Linux 5.8-rc4
[linux/fpc-iii.git] / fs / btrfs / block-group.c
blobc037ef514b64a015859475f56ee861bedbf14b47
1 // SPDX-License-Identifier: GPL-2.0
3 #include "misc.h"
4 #include "ctree.h"
5 #include "block-group.h"
6 #include "space-info.h"
7 #include "disk-io.h"
8 #include "free-space-cache.h"
9 #include "free-space-tree.h"
10 #include "volumes.h"
11 #include "transaction.h"
12 #include "ref-verify.h"
13 #include "sysfs.h"
14 #include "tree-log.h"
15 #include "delalloc-space.h"
16 #include "discard.h"
17 #include "raid56.h"
20 * Return target flags in extended format or 0 if restripe for this chunk_type
21 * is not in progress
23 * Should be called with balance_lock held
25 static u64 get_restripe_target(struct btrfs_fs_info *fs_info, u64 flags)
27 struct btrfs_balance_control *bctl = fs_info->balance_ctl;
28 u64 target = 0;
30 if (!bctl)
31 return 0;
33 if (flags & BTRFS_BLOCK_GROUP_DATA &&
34 bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) {
35 target = BTRFS_BLOCK_GROUP_DATA | bctl->data.target;
36 } else if (flags & BTRFS_BLOCK_GROUP_SYSTEM &&
37 bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) {
38 target = BTRFS_BLOCK_GROUP_SYSTEM | bctl->sys.target;
39 } else if (flags & BTRFS_BLOCK_GROUP_METADATA &&
40 bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) {
41 target = BTRFS_BLOCK_GROUP_METADATA | bctl->meta.target;
44 return target;
48 * @flags: available profiles in extended format (see ctree.h)
50 * Return reduced profile in chunk format. If profile changing is in progress
51 * (either running or paused) picks the target profile (if it's already
52 * available), otherwise falls back to plain reducing.
54 static u64 btrfs_reduce_alloc_profile(struct btrfs_fs_info *fs_info, u64 flags)
56 u64 num_devices = fs_info->fs_devices->rw_devices;
57 u64 target;
58 u64 raid_type;
59 u64 allowed = 0;
62 * See if restripe for this chunk_type is in progress, if so try to
63 * reduce to the target profile
65 spin_lock(&fs_info->balance_lock);
66 target = get_restripe_target(fs_info, flags);
67 if (target) {
68 /* Pick target profile only if it's already available */
69 if ((flags & target) & BTRFS_EXTENDED_PROFILE_MASK) {
70 spin_unlock(&fs_info->balance_lock);
71 return extended_to_chunk(target);
74 spin_unlock(&fs_info->balance_lock);
76 /* First, mask out the RAID levels which aren't possible */
77 for (raid_type = 0; raid_type < BTRFS_NR_RAID_TYPES; raid_type++) {
78 if (num_devices >= btrfs_raid_array[raid_type].devs_min)
79 allowed |= btrfs_raid_array[raid_type].bg_flag;
81 allowed &= flags;
83 if (allowed & BTRFS_BLOCK_GROUP_RAID6)
84 allowed = BTRFS_BLOCK_GROUP_RAID6;
85 else if (allowed & BTRFS_BLOCK_GROUP_RAID5)
86 allowed = BTRFS_BLOCK_GROUP_RAID5;
87 else if (allowed & BTRFS_BLOCK_GROUP_RAID10)
88 allowed = BTRFS_BLOCK_GROUP_RAID10;
89 else if (allowed & BTRFS_BLOCK_GROUP_RAID1)
90 allowed = BTRFS_BLOCK_GROUP_RAID1;
91 else if (allowed & BTRFS_BLOCK_GROUP_RAID0)
92 allowed = BTRFS_BLOCK_GROUP_RAID0;
94 flags &= ~BTRFS_BLOCK_GROUP_PROFILE_MASK;
96 return extended_to_chunk(flags | allowed);
99 u64 btrfs_get_alloc_profile(struct btrfs_fs_info *fs_info, u64 orig_flags)
101 unsigned seq;
102 u64 flags;
104 do {
105 flags = orig_flags;
106 seq = read_seqbegin(&fs_info->profiles_lock);
108 if (flags & BTRFS_BLOCK_GROUP_DATA)
109 flags |= fs_info->avail_data_alloc_bits;
110 else if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
111 flags |= fs_info->avail_system_alloc_bits;
112 else if (flags & BTRFS_BLOCK_GROUP_METADATA)
113 flags |= fs_info->avail_metadata_alloc_bits;
114 } while (read_seqretry(&fs_info->profiles_lock, seq));
116 return btrfs_reduce_alloc_profile(fs_info, flags);
119 void btrfs_get_block_group(struct btrfs_block_group *cache)
121 atomic_inc(&cache->count);
124 void btrfs_put_block_group(struct btrfs_block_group *cache)
126 if (atomic_dec_and_test(&cache->count)) {
127 WARN_ON(cache->pinned > 0);
128 WARN_ON(cache->reserved > 0);
131 * A block_group shouldn't be on the discard_list anymore.
132 * Remove the block_group from the discard_list to prevent us
133 * from causing a panic due to NULL pointer dereference.
135 if (WARN_ON(!list_empty(&cache->discard_list)))
136 btrfs_discard_cancel_work(&cache->fs_info->discard_ctl,
137 cache);
140 * If not empty, someone is still holding mutex of
141 * full_stripe_lock, which can only be released by caller.
142 * And it will definitely cause use-after-free when caller
143 * tries to release full stripe lock.
145 * No better way to resolve, but only to warn.
147 WARN_ON(!RB_EMPTY_ROOT(&cache->full_stripe_locks_root.root));
148 kfree(cache->free_space_ctl);
149 kfree(cache);
154 * This adds the block group to the fs_info rb tree for the block group cache
156 static int btrfs_add_block_group_cache(struct btrfs_fs_info *info,
157 struct btrfs_block_group *block_group)
159 struct rb_node **p;
160 struct rb_node *parent = NULL;
161 struct btrfs_block_group *cache;
163 ASSERT(block_group->length != 0);
165 spin_lock(&info->block_group_cache_lock);
166 p = &info->block_group_cache_tree.rb_node;
168 while (*p) {
169 parent = *p;
170 cache = rb_entry(parent, struct btrfs_block_group, cache_node);
171 if (block_group->start < cache->start) {
172 p = &(*p)->rb_left;
173 } else if (block_group->start > cache->start) {
174 p = &(*p)->rb_right;
175 } else {
176 spin_unlock(&info->block_group_cache_lock);
177 return -EEXIST;
181 rb_link_node(&block_group->cache_node, parent, p);
182 rb_insert_color(&block_group->cache_node,
183 &info->block_group_cache_tree);
185 if (info->first_logical_byte > block_group->start)
186 info->first_logical_byte = block_group->start;
188 spin_unlock(&info->block_group_cache_lock);
190 return 0;
194 * This will return the block group at or after bytenr if contains is 0, else
195 * it will return the block group that contains the bytenr
197 static struct btrfs_block_group *block_group_cache_tree_search(
198 struct btrfs_fs_info *info, u64 bytenr, int contains)
200 struct btrfs_block_group *cache, *ret = NULL;
201 struct rb_node *n;
202 u64 end, start;
204 spin_lock(&info->block_group_cache_lock);
205 n = info->block_group_cache_tree.rb_node;
207 while (n) {
208 cache = rb_entry(n, struct btrfs_block_group, cache_node);
209 end = cache->start + cache->length - 1;
210 start = cache->start;
212 if (bytenr < start) {
213 if (!contains && (!ret || start < ret->start))
214 ret = cache;
215 n = n->rb_left;
216 } else if (bytenr > start) {
217 if (contains && bytenr <= end) {
218 ret = cache;
219 break;
221 n = n->rb_right;
222 } else {
223 ret = cache;
224 break;
227 if (ret) {
228 btrfs_get_block_group(ret);
229 if (bytenr == 0 && info->first_logical_byte > ret->start)
230 info->first_logical_byte = ret->start;
232 spin_unlock(&info->block_group_cache_lock);
234 return ret;
238 * Return the block group that starts at or after bytenr
240 struct btrfs_block_group *btrfs_lookup_first_block_group(
241 struct btrfs_fs_info *info, u64 bytenr)
243 return block_group_cache_tree_search(info, bytenr, 0);
247 * Return the block group that contains the given bytenr
249 struct btrfs_block_group *btrfs_lookup_block_group(
250 struct btrfs_fs_info *info, u64 bytenr)
252 return block_group_cache_tree_search(info, bytenr, 1);
255 struct btrfs_block_group *btrfs_next_block_group(
256 struct btrfs_block_group *cache)
258 struct btrfs_fs_info *fs_info = cache->fs_info;
259 struct rb_node *node;
261 spin_lock(&fs_info->block_group_cache_lock);
263 /* If our block group was removed, we need a full search. */
264 if (RB_EMPTY_NODE(&cache->cache_node)) {
265 const u64 next_bytenr = cache->start + cache->length;
267 spin_unlock(&fs_info->block_group_cache_lock);
268 btrfs_put_block_group(cache);
269 cache = btrfs_lookup_first_block_group(fs_info, next_bytenr); return cache;
271 node = rb_next(&cache->cache_node);
272 btrfs_put_block_group(cache);
273 if (node) {
274 cache = rb_entry(node, struct btrfs_block_group, cache_node);
275 btrfs_get_block_group(cache);
276 } else
277 cache = NULL;
278 spin_unlock(&fs_info->block_group_cache_lock);
279 return cache;
282 bool btrfs_inc_nocow_writers(struct btrfs_fs_info *fs_info, u64 bytenr)
284 struct btrfs_block_group *bg;
285 bool ret = true;
287 bg = btrfs_lookup_block_group(fs_info, bytenr);
288 if (!bg)
289 return false;
291 spin_lock(&bg->lock);
292 if (bg->ro)
293 ret = false;
294 else
295 atomic_inc(&bg->nocow_writers);
296 spin_unlock(&bg->lock);
298 /* No put on block group, done by btrfs_dec_nocow_writers */
299 if (!ret)
300 btrfs_put_block_group(bg);
302 return ret;
305 void btrfs_dec_nocow_writers(struct btrfs_fs_info *fs_info, u64 bytenr)
307 struct btrfs_block_group *bg;
309 bg = btrfs_lookup_block_group(fs_info, bytenr);
310 ASSERT(bg);
311 if (atomic_dec_and_test(&bg->nocow_writers))
312 wake_up_var(&bg->nocow_writers);
314 * Once for our lookup and once for the lookup done by a previous call
315 * to btrfs_inc_nocow_writers()
317 btrfs_put_block_group(bg);
318 btrfs_put_block_group(bg);
321 void btrfs_wait_nocow_writers(struct btrfs_block_group *bg)
323 wait_var_event(&bg->nocow_writers, !atomic_read(&bg->nocow_writers));
326 void btrfs_dec_block_group_reservations(struct btrfs_fs_info *fs_info,
327 const u64 start)
329 struct btrfs_block_group *bg;
331 bg = btrfs_lookup_block_group(fs_info, start);
332 ASSERT(bg);
333 if (atomic_dec_and_test(&bg->reservations))
334 wake_up_var(&bg->reservations);
335 btrfs_put_block_group(bg);
338 void btrfs_wait_block_group_reservations(struct btrfs_block_group *bg)
340 struct btrfs_space_info *space_info = bg->space_info;
342 ASSERT(bg->ro);
344 if (!(bg->flags & BTRFS_BLOCK_GROUP_DATA))
345 return;
348 * Our block group is read only but before we set it to read only,
349 * some task might have had allocated an extent from it already, but it
350 * has not yet created a respective ordered extent (and added it to a
351 * root's list of ordered extents).
352 * Therefore wait for any task currently allocating extents, since the
353 * block group's reservations counter is incremented while a read lock
354 * on the groups' semaphore is held and decremented after releasing
355 * the read access on that semaphore and creating the ordered extent.
357 down_write(&space_info->groups_sem);
358 up_write(&space_info->groups_sem);
360 wait_var_event(&bg->reservations, !atomic_read(&bg->reservations));
363 struct btrfs_caching_control *btrfs_get_caching_control(
364 struct btrfs_block_group *cache)
366 struct btrfs_caching_control *ctl;
368 spin_lock(&cache->lock);
369 if (!cache->caching_ctl) {
370 spin_unlock(&cache->lock);
371 return NULL;
374 ctl = cache->caching_ctl;
375 refcount_inc(&ctl->count);
376 spin_unlock(&cache->lock);
377 return ctl;
380 void btrfs_put_caching_control(struct btrfs_caching_control *ctl)
382 if (refcount_dec_and_test(&ctl->count))
383 kfree(ctl);
387 * When we wait for progress in the block group caching, its because our
388 * allocation attempt failed at least once. So, we must sleep and let some
389 * progress happen before we try again.
391 * This function will sleep at least once waiting for new free space to show
392 * up, and then it will check the block group free space numbers for our min
393 * num_bytes. Another option is to have it go ahead and look in the rbtree for
394 * a free extent of a given size, but this is a good start.
396 * Callers of this must check if cache->cached == BTRFS_CACHE_ERROR before using
397 * any of the information in this block group.
399 void btrfs_wait_block_group_cache_progress(struct btrfs_block_group *cache,
400 u64 num_bytes)
402 struct btrfs_caching_control *caching_ctl;
404 caching_ctl = btrfs_get_caching_control(cache);
405 if (!caching_ctl)
406 return;
408 wait_event(caching_ctl->wait, btrfs_block_group_done(cache) ||
409 (cache->free_space_ctl->free_space >= num_bytes));
411 btrfs_put_caching_control(caching_ctl);
414 int btrfs_wait_block_group_cache_done(struct btrfs_block_group *cache)
416 struct btrfs_caching_control *caching_ctl;
417 int ret = 0;
419 caching_ctl = btrfs_get_caching_control(cache);
420 if (!caching_ctl)
421 return (cache->cached == BTRFS_CACHE_ERROR) ? -EIO : 0;
423 wait_event(caching_ctl->wait, btrfs_block_group_done(cache));
424 if (cache->cached == BTRFS_CACHE_ERROR)
425 ret = -EIO;
426 btrfs_put_caching_control(caching_ctl);
427 return ret;
430 #ifdef CONFIG_BTRFS_DEBUG
431 static void fragment_free_space(struct btrfs_block_group *block_group)
433 struct btrfs_fs_info *fs_info = block_group->fs_info;
434 u64 start = block_group->start;
435 u64 len = block_group->length;
436 u64 chunk = block_group->flags & BTRFS_BLOCK_GROUP_METADATA ?
437 fs_info->nodesize : fs_info->sectorsize;
438 u64 step = chunk << 1;
440 while (len > chunk) {
441 btrfs_remove_free_space(block_group, start, chunk);
442 start += step;
443 if (len < step)
444 len = 0;
445 else
446 len -= step;
449 #endif
452 * This is only called by btrfs_cache_block_group, since we could have freed
453 * extents we need to check the pinned_extents for any extents that can't be
454 * used yet since their free space will be released as soon as the transaction
455 * commits.
