1 // SPDX-License-Identifier: GPL-2.0
3 * Copyright (C) 2008 Red Hat. All rights reserved.
6 #include <linux/pagemap.h>
7 #include <linux/sched.h>
8 #include <linux/sched/signal.h>
9 #include <linux/slab.h>
10 #include <linux/math64.h>
11 #include <linux/ratelimit.h>
12 #include <linux/error-injection.h>
13 #include <linux/sched/mm.h>
15 #include "free-space-cache.h"
16 #include "transaction.h"
18 #include "extent_io.h"
19 #include "inode-map.h"
21 #include "space-info.h"
22 #include "delalloc-space.h"
23 #include "block-group.h"
26 #define BITS_PER_BITMAP (PAGE_SIZE * 8UL)
27 #define MAX_CACHE_BYTES_PER_GIG SZ_64K
28 #define FORCE_EXTENT_THRESHOLD SZ_1M
30 struct btrfs_trim_range
{
33 struct list_head list
;
36 static int count_bitmap_extents(struct btrfs_free_space_ctl
*ctl
,
37 struct btrfs_free_space
*bitmap_info
);
38 static int link_free_space(struct btrfs_free_space_ctl
*ctl
,
39 struct btrfs_free_space
*info
);
40 static void unlink_free_space(struct btrfs_free_space_ctl
*ctl
,
41 struct btrfs_free_space
*info
);
42 static int btrfs_wait_cache_io_root(struct btrfs_root
*root
,
43 struct btrfs_trans_handle
*trans
,
44 struct btrfs_io_ctl
*io_ctl
,
45 struct btrfs_path
*path
);
47 static struct inode
*__lookup_free_space_inode(struct btrfs_root
*root
,
48 struct btrfs_path
*path
,
51 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
53 struct btrfs_key location
;
54 struct btrfs_disk_key disk_key
;
55 struct btrfs_free_space_header
*header
;
56 struct extent_buffer
*leaf
;
57 struct inode
*inode
= NULL
;
61 key
.objectid
= BTRFS_FREE_SPACE_OBJECTID
;
65 ret
= btrfs_search_slot(NULL
, root
, &key
, path
, 0, 0);
69 btrfs_release_path(path
);
70 return ERR_PTR(-ENOENT
);
73 leaf
= path
->nodes
[0];
74 header
= btrfs_item_ptr(leaf
, path
->slots
[0],
75 struct btrfs_free_space_header
);
76 btrfs_free_space_key(leaf
, header
, &disk_key
);
77 btrfs_disk_key_to_cpu(&location
, &disk_key
);
78 btrfs_release_path(path
);
81 * We are often under a trans handle at this point, so we need to make
82 * sure NOFS is set to keep us from deadlocking.
84 nofs_flag
= memalloc_nofs_save();
85 inode
= btrfs_iget_path(fs_info
->sb
, location
.objectid
, root
, path
);
86 btrfs_release_path(path
);
87 memalloc_nofs_restore(nofs_flag
);
91 mapping_set_gfp_mask(inode
->i_mapping
,
92 mapping_gfp_constraint(inode
->i_mapping
,
93 ~(__GFP_FS
| __GFP_HIGHMEM
)));
98 struct inode
*lookup_free_space_inode(struct btrfs_block_group
*block_group
,
99 struct btrfs_path
*path
)
101 struct btrfs_fs_info
*fs_info
= block_group
->fs_info
;
102 struct inode
*inode
= NULL
;
103 u32 flags
= BTRFS_INODE_NODATASUM
| BTRFS_INODE_NODATACOW
;
105 spin_lock(&block_group
->lock
);
106 if (block_group
->inode
)
107 inode
= igrab(block_group
->inode
);
108 spin_unlock(&block_group
->lock
);
112 inode
= __lookup_free_space_inode(fs_info
->tree_root
, path
,
117 spin_lock(&block_group
->lock
);
118 if (!((BTRFS_I(inode
)->flags
& flags
) == flags
)) {
119 btrfs_info(fs_info
, "Old style space inode found, converting.");
120 BTRFS_I(inode
)->flags
|= BTRFS_INODE_NODATASUM
|
121 BTRFS_INODE_NODATACOW
;
122 block_group
->disk_cache_state
= BTRFS_DC_CLEAR
;
125 if (!block_group
->iref
) {
126 block_group
->inode
= igrab(inode
);
127 block_group
->iref
= 1;
129 spin_unlock(&block_group
->lock
);
134 static int __create_free_space_inode(struct btrfs_root
*root
,
135 struct btrfs_trans_handle
*trans
,
136 struct btrfs_path
*path
,
139 struct btrfs_key key
;
140 struct btrfs_disk_key disk_key
;
141 struct btrfs_free_space_header
*header
;
142 struct btrfs_inode_item
*inode_item
;
143 struct extent_buffer
*leaf
;
144 u64 flags
= BTRFS_INODE_NOCOMPRESS
| BTRFS_INODE_PREALLOC
;
147 ret
= btrfs_insert_empty_inode(trans
, root
, path
, ino
);
151 /* We inline crc's for the free disk space cache */
152 if (ino
!= BTRFS_FREE_INO_OBJECTID
)
153 flags
|= BTRFS_INODE_NODATASUM
| BTRFS_INODE_NODATACOW
;
155 leaf
= path
->nodes
[0];
156 inode_item
= btrfs_item_ptr(leaf
, path
->slots
[0],
157 struct btrfs_inode_item
);
158 btrfs_item_key(leaf
, &disk_key
, path
->slots
[0]);
159 memzero_extent_buffer(leaf
, (unsigned long)inode_item
,
160 sizeof(*inode_item
));
161 btrfs_set_inode_generation(leaf
, inode_item
, trans
->transid
);
162 btrfs_set_inode_size(leaf
, inode_item
, 0);
163 btrfs_set_inode_nbytes(leaf
, inode_item
, 0);
164 btrfs_set_inode_uid(leaf
, inode_item
, 0);
165 btrfs_set_inode_gid(leaf
, inode_item
, 0);
166 btrfs_set_inode_mode(leaf
, inode_item
, S_IFREG
| 0600);
167 btrfs_set_inode_flags(leaf
, inode_item
, flags
);
168 btrfs_set_inode_nlink(leaf
, inode_item
, 1);
169 btrfs_set_inode_transid(leaf
, inode_item
, trans
->transid
);
170 btrfs_set_inode_block_group(leaf
, inode_item
, offset
);
171 btrfs_mark_buffer_dirty(leaf
);
172 btrfs_release_path(path
);
174 key
.objectid
= BTRFS_FREE_SPACE_OBJECTID
;
177 ret
= btrfs_insert_empty_item(trans
, root
, path
, &key
,
178 sizeof(struct btrfs_free_space_header
));
180 btrfs_release_path(path
);
184 leaf
= path
->nodes
[0];
185 header
= btrfs_item_ptr(leaf
, path
->slots
[0],
186 struct btrfs_free_space_header
);
187 memzero_extent_buffer(leaf
, (unsigned long)header
, sizeof(*header
));
188 btrfs_set_free_space_key(leaf
, header
, &disk_key
);
189 btrfs_mark_buffer_dirty(leaf
);
190 btrfs_release_path(path
);
195 int create_free_space_inode(struct btrfs_trans_handle
*trans
,
196 struct btrfs_block_group
*block_group
,
197 struct btrfs_path
*path
)
202 ret
= btrfs_find_free_objectid(trans
->fs_info
->tree_root
, &ino
);
206 return __create_free_space_inode(trans
->fs_info
->tree_root
, trans
, path
,
207 ino
, block_group
->start
);
210 int btrfs_check_trunc_cache_free_space(struct btrfs_fs_info
*fs_info
,
211 struct btrfs_block_rsv
*rsv
)
216 /* 1 for slack space, 1 for updating the inode */
217 needed_bytes
= btrfs_calc_insert_metadata_size(fs_info
, 1) +
218 btrfs_calc_metadata_size(fs_info
, 1);
220 spin_lock(&rsv
->lock
);
221 if (rsv
->reserved
< needed_bytes
)
225 spin_unlock(&rsv
->lock
);
229 int btrfs_truncate_free_space_cache(struct btrfs_trans_handle
*trans
,
230 struct btrfs_block_group
*block_group
,
233 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
238 struct btrfs_path
*path
= btrfs_alloc_path();
245 mutex_lock(&trans
->transaction
->cache_write_mutex
);
246 if (!list_empty(&block_group
->io_list
)) {
247 list_del_init(&block_group
->io_list
);
249 btrfs_wait_cache_io(trans
, block_group
, path
);
250 btrfs_put_block_group(block_group
);
254 * now that we've truncated the cache away, its no longer
257 spin_lock(&block_group
->lock
);
258 block_group
->disk_cache_state
= BTRFS_DC_CLEAR
;
259 spin_unlock(&block_group
->lock
);
260 btrfs_free_path(path
);
263 btrfs_i_size_write(BTRFS_I(inode
), 0);
264 truncate_pagecache(inode
, 0);
267 * We skip the throttling logic for free space cache inodes, so we don't
268 * need to check for -EAGAIN.
270 ret
= btrfs_truncate_inode_items(trans
, root
, inode
,
271 0, BTRFS_EXTENT_DATA_KEY
);
275 ret
= btrfs_update_inode(trans
, root
, inode
);
279 mutex_unlock(&trans
->transaction
->cache_write_mutex
);
281 btrfs_abort_transaction(trans
, ret
);
286 static void readahead_cache(struct inode
*inode
)
288 struct file_ra_state
*ra
;
289 unsigned long last_index
;
291 ra
= kzalloc(sizeof(*ra
), GFP_NOFS
);
295 file_ra_state_init(ra
, inode
->i_mapping
);
296 last_index
= (i_size_read(inode
) - 1) >> PAGE_SHIFT
;
298 page_cache_sync_readahead(inode
->i_mapping
, ra
, NULL
, 0, last_index
);
303 static int io_ctl_init(struct btrfs_io_ctl
*io_ctl
, struct inode
*inode
,
309 num_pages
= DIV_ROUND_UP(i_size_read(inode
), PAGE_SIZE
);
311 if (btrfs_ino(BTRFS_I(inode
)) != BTRFS_FREE_INO_OBJECTID
)
314 /* Make sure we can fit our crcs and generation into the first page */
315 if (write
&& check_crcs
&&
316 (num_pages
* sizeof(u32
) + sizeof(u64
)) > PAGE_SIZE
)
319 memset(io_ctl
, 0, sizeof(struct btrfs_io_ctl
));
321 io_ctl
->pages
= kcalloc(num_pages
, sizeof(struct page
*), GFP_NOFS
);
325 io_ctl
->num_pages
= num_pages
;
326 io_ctl
->fs_info
= btrfs_sb(inode
->i_sb
);
327 io_ctl
->check_crcs
= check_crcs
;
328 io_ctl
->inode
= inode
;
332 ALLOW_ERROR_INJECTION(io_ctl_init
, ERRNO
);
334 static void io_ctl_free(struct btrfs_io_ctl
*io_ctl
)
336 kfree(io_ctl
->pages
);
337 io_ctl
->pages
= NULL
;
340 static void io_ctl_unmap_page(struct btrfs_io_ctl
*io_ctl
)
348 static void io_ctl_map_page(struct btrfs_io_ctl
*io_ctl
, int clear
)
350 ASSERT(io_ctl
->index
< io_ctl
->num_pages
);
351 io_ctl
->page
= io_ctl
->pages
[io_ctl
->index
++];
352 io_ctl
->cur
= page_address(io_ctl
->page
);
353 io_ctl
->orig
= io_ctl
->cur
;
354 io_ctl
->size
= PAGE_SIZE
;
356 clear_page(io_ctl
->cur
);
359 static void io_ctl_drop_pages(struct btrfs_io_ctl
*io_ctl
)
363 io_ctl_unmap_page(io_ctl
);
365 for (i
= 0; i
< io_ctl
->num_pages
; i
++) {
366 if (io_ctl
->pages
[i
]) {
367 ClearPageChecked(io_ctl
->pages
[i
]);
368 unlock_page(io_ctl
->pages
[i
]);
369 put_page(io_ctl
->pages
[i
]);
374 static int io_ctl_prepare_pages(struct btrfs_io_ctl
*io_ctl
, bool uptodate
)
377 struct inode
*inode
= io_ctl
->inode
;
378 gfp_t mask
= btrfs_alloc_write_mask(inode
->i_mapping
);
381 for (i
= 0; i
< io_ctl
->num_pages
; i
++) {
382 page
= find_or_create_page(inode
->i_mapping
, i
, mask
);
384 io_ctl_drop_pages(io_ctl
);
387 io_ctl
->pages
[i
] = page
;
388 if (uptodate
&& !PageUptodate(page
)) {
389 btrfs_readpage(NULL
, page
);
391 if (page
->mapping
!= inode
->i_mapping
) {
392 btrfs_err(BTRFS_I(inode
)->root
->fs_info
,
393 "free space cache page truncated");
394 io_ctl_drop_pages(io_ctl
);
397 if (!PageUptodate(page
)) {
398 btrfs_err(BTRFS_I(inode
)->root
->fs_info
,
399 "error reading free space cache");
400 io_ctl_drop_pages(io_ctl
);
406 for (i
= 0; i
< io_ctl
->num_pages
; i
++) {
407 clear_page_dirty_for_io(io_ctl
->pages
[i
]);
408 set_page_extent_mapped(io_ctl
->pages
[i
]);
414 static void io_ctl_set_generation(struct btrfs_io_ctl
*io_ctl
, u64 generation
)
418 io_ctl_map_page(io_ctl
, 1);
421 * Skip the csum areas. If we don't check crcs then we just have a
422 * 64bit chunk at the front of the first page.
424 if (io_ctl
->check_crcs
) {
425 io_ctl
->cur
+= (sizeof(u32
) * io_ctl
->num_pages
);
426 io_ctl
->size
-= sizeof(u64
) + (sizeof(u32
) * io_ctl
->num_pages
);
428 io_ctl
->cur
+= sizeof(u64
);
429 io_ctl
->size
-= sizeof(u64
) * 2;
433 *val
= cpu_to_le64(generation
);
434 io_ctl
->cur
+= sizeof(u64
);
437 static int io_ctl_check_generation(struct btrfs_io_ctl
*io_ctl
, u64 generation
)
442 * Skip the crc area. If we don't check crcs then we just have a 64bit
443 * chunk at the front of the first page.
445 if (io_ctl
->check_crcs
) {
446 io_ctl
->cur
+= sizeof(u32
) * io_ctl
->num_pages
;
447 io_ctl
->size
-= sizeof(u64
) +
448 (sizeof(u32
) * io_ctl
->num_pages
);
450 io_ctl
->cur
+= sizeof(u64
);
451 io_ctl
->size
-= sizeof(u64
) * 2;
455 if (le64_to_cpu(*gen
) != generation
) {
456 btrfs_err_rl(io_ctl
->fs_info
,
457 "space cache generation (%llu) does not match inode (%llu)",
459 io_ctl_unmap_page(io_ctl
);
462 io_ctl
->cur
+= sizeof(u64
);
466 static void io_ctl_set_crc(struct btrfs_io_ctl
*io_ctl
, int index
)
472 if (!io_ctl
->check_crcs
) {
473 io_ctl_unmap_page(io_ctl
);
478 offset
= sizeof(u32
) * io_ctl
->num_pages
;
480 crc
= btrfs_crc32c(crc
, io_ctl
->orig
+ offset
, PAGE_SIZE
- offset
);
481 btrfs_crc32c_final(crc
, (u8
*)&crc
);
482 io_ctl_unmap_page(io_ctl
);
483 tmp
= page_address(io_ctl
->pages
[0]);
488 static int io_ctl_check_crc(struct btrfs_io_ctl
*io_ctl
, int index
)
494 if (!io_ctl
->check_crcs
) {
495 io_ctl_map_page(io_ctl
, 0);
500 offset
= sizeof(u32
) * io_ctl
->num_pages
;
502 tmp
= page_address(io_ctl
->pages
[0]);
506 io_ctl_map_page(io_ctl
, 0);
507 crc
= btrfs_crc32c(crc
, io_ctl
->orig
+ offset
, PAGE_SIZE
- offset
);
508 btrfs_crc32c_final(crc
, (u8
*)&crc
);
510 btrfs_err_rl(io_ctl
->fs_info
,
511 "csum mismatch on free space cache");
512 io_ctl_unmap_page(io_ctl
);
519 static int io_ctl_add_entry(struct btrfs_io_ctl
*io_ctl
, u64 offset
, u64 bytes
,
522 struct btrfs_free_space_entry
*entry
;
528 entry
->offset
= cpu_to_le64(offset
);
529 entry
->bytes
= cpu_to_le64(bytes
);
530 entry
->type
= (bitmap
) ? BTRFS_FREE_SPACE_BITMAP
:
531 BTRFS_FREE_SPACE_EXTENT
;
532 io_ctl
->cur
+= sizeof(struct btrfs_free_space_entry
);
533 io_ctl
->size
-= sizeof(struct btrfs_free_space_entry
);
535 if (io_ctl
->size
>= sizeof(struct btrfs_free_space_entry
))
538 io_ctl_set_crc(io_ctl
, io_ctl
->index
- 1);
540 /* No more pages to map */
541 if (io_ctl
->index
>= io_ctl
->num_pages
)
544 /* map the next page */
545 io_ctl_map_page(io_ctl
, 1);
549 static int io_ctl_add_bitmap(struct btrfs_io_ctl
*io_ctl
, void *bitmap
)
555 * If we aren't at the start of the current page, unmap this one and
556 * map the next one if there is any left.
