1 // SPDX-License-Identifier: GPL-2.0
3 * Copyright (C) 2008 Oracle. All rights reserved.
6 #include <linux/kernel.h>
8 #include <linux/file.h>
10 #include <linux/pagemap.h>
11 #include <linux/highmem.h>
12 #include <linux/time.h>
13 #include <linux/init.h>
14 #include <linux/string.h>
15 #include <linux/backing-dev.h>
16 #include <linux/writeback.h>
17 #include <linux/slab.h>
18 #include <linux/sched/mm.h>
19 #include <linux/log2.h>
20 #include <crypto/hash.h>
24 #include "transaction.h"
25 #include "btrfs_inode.h"
27 #include "ordered-data.h"
28 #include "compression.h"
29 #include "extent_io.h"
30 #include "extent_map.h"
32 int zlib_compress_pages(struct list_head
*ws
, struct address_space
*mapping
,
33 u64 start
, struct page
**pages
, unsigned long *out_pages
,
34 unsigned long *total_in
, unsigned long *total_out
);
35 int zlib_decompress_bio(struct list_head
*ws
, struct compressed_bio
*cb
);
36 int zlib_decompress(struct list_head
*ws
, unsigned char *data_in
,
37 struct page
*dest_page
, unsigned long start_byte
, size_t srclen
,
39 struct list_head
*zlib_alloc_workspace(unsigned int level
);
40 void zlib_free_workspace(struct list_head
*ws
);
41 struct list_head
*zlib_get_workspace(unsigned int level
);
43 int lzo_compress_pages(struct list_head
*ws
, struct address_space
*mapping
,
44 u64 start
, struct page
**pages
, unsigned long *out_pages
,
45 unsigned long *total_in
, unsigned long *total_out
);
46 int lzo_decompress_bio(struct list_head
*ws
, struct compressed_bio
*cb
);
47 int lzo_decompress(struct list_head
*ws
, unsigned char *data_in
,
48 struct page
*dest_page
, unsigned long start_byte
, size_t srclen
,
50 struct list_head
*lzo_alloc_workspace(unsigned int level
);
51 void lzo_free_workspace(struct list_head
*ws
);
53 int zstd_compress_pages(struct list_head
*ws
, struct address_space
*mapping
,
54 u64 start
, struct page
**pages
, unsigned long *out_pages
,
55 unsigned long *total_in
, unsigned long *total_out
);
56 int zstd_decompress_bio(struct list_head
*ws
, struct compressed_bio
*cb
);
57 int zstd_decompress(struct list_head
*ws
, unsigned char *data_in
,
58 struct page
*dest_page
, unsigned long start_byte
, size_t srclen
,
60 void zstd_init_workspace_manager(void);
61 void zstd_cleanup_workspace_manager(void);
62 struct list_head
*zstd_alloc_workspace(unsigned int level
);
63 void zstd_free_workspace(struct list_head
*ws
);
64 struct list_head
*zstd_get_workspace(unsigned int level
);
65 void zstd_put_workspace(struct list_head
*ws
);
67 static const char* const btrfs_compress_types
[] = { "", "zlib", "lzo", "zstd" };
69 const char* btrfs_compress_type2str(enum btrfs_compression_type type
)
72 case BTRFS_COMPRESS_ZLIB
:
73 case BTRFS_COMPRESS_LZO
:
74 case BTRFS_COMPRESS_ZSTD
:
75 case BTRFS_COMPRESS_NONE
:
76 return btrfs_compress_types
[type
];
84 bool btrfs_compress_is_valid_type(const char *str
, size_t len
)
88 for (i
= 1; i
< ARRAY_SIZE(btrfs_compress_types
); i
++) {
89 size_t comp_len
= strlen(btrfs_compress_types
[i
]);
94 if (!strncmp(btrfs_compress_types
[i
], str
, comp_len
))
100 static int compression_compress_pages(int type
, struct list_head
*ws
,
101 struct address_space
*mapping
, u64 start
, struct page
**pages
,
102 unsigned long *out_pages
, unsigned long *total_in
,
103 unsigned long *total_out
)
106 case BTRFS_COMPRESS_ZLIB
:
107 return zlib_compress_pages(ws
, mapping
, start
, pages
,
108 out_pages
, total_in
, total_out
);
109 case BTRFS_COMPRESS_LZO
:
110 return lzo_compress_pages(ws
, mapping
, start
, pages
,
111 out_pages
, total_in
, total_out
);
112 case BTRFS_COMPRESS_ZSTD
:
113 return zstd_compress_pages(ws
, mapping
, start
, pages
,
114 out_pages
, total_in
, total_out
);
115 case BTRFS_COMPRESS_NONE
:
118 * This can't happen, the type is validated several times
119 * before we get here. As a sane fallback, return what the
120 * callers will understand as 'no compression happened'.
126 static int compression_decompress_bio(int type
, struct list_head
*ws
,
127 struct compressed_bio
*cb
)
130 case BTRFS_COMPRESS_ZLIB
: return zlib_decompress_bio(ws
, cb
);
131 case BTRFS_COMPRESS_LZO
: return lzo_decompress_bio(ws
, cb
);
132 case BTRFS_COMPRESS_ZSTD
: return zstd_decompress_bio(ws
, cb
);
133 case BTRFS_COMPRESS_NONE
:
136 * This can't happen, the type is validated several times
137 * before we get here.
143 static int compression_decompress(int type
, struct list_head
*ws
,
144 unsigned char *data_in
, struct page
*dest_page
,
145 unsigned long start_byte
, size_t srclen
, size_t destlen
)
148 case BTRFS_COMPRESS_ZLIB
: return zlib_decompress(ws
, data_in
, dest_page
,
149 start_byte
, srclen
, destlen
);
150 case BTRFS_COMPRESS_LZO
: return lzo_decompress(ws
, data_in
, dest_page
,
151 start_byte
, srclen
, destlen
);
152 case BTRFS_COMPRESS_ZSTD
: return zstd_decompress(ws
, data_in
, dest_page
,
153 start_byte
, srclen
, destlen
);
154 case BTRFS_COMPRESS_NONE
:
157 * This can't happen, the type is validated several times
158 * before we get here.