457 u64 add_new_free_space(struct btrfs_block_group *block_group, u64 start, u64 end)
459 struct btrfs_fs_info *info = block_group->fs_info;
460 u64 extent_start, extent_end, size, total_added = 0;
461 int ret;
463 while (start < end) {
464 ret = find_first_extent_bit(&info->excluded_extents, start,
465 &extent_start, &extent_end,
466 EXTENT_DIRTY | EXTENT_UPTODATE,
467 NULL);
468 if (ret)
469 break;
471 if (extent_start <= start) {
472 start = extent_end + 1;
473 } else if (extent_start > start && extent_start < end) {
474 size = extent_start - start;
475 total_added += size;
476 ret = btrfs_add_free_space_async_trimmed(block_group,
477 start, size);
478 BUG_ON(ret); /* -ENOMEM or logic error */
479 start = extent_end + 1;
480 } else {
481 break;
485 if (start < end) {
486 size = end - start;
487 total_added += size;
488 ret = btrfs_add_free_space_async_trimmed(block_group, start,
489 size);
490 BUG_ON(ret); /* -ENOMEM or logic error */
493 return total_added;
496 static int load_extent_tree_free(struct btrfs_caching_control *caching_ctl)
498 struct btrfs_block_group *block_group = caching_ctl->block_group;
499 struct btrfs_fs_info *fs_info = block_group->fs_info;
500 struct btrfs_root *extent_root = fs_info->extent_root;
501 struct btrfs_path *path;
502 struct extent_buffer *leaf;
503 struct btrfs_key key;
504 u64 total_found = 0;
505 u64 last = 0;
506 u32 nritems;
507 int ret;
508 bool wakeup = true;
510 path = btrfs_alloc_path();
511 if (!path)
512 return -ENOMEM;
514 last = max_t(u64, block_group->start, BTRFS_SUPER_INFO_OFFSET);
516 #ifdef CONFIG_BTRFS_DEBUG
518 * If we're fragmenting we don't want to make anybody think we can
519 * allocate from this block group until we've had a chance to fragment
520 * the free space.
522 if (btrfs_should_fragment_free_space(block_group))
523 wakeup = false;
524 #endif
526 * We don't want to deadlock with somebody trying to allocate a new
527 * extent for the extent root while also trying to search the extent
528 * root to add free space. So we skip locking and search the commit
529 * root, since its read-only
531 path->skip_locking = 1;
532 path->search_commit_root = 1;
533 path->reada = READA_FORWARD;
535 key.objectid = last;
536 key.offset = 0;
537 key.type = BTRFS_EXTENT_ITEM_KEY;
539 next:
540 ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
541 if (ret < 0)
542 goto out;
544 leaf = path->nodes[0];
545 nritems = btrfs_header_nritems(leaf);
547 while (1) {
548 if (btrfs_fs_closing(fs_info) > 1) {
549 last = (u64)-1;
550 break;
553 if (path->slots[0] < nritems) {
554 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
555 } else {
556 ret = btrfs_find_next_key(extent_root, path, &key, 0, 0);
557 if (ret)
558 break;
560 if (need_resched() ||
561 rwsem_is_contended(&fs_info->commit_root_sem)) {
562 if (wakeup)
563 caching_ctl->progress = last;
564 btrfs_release_path(path);
565 up_read(&fs_info->commit_root_sem);
566 mutex_unlock(&caching_ctl->mutex);
567 cond_resched();
568 mutex_lock(&caching_ctl->mutex);
569 down_read(&fs_info->commit_root_sem);
570 goto next;
573 ret = btrfs_next_leaf(extent_root, path);
574 if (ret < 0)
575 goto out;
576 if (ret)
577 break;
578 leaf = path->nodes[0];
579 nritems = btrfs_header_nritems(leaf);
580 continue;
583 if (key.objectid < last) {
584 key.objectid = last;
585 key.offset = 0;
586 key.type = BTRFS_EXTENT_ITEM_KEY;
588 if (wakeup)
589 caching_ctl->progress = last;
590 btrfs_release_path(path);
591 goto next;
594 if (key.objectid < block_group->start) {
595 path->slots[0]++;
596 continue;
599 if (key.objectid >= block_group->start + block_group->length)
600 break;
602 if (key.type == BTRFS_EXTENT_ITEM_KEY ||
603 key.type == BTRFS_METADATA_ITEM_KEY) {
604 total_found += add_new_free_space(block_group, last,
605 key.objectid);
606 if (key.type == BTRFS_METADATA_ITEM_KEY)
607 last = key.objectid +
608 fs_info->nodesize;
609 else
610 last = key.objectid + key.offset;
612 if (total_found > CACHING_CTL_WAKE_UP) {
613 total_found = 0;
614 if (wakeup)
615 wake_up(&caching_ctl->wait);
618 path->slots[0]++;
620 ret = 0;
622 total_found += add_new_free_space(block_group, last,
623 block_group->start + block_group->length);
624 caching_ctl->progress = (u64)-1;
626 out:
627 btrfs_free_path(path);
628 return ret;
631 static noinline void caching_thread(struct btrfs_work *work)
633 struct btrfs_block_group *block_group;
634 struct btrfs_fs_info *fs_info;
635 struct btrfs_caching_control *caching_ctl;
636 int ret;
638 caching_ctl = container_of(work, struct btrfs_caching_control, work);
639 block_group = caching_ctl->block_group;
640 fs_info = block_group->fs_info;
642 mutex_lock(&caching_ctl->mutex);
643 down_read(&fs_info->commit_root_sem);
645 if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE))
646 ret = load_free_space_tree(caching_ctl);
647 else
648 ret = load_extent_tree_free(caching_ctl);
650 spin_lock(&block_group->lock);
651 block_group->caching_ctl = NULL;
652 block_group->cached = ret ? BTRFS_CACHE_ERROR : BTRFS_CACHE_FINISHED;
653 spin_unlock(&block_group->lock);
655 #ifdef CONFIG_BTRFS_DEBUG
656 if (btrfs_should_fragment_free_space(block_group)) {
657 u64 bytes_used;
659 spin_lock(&block_group->space_info->lock);
660 spin_lock(&block_group->lock);
661 bytes_used = block_group->length - block_group->used;
662 block_group->space_info->bytes_used += bytes_used >> 1;
663 spin_unlock(&block_group->lock);
664 spin_unlock(&block_group->space_info->lock);
665 fragment_free_space(block_group);
667 #endif
669 caching_ctl->progress = (u64)-1;
671 up_read(&fs_info->commit_root_sem);
672 btrfs_free_excluded_extents(block_group);
673 mutex_unlock(&caching_ctl->mutex);
675 wake_up(&caching_ctl->wait);
677 btrfs_put_caching_control(caching_ctl);
678 btrfs_put_block_group(block_group);
681 int btrfs_cache_block_group(struct btrfs_block_group *cache, int load_cache_only)
683 DEFINE_WAIT(wait);
684 struct btrfs_fs_info *fs_info = cache->fs_info;
685 struct btrfs_caching_control *caching_ctl;
686 int ret = 0;
688 caching_ctl = kzalloc(sizeof(*caching_ctl), GFP_NOFS);
689 if (!caching_ctl)
690 return -ENOMEM;
692 INIT_LIST_HEAD(&caching_ctl->list);
693 mutex_init(&caching_ctl->mutex);
694 init_waitqueue_head(&caching_ctl->wait);
695 caching_ctl->block_group = cache;
696 caching_ctl->progress = cache->start;
697 refcount_set(&caching_ctl->count, 1);
698 btrfs_init_work(&caching_ctl->work, caching_thread, NULL, NULL);
700 spin_lock(&cache->lock);
702 * This should be a rare occasion, but this could happen I think in the
703 * case where one thread starts to load the space cache info, and then
704 * some other thread starts a transaction commit which tries to do an
705 * allocation while the other thread is still loading the space cache
706 * info. The previous loop should have kept us from choosing this block
707 * group, but if we've moved to the state where we will wait on caching
708 * block groups we need to first check if we're doing a fast load here,
709 * so we can wait for it to finish, otherwise we could end up allocating
710 * from a block group who's cache gets evicted for one reason or
711 * another.
713 while (cache->cached == BTRFS_CACHE_FAST) {
714 struct btrfs_caching_control *ctl;
716 ctl = cache->caching_ctl;
717 refcount_inc(&ctl->count);
718 prepare_to_wait(&ctl->wait, &wait, TASK_UNINTERRUPTIBLE);
719 spin_unlock(&cache->lock);
721 schedule();
723 finish_wait(&ctl->wait, &wait);
724 btrfs_put_caching_control(ctl);
725 spin_lock(&cache->lock);
728 if (cache->cached != BTRFS_CACHE_NO) {
729 spin_unlock(&cache->lock);
730 kfree(caching_ctl);
731 return 0;
733 WARN_ON(cache->caching_ctl);
734 cache->caching_ctl = caching_ctl;
735 cache->cached = BTRFS_CACHE_FAST;
736 spin_unlock(&cache->lock);
738 if (btrfs_test_opt(fs_info, SPACE_CACHE)) {
739 mutex_lock(&caching_ctl->mutex);
740 ret = load_free_space_cache(cache);
742 spin_lock(&cache->lock);
743 if (ret == 1) {
744 cache->caching_ctl = NULL;
745 cache->cached = BTRFS_CACHE_FINISHED;
746 cache->last_byte_to_unpin = (u64)-1;
747 caching_ctl->progress = (u64)-1;
748 } else {
749 if (load_cache_only) {
750 cache->caching_ctl = NULL;
751 cache->cached = BTRFS_CACHE_NO;
752 } else {
753 cache->cached = BTRFS_CACHE_STARTED;
754 cache->has_caching_ctl = 1;
757 spin_unlock(&cache->lock);
758 #ifdef CONFIG_BTRFS_DEBUG
759 if (ret == 1 &&
760 btrfs_should_fragment_free_space(cache)) {
761 u64 bytes_used;
763 spin_lock(&cache->space_info->lock);
764 spin_lock(&cache->lock);
765 bytes_used = cache->length - cache->used;
766 cache->space_info->bytes_used += bytes_used >> 1;
767 spin_unlock(&cache->lock);
768 spin_unlock(&cache->space_info->lock);
769 fragment_free_space(cache);
771 #endif
772 mutex_unlock(&caching_ctl->mutex);
774 wake_up(&caching_ctl->wait);
775 if (ret == 1) {
776 btrfs_put_caching_control(caching_ctl);
777 btrfs_free_excluded_extents(cache);
778 return 0;
780 } else {
782 * We're either using the free space tree or no caching at all.
783 * Set cached to the appropriate value and wakeup any waiters.
785 spin_lock(&cache->lock);
786 if (load_cache_only) {
787 cache->caching_ctl = NULL;
788 cache->cached = BTRFS_CACHE_NO;
789 } else {
790 cache->cached = BTRFS_CACHE_STARTED;
791 cache->has_caching_ctl = 1;
793 spin_unlock(&cache->lock);
794 wake_up(&caching_ctl->wait);
797 if (load_cache_only) {
798 btrfs_put_caching_control(caching_ctl);
799 return 0;
802 down_write(&fs_info->commit_root_sem);
803 refcount_inc(&caching_ctl->count);
804 list_add_tail(&caching_ctl->list, &fs_info->caching_block_groups);
805 up_write(&fs_info->commit_root_sem);
807 btrfs_get_block_group(cache);
809 btrfs_queue_work(fs_info->caching_workers, &caching_ctl->work);
811 return ret;
814 static void clear_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags)
816 u64 extra_flags = chunk_to_extended(flags) &
817 BTRFS_EXTENDED_PROFILE_MASK;
819 write_seqlock(&fs_info->profiles_lock);
820 if (flags & BTRFS_BLOCK_GROUP_DATA)
821 fs_info->avail_data_alloc_bits &= ~extra_flags;
822 if (flags & BTRFS_BLOCK_GROUP_METADATA)
823 fs_info->avail_metadata_alloc_bits &= ~extra_flags;
824 if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
825 fs_info->avail_system_alloc_bits &= ~extra_flags;
826 write_sequnlock(&fs_info->profiles_lock);
830 * Clear incompat bits for the following feature(s):
832 * - RAID56 - in case there's neither RAID5 nor RAID6 profile block group
833 * in the whole filesystem
835 * - RAID1C34 - same as above for RAID1C3 and RAID1C4 block groups
837 static void clear_incompat_bg_bits(struct btrfs_fs_info *fs_info, u64 flags)
839 bool found_raid56 = false;
840 bool found_raid1c34 = false;
842 if ((flags & BTRFS_BLOCK_GROUP_RAID56_MASK) ||
843 (flags & BTRFS_BLOCK_GROUP_RAID1C3) ||
844 (flags & BTRFS_BLOCK_GROUP_RAID1C4)) {
845 struct list_head *head = &fs_info->space_info;
846 struct btrfs_space_info *sinfo;
848 list_for_each_entry_rcu(sinfo, head, list) {
849 down_read(&sinfo->groups_sem);
850 if (!list_empty(&sinfo->block_groups[BTRFS_RAID_RAID5]))
851 found_raid56 = true;
852 if (!list_empty(&sinfo->block_groups[BTRFS_RAID_RAID6]))
853 found_raid56 = true;
854 if (!list_empty(&sinfo->block_groups[BTRFS_RAID_RAID1C3]))
855 found_raid1c34 = true;
856 if (!list_empty(&sinfo->block_groups[BTRFS_RAID_RAID1C4]))
857 found_raid1c34 = true;
858 up_read(&sinfo->groups_sem);
860 if (!found_raid56)
861 btrfs_clear_fs_incompat(fs_info, RAID56);
862 if (!found_raid1c34)
863 btrfs_clear_fs_incompat(fs_info, RAID1C34);
867 static int remove_block_group_item(struct btrfs_trans_handle *trans,
868 struct btrfs_path *path,
869 struct btrfs_block_group *block_group)
871 struct btrfs_fs_info *fs_info = trans->fs_info;
872 struct btrfs_root *root;
873 struct btrfs_key key;
874 int ret;
876 root = fs_info->extent_root;
877 key.objectid = block_group->start;
878 key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
879 key.offset = block_group->length;
881 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
882 if (ret > 0)
883 ret = -ENOENT;
884 if (ret < 0)
885 return ret;
887 ret = btrfs_del_item(trans, root, path);
888 return ret;
891 int btrfs_remove_block_group(struct btrfs_trans_handle *trans,
892 u64 group_start, struct extent_map *em)
894 struct btrfs_fs_info *fs_info = trans->fs_info;
895 struct btrfs_path *path;
896 struct btrfs_block_group *block_group;
897 struct btrfs_free_cluster *cluster;
898 struct btrfs_root *tree_root = fs_info->tree_root;
899 struct btrfs_key key;
900 struct inode *inode;
901 struct kobject *kobj = NULL;
902 int ret;
903 int index;
904 int factor;
905 struct btrfs_caching_control *caching_ctl = NULL;
906 bool remove_em;
907 bool remove_rsv = false;
909 block_group = btrfs_lookup_block_group(fs_info, group_start);
910 BUG_ON(!block_group);
911 BUG_ON(!block_group->ro);
913 trace_btrfs_remove_block_group(block_group);
915 * Free the reserved super bytes from this block group before
916 * remove it.