558 if (io_ctl
->cur
!= io_ctl
->orig
) {
559 io_ctl_set_crc(io_ctl
, io_ctl
->index
- 1);
560 if (io_ctl
->index
>= io_ctl
->num_pages
)
562 io_ctl_map_page(io_ctl
, 0);
565 copy_page(io_ctl
->cur
, bitmap
);
566 io_ctl_set_crc(io_ctl
, io_ctl
->index
- 1);
567 if (io_ctl
->index
< io_ctl
->num_pages
)
568 io_ctl_map_page(io_ctl
, 0);
572 static void io_ctl_zero_remaining_pages(struct btrfs_io_ctl
*io_ctl
)
575 * If we're not on the boundary we know we've modified the page and we
576 * need to crc the page.
578 if (io_ctl
->cur
!= io_ctl
->orig
)
579 io_ctl_set_crc(io_ctl
, io_ctl
->index
- 1);
581 io_ctl_unmap_page(io_ctl
);
583 while (io_ctl
->index
< io_ctl
->num_pages
) {
584 io_ctl_map_page(io_ctl
, 1);
585 io_ctl_set_crc(io_ctl
, io_ctl
->index
- 1);
589 static int io_ctl_read_entry(struct btrfs_io_ctl
*io_ctl
,
590 struct btrfs_free_space
*entry
, u8
*type
)
592 struct btrfs_free_space_entry
*e
;
596 ret
= io_ctl_check_crc(io_ctl
, io_ctl
->index
);
602 entry
->offset
= le64_to_cpu(e
->offset
);
603 entry
->bytes
= le64_to_cpu(e
->bytes
);
605 io_ctl
->cur
+= sizeof(struct btrfs_free_space_entry
);
606 io_ctl
->size
-= sizeof(struct btrfs_free_space_entry
);
608 if (io_ctl
->size
>= sizeof(struct btrfs_free_space_entry
))
611 io_ctl_unmap_page(io_ctl
);
616 static int io_ctl_read_bitmap(struct btrfs_io_ctl
*io_ctl
,
617 struct btrfs_free_space
*entry
)
621 ret
= io_ctl_check_crc(io_ctl
, io_ctl
->index
);
625 copy_page(entry
->bitmap
, io_ctl
->cur
);
626 io_ctl_unmap_page(io_ctl
);
632 * Since we attach pinned extents after the fact we can have contiguous sections
633 * of free space that are split up in entries. This poses a problem with the
634 * tree logging stuff since it could have allocated across what appears to be 2
635 * entries since we would have merged the entries when adding the pinned extents
636 * back to the free space cache. So run through the space cache that we just
637 * loaded and merge contiguous entries. This will make the log replay stuff not
638 * blow up and it will make for nicer allocator behavior.
640 static void merge_space_tree(struct btrfs_free_space_ctl
*ctl
)
642 struct btrfs_free_space
*e
, *prev
= NULL
;
646 spin_lock(&ctl
->tree_lock
);
647 for (n
= rb_first(&ctl
->free_space_offset
); n
; n
= rb_next(n
)) {
648 e
= rb_entry(n
, struct btrfs_free_space
, offset_index
);
651 if (e
->bitmap
|| prev
->bitmap
)
653 if (prev
->offset
+ prev
->bytes
== e
->offset
) {
654 unlink_free_space(ctl
, prev
);
655 unlink_free_space(ctl
, e
);
656 prev
->bytes
+= e
->bytes
;
657 kmem_cache_free(btrfs_free_space_cachep
, e
);
658 link_free_space(ctl
, prev
);
660 spin_unlock(&ctl
->tree_lock
);
666 spin_unlock(&ctl
->tree_lock
);
669 static int __load_free_space_cache(struct btrfs_root
*root
, struct inode
*inode
,
670 struct btrfs_free_space_ctl
*ctl
,
671 struct btrfs_path
*path
, u64 offset
)
673 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
674 struct btrfs_free_space_header
*header
;
675 struct extent_buffer
*leaf
;
676 struct btrfs_io_ctl io_ctl
;
677 struct btrfs_key key
;
678 struct btrfs_free_space
*e
, *n
;
686 /* Nothing in the space cache, goodbye */
687 if (!i_size_read(inode
))
690 key
.objectid
= BTRFS_FREE_SPACE_OBJECTID
;
694 ret
= btrfs_search_slot(NULL
, root
, &key
, path
, 0, 0);
698 btrfs_release_path(path
);
704 leaf
= path
->nodes
[0];
705 header
= btrfs_item_ptr(leaf
, path
->slots
[0],
706 struct btrfs_free_space_header
);
707 num_entries
= btrfs_free_space_entries(leaf
, header
);
708 num_bitmaps
= btrfs_free_space_bitmaps(leaf
, header
);
709 generation
= btrfs_free_space_generation(leaf
, header
);
710 btrfs_release_path(path
);
712 if (!BTRFS_I(inode
)->generation
) {
714 "the free space cache file (%llu) is invalid, skip it",
719 if (BTRFS_I(inode
)->generation
!= generation
) {
721 "free space inode generation (%llu) did not match free space cache generation (%llu)",
722 BTRFS_I(inode
)->generation
, generation
);
729 ret
= io_ctl_init(&io_ctl
, inode
, 0);
733 readahead_cache(inode
);
735 ret
= io_ctl_prepare_pages(&io_ctl
, true);
739 ret
= io_ctl_check_crc(&io_ctl
, 0);
743 ret
= io_ctl_check_generation(&io_ctl
, generation
);
747 while (num_entries
) {
748 e
= kmem_cache_zalloc(btrfs_free_space_cachep
,
753 ret
= io_ctl_read_entry(&io_ctl
, e
, &type
);
755 kmem_cache_free(btrfs_free_space_cachep
, e
);
760 * Sync discard ensures that the free space cache is always
761 * trimmed. So when reading this in, the state should reflect
762 * that. We also do this for async as a stop gap for lack of
765 if (btrfs_test_opt(fs_info
, DISCARD_SYNC
) ||
766 btrfs_test_opt(fs_info
, DISCARD_ASYNC
))
767 e
->trim_state
= BTRFS_TRIM_STATE_TRIMMED
;
770 kmem_cache_free(btrfs_free_space_cachep
, e
);
774 if (type
== BTRFS_FREE_SPACE_EXTENT
) {
775 spin_lock(&ctl
->tree_lock
);
776 ret
= link_free_space(ctl
, e
);
777 spin_unlock(&ctl
->tree_lock
);
780 "Duplicate entries in free space cache, dumping");
781 kmem_cache_free(btrfs_free_space_cachep
, e
);
787 e
->bitmap
= kmem_cache_zalloc(
788 btrfs_free_space_bitmap_cachep
, GFP_NOFS
);
791 btrfs_free_space_cachep
, e
);
794 spin_lock(&ctl
->tree_lock
);
795 ret
= link_free_space(ctl
, e
);
796 ctl
->total_bitmaps
++;
797 ctl
->op
->recalc_thresholds(ctl
);
798 spin_unlock(&ctl
->tree_lock
);
801 "Duplicate entries in free space cache, dumping");
802 kmem_cache_free(btrfs_free_space_cachep
, e
);
805 list_add_tail(&e
->list
, &bitmaps
);
811 io_ctl_unmap_page(&io_ctl
);
814 * We add the bitmaps at the end of the entries in order that
815 * the bitmap entries are added to the cache.
817 list_for_each_entry_safe(e
, n
, &bitmaps
, list
) {
818 list_del_init(&e
->list
);
819 ret
= io_ctl_read_bitmap(&io_ctl
, e
);
822 e
->bitmap_extents
= count_bitmap_extents(ctl
, e
);
823 if (!btrfs_free_space_trimmed(e
)) {
824 ctl
->discardable_extents
[BTRFS_STAT_CURR
] +=
826 ctl
->discardable_bytes
[BTRFS_STAT_CURR
] += e
->bytes
;
830 io_ctl_drop_pages(&io_ctl
);
831 merge_space_tree(ctl
);
834 btrfs_discard_update_discardable(ctl
->private, ctl
);
835 io_ctl_free(&io_ctl
);
838 io_ctl_drop_pages(&io_ctl
);
839 __btrfs_remove_free_space_cache(ctl
);
843 int load_free_space_cache(struct btrfs_block_group
*block_group
)
845 struct btrfs_fs_info
*fs_info
= block_group
->fs_info
;
846 struct btrfs_free_space_ctl
*ctl
= block_group
->free_space_ctl
;
848 struct btrfs_path
*path
;
851 u64 used
= block_group
->used
;
854 * If this block group has been marked to be cleared for one reason or
855 * another then we can't trust the on disk cache, so just return.
857 spin_lock(&block_group
->lock
);
858 if (block_group
->disk_cache_state
!= BTRFS_DC_WRITTEN
) {
859 spin_unlock(&block_group
->lock
);
862 spin_unlock(&block_group
->lock
);
864 path
= btrfs_alloc_path();
867 path
->search_commit_root
= 1;
868 path
->skip_locking
= 1;
871 * We must pass a path with search_commit_root set to btrfs_iget in
872 * order to avoid a deadlock when allocating extents for the tree root.
874 * When we are COWing an extent buffer from the tree root, when looking
875 * for a free extent, at extent-tree.c:find_free_extent(), we can find
876 * block group without its free space cache loaded. When we find one
877 * we must load its space cache which requires reading its free space
878 * cache's inode item from the root tree. If this inode item is located
879 * in the same leaf that we started COWing before, then we end up in
880 * deadlock on the extent buffer (trying to read lock it when we
881 * previously write locked it).
883 * It's safe to read the inode item using the commit root because
884 * block groups, once loaded, stay in memory forever (until they are
885 * removed) as well as their space caches once loaded. New block groups
886 * once created get their ->cached field set to BTRFS_CACHE_FINISHED so
887 * we will never try to read their inode item while the fs is mounted.
889 inode
= lookup_free_space_inode(block_group
, path
);
891 btrfs_free_path(path
);
895 /* We may have converted the inode and made the cache invalid. */
896 spin_lock(&block_group
->lock
);
897 if (block_group
->disk_cache_state
!= BTRFS_DC_WRITTEN
) {
898 spin_unlock(&block_group
->lock
);
899 btrfs_free_path(path
);
902 spin_unlock(&block_group
->lock
);
904 ret
= __load_free_space_cache(fs_info
->tree_root
, inode
, ctl
,
905 path
, block_group
->start
);
906 btrfs_free_path(path
);
910 spin_lock(&ctl
->tree_lock
);
911 matched
= (ctl
->free_space
== (block_group
->length
- used
-
912 block_group
->bytes_super
));
913 spin_unlock(&ctl
->tree_lock
);
916 __btrfs_remove_free_space_cache(ctl
);
918 "block group %llu has wrong amount of free space",
924 /* This cache is bogus, make sure it gets cleared */
925 spin_lock(&block_group
->lock
);
926 block_group
->disk_cache_state
= BTRFS_DC_CLEAR
;
927 spin_unlock(&block_group
->lock
);
931 "failed to load free space cache for block group %llu, rebuilding it now",
939 static noinline_for_stack
940 int write_cache_extent_entries(struct btrfs_io_ctl
*io_ctl
,
941 struct btrfs_free_space_ctl
*ctl
,
942 struct btrfs_block_group
*block_group
,
943 int *entries
, int *bitmaps
,
944 struct list_head
*bitmap_list
)
947 struct btrfs_free_cluster
*cluster
= NULL
;
948 struct btrfs_free_cluster
*cluster_locked
= NULL
;
949 struct rb_node
*node
= rb_first(&ctl
->free_space_offset
);
950 struct btrfs_trim_range
*trim_entry
;
952 /* Get the cluster for this block_group if it exists */
953 if (block_group
&& !list_empty(&block_group
->cluster_list
)) {
954 cluster
= list_entry(block_group
->cluster_list
.next
,
955 struct btrfs_free_cluster
,
959 if (!node
&& cluster
) {
960 cluster_locked
= cluster
;
961 spin_lock(&cluster_locked
->lock
);
962 node
= rb_first(&cluster
->root
);
966 /* Write out the extent entries */
968 struct btrfs_free_space
*e
;
970 e
= rb_entry(node
, struct btrfs_free_space
, offset_index
);
973 ret
= io_ctl_add_entry(io_ctl
, e
->offset
, e
->bytes
,
979 list_add_tail(&e
->list
, bitmap_list
);
982 node
= rb_next(node
);
983 if (!node
&& cluster
) {
984 node
= rb_first(&cluster
->root
);
985 cluster_locked
= cluster
;
986 spin_lock(&cluster_locked
->lock
);
990 if (cluster_locked
) {
991 spin_unlock(&cluster_locked
->lock
);
992 cluster_locked
= NULL
;
996 * Make sure we don't miss any range that was removed from our rbtree
997 * because trimming is running. Otherwise after a umount+mount (or crash
998 * after committing the transaction) we would leak free space and get
999 * an inconsistent free space cache report from fsck.