164 static int btrfs_decompress_bio(struct compressed_bio
*cb
);
166 static inline int compressed_bio_size(struct btrfs_fs_info
*fs_info
,
167 unsigned long disk_size
)
169 u16 csum_size
= btrfs_super_csum_size(fs_info
->super_copy
);
171 return sizeof(struct compressed_bio
) +
172 (DIV_ROUND_UP(disk_size
, fs_info
->sectorsize
)) * csum_size
;
175 static int check_compressed_csum(struct btrfs_inode
*inode
,
176 struct compressed_bio
*cb
,
179 struct btrfs_fs_info
*fs_info
= inode
->root
->fs_info
;
180 SHASH_DESC_ON_STACK(shash
, fs_info
->csum_shash
);
181 const u16 csum_size
= btrfs_super_csum_size(fs_info
->super_copy
);
186 u8 csum
[BTRFS_CSUM_SIZE
];
187 u8
*cb_sum
= cb
->sums
;
189 if (inode
->flags
& BTRFS_INODE_NODATASUM
)
192 shash
->tfm
= fs_info
->csum_shash
;
194 for (i
= 0; i
< cb
->nr_pages
; i
++) {
195 page
= cb
->compressed_pages
[i
];
197 kaddr
= kmap_atomic(page
);
198 crypto_shash_digest(shash
, kaddr
, PAGE_SIZE
, csum
);
199 kunmap_atomic(kaddr
);
201 if (memcmp(&csum
, cb_sum
, csum_size
)) {
202 btrfs_print_data_csum_error(inode
, disk_start
,
203 csum
, cb_sum
, cb
->mirror_num
);
215 /* when we finish reading compressed pages from the disk, we
216 * decompress them and then run the bio end_io routines on the
217 * decompressed pages (in the inode address space).
219 * This allows the checksumming and other IO error handling routines
222 * The compressed pages are freed here, and it must be run
225 static void end_compressed_bio_read(struct bio
*bio
)
227 struct compressed_bio
*cb
= bio
->bi_private
;
231 unsigned int mirror
= btrfs_io_bio(bio
)->mirror_num
;
237 /* if there are more bios still pending for this compressed
240 if (!refcount_dec_and_test(&cb
->pending_bios
))
244 * Record the correct mirror_num in cb->orig_bio so that
245 * read-repair can work properly.
247 ASSERT(btrfs_io_bio(cb
->orig_bio
));
248 btrfs_io_bio(cb
->orig_bio
)->mirror_num
= mirror
;
249 cb
->mirror_num
= mirror
;
252 * Some IO in this cb have failed, just skip checksum as there
253 * is no way it could be correct.
259 ret
= check_compressed_csum(BTRFS_I(inode
), cb
,
260 (u64
)bio
->bi_iter
.bi_sector
<< 9);
264 /* ok, we're the last bio for this extent, lets start
267 ret
= btrfs_decompress_bio(cb
);
273 /* release the compressed pages */
275 for (index
= 0; index
< cb
->nr_pages
; index
++) {
276 page
= cb
->compressed_pages
[index
];
277 page
->mapping
= NULL
;
281 /* do io completion on the original bio */
283 bio_io_error(cb
->orig_bio
);
285 struct bio_vec
*bvec
;
286 struct bvec_iter_all iter_all
;
289 * we have verified the checksum already, set page
290 * checked so the end_io handlers know about it
292 ASSERT(!bio_flagged(bio
, BIO_CLONED
));
293 bio_for_each_segment_all(bvec
, cb
->orig_bio
, iter_all
)
294 SetPageChecked(bvec
->bv_page
);
296 bio_endio(cb
->orig_bio
);
299 /* finally free the cb struct */
300 kfree(cb
->compressed_pages
);
307 * Clear the writeback bits on all of the file
308 * pages for a compressed write
310 static noinline
void end_compressed_writeback(struct inode
*inode
,
311 const struct compressed_bio
*cb
)
313 unsigned long index
= cb
->start
>> PAGE_SHIFT
;
314 unsigned long end_index
= (cb
->start
+ cb
->len
- 1) >> PAGE_SHIFT
;
315 struct page
*pages
[16];
316 unsigned long nr_pages
= end_index
- index
+ 1;
321 mapping_set_error(inode
->i_mapping
, -EIO
);
323 while (nr_pages
> 0) {
324 ret
= find_get_pages_contig(inode
->i_mapping
, index
,
326 nr_pages
, ARRAY_SIZE(pages
)), pages
);
332 for (i
= 0; i
< ret
; i
++) {
334 SetPageError(pages
[i
]);
335 end_page_writeback(pages
[i
]);
341 /* the inode may be gone now */
345 * do the cleanup once all the compressed pages hit the disk.
346 * This will clear writeback on the file pages and free the compressed
349 * This also calls the writeback end hooks for the file pages so that
350 * metadata and checksums can be updated in the file.
352 static void end_compressed_bio_write(struct bio
*bio
)
354 struct compressed_bio
*cb
= bio
->bi_private
;
362 /* if there are more bios still pending for this compressed
365 if (!refcount_dec_and_test(&cb
->pending_bios
))
368 /* ok, we're the last bio for this extent, step one is to
369 * call back into the FS and do all the end_io operations
372 cb
->compressed_pages
[0]->mapping
= cb
->inode
->i_mapping
;
373 btrfs_writepage_endio_finish_ordered(cb
->compressed_pages
[0],
374 cb
->start
, cb
->start
+ cb
->len
- 1,
375 bio
->bi_status
== BLK_STS_OK
);
376 cb
->compressed_pages
[0]->mapping
= NULL
;
378 end_compressed_writeback(inode
, cb
);
379 /* note, our inode could be gone now */
382 * release the compressed pages, these came from alloc_page and
383 * are not attached to the inode at all
386 for (index
= 0; index
< cb
->nr_pages
; index
++) {
387 page
= cb
->compressed_pages
[index
];
388 page
->mapping
= NULL
;
392 /* finally free the cb struct */
393 kfree(cb
->compressed_pages
);
400 * worker function to build and submit bios for previously compressed pages.
401 * The corresponding pages in the inode should be marked for writeback
402 * and the compressed pages should have a reference on them for dropping
403 * when the IO is complete.
