1 // SPDX-License-Identifier: GPL-2.0
3 * Copyright (C) 2012 Fusion-io All rights reserved.
4 * Copyright (C) 2012 Intel Corp. All rights reserved.
7 #include <linux/sched.h>
9 #include <linux/slab.h>
10 #include <linux/blkdev.h>
11 #include <linux/raid/pq.h>
12 #include <linux/hash.h>
13 #include <linux/list_sort.h>
14 #include <linux/raid/xor.h>
20 #include "async-thread.h"
22 /* set when additional merges to this rbio are not allowed */
23 #define RBIO_RMW_LOCKED_BIT 1
26 * set when this rbio is sitting in the hash, but it is just a cache
29 #define RBIO_CACHE_BIT 2
32 * set when it is safe to trust the stripe_pages for caching
34 #define RBIO_CACHE_READY_BIT 3
36 #define RBIO_CACHE_SIZE 1024
38 #define BTRFS_STRIPE_HASH_TABLE_BITS 11
40 /* Used by the raid56 code to lock stripes for read/modify/write */
41 struct btrfs_stripe_hash
{
42 struct list_head hash_list
;
46 /* Used by the raid56 code to lock stripes for read/modify/write */
47 struct btrfs_stripe_hash_table
{
48 struct list_head stripe_cache
;
49 spinlock_t cache_lock
;
51 struct btrfs_stripe_hash table
[];
56 BTRFS_RBIO_READ_REBUILD
,
57 BTRFS_RBIO_PARITY_SCRUB
,
58 BTRFS_RBIO_REBUILD_MISSING
,
61 struct btrfs_raid_bio
{
62 struct btrfs_fs_info
*fs_info
;
63 struct btrfs_bio
*bbio
;
65 /* while we're doing rmw on a stripe
66 * we put it into a hash table so we can
67 * lock the stripe and merge more rbios
70 struct list_head hash_list
;
73 * LRU list for the stripe cache
75 struct list_head stripe_cache
;
78 * for scheduling work in the helper threads
80 struct btrfs_work work
;
83 * bio list and bio_list_lock are used
84 * to add more bios into the stripe
85 * in hopes of avoiding the full rmw
87 struct bio_list bio_list
;
88 spinlock_t bio_list_lock
;
90 /* also protected by the bio_list_lock, the
91 * plug list is used by the plugging code
92 * to collect partial bios while plugged. The
93 * stripe locking code also uses it to hand off
94 * the stripe lock to the next pending IO
96 struct list_head plug_list
;
99 * flags that tell us if it is safe to
100 * merge with this bio
104 /* size of each individual stripe on disk */
107 /* number of data stripes (no p/q) */
114 * set if we're doing a parity rebuild
115 * for a read from higher up, which is handled
116 * differently from a parity rebuild as part of
119 enum btrfs_rbio_ops operation
;
121 /* first bad stripe */
124 /* second bad stripe (for raid6 use) */
129 * number of pages needed to represent the full
135 * size of all the bios in the bio_list. This
136 * helps us decide if the rbio maps to a full
145 atomic_t stripes_pending
;
149 * these are two arrays of pointers. We allocate the
150 * rbio big enough to hold them both and setup their
151 * locations when the rbio is allocated
154 /* pointers to pages that we allocated for
155 * reading/writing stripes directly from the disk (including P/Q)
157 struct page
**stripe_pages
;
160 * pointers to the pages in the bio_list. Stored
161 * here for faster lookup
163 struct page
**bio_pages
;
166 * bitmap to record which horizontal stripe has data
168 unsigned long *dbitmap
;
170 /* allocated with real_stripes-many pointers for finish_*() calls */
171 void **finish_pointers
;
173 /* allocated with stripe_npages-many bits for finish_*() calls */
174 unsigned long *finish_pbitmap
;
177 static int __raid56_parity_recover(struct btrfs_raid_bio
*rbio
);
178 static noinline
void finish_rmw(struct btrfs_raid_bio
*rbio
);
179 static void rmw_work(struct btrfs_work
*work
);
180 static void read_rebuild_work(struct btrfs_work
*work
);
181 static int fail_bio_stripe(struct btrfs_raid_bio
*rbio
, struct bio
*bio
);
182 static int fail_rbio_index(struct btrfs_raid_bio
*rbio
, int failed
);
183 static void __free_raid_bio(struct btrfs_raid_bio
*rbio
);
184 static void index_rbio_pages(struct btrfs_raid_bio
*rbio
);
185 static int alloc_rbio_pages(struct btrfs_raid_bio
*rbio
);
187 static noinline
void finish_parity_scrub(struct btrfs_raid_bio
*rbio
,
189 static void scrub_parity_work(struct btrfs_work
*work
);
191 static void start_async_work(struct btrfs_raid_bio
*rbio
, btrfs_func_t work_func
)
193 btrfs_init_work(&rbio
->work
, work_func
, NULL
, NULL
);
194 btrfs_queue_work(rbio
->fs_info
->rmw_workers
, &rbio
->work
);
198 * the stripe hash table is used for locking, and to collect
199 * bios in hopes of making a full stripe
201 int btrfs_alloc_stripe_hash_table(struct btrfs_fs_info
*info
)
203 struct btrfs_stripe_hash_table
*table
;
204 struct btrfs_stripe_hash_table
*x
;
205 struct btrfs_stripe_hash
*cur
;
206 struct btrfs_stripe_hash
*h
;
207 int num_entries
= 1 << BTRFS_STRIPE_HASH_TABLE_BITS
;
210 if (info
->stripe_hash_table
)
214 * The table is large, starting with order 4 and can go as high as
215 * order 7 in case lock debugging is turned on.