1001 list_for_each_entry(trim_entry
, &ctl
->trimming_ranges
, list
) {
1002 ret
= io_ctl_add_entry(io_ctl
, trim_entry
->start
,
1003 trim_entry
->bytes
, NULL
);
1012 spin_unlock(&cluster_locked
->lock
);
1016 static noinline_for_stack
int
1017 update_cache_item(struct btrfs_trans_handle
*trans
,
1018 struct btrfs_root
*root
,
1019 struct inode
*inode
,
1020 struct btrfs_path
*path
, u64 offset
,
1021 int entries
, int bitmaps
)
1023 struct btrfs_key key
;
1024 struct btrfs_free_space_header
*header
;
1025 struct extent_buffer
*leaf
;
1028 key
.objectid
= BTRFS_FREE_SPACE_OBJECTID
;
1029 key
.offset
= offset
;
1032 ret
= btrfs_search_slot(trans
, root
, &key
, path
, 0, 1);
1034 clear_extent_bit(&BTRFS_I(inode
)->io_tree
, 0, inode
->i_size
- 1,
1035 EXTENT_DELALLOC
, 0, 0, NULL
);
1038 leaf
= path
->nodes
[0];
1040 struct btrfs_key found_key
;
1041 ASSERT(path
->slots
[0]);
1043 btrfs_item_key_to_cpu(leaf
, &found_key
, path
->slots
[0]);
1044 if (found_key
.objectid
!= BTRFS_FREE_SPACE_OBJECTID
||
1045 found_key
.offset
!= offset
) {
1046 clear_extent_bit(&BTRFS_I(inode
)->io_tree
, 0,
1047 inode
->i_size
- 1, EXTENT_DELALLOC
, 0,
1049 btrfs_release_path(path
);
1054 BTRFS_I(inode
)->generation
= trans
->transid
;
1055 header
= btrfs_item_ptr(leaf
, path
->slots
[0],
1056 struct btrfs_free_space_header
);
1057 btrfs_set_free_space_entries(leaf
, header
, entries
);
1058 btrfs_set_free_space_bitmaps(leaf
, header
, bitmaps
);
1059 btrfs_set_free_space_generation(leaf
, header
, trans
->transid
);
1060 btrfs_mark_buffer_dirty(leaf
);
1061 btrfs_release_path(path
);
1069 static noinline_for_stack
int write_pinned_extent_entries(
1070 struct btrfs_trans_handle
*trans
,
1071 struct btrfs_block_group
*block_group
,
1072 struct btrfs_io_ctl
*io_ctl
,
1075 u64 start
, extent_start
, extent_end
, len
;
1076 struct extent_io_tree
*unpin
= NULL
;
1083 * We want to add any pinned extents to our free space cache
1084 * so we don't leak the space
1086 * We shouldn't have switched the pinned extents yet so this is the
1089 unpin
= &trans
->transaction
->pinned_extents
;
1091 start
= block_group
->start
;
1093 while (start
< block_group
->start
+ block_group
->length
) {
1094 ret
= find_first_extent_bit(unpin
, start
,
1095 &extent_start
, &extent_end
,
1096 EXTENT_DIRTY
, NULL
);
1100 /* This pinned extent is out of our range */
1101 if (extent_start
>= block_group
->start
+ block_group
->length
)
1104 extent_start
= max(extent_start
, start
);
1105 extent_end
= min(block_group
->start
+ block_group
->length
,
1107 len
= extent_end
- extent_start
;
1110 ret
= io_ctl_add_entry(io_ctl
, extent_start
, len
, NULL
);
1120 static noinline_for_stack
int
1121 write_bitmap_entries(struct btrfs_io_ctl
*io_ctl
, struct list_head
*bitmap_list
)
1123 struct btrfs_free_space
*entry
, *next
;
1126 /* Write out the bitmaps */
1127 list_for_each_entry_safe(entry
, next
, bitmap_list
, list
) {
1128 ret
= io_ctl_add_bitmap(io_ctl
, entry
->bitmap
);
1131 list_del_init(&entry
->list
);
1137 static int flush_dirty_cache(struct inode
*inode
)
1141 ret
= btrfs_wait_ordered_range(inode
, 0, (u64
)-1);
1143 clear_extent_bit(&BTRFS_I(inode
)->io_tree
, 0, inode
->i_size
- 1,
1144 EXTENT_DELALLOC
, 0, 0, NULL
);
1149 static void noinline_for_stack
1150 cleanup_bitmap_list(struct list_head
*bitmap_list
)
1152 struct btrfs_free_space
*entry
, *next
;
1154 list_for_each_entry_safe(entry
, next
, bitmap_list
, list
)
1155 list_del_init(&entry
->list
);
1158 static void noinline_for_stack
1159 cleanup_write_cache_enospc(struct inode
*inode
,
1160 struct btrfs_io_ctl
*io_ctl
,
1161 struct extent_state
**cached_state
)
1163 io_ctl_drop_pages(io_ctl
);
1164 unlock_extent_cached(&BTRFS_I(inode
)->io_tree
, 0,
1165 i_size_read(inode
) - 1, cached_state
);
1168 static int __btrfs_wait_cache_io(struct btrfs_root
*root
,
1169 struct btrfs_trans_handle
*trans
,
1170 struct btrfs_block_group
*block_group
,
1171 struct btrfs_io_ctl
*io_ctl
,
1172 struct btrfs_path
*path
, u64 offset
)
1175 struct inode
*inode
= io_ctl
->inode
;
1180 /* Flush the dirty pages in the cache file. */
1181 ret
= flush_dirty_cache(inode
);
1185 /* Update the cache item to tell everyone this cache file is valid. */
1186 ret
= update_cache_item(trans
, root
, inode
, path
, offset
,
1187 io_ctl
->entries
, io_ctl
->bitmaps
);
1189 io_ctl_free(io_ctl
);
1191 invalidate_inode_pages2(inode
->i_mapping
);
1192 BTRFS_I(inode
)->generation
= 0;
1194 btrfs_debug(root
->fs_info
,
1195 "failed to write free space cache for block group %llu error %d",
1196 block_group
->start
, ret
);
1198 btrfs_update_inode(trans
, root
, inode
);
1201 /* the dirty list is protected by the dirty_bgs_lock */
1202 spin_lock(&trans
->transaction
->dirty_bgs_lock
);
1204 /* the disk_cache_state is protected by the block group lock */
1205 spin_lock(&block_group
->lock
);
1208 * only mark this as written if we didn't get put back on
1209 * the dirty list while waiting for IO. Otherwise our
1210 * cache state won't be right, and we won't get written again
1212 if (!ret
&& list_empty(&block_group
->dirty_list
))
1213 block_group
->disk_cache_state
= BTRFS_DC_WRITTEN
;
1215 block_group
->disk_cache_state
= BTRFS_DC_ERROR
;
1217 spin_unlock(&block_group
->lock
);
1218 spin_unlock(&trans
->transaction
->dirty_bgs_lock
);
1219 io_ctl
->inode
= NULL
;
1227 static int btrfs_wait_cache_io_root(struct btrfs_root
*root
,
1228 struct btrfs_trans_handle
*trans
,
1229 struct btrfs_io_ctl
*io_ctl
,
1230 struct btrfs_path
*path
)
1232 return __btrfs_wait_cache_io(root
, trans
, NULL
, io_ctl
, path
, 0);
1235 int btrfs_wait_cache_io(struct btrfs_trans_handle
*trans
,
1236 struct btrfs_block_group
*block_group
,
1237 struct btrfs_path
*path
)
1239 return __btrfs_wait_cache_io(block_group
->fs_info
->tree_root
, trans
,
1240 block_group
, &block_group
->io_ctl
,
1241 path
, block_group
->start
);
1245 * __btrfs_write_out_cache - write out cached info to an inode
1246 * @root - the root the inode belongs to
1247 * @ctl - the free space cache we are going to write out
1248 * @block_group - the block_group for this cache if it belongs to a block_group
1249 * @trans - the trans handle
1251 * This function writes out a free space cache struct to disk for quick recovery
1252 * on mount. This will return 0 if it was successful in writing the cache out,
1253 * or an errno if it was not.
1255 static int __btrfs_write_out_cache(struct btrfs_root
*root
, struct inode
*inode
,
1256 struct btrfs_free_space_ctl
*ctl
,
1257 struct btrfs_block_group
*block_group
,
1258 struct btrfs_io_ctl
*io_ctl
,
1259 struct btrfs_trans_handle
*trans
)
1261 struct extent_state
*cached_state
= NULL
;
1262 LIST_HEAD(bitmap_list
);
1268 if (!i_size_read(inode
))
1271 WARN_ON(io_ctl
->pages
);
1272 ret
= io_ctl_init(io_ctl
, inode
, 1);
1276 if (block_group
&& (block_group
->flags
& BTRFS_BLOCK_GROUP_DATA
)) {
1277 down_write(&block_group
->data_rwsem
);
1278 spin_lock(&block_group
->lock
);
1279 if (block_group
->delalloc_bytes
) {
1280 block_group
->disk_cache_state
= BTRFS_DC_WRITTEN
;
1281 spin_unlock(&block_group
->lock
);
1282 up_write(&block_group
->data_rwsem
);
1283 BTRFS_I(inode
)->generation
= 0;
1288 spin_unlock(&block_group
->lock
);
1291 /* Lock all pages first so we can lock the extent safely. */
1292 ret
= io_ctl_prepare_pages(io_ctl
, false);
1296 lock_extent_bits(&BTRFS_I(inode
)->io_tree
, 0, i_size_read(inode
) - 1,
1299 io_ctl_set_generation(io_ctl
, trans
->transid
);
1301 mutex_lock(&ctl
->cache_writeout_mutex
);
1302 /* Write out the extent entries in the free space cache */
1303 spin_lock(&ctl
->tree_lock
);
1304 ret
= write_cache_extent_entries(io_ctl
, ctl
,
1305 block_group
, &entries
, &bitmaps
,
1308 goto out_nospc_locked
;
1311 * Some spaces that are freed in the current transaction are pinned,
1312 * they will be added into free space cache after the transaction is
1313 * committed, we shouldn't lose them.
1315 * If this changes while we are working we'll get added back to
1316 * the dirty list and redo it. No locking needed
1318 ret
= write_pinned_extent_entries(trans
, block_group
, io_ctl
, &entries
);
1320 goto out_nospc_locked
;
1323 * At last, we write out all the bitmaps and keep cache_writeout_mutex
1324 * locked while doing it because a concurrent trim can be manipulating
1325 * or freeing the bitmap.
1327 ret
= write_bitmap_entries(io_ctl
, &bitmap_list
);
1328 spin_unlock(&ctl
->tree_lock
);
1329 mutex_unlock(&ctl
->cache_writeout_mutex
);
1333 /* Zero out the rest of the pages just to make sure */
1334 io_ctl_zero_remaining_pages(io_ctl
);
1336 /* Everything is written out, now we dirty the pages in the file. */
1337 ret
= btrfs_dirty_pages(inode
, io_ctl
->pages
, io_ctl
->num_pages
, 0,
1338 i_size_read(inode
), &cached_state
);
1342 if (block_group
&& (block_group
->flags
& BTRFS_BLOCK_GROUP_DATA
))
1343 up_write(&block_group
->data_rwsem
);
1345 * Release the pages and unlock the extent, we will flush
1348 io_ctl_drop_pages(io_ctl
);
1350 unlock_extent_cached(&BTRFS_I(inode
)->io_tree
, 0,
1351 i_size_read(inode
) - 1, &cached_state
);
1354 * at this point the pages are under IO and we're happy,
1355 * The caller is responsible for waiting on them and updating the
1356 * the cache and the inode
1358 io_ctl
->entries
= entries
;
1359 io_ctl
->bitmaps
= bitmaps
;
1361 ret
= btrfs_fdatawrite_range(inode
, 0, (u64
)-1);
1368 cleanup_bitmap_list(&bitmap_list
);
1369 spin_unlock(&ctl
->tree_lock
);
1370 mutex_unlock(&ctl
->cache_writeout_mutex
);
1373 cleanup_write_cache_enospc(inode
, io_ctl
, &cached_state
);
1376 if (block_group
&& (block_group
->flags
& BTRFS_BLOCK_GROUP_DATA
))
1377 up_write(&block_group
->data_rwsem
);
1380 io_ctl
->inode
= NULL
;
1381 io_ctl_free(io_ctl
);
1383 invalidate_inode_pages2(inode
->i_mapping
);
1384 BTRFS_I(inode
)->generation
= 0;
1386 btrfs_update_inode(trans
, root
, inode
);
1392 int btrfs_write_out_cache(struct btrfs_trans_handle
*trans
,
1393 struct btrfs_block_group
*block_group
,
1394 struct btrfs_path
*path
)
1396 struct btrfs_fs_info
*fs_info
= trans
->fs_info
;
1397 struct btrfs_free_space_ctl
*ctl
= block_group
->free_space_ctl
;
1398 struct inode
*inode
;
1401 spin_lock(&block_group
->lock
);
1402 if (block_group
->disk_cache_state
< BTRFS_DC_SETUP
) {
1403 spin_unlock(&block_group
->lock
);
1406 spin_unlock(&block_group
->lock
);
1408 inode
= lookup_free_space_inode(block_group
, path
);
1412 ret
= __btrfs_write_out_cache(fs_info
->tree_root
, inode
, ctl
,
1413 block_group
, &block_group
->io_ctl
, trans
);
1415 btrfs_debug(fs_info
,
1416 "failed to write free space cache for block group %llu error %d",
1417 block_group
->start
, ret
);
1418 spin_lock(&block_group
->lock
);
1419 block_group
->disk_cache_state
= BTRFS_DC_ERROR
;
1420 spin_unlock(&block_group
->lock
);
1422 block_group
->io_ctl
.inode
= NULL
;
1427 * if ret == 0 the caller is expected to call btrfs_wait_cache_io
1428 * to wait for IO and put the inode
1434 static inline unsigned long offset_to_bit(u64 bitmap_start
, u32 unit
,
1437 ASSERT(offset
>= bitmap_start
);
1438 offset
-= bitmap_start
;
1439 return (unsigned long)(div_u64(offset
, unit
));
1442 static inline unsigned long bytes_to_bits(u64 bytes
, u32 unit
)
1444 return (unsigned long)(div_u64(bytes
, unit
));
1447 static inline u64
offset_to_bitmap(struct btrfs_free_space_ctl
*ctl
,
1451 u64 bytes_per_bitmap
;
1453 bytes_per_bitmap
= BITS_PER_BITMAP
* ctl
->unit
;
1454 bitmap_start
= offset
- ctl
->start
;
1455 bitmap_start
= div64_u64(bitmap_start
, bytes_per_bitmap
);
1456 bitmap_start
*= bytes_per_bitmap
;
1457 bitmap_start
+= ctl
->start
;
1459 return bitmap_start
;
1462 static int tree_insert_offset(struct rb_root
*root
, u64 offset
,
1463 struct rb_node
*node
, int bitmap
)
1465 struct rb_node
**p
= &root
->rb_node
;
1466 struct rb_node
*parent
= NULL
;
1467 struct btrfs_free_space
*info
;
1471 info
= rb_entry(parent
, struct btrfs_free_space
, offset_index
);
1473 if (offset
< info
->offset
) {
1475 } else if (offset
> info
->offset
) {
1476 p
= &(*p
)->rb_right
;
1479 * we could have a bitmap entry and an extent entry
1480 * share the same offset. If this is the case, we want
1481 * the extent entry to always be found first if we do a
1482 * linear search through the tree, since we want to have
1483 * the quickest allocation time, and allocating from an
1484 * extent is faster than allocating from a bitmap. So
1485 * if we're inserting a bitmap and we find an entry at
1486 * this offset, we want to go right, or after this entry
1487 * logically. If we are inserting an extent and we've
1488 * found a bitmap, we want to go left, or before
1496 p
= &(*p
)->rb_right
;
1498 if (!info
->bitmap
) {
1507 rb_link_node(node
, parent
, p
);
1508 rb_insert_color(node
, root
);
1514 * searches the tree for the given offset.
1516 * fuzzy - If this is set, then we are trying to make an allocation, and we just
1517 * want a section that has at least bytes size and comes at or after the given
1520 static struct btrfs_free_space
*
1521 tree_search_offset(struct btrfs_free_space_ctl
*ctl
,
1522 u64 offset
, int bitmap_only
, int fuzzy
)
1524 struct rb_node
*n
= ctl
->free_space_offset
.rb_node
;
1525 struct btrfs_free_space
*entry
, *prev
= NULL
;
1527 /* find entry that is closest to the 'offset' */
1534 entry
= rb_entry(n
, struct btrfs_free_space
, offset_index
);
1537 if (offset
< entry
->offset
)
1539 else if (offset
> entry
->offset
)
1552 * bitmap entry and extent entry may share same offset,
1553 * in that case, bitmap entry comes after extent entry.