405 * This also checksums the file bytes and gets things ready for
408 blk_status_t
btrfs_submit_compressed_write(struct inode
*inode
, u64 start
,
409 unsigned long len
, u64 disk_start
,
410 unsigned long compressed_len
,
411 struct page
**compressed_pages
,
412 unsigned long nr_pages
,
413 unsigned int write_flags
,
414 struct cgroup_subsys_state
*blkcg_css
)
416 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
417 struct bio
*bio
= NULL
;
418 struct compressed_bio
*cb
;
419 unsigned long bytes_left
;
422 u64 first_byte
= disk_start
;
424 int skip_sum
= BTRFS_I(inode
)->flags
& BTRFS_INODE_NODATASUM
;
426 WARN_ON(!PAGE_ALIGNED(start
));
427 cb
= kmalloc(compressed_bio_size(fs_info
, compressed_len
), GFP_NOFS
);
429 return BLK_STS_RESOURCE
;
430 refcount_set(&cb
->pending_bios
, 0);
436 cb
->compressed_pages
= compressed_pages
;
437 cb
->compressed_len
= compressed_len
;
439 cb
->nr_pages
= nr_pages
;
441 bio
= btrfs_bio_alloc(first_byte
);
442 bio
->bi_opf
= REQ_OP_WRITE
| write_flags
;
443 bio
->bi_private
= cb
;
444 bio
->bi_end_io
= end_compressed_bio_write
;
447 bio
->bi_opf
|= REQ_CGROUP_PUNT
;
448 kthread_associate_blkcg(blkcg_css
);
450 refcount_set(&cb
->pending_bios
, 1);
452 /* create and submit bios for the compressed pages */
453 bytes_left
= compressed_len
;
454 for (pg_index
= 0; pg_index
< cb
->nr_pages
; pg_index
++) {
457 page
= compressed_pages
[pg_index
];
458 page
->mapping
= inode
->i_mapping
;
459 if (bio
->bi_iter
.bi_size
)
460 submit
= btrfs_bio_fits_in_stripe(page
, PAGE_SIZE
, bio
,
463 page
->mapping
= NULL
;
464 if (submit
|| bio_add_page(bio
, page
, PAGE_SIZE
, 0) <
467 * inc the count before we submit the bio so
468 * we know the end IO handler won't happen before
469 * we inc the count. Otherwise, the cb might get
470 * freed before we're done setting it up
472 refcount_inc(&cb
->pending_bios
);
473 ret
= btrfs_bio_wq_end_io(fs_info
, bio
,
474 BTRFS_WQ_ENDIO_DATA
);
475 BUG_ON(ret
); /* -ENOMEM */
478 ret
= btrfs_csum_one_bio(inode
, bio
, start
, 1);
479 BUG_ON(ret
); /* -ENOMEM */
482 ret
= btrfs_map_bio(fs_info
, bio
, 0);
484 bio
->bi_status
= ret
;
488 bio
= btrfs_bio_alloc(first_byte
);
489 bio
->bi_opf
= REQ_OP_WRITE
| write_flags
;
490 bio
->bi_private
= cb
;
491 bio
->bi_end_io
= end_compressed_bio_write
;
493 bio
->bi_opf
|= REQ_CGROUP_PUNT
;
494 bio_add_page(bio
, page
, PAGE_SIZE
, 0);
496 if (bytes_left
< PAGE_SIZE
) {
498 "bytes left %lu compress len %lu nr %lu",
499 bytes_left
, cb
->compressed_len
, cb
->nr_pages
);
501 bytes_left
-= PAGE_SIZE
;
502 first_byte
+= PAGE_SIZE
;
506 ret
= btrfs_bio_wq_end_io(fs_info
, bio
, BTRFS_WQ_ENDIO_DATA
);
507 BUG_ON(ret
); /* -ENOMEM */
510 ret
= btrfs_csum_one_bio(inode
, bio
, start
, 1);
511 BUG_ON(ret
); /* -ENOMEM */
514 ret
= btrfs_map_bio(fs_info
, bio
, 0);
516 bio
->bi_status
= ret
;
521 kthread_associate_blkcg(NULL
);
526 static u64
bio_end_offset(struct bio
*bio
)
528 struct bio_vec
*last
= bio_last_bvec_all(bio
);
530 return page_offset(last
->bv_page
) + last
->bv_len
+ last
->bv_offset
;
533 static noinline
int add_ra_bio_pages(struct inode
*inode
,
535 struct compressed_bio
*cb
)
537 unsigned long end_index
;
538 unsigned long pg_index
;
540 u64 isize
= i_size_read(inode
);
543 unsigned long nr_pages
= 0;
544 struct extent_map
*em
;
545 struct address_space
*mapping
= inode
->i_mapping
;
546 struct extent_map_tree
*em_tree
;
547 struct extent_io_tree
*tree
;
551 last_offset
= bio_end_offset(cb
->orig_bio
);
552 em_tree
= &BTRFS_I(inode
)->extent_tree
;
553 tree
= &BTRFS_I(inode
)->io_tree
;
558 end_index
= (i_size_read(inode
) - 1) >> PAGE_SHIFT
;
560 while (last_offset
< compressed_end
) {
561 pg_index
= last_offset
>> PAGE_SHIFT
;
563 if (pg_index
> end_index
)
566 page
= xa_load(&mapping
->i_pages
, pg_index
);
567 if (page
&& !xa_is_value(page
)) {
574 page
= __page_cache_alloc(mapping_gfp_constraint(mapping
,
579 if (add_to_page_cache_lru(page
, mapping
, pg_index
, GFP_NOFS
)) {
584 end
= last_offset
+ PAGE_SIZE
- 1;
586 * at this point, we have a locked page in the page cache
587 * for these bytes in the file. But, we have to make
588 * sure they map to this compressed extent on disk.
590 set_page_extent_mapped(page
);
591 lock_extent(tree
, last_offset
, end
);
592 read_lock(&em_tree
->lock
);
593 em
= lookup_extent_mapping(em_tree
, last_offset
,
595 read_unlock(&em_tree
->lock
);
597 if (!em
|| last_offset
< em
->start
||
598 (last_offset
+ PAGE_SIZE
> extent_map_end(em
)) ||
599 (em
->block_start
>> 9) != cb
->orig_bio
->bi_iter
.bi_sector
) {
601 unlock_extent(tree
, last_offset
, end
);
608 if (page
->index
== end_index
) {
610 size_t zero_offset
= offset_in_page(isize
);
614 zeros
= PAGE_SIZE
- zero_offset
;
615 userpage
= kmap_atomic(page
);
616 memset(userpage
+ zero_offset
, 0, zeros
);
617 flush_dcache_page(page
);
618 kunmap_atomic(userpage
);
622 ret
= bio_add_page(cb
->orig_bio
, page
,
625 if (ret
== PAGE_SIZE
) {
629 unlock_extent(tree
, last_offset
, end
);
635 last_offset
+= PAGE_SIZE
;
641 * for a compressed read, the bio we get passed has all the inode pages
642 * in it. We don't actually do IO on those pages but allocate new ones
643 * to hold the compressed pages on disk.
