g0] ASI_LEON_MMUREGS)      ! set it
343 SUN_PI_(sta     %glob_tmp, [%g0] ASI_M_MMUREGS)         ! set it
345         /* Dump the registers and cross fingers. */
346         STORE_WINDOW(sp)
348         /* Clear the no_fault bit and check the status. */
349         andn    %glob_tmp, 0x2, %glob_tmp
350 LEON_PI(sta     %glob_tmp, [%g0] ASI_LEON_MMUREGS)
351 SUN_PI_(sta     %glob_tmp, [%g0] ASI_M_MMUREGS)
353         mov     AC_M_SFAR, %glob_tmp
354 LEON_PI(lda     [%glob_tmp] ASI_LEON_MMUREGS, %g0)
355 SUN_PI_(lda     [%glob_tmp] ASI_M_MMUREGS, %g0)
357         mov     AC_M_SFSR, %glob_tmp
358 LEON_PI(lda     [%glob_tmp] ASI_LEON_MMUREGS, %glob_tmp)
359 SUN_PI_(lda     [%glob_tmp] ASI_M_MMUREGS, %glob_tmp)
360         andcc   %glob_tmp, 0x2, %g0                     ! did we fault?
361         be,a    spwin_finish_up + 0x4                   ! cool beans, success
362          restore %g0, %g0, %g0
364         rd      %psr, %glob_tmp
365         b       spwin_user_stack_is_bolixed + 0x4       ! we faulted, ugh
366          nop