1558 entry
= rb_entry(n
, struct btrfs_free_space
, offset_index
);
1559 if (entry
->offset
!= offset
)
1562 WARN_ON(!entry
->bitmap
);
1565 if (entry
->bitmap
) {
1567 * if previous extent entry covers the offset,
1568 * we should return it instead of the bitmap entry
1570 n
= rb_prev(&entry
->offset_index
);
1572 prev
= rb_entry(n
, struct btrfs_free_space
,
1574 if (!prev
->bitmap
&&
1575 prev
->offset
+ prev
->bytes
> offset
)
1585 /* find last entry before the 'offset' */
1587 if (entry
->offset
> offset
) {
1588 n
= rb_prev(&entry
->offset_index
);
1590 entry
= rb_entry(n
, struct btrfs_free_space
,
1592 ASSERT(entry
->offset
<= offset
);
1601 if (entry
->bitmap
) {
1602 n
= rb_prev(&entry
->offset_index
);
1604 prev
= rb_entry(n
, struct btrfs_free_space
,
1606 if (!prev
->bitmap
&&
1607 prev
->offset
+ prev
->bytes
> offset
)
1610 if (entry
->offset
+ BITS_PER_BITMAP
* ctl
->unit
> offset
)
1612 } else if (entry
->offset
+ entry
->bytes
> offset
)
1619 if (entry
->bitmap
) {
1620 if (entry
->offset
+ BITS_PER_BITMAP
*
1624 if (entry
->offset
+ entry
->bytes
> offset
)
1628 n
= rb_next(&entry
->offset_index
);
1631 entry
= rb_entry(n
, struct btrfs_free_space
, offset_index
);
1637 __unlink_free_space(struct btrfs_free_space_ctl
*ctl
,
1638 struct btrfs_free_space
*info
)
1640 rb_erase(&info
->offset_index
, &ctl
->free_space_offset
);
1641 ctl
->free_extents
--;
1643 if (!info
->bitmap
&& !btrfs_free_space_trimmed(info
)) {
1644 ctl
->discardable_extents
[BTRFS_STAT_CURR
]--;
1645 ctl
->discardable_bytes
[BTRFS_STAT_CURR
] -= info
->bytes
;
1649 static void unlink_free_space(struct btrfs_free_space_ctl
*ctl
,
1650 struct btrfs_free_space
*info
)
1652 __unlink_free_space(ctl
, info
);
1653 ctl
->free_space
-= info
->bytes
;
1656 static int link_free_space(struct btrfs_free_space_ctl
*ctl
,
1657 struct btrfs_free_space
*info
)
1661 ASSERT(info
->bytes
|| info
->bitmap
);
1662 ret
= tree_insert_offset(&ctl
->free_space_offset
, info
->offset
,
1663 &info
->offset_index
, (info
->bitmap
!= NULL
));
1667 if (!info
->bitmap
&& !btrfs_free_space_trimmed(info
)) {
1668 ctl
->discardable_extents
[BTRFS_STAT_CURR
]++;
1669 ctl
->discardable_bytes
[BTRFS_STAT_CURR
] += info
->bytes
;
1672 ctl
->free_space
+= info
->bytes
;
1673 ctl
->free_extents
++;
1677 static void recalculate_thresholds(struct btrfs_free_space_ctl
*ctl
)
1679 struct btrfs_block_group
*block_group
= ctl
->private;
1683 u64 size
= block_group
->length
;
1684 u64 bytes_per_bg
= BITS_PER_BITMAP
* ctl
->unit
;
1685 u64 max_bitmaps
= div64_u64(size
+ bytes_per_bg
- 1, bytes_per_bg
);
1687 max_bitmaps
= max_t(u64
, max_bitmaps
, 1);
1689 ASSERT(ctl
->total_bitmaps
<= max_bitmaps
);
1692 * We are trying to keep the total amount of memory used per 1GiB of
1693 * space to be MAX_CACHE_BYTES_PER_GIG. However, with a reclamation
1694 * mechanism of pulling extents >= FORCE_EXTENT_THRESHOLD out of
1695 * bitmaps, we may end up using more memory than this.
1698 max_bytes
= MAX_CACHE_BYTES_PER_GIG
;
1700 max_bytes
= MAX_CACHE_BYTES_PER_GIG
* div_u64(size
, SZ_1G
);
1702 bitmap_bytes
= ctl
->total_bitmaps
* ctl
->unit
;
1705 * we want the extent entry threshold to always be at most 1/2 the max
1706 * bytes we can have, or whatever is less than that.
1708 extent_bytes
= max_bytes
- bitmap_bytes
;
1709 extent_bytes
= min_t(u64
, extent_bytes
, max_bytes
>> 1);
1711 ctl
->extents_thresh
=
1712 div_u64(extent_bytes
, sizeof(struct btrfs_free_space
));
1715 static inline void __bitmap_clear_bits(struct btrfs_free_space_ctl
*ctl
,
1716 struct btrfs_free_space
*info
,
1717 u64 offset
, u64 bytes
)
1719 unsigned long start
, count
, end
;
1720 int extent_delta
= -1;
1722 start
= offset_to_bit(info
->offset
, ctl
->unit
, offset
);
1723 count
= bytes_to_bits(bytes
, ctl
->unit
);
1724 end
= start
+ count
;
1725 ASSERT(end
<= BITS_PER_BITMAP
);
1727 bitmap_clear(info
->bitmap
, start
, count
);
1729 info
->bytes
-= bytes
;
1730 if (info
->max_extent_size
> ctl
->unit
)
1731 info
->max_extent_size
= 0;
1733 if (start
&& test_bit(start
- 1, info
->bitmap
))
1736 if (end
< BITS_PER_BITMAP
&& test_bit(end
, info
->bitmap
))
1739 info
->bitmap_extents
+= extent_delta
;
1740 if (!btrfs_free_space_trimmed(info
)) {
1741 ctl
->discardable_extents
[BTRFS_STAT_CURR
] += extent_delta
;
1742 ctl
->discardable_bytes
[BTRFS_STAT_CURR
] -= bytes
;
1746 static void bitmap_clear_bits(struct btrfs_free_space_ctl
*ctl
,
1747 struct btrfs_free_space
*info
, u64 offset
,
1750 __bitmap_clear_bits(ctl
, info
, offset
, bytes
);
1751 ctl
->free_space
-= bytes
;
1754 static void bitmap_set_bits(struct btrfs_free_space_ctl
*ctl
,
1755 struct btrfs_free_space
*info
, u64 offset
,
1758 unsigned long start
, count
, end
;
1759 int extent_delta
= 1;
1761 start
= offset_to_bit(info
->offset
, ctl
->unit
, offset
);
1762 count
= bytes_to_bits(bytes
, ctl
->unit
);
1763 end
= start
+ count
;
1764 ASSERT(end
<= BITS_PER_BITMAP
);
1766 bitmap_set(info
->bitmap
, start
, count
);
1768 info
->bytes
+= bytes
;
1769 ctl
->free_space
+= bytes
;
1771 if (start
&& test_bit(start
- 1, info
->bitmap
))
1774 if (end
< BITS_PER_BITMAP
&& test_bit(end
, info
->bitmap
))
1777 info
->bitmap_extents
+= extent_delta
;
1778 if (!btrfs_free_space_trimmed(info
)) {
1779 ctl
->discardable_extents
[BTRFS_STAT_CURR
] += extent_delta
;
1780 ctl
->discardable_bytes
[BTRFS_STAT_CURR
] += bytes
;
1785 * If we can not find suitable extent, we will use bytes to record
1786 * the size of the max extent.
1788 static int search_bitmap(struct btrfs_free_space_ctl
*ctl
,
1789 struct btrfs_free_space
*bitmap_info
, u64
*offset
,
1790 u64
*bytes
, bool for_alloc
)
1792 unsigned long found_bits
= 0;
1793 unsigned long max_bits
= 0;
1794 unsigned long bits
, i
;
1795 unsigned long next_zero
;
1796 unsigned long extent_bits
;
1799 * Skip searching the bitmap if we don't have a contiguous section that
1800 * is large enough for this allocation.
1803 bitmap_info
->max_extent_size
&&
1804 bitmap_info
->max_extent_size
< *bytes
) {
1805 *bytes
= bitmap_info
->max_extent_size
;
1809 i
= offset_to_bit(bitmap_info
->offset
, ctl
->unit
,
1810 max_t(u64
, *offset
, bitmap_info
->offset
));
1811 bits
= bytes_to_bits(*bytes
, ctl
->unit
);
1813 for_each_set_bit_from(i
, bitmap_info
->bitmap
, BITS_PER_BITMAP
) {
1814 if (for_alloc
&& bits
== 1) {
1818 next_zero
= find_next_zero_bit(bitmap_info
->bitmap
,
1819 BITS_PER_BITMAP
, i
);
1820 extent_bits
= next_zero
- i
;
1821 if (extent_bits
>= bits
) {
1822 found_bits
= extent_bits
;
1824 } else if (extent_bits
> max_bits
) {
1825 max_bits
= extent_bits
;
1831 *offset
= (u64
)(i
* ctl
->unit
) + bitmap_info
->offset
;
1832 *bytes
= (u64
)(found_bits
) * ctl
->unit
;
1836 *bytes
= (u64
)(max_bits
) * ctl
->unit
;
1837 bitmap_info
->max_extent_size
= *bytes
;
1841 static inline u64
get_max_extent_size(struct btrfs_free_space
*entry
)
1844 return entry
->max_extent_size
;
1845 return entry
->bytes
;
1848 /* Cache the size of the max extent in bytes */
1849 static struct btrfs_free_space
*
1850 find_free_space(struct btrfs_free_space_ctl
*ctl
, u64
*offset
, u64
*bytes
,
1851 unsigned long align
, u64
*max_extent_size
)
1853 struct btrfs_free_space
*entry
;
1854 struct rb_node
*node
;
1859 if (!ctl
->free_space_offset
.rb_node
)
1862 entry
= tree_search_offset(ctl
, offset_to_bitmap(ctl
, *offset
), 0, 1);
1866 for (node
= &entry
->offset_index
; node
; node
= rb_next(node
)) {
1867 entry
= rb_entry(node
, struct btrfs_free_space
, offset_index
);
1868 if (entry
->bytes
< *bytes
) {
1869 *max_extent_size
= max(get_max_extent_size(entry
),
1874 /* make sure the space returned is big enough
1875 * to match our requested alignment
1877 if (*bytes
>= align
) {
1878 tmp
= entry
->offset
- ctl
->start
+ align
- 1;
1879 tmp
= div64_u64(tmp
, align
);
1880 tmp
= tmp
* align
+ ctl
->start
;
1881 align_off
= tmp
- entry
->offset
;
1884 tmp
= entry
->offset
;
1887 if (entry
->bytes
< *bytes
+ align_off
) {
1888 *max_extent_size
= max(get_max_extent_size(entry
),
1893 if (entry
->bitmap
) {
1896 ret
= search_bitmap(ctl
, entry
, &tmp
, &size
, true);
1903 max(get_max_extent_size(entry
),
1910 *bytes
= entry
->bytes
- align_off
;
1917 static int count_bitmap_extents(struct btrfs_free_space_ctl
*ctl
,
1918 struct btrfs_free_space
*bitmap_info
)
1920 struct btrfs_block_group
*block_group
= ctl
->private;
1921 u64 bytes
= bitmap_info
->bytes
;
1922 unsigned int rs
, re
;
1925 if (!block_group
|| !bytes
)
1928 bitmap_for_each_set_region(bitmap_info
->bitmap
, rs
, re
, 0,
1930 bytes
-= (rs
- re
) * ctl
->unit
;
1940 static void add_new_bitmap(struct btrfs_free_space_ctl
*ctl
,
1941 struct btrfs_free_space
*info
, u64 offset
)
1943 info
->offset
= offset_to_bitmap(ctl
, offset
);
1945 info
->bitmap_extents
= 0;
1946 INIT_LIST_HEAD(&info
->list
);
1947 link_free_space(ctl
, info
);
1948 ctl
->total_bitmaps
++;
1950 ctl
->op
->recalc_thresholds(ctl
);
1953 static void free_bitmap(struct btrfs_free_space_ctl
*ctl
,
1954 struct btrfs_free_space
*bitmap_info
)
1957 * Normally when this is called, the bitmap is completely empty. However,
1958 * if we are blowing up the free space cache for one reason or another
1959 * via __btrfs_remove_free_space_cache(), then it may not be freed and
1960 * we may leave stats on the table.
1962 if (bitmap_info
->bytes
&& !btrfs_free_space_trimmed(bitmap_info
)) {
1963 ctl
->discardable_extents
[BTRFS_STAT_CURR
] -=
1964 bitmap_info
->bitmap_extents
;
1965 ctl
->discardable_bytes
[BTRFS_STAT_CURR
] -= bitmap_info
->bytes
;
1968 unlink_free_space(ctl
, bitmap_info
);
1969 kmem_cache_free(btrfs_free_space_bitmap_cachep
, bitmap_info
->bitmap
);
1970 kmem_cache_free(btrfs_free_space_cachep
, bitmap_info
);
1971 ctl
->total_bitmaps
--;
1972 ctl
->op
->recalc_thresholds(ctl
);
1975 static noinline
int remove_from_bitmap(struct btrfs_free_space_ctl
*ctl
,
1976 struct btrfs_free_space
*bitmap_info
,
1977 u64
*offset
, u64
*bytes
)
1980 u64 search_start
, search_bytes
;
1984 end
= bitmap_info
->offset
+ (u64
)(BITS_PER_BITMAP
* ctl
->unit
) - 1;
1987 * We need to search for bits in this bitmap. We could only cover some
1988 * of the extent in this bitmap thanks to how we add space, so we need
1989 * to search for as much as it as we can and clear that amount, and then
1990 * go searching for the next bit.
1992 search_start
= *offset
;
1993 search_bytes
= ctl
->unit
;
1994 search_bytes
= min(search_bytes
, end
- search_start
+ 1);
1995 ret
= search_bitmap(ctl
, bitmap_info
, &search_start
, &search_bytes
,
1997 if (ret
< 0 || search_start
!= *offset
)
2000 /* We may have found more bits than what we need */
2001 search_bytes
= min(search_bytes
, *bytes
);
2003 /* Cannot clear past the end of the bitmap */
2004 search_bytes
= min(search_bytes
, end
- search_start
+ 1);
2006 bitmap_clear_bits(ctl
, bitmap_info
, search_start
, search_bytes
);
2007 *offset
+= search_bytes
;
2008 *bytes
-= search_bytes
;
2011 struct rb_node
*next
= rb_next(&bitmap_info
->offset_index
);
2012 if (!bitmap_info
->bytes
)
2013 free_bitmap(ctl
, bitmap_info
);
2016 * no entry after this bitmap, but we still have bytes to
2017 * remove, so something has gone wrong.
2022 bitmap_info
= rb_entry(next
, struct btrfs_free_space
,
2026 * if the next entry isn't a bitmap we need to return to let the
2027 * extent stuff do its work.
2029 if (!bitmap_info
->bitmap
)
2033 * Ok the next item is a bitmap, but it may not actually hold
2034 * the information for the rest of this free space stuff, so
2035 * look for it, and if we don't find it return so we can try
2036 * everything over again.
2038 search_start
= *offset
;
2039 search_bytes
= ctl
->unit
;
2040 ret
= search_bitmap(ctl
, bitmap_info
, &search_start
,
2041 &search_bytes
, false);
2042 if (ret
< 0 || search_start
!= *offset
)
2046 } else if (!bitmap_info
->bytes
)
2047 free_bitmap(ctl
, bitmap_info
);
2052 static u64
add_bytes_to_bitmap(struct btrfs_free_space_ctl
*ctl
,
2053 struct btrfs_free_space
*info
, u64 offset
,
2054 u64 bytes
, enum btrfs_trim_state trim_state
)
2056 u64 bytes_to_set
= 0;
2060 * This is a tradeoff to make bitmap trim state minimal. We mark the
2061 * whole bitmap untrimmed if at any point we add untrimmed regions.
2063 if (trim_state
== BTRFS_TRIM_STATE_UNTRIMMED
) {
2064 if (btrfs_free_space_trimmed(info
)) {
2065 ctl
->discardable_extents
[BTRFS_STAT_CURR
] +=
2066 info
->bitmap_extents
;
2067 ctl
->discardable_bytes
[BTRFS_STAT_CURR
] += info
->bytes
;
2069 info
->trim_state
= BTRFS_TRIM_STATE_UNTRIMMED
;
2072 end
= info
->offset
+ (u64
)(BITS_PER_BITMAP
* ctl
->unit
);
2074 bytes_to_set
= min(end
- offset
, bytes
);
2076 bitmap_set_bits(ctl
, info
, offset
, bytes_to_set
);
2079 * We set some bytes, we have no idea what the max extent size is
2082 info
->max_extent_size
= 0;
2084 return bytes_to_set
;
2088 static bool use_bitmap(struct btrfs_free_space_ctl
*ctl
,
2089 struct btrfs_free_space
*info
)
2091 struct btrfs_block_group
*block_group
= ctl
->private;
2092 struct btrfs_fs_info
*fs_info
= block_group
->fs_info
;
2093 bool forced
= false;
2095 #ifdef CONFIG_BTRFS_DEBUG
2096 if (btrfs_should_fragment_free_space(block_group
))
2100 /* This is a way to reclaim large regions from the bitmaps. */
2101 if (!forced
&& info
->bytes
>= FORCE_EXTENT_THRESHOLD
)
2105 * If we are below the extents threshold then we can add this as an
2106 * extent, and don't have to deal with the bitmap
2108 if (!forced
&& ctl
->free_extents
< ctl
->extents_thresh
) {
2110 * If this block group has some small extents we don't want to
2111 * use up all of our free slots in the cache with them, we want
2112 * to reserve them to larger extents, however if we have plenty
2113 * of cache left then go ahead an dadd them, no sense in adding
2114 * the overhead of a bitmap if we don't have to.