918 btrfs_free_excluded_extents(block_group);
919 btrfs_free_ref_tree_range(fs_info, block_group->start,
920 block_group->length);
922 index = btrfs_bg_flags_to_raid_index(block_group->flags);
923 factor = btrfs_bg_type_to_factor(block_group->flags);
925 /* make sure this block group isn't part of an allocation cluster */
926 cluster = &fs_info->data_alloc_cluster;
927 spin_lock(&cluster->refill_lock);
928 btrfs_return_cluster_to_free_space(block_group, cluster);
929 spin_unlock(&cluster->refill_lock);
932 * make sure this block group isn't part of a metadata
933 * allocation cluster
935 cluster = &fs_info->meta_alloc_cluster;
936 spin_lock(&cluster->refill_lock);
937 btrfs_return_cluster_to_free_space(block_group, cluster);
938 spin_unlock(&cluster->refill_lock);
940 path = btrfs_alloc_path();
941 if (!path) {
942 ret = -ENOMEM;
943 goto out;
947 * get the inode first so any iput calls done for the io_list
948 * aren't the final iput (no unlinks allowed now)
950 inode = lookup_free_space_inode(block_group, path);
952 mutex_lock(&trans->transaction->cache_write_mutex);
954 * Make sure our free space cache IO is done before removing the
955 * free space inode
957 spin_lock(&trans->transaction->dirty_bgs_lock);
958 if (!list_empty(&block_group->io_list)) {
959 list_del_init(&block_group->io_list);
961 WARN_ON(!IS_ERR(inode) && inode != block_group->io_ctl.inode);
963 spin_unlock(&trans->transaction->dirty_bgs_lock);
964 btrfs_wait_cache_io(trans, block_group, path);
965 btrfs_put_block_group(block_group);
966 spin_lock(&trans->transaction->dirty_bgs_lock);
969 if (!list_empty(&block_group->dirty_list)) {
970 list_del_init(&block_group->dirty_list);
971 remove_rsv = true;
972 btrfs_put_block_group(block_group);
974 spin_unlock(&trans->transaction->dirty_bgs_lock);
975 mutex_unlock(&trans->transaction->cache_write_mutex);
977 if (!IS_ERR(inode)) {
978 ret = btrfs_orphan_add(trans, BTRFS_I(inode));
979 if (ret) {
980 btrfs_add_delayed_iput(inode);
981 goto out;
983 clear_nlink(inode);
984 /* One for the block groups ref */
985 spin_lock(&block_group->lock);
986 if (block_group->iref) {
987 block_group->iref = 0;
988 block_group->inode = NULL;
989 spin_unlock(&block_group->lock);
990 iput(inode);
991 } else {
992 spin_unlock(&block_group->lock);
994 /* One for our lookup ref */
995 btrfs_add_delayed_iput(inode);
998 key.objectid = BTRFS_FREE_SPACE_OBJECTID;
999 key.type = 0;
1000 key.offset = block_group->start;
1002 ret = btrfs_search_slot(trans, tree_root, &key, path, -1, 1);
1003 if (ret < 0)
1004 goto out;
1005 if (ret > 0)
1006 btrfs_release_path(path);
1007 if (ret == 0) {
1008 ret = btrfs_del_item(trans, tree_root, path);
1009 if (ret)
1010 goto out;
1011 btrfs_release_path(path);
1014 spin_lock(&fs_info->block_group_cache_lock);
1015 rb_erase(&block_group->cache_node,
1016 &fs_info->block_group_cache_tree);
1017 RB_CLEAR_NODE(&block_group->cache_node);
1019 /* Once for the block groups rbtree */
1020 btrfs_put_block_group(block_group);
1022 if (fs_info->first_logical_byte == block_group->start)
1023 fs_info->first_logical_byte = (u64)-1;
1024 spin_unlock(&fs_info->block_group_cache_lock);
1026 down_write(&block_group->space_info->groups_sem);
1028 * we must use list_del_init so people can check to see if they
1029 * are still on the list after taking the semaphore
1031 list_del_init(&block_group->list);
1032 if (list_empty(&block_group->space_info->block_groups[index])) {
1033 kobj = block_group->space_info->block_group_kobjs[index];
1034 block_group->space_info->block_group_kobjs[index] = NULL;
1035 clear_avail_alloc_bits(fs_info, block_group->flags);
1037 up_write(&block_group->space_info->groups_sem);
1038 clear_incompat_bg_bits(fs_info, block_group->flags);
1039 if (kobj) {
1040 kobject_del(kobj);
1041 kobject_put(kobj);
1044 if (block_group->has_caching_ctl)
1045 caching_ctl = btrfs_get_caching_control(block_group);
1046 if (block_group->cached == BTRFS_CACHE_STARTED)
1047 btrfs_wait_block_group_cache_done(block_group);
1048 if (block_group->has_caching_ctl) {
1049 down_write(&fs_info->commit_root_sem);
1050 if (!caching_ctl) {
1051 struct btrfs_caching_control *ctl;
1053 list_for_each_entry(ctl,
1054 &fs_info->caching_block_groups, list)
1055 if (ctl->block_group == block_group) {
1056 caching_ctl = ctl;
1057 refcount_inc(&caching_ctl->count);
1058 break;
1061 if (caching_ctl)
1062 list_del_init(&caching_ctl->list);
1063 up_write(&fs_info->commit_root_sem);
1064 if (caching_ctl) {
1065 /* Once for the caching bgs list and once for us. */
1066 btrfs_put_caching_control(caching_ctl);
1067 btrfs_put_caching_control(caching_ctl);
1071 spin_lock(&trans->transaction->dirty_bgs_lock);
1072 WARN_ON(!list_empty(&block_group->dirty_list));
1073 WARN_ON(!list_empty(&block_group->io_list));
1074 spin_unlock(&trans->transaction->dirty_bgs_lock);
1076 btrfs_remove_free_space_cache(block_group);
1078 spin_lock(&block_group->space_info->lock);
1079 list_del_init(&block_group->ro_list);
1081 if (btrfs_test_opt(fs_info, ENOSPC_DEBUG)) {
1082 WARN_ON(block_group->space_info->total_bytes
1083 < block_group->length);
1084 WARN_ON(block_group->space_info->bytes_readonly
1085 < block_group->length);
1086 WARN_ON(block_group->space_info->disk_total
1087 < block_group->length * factor);
1089 block_group->space_info->total_bytes -= block_group->length;
1090 block_group->space_info->bytes_readonly -= block_group->length;
1091 block_group->space_info->disk_total -= block_group->length * factor;
1093 spin_unlock(&block_group->space_info->lock);
1096 * Remove the free space for the block group from the free space tree
1097 * and the block group's item from the extent tree before marking the
1098 * block group as removed. This is to prevent races with tasks that
1099 * freeze and unfreeze a block group, this task and another task
1100 * allocating a new block group - the unfreeze task ends up removing
1101 * the block group's extent map before the task calling this function
1102 * deletes the block group item from the extent tree, allowing for
1103 * another task to attempt to create another block group with the same
1104 * item key (and failing with -EEXIST and a transaction abort).
1106 ret = remove_block_group_free_space(trans, block_group);
1107 if (ret)
1108 goto out;
1110 ret = remove_block_group_item(trans, path, block_group);
1111 if (ret < 0)
1112 goto out;
1114 mutex_lock(&fs_info->chunk_mutex);
1115 spin_lock(&block_group->lock);
1116 block_group->removed = 1;
1118 * At this point trimming or scrub can't start on this block group,
1119 * because we removed the block group from the rbtree
1120 * fs_info->block_group_cache_tree so no one can't find it anymore and
1121 * even if someone already got this block group before we removed it
1122 * from the rbtree, they have already incremented block_group->frozen -
1123 * if they didn't, for the trimming case they won't find any free space
1124 * entries because we already removed them all when we called
1125 * btrfs_remove_free_space_cache().
1127 * And we must not remove the extent map from the fs_info->mapping_tree
1128 * to prevent the same logical address range and physical device space
1129 * ranges from being reused for a new block group. This is needed to
1130 * avoid races with trimming and scrub.
1132 * An fs trim operation (btrfs_trim_fs() / btrfs_ioctl_fitrim()) is
1133 * completely transactionless, so while it is trimming a range the
1134 * currently running transaction might finish and a new one start,
1135 * allowing for new block groups to be created that can reuse the same
1136 * physical device locations unless we take this special care.
1138 * There may also be an implicit trim operation if the file system
1139 * is mounted with -odiscard. The same protections must remain
1140 * in place until the extents have been discarded completely when
1141 * the transaction commit has completed.
1143 remove_em = (atomic_read(&block_group->frozen) == 0);
1144 spin_unlock(&block_group->lock);
1146 mutex_unlock(&fs_info->chunk_mutex);
1148 if (remove_em) {
1149 struct extent_map_tree *em_tree;
1151 em_tree = &fs_info->mapping_tree;
1152 write_lock(&em_tree->lock);
1153 remove_extent_mapping(em_tree, em);
1154 write_unlock(&em_tree->lock);
1155 /* once for the tree */
1156 free_extent_map(em);
1159 out:
1160 /* Once for the lookup reference */
1161 btrfs_put_block_group(block_group);
1162 if (remove_rsv)
1163 btrfs_delayed_refs_rsv_release(fs_info, 1);
1164 btrfs_free_path(path);
1165 return ret;
1168 struct btrfs_trans_handle *btrfs_start_trans_remove_block_group(
1169 struct btrfs_fs_info *fs_info, const u64 chunk_offset)
1171 struct extent_map_tree *em_tree = &fs_info->mapping_tree;
1172 struct extent_map *em;
1173 struct map_lookup *map;
1174 unsigned int num_items;
1176 read_lock(&em_tree->lock);
1177 em = lookup_extent_mapping(em_tree, chunk_offset, 1);
1178 read_unlock(&em_tree->lock);
1179 ASSERT(em && em->start == chunk_offset);
1182 * We need to reserve 3 + N units from the metadata space info in order
1183 * to remove a block group (done at btrfs_remove_chunk() and at
1184 * btrfs_remove_block_group()), which are used for:
1186 * 1 unit for adding the free space inode's orphan (located in the tree
1187 * of tree roots).
1188 * 1 unit for deleting the block group item (located in the extent
1189 * tree).
1190 * 1 unit for deleting the free space item (located in tree of tree
1191 * roots).
1192 * N units for deleting N device extent items corresponding to each
1193 * stripe (located in the device tree).
1195 * In order to remove a block group we also need to reserve units in the
1196 * system space info in order to update the chunk tree (update one or
1197 * more device items and remove one chunk item), but this is done at
1198 * btrfs_remove_chunk() through a call to check_system_chunk().
1200 map = em->map_lookup;
1201 num_items = 3 + map->num_stripes;
1202 free_extent_map(em);
1204 return btrfs_start_transaction_fallback_global_rsv(fs_info->extent_root,
1205 num_items);
1209 * Mark block group @cache read-only, so later write won't happen to block
1210 * group @cache.
1212 * If @force is not set, this function will only mark the block group readonly
1213 * if we have enough free space (1M) in other metadata/system block groups.
1214 * If @force is not set, this function will mark the block group readonly
1215 * without checking free space.
1217 * NOTE: This function doesn't care if other block groups can contain all the
1218 * data in this block group. That check should be done by relocation routine,
1219 * not this function.
1221 static int inc_block_group_ro(struct btrfs_block_group *cache, int force)
1223 struct btrfs_space_info *sinfo = cache->space_info;
1224 u64 num_bytes;
1225 int ret = -ENOSPC;
1227 spin_lock(&sinfo->lock);
1228 spin_lock(&cache->lock);
1230 if (cache->ro) {
1231 cache->ro++;
1232 ret = 0;
1233 goto out;
1236 num_bytes = cache->length - cache->reserved - cache->pinned -
1237 cache->bytes_super - cache->used;
1240 * Data never overcommits, even in mixed mode, so do just the straight
1241 * check of left over space in how much we have allocated.
1243 if (force) {
1244 ret = 0;
1245 } else if (sinfo->flags & BTRFS_BLOCK_GROUP_DATA) {
1246 u64 sinfo_used = btrfs_space_info_used(sinfo, true);
1249 * Here we make sure if we mark this bg RO, we still have enough
1250 * free space as buffer.
1252 if (sinfo_used + num_bytes <= sinfo->total_bytes)
1253 ret = 0;
1254 } else {
1256 * We overcommit metadata, so we need to do the
1257 * btrfs_can_overcommit check here, and we need to pass in
1258 * BTRFS_RESERVE_NO_FLUSH to give ourselves the most amount of
1259 * leeway to allow us to mark this block group as read only.
1261 if (btrfs_can_overcommit(cache->fs_info, sinfo, num_bytes,
1262 BTRFS_RESERVE_NO_FLUSH))
1263 ret = 0;
1266 if (!ret) {
1267 sinfo->bytes_readonly += num_bytes;
1268 cache->ro++;
1269 list_add_tail(&cache->ro_list, &sinfo->ro_bgs);
1271 out:
1272 spin_unlock(&cache->lock);
1273 spin_unlock(&sinfo->lock);
1274 if (ret == -ENOSPC && btrfs_test_opt(cache->fs_info, ENOSPC_DEBUG)) {
1275 btrfs_info(cache->fs_info,
1276 "unable to make block group %llu ro", cache->start);
1277 btrfs_dump_space_info(cache->fs_info, cache->space_info, 0, 0);
1279 return ret;
1282 static bool clean_pinned_extents(struct btrfs_trans_handle *trans,
1283 struct btrfs_block_group *bg)
1285 struct btrfs_fs_info *fs_info = bg->fs_info;
1286 struct btrfs_transaction *prev_trans = NULL;
1287 const u64 start = bg->start;
1288 const u64 end = start + bg->length - 1;
1289 int ret;
1291 spin_lock(&fs_info->trans_lock);
1292 if (trans->transaction->list.prev != &fs_info->trans_list) {
1293 prev_trans = list_last_entry(&trans->transaction->list,
1294 struct btrfs_transaction, list);
1295 refcount_inc(&prev_trans->use_count);
1297 spin_unlock(&fs_info->trans_lock);
1300 * Hold the unused_bg_unpin_mutex lock to avoid racing with
1301 * btrfs_finish_extent_commit(). If we are at transaction N, another
1302 * task might be running finish_extent_commit() for the previous
1303 * transaction N - 1, and have seen a range belonging to the block
1304 * group in pinned_extents before we were able to clear the whole block
1305 * group range from pinned_extents. This means that task can lookup for
1306 * the block group after we unpinned it from pinned_extents and removed
1307 * it, leading to a BUG_ON() at unpin_extent_range().
1309 mutex_lock(&fs_info->unused_bg_unpin_mutex);
1310 if (prev_trans) {
1311 ret = clear_extent_bits(&prev_trans->pinned_extents, start, end,
1312 EXTENT_DIRTY);
1313 if (ret)
1314 goto out;
1317 ret = clear_extent_bits(&trans->transaction->pinned_extents, start, end,
1318 EXTENT_DIRTY);
1319 out:
1320 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
1321 if (prev_trans)
1322 btrfs_put_transaction(prev_trans);
1324 return ret == 0;
1328 * Process the unused_bgs list and remove any that don't have any allocated
1329 * space inside of them.