217 * Try harder to allocate and fallback to vmalloc to lower the chance
218 * of a failing mount.
220 table
= kvzalloc(struct_size(table
, table
, num_entries
), GFP_KERNEL
);
224 spin_lock_init(&table
->cache_lock
);
225 INIT_LIST_HEAD(&table
->stripe_cache
);
229 for (i
= 0; i
< num_entries
; i
++) {
231 INIT_LIST_HEAD(&cur
->hash_list
);
232 spin_lock_init(&cur
->lock
);
235 x
= cmpxchg(&info
->stripe_hash_table
, NULL
, table
);
242 * caching an rbio means to copy anything from the
243 * bio_pages array into the stripe_pages array. We
244 * use the page uptodate bit in the stripe cache array
245 * to indicate if it has valid data
247 * once the caching is done, we set the cache ready
250 static void cache_rbio_pages(struct btrfs_raid_bio
*rbio
)
257 ret
= alloc_rbio_pages(rbio
);
261 for (i
= 0; i
< rbio
->nr_pages
; i
++) {
262 if (!rbio
->bio_pages
[i
])
265 s
= kmap(rbio
->bio_pages
[i
]);
266 d
= kmap(rbio
->stripe_pages
[i
]);
270 kunmap(rbio
->bio_pages
[i
]);
271 kunmap(rbio
->stripe_pages
[i
]);
272 SetPageUptodate(rbio
->stripe_pages
[i
]);
274 set_bit(RBIO_CACHE_READY_BIT
, &rbio
->flags
);
278 * we hash on the first logical address of the stripe
280 static int rbio_bucket(struct btrfs_raid_bio
*rbio
)
282 u64 num
= rbio
->bbio
->raid_map
[0];
285 * we shift down quite a bit. We're using byte
286 * addressing, and most of the lower bits are zeros.
287 * This tends to upset hash_64, and it consistently
288 * returns just one or two different values.
290 * shifting off the lower bits fixes things.
292 return hash_64(num
>> 16, BTRFS_STRIPE_HASH_TABLE_BITS
);
296 * stealing an rbio means taking all the uptodate pages from the stripe
297 * array in the source rbio and putting them into the destination rbio
299 static void steal_rbio(struct btrfs_raid_bio
*src
, struct btrfs_raid_bio
*dest
)
305 if (!test_bit(RBIO_CACHE_READY_BIT
, &src
->flags
))
308 for (i
= 0; i
< dest
->nr_pages
; i
++) {
309 s
= src
->stripe_pages
[i
];
310 if (!s
|| !PageUptodate(s
)) {
314 d
= dest
->stripe_pages
[i
];
318 dest
->stripe_pages
[i
] = s
;
319 src
->stripe_pages
[i
] = NULL
;
324 * merging means we take the bio_list from the victim and
325 * splice it into the destination. The victim should
326 * be discarded afterwards.
328 * must be called with dest->rbio_list_lock held
330 static void merge_rbio(struct btrfs_raid_bio
*dest
,
331 struct btrfs_raid_bio
*victim
)
333 bio_list_merge(&dest
->bio_list
, &victim
->bio_list
);
334 dest
->bio_list_bytes
+= victim
->bio_list_bytes
;
335 dest
->generic_bio_cnt
+= victim
->generic_bio_cnt
;
336 bio_list_init(&victim
->bio_list
);
340 * used to prune items that are in the cache. The caller
341 * must hold the hash table lock.