2116 if (info
->bytes
<= fs_info
->sectorsize
* 8) {
2117 if (ctl
->free_extents
* 3 <= ctl
->extents_thresh
)
2125 * The original block groups from mkfs can be really small, like 8
2126 * megabytes, so don't bother with a bitmap for those entries. However
2127 * some block groups can be smaller than what a bitmap would cover but
2128 * are still large enough that they could overflow the 32k memory limit,
2129 * so allow those block groups to still be allowed to have a bitmap
2132 if (((BITS_PER_BITMAP
* ctl
->unit
) >> 1) > block_group
->length
)
2138 static const struct btrfs_free_space_op free_space_op
= {
2139 .recalc_thresholds
= recalculate_thresholds
,
2140 .use_bitmap
= use_bitmap
,
2143 static int insert_into_bitmap(struct btrfs_free_space_ctl
*ctl
,
2144 struct btrfs_free_space
*info
)
2146 struct btrfs_free_space
*bitmap_info
;
2147 struct btrfs_block_group
*block_group
= NULL
;
2149 u64 bytes
, offset
, bytes_added
;
2150 enum btrfs_trim_state trim_state
;
2153 bytes
= info
->bytes
;
2154 offset
= info
->offset
;
2155 trim_state
= info
->trim_state
;
2157 if (!ctl
->op
->use_bitmap(ctl
, info
))
2160 if (ctl
->op
== &free_space_op
)
2161 block_group
= ctl
->private;
2164 * Since we link bitmaps right into the cluster we need to see if we
2165 * have a cluster here, and if so and it has our bitmap we need to add
2166 * the free space to that bitmap.
2168 if (block_group
&& !list_empty(&block_group
->cluster_list
)) {
2169 struct btrfs_free_cluster
*cluster
;
2170 struct rb_node
*node
;
2171 struct btrfs_free_space
*entry
;
2173 cluster
= list_entry(block_group
->cluster_list
.next
,
2174 struct btrfs_free_cluster
,
2176 spin_lock(&cluster
->lock
);
2177 node
= rb_first(&cluster
->root
);
2179 spin_unlock(&cluster
->lock
);
2180 goto no_cluster_bitmap
;
2183 entry
= rb_entry(node
, struct btrfs_free_space
, offset_index
);
2184 if (!entry
->bitmap
) {
2185 spin_unlock(&cluster
->lock
);
2186 goto no_cluster_bitmap
;
2189 if (entry
->offset
== offset_to_bitmap(ctl
, offset
)) {
2190 bytes_added
= add_bytes_to_bitmap(ctl
, entry
, offset
,
2192 bytes
-= bytes_added
;
2193 offset
+= bytes_added
;
2195 spin_unlock(&cluster
->lock
);
2203 bitmap_info
= tree_search_offset(ctl
, offset_to_bitmap(ctl
, offset
),
2210 bytes_added
= add_bytes_to_bitmap(ctl
, bitmap_info
, offset
, bytes
,
2212 bytes
-= bytes_added
;
2213 offset
+= bytes_added
;
2223 if (info
&& info
->bitmap
) {
2224 add_new_bitmap(ctl
, info
, offset
);
2229 spin_unlock(&ctl
->tree_lock
);
2231 /* no pre-allocated info, allocate a new one */
2233 info
= kmem_cache_zalloc(btrfs_free_space_cachep
,
2236 spin_lock(&ctl
->tree_lock
);
2242 /* allocate the bitmap */
2243 info
->bitmap
= kmem_cache_zalloc(btrfs_free_space_bitmap_cachep
,
2245 info
->trim_state
= BTRFS_TRIM_STATE_TRIMMED
;
2246 spin_lock(&ctl
->tree_lock
);
2247 if (!info
->bitmap
) {
2257 kmem_cache_free(btrfs_free_space_bitmap_cachep
,
2259 kmem_cache_free(btrfs_free_space_cachep
, info
);
2266 * Free space merging rules:
2267 * 1) Merge trimmed areas together
2268 * 2) Let untrimmed areas coalesce with trimmed areas
2269 * 3) Always pull neighboring regions from bitmaps
2271 * The above rules are for when we merge free space based on btrfs_trim_state.
2272 * Rules 2 and 3 are subtle because they are suboptimal, but are done for the
2273 * same reason: to promote larger extent regions which makes life easier for
2274 * find_free_extent(). Rule 2 enables coalescing based on the common path
2275 * being returning free space from btrfs_finish_extent_commit(). So when free
2276 * space is trimmed, it will prevent aggregating trimmed new region and
2277 * untrimmed regions in the rb_tree. Rule 3 is purely to obtain larger extents
2278 * and provide find_free_extent() with the largest extents possible hoping for
2281 static bool try_merge_free_space(struct btrfs_free_space_ctl
*ctl
,
2282 struct btrfs_free_space
*info
, bool update_stat
)
2284 struct btrfs_free_space
*left_info
;
2285 struct btrfs_free_space
*right_info
;
2286 bool merged
= false;
2287 u64 offset
= info
->offset
;
2288 u64 bytes
= info
->bytes
;
2289 const bool is_trimmed
= btrfs_free_space_trimmed(info
);
2292 * first we want to see if there is free space adjacent to the range we
2293 * are adding, if there is remove that struct and add a new one to
2294 * cover the entire range
2296 right_info
= tree_search_offset(ctl
, offset
+ bytes
, 0, 0);
2297 if (right_info
&& rb_prev(&right_info
->offset_index
))
2298 left_info
= rb_entry(rb_prev(&right_info
->offset_index
),
2299 struct btrfs_free_space
, offset_index
);
2301 left_info
= tree_search_offset(ctl
, offset
- 1, 0, 0);
2303 /* See try_merge_free_space() comment. */
2304 if (right_info
&& !right_info
->bitmap
&&
2305 (!is_trimmed
|| btrfs_free_space_trimmed(right_info
))) {
2307 unlink_free_space(ctl
, right_info
);
2309 __unlink_free_space(ctl
, right_info
);
2310 info
->bytes
+= right_info
->bytes
;
2311 kmem_cache_free(btrfs_free_space_cachep
, right_info
);
2315 /* See try_merge_free_space() comment. */
2316 if (left_info
&& !left_info
->bitmap
&&
2317 left_info
->offset
+ left_info
->bytes
== offset
&&
2318 (!is_trimmed
|| btrfs_free_space_trimmed(left_info
))) {
2320 unlink_free_space(ctl
, left_info
);
2322 __unlink_free_space(ctl
, left_info
);
2323 info
->offset
= left_info
->offset
;
2324 info
->bytes
+= left_info
->bytes
;
2325 kmem_cache_free(btrfs_free_space_cachep
, left_info
);
2332 static bool steal_from_bitmap_to_end(struct btrfs_free_space_ctl
*ctl
,
2333 struct btrfs_free_space
*info
,
2336 struct btrfs_free_space
*bitmap
;
2339 const u64 end
= info
->offset
+ info
->bytes
;
2340 const u64 bitmap_offset
= offset_to_bitmap(ctl
, end
);
2343 bitmap
= tree_search_offset(ctl
, bitmap_offset
, 1, 0);
2347 i
= offset_to_bit(bitmap
->offset
, ctl
->unit
, end
);
2348 j
= find_next_zero_bit(bitmap
->bitmap
, BITS_PER_BITMAP
, i
);
2351 bytes
= (j
- i
) * ctl
->unit
;
2352 info
->bytes
+= bytes
;
2354 /* See try_merge_free_space() comment. */
2355 if (!btrfs_free_space_trimmed(bitmap
))
2356 info
->trim_state
= BTRFS_TRIM_STATE_UNTRIMMED
;
2359 bitmap_clear_bits(ctl
, bitmap
, end
, bytes
);
2361 __bitmap_clear_bits(ctl
, bitmap
, end
, bytes
);
2364 free_bitmap(ctl
, bitmap
);
2369 static bool steal_from_bitmap_to_front(struct btrfs_free_space_ctl
*ctl
,
2370 struct btrfs_free_space
*info
,
2373 struct btrfs_free_space
*bitmap
;
2377 unsigned long prev_j
;
2380 bitmap_offset
= offset_to_bitmap(ctl
, info
->offset
);
2381 /* If we're on a boundary, try the previous logical bitmap. */
2382 if (bitmap_offset
== info
->offset
) {
2383 if (info
->offset
== 0)
2385 bitmap_offset
= offset_to_bitmap(ctl
, info
->offset
- 1);
2388 bitmap
= tree_search_offset(ctl
, bitmap_offset
, 1, 0);
2392 i
= offset_to_bit(bitmap
->offset
, ctl
->unit
, info
->offset
) - 1;
2394 prev_j
= (unsigned long)-1;
2395 for_each_clear_bit_from(j
, bitmap
->bitmap
, BITS_PER_BITMAP
) {
2403 if (prev_j
== (unsigned long)-1)
2404 bytes
= (i
+ 1) * ctl
->unit
;
2406 bytes
= (i
- prev_j
) * ctl
->unit
;
2408 info
->offset
-= bytes
;
2409 info
->bytes
+= bytes
;
2411 /* See try_merge_free_space() comment. */
2412 if (!btrfs_free_space_trimmed(bitmap
))
2413 info
->trim_state
= BTRFS_TRIM_STATE_UNTRIMMED
;
2416 bitmap_clear_bits(ctl
, bitmap
, info
->offset
, bytes
);
2418 __bitmap_clear_bits(ctl
, bitmap
, info
->offset
, bytes
);
2421 free_bitmap(ctl
, bitmap
);
2427 * We prefer always to allocate from extent entries, both for clustered and
2428 * non-clustered allocation requests. So when attempting to add a new extent
2429 * entry, try to see if there's adjacent free space in bitmap entries, and if
2430 * there is, migrate that space from the bitmaps to the extent.
2431 * Like this we get better chances of satisfying space allocation requests
2432 * because we attempt to satisfy them based on a single cache entry, and never
2433 * on 2 or more entries - even if the entries represent a contiguous free space
2434 * region (e.g. 1 extent entry + 1 bitmap entry starting where the extent entry
2437 static void steal_from_bitmap(struct btrfs_free_space_ctl
*ctl
,
2438 struct btrfs_free_space
*info
,
2442 * Only work with disconnected entries, as we can change their offset,
2443 * and must be extent entries.
2445 ASSERT(!info
->bitmap
);
2446 ASSERT(RB_EMPTY_NODE(&info
->offset_index
));
2448 if (ctl
->total_bitmaps
> 0) {
2450 bool stole_front
= false;
2452 stole_end
= steal_from_bitmap_to_end(ctl
, info
, update_stat
);
2453 if (ctl
->total_bitmaps
> 0)
2454 stole_front
= steal_from_bitmap_to_front(ctl
, info
,
2457 if (stole_end
|| stole_front
)
2458 try_merge_free_space(ctl
, info
, update_stat
);
2462 int __btrfs_add_free_space(struct btrfs_fs_info
*fs_info
,
2463 struct btrfs_free_space_ctl
*ctl
,
2464 u64 offset
, u64 bytes
,
2465 enum btrfs_trim_state trim_state
)
2467 struct btrfs_block_group
*block_group
= ctl
->private;
2468 struct btrfs_free_space
*info
;
2470 u64 filter_bytes
= bytes
;
2472 info
= kmem_cache_zalloc(btrfs_free_space_cachep
, GFP_NOFS
);
2476 info
->offset
= offset
;
2477 info
->bytes
= bytes
;
2478 info
->trim_state
= trim_state
;
2479 RB_CLEAR_NODE(&info
->offset_index
);
2481 spin_lock(&ctl
->tree_lock
);
2483 if (try_merge_free_space(ctl
, info
, true))
2487 * There was no extent directly to the left or right of this new
2488 * extent then we know we're going to have to allocate a new extent, so
2489 * before we do that see if we need to drop this into a bitmap
2491 ret
= insert_into_bitmap(ctl
, info
);
2500 * Only steal free space from adjacent bitmaps if we're sure we're not
2501 * going to add the new free space to existing bitmap entries - because
2502 * that would mean unnecessary work that would be reverted. Therefore
2503 * attempt to steal space from bitmaps if we're adding an extent entry.
2505 steal_from_bitmap(ctl
, info
, true);
2507 filter_bytes
= max(filter_bytes
, info
->bytes
);
2509 ret
= link_free_space(ctl
, info
);
2511 kmem_cache_free(btrfs_free_space_cachep
, info
);
2513 btrfs_discard_update_discardable(block_group
, ctl
);
2514 spin_unlock(&ctl
->tree_lock
);
2517 btrfs_crit(fs_info
, "unable to add free space :%d", ret
);
2518 ASSERT(ret
!= -EEXIST
);
2521 if (trim_state
!= BTRFS_TRIM_STATE_TRIMMED
) {
2522 btrfs_discard_check_filter(block_group
, filter_bytes
);
2523 btrfs_discard_queue_work(&fs_info
->discard_ctl
, block_group
);
2529 int btrfs_add_free_space(struct btrfs_block_group
*block_group
,
2530 u64 bytenr
, u64 size
)
2532 enum btrfs_trim_state trim_state
= BTRFS_TRIM_STATE_UNTRIMMED
;
2534 if (btrfs_test_opt(block_group
->fs_info
, DISCARD_SYNC
))
2535 trim_state
= BTRFS_TRIM_STATE_TRIMMED
;
2537 return __btrfs_add_free_space(block_group
->fs_info
,
2538 block_group
->free_space_ctl
,
2539 bytenr
, size
, trim_state
);
2543 * This is a subtle distinction because when adding free space back in general,
2544 * we want it to be added as untrimmed for async. But in the case where we add
2545 * it on loading of a block group, we want to consider it trimmed.
2547 int btrfs_add_free_space_async_trimmed(struct btrfs_block_group
*block_group
,
2548 u64 bytenr
, u64 size
)
2550 enum btrfs_trim_state trim_state
= BTRFS_TRIM_STATE_UNTRIMMED
;
2552 if (btrfs_test_opt(block_group
->fs_info
, DISCARD_SYNC
) ||
2553 btrfs_test_opt(block_group
->fs_info
, DISCARD_ASYNC
))
2554 trim_state
= BTRFS_TRIM_STATE_TRIMMED
;
2556 return __btrfs_add_free_space(block_group
->fs_info
,
2557 block_group
->free_space_ctl
,
2558 bytenr
, size
, trim_state
);
2561 int btrfs_remove_free_space(struct btrfs_block_group
*block_group
,
2562 u64 offset
, u64 bytes
)
2564 struct btrfs_free_space_ctl
*ctl
= block_group
->free_space_ctl
;
2565 struct btrfs_free_space
*info
;
2567 bool re_search
= false;
2569 spin_lock(&ctl
->tree_lock
);
2576 info
= tree_search_offset(ctl
, offset
, 0, 0);
2579 * oops didn't find an extent that matched the space we wanted
2580 * to remove, look for a bitmap instead
2582 info
= tree_search_offset(ctl
, offset_to_bitmap(ctl
, offset
),
2586 * If we found a partial bit of our free space in a
2587 * bitmap but then couldn't find the other part this may
2588 * be a problem, so WARN about it.