1331 void btrfs_delete_unused_bgs(struct btrfs_fs_info *fs_info)
1333 struct btrfs_block_group *block_group;
1334 struct btrfs_space_info *space_info;
1335 struct btrfs_trans_handle *trans;
1336 const bool async_trim_enabled = btrfs_test_opt(fs_info, DISCARD_ASYNC);
1337 int ret = 0;
1339 if (!test_bit(BTRFS_FS_OPEN, &fs_info->flags))
1340 return;
1342 spin_lock(&fs_info->unused_bgs_lock);
1343 while (!list_empty(&fs_info->unused_bgs)) {
1344 int trimming;
1346 block_group = list_first_entry(&fs_info->unused_bgs,
1347 struct btrfs_block_group,
1348 bg_list);
1349 list_del_init(&block_group->bg_list);
1351 space_info = block_group->space_info;
1353 if (ret || btrfs_mixed_space_info(space_info)) {
1354 btrfs_put_block_group(block_group);
1355 continue;
1357 spin_unlock(&fs_info->unused_bgs_lock);
1359 btrfs_discard_cancel_work(&fs_info->discard_ctl, block_group);
1361 mutex_lock(&fs_info->delete_unused_bgs_mutex);
1363 /* Don't want to race with allocators so take the groups_sem */
1364 down_write(&space_info->groups_sem);
1367 * Async discard moves the final block group discard to be prior
1368 * to the unused_bgs code path. Therefore, if it's not fully
1369 * trimmed, punt it back to the async discard lists.
1371 if (btrfs_test_opt(fs_info, DISCARD_ASYNC) &&
1372 !btrfs_is_free_space_trimmed(block_group)) {
1373 trace_btrfs_skip_unused_block_group(block_group);
1374 up_write(&space_info->groups_sem);
1375 /* Requeue if we failed because of async discard */
1376 btrfs_discard_queue_work(&fs_info->discard_ctl,
1377 block_group);
1378 goto next;
1381 spin_lock(&block_group->lock);
1382 if (block_group->reserved || block_group->pinned ||
1383 block_group->used || block_group->ro ||
1384 list_is_singular(&block_group->list)) {
1386 * We want to bail if we made new allocations or have
1387 * outstanding allocations in this block group. We do
1388 * the ro check in case balance is currently acting on
1389 * this block group.
1391 trace_btrfs_skip_unused_block_group(block_group);
1392 spin_unlock(&block_group->lock);
1393 up_write(&space_info->groups_sem);
1394 goto next;
1396 spin_unlock(&block_group->lock);
1398 /* We don't want to force the issue, only flip if it's ok. */
1399 ret = inc_block_group_ro(block_group, 0);
1400 up_write(&space_info->groups_sem);
1401 if (ret < 0) {
1402 ret = 0;
1403 goto next;
1407 * Want to do this before we do anything else so we can recover
1408 * properly if we fail to join the transaction.
1410 trans = btrfs_start_trans_remove_block_group(fs_info,
1411 block_group->start);
1412 if (IS_ERR(trans)) {
1413 btrfs_dec_block_group_ro(block_group);
1414 ret = PTR_ERR(trans);
1415 goto next;
1419 * We could have pending pinned extents for this block group,
1420 * just delete them, we don't care about them anymore.
1422 if (!clean_pinned_extents(trans, block_group)) {
1423 btrfs_dec_block_group_ro(block_group);
1424 goto end_trans;
1428 * At this point, the block_group is read only and should fail
1429 * new allocations. However, btrfs_finish_extent_commit() can
1430 * cause this block_group to be placed back on the discard
1431 * lists because now the block_group isn't fully discarded.
1432 * Bail here and try again later after discarding everything.
1434 spin_lock(&fs_info->discard_ctl.lock);
1435 if (!list_empty(&block_group->discard_list)) {
1436 spin_unlock(&fs_info->discard_ctl.lock);
1437 btrfs_dec_block_group_ro(block_group);
1438 btrfs_discard_queue_work(&fs_info->discard_ctl,
1439 block_group);
1440 goto end_trans;
1442 spin_unlock(&fs_info->discard_ctl.lock);
1444 /* Reset pinned so btrfs_put_block_group doesn't complain */
1445 spin_lock(&space_info->lock);
1446 spin_lock(&block_group->lock);
1448 btrfs_space_info_update_bytes_pinned(fs_info, space_info,
1449 -block_group->pinned);
1450 space_info->bytes_readonly += block_group->pinned;
1451 percpu_counter_add_batch(&space_info->total_bytes_pinned,
1452 -block_group->pinned,
1453 BTRFS_TOTAL_BYTES_PINNED_BATCH);
1454 block_group->pinned = 0;
1456 spin_unlock(&block_group->lock);
1457 spin_unlock(&space_info->lock);
1460 * The normal path here is an unused block group is passed here,
1461 * then trimming is handled in the transaction commit path.
1462 * Async discard interposes before this to do the trimming
1463 * before coming down the unused block group path as trimming
1464 * will no longer be done later in the transaction commit path.
1466 if (!async_trim_enabled && btrfs_test_opt(fs_info, DISCARD_ASYNC))
1467 goto flip_async;
1469 /* DISCARD can flip during remount */
1470 trimming = btrfs_test_opt(fs_info, DISCARD_SYNC);
1472 /* Implicit trim during transaction commit. */
1473 if (trimming)
1474 btrfs_freeze_block_group(block_group);
1477 * Btrfs_remove_chunk will abort the transaction if things go
1478 * horribly wrong.
1480 ret = btrfs_remove_chunk(trans, block_group->start);
1482 if (ret) {
1483 if (trimming)
1484 btrfs_unfreeze_block_group(block_group);
1485 goto end_trans;
1489 * If we're not mounted with -odiscard, we can just forget
1490 * about this block group. Otherwise we'll need to wait
1491 * until transaction commit to do the actual discard.
1493 if (trimming) {
1494 spin_lock(&fs_info->unused_bgs_lock);
1496 * A concurrent scrub might have added us to the list
1497 * fs_info->unused_bgs, so use a list_move operation
1498 * to add the block group to the deleted_bgs list.
1500 list_move(&block_group->bg_list,
1501 &trans->transaction->deleted_bgs);
1502 spin_unlock(&fs_info->unused_bgs_lock);
1503 btrfs_get_block_group(block_group);
1505 end_trans:
1506 btrfs_end_transaction(trans);
1507 next:
1508 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
1509 btrfs_put_block_group(block_group);
1510 spin_lock(&fs_info->unused_bgs_lock);
1512 spin_unlock(&fs_info->unused_bgs_lock);
1513 return;
1515 flip_async:
1516 btrfs_end_transaction(trans);
1517 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
1518 btrfs_put_block_group(block_group);
1519 btrfs_discard_punt_unused_bgs_list(fs_info);
1522 void btrfs_mark_bg_unused(struct btrfs_block_group *bg)
1524 struct btrfs_fs_info *fs_info = bg->fs_info;
1526 spin_lock(&fs_info->unused_bgs_lock);
1527 if (list_empty(&bg->bg_list)) {
1528 btrfs_get_block_group(bg);
1529 trace_btrfs_add_unused_block_group(bg);
1530 list_add_tail(&bg->bg_list, &fs_info->unused_bgs);
1532 spin_unlock(&fs_info->unused_bgs_lock);
1535 static int find_first_block_group(struct btrfs_fs_info *fs_info,
1536 struct btrfs_path *path,
1537 struct btrfs_key *key)
1539 struct btrfs_root *root = fs_info->extent_root;
1540 int ret = 0;
1541 struct btrfs_key found_key;
1542 struct extent_buffer *leaf;
1543 struct btrfs_block_group_item bg;
1544 u64 flags;
1545 int slot;
1547 ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
1548 if (ret < 0)
1549 goto out;
1551 while (1) {
1552 slot = path->slots[0];
1553 leaf = path->nodes[0];
1554 if (slot >= btrfs_header_nritems(leaf)) {
1555 ret = btrfs_next_leaf(root, path);
1556 if (ret == 0)
1557 continue;
1558 if (ret < 0)
1559 goto out;
1560 break;
1562 btrfs_item_key_to_cpu(leaf, &found_key, slot);
1564 if (found_key.objectid >= key->objectid &&
1565 found_key.type == BTRFS_BLOCK_GROUP_ITEM_KEY) {
1566 struct extent_map_tree *em_tree;
1567 struct extent_map *em;
1569 em_tree = &root->fs_info->mapping_tree;
1570 read_lock(&em_tree->lock);
1571 em = lookup_extent_mapping(em_tree, found_key.objectid,
1572 found_key.offset);
1573 read_unlock(&em_tree->lock);
1574 if (!em) {
1575 btrfs_err(fs_info,
1576 "logical %llu len %llu found bg but no related chunk",
1577 found_key.objectid, found_key.offset);
1578 ret = -ENOENT;
1579 } else if (em->start != found_key.objectid ||
1580 em->len != found_key.offset) {
1581 btrfs_err(fs_info,
1582 "block group %llu len %llu mismatch with chunk %llu len %llu",
1583 found_key.objectid, found_key.offset,
1584 em->start, em->len);
1585 ret = -EUCLEAN;
1586 } else {
1587 read_extent_buffer(leaf, &bg,
1588 btrfs_item_ptr_offset(leaf, slot),
1589 sizeof(bg));
1590 flags = btrfs_stack_block_group_flags(&bg) &
1591 BTRFS_BLOCK_GROUP_TYPE_MASK;
1593 if (flags != (em->map_lookup->type &
1594 BTRFS_BLOCK_GROUP_TYPE_MASK)) {
1595 btrfs_err(fs_info,
1596 "block group %llu len %llu type flags 0x%llx mismatch with chunk type flags 0x%llx",
1597 found_key.objectid,
1598 found_key.offset, flags,
1599 (BTRFS_BLOCK_GROUP_TYPE_MASK &
1600 em->map_lookup->type));
1601 ret = -EUCLEAN;
1602 } else {
1603 ret = 0;
1606 free_extent_map(em);
1607 goto out;
1609 path->slots[0]++;
1611 out:
1612 return ret;
1615 static void set_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags)
1617 u64 extra_flags = chunk_to_extended(flags) &
1618 BTRFS_EXTENDED_PROFILE_MASK;
1620 write_seqlock(&fs_info->profiles_lock);
1621 if (flags & BTRFS_BLOCK_GROUP_DATA)
1622 fs_info->avail_data_alloc_bits |= extra_flags;
1623 if (flags & BTRFS_BLOCK_GROUP_METADATA)
1624 fs_info->avail_metadata_alloc_bits |= extra_flags;
1625 if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
1626 fs_info->avail_system_alloc_bits |= extra_flags;
1627 write_sequnlock(&fs_info->profiles_lock);
1631 * btrfs_rmap_block - Map a physical disk address to a list of logical addresses
1632 * @chunk_start: logical address of block group
1633 * @physical: physical address to map to logical addresses
1634 * @logical: return array of logical addresses which map to @physical
1635 * @naddrs: length of @logical
1636 * @stripe_len: size of IO stripe for the given block group
1638 * Maps a particular @physical disk address to a list of @logical addresses.
1639 * Used primarily to exclude those portions of a block group that contain super
1640 * block copies.
1642 EXPORT_FOR_TESTS
1643 int btrfs_rmap_block(struct btrfs_fs_info *fs_info, u64 chunk_start,
1644 u64 physical, u64 **logical, int *naddrs, int *stripe_len)
1646 struct extent_map *em;
1647 struct map_lookup *map;
1648 u64 *buf;
1649 u64 bytenr;
1650 u64 data_stripe_length;
1651 u64 io_stripe_size;
1652 int i, nr = 0;
1653 int ret = 0;
1655 em = btrfs_get_chunk_map(fs_info, chunk_start, 1);
1656 if (IS_ERR(em))
1657 return -EIO;
1659 map = em->map_lookup;
1660 data_stripe_length = em->len;
1661 io_stripe_size = map->stripe_len;
1663 if (map->type & BTRFS_BLOCK_GROUP_RAID10)
1664 data_stripe_length = div_u64(data_stripe_length,
1665 map->num_stripes / map->sub_stripes);
1666 else if (map->type & BTRFS_BLOCK_GROUP_RAID0)
1667 data_stripe_length = div_u64(data_stripe_length, map->num_stripes);
1668 else if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
1669 data_stripe_length = div_u64(data_stripe_length,
1670 nr_data_stripes(map));
1671 io_stripe_size = map->stripe_len * nr_data_stripes(map);
1674 buf = kcalloc(map->num_stripes, sizeof(u64), GFP_NOFS);
1675 if (!buf) {
1676 ret = -ENOMEM;
1677 goto out;
1680 for (i = 0; i < map->num_stripes; i++) {
1681 bool already_inserted = false;
1682 u64 stripe_nr;
1683 int j;
1685 if (!in_range(physical, map->stripes[i].physical,
1686 data_stripe_length))
1687 continue;
1689 stripe_nr = physical - map->stripes[i].physical;
1690 stripe_nr = div64_u64(stripe_nr, map->stripe_len);
1692 if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
1693 stripe_nr = stripe_nr * map->num_stripes + i;
1694 stripe_nr = div_u64(stripe_nr, map->sub_stripes);
1695 } else if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
1696 stripe_nr = stripe_nr * map->num_stripes + i;
1699 * The remaining case would be for RAID56, multiply by
1700 * nr_data_stripes(). Alternatively, just use rmap_len below
1701 * instead of map->stripe_len
1704 bytenr = chunk_start + stripe_nr * io_stripe_size;
1706 /* Ensure we don't add duplicate addresses */
1707 for (j = 0; j < nr; j++) {
1708 if (buf[j] == bytenr) {
1709 already_inserted = true;
1710 break;
1714 if (!already_inserted)
1715 buf[nr++] = bytenr;
1718 *logical = buf;
1719 *naddrs = nr;
1720 *stripe_len = io_stripe_size;
1721 out:
1722 free_extent_map(em);
1723 return ret;
1726 static int exclude_super_stripes(struct btrfs_block_group *cache)
1728 struct btrfs_fs_info *fs_info = cache->fs_info;
1729 u64 bytenr;
1730 u64 *logical;
1731 int stripe_len;
1732 int i, nr, ret;
1734 if (cache->start < BTRFS_SUPER_INFO_OFFSET) {
1735 stripe_len = BTRFS_SUPER_INFO_OFFSET - cache->start;
1736 cache->bytes_super += stripe_len;
1737 ret = btrfs_add_excluded_extent(fs_info, cache->start,
1738 stripe_len);
1739 if (ret)
1740 return ret;
1743 for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
1744 bytenr = btrfs_sb_offset(i);
1745 ret = btrfs_rmap_block(fs_info, cache->start,
1746 bytenr, &logical, &nr, &stripe_len);
1747 if (ret)
1748 return ret;
1750 while (nr--) {
1751 u64 start, len;
1753 if (logical[nr] > cache->start + cache->length)
1754 continue;
1756 if (logical[nr] + stripe_len <= cache->start)
1757 continue;
1759 start = logical[nr];
1760 if (start < cache->start) {
1761 start = cache->start;
1762 len = (logical[nr] + stripe_len) - start;
1763 } else {
1764 len = min_t(u64, stripe_len,
1765 cache->start + cache->length - start);
1768 cache->bytes_super += len;
1769 ret = btrfs_add_excluded_extent(fs_info, start, len);
1770 if (ret) {
1771 kfree(logical);
1772 return ret;
1776 kfree(logical);
1778 return 0;
1781 static void link_block_group(struct btrfs_block_group *cache)
1783 struct btrfs_space_info *space_info = cache->space_info;
1784 int index = btrfs_bg_flags_to_raid_index(cache->flags);
1785 bool first = false;
1787 down_write(&space_info->groups_sem);
1788 if (list_empty(&space_info->block_groups[index]))
1789 first = true;
1790 list_add_tail(&cache->list, &space_info->block_groups[index]);
1791 up_write(&space_info->groups_sem);
1793 if (first)
1794 btrfs_sysfs_add_block_group_type(cache);
1797 static struct btrfs_block_group *btrfs_create_block_group_cache(
1798 struct btrfs_fs_info *fs_info, u64 start)
1800 struct btrfs_block_group *cache;
1802 cache = kzalloc(sizeof(*cache), GFP_NOFS);
1803 if (!cache)
1804 return NULL;
1806 cache->free_space_ctl = kzalloc(sizeof(*cache->free_space_ctl),
1807 GFP_NOFS);
1808 if (!cache->free_space_ctl) {
1809 kfree(cache);
1810 return NULL;
1813 cache->start = start;
1815 cache->fs_info = fs_info;
1816 cache->full_stripe_len = btrfs_full_stripe_len(fs_info, start);
1817 set_free_space_tree_thresholds(cache);
1819 cache->discard_index = BTRFS_DISCARD_INDEX_UNUSED;
1821 atomic_set(&cache->count, 1);
1822 spin_lock_init(&cache->lock);
1823 init_rwsem(&cache->data_rwsem);
1824 INIT_LIST_HEAD(&cache->list);
1825 INIT_LIST_HEAD(&cache->cluster_list);
1826 INIT_LIST_HEAD(&cache->bg_list);
1827 INIT_LIST_HEAD(&cache->ro_list);
1828 INIT_LIST_HEAD(&cache->discard_list);
1829 INIT_LIST_HEAD(&cache->dirty_list);
1830 INIT_LIST_HEAD(&cache->io_list);
1831 btrfs_init_free_space_ctl(cache);
1832 atomic_set(&cache->frozen, 0);
1833 mutex_init(&cache->free_space_lock);
1834 btrfs_init_full_stripe_locks_tree(&cache->full_stripe_locks_root);
1836 return cache;
1840 * Iterate all chunks and verify that each of them has the corresponding block
1841 * group
1843 static int check_chunk_block_group_mappings(struct btrfs_fs_info *fs_info)
1845 struct extent_map_tree *map_tree = &fs_info->mapping_tree;
1846 struct extent_map *em;
1847 struct btrfs_block_group *bg;
1848 u64 start = 0;
1849 int ret = 0;
1851 while (1) {
1852 read_lock(&map_tree->lock);
1854 * lookup_extent_mapping will return the first extent map
1855 * intersecting the range, so setting @len to 1 is enough to
1856 * get the first chunk.