645 * bio->bi_iter.bi_sector points to the compressed extent on disk
646 * bio->bi_io_vec points to all of the inode pages
648 * After the compressed pages are read, we copy the bytes into the
649 * bio we were passed and then call the bio end_io calls
651 blk_status_t
btrfs_submit_compressed_read(struct inode
*inode
, struct bio
*bio
,
652 int mirror_num
, unsigned long bio_flags
)
654 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
655 struct extent_map_tree
*em_tree
;
656 struct compressed_bio
*cb
;
657 unsigned long compressed_len
;
658 unsigned long nr_pages
;
659 unsigned long pg_index
;
661 struct bio
*comp_bio
;
662 u64 cur_disk_byte
= (u64
)bio
->bi_iter
.bi_sector
<< 9;
665 struct extent_map
*em
;
666 blk_status_t ret
= BLK_STS_RESOURCE
;
668 const u16 csum_size
= btrfs_super_csum_size(fs_info
->super_copy
);
671 em_tree
= &BTRFS_I(inode
)->extent_tree
;
673 /* we need the actual starting offset of this extent in the file */
674 read_lock(&em_tree
->lock
);
675 em
= lookup_extent_mapping(em_tree
,
676 page_offset(bio_first_page_all(bio
)),
678 read_unlock(&em_tree
->lock
);
680 return BLK_STS_IOERR
;
682 compressed_len
= em
->block_len
;
683 cb
= kmalloc(compressed_bio_size(fs_info
, compressed_len
), GFP_NOFS
);
687 refcount_set(&cb
->pending_bios
, 0);
690 cb
->mirror_num
= mirror_num
;
693 cb
->start
= em
->orig_start
;
695 em_start
= em
->start
;
700 cb
->len
= bio
->bi_iter
.bi_size
;
701 cb
->compressed_len
= compressed_len
;
702 cb
->compress_type
= extent_compress_type(bio_flags
);
705 nr_pages
= DIV_ROUND_UP(compressed_len
, PAGE_SIZE
);
706 cb
->compressed_pages
= kcalloc(nr_pages
, sizeof(struct page
*),
708 if (!cb
->compressed_pages
)
711 for (pg_index
= 0; pg_index
< nr_pages
; pg_index
++) {
712 cb
->compressed_pages
[pg_index
] = alloc_page(GFP_NOFS
|
714 if (!cb
->compressed_pages
[pg_index
]) {
715 faili
= pg_index
- 1;
716 ret
= BLK_STS_RESOURCE
;
720 faili
= nr_pages
- 1;
721 cb
->nr_pages
= nr_pages
;
723 add_ra_bio_pages(inode
, em_start
+ em_len
, cb
);
725 /* include any pages we added in add_ra-bio_pages */
726 cb
->len
= bio
->bi_iter
.bi_size
;
728 comp_bio
= btrfs_bio_alloc(cur_disk_byte
);
729 comp_bio
->bi_opf
= REQ_OP_READ
;
730 comp_bio
->bi_private
= cb
;
731 comp_bio
->bi_end_io
= end_compressed_bio_read
;
732 refcount_set(&cb
->pending_bios
, 1);
734 for (pg_index
= 0; pg_index
< nr_pages
; pg_index
++) {
737 page
= cb
->compressed_pages
[pg_index
];
738 page
->mapping
= inode
->i_mapping
;
739 page
->index
= em_start
>> PAGE_SHIFT
;
741 if (comp_bio
->bi_iter
.bi_size
)
742 submit
= btrfs_bio_fits_in_stripe(page
, PAGE_SIZE
,
745 page
->mapping
= NULL
;
746 if (submit
|| bio_add_page(comp_bio
, page
, PAGE_SIZE
, 0) <
748 unsigned int nr_sectors
;
750 ret
= btrfs_bio_wq_end_io(fs_info
, comp_bio
,
751 BTRFS_WQ_ENDIO_DATA
);
752 BUG_ON(ret
); /* -ENOMEM */
755 * inc the count before we submit the bio so
756 * we know the end IO handler won't happen before
757 * we inc the count. Otherwise, the cb might get
758 * freed before we're done setting it up
760 refcount_inc(&cb
->pending_bios
);
762 if (!(BTRFS_I(inode
)->flags
& BTRFS_INODE_NODATASUM
)) {
763 ret
= btrfs_lookup_bio_sums(inode
, comp_bio
,
765 BUG_ON(ret
); /* -ENOMEM */
768 nr_sectors
= DIV_ROUND_UP(comp_bio
->bi_iter
.bi_size
,
769 fs_info
->sectorsize
);
770 sums
+= csum_size
* nr_sectors
;
772 ret
= btrfs_map_bio(fs_info
, comp_bio
, mirror_num
);
774 comp_bio
->bi_status
= ret
;
778 comp_bio
= btrfs_bio_alloc(cur_disk_byte
);
779 comp_bio
->bi_opf
= REQ_OP_READ
;
780 comp_bio
->bi_private
= cb
;
781 comp_bio
->bi_end_io
= end_compressed_bio_read
;
783 bio_add_page(comp_bio
, page
, PAGE_SIZE
, 0);
785 cur_disk_byte
+= PAGE_SIZE
;
788 ret
= btrfs_bio_wq_end_io(fs_info
, comp_bio
, BTRFS_WQ_ENDIO_DATA
);
789 BUG_ON(ret
); /* -ENOMEM */
791 if (!(BTRFS_I(inode
)->flags
& BTRFS_INODE_NODATASUM
)) {
792 ret
= btrfs_lookup_bio_sums(inode
, comp_bio
, (u64
)-1, sums
);
793 BUG_ON(ret
); /* -ENOMEM */
796 ret
= btrfs_map_bio(fs_info
, comp_bio
, mirror_num
);
798 comp_bio
->bi_status
= ret
;
806 __free_page(cb
->compressed_pages
[faili
]);
810 kfree(cb
->compressed_pages
);
819 * Heuristic uses systematic sampling to collect data from the input data
820 * range, the logic can be tuned by the following constants:
822 * @SAMPLING_READ_SIZE - how many bytes will be copied from for each sample
823 * @SAMPLING_INTERVAL - range from which the sampled data can be collected
825 #define SAMPLING_READ_SIZE (16)
826 #define SAMPLING_INTERVAL (256)
829 * For statistical analysis of the input data we consider bytes that form a
830 * Galois Field of 256 objects. Each object has an attribute count, ie. how
831 * many times the object appeared in the sample.
833 #define BUCKET_SIZE (256)
836 * The size of the sample is based on a statistical sampling rule of thumb.
837 * The common way is to perform sampling tests as long as the number of
838 * elements in each cell is at least 5.
840 * Instead of 5, we choose 32 to obtain more accurate results.
841 * If the data contain the maximum number of symbols, which is 256, we obtain a
842 * sample size bound by 8192.
844 * For a sample of at most 8KB of data per data range: 16 consecutive bytes
845 * from up to 512 locations.