2596 if (!info
->bitmap
) {
2597 unlink_free_space(ctl
, info
);
2598 if (offset
== info
->offset
) {
2599 u64 to_free
= min(bytes
, info
->bytes
);
2601 info
->bytes
-= to_free
;
2602 info
->offset
+= to_free
;
2604 ret
= link_free_space(ctl
, info
);
2607 kmem_cache_free(btrfs_free_space_cachep
, info
);
2614 u64 old_end
= info
->bytes
+ info
->offset
;
2616 info
->bytes
= offset
- info
->offset
;
2617 ret
= link_free_space(ctl
, info
);
2622 /* Not enough bytes in this entry to satisfy us */
2623 if (old_end
< offset
+ bytes
) {
2624 bytes
-= old_end
- offset
;
2627 } else if (old_end
== offset
+ bytes
) {
2631 spin_unlock(&ctl
->tree_lock
);
2633 ret
= __btrfs_add_free_space(block_group
->fs_info
, ctl
,
2635 old_end
- (offset
+ bytes
),
2642 ret
= remove_from_bitmap(ctl
, info
, &offset
, &bytes
);
2643 if (ret
== -EAGAIN
) {
2648 btrfs_discard_update_discardable(block_group
, ctl
);
2649 spin_unlock(&ctl
->tree_lock
);
2654 void btrfs_dump_free_space(struct btrfs_block_group
*block_group
,
2657 struct btrfs_fs_info
*fs_info
= block_group
->fs_info
;
2658 struct btrfs_free_space_ctl
*ctl
= block_group
->free_space_ctl
;
2659 struct btrfs_free_space
*info
;
2663 spin_lock(&ctl
->tree_lock
);
2664 for (n
= rb_first(&ctl
->free_space_offset
); n
; n
= rb_next(n
)) {
2665 info
= rb_entry(n
, struct btrfs_free_space
, offset_index
);
2666 if (info
->bytes
>= bytes
&& !block_group
->ro
)
2668 btrfs_crit(fs_info
, "entry offset %llu, bytes %llu, bitmap %s",
2669 info
->offset
, info
->bytes
,
2670 (info
->bitmap
) ? "yes" : "no");
2672 spin_unlock(&ctl
->tree_lock
);
2673 btrfs_info(fs_info
, "block group has cluster?: %s",
2674 list_empty(&block_group
->cluster_list
) ? "no" : "yes");
2676 "%d blocks of free space at or bigger than bytes is", count
);
2679 void btrfs_init_free_space_ctl(struct btrfs_block_group
*block_group
)
2681 struct btrfs_fs_info
*fs_info
= block_group
->fs_info
;
2682 struct btrfs_free_space_ctl
*ctl
= block_group
->free_space_ctl
;
2684 spin_lock_init(&ctl
->tree_lock
);
2685 ctl
->unit
= fs_info
->sectorsize
;
2686 ctl
->start
= block_group
->start
;
2687 ctl
->private = block_group
;
2688 ctl
->op
= &free_space_op
;
2689 INIT_LIST_HEAD(&ctl
->trimming_ranges
);
2690 mutex_init(&ctl
->cache_writeout_mutex
);
2693 * we only want to have 32k of ram per block group for keeping
2694 * track of free space, and if we pass 1/2 of that we want to
2695 * start converting things over to using bitmaps
2697 ctl
->extents_thresh
= (SZ_32K
/ 2) / sizeof(struct btrfs_free_space
);
2701 * for a given cluster, put all of its extents back into the free
2702 * space cache. If the block group passed doesn't match the block group
2703 * pointed to by the cluster, someone else raced in and freed the
2704 * cluster already. In that case, we just return without changing anything
2707 __btrfs_return_cluster_to_free_space(
2708 struct btrfs_block_group
*block_group
,
2709 struct btrfs_free_cluster
*cluster
)
2711 struct btrfs_free_space_ctl
*ctl
= block_group
->free_space_ctl
;
2712 struct btrfs_free_space
*entry
;
2713 struct rb_node
*node
;
2715 spin_lock(&cluster
->lock
);
2716 if (cluster
->block_group
!= block_group
)
2719 cluster
->block_group
= NULL
;
2720 cluster
->window_start
= 0;
2721 list_del_init(&cluster
->block_group_list
);
2723 node
= rb_first(&cluster
->root
);
2727 entry
= rb_entry(node
, struct btrfs_free_space
, offset_index
);
2728 node
= rb_next(&entry
->offset_index
);
2729 rb_erase(&entry
->offset_index
, &cluster
->root
);
2730 RB_CLEAR_NODE(&entry
->offset_index
);
2732 bitmap
= (entry
->bitmap
!= NULL
);
2734 /* Merging treats extents as if they were new */
2735 if (!btrfs_free_space_trimmed(entry
)) {
2736 ctl
->discardable_extents
[BTRFS_STAT_CURR
]--;
2737 ctl
->discardable_bytes
[BTRFS_STAT_CURR
] -=
2741 try_merge_free_space(ctl
, entry
, false);
2742 steal_from_bitmap(ctl
, entry
, false);
2744 /* As we insert directly, update these statistics */
2745 if (!btrfs_free_space_trimmed(entry
)) {
2746 ctl
->discardable_extents
[BTRFS_STAT_CURR
]++;
2747 ctl
->discardable_bytes
[BTRFS_STAT_CURR
] +=
2751 tree_insert_offset(&ctl
->free_space_offset
,
2752 entry
->offset
, &entry
->offset_index
, bitmap
);
2754 cluster
->root
= RB_ROOT
;
2757 spin_unlock(&cluster
->lock
);
2758 btrfs_put_block_group(block_group
);
2762 static void __btrfs_remove_free_space_cache_locked(
2763 struct btrfs_free_space_ctl
*ctl
)
2765 struct btrfs_free_space
*info
;
2766 struct rb_node
*node
;
2768 while ((node
= rb_last(&ctl
->free_space_offset
)) != NULL
) {
2769 info
= rb_entry(node
, struct btrfs_free_space
, offset_index
);
2770 if (!info
->bitmap
) {
2771 unlink_free_space(ctl
, info
);
2772 kmem_cache_free(btrfs_free_space_cachep
, info
);
2774 free_bitmap(ctl
, info
);
2777 cond_resched_lock(&ctl
->tree_lock
);
2781 void __btrfs_remove_free_space_cache(struct btrfs_free_space_ctl
*ctl
)
2783 spin_lock(&ctl
->tree_lock
);
2784 __btrfs_remove_free_space_cache_locked(ctl
);
2786 btrfs_discard_update_discardable(ctl
->private, ctl
);
2787 spin_unlock(&ctl
->tree_lock
);
2790 void btrfs_remove_free_space_cache(struct btrfs_block_group
*block_group
)
2792 struct btrfs_free_space_ctl
*ctl
= block_group
->free_space_ctl
;
2793 struct btrfs_free_cluster
*cluster
;
2794 struct list_head
*head
;
2796 spin_lock(&ctl
->tree_lock
);
2797 while ((head
= block_group
->cluster_list
.next
) !=
2798 &block_group
->cluster_list
) {
2799 cluster
= list_entry(head
, struct btrfs_free_cluster
,
2802 WARN_ON(cluster
->block_group
!= block_group
);
2803 __btrfs_return_cluster_to_free_space(block_group
, cluster
);
2805 cond_resched_lock(&ctl
->tree_lock
);
2807 __btrfs_remove_free_space_cache_locked(ctl
);
2808 btrfs_discard_update_discardable(block_group
, ctl
);
2809 spin_unlock(&ctl
->tree_lock
);
2814 * btrfs_is_free_space_trimmed - see if everything is trimmed
2815 * @block_group: block_group of interest
2817 * Walk @block_group's free space rb_tree to determine if everything is trimmed.
2819 bool btrfs_is_free_space_trimmed(struct btrfs_block_group
*block_group
)
2821 struct btrfs_free_space_ctl
*ctl
= block_group
->free_space_ctl
;
2822 struct btrfs_free_space
*info
;
2823 struct rb_node
*node
;
2826 spin_lock(&ctl
->tree_lock
);
2827 node
= rb_first(&ctl
->free_space_offset
);
2830 info
= rb_entry(node
, struct btrfs_free_space
, offset_index
);
2832 if (!btrfs_free_space_trimmed(info
)) {
2837 node
= rb_next(node
);
2840 spin_unlock(&ctl
->tree_lock
);
2844 u64
btrfs_find_space_for_alloc(struct btrfs_block_group
*block_group
,
2845 u64 offset
, u64 bytes
, u64 empty_size
,
2846 u64
*max_extent_size
)
2848 struct btrfs_free_space_ctl
*ctl
= block_group
->free_space_ctl
;
2849 struct btrfs_discard_ctl
*discard_ctl
=
2850 &block_group
->fs_info
->discard_ctl
;
2851 struct btrfs_free_space
*entry
= NULL
;
2852 u64 bytes_search
= bytes
+ empty_size
;
2855 u64 align_gap_len
= 0;
2856 enum btrfs_trim_state align_gap_trim_state
= BTRFS_TRIM_STATE_UNTRIMMED
;
2858 spin_lock(&ctl
->tree_lock
);
2859 entry
= find_free_space(ctl
, &offset
, &bytes_search
,
2860 block_group
->full_stripe_len
, max_extent_size
);
2865 if (entry
->bitmap
) {
2866 bitmap_clear_bits(ctl
, entry
, offset
, bytes
);
2868 if (!btrfs_free_space_trimmed(entry
))
2869 atomic64_add(bytes
, &discard_ctl
->discard_bytes_saved
);
2872 free_bitmap(ctl
, entry
);
2874 unlink_free_space(ctl
, entry
);
2875 align_gap_len
= offset
- entry
->offset
;
2876 align_gap
= entry
->offset
;
2877 align_gap_trim_state
= entry
->trim_state
;
2879 if (!btrfs_free_space_trimmed(entry
))
2880 atomic64_add(bytes
, &discard_ctl
->discard_bytes_saved
);
2882 entry
->offset
= offset
+ bytes
;
2883 WARN_ON(entry
->bytes
< bytes
+ align_gap_len
);
2885 entry
->bytes
-= bytes
+ align_gap_len
;
2887 kmem_cache_free(btrfs_free_space_cachep
, entry
);
2889 link_free_space(ctl
, entry
);
2892 btrfs_discard_update_discardable(block_group
, ctl
);
2893 spin_unlock(&ctl
->tree_lock
);
2896 __btrfs_add_free_space(block_group
->fs_info
, ctl
,
2897 align_gap
, align_gap_len
,
2898 align_gap_trim_state
);
2903 * given a cluster, put all of its extents back into the free space
2904 * cache. If a block group is passed, this function will only free
2905 * a cluster that belongs to the passed block group.
2907 * Otherwise, it'll get a reference on the block group pointed to by the
2908 * cluster and remove the cluster from it.
2910 int btrfs_return_cluster_to_free_space(
2911 struct btrfs_block_group
*block_group
,
2912 struct btrfs_free_cluster
*cluster
)
2914 struct btrfs_free_space_ctl
*ctl
;
2917 /* first, get a safe pointer to the block group */
2918 spin_lock(&cluster
->lock
);
2920 block_group
= cluster
->block_group
;
2922 spin_unlock(&cluster
->lock
);
2925 } else if (cluster
->block_group
!= block_group
) {
2926 /* someone else has already freed it don't redo their work */
2927 spin_unlock(&cluster
->lock
);
2930 atomic_inc(&block_group
->count
);
2931 spin_unlock(&cluster
->lock
);
2933 ctl
= block_group
->free_space_ctl
;
2935 /* now return any extents the cluster had on it */
2936 spin_lock(&ctl
->tree_lock
);
2937 ret
= __btrfs_return_cluster_to_free_space(block_group
, cluster
);
2938 spin_unlock(&ctl
->tree_lock
);
2940 btrfs_discard_queue_work(&block_group
->fs_info
->discard_ctl
, block_group
);
2942 /* finally drop our ref */
2943 btrfs_put_block_group(block_group
);
2947 static u64
btrfs_alloc_from_bitmap(struct btrfs_block_group
*block_group
,
2948 struct btrfs_free_cluster
*cluster
,
2949 struct btrfs_free_space
*entry
,
2950 u64 bytes
, u64 min_start
,
2951 u64
*max_extent_size
)
2953 struct btrfs_free_space_ctl
*ctl
= block_group
->free_space_ctl
;
2955 u64 search_start
= cluster
->window_start
;
2956 u64 search_bytes
= bytes
;
2959 search_start
= min_start
;
2960 search_bytes
= bytes
;
2962 err
= search_bitmap(ctl
, entry
, &search_start
, &search_bytes
, true);
2964 *max_extent_size
= max(get_max_extent_size(entry
),
2970 __bitmap_clear_bits(ctl
, entry
, ret
, bytes
);
2976 * given a cluster, try to allocate 'bytes' from it, returns 0
2977 * if it couldn't find anything suitably large, or a logical disk offset
2978 * if things worked out
2980 u64
btrfs_alloc_from_cluster(struct btrfs_block_group
*block_group
,
2981 struct btrfs_free_cluster
*cluster
, u64 bytes
,
2982 u64 min_start
, u64
*max_extent_size
)
2984 struct btrfs_free_space_ctl
*ctl
= block_group
->free_space_ctl
;
2985 struct btrfs_discard_ctl
*discard_ctl
=
2986 &block_group
->fs_info
->discard_ctl
;
2987 struct btrfs_free_space
*entry
= NULL
;
2988 struct rb_node
*node
;
2991 spin_lock(&cluster
->lock
);
2992 if (bytes
> cluster
->max_size
)
2995 if (cluster
->block_group
!= block_group
)
2998 node
= rb_first(&cluster
->root
);
3002 entry
= rb_entry(node
, struct btrfs_free_space
, offset_index
);
3004 if (entry
->bytes
< bytes
)
3005 *max_extent_size
= max(get_max_extent_size(entry
),
3008 if (entry
->bytes
< bytes
||
3009 (!entry
->bitmap
&& entry
->offset
< min_start
)) {
3010 node
= rb_next(&entry
->offset_index
);
3013 entry
= rb_entry(node
, struct btrfs_free_space
,
3018 if (entry
->bitmap
) {
3019 ret
= btrfs_alloc_from_bitmap(block_group
,
3020 cluster
, entry
, bytes
,
3021 cluster
->window_start
,
3024 node
= rb_next(&entry
->offset_index
);
3027 entry
= rb_entry(node
, struct btrfs_free_space
,
3031 cluster
->window_start
+= bytes
;
3033 ret
= entry
->offset
;
3035 entry
->offset
+= bytes
;
3036 entry
->bytes
-= bytes
;
3039 if (entry
->bytes
== 0)
3040 rb_erase(&entry
->offset_index
, &cluster
->root
);
3044 spin_unlock(&cluster
->lock
);
3049 spin_lock(&ctl
->tree_lock
);
3051 if (!btrfs_free_space_trimmed(entry
))
3052 atomic64_add(bytes
, &discard_ctl
->discard_bytes_saved
);
3054 ctl
->free_space
-= bytes
;
3055 if (!entry
->bitmap
&& !btrfs_free_space_trimmed(entry
))
3056 ctl
->discardable_bytes
[BTRFS_STAT_CURR
] -= bytes
;
3057 if (entry
->bytes
== 0) {
3058 ctl
->free_extents
--;
3059 if (entry
->bitmap
) {
3060 kmem_cache_free(btrfs_free_space_bitmap_cachep
,
3062 ctl
->total_bitmaps
--;
3063 ctl
->op
->recalc_thresholds(ctl
);
3064 } else if (!btrfs_free_space_trimmed(entry
)) {
3065 ctl
->discardable_extents
[BTRFS_STAT_CURR
]--;
3067 kmem_cache_free(btrfs_free_space_cachep
, entry
);
3070 spin_unlock(&ctl
->tree_lock
);
3075 static int btrfs_bitmap_cluster(struct btrfs_block_group
*block_group
,
3076 struct btrfs_free_space
*entry
,
3077 struct btrfs_free_cluster
*cluster
,
3078 u64 offset
, u64 bytes
,
3079 u64 cont1_bytes
, u64 min_bytes
)
3081 struct btrfs_free_space_ctl
*ctl
= block_group
->free_space_ctl
;
3082 unsigned long next_zero
;
3084 unsigned long want_bits
;
3085 unsigned long min_bits
;
3086 unsigned long found_bits
;
3087 unsigned long max_bits
= 0;
3088 unsigned long start
= 0;
3089 unsigned long total_found
= 0;
3092 i
= offset_to_bit(entry
->offset
, ctl
->unit
,
3093 max_t(u64
, offset
, entry
->offset
));
3094 want_bits
= bytes_to_bits(bytes
, ctl
->unit
);
3095 min_bits
= bytes_to_bits(min_bytes
, ctl
->unit
);
3098 * Don't bother looking for a cluster in this bitmap if it's heavily
3101 if (entry
->max_extent_size
&&
3102 entry
->max_extent_size
< cont1_bytes
)
3106 for_each_set_bit_from(i
, entry
->bitmap
, BITS_PER_BITMAP
) {
3107 next_zero
= find_next_zero_bit(entry
->bitmap
,
3108 BITS_PER_BITMAP
, i
);
3109 if (next_zero
- i
>= min_bits
) {
3110 found_bits
= next_zero
- i
;
3111 if (found_bits
> max_bits
)
3112 max_bits
= found_bits
;
3115 if (next_zero
- i
> max_bits
)
3116 max_bits
= next_zero
- i
;
3121 entry
->max_extent_size
= (u64
)max_bits
* ctl
->unit
;
3127 cluster
->max_size
= 0;
3130 total_found
+= found_bits
;
3132 if (cluster
->max_size
< found_bits
* ctl
->unit
)
3133 cluster
->max_size
= found_bits
* ctl
->unit
;
3135 if (total_found
< want_bits
|| cluster
->max_size
< cont1_bytes
) {
3140 cluster
->window_start
= start
* ctl
->unit
+ entry
->offset
;
3141 rb_erase(&entry
->offset_index
, &ctl
->free_space_offset
);
3142 ret
= tree_insert_offset(&cluster
->root
, entry
->offset
,
3143 &entry
->offset_index
, 1);
3144 ASSERT(!ret
); /* -EEXIST; Logic error */
3146 trace_btrfs_setup_cluster(block_group
, cluster
,
3147 total_found
* ctl
->unit
, 1);
3152 * This searches the block group for just extents to fill the cluster with.