1858 em = lookup_extent_mapping(map_tree, start, 1);
1859 read_unlock(&map_tree->lock);
1860 if (!em)
1861 break;
1863 bg = btrfs_lookup_block_group(fs_info, em->start);
1864 if (!bg) {
1865 btrfs_err(fs_info,
1866 "chunk start=%llu len=%llu doesn't have corresponding block group",
1867 em->start, em->len);
1868 ret = -EUCLEAN;
1869 free_extent_map(em);
1870 break;
1872 if (bg->start != em->start || bg->length != em->len ||
1873 (bg->flags & BTRFS_BLOCK_GROUP_TYPE_MASK) !=
1874 (em->map_lookup->type & BTRFS_BLOCK_GROUP_TYPE_MASK)) {
1875 btrfs_err(fs_info,
1876 "chunk start=%llu len=%llu flags=0x%llx doesn't match block group start=%llu len=%llu flags=0x%llx",
1877 em->start, em->len,
1878 em->map_lookup->type & BTRFS_BLOCK_GROUP_TYPE_MASK,
1879 bg->start, bg->length,
1880 bg->flags & BTRFS_BLOCK_GROUP_TYPE_MASK);
1881 ret = -EUCLEAN;
1882 free_extent_map(em);
1883 btrfs_put_block_group(bg);
1884 break;
1886 start = em->start + em->len;
1887 free_extent_map(em);
1888 btrfs_put_block_group(bg);
1890 return ret;
1893 static int read_block_group_item(struct btrfs_block_group *cache,
1894 struct btrfs_path *path,
1895 const struct btrfs_key *key)
1897 struct extent_buffer *leaf = path->nodes[0];
1898 struct btrfs_block_group_item bgi;
1899 int slot = path->slots[0];
1901 cache->length = key->offset;
1903 read_extent_buffer(leaf, &bgi, btrfs_item_ptr_offset(leaf, slot),
1904 sizeof(bgi));
1905 cache->used = btrfs_stack_block_group_used(&bgi);
1906 cache->flags = btrfs_stack_block_group_flags(&bgi);
1908 return 0;
1911 static int read_one_block_group(struct btrfs_fs_info *info,
1912 struct btrfs_path *path,
1913 const struct btrfs_key *key,
1914 int need_clear)
1916 struct btrfs_block_group *cache;
1917 struct btrfs_space_info *space_info;
1918 const bool mixed = btrfs_fs_incompat(info, MIXED_GROUPS);
1919 int ret;
1921 ASSERT(key->type == BTRFS_BLOCK_GROUP_ITEM_KEY);
1923 cache = btrfs_create_block_group_cache(info, key->objectid);
1924 if (!cache)
1925 return -ENOMEM;
1927 ret = read_block_group_item(cache, path, key);
1928 if (ret < 0)
1929 goto error;
1931 if (need_clear) {
1933 * When we mount with old space cache, we need to
1934 * set BTRFS_DC_CLEAR and set dirty flag.
1936 * a) Setting 'BTRFS_DC_CLEAR' makes sure that we
1937 * truncate the old free space cache inode and
1938 * setup a new one.
1939 * b) Setting 'dirty flag' makes sure that we flush
1940 * the new space cache info onto disk.
1942 if (btrfs_test_opt(info, SPACE_CACHE))
1943 cache->disk_cache_state = BTRFS_DC_CLEAR;
1945 if (!mixed && ((cache->flags & BTRFS_BLOCK_GROUP_METADATA) &&
1946 (cache->flags & BTRFS_BLOCK_GROUP_DATA))) {
1947 btrfs_err(info,
1948 "bg %llu is a mixed block group but filesystem hasn't enabled mixed block groups",
1949 cache->start);
1950 ret = -EINVAL;
1951 goto error;
1955 * We need to exclude the super stripes now so that the space info has
1956 * super bytes accounted for, otherwise we'll think we have more space
1957 * than we actually do.
1959 ret = exclude_super_stripes(cache);
1960 if (ret) {
1961 /* We may have excluded something, so call this just in case. */
1962 btrfs_free_excluded_extents(cache);
1963 goto error;
1967 * Check for two cases, either we are full, and therefore don't need
1968 * to bother with the caching work since we won't find any space, or we
1969 * are empty, and we can just add all the space in and be done with it.
1970 * This saves us _a_lot_ of time, particularly in the full case.
1972 if (cache->length == cache->used) {
1973 cache->last_byte_to_unpin = (u64)-1;
1974 cache->cached = BTRFS_CACHE_FINISHED;
1975 btrfs_free_excluded_extents(cache);
1976 } else if (cache->used == 0) {
1977 cache->last_byte_to_unpin = (u64)-1;
1978 cache->cached = BTRFS_CACHE_FINISHED;
1979 add_new_free_space(cache, cache->start,
1980 cache->start + cache->length);
1981 btrfs_free_excluded_extents(cache);
1984 ret = btrfs_add_block_group_cache(info, cache);
1985 if (ret) {
1986 btrfs_remove_free_space_cache(cache);
1987 goto error;
1989 trace_btrfs_add_block_group(info, cache, 0);
1990 btrfs_update_space_info(info, cache->flags, cache->length,
1991 cache->used, cache->bytes_super, &space_info);
1993 cache->space_info = space_info;
1995 link_block_group(cache);
1997 set_avail_alloc_bits(info, cache->flags);
1998 if (btrfs_chunk_readonly(info, cache->start)) {
1999 inc_block_group_ro(cache, 1);
2000 } else if (cache->used == 0) {
2001 ASSERT(list_empty(&cache->bg_list));
2002 if (btrfs_test_opt(info, DISCARD_ASYNC))
2003 btrfs_discard_queue_work(&info->discard_ctl, cache);
2004 else
2005 btrfs_mark_bg_unused(cache);
2007 return 0;
2008 error:
2009 btrfs_put_block_group(cache);
2010 return ret;
2013 int btrfs_read_block_groups(struct btrfs_fs_info *info)
2015 struct btrfs_path *path;
2016 int ret;
2017 struct btrfs_block_group *cache;
2018 struct btrfs_space_info *space_info;
2019 struct btrfs_key key;
2020 int need_clear = 0;
2021 u64 cache_gen;
2023 key.objectid = 0;
2024 key.offset = 0;
2025 key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
2026 path = btrfs_alloc_path();
2027 if (!path)
2028 return -ENOMEM;
2030 cache_gen = btrfs_super_cache_generation(info->super_copy);
2031 if (btrfs_test_opt(info, SPACE_CACHE) &&
2032 btrfs_super_generation(info->super_copy) != cache_gen)
2033 need_clear = 1;
2034 if (btrfs_test_opt(info, CLEAR_CACHE))
2035 need_clear = 1;
2037 while (1) {
2038 ret = find_first_block_group(info, path, &key);
2039 if (ret > 0)
2040 break;
2041 if (ret != 0)
2042 goto error;
2044 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
2045 ret = read_one_block_group(info, path, &key, need_clear);
2046 if (ret < 0)
2047 goto error;
2048 key.objectid += key.offset;
2049 key.offset = 0;
2050 btrfs_release_path(path);
2053 rcu_read_lock();
2054 list_for_each_entry_rcu(space_info, &info->space_info, list) {
2055 if (!(btrfs_get_alloc_profile(info, space_info->flags) &
2056 (BTRFS_BLOCK_GROUP_RAID10 |
2057 BTRFS_BLOCK_GROUP_RAID1_MASK |
2058 BTRFS_BLOCK_GROUP_RAID56_MASK |
2059 BTRFS_BLOCK_GROUP_DUP)))
2060 continue;
2062 * Avoid allocating from un-mirrored block group if there are
2063 * mirrored block groups.
2065 list_for_each_entry(cache,
2066 &space_info->block_groups[BTRFS_RAID_RAID0],
2067 list)
2068 inc_block_group_ro(cache, 1);
2069 list_for_each_entry(cache,
2070 &space_info->block_groups[BTRFS_RAID_SINGLE],
2071 list)
2072 inc_block_group_ro(cache, 1);
2074 rcu_read_unlock();
2076 btrfs_init_global_block_rsv(info);
2077 ret = check_chunk_block_group_mappings(info);
2078 error:
2079 btrfs_free_path(path);
2080 return ret;
2083 static int insert_block_group_item(struct btrfs_trans_handle *trans,
2084 struct btrfs_block_group *block_group)
2086 struct btrfs_fs_info *fs_info = trans->fs_info;
2087 struct btrfs_block_group_item bgi;
2088 struct btrfs_root *root;
2089 struct btrfs_key key;
2091 spin_lock(&block_group->lock);
2092 btrfs_set_stack_block_group_used(&bgi, block_group->used);
2093 btrfs_set_stack_block_group_chunk_objectid(&bgi,
2094 BTRFS_FIRST_CHUNK_TREE_OBJECTID);
2095 btrfs_set_stack_block_group_flags(&bgi, block_group->flags);
2096 key.objectid = block_group->start;
2097 key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
2098 key.offset = block_group->length;
2099 spin_unlock(&block_group->lock);
2101 root = fs_info->extent_root;
2102 return btrfs_insert_item(trans, root, &key, &bgi, sizeof(bgi));
2105 void btrfs_create_pending_block_groups(struct btrfs_trans_handle *trans)
2107 struct btrfs_fs_info *fs_info = trans->fs_info;
2108 struct btrfs_block_group *block_group;
2109 int ret = 0;
2111 if (!trans->can_flush_pending_bgs)
2112 return;
2114 while (!list_empty(&trans->new_bgs)) {
2115 block_group = list_first_entry(&trans->new_bgs,
2116 struct btrfs_block_group,
2117 bg_list);
2118 if (ret)
2119 goto next;
2121 ret = insert_block_group_item(trans, block_group);
2122 if (ret)
2123 btrfs_abort_transaction(trans, ret);
2124 ret = btrfs_finish_chunk_alloc(trans, block_group->start,
2125 block_group->length);
2126 if (ret)
2127 btrfs_abort_transaction(trans, ret);
2128 add_block_group_free_space(trans, block_group);
2129 /* Already aborted the transaction if it failed. */
2130 next:
2131 btrfs_delayed_refs_rsv_release(fs_info, 1);
2132 list_del_init(&block_group->bg_list);
2134 btrfs_trans_release_chunk_metadata(trans);
2137 int btrfs_make_block_group(struct btrfs_trans_handle *trans, u64 bytes_used,
2138 u64 type, u64 chunk_offset, u64 size)
2140 struct btrfs_fs_info *fs_info = trans->fs_info;
2141 struct btrfs_block_group *cache;
2142 int ret;
2144 btrfs_set_log_full_commit(trans);
2146 cache = btrfs_create_block_group_cache(fs_info, chunk_offset);
2147 if (!cache)
2148 return -ENOMEM;
2150 cache->length = size;
2151 cache->used = bytes_used;
2152 cache->flags = type;
2153 cache->last_byte_to_unpin = (u64)-1;
2154 cache->cached = BTRFS_CACHE_FINISHED;
2155 cache->needs_free_space = 1;
2156 ret = exclude_super_stripes(cache);
2157 if (ret) {
2158 /* We may have excluded something, so call this just in case */
2159 btrfs_free_excluded_extents(cache);
2160 btrfs_put_block_group(cache);
2161 return ret;
2164 add_new_free_space(cache, chunk_offset, chunk_offset + size);
2166 btrfs_free_excluded_extents(cache);
2168 #ifdef CONFIG_BTRFS_DEBUG
2169 if (btrfs_should_fragment_free_space(cache)) {
2170 u64 new_bytes_used = size - bytes_used;
2172 bytes_used += new_bytes_used >> 1;
2173 fragment_free_space(cache);
2175 #endif
2177 * Ensure the corresponding space_info object is created and
2178 * assigned to our block group. We want our bg to be added to the rbtree
2179 * with its ->space_info set.
2181 cache->space_info = btrfs_find_space_info(fs_info, cache->flags);
2182 ASSERT(cache->space_info);
2184 ret = btrfs_add_block_group_cache(fs_info, cache);
2185 if (ret) {
2186 btrfs_remove_free_space_cache(cache);
2187 btrfs_put_block_group(cache);
2188 return ret;
2192 * Now that our block group has its ->space_info set and is inserted in
2193 * the rbtree, update the space info's counters.