847 #define MAX_SAMPLE_SIZE (BTRFS_MAX_UNCOMPRESSED * \
848 SAMPLING_READ_SIZE / SAMPLING_INTERVAL)
854 struct heuristic_ws
{
855 /* Partial copy of input data */
858 /* Buckets store counters for each byte value */
859 struct bucket_item
*bucket
;
861 struct bucket_item
*bucket_b
;
862 struct list_head list
;
865 static struct workspace_manager heuristic_wsm
;
867 static void free_heuristic_ws(struct list_head
*ws
)
869 struct heuristic_ws
*workspace
;
871 workspace
= list_entry(ws
, struct heuristic_ws
, list
);
873 kvfree(workspace
->sample
);
874 kfree(workspace
->bucket
);
875 kfree(workspace
->bucket_b
);
879 static struct list_head
*alloc_heuristic_ws(unsigned int level
)
881 struct heuristic_ws
*ws
;
883 ws
= kzalloc(sizeof(*ws
), GFP_KERNEL
);
885 return ERR_PTR(-ENOMEM
);
887 ws
->sample
= kvmalloc(MAX_SAMPLE_SIZE
, GFP_KERNEL
);
891 ws
->bucket
= kcalloc(BUCKET_SIZE
, sizeof(*ws
->bucket
), GFP_KERNEL
);
895 ws
->bucket_b
= kcalloc(BUCKET_SIZE
, sizeof(*ws
->bucket_b
), GFP_KERNEL
);
899 INIT_LIST_HEAD(&ws
->list
);
902 free_heuristic_ws(&ws
->list
);
903 return ERR_PTR(-ENOMEM
);
906 const struct btrfs_compress_op btrfs_heuristic_compress
= {
907 .workspace_manager
= &heuristic_wsm
,
910 static const struct btrfs_compress_op
* const btrfs_compress_op
[] = {
911 /* The heuristic is represented as compression type 0 */
912 &btrfs_heuristic_compress
,
913 &btrfs_zlib_compress
,
915 &btrfs_zstd_compress
,
918 static struct list_head
*alloc_workspace(int type
, unsigned int level
)
921 case BTRFS_COMPRESS_NONE
: return alloc_heuristic_ws(level
);
922 case BTRFS_COMPRESS_ZLIB
: return zlib_alloc_workspace(level
);
923 case BTRFS_COMPRESS_LZO
: return lzo_alloc_workspace(level
);
924 case BTRFS_COMPRESS_ZSTD
: return zstd_alloc_workspace(level
);
927 * This can't happen, the type is validated several times
928 * before we get here.
934 static void free_workspace(int type
, struct list_head
*ws
)
937 case BTRFS_COMPRESS_NONE
: return free_heuristic_ws(ws
);
938 case BTRFS_COMPRESS_ZLIB
: return zlib_free_workspace(ws
);
939 case BTRFS_COMPRESS_LZO
: return lzo_free_workspace(ws
);
940 case BTRFS_COMPRESS_ZSTD
: return zstd_free_workspace(ws
);
943 * This can't happen, the type is validated several times
944 * before we get here.
950 static void btrfs_init_workspace_manager(int type
)
952 struct workspace_manager
*wsm
;
953 struct list_head
*workspace
;
955 wsm
= btrfs_compress_op
[type
]->workspace_manager
;
956 INIT_LIST_HEAD(&wsm
->idle_ws
);
957 spin_lock_init(&wsm
->ws_lock
);
958 atomic_set(&wsm
->total_ws
, 0);
959 init_waitqueue_head(&wsm
->ws_wait
);
962 * Preallocate one workspace for each compression type so we can
963 * guarantee forward progress in the worst case
965 workspace
= alloc_workspace(type
, 0);
966 if (IS_ERR(workspace
)) {
968 "BTRFS: cannot preallocate compression workspace, will try later\n");
970 atomic_set(&wsm
->total_ws
, 1);
972 list_add(workspace
, &wsm
->idle_ws
);
976 static void btrfs_cleanup_workspace_manager(int type
)
978 struct workspace_manager
*wsman
;
979 struct list_head
*ws
;
981 wsman
= btrfs_compress_op
[type
]->workspace_manager
;
982 while (!list_empty(&wsman
->idle_ws
)) {
983 ws
= wsman
->idle_ws
.next
;
985 free_workspace(type
, ws
);
986 atomic_dec(&wsman
->total_ws
);
991 * This finds an available workspace or allocates a new one.
992 * If it's not possible to allocate a new one, waits until there's one.
993 * Preallocation makes a forward progress guarantees and we do not return
996 struct list_head
*btrfs_get_workspace(int type
, unsigned int level
)
998 struct workspace_manager
*wsm
;
999 struct list_head
*workspace
;
1000 int cpus
= num_online_cpus();
1002 struct list_head
*idle_ws
;
1003 spinlock_t
*ws_lock
;
1005 wait_queue_head_t
*ws_wait
;
1008 wsm
= btrfs_compress_op
[type
]->workspace_manager
;
1009 idle_ws
= &wsm
->idle_ws
;
1010 ws_lock
= &wsm
->ws_lock
;
1011 total_ws
= &wsm
->total_ws
;
1012 ws_wait
= &wsm
->ws_wait
;
1013 free_ws
= &wsm
->free_ws
;
1017 if (!list_empty(idle_ws
)) {
1018 workspace
= idle_ws
->next
;
1019 list_del(workspace
);
1021 spin_unlock(ws_lock
);
1025 if (atomic_read(total_ws
) > cpus
) {
1028 spin_unlock(ws_lock
);
1029 prepare_to_wait(ws_wait
, &wait
, TASK_UNINTERRUPTIBLE
);
1030 if (atomic_read(total_ws
) > cpus
&& !*free_ws
)
1032 finish_wait(ws_wait
, &wait
);
1035 atomic_inc(total_ws
);
1036 spin_unlock(ws_lock
);
1039 * Allocation helpers call vmalloc that can't use GFP_NOFS, so we have
1040 * to turn it off here because we might get called from the restricted
1041 * context of btrfs_compress_bio/btrfs_compress_pages
1043 nofs_flag
= memalloc_nofs_save();
1044 workspace
= alloc_workspace(type
, level
);
1045 memalloc_nofs_restore(nofs_flag
);
1047 if (IS_ERR(workspace
)) {
1048 atomic_dec(total_ws
);
1052 * Do not return the error but go back to waiting. There's a
1053 * workspace preallocated for each type and the compression
1054 * time is bounded so we get to a workspace eventually. This
1055 * makes our caller's life easier.
1057 * To prevent silent and low-probability deadlocks (when the
1058 * initial preallocation fails), check if there are any
1059 * workspaces at all.
1061 if (atomic_read(total_ws
) == 0) {
1062 static DEFINE_RATELIMIT_STATE(_rs
,
1063 /* once per minute */ 60 * HZ
,
1066 if (__ratelimit(&_rs
)) {
1067 pr_warn("BTRFS: no compression workspaces, low memory, retrying\n");
1075 static struct list_head
*get_workspace(int type
, int level
)
1078 case BTRFS_COMPRESS_NONE
: return btrfs_get_workspace(type
, level
);
1079 case BTRFS_COMPRESS_ZLIB
: return zlib_get_workspace(level
);
1080 case BTRFS_COMPRESS_LZO
: return btrfs_get_workspace(type
, level
);
1081 case BTRFS_COMPRESS_ZSTD
: return zstd_get_workspace(level
);
1084 * This can't happen, the type is validated several times
1085 * before we get here.