3153 * Try to find a cluster with at least bytes total bytes, at least one
3154 * extent of cont1_bytes, and other clusters of at least min_bytes.
3157 setup_cluster_no_bitmap(struct btrfs_block_group
*block_group
,
3158 struct btrfs_free_cluster
*cluster
,
3159 struct list_head
*bitmaps
, u64 offset
, u64 bytes
,
3160 u64 cont1_bytes
, u64 min_bytes
)
3162 struct btrfs_free_space_ctl
*ctl
= block_group
->free_space_ctl
;
3163 struct btrfs_free_space
*first
= NULL
;
3164 struct btrfs_free_space
*entry
= NULL
;
3165 struct btrfs_free_space
*last
;
3166 struct rb_node
*node
;
3171 entry
= tree_search_offset(ctl
, offset
, 0, 1);
3176 * We don't want bitmaps, so just move along until we find a normal
3179 while (entry
->bitmap
|| entry
->bytes
< min_bytes
) {
3180 if (entry
->bitmap
&& list_empty(&entry
->list
))
3181 list_add_tail(&entry
->list
, bitmaps
);
3182 node
= rb_next(&entry
->offset_index
);
3185 entry
= rb_entry(node
, struct btrfs_free_space
, offset_index
);
3188 window_free
= entry
->bytes
;
3189 max_extent
= entry
->bytes
;
3193 for (node
= rb_next(&entry
->offset_index
); node
;
3194 node
= rb_next(&entry
->offset_index
)) {
3195 entry
= rb_entry(node
, struct btrfs_free_space
, offset_index
);
3197 if (entry
->bitmap
) {
3198 if (list_empty(&entry
->list
))
3199 list_add_tail(&entry
->list
, bitmaps
);
3203 if (entry
->bytes
< min_bytes
)
3207 window_free
+= entry
->bytes
;
3208 if (entry
->bytes
> max_extent
)
3209 max_extent
= entry
->bytes
;
3212 if (window_free
< bytes
|| max_extent
< cont1_bytes
)
3215 cluster
->window_start
= first
->offset
;
3217 node
= &first
->offset_index
;
3220 * now we've found our entries, pull them out of the free space
3221 * cache and put them into the cluster rbtree
3226 entry
= rb_entry(node
, struct btrfs_free_space
, offset_index
);
3227 node
= rb_next(&entry
->offset_index
);
3228 if (entry
->bitmap
|| entry
->bytes
< min_bytes
)
3231 rb_erase(&entry
->offset_index
, &ctl
->free_space_offset
);
3232 ret
= tree_insert_offset(&cluster
->root
, entry
->offset
,
3233 &entry
->offset_index
, 0);
3234 total_size
+= entry
->bytes
;
3235 ASSERT(!ret
); /* -EEXIST; Logic error */
3236 } while (node
&& entry
!= last
);
3238 cluster
->max_size
= max_extent
;
3239 trace_btrfs_setup_cluster(block_group
, cluster
, total_size
, 0);
3244 * This specifically looks for bitmaps that may work in the cluster, we assume
3245 * that we have already failed to find extents that will work.
3248 setup_cluster_bitmap(struct btrfs_block_group
*block_group
,
3249 struct btrfs_free_cluster
*cluster
,
3250 struct list_head
*bitmaps
, u64 offset
, u64 bytes
,
3251 u64 cont1_bytes
, u64 min_bytes
)
3253 struct btrfs_free_space_ctl
*ctl
= block_group
->free_space_ctl
;
3254 struct btrfs_free_space
*entry
= NULL
;
3256 u64 bitmap_offset
= offset_to_bitmap(ctl
, offset
);
3258 if (ctl
->total_bitmaps
== 0)
3262 * The bitmap that covers offset won't be in the list unless offset
3263 * is just its start offset.
3265 if (!list_empty(bitmaps
))
3266 entry
= list_first_entry(bitmaps
, struct btrfs_free_space
, list
);
3268 if (!entry
|| entry
->offset
!= bitmap_offset
) {
3269 entry
= tree_search_offset(ctl
, bitmap_offset
, 1, 0);
3270 if (entry
&& list_empty(&entry
->list
))
3271 list_add(&entry
->list
, bitmaps
);
3274 list_for_each_entry(entry
, bitmaps
, list
) {
3275 if (entry
->bytes
< bytes
)
3277 ret
= btrfs_bitmap_cluster(block_group
, entry
, cluster
, offset
,
3278 bytes
, cont1_bytes
, min_bytes
);
3284 * The bitmaps list has all the bitmaps that record free space
3285 * starting after offset, so no more search is required.
3291 * here we try to find a cluster of blocks in a block group. The goal
3292 * is to find at least bytes+empty_size.
3293 * We might not find them all in one contiguous area.
3295 * returns zero and sets up cluster if things worked out, otherwise
3296 * it returns -enospc
3298 int btrfs_find_space_cluster(struct btrfs_block_group
*block_group
,
3299 struct btrfs_free_cluster
*cluster
,
3300 u64 offset
, u64 bytes
, u64 empty_size
)
3302 struct btrfs_fs_info
*fs_info
= block_group
->fs_info
;
3303 struct btrfs_free_space_ctl
*ctl
= block_group
->free_space_ctl
;
3304 struct btrfs_free_space
*entry
, *tmp
;
3311 * Choose the minimum extent size we'll require for this
3312 * cluster. For SSD_SPREAD, don't allow any fragmentation.
3313 * For metadata, allow allocates with smaller extents. For
3314 * data, keep it dense.
3316 if (btrfs_test_opt(fs_info
, SSD_SPREAD
)) {
3317 cont1_bytes
= min_bytes
= bytes
+ empty_size
;
3318 } else if (block_group
->flags
& BTRFS_BLOCK_GROUP_METADATA
) {
3319 cont1_bytes
= bytes
;
3320 min_bytes
= fs_info
->sectorsize
;
3322 cont1_bytes
= max(bytes
, (bytes
+ empty_size
) >> 2);
3323 min_bytes
= fs_info
->sectorsize
;
3326 spin_lock(&ctl
->tree_lock
);
3329 * If we know we don't have enough space to make a cluster don't even
3330 * bother doing all the work to try and find one.
3332 if (ctl
->free_space
< bytes
) {
3333 spin_unlock(&ctl
->tree_lock
);
3337 spin_lock(&cluster
->lock
);
3339 /* someone already found a cluster, hooray */
3340 if (cluster
->block_group
) {
3345 trace_btrfs_find_cluster(block_group
, offset
, bytes
, empty_size
,
3348 ret
= setup_cluster_no_bitmap(block_group
, cluster
, &bitmaps
, offset
,
3350 cont1_bytes
, min_bytes
);
3352 ret
= setup_cluster_bitmap(block_group
, cluster
, &bitmaps
,
3353 offset
, bytes
+ empty_size
,
3354 cont1_bytes
, min_bytes
);
3356 /* Clear our temporary list */
3357 list_for_each_entry_safe(entry
, tmp
, &bitmaps
, list
)
3358 list_del_init(&entry
->list
);
3361 atomic_inc(&block_group
->count
);
3362 list_add_tail(&cluster
->block_group_list
,
3363 &block_group
->cluster_list
);
3364 cluster
->block_group
= block_group
;
3366 trace_btrfs_failed_cluster_setup(block_group
);
3369 spin_unlock(&cluster
->lock
);
3370 spin_unlock(&ctl
->tree_lock
);
3376 * simple code to zero out a cluster
3378 void btrfs_init_free_cluster(struct btrfs_free_cluster
*cluster
)
3380 spin_lock_init(&cluster
->lock
);
3381 spin_lock_init(&cluster
->refill_lock
);
3382 cluster
->root
= RB_ROOT
;
3383 cluster
->max_size
= 0;
3384 cluster
->fragmented
= false;
3385 INIT_LIST_HEAD(&cluster
->block_group_list
);
3386 cluster
->block_group
= NULL
;
3389 static int do_trimming(struct btrfs_block_group
*block_group
,
3390 u64
*total_trimmed
, u64 start
, u64 bytes
,
3391 u64 reserved_start
, u64 reserved_bytes
,
3392 enum btrfs_trim_state reserved_trim_state
,
3393 struct btrfs_trim_range
*trim_entry
)
3395 struct btrfs_space_info
*space_info
= block_group
->space_info
;
3396 struct btrfs_fs_info
*fs_info
= block_group
->fs_info
;
3397 struct btrfs_free_space_ctl
*ctl
= block_group
->free_space_ctl
;
3400 const u64 end
= start
+ bytes
;
3401 const u64 reserved_end
= reserved_start
+ reserved_bytes
;
3402 enum btrfs_trim_state trim_state
= BTRFS_TRIM_STATE_UNTRIMMED
;
3405 spin_lock(&space_info
->lock
);
3406 spin_lock(&block_group
->lock
);
3407 if (!block_group
->ro
) {
3408 block_group
->reserved
+= reserved_bytes
;
3409 space_info
->bytes_reserved
+= reserved_bytes
;
3412 spin_unlock(&block_group
->lock
);
3413 spin_unlock(&space_info
->lock
);
3415 ret
= btrfs_discard_extent(fs_info
, start
, bytes
, &trimmed
);
3417 *total_trimmed
+= trimmed
;
3418 trim_state
= BTRFS_TRIM_STATE_TRIMMED
;
3421 mutex_lock(&ctl
->cache_writeout_mutex
);
3422 if (reserved_start
< start
)
3423 __btrfs_add_free_space(fs_info
, ctl
, reserved_start
,
3424 start
- reserved_start
,
3425 reserved_trim_state
);
3426 if (start
+ bytes
< reserved_start
+ reserved_bytes
)
3427 __btrfs_add_free_space(fs_info
, ctl
, end
, reserved_end
- end
,
3428 reserved_trim_state
);
3429 __btrfs_add_free_space(fs_info
, ctl
, start
, bytes
, trim_state
);
3430 list_del(&trim_entry
->list
);
3431 mutex_unlock(&ctl
->cache_writeout_mutex
);
3434 spin_lock(&space_info
->lock
);
3435 spin_lock(&block_group
->lock
);
3436 if (block_group
->ro
)
3437 space_info
->bytes_readonly
+= reserved_bytes
;
3438 block_group
->reserved
-= reserved_bytes
;
3439 space_info
->bytes_reserved
-= reserved_bytes
;
3440 spin_unlock(&block_group
->lock
);
3441 spin_unlock(&space_info
->lock
);
3448 * If @async is set, then we will trim 1 region and return.
3450 static int trim_no_bitmap(struct btrfs_block_group
*block_group
,
3451 u64
*total_trimmed
, u64 start
, u64 end
, u64 minlen
,
3454 struct btrfs_discard_ctl
*discard_ctl
=
3455 &block_group
->fs_info
->discard_ctl
;
3456 struct btrfs_free_space_ctl
*ctl
= block_group
->free_space_ctl
;
3457 struct btrfs_free_space
*entry
;
3458 struct rb_node
*node
;
3462 enum btrfs_trim_state extent_trim_state
;
3464 const u64 max_discard_size
= READ_ONCE(discard_ctl
->max_discard_size
);
3466 while (start
< end
) {
3467 struct btrfs_trim_range trim_entry
;
3469 mutex_lock(&ctl
->cache_writeout_mutex
);
3470 spin_lock(&ctl
->tree_lock
);
3472 if (ctl
->free_space
< minlen
)
3475 entry
= tree_search_offset(ctl
, start
, 0, 1);
3479 /* Skip bitmaps and if async, already trimmed entries */
3480 while (entry
->bitmap
||
3481 (async
&& btrfs_free_space_trimmed(entry
))) {
3482 node
= rb_next(&entry
->offset_index
);
3485 entry
= rb_entry(node
, struct btrfs_free_space
,
3489 if (entry
->offset
>= end
)
3492 extent_start
= entry
->offset
;
3493 extent_bytes
= entry
->bytes
;
3494 extent_trim_state
= entry
->trim_state
;
3496 start
= entry
->offset
;
3497 bytes
= entry
->bytes
;
3498 if (bytes
< minlen
) {
3499 spin_unlock(&ctl
->tree_lock
);
3500 mutex_unlock(&ctl
->cache_writeout_mutex
);
3503 unlink_free_space(ctl
, entry
);
3505 * Let bytes = BTRFS_MAX_DISCARD_SIZE + X.
3506 * If X < BTRFS_ASYNC_DISCARD_MIN_FILTER, we won't trim
3507 * X when we come back around. So trim it now.
3509 if (max_discard_size
&&
3510 bytes
>= (max_discard_size
+
3511 BTRFS_ASYNC_DISCARD_MIN_FILTER
)) {
3512 bytes
= max_discard_size
;
3513 extent_bytes
= max_discard_size
;
3514 entry
->offset
+= max_discard_size
;
3515 entry
->bytes
-= max_discard_size
;
3516 link_free_space(ctl
, entry
);
3518 kmem_cache_free(btrfs_free_space_cachep
, entry
);
3521 start
= max(start
, extent_start
);
3522 bytes
= min(extent_start
+ extent_bytes
, end
) - start
;
3523 if (bytes
< minlen
) {
3524 spin_unlock(&ctl
->tree_lock
);
3525 mutex_unlock(&ctl
->cache_writeout_mutex
);
3529 unlink_free_space(ctl
, entry
);
3530 kmem_cache_free(btrfs_free_space_cachep
, entry
);
3533 spin_unlock(&ctl
->tree_lock
);
3534 trim_entry
.start
= extent_start
;
3535 trim_entry
.bytes
= extent_bytes
;
3536 list_add_tail(&trim_entry
.list
, &ctl
->trimming_ranges
);
3537 mutex_unlock(&ctl
->cache_writeout_mutex
);
3539 ret
= do_trimming(block_group
, total_trimmed
, start
, bytes
,
3540 extent_start
, extent_bytes
, extent_trim_state
,
3543 block_group
->discard_cursor
= start
+ bytes
;
3548 block_group
->discard_cursor
= start
;
3549 if (async
&& *total_trimmed
)
3552 if (fatal_signal_pending(current
)) {
3563 block_group
->discard_cursor
= btrfs_block_group_end(block_group
);
3564 spin_unlock(&ctl
->tree_lock
);
3565 mutex_unlock(&ctl
->cache_writeout_mutex
);
3571 * If we break out of trimming a bitmap prematurely, we should reset the
3572 * trimming bit. In a rather contrieved case, it's possible to race here so
3573 * reset the state to BTRFS_TRIM_STATE_UNTRIMMED.
3575 * start = start of bitmap
3576 * end = near end of bitmap
3578 * Thread 1: Thread 2:
3579 * trim_bitmaps(start)
3581 * end_trimming_bitmap()
3582 * reset_trimming_bitmap()
3584 static void reset_trimming_bitmap(struct btrfs_free_space_ctl
*ctl
, u64 offset
)
3586 struct btrfs_free_space
*entry
;
3588 spin_lock(&ctl
->tree_lock
);
3589 entry
= tree_search_offset(ctl
, offset
, 1, 0);
3591 if (btrfs_free_space_trimmed(entry
)) {
3592 ctl
->discardable_extents
[BTRFS_STAT_CURR
] +=
3593 entry
->bitmap_extents
;
3594 ctl
->discardable_bytes
[BTRFS_STAT_CURR
] += entry
->bytes
;
3596 entry
->trim_state
= BTRFS_TRIM_STATE_UNTRIMMED
;
3599 spin_unlock(&ctl
->tree_lock
);
3602 static void end_trimming_bitmap(struct btrfs_free_space_ctl
*ctl
,
3603 struct btrfs_free_space
*entry
)
3605 if (btrfs_free_space_trimming_bitmap(entry
)) {
3606 entry
->trim_state
= BTRFS_TRIM_STATE_TRIMMED
;
3607 ctl
->discardable_extents
[BTRFS_STAT_CURR
] -=
3608 entry
->bitmap_extents
;
3609 ctl
->discardable_bytes
[BTRFS_STAT_CURR
] -= entry
->bytes
;
3614 * If @async is set, then we will trim 1 region and return.