2195 trace_btrfs_add_block_group(fs_info, cache, 1);
2196 btrfs_update_space_info(fs_info, cache->flags, size, bytes_used,
2197 cache->bytes_super, &cache->space_info);
2198 btrfs_update_global_block_rsv(fs_info);
2200 link_block_group(cache);
2202 list_add_tail(&cache->bg_list, &trans->new_bgs);
2203 trans->delayed_ref_updates++;
2204 btrfs_update_delayed_refs_rsv(trans);
2206 set_avail_alloc_bits(fs_info, type);
2207 return 0;
2210 static u64 update_block_group_flags(struct btrfs_fs_info *fs_info, u64 flags)
2212 u64 num_devices;
2213 u64 stripped;
2216 * if restripe for this chunk_type is on pick target profile and
2217 * return, otherwise do the usual balance
2219 stripped = get_restripe_target(fs_info, flags);
2220 if (stripped)
2221 return extended_to_chunk(stripped);
2223 num_devices = fs_info->fs_devices->rw_devices;
2225 stripped = BTRFS_BLOCK_GROUP_RAID0 | BTRFS_BLOCK_GROUP_RAID56_MASK |
2226 BTRFS_BLOCK_GROUP_RAID1_MASK | BTRFS_BLOCK_GROUP_RAID10;
2228 if (num_devices == 1) {
2229 stripped |= BTRFS_BLOCK_GROUP_DUP;
2230 stripped = flags & ~stripped;
2232 /* turn raid0 into single device chunks */
2233 if (flags & BTRFS_BLOCK_GROUP_RAID0)
2234 return stripped;
2236 /* turn mirroring into duplication */
2237 if (flags & (BTRFS_BLOCK_GROUP_RAID1_MASK |
2238 BTRFS_BLOCK_GROUP_RAID10))
2239 return stripped | BTRFS_BLOCK_GROUP_DUP;
2240 } else {
2241 /* they already had raid on here, just return */
2242 if (flags & stripped)
2243 return flags;
2245 stripped |= BTRFS_BLOCK_GROUP_DUP;
2246 stripped = flags & ~stripped;
2248 /* switch duplicated blocks with raid1 */
2249 if (flags & BTRFS_BLOCK_GROUP_DUP)
2250 return stripped | BTRFS_BLOCK_GROUP_RAID1;
2252 /* this is drive concat, leave it alone */
2255 return flags;
2259 * Mark one block group RO, can be called several times for the same block
2260 * group.
2262 * @cache: the destination block group
2263 * @do_chunk_alloc: whether need to do chunk pre-allocation, this is to
2264 * ensure we still have some free space after marking this
2265 * block group RO.
2267 int btrfs_inc_block_group_ro(struct btrfs_block_group *cache,
2268 bool do_chunk_alloc)
2270 struct btrfs_fs_info *fs_info = cache->fs_info;
2271 struct btrfs_trans_handle *trans;
2272 u64 alloc_flags;
2273 int ret;
2275 again:
2276 trans = btrfs_join_transaction(fs_info->extent_root);
2277 if (IS_ERR(trans))
2278 return PTR_ERR(trans);
2281 * we're not allowed to set block groups readonly after the dirty
2282 * block groups cache has started writing. If it already started,
2283 * back off and let this transaction commit
2285 mutex_lock(&fs_info->ro_block_group_mutex);
2286 if (test_bit(BTRFS_TRANS_DIRTY_BG_RUN, &trans->transaction->flags)) {
2287 u64 transid = trans->transid;
2289 mutex_unlock(&fs_info->ro_block_group_mutex);
2290 btrfs_end_transaction(trans);
2292 ret = btrfs_wait_for_commit(fs_info, transid);
2293 if (ret)
2294 return ret;
2295 goto again;
2298 if (do_chunk_alloc) {
2300 * If we are changing raid levels, try to allocate a
2301 * corresponding block group with the new raid level.
2303 alloc_flags = update_block_group_flags(fs_info, cache->flags);
2304 if (alloc_flags != cache->flags) {
2305 ret = btrfs_chunk_alloc(trans, alloc_flags,
2306 CHUNK_ALLOC_FORCE);
2308 * ENOSPC is allowed here, we may have enough space
2309 * already allocated at the new raid level to carry on
2311 if (ret == -ENOSPC)
2312 ret = 0;
2313 if (ret < 0)
2314 goto out;
2318 ret = inc_block_group_ro(cache, 0);
2319 if (!do_chunk_alloc)
2320 goto unlock_out;
2321 if (!ret)
2322 goto out;
2323 alloc_flags = btrfs_get_alloc_profile(fs_info, cache->space_info->flags);
2324 ret = btrfs_chunk_alloc(trans, alloc_flags, CHUNK_ALLOC_FORCE);
2325 if (ret < 0)
2326 goto out;
2327 ret = inc_block_group_ro(cache, 0);
2328 out:
2329 if (cache->flags & BTRFS_BLOCK_GROUP_SYSTEM) {
2330 alloc_flags = update_block_group_flags(fs_info, cache->flags);
2331 mutex_lock(&fs_info->chunk_mutex);
2332 check_system_chunk(trans, alloc_flags);
2333 mutex_unlock(&fs_info->chunk_mutex);
2335 unlock_out:
2336 mutex_unlock(&fs_info->ro_block_group_mutex);
2338 btrfs_end_transaction(trans);
2339 return ret;
2342 void btrfs_dec_block_group_ro(struct btrfs_block_group *cache)
2344 struct btrfs_space_info *sinfo = cache->space_info;
2345 u64 num_bytes;
2347 BUG_ON(!cache->ro);
2349 spin_lock(&sinfo->lock);
2350 spin_lock(&cache->lock);
2351 if (!--cache->ro) {
2352 num_bytes = cache->length - cache->reserved -
2353 cache->pinned - cache->bytes_super - cache->used;
2354 sinfo->bytes_readonly -= num_bytes;
2355 list_del_init(&cache->ro_list);
2357 spin_unlock(&cache->lock);
2358 spin_unlock(&sinfo->lock);
2361 static int update_block_group_item(struct btrfs_trans_handle *trans,
2362 struct btrfs_path *path,
2363 struct btrfs_block_group *cache)
2365 struct btrfs_fs_info *fs_info = trans->fs_info;
2366 int ret;
2367 struct btrfs_root *root = fs_info->extent_root;
2368 unsigned long bi;
2369 struct extent_buffer *leaf;
2370 struct btrfs_block_group_item bgi;
2371 struct btrfs_key key;
2373 key.objectid = cache->start;
2374 key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
2375 key.offset = cache->length;
2377 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2378 if (ret) {
2379 if (ret > 0)
2380 ret = -ENOENT;
2381 goto fail;
2384 leaf = path->nodes[0];
2385 bi = btrfs_item_ptr_offset(leaf, path->slots[0]);
2386 btrfs_set_stack_block_group_used(&bgi, cache->used);
2387 btrfs_set_stack_block_group_chunk_objectid(&bgi,
2388 BTRFS_FIRST_CHUNK_TREE_OBJECTID);
2389 btrfs_set_stack_block_group_flags(&bgi, cache->flags);
2390 write_extent_buffer(leaf, &bgi, bi, sizeof(bgi));
2391 btrfs_mark_buffer_dirty(leaf);
2392 fail:
2393 btrfs_release_path(path);
2394 return ret;
2398 static int cache_save_setup(struct btrfs_block_group *block_group,
2399 struct btrfs_trans_handle *trans,
2400 struct btrfs_path *path)
2402 struct btrfs_fs_info *fs_info = block_group->fs_info;
2403 struct btrfs_root *root = fs_info->tree_root;
2404 struct inode *inode = NULL;
2405 struct extent_changeset *data_reserved = NULL;
2406 u64 alloc_hint = 0;
2407 int dcs = BTRFS_DC_ERROR;
2408 u64 num_pages = 0;
2409 int retries = 0;
2410 int ret = 0;
2413 * If this block group is smaller than 100 megs don't bother caching the
2414 * block group.
2416 if (block_group->length < (100 * SZ_1M)) {
2417 spin_lock(&block_group->lock);
2418 block_group->disk_cache_state = BTRFS_DC_WRITTEN;
2419 spin_unlock(&block_group->lock);
2420 return 0;
2423 if (TRANS_ABORTED(trans))
2424 return 0;
2425 again:
2426 inode = lookup_free_space_inode(block_group, path);
2427 if (IS_ERR(inode) && PTR_ERR(inode) != -ENOENT) {
2428 ret = PTR_ERR(inode);
2429 btrfs_release_path(path);
2430 goto out;
2433 if (IS_ERR(inode)) {
2434 BUG_ON(retries);
2435 retries++;
2437 if (block_group->ro)
2438 goto out_free;
2440 ret = create_free_space_inode(trans, block_group, path);
2441 if (ret)
2442 goto out_free;
2443 goto again;
2447 * We want to set the generation to 0, that way if anything goes wrong
2448 * from here on out we know not to trust this cache when we load up next
2449 * time.
2451 BTRFS_I(inode)->generation = 0;
2452 ret = btrfs_update_inode(trans, root, inode);
2453 if (ret) {
2455 * So theoretically we could recover from this, simply set the
2456 * super cache generation to 0 so we know to invalidate the
2457 * cache, but then we'd have to keep track of the block groups
2458 * that fail this way so we know we _have_ to reset this cache
2459 * before the next commit or risk reading stale cache. So to
2460 * limit our exposure to horrible edge cases lets just abort the
2461 * transaction, this only happens in really bad situations
2462 * anyway.
2464 btrfs_abort_transaction(trans, ret);
2465 goto out_put;
2467 WARN_ON(ret);
2469 /* We've already setup this transaction, go ahead and exit */
2470 if (block_group->cache_generation == trans->transid &&
2471 i_size_read(inode)) {
2472 dcs = BTRFS_DC_SETUP;
2473 goto out_put;
2476 if (i_size_read(inode) > 0) {
2477 ret = btrfs_check_trunc_cache_free_space(fs_info,
2478 &fs_info->global_block_rsv);
2479 if (ret)
2480 goto out_put;
2482 ret = btrfs_truncate_free_space_cache(trans, NULL, inode);
2483 if (ret)
2484 goto out_put;
2487 spin_lock(&block_group->lock);
2488 if (block_group->cached != BTRFS_CACHE_FINISHED ||
2489 !btrfs_test_opt(fs_info, SPACE_CACHE)) {
2491 * don't bother trying to write stuff out _if_
2492 * a) we're not cached,
2493 * b) we're with nospace_cache mount option,
2494 * c) we're with v2 space_cache (FREE_SPACE_TREE).
2496 dcs = BTRFS_DC_WRITTEN;
2497 spin_unlock(&block_group->lock);
2498 goto out_put;
2500 spin_unlock(&block_group->lock);
2503 * We hit an ENOSPC when setting up the cache in this transaction, just
2504 * skip doing the setup, we've already cleared the cache so we're safe.
2506 if (test_bit(BTRFS_TRANS_CACHE_ENOSPC, &trans->transaction->flags)) {
2507 ret = -ENOSPC;
2508 goto out_put;
2512 * Try to preallocate enough space based on how big the block group is.
2513 * Keep in mind this has to include any pinned space which could end up
2514 * taking up quite a bit since it's not folded into the other space
2515 * cache.
2517 num_pages = div_u64(block_group->length, SZ_256M);
2518 if (!num_pages)
2519 num_pages = 1;
2521 num_pages *= 16;
2522 num_pages *= PAGE_SIZE;
2524 ret = btrfs_check_data_free_space(inode, &data_reserved, 0, num_pages);
2525 if (ret)
2526 goto out_put;
2528 ret = btrfs_prealloc_file_range_trans(inode, trans, 0, 0, num_pages,
2529 num_pages, num_pages,
2530 &alloc_hint);
2532 * Our cache requires contiguous chunks so that we don't modify a bunch
2533 * of metadata or split extents when writing the cache out, which means
2534 * we can enospc if we are heavily fragmented in addition to just normal
2535 * out of space conditions. So if we hit this just skip setting up any
2536 * other block groups for this transaction, maybe we'll unpin enough
2537 * space the next time around.
2539 if (!ret)
2540 dcs = BTRFS_DC_SETUP;
2541 else if (ret == -ENOSPC)
2542 set_bit(BTRFS_TRANS_CACHE_ENOSPC, &trans->transaction->flags);
2544 out_put:
2545 iput(inode);
2546 out_free:
2547 btrfs_release_path(path);
2548 out:
2549 spin_lock(&block_group->lock);
2550 if (!ret && dcs == BTRFS_DC_SETUP)
2551 block_group->cache_generation = trans->transid;
2552 block_group->disk_cache_state = dcs;
2553 spin_unlock(&block_group->lock);
2555 extent_changeset_free(data_reserved);
2556 return ret;
2559 int btrfs_setup_space_cache(struct btrfs_trans_handle *trans)
2561 struct btrfs_fs_info *fs_info = trans->fs_info;
2562 struct btrfs_block_group *cache, *tmp;
2563 struct btrfs_transaction *cur_trans = trans->transaction;
2564 struct btrfs_path *path;
2566 if (list_empty(&cur_trans->dirty_bgs) ||
2567 !btrfs_test_opt(fs_info, SPACE_CACHE))
2568 return 0;
2570 path = btrfs_alloc_path();
2571 if (!path)
2572 return -ENOMEM;
2574 /* Could add new block groups, use _safe just in case */
2575 list_for_each_entry_safe(cache, tmp, &cur_trans->dirty_bgs,
2576 dirty_list) {
2577 if (cache->disk_cache_state == BTRFS_DC_CLEAR)
2578 cache_save_setup(cache, trans, path);
2581 btrfs_free_path(path);
2582 return 0;
2586 * Transaction commit does final block group cache writeback during a critical
2587 * section where nothing is allowed to change the FS. This is required in
2588 * order for the cache to actually match the block group, but can introduce a
2589 * lot of latency into the commit.
2591 * So, btrfs_start_dirty_block_groups is here to kick off block group cache IO.
2592 * There's a chance we'll have to redo some of it if the block group changes
2593 * again during the commit, but it greatly reduces the commit latency by
2594 * getting rid of the easy block groups while we're still allowing others to
2595 * join the commit.