1092 * put a workspace struct back on the list or free it if we have enough
1093 * idle ones sitting around
1095 void btrfs_put_workspace(int type
, struct list_head
*ws
)
1097 struct workspace_manager
*wsm
;
1098 struct list_head
*idle_ws
;
1099 spinlock_t
*ws_lock
;
1101 wait_queue_head_t
*ws_wait
;
1104 wsm
= btrfs_compress_op
[type
]->workspace_manager
;
1105 idle_ws
= &wsm
->idle_ws
;
1106 ws_lock
= &wsm
->ws_lock
;
1107 total_ws
= &wsm
->total_ws
;
1108 ws_wait
= &wsm
->ws_wait
;
1109 free_ws
= &wsm
->free_ws
;
1112 if (*free_ws
<= num_online_cpus()) {
1113 list_add(ws
, idle_ws
);
1115 spin_unlock(ws_lock
);
1118 spin_unlock(ws_lock
);
1120 free_workspace(type
, ws
);
1121 atomic_dec(total_ws
);
1123 cond_wake_up(ws_wait
);
1126 static void put_workspace(int type
, struct list_head
*ws
)
1129 case BTRFS_COMPRESS_NONE
: return btrfs_put_workspace(type
, ws
);
1130 case BTRFS_COMPRESS_ZLIB
: return btrfs_put_workspace(type
, ws
);
1131 case BTRFS_COMPRESS_LZO
: return btrfs_put_workspace(type
, ws
);
1132 case BTRFS_COMPRESS_ZSTD
: return zstd_put_workspace(ws
);
1135 * This can't happen, the type is validated several times
1136 * before we get here.
1143 * Adjust @level according to the limits of the compression algorithm or
1144 * fallback to default
1146 static unsigned int btrfs_compress_set_level(int type
, unsigned level
)
1148 const struct btrfs_compress_op
*ops
= btrfs_compress_op
[type
];
1151 level
= ops
->default_level
;
1153 level
= min(level
, ops
->max_level
);
1159 * Given an address space and start and length, compress the bytes into @pages
1160 * that are allocated on demand.
1162 * @type_level is encoded algorithm and level, where level 0 means whatever
1163 * default the algorithm chooses and is opaque here;
1164 * - compression algo are 0-3
1165 * - the level are bits 4-7
1167 * @out_pages is an in/out parameter, holds maximum number of pages to allocate
1168 * and returns number of actually allocated pages
1170 * @total_in is used to return the number of bytes actually read. It
1171 * may be smaller than the input length if we had to exit early because we
1172 * ran out of room in the pages array or because we cross the
1173 * max_out threshold.
1175 * @total_out is an in/out parameter, must be set to the input length and will
1176 * be also used to return the total number of compressed bytes
1178 * @max_out tells us the max number of bytes that we're allowed to
1181 int btrfs_compress_pages(unsigned int type_level
, struct address_space
*mapping
,
1182 u64 start
, struct page
**pages
,
1183 unsigned long *out_pages
,
1184 unsigned long *total_in
,
1185 unsigned long *total_out
)
1187 int type
= btrfs_compress_type(type_level
);
1188 int level
= btrfs_compress_level(type_level
);
1189 struct list_head
*workspace
;
1192 level
= btrfs_compress_set_level(type
, level
);
1193 workspace
= get_workspace(type
, level
);
1194 ret
= compression_compress_pages(type
, workspace
, mapping
, start
, pages
,
1195 out_pages
, total_in
, total_out
);
1196 put_workspace(type
, workspace
);
1201 * pages_in is an array of pages with compressed data.
1203 * disk_start is the starting logical offset of this array in the file
1205 * orig_bio contains the pages from the file that we want to decompress into
1207 * srclen is the number of bytes in pages_in
1209 * The basic idea is that we have a bio that was created by readpages.
1210 * The pages in the bio are for the uncompressed data, and they may not
1211 * be contiguous. They all correspond to the range of bytes covered by
1212 * the compressed extent.
1214 static int btrfs_decompress_bio(struct compressed_bio
*cb
)
1216 struct list_head
*workspace
;
1218 int type
= cb
->compress_type
;
1220 workspace
= get_workspace(type
, 0);
1221 ret
= compression_decompress_bio(type
, workspace
, cb
);
1222 put_workspace(type
, workspace
);
1228 * a less complex decompression routine. Our compressed data fits in a
1229 * single page, and we want to read a single page out of it.
1230 * start_byte tells us the offset into the compressed data we're interested in
1232 int btrfs_decompress(int type
, unsigned char *data_in
, struct page
*dest_page
,
1233 unsigned long start_byte
, size_t srclen
, size_t destlen
)
1235 struct list_head
*workspace
;
1238 workspace
= get_workspace(type
, 0);
1239 ret
= compression_decompress(type
, workspace
, data_in
, dest_page
,
1240 start_byte
, srclen
, destlen
);
1241 put_workspace(type
, workspace
);
1246 void __init
btrfs_init_compress(void)
1248 btrfs_init_workspace_manager(BTRFS_COMPRESS_NONE
);
1249 btrfs_init_workspace_manager(BTRFS_COMPRESS_ZLIB
);
1250 btrfs_init_workspace_manager(BTRFS_COMPRESS_LZO
);
1251 zstd_init_workspace_manager();
1254 void __cold
btrfs_exit_compress(void)
1256 btrfs_cleanup_workspace_manager(BTRFS_COMPRESS_NONE
);
1257 btrfs_cleanup_workspace_manager(BTRFS_COMPRESS_ZLIB
);
1258 btrfs_cleanup_workspace_manager(BTRFS_COMPRESS_LZO
);
1259 zstd_cleanup_workspace_manager();
1263 * Copy uncompressed data from working buffer to pages.
1265 * buf_start is the byte offset we're of the start of our workspace buffer.
1267 * total_out is the last byte of the buffer
1269 int btrfs_decompress_buf2page(const char *buf
, unsigned long buf_start
,
1270 unsigned long total_out
, u64 disk_start
,
1273 unsigned long buf_offset
;
1274 unsigned long current_buf_start
;
1275 unsigned long start_byte
;
1276 unsigned long prev_start_byte
;
1277 unsigned long working_bytes
= total_out
- buf_start
;
1278 unsigned long bytes
;
1280 struct bio_vec bvec
= bio_iter_iovec(bio
, bio
->bi_iter
);
1283 * start byte is the first byte of the page we're currently
1284 * copying into relative to the start of the compressed data.