3616 static int trim_bitmaps(struct btrfs_block_group
*block_group
,
3617 u64
*total_trimmed
, u64 start
, u64 end
, u64 minlen
,
3618 u64 maxlen
, bool async
)
3620 struct btrfs_discard_ctl
*discard_ctl
=
3621 &block_group
->fs_info
->discard_ctl
;
3622 struct btrfs_free_space_ctl
*ctl
= block_group
->free_space_ctl
;
3623 struct btrfs_free_space
*entry
;
3627 u64 offset
= offset_to_bitmap(ctl
, start
);
3628 const u64 max_discard_size
= READ_ONCE(discard_ctl
->max_discard_size
);
3630 while (offset
< end
) {
3631 bool next_bitmap
= false;
3632 struct btrfs_trim_range trim_entry
;
3634 mutex_lock(&ctl
->cache_writeout_mutex
);
3635 spin_lock(&ctl
->tree_lock
);
3637 if (ctl
->free_space
< minlen
) {
3638 block_group
->discard_cursor
=
3639 btrfs_block_group_end(block_group
);
3640 spin_unlock(&ctl
->tree_lock
);
3641 mutex_unlock(&ctl
->cache_writeout_mutex
);
3645 entry
= tree_search_offset(ctl
, offset
, 1, 0);
3647 * Bitmaps are marked trimmed lossily now to prevent constant
3648 * discarding of the same bitmap (the reason why we are bound
3649 * by the filters). So, retrim the block group bitmaps when we
3650 * are preparing to punt to the unused_bgs list. This uses
3651 * @minlen to determine if we are in BTRFS_DISCARD_INDEX_UNUSED
3652 * which is the only discard index which sets minlen to 0.
3654 if (!entry
|| (async
&& minlen
&& start
== offset
&&
3655 btrfs_free_space_trimmed(entry
))) {
3656 spin_unlock(&ctl
->tree_lock
);
3657 mutex_unlock(&ctl
->cache_writeout_mutex
);
3663 * Async discard bitmap trimming begins at by setting the start
3664 * to be key.objectid and the offset_to_bitmap() aligns to the
3665 * start of the bitmap. This lets us know we are fully
3666 * scanning the bitmap rather than only some portion of it.
3668 if (start
== offset
)
3669 entry
->trim_state
= BTRFS_TRIM_STATE_TRIMMING
;
3672 ret2
= search_bitmap(ctl
, entry
, &start
, &bytes
, false);
3673 if (ret2
|| start
>= end
) {
3675 * We lossily consider a bitmap trimmed if we only skip
3676 * over regions <= BTRFS_ASYNC_DISCARD_MIN_FILTER.
3678 if (ret2
&& minlen
<= BTRFS_ASYNC_DISCARD_MIN_FILTER
)
3679 end_trimming_bitmap(ctl
, entry
);
3681 entry
->trim_state
= BTRFS_TRIM_STATE_UNTRIMMED
;
3682 spin_unlock(&ctl
->tree_lock
);
3683 mutex_unlock(&ctl
->cache_writeout_mutex
);
3689 * We already trimmed a region, but are using the locking above
3690 * to reset the trim_state.
3692 if (async
&& *total_trimmed
) {
3693 spin_unlock(&ctl
->tree_lock
);
3694 mutex_unlock(&ctl
->cache_writeout_mutex
);
3698 bytes
= min(bytes
, end
- start
);
3699 if (bytes
< minlen
|| (async
&& maxlen
&& bytes
> maxlen
)) {
3700 spin_unlock(&ctl
->tree_lock
);
3701 mutex_unlock(&ctl
->cache_writeout_mutex
);
3706 * Let bytes = BTRFS_MAX_DISCARD_SIZE + X.
3707 * If X < @minlen, we won't trim X when we come back around.
3708 * So trim it now. We differ here from trimming extents as we
3709 * don't keep individual state per bit.
3713 bytes
> (max_discard_size
+ minlen
))
3714 bytes
= max_discard_size
;
3716 bitmap_clear_bits(ctl
, entry
, start
, bytes
);
3717 if (entry
->bytes
== 0)
3718 free_bitmap(ctl
, entry
);
3720 spin_unlock(&ctl
->tree_lock
);
3721 trim_entry
.start
= start
;
3722 trim_entry
.bytes
= bytes
;
3723 list_add_tail(&trim_entry
.list
, &ctl
->trimming_ranges
);
3724 mutex_unlock(&ctl
->cache_writeout_mutex
);
3726 ret
= do_trimming(block_group
, total_trimmed
, start
, bytes
,
3727 start
, bytes
, 0, &trim_entry
);
3729 reset_trimming_bitmap(ctl
, offset
);
3730 block_group
->discard_cursor
=
3731 btrfs_block_group_end(block_group
);
3736 offset
+= BITS_PER_BITMAP
* ctl
->unit
;
3741 block_group
->discard_cursor
= start
;
3743 if (fatal_signal_pending(current
)) {
3744 if (start
!= offset
)
3745 reset_trimming_bitmap(ctl
, offset
);
3754 block_group
->discard_cursor
= end
;
3760 int btrfs_trim_block_group(struct btrfs_block_group
*block_group
,
3761 u64
*trimmed
, u64 start
, u64 end
, u64 minlen
)
3763 struct btrfs_free_space_ctl
*ctl
= block_group
->free_space_ctl
;
3769 spin_lock(&block_group
->lock
);
3770 if (block_group
->removed
) {
3771 spin_unlock(&block_group
->lock
);
3774 btrfs_freeze_block_group(block_group
);
3775 spin_unlock(&block_group
->lock
);
3777 ret
= trim_no_bitmap(block_group
, trimmed
, start
, end
, minlen
, false);
3781 ret
= trim_bitmaps(block_group
, trimmed
, start
, end
, minlen
, 0, false);
3782 div64_u64_rem(end
, BITS_PER_BITMAP
* ctl
->unit
, &rem
);
3783 /* If we ended in the middle of a bitmap, reset the trimming flag */
3785 reset_trimming_bitmap(ctl
, offset_to_bitmap(ctl
, end
));
3787 btrfs_unfreeze_block_group(block_group
);
3791 int btrfs_trim_block_group_extents(struct btrfs_block_group
*block_group
,
3792 u64
*trimmed
, u64 start
, u64 end
, u64 minlen
,
3799 spin_lock(&block_group
->lock
);
3800 if (block_group
->removed
) {
3801 spin_unlock(&block_group
->lock
);
3804 btrfs_freeze_block_group(block_group
);
3805 spin_unlock(&block_group
->lock
);
3807 ret
= trim_no_bitmap(block_group
, trimmed
, start
, end
, minlen
, async
);
3808 btrfs_unfreeze_block_group(block_group
);
3813 int btrfs_trim_block_group_bitmaps(struct btrfs_block_group
*block_group
,
3814 u64
*trimmed
, u64 start
, u64 end
, u64 minlen
,
3815 u64 maxlen
, bool async
)
3821 spin_lock(&block_group
->lock
);
3822 if (block_group
->removed
) {
3823 spin_unlock(&block_group
->lock
);
3826 btrfs_freeze_block_group(block_group
);
3827 spin_unlock(&block_group
->lock
);
3829 ret
= trim_bitmaps(block_group
, trimmed
, start
, end
, minlen
, maxlen
,
3832 btrfs_unfreeze_block_group(block_group
);
3838 * Find the left-most item in the cache tree, and then return the
3839 * smallest inode number in the item.
3841 * Note: the returned inode number may not be the smallest one in
3842 * the tree, if the left-most item is a bitmap.
3844 u64
btrfs_find_ino_for_alloc(struct btrfs_root
*fs_root
)
3846 struct btrfs_free_space_ctl
*ctl
= fs_root
->free_ino_ctl
;
3847 struct btrfs_free_space
*entry
= NULL
;
3850 spin_lock(&ctl
->tree_lock
);
3852 if (RB_EMPTY_ROOT(&ctl
->free_space_offset
))
3855 entry
= rb_entry(rb_first(&ctl
->free_space_offset
),
3856 struct btrfs_free_space
, offset_index
);
3858 if (!entry
->bitmap
) {
3859 ino
= entry
->offset
;
3861 unlink_free_space(ctl
, entry
);
3865 kmem_cache_free(btrfs_free_space_cachep
, entry
);
3867 link_free_space(ctl
, entry
);
3873 ret
= search_bitmap(ctl
, entry
, &offset
, &count
, true);
3874 /* Logic error; Should be empty if it can't find anything */
3878 bitmap_clear_bits(ctl
, entry
, offset
, 1);
3879 if (entry
->bytes
== 0)
3880 free_bitmap(ctl
, entry
);
3883 spin_unlock(&ctl
->tree_lock
);
3888 struct inode
*lookup_free_ino_inode(struct btrfs_root
*root
,
3889 struct btrfs_path
*path
)
3891 struct inode
*inode
= NULL
;
3893 spin_lock(&root
->ino_cache_lock
);
3894 if (root
->ino_cache_inode
)
3895 inode
= igrab(root
->ino_cache_inode
);
3896 spin_unlock(&root
->ino_cache_lock
);
3900 inode
= __lookup_free_space_inode(root
, path
, 0);
3904 spin_lock(&root
->ino_cache_lock
);
3905 if (!btrfs_fs_closing(root
->fs_info
))
3906 root
->ino_cache_inode
= igrab(inode
);
3907 spin_unlock(&root
->ino_cache_lock
);
3912 int create_free_ino_inode(struct btrfs_root
*root
,
3913 struct btrfs_trans_handle
*trans
,
3914 struct btrfs_path
*path
)
3916 return __create_free_space_inode(root
, trans
, path
,
3917 BTRFS_FREE_INO_OBJECTID
, 0);
3920 int load_free_ino_cache(struct btrfs_fs_info
*fs_info
, struct btrfs_root
*root
)
3922 struct btrfs_free_space_ctl
*ctl
= root
->free_ino_ctl
;
3923 struct btrfs_path
*path
;
3924 struct inode
*inode
;
3926 u64 root_gen
= btrfs_root_generation(&root
->root_item
);
3928 if (!btrfs_test_opt(fs_info
, INODE_MAP_CACHE
))
3932 * If we're unmounting then just return, since this does a search on the
3933 * normal root and not the commit root and we could deadlock.
3935 if (btrfs_fs_closing(fs_info
))
3938 path
= btrfs_alloc_path();
3942 inode
= lookup_free_ino_inode(root
, path
);
3946 if (root_gen
!= BTRFS_I(inode
)->generation
)
3949 ret
= __load_free_space_cache(root
, inode
, ctl
, path
, 0);
3953 "failed to load free ino cache for root %llu",
3954 root
->root_key
.objectid
);
3958 btrfs_free_path(path
);
3962 int btrfs_write_out_ino_cache(struct btrfs_root
*root
,
3963 struct btrfs_trans_handle
*trans
,
3964 struct btrfs_path
*path
,
3965 struct inode
*inode
)
3967 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
3968 struct btrfs_free_space_ctl
*ctl
= root
->free_ino_ctl
;
3970 struct btrfs_io_ctl io_ctl
;
3971 bool release_metadata
= true;
3973 if (!btrfs_test_opt(fs_info
, INODE_MAP_CACHE
))
3976 memset(&io_ctl
, 0, sizeof(io_ctl
));
3977 ret
= __btrfs_write_out_cache(root
, inode
, ctl
, NULL
, &io_ctl
, trans
);
3980 * At this point writepages() didn't error out, so our metadata
3981 * reservation is released when the writeback finishes, at
3982 * inode.c:btrfs_finish_ordered_io(), regardless of it finishing
3983 * with or without an error.
3985 release_metadata
= false;
3986 ret
= btrfs_wait_cache_io_root(root
, trans
, &io_ctl
, path
);
3990 if (release_metadata
)
3991 btrfs_delalloc_release_metadata(BTRFS_I(inode
),
3992 inode
->i_size
, true);
3993 btrfs_debug(fs_info
,
3994 "failed to write free ino cache for root %llu error %d",
3995 root
->root_key
.objectid
, ret
);
4001 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
4003 * Use this if you need to make a bitmap or extent entry specifically, it
4004 * doesn't do any of the merging that add_free_space does, this acts a lot like
4005 * how the free space cache loading stuff works, so you can get really weird
4008 int test_add_free_space_entry(struct btrfs_block_group
*cache
,
4009 u64 offset
, u64 bytes
, bool bitmap
)
4011 struct btrfs_free_space_ctl
*ctl
= cache
->free_space_ctl
;
4012 struct btrfs_free_space
*info
= NULL
, *bitmap_info
;
4014 enum btrfs_trim_state trim_state
= BTRFS_TRIM_STATE_TRIMMED
;
4020 info
= kmem_cache_zalloc(btrfs_free_space_cachep
, GFP_NOFS
);
4026 spin_lock(&ctl
->tree_lock
);
4027 info
->offset
= offset
;
4028 info
->bytes
= bytes
;
4029 info
->max_extent_size
= 0;
4030 ret
= link_free_space(ctl
, info
);
4031 spin_unlock(&ctl
->tree_lock
);
4033 kmem_cache_free(btrfs_free_space_cachep
, info
);
4038 map
= kmem_cache_zalloc(btrfs_free_space_bitmap_cachep
, GFP_NOFS
);
4040 kmem_cache_free(btrfs_free_space_cachep
, info
);
4045 spin_lock(&ctl
->tree_lock
);
4046 bitmap_info
= tree_search_offset(ctl
, offset_to_bitmap(ctl
, offset
),
4051 add_new_bitmap(ctl
, info
, offset
);
4056 bytes_added
= add_bytes_to_bitmap(ctl
, bitmap_info
, offset
, bytes
,
4059 bytes
-= bytes_added
;
4060 offset
+= bytes_added
;
4061 spin_unlock(&ctl
->tree_lock
);
4067 kmem_cache_free(btrfs_free_space_cachep
, info
);
4069 kmem_cache_free(btrfs_free_space_bitmap_cachep
, map
);
4074 * Checks to see if the given range is in the free space cache. This is really
4075 * just used to check the absence of space, so if there is free space in the
4076 * range at all we will return 1.
4078 int test_check_exists(struct btrfs_block_group
*cache
,
4079 u64 offset
, u64 bytes
)
4081 struct btrfs_free_space_ctl
*ctl
= cache
->free_space_ctl
;
4082 struct btrfs_free_space
*info
;
4085 spin_lock(&ctl
->tree_lock
);
4086 info
= tree_search_offset(ctl
, offset
, 0, 0);
4088 info
= tree_search_offset(ctl
, offset_to_bitmap(ctl
, offset
),
4096 u64 bit_off
, bit_bytes
;
4098 struct btrfs_free_space
*tmp
;
4101 bit_bytes
= ctl
->unit
;
4102 ret
= search_bitmap(ctl
, info
, &bit_off
, &bit_bytes
, false);
4104 if (bit_off
== offset
) {
4107 } else if (bit_off
> offset
&&
4108 offset
+ bytes
> bit_off
) {
4114 n
= rb_prev(&info
->offset_index
);
4116 tmp
= rb_entry(n
, struct btrfs_free_space
,
4118 if (tmp
->offset
+ tmp
->bytes
< offset
)
4120 if (offset
+ bytes
< tmp
->offset
) {
4121 n
= rb_prev(&tmp
->offset_index
);
4128 n
= rb_next(&info
->offset_index
);
4130 tmp
= rb_entry(n
, struct btrfs_free_space
,
4132 if (offset
+ bytes
< tmp
->offset
)
4134 if (tmp
->offset
+ tmp
->bytes
< offset
) {
4135 n
= rb_next(&tmp
->offset_index
);
4146 if (info
->offset
== offset
) {
4151 if (offset
> info
->offset
&& offset
< info
->offset
+ info
->bytes
)
4154 spin_unlock(&ctl
->tree_lock
);
4157 #endif /* CONFIG_BTRFS_FS_RUN_SANITY_TESTS */