2597 int btrfs_start_dirty_block_groups(struct btrfs_trans_handle *trans)
2599 struct btrfs_fs_info *fs_info = trans->fs_info;
2600 struct btrfs_block_group *cache;
2601 struct btrfs_transaction *cur_trans = trans->transaction;
2602 int ret = 0;
2603 int should_put;
2604 struct btrfs_path *path = NULL;
2605 LIST_HEAD(dirty);
2606 struct list_head *io = &cur_trans->io_bgs;
2607 int num_started = 0;
2608 int loops = 0;
2610 spin_lock(&cur_trans->dirty_bgs_lock);
2611 if (list_empty(&cur_trans->dirty_bgs)) {
2612 spin_unlock(&cur_trans->dirty_bgs_lock);
2613 return 0;
2615 list_splice_init(&cur_trans->dirty_bgs, &dirty);
2616 spin_unlock(&cur_trans->dirty_bgs_lock);
2618 again:
2619 /* Make sure all the block groups on our dirty list actually exist */
2620 btrfs_create_pending_block_groups(trans);
2622 if (!path) {
2623 path = btrfs_alloc_path();
2624 if (!path)
2625 return -ENOMEM;
2629 * cache_write_mutex is here only to save us from balance or automatic
2630 * removal of empty block groups deleting this block group while we are
2631 * writing out the cache
2633 mutex_lock(&trans->transaction->cache_write_mutex);
2634 while (!list_empty(&dirty)) {
2635 bool drop_reserve = true;
2637 cache = list_first_entry(&dirty, struct btrfs_block_group,
2638 dirty_list);
2640 * This can happen if something re-dirties a block group that
2641 * is already under IO. Just wait for it to finish and then do
2642 * it all again
2644 if (!list_empty(&cache->io_list)) {
2645 list_del_init(&cache->io_list);
2646 btrfs_wait_cache_io(trans, cache, path);
2647 btrfs_put_block_group(cache);
2652 * btrfs_wait_cache_io uses the cache->dirty_list to decide if
2653 * it should update the cache_state. Don't delete until after
2654 * we wait.
2656 * Since we're not running in the commit critical section
2657 * we need the dirty_bgs_lock to protect from update_block_group
2659 spin_lock(&cur_trans->dirty_bgs_lock);
2660 list_del_init(&cache->dirty_list);
2661 spin_unlock(&cur_trans->dirty_bgs_lock);
2663 should_put = 1;
2665 cache_save_setup(cache, trans, path);
2667 if (cache->disk_cache_state == BTRFS_DC_SETUP) {
2668 cache->io_ctl.inode = NULL;
2669 ret = btrfs_write_out_cache(trans, cache, path);
2670 if (ret == 0 && cache->io_ctl.inode) {
2671 num_started++;
2672 should_put = 0;
2675 * The cache_write_mutex is protecting the
2676 * io_list, also refer to the definition of
2677 * btrfs_transaction::io_bgs for more details
2679 list_add_tail(&cache->io_list, io);
2680 } else {
2682 * If we failed to write the cache, the
2683 * generation will be bad and life goes on
2685 ret = 0;
2688 if (!ret) {
2689 ret = update_block_group_item(trans, path, cache);
2691 * Our block group might still be attached to the list
2692 * of new block groups in the transaction handle of some
2693 * other task (struct btrfs_trans_handle->new_bgs). This
2694 * means its block group item isn't yet in the extent
2695 * tree. If this happens ignore the error, as we will
2696 * try again later in the critical section of the
2697 * transaction commit.
2699 if (ret == -ENOENT) {
2700 ret = 0;
2701 spin_lock(&cur_trans->dirty_bgs_lock);
2702 if (list_empty(&cache->dirty_list)) {
2703 list_add_tail(&cache->dirty_list,
2704 &cur_trans->dirty_bgs);
2705 btrfs_get_block_group(cache);
2706 drop_reserve = false;
2708 spin_unlock(&cur_trans->dirty_bgs_lock);
2709 } else if (ret) {
2710 btrfs_abort_transaction(trans, ret);
2714 /* If it's not on the io list, we need to put the block group */
2715 if (should_put)
2716 btrfs_put_block_group(cache);
2717 if (drop_reserve)
2718 btrfs_delayed_refs_rsv_release(fs_info, 1);
2720 if (ret)
2721 break;
2724 * Avoid blocking other tasks for too long. It might even save
2725 * us from writing caches for block groups that are going to be
2726 * removed.
2728 mutex_unlock(&trans->transaction->cache_write_mutex);
2729 mutex_lock(&trans->transaction->cache_write_mutex);
2731 mutex_unlock(&trans->transaction->cache_write_mutex);
2734 * Go through delayed refs for all the stuff we've just kicked off
2735 * and then loop back (just once)
2737 ret = btrfs_run_delayed_refs(trans, 0);
2738 if (!ret && loops == 0) {
2739 loops++;
2740 spin_lock(&cur_trans->dirty_bgs_lock);
2741 list_splice_init(&cur_trans->dirty_bgs, &dirty);
2743 * dirty_bgs_lock protects us from concurrent block group
2744 * deletes too (not just cache_write_mutex).
2746 if (!list_empty(&dirty)) {
2747 spin_unlock(&cur_trans->dirty_bgs_lock);
2748 goto again;
2750 spin_unlock(&cur_trans->dirty_bgs_lock);
2751 } else if (ret < 0) {
2752 btrfs_cleanup_dirty_bgs(cur_trans, fs_info);
2755 btrfs_free_path(path);
2756 return ret;
2759 int btrfs_write_dirty_block_groups(struct btrfs_trans_handle *trans)
2761 struct btrfs_fs_info *fs_info = trans->fs_info;
2762 struct btrfs_block_group *cache;
2763 struct btrfs_transaction *cur_trans = trans->transaction;
2764 int ret = 0;
2765 int should_put;
2766 struct btrfs_path *path;
2767 struct list_head *io = &cur_trans->io_bgs;
2768 int num_started = 0;
2770 path = btrfs_alloc_path();
2771 if (!path)
2772 return -ENOMEM;
2775 * Even though we are in the critical section of the transaction commit,
2776 * we can still have concurrent tasks adding elements to this
2777 * transaction's list of dirty block groups. These tasks correspond to
2778 * endio free space workers started when writeback finishes for a
2779 * space cache, which run inode.c:btrfs_finish_ordered_io(), and can
2780 * allocate new block groups as a result of COWing nodes of the root
2781 * tree when updating the free space inode. The writeback for the space
2782 * caches is triggered by an earlier call to
2783 * btrfs_start_dirty_block_groups() and iterations of the following
2784 * loop.
2785 * Also we want to do the cache_save_setup first and then run the
2786 * delayed refs to make sure we have the best chance at doing this all
2787 * in one shot.
2789 spin_lock(&cur_trans->dirty_bgs_lock);
2790 while (!list_empty(&cur_trans->dirty_bgs)) {
2791 cache = list_first_entry(&cur_trans->dirty_bgs,
2792 struct btrfs_block_group,
2793 dirty_list);
2796 * This can happen if cache_save_setup re-dirties a block group
2797 * that is already under IO. Just wait for it to finish and
2798 * then do it all again
2800 if (!list_empty(&cache->io_list)) {
2801 spin_unlock(&cur_trans->dirty_bgs_lock);
2802 list_del_init(&cache->io_list);
2803 btrfs_wait_cache_io(trans, cache, path);
2804 btrfs_put_block_group(cache);
2805 spin_lock(&cur_trans->dirty_bgs_lock);
2809 * Don't remove from the dirty list until after we've waited on
2810 * any pending IO
2812 list_del_init(&cache->dirty_list);
2813 spin_unlock(&cur_trans->dirty_bgs_lock);
2814 should_put = 1;
2816 cache_save_setup(cache, trans, path);
2818 if (!ret)
2819 ret = btrfs_run_delayed_refs(trans,
2820 (unsigned long) -1);
2822 if (!ret && cache->disk_cache_state == BTRFS_DC_SETUP) {
2823 cache->io_ctl.inode = NULL;
2824 ret = btrfs_write_out_cache(trans, cache, path);
2825 if (ret == 0 && cache->io_ctl.inode) {
2826 num_started++;
2827 should_put = 0;
2828 list_add_tail(&cache->io_list, io);
2829 } else {
2831 * If we failed to write the cache, the
2832 * generation will be bad and life goes on
2834 ret = 0;
2837 if (!ret) {
2838 ret = update_block_group_item(trans, path, cache);
2840 * One of the free space endio workers might have
2841 * created a new block group while updating a free space
2842 * cache's inode (at inode.c:btrfs_finish_ordered_io())
2843 * and hasn't released its transaction handle yet, in
2844 * which case the new block group is still attached to
2845 * its transaction handle and its creation has not
2846 * finished yet (no block group item in the extent tree
2847 * yet, etc). If this is the case, wait for all free
2848 * space endio workers to finish and retry. This is a
2849 * a very rare case so no need for a more efficient and
2850 * complex approach.
2852 if (ret == -ENOENT) {
2853 wait_event(cur_trans->writer_wait,
2854 atomic_read(&cur_trans->num_writers) == 1);
2855 ret = update_block_group_item(trans, path, cache);
2857 if (ret)
2858 btrfs_abort_transaction(trans, ret);
2861 /* If its not on the io list, we need to put the block group */
2862 if (should_put)
2863 btrfs_put_block_group(cache);
2864 btrfs_delayed_refs_rsv_release(fs_info, 1);
2865 spin_lock(&cur_trans->dirty_bgs_lock);
2867 spin_unlock(&cur_trans->dirty_bgs_lock);
2870 * Refer to the definition of io_bgs member for details why it's safe
2871 * to use it without any locking
2873 while (!list_empty(io)) {
2874 cache = list_first_entry(io, struct btrfs_block_group,
2875 io_list);
2876 list_del_init(&cache->io_list);
2877 btrfs_wait_cache_io(trans, cache, path);
2878 btrfs_put_block_group(cache);
2881 btrfs_free_path(path);
2882 return ret;
2885 int btrfs_update_block_group(struct btrfs_trans_handle *trans,
2886 u64 bytenr, u64 num_bytes, int alloc)
2888 struct btrfs_fs_info *info = trans->fs_info;
2889 struct btrfs_block_group *cache = NULL;
2890 u64 total = num_bytes;
2891 u64 old_val;
2892 u64 byte_in_group;
2893 int factor;
2894 int ret = 0;
2896 /* Block accounting for super block */
2897 spin_lock(&info->delalloc_root_lock);
2898 old_val = btrfs_super_bytes_used(info->super_copy);
2899 if (alloc)
2900 old_val += num_bytes;
2901 else
2902 old_val -= num_bytes;
2903 btrfs_set_super_bytes_used(info->super_copy, old_val);
2904 spin_unlock(&info->delalloc_root_lock);
2906 while (total) {
2907 cache = btrfs_lookup_block_group(info, bytenr);
2908 if (!cache) {
2909 ret = -ENOENT;
2910 break;
2912 factor = btrfs_bg_type_to_factor(cache->flags);
2915 * If this block group has free space cache written out, we
2916 * need to make sure to load it if we are removing space. This
2917 * is because we need the unpinning stage to actually add the
2918 * space back to the block group, otherwise we will leak space.
2920 if (!alloc && !btrfs_block_group_done(cache))
2921 btrfs_cache_block_group(cache, 1);
2923 byte_in_group = bytenr - cache->start;
2924 WARN_ON(byte_in_group > cache->length);
2926 spin_lock(&cache->space_info->lock);
2927 spin_lock(&cache->lock);
2929 if (btrfs_test_opt(info, SPACE_CACHE) &&
2930 cache->disk_cache_state < BTRFS_DC_CLEAR)
2931 cache->disk_cache_state = BTRFS_DC_CLEAR;
2933 old_val = cache->used;
2934 num_bytes = min(total, cache->length - byte_in_group);
2935 if (alloc) {
2936 old_val += num_bytes;
2937 cache->used = old_val;
2938 cache->reserved -= num_bytes;
2939 cache->space_info->bytes_reserved -= num_bytes;
2940 cache->space_info->bytes_used += num_bytes;
2941 cache->space_info->disk_used += num_bytes * factor;
2942 spin_unlock(&cache->lock);
2943 spin_unlock(&cache->space_info->lock);
2944 } else {
2945 old_val -= num_bytes;
2946 cache->used = old_val;
2947 cache->pinned += num_bytes;
2948 btrfs_space_info_update_bytes_pinned(info,
2949 cache->space_info, num_bytes);
2950 cache->space_info->bytes_used -= num_bytes;
2951 cache->space_info->disk_used -= num_bytes * factor;
2952 spin_unlock(&cache->lock);
2953 spin_unlock(&cache->space_info->lock);
2955 percpu_counter_add_batch(
2956 &cache->space_info->total_bytes_pinned,
2957 num_bytes,
2958 BTRFS_TOTAL_BYTES_PINNED_BATCH);
2959 set_extent_dirty(&trans->transaction->pinned_extents,
2960 bytenr, bytenr + num_bytes - 1,
2961 GFP_NOFS | __GFP_NOFAIL);
2964 spin_lock(&trans->transaction->dirty_bgs_lock);
2965 if (list_empty(&cache->dirty_list)) {
2966 list_add_tail(&cache->dirty_list,
2967 &trans->transaction->dirty_bgs);
2968 trans->delayed_ref_updates++;
2969 btrfs_get_block_group(cache);
2971 spin_unlock(&trans->transaction->dirty_bgs_lock);
2974 * No longer have used bytes in this block group, queue it for
2975 * deletion. We do this after adding the block group to the
2976 * dirty list to avoid races between cleaner kthread and space
2977 * cache writeout.
2979 if (!alloc && old_val == 0) {
2980 if (!btrfs_test_opt(info, DISCARD_ASYNC))
2981 btrfs_mark_bg_unused(cache);
2984 btrfs_put_block_group(cache);
2985 total -= num_bytes;
2986 bytenr += num_bytes;
2989 /* Modified block groups are accounted for in the delayed_refs_rsv. */
2990 btrfs_update_delayed_refs_rsv(trans);
2991 return ret;
2995 * btrfs_add_reserved_bytes - update the block_group and space info counters
2996 * @cache: The cache we are manipulating
2997 * @ram_bytes: The number of bytes of file content, and will be same to
2998 * @num_bytes except for the compress path.
2999 * @num_bytes: The number of bytes in question
3000 * @delalloc: The blocks are allocated for the delalloc write
3002 * This is called by the allocator when it reserves space. If this is a
3003 * reservation and the block group has become read only we cannot make the
3004 * reservation and return -EAGAIN, otherwise this function always succeeds.
3006 int btrfs_add_reserved_bytes(struct btrfs_block_group *cache,
3007 u64 ram_bytes, u64 num_bytes, int delalloc)
3009 struct btrfs_space_info *space_info = cache->space_info;
3010 int ret = 0;
3012 spin_lock(&space_info->lock);
3013 spin_lock(&cache->lock);
3014 if (cache->ro) {
3015 ret = -EAGAIN;
3016 } else {
3017 cache->reserved += num_bytes;
3018 space_info->bytes_reserved += num_bytes;
3019 trace_btrfs_space_reservation(cache->fs_info, "space_info",
3020 space_info->flags, num_bytes, 1);
3021 btrfs_space_info_update_bytes_may_use(cache->fs_info,
3022 space_info, -ram_bytes);
3023 if (delalloc)
3024 cache->delalloc_bytes += num_bytes;
3026 spin_unlock(&cache->lock);
3027 spin_unlock(&space_info->lock);
3028 return ret;
3032 * btrfs_free_reserved_bytes - update the block_group and space info counters
3033 * @cache: The cache we are manipulating
3034 * @num_bytes: The number of bytes in question
3035 * @delalloc: The blocks are allocated for the delalloc write
3037 * This is called by somebody who is freeing space that was never actually used
3038 * on disk. For example if you reserve some space for a new leaf in transaction
3039 * A and before transaction A commits you free that leaf, you call this with
3040 * reserve set to 0 in order to clear the reservation.