1286 start_byte
= page_offset(bvec
.bv_page
) - disk_start
;
1288 /* we haven't yet hit data corresponding to this page */
1289 if (total_out
<= start_byte
)
1293 * the start of the data we care about is offset into
1294 * the middle of our working buffer
1296 if (total_out
> start_byte
&& buf_start
< start_byte
) {
1297 buf_offset
= start_byte
- buf_start
;
1298 working_bytes
-= buf_offset
;
1302 current_buf_start
= buf_start
;
1304 /* copy bytes from the working buffer into the pages */
1305 while (working_bytes
> 0) {
1306 bytes
= min_t(unsigned long, bvec
.bv_len
,
1307 PAGE_SIZE
- (buf_offset
% PAGE_SIZE
));
1308 bytes
= min(bytes
, working_bytes
);
1310 kaddr
= kmap_atomic(bvec
.bv_page
);
1311 memcpy(kaddr
+ bvec
.bv_offset
, buf
+ buf_offset
, bytes
);
1312 kunmap_atomic(kaddr
);
1313 flush_dcache_page(bvec
.bv_page
);
1315 buf_offset
+= bytes
;
1316 working_bytes
-= bytes
;
1317 current_buf_start
+= bytes
;
1319 /* check if we need to pick another page */
1320 bio_advance(bio
, bytes
);
1321 if (!bio
->bi_iter
.bi_size
)
1323 bvec
= bio_iter_iovec(bio
, bio
->bi_iter
);
1324 prev_start_byte
= start_byte
;
1325 start_byte
= page_offset(bvec
.bv_page
) - disk_start
;
1328 * We need to make sure we're only adjusting
1329 * our offset into compression working buffer when
1330 * we're switching pages. Otherwise we can incorrectly
1331 * keep copying when we were actually done.
1333 if (start_byte
!= prev_start_byte
) {
1335 * make sure our new page is covered by this
1338 if (total_out
<= start_byte
)
1342 * the next page in the biovec might not be adjacent
1343 * to the last page, but it might still be found
1344 * inside this working buffer. bump our offset pointer
1346 if (total_out
> start_byte
&&
1347 current_buf_start
< start_byte
) {
1348 buf_offset
= start_byte
- buf_start
;
1349 working_bytes
= total_out
- start_byte
;
1350 current_buf_start
= buf_start
+ buf_offset
;
1359 * Shannon Entropy calculation
1361 * Pure byte distribution analysis fails to determine compressibility of data.
1362 * Try calculating entropy to estimate the average minimum number of bits
1363 * needed to encode the sampled data.
1365 * For convenience, return the percentage of needed bits, instead of amount of
1368 * @ENTROPY_LVL_ACEPTABLE - below that threshold, sample has low byte entropy
1369 * and can be compressible with high probability
1371 * @ENTROPY_LVL_HIGH - data are not compressible with high probability
1373 * Use of ilog2() decreases precision, we lower the LVL to 5 to compensate.
1375 #define ENTROPY_LVL_ACEPTABLE (65)
1376 #define ENTROPY_LVL_HIGH (80)
1379 * For increasead precision in shannon_entropy calculation,
1380 * let's do pow(n, M) to save more digits after comma:
1382 * - maximum int bit length is 64
1383 * - ilog2(MAX_SAMPLE_SIZE) -> 13
1384 * - 13 * 4 = 52 < 64 -> M = 4
1388 static inline u32
ilog2_w(u64 n
)
1390 return ilog2(n
* n
* n
* n
);
1393 static u32
shannon_entropy(struct heuristic_ws
*ws
)
1395 const u32 entropy_max
= 8 * ilog2_w(2);
1396 u32 entropy_sum
= 0;
1397 u32 p
, p_base
, sz_base
;
1400 sz_base
= ilog2_w(ws
->sample_size
);
1401 for (i
= 0; i
< BUCKET_SIZE
&& ws
->bucket
[i
].count
> 0; i
++) {
1402 p
= ws
->bucket
[i
].count
;
1403 p_base
= ilog2_w(p
);
1404 entropy_sum
+= p
* (sz_base
- p_base
);
1407 entropy_sum
/= ws
->sample_size
;
1408 return entropy_sum
* 100 / entropy_max
;
1411 #define RADIX_BASE 4U
1412 #define COUNTERS_SIZE (1U << RADIX_BASE)
1414 static u8
get4bits(u64 num
, int shift
) {
1419 low4bits
= (COUNTERS_SIZE
- 1) - (num
% COUNTERS_SIZE
);
1424 * Use 4 bits as radix base
1425 * Use 16 u32 counters for calculating new position in buf array
1427 * @array - array that will be sorted
1428 * @array_buf - buffer array to store sorting results
1429 * must be equal in size to @array
1432 static void radix_sort(struct bucket_item
*array
, struct bucket_item
*array_buf
,
1437 u32 counters
[COUNTERS_SIZE
];
1445 * Try avoid useless loop iterations for small numbers stored in big
1446 * counters. Example: 48 33 4 ... in 64bit array
1448 max_num
= array
[0].count
;
1449 for (i
= 1; i
< num
; i
++) {
1450 buf_num
= array
[i
].count
;
1451 if (buf_num
> max_num
)
1455 buf_num
= ilog2(max_num
);
1456 bitlen
= ALIGN(buf_num
, RADIX_BASE
* 2);
1459 while (shift
< bitlen
) {
1460 memset(counters
, 0, sizeof(counters
));
1462 for (i
= 0; i
< num
; i
++) {
1463 buf_num
= array
[i
].count
;
1464 addr
= get4bits(buf_num
, shift
);
1468 for (i
= 1; i
< COUNTERS_SIZE
; i
++)
1469 counters
[i
] += counters
[i
- 1];
1471 for (i
= num
- 1; i
>= 0; i
--) {
1472 buf_num
= array
[i
].count
;
1473 addr
= get4bits(buf_num
, shift
);
1475 new_addr
= counters
[addr
];
1476 array_buf
[new_addr
] = array
[i
];
1479 shift
+= RADIX_BASE
;
1482 * Normal radix expects to move data from a temporary array, to
1483 * the main one. But that requires some CPU time. Avoid that
1484 * by doing another sort iteration to original array instead of
1487 memset(counters
, 0, sizeof(counters
));
1489 for (i
= 0; i
< num
; i
++) {
1490 buf_num
= array_buf
[i
].count
;
1491 addr
= get4bits(buf_num
, shift
);
1495 for (i
= 1; i
< COUNTERS_SIZE
; i
++)
1496 counters
[i
] += counters
[i
- 1];
1498 for (i
= num
- 1; i
>= 0; i
--) {
1499 buf_num
= array_buf
[i
].count
;
1500 addr
= get4bits(buf_num
, shift
);
1502 new_addr
= counters
[addr
];
1503 array
[new_addr
] = array_buf
[i
];
1506 shift
+= RADIX_BASE
;
1511 * Size of the core byte set - how many bytes cover 90% of the sample
1513 * There are several types of structured binary data that use nearly all byte
1514 * values. The distribution can be uniform and counts in all buckets will be
1515 * nearly the same (eg. encrypted data). Unlikely to be compressible.