343 static void __remove_rbio_from_cache(struct btrfs_raid_bio
*rbio
)
345 int bucket
= rbio_bucket(rbio
);
346 struct btrfs_stripe_hash_table
*table
;
347 struct btrfs_stripe_hash
*h
;
351 * check the bit again under the hash table lock.
353 if (!test_bit(RBIO_CACHE_BIT
, &rbio
->flags
))
356 table
= rbio
->fs_info
->stripe_hash_table
;
357 h
= table
->table
+ bucket
;
359 /* hold the lock for the bucket because we may be
360 * removing it from the hash table
365 * hold the lock for the bio list because we need
366 * to make sure the bio list is empty
368 spin_lock(&rbio
->bio_list_lock
);
370 if (test_and_clear_bit(RBIO_CACHE_BIT
, &rbio
->flags
)) {
371 list_del_init(&rbio
->stripe_cache
);
372 table
->cache_size
-= 1;
375 /* if the bio list isn't empty, this rbio is
376 * still involved in an IO. We take it out
377 * of the cache list, and drop the ref that
378 * was held for the list.
380 * If the bio_list was empty, we also remove
381 * the rbio from the hash_table, and drop
382 * the corresponding ref
384 if (bio_list_empty(&rbio
->bio_list
)) {
385 if (!list_empty(&rbio
->hash_list
)) {
386 list_del_init(&rbio
->hash_list
);
387 refcount_dec(&rbio
->refs
);
388 BUG_ON(!list_empty(&rbio
->plug_list
));
393 spin_unlock(&rbio
->bio_list_lock
);
394 spin_unlock(&h
->lock
);
397 __free_raid_bio(rbio
);
401 * prune a given rbio from the cache
403 static void remove_rbio_from_cache(struct btrfs_raid_bio
*rbio
)
405 struct btrfs_stripe_hash_table
*table
;
408 if (!test_bit(RBIO_CACHE_BIT
, &rbio
->flags
))
411 table
= rbio
->fs_info
->stripe_hash_table
;
413 spin_lock_irqsave(&table
->cache_lock
, flags
);
414 __remove_rbio_from_cache(rbio
);
415 spin_unlock_irqrestore(&table
->cache_lock
, flags
);
419 * remove everything in the cache
421 static void btrfs_clear_rbio_cache(struct btrfs_fs_info
*info
)
423 struct btrfs_stripe_hash_table
*table
;
425 struct btrfs_raid_bio
*rbio
;
427 table
= info
->stripe_hash_table
;
429 spin_lock_irqsave(&table
->cache_lock
, flags
);
430 while (!list_empty(&table
->stripe_cache
)) {
431 rbio
= list_entry(table
->stripe_cache
.next
,
432 struct btrfs_raid_bio
,
434 __remove_rbio_from_cache(rbio
);
436 spin_unlock_irqrestore(&table
->cache_lock
, flags
);
440 * remove all cached entries and free the hash table
443 void btrfs_free_stripe_hash_table(struct btrfs_fs_info
*info
)
445 if (!info
->stripe_hash_table
)
447 btrfs_clear_rbio_cache(info
);
448 kvfree(info
->stripe_hash_table
);
449 info
->stripe_hash_table
= NULL
;
453 * insert an rbio into the stripe cache. It
454 * must have already been prepared by calling
457 * If this rbio was already cached, it gets
458 * moved to the front of the lru.
460 * If the size of the rbio cache is too big, we
463 static void cache_rbio(struct btrfs_raid_bio
*rbio
)
465 struct btrfs_stripe_hash_table
*table
;
468 if (!test_bit(RBIO_CACHE_READY_BIT
, &rbio
->flags
))
471 table
= rbio
->fs_info
->stripe_hash_table
;
473 spin_lock_irqsave(&table
->cache_lock
, flags
);
474 spin_lock(&rbio
->bio_list_lock
);
476 /* bump our ref if we were not in the list before */
477 if (!test_and_set_bit(RBIO_CACHE_BIT
, &rbio
->flags
))
478 refcount_inc(&rbio
->refs
);
480 if (!list_empty(&rbio
->stripe_cache
)){
481 list_move(&rbio
->stripe_cache
, &table
->stripe_cache
);
483 list_add(&rbio
->stripe_cache
, &table
->stripe_cache
);
484 table
->cache_size
+= 1;
487 spin_unlock(&