3042 void btrfs_free_reserved_bytes(struct btrfs_block_group *cache,
3043 u64 num_bytes, int delalloc)
3045 struct btrfs_space_info *space_info = cache->space_info;
3047 spin_lock(&space_info->lock);
3048 spin_lock(&cache->lock);
3049 if (cache->ro)
3050 space_info->bytes_readonly += num_bytes;
3051 cache->reserved -= num_bytes;
3052 space_info->bytes_reserved -= num_bytes;
3053 space_info->max_extent_size = 0;
3055 if (delalloc)
3056 cache->delalloc_bytes -= num_bytes;
3057 spin_unlock(&cache->lock);
3058 spin_unlock(&space_info->lock);
3061 static void force_metadata_allocation(struct btrfs_fs_info *info)
3063 struct list_head *head = &info->space_info;
3064 struct btrfs_space_info *found;
3066 rcu_read_lock();
3067 list_for_each_entry_rcu(found, head, list) {
3068 if (found->flags & BTRFS_BLOCK_GROUP_METADATA)
3069 found->force_alloc = CHUNK_ALLOC_FORCE;
3071 rcu_read_unlock();
3074 static int should_alloc_chunk(struct btrfs_fs_info *fs_info,
3075 struct btrfs_space_info *sinfo, int force)
3077 u64 bytes_used = btrfs_space_info_used(sinfo, false);
3078 u64 thresh;
3080 if (force == CHUNK_ALLOC_FORCE)
3081 return 1;
3084 * in limited mode, we want to have some free space up to
3085 * about 1% of the FS size.
3087 if (force == CHUNK_ALLOC_LIMITED) {
3088 thresh = btrfs_super_total_bytes(fs_info->super_copy);
3089 thresh = max_t(u64, SZ_64M, div_factor_fine(thresh, 1));
3091 if (sinfo->total_bytes - bytes_used < thresh)
3092 return 1;
3095 if (bytes_used + SZ_2M < div_factor(sinfo->total_bytes, 8))
3096 return 0;
3097 return 1;
3100 int btrfs_force_chunk_alloc(struct btrfs_trans_handle *trans, u64 type)
3102 u64 alloc_flags = btrfs_get_alloc_profile(trans->fs_info, type);
3104 return btrfs_chunk_alloc(trans, alloc_flags, CHUNK_ALLOC_FORCE);
3108 * If force is CHUNK_ALLOC_FORCE:
3109 * - return 1 if it successfully allocates a chunk,
3110 * - return errors including -ENOSPC otherwise.
3111 * If force is NOT CHUNK_ALLOC_FORCE:
3112 * - return 0 if it doesn't need to allocate a new chunk,
3113 * - return 1 if it successfully allocates a chunk,
3114 * - return errors including -ENOSPC otherwise.
3116 int btrfs_chunk_alloc(struct btrfs_trans_handle *trans, u64 flags,
3117 enum btrfs_chunk_alloc_enum force)
3119 struct btrfs_fs_info *fs_info = trans->fs_info;
3120 struct btrfs_space_info *space_info;
3121 bool wait_for_alloc = false;
3122 bool should_alloc = false;
3123 int ret = 0;
3125 /* Don't re-enter if we're already allocating a chunk */
3126 if (trans->allocating_chunk)
3127 return -ENOSPC;
3129 space_info = btrfs_find_space_info(fs_info, flags);
3130 ASSERT(space_info);
3132 do {
3133 spin_lock(&space_info->lock);
3134 if (force < space_info->force_alloc)
3135 force = space_info->force_alloc;
3136 should_alloc = should_alloc_chunk(fs_info, space_info, force);
3137 if (space_info->full) {
3138 /* No more free physical space */
3139 if (should_alloc)
3140 ret = -ENOSPC;
3141 else
3142 ret = 0;
3143 spin_unlock(&space_info->lock);
3144 return ret;
3145 } else if (!should_alloc) {
3146 spin_unlock(&space_info->lock);
3147 return 0;
3148 } else if (space_info->chunk_alloc) {
3150 * Someone is already allocating, so we need to block
3151 * until this someone is finished and then loop to
3152 * recheck if we should continue with our allocation
3153 * attempt.
3155 wait_for_alloc = true;
3156 spin_unlock(&space_info->lock);
3157 mutex_lock(&fs_info->chunk_mutex);
3158 mutex_unlock(&fs_info->chunk_mutex);
3159 } else {
3160 /* Proceed with allocation */
3161 space_info->chunk_alloc = 1;
3162 wait_for_alloc = false;
3163 spin_unlock(&space_info->lock);
3166 cond_resched();
3167 } while (wait_for_alloc);
3169 mutex_lock(&fs_info->chunk_mutex);
3170 trans->allocating_chunk = true;
3173 * If we have mixed data/metadata chunks we want to make sure we keep
3174 * allocating mixed chunks instead of individual chunks.
3176 if (btrfs_mixed_space_info(space_info))
3177 flags |= (BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA);
3180 * if we're doing a data chunk, go ahead and make sure that
3181 * we keep a reasonable number of metadata chunks allocated in the
3182 * FS as well.
3184 if (flags & BTRFS_BLOCK_GROUP_DATA && fs_info->metadata_ratio) {
3185 fs_info->data_chunk_allocations++;
3186 if (!(fs_info->data_chunk_allocations %
3187 fs_info->metadata_ratio))
3188 force_metadata_allocation(fs_info);
3192 * Check if we have enough space in SYSTEM chunk because we may need
3193 * to update devices.
3195 check_system_chunk(trans, flags);
3197 ret = btrfs_alloc_chunk(trans, flags);
3198 trans->allocating_chunk = false;
3200 spin_lock(&space_info->lock);
3201 if (ret < 0) {
3202 if (ret == -ENOSPC)
3203 space_info->full = 1;
3204 else
3205 goto out;
3206 } else {
3207 ret = 1;
3208 space_info->max_extent_size = 0;
3211 space_info->force_alloc = CHUNK_ALLOC_NO_FORCE;
3212 out:
3213 space_info->chunk_alloc = 0;
3214 spin_unlock(&space_info->lock);
3215 mutex_unlock(&fs_info->chunk_mutex);
3217 * When we allocate a new chunk we reserve space in the chunk block
3218 * reserve to make sure we can COW nodes/leafs in the chunk tree or
3219 * add new nodes/leafs to it if we end up needing to do it when
3220 * inserting the chunk item and updating device items as part of the
3221 * second phase of chunk allocation, performed by
3222 * btrfs_finish_chunk_alloc(). So make sure we don't accumulate a
3223 * large number of new block groups to create in our transaction
3224 * handle's new_bgs list to avoid exhausting the chunk block reserve
3225 * in extreme cases - like having a single transaction create many new
3226 * block groups when starting to write out the free space caches of all
3227 * the block groups that were made dirty during the lifetime of the
3228 * transaction.
3230 if (trans->chunk_bytes_reserved >= (u64)SZ_2M)
3231 btrfs_create_pending_block_groups(trans);
3233 return ret;
3236 static u64 get_profile_num_devs(struct btrfs_fs_info *fs_info, u64 type)
3238 u64 num_dev;
3240 num_dev = btrfs_raid_array[btrfs_bg_flags_to_raid_index(type)].devs_max;
3241 if (!num_dev)
3242 num_dev = fs_info->fs_devices->rw_devices;
3244 return num_dev;
3248 * Reserve space in the system space for allocating or removing a chunk
3250 void check_system_chunk(struct btrfs_trans_handle *trans, u64 type)
3252 struct btrfs_fs_info *fs_info = trans->fs_info;
3253 struct btrfs_space_info *info;
3254 u64 left;
3255 u64 thresh;
3256 int ret = 0;
3257 u64 num_devs;
3260 * Needed because we can end up allocating a system chunk and for an
3261 * atomic and race free space reservation in the chunk block reserve.
3263 lockdep_assert_held(&fs_info->chunk_mutex);
3265 info = btrfs_find_space_info(fs_info, BTRFS_BLOCK_GROUP_SYSTEM);
3266 spin_lock(&info->lock);
3267 left = info->total_bytes - btrfs_space_info_used(info, true);
3268 spin_unlock(&info->lock);
3270 num_devs = get_profile_num_devs(fs_info, type);
3272 /* num_devs device items to update and 1 chunk item to add or remove */
3273 thresh = btrfs_calc_metadata_size(fs_info, num_devs) +
3274 btrfs_calc_insert_metadata_size(fs_info, 1);
3276 if (left < thresh && btrfs_test_opt(fs_info, ENOSPC_DEBUG)) {
3277 btrfs_info(fs_info, "left=%llu, need=%llu, flags=%llu",
3278 left, thresh, type);
3279 btrfs_dump_space_info(fs_info, info, 0, 0);
3282 if (left < thresh) {
3283 u64 flags = btrfs_system_alloc_profile(fs_info);
3286 * Ignore failure to create system chunk. We might end up not
3287 * needing it, as we might not need to COW all nodes/leafs from
3288 * the paths we visit in the chunk tree (they were already COWed
3289 * or created in the current transaction for example).
3291 ret = btrfs_alloc_chunk(trans, flags);
3294 if (!ret) {
3295 ret = btrfs_block_rsv_add(fs_info->chunk_root,
3296 &fs_info->chunk_block_rsv,
3297 thresh, BTRFS_RESERVE_NO_FLUSH);
3298 if (!ret)
3299 trans->chunk_bytes_reserved += thresh;
3303 void btrfs_put_block_group_cache(struct btrfs_fs_info *info)
3305 struct btrfs_block_group *block_group;
3306 u64 last = 0;
3308 while (1) {
3309 struct inode *inode;
3311 block_group = btrfs_lookup_first_block_group(info, last);
3312 while (block_group) {
3313 btrfs_wait_block_group_cache_done(block_group);
3314 spin_lock(&block_group->lock);
3315 if (block_group->iref)
3316 break;
3317 spin_unlock(&block_group->lock);
3318 block_group = btrfs_next_block_group(block_group);
3320 if (!block_group) {
3321 if (last == 0)
3322 break;
3323 last = 0;
3324 continue;
3327 inode = block_group->inode;
3328 block_group->iref = 0;
3329 block_group->inode = NULL;
3330 spin_unlock(&block_group->lock);
3331 ASSERT(block_group->io_ctl.inode == NULL);
3332 iput(inode);
3333 last = block_group->start + block_group->length;
3334 btrfs_put_block_group(block_group);
3339 * Must be called only after stopping all workers, since we could have block
3340 * group caching kthreads running, and therefore they could race with us if we
3341 * freed the block groups before stopping them.
3343 int btrfs_free_block_groups(struct btrfs_fs_info *info)
3345 struct btrfs_block_group *block_group;
3346 struct btrfs_space_info *space_info;
3347 struct btrfs_caching_control *caching_ctl;
3348 struct rb_node *n;
3350 down_write(&info->commit_root_sem);
3351 while (!list_empty(&info->caching_block_groups)) {
3352 caching_ctl = list_entry(info->caching_block_groups.next,
3353 struct btrfs_caching_control, list);
3354 list_del(&caching_ctl->list);
3355 btrfs_put_caching_control(caching_ctl);
3357 up_write(&info->commit_root_sem);
3359 spin_lock(&info->unused_bgs_lock);
3360 while (!list_empty(&info->unused_bgs)) {
3361 block_group = list_first_entry(&info->unused_bgs,
3362 struct btrfs_block_group,
3363 bg_list);
3364 list_del_init(&block_group->bg_list);
3365 btrfs_put_block_group(block_group);
3367 spin_unlock(&info->unused_bgs_lock);
3369 spin_lock(&info->block_group_cache_lock);
3370 while ((n = rb_last(&info->block_group_cache_tree)) != NULL) {
3371 block_group = rb_entry(n, struct btrfs_block_group,
3372 cache_node);
3373 rb_erase(&block_group->cache_node,
3374 &info->block_group_cache_tree);
3375 RB_CLEAR_NODE(&block_group->cache_node);
3376 spin_unlock(&info->block_group_cache_lock);
3378 down_write(&block_group->space_info->groups_sem);
3379 list_del(&block_group->list);
3380 up_write(&block_group->space_info->groups_sem);
3383 * We haven't cached this block group, which means we could
3384 * possibly have excluded extents on this block group.
3386 if (block_group->cached == BTRFS_CACHE_NO ||
3387 block_group->cached == BTRFS_CACHE_ERROR)
3388 btrfs_free_excluded_extents(block_group);
3390 btrfs_remove_free_space_cache(block_group);
3391 ASSERT(block_group->cached != BTRFS_CACHE_STARTED);
3392 ASSERT(list_empty(&block_group->dirty_list));
3393 ASSERT(list_empty(&block_group->io_list));
3394 ASSERT(list_empty(&block_group->bg_list));
3395 ASSERT(atomic_read(&block_group->count) == 1);
3396 btrfs_put_block_group(block_group);
3398 spin_lock(&info->block_group_cache_lock);
3400 spin_unlock(&info->block_group_cache_lock);
3403 * Now that all the block groups are freed, go through and free all the
3404 * space_info structs. This is only called during the final stages of
3405 * unmount, and so we know nobody is using them. We call
3406 * synchronize_rcu() once before we start, just to be on the safe side.
3408 synchronize_rcu();
3410 btrfs_release_global_block_rsv(info);
3412 while (!list_empty(&info->space_info)) {
3413 space_info = list_entry(info->space_info.next,
3414 struct btrfs_space_info,
3415 list);
3418 * Do not hide this behind enospc_debug, this is actually
3419 * important and indicates a real bug if this happens.
3421 if (WARN_ON(space_info->bytes_pinned > 0 ||
3422 space_info->bytes_reserved > 0 ||
3423 space_info->bytes_may_use > 0))
3424 btrfs_dump_space_info(info, space_info, 0, 0);
3425 WARN_ON(space_info->reclaim_size > 0);
3426 list_del(&space_info->list);
3427 btrfs_sysfs_remove_space_info(space_info);
3429 return 0;
3432 void btrfs_freeze_block_group(struct btrfs_block_group *cache)
3434 atomic_inc(&cache->frozen);
3437 void btrfs_unfreeze_block_group(struct btrfs_block_group *block_group)
3439 struct btrfs_fs_info *fs_info = block_group->fs_info;
3440 struct extent_map_tree *em_tree;
3441 struct extent_map *em;
3442 bool cleanup;
3444 spin_lock(&block_group->lock);
3445 cleanup = (atomic_dec_and_test(&block_group->frozen) &&
3446 block_group->removed);
3447 spin_unlock(&block_group->lock);
3449 if (cleanup) {
3450 mutex_lock(&fs_info->chunk_mutex);
3451 em_tree = &fs_info->mapping_tree;
3452 write_lock(&em_tree->lock);
3453 em = lookup_extent_mapping(em_tree, block_group->start,
3455 BUG_ON(!em); /* logic error, can't happen */
3456 remove_extent_mapping(em_tree, em);
3457 write_unlock(&em_tree->lock);
3458 mutex_unlock(&fs_info->chunk_mutex);
3460 /* once for us and once for the tree */
3461 free_extent_map(em);
3462 free_extent_map(em);
3465 * We may have left one free space entry and other possible
3466 * tasks trimming this block group have left 1 entry each one.
3467 * Free them if any.
3469 __btrfs_remove_free_space_cache(block_group->free_space_ctl);