1517 * Other possibility is normal (Gaussian) distribution, where the data could
1518 * be potentially compressible, but we have to take a few more steps to decide
1521 * @BYTE_CORE_SET_LOW - main part of byte values repeated frequently,
1522 * compression algo can easy fix that
1523 * @BYTE_CORE_SET_HIGH - data have uniform distribution and with high
1524 * probability is not compressible
1526 #define BYTE_CORE_SET_LOW (64)
1527 #define BYTE_CORE_SET_HIGH (200)
1529 static int byte_core_set_size(struct heuristic_ws
*ws
)
1532 u32 coreset_sum
= 0;
1533 const u32 core_set_threshold
= ws
->sample_size
* 90 / 100;
1534 struct bucket_item
*bucket
= ws
->bucket
;
1536 /* Sort in reverse order */
1537 radix_sort(ws
->bucket
, ws
->bucket_b
, BUCKET_SIZE
);
1539 for (i
= 0; i
< BYTE_CORE_SET_LOW
; i
++)
1540 coreset_sum
+= bucket
[i
].count
;
1542 if (coreset_sum
> core_set_threshold
)
1545 for (; i
< BYTE_CORE_SET_HIGH
&& bucket
[i
].count
> 0; i
++) {
1546 coreset_sum
+= bucket
[i
].count
;
1547 if (coreset_sum
> core_set_threshold
)
1555 * Count byte values in buckets.
1556 * This heuristic can detect textual data (configs, xml, json, html, etc).
1557 * Because in most text-like data byte set is restricted to limited number of
1558 * possible characters, and that restriction in most cases makes data easy to
1561 * @BYTE_SET_THRESHOLD - consider all data within this byte set size:
1562 * less - compressible
1563 * more - need additional analysis
1565 #define BYTE_SET_THRESHOLD (64)
1567 static u32
byte_set_size(const struct heuristic_ws
*ws
)
1570 u32 byte_set_size
= 0;
1572 for (i
= 0; i
< BYTE_SET_THRESHOLD
; i
++) {
1573 if (ws
->bucket
[i
].count
> 0)
1578 * Continue collecting count of byte values in buckets. If the byte
1579 * set size is bigger then the threshold, it's pointless to continue,
1580 * the detection technique would fail for this type of data.
1582 for (; i
< BUCKET_SIZE
; i
++) {
1583 if (ws
->bucket
[i
].count
> 0) {
1585 if (byte_set_size
> BYTE_SET_THRESHOLD
)
1586 return byte_set_size
;
1590 return byte_set_size
;
1593 static bool sample_repeated_patterns(struct heuristic_ws
*ws
)
1595 const u32 half_of_sample
= ws
->sample_size
/ 2;
1596 const u8
*data
= ws
->sample
;
1598 return memcmp(&data
[0], &data
[half_of_sample
], half_of_sample
) == 0;
1601 static void heuristic_collect_sample(struct inode
*inode
, u64 start
, u64 end
,
1602 struct heuristic_ws
*ws
)
1605 u64 index
, index_end
;
1606 u32 i
, curr_sample_pos
;
1610 * Compression handles the input data by chunks of 128KiB
1611 * (defined by BTRFS_MAX_UNCOMPRESSED)
1613 * We do the same for the heuristic and loop over the whole range.
1615 * MAX_SAMPLE_SIZE - calculated under assumption that heuristic will
1616 * process no more than BTRFS_MAX_UNCOMPRESSED at a time.
1618 if (end
- start
> BTRFS_MAX_UNCOMPRESSED
)
1619 end
= start
+ BTRFS_MAX_UNCOMPRESSED
;
1621 index
= start
>> PAGE_SHIFT
;
1622 index_end
= end
>> PAGE_SHIFT
;
1624 /* Don't miss unaligned end */
1625 if (!IS_ALIGNED(end
, PAGE_SIZE
))
1628 curr_sample_pos
= 0;
1629 while (index
< index_end
) {
1630 page
= find_get_page(inode
->i_mapping
, index
);
1631 in_data
= kmap(page
);
1632 /* Handle case where the start is not aligned to PAGE_SIZE */
1633 i
= start
% PAGE_SIZE
;
1634 while (i
< PAGE_SIZE
- SAMPLING_READ_SIZE
) {
1635 /* Don't sample any garbage from the last page */
1636 if (start
> end
- SAMPLING_READ_SIZE
)
1638 memcpy(&ws
->sample
[curr_sample_pos
], &in_data
[i
],
1639 SAMPLING_READ_SIZE
);
1640 i
+= SAMPLING_INTERVAL
;
1641 start
+= SAMPLING_INTERVAL
;
1642 curr_sample_pos
+= SAMPLING_READ_SIZE
;
1650 ws
->sample_size
= curr_sample_pos
;
1654 * Compression heuristic.
1656 * For now is's a naive and optimistic 'return true', we'll extend the logic to
1657 * quickly (compared to direct compression) detect data characteristics
1658 * (compressible/uncompressible) to avoid wasting CPU time on uncompressible
1661 * The following types of analysis can be performed:
1662 * - detect mostly zero data
1663 * - detect data with low "byte set" size (text, etc)
1664 * - detect data with low/high "core byte" set
1666 * Return non-zero if the compression should be done, 0 otherwise.
1668 int btrfs_compress_heuristic(struct inode
*inode
, u64 start
, u64 end
)
1670 struct list_head
*ws_list
= get_workspace(0, 0);
1671 struct heuristic_ws
*ws
;
1676 ws
= list_entry(ws_list
, struct heuristic_ws
, list
);
1678 heuristic_collect_sample(inode
, start
, end
, ws
);
1680 if (sample_repeated_patterns(ws
)) {
1685 memset(ws
->bucket
, 0, sizeof(*ws
->bucket
)*BUCKET_SIZE
);
1687 for (i
= 0; i
< ws
->sample_size
; i
++) {
1688 byte
= ws
->sample
[i
];
1689 ws
->bucket
[byte
].count
++;
1692 i
= byte_set_size(ws
);
1693 if (i
< BYTE_SET_THRESHOLD
) {
1698 i
= byte_core_set_size(ws
);
1699 if (i
<= BYTE_CORE_SET_LOW
) {
1704 if (i
>= BYTE_CORE_SET_HIGH
) {
1709 i
= shannon_entropy(ws
);
1710 if (i
<= ENTROPY_LVL_ACEPTABLE
) {
1716 * For the levels below ENTROPY_LVL_HIGH, additional analysis would be
1717 * needed to give green light to compression.
1719 * For now just assume that compression at that level is not worth the
1720 * resources because:
1722 * 1. it is possible to defrag the data later
1724 * 2. the data would turn out to be hardly compressible, eg. 150 byte
1725 * values, every bucket has counter at level ~54. The heuristic would
1726 * be confused. This can happen when data have some internal repeated
1727 * patterns like "abbacbbc...". This can be detected by analyzing
1728 * pairs of bytes, which is too costly.
1730 if (i
< ENTROPY_LVL_HIGH
) {
1739 put_workspace(0, ws_list
);
1744 * Convert the compression suffix (eg. after "zlib" starting with ":") to
1745 * level, unrecognized string will set the default level
1747 unsigned int btrfs_compress_str2level(unsigned int type
, const char *str
)
1749 unsigned int level
= 0;
1755 if (str
[0] == ':') {
1756 ret
= kstrtouint(str
+ 1, 10, &level
);
1761 level
= btrfs_compress_set_level(type
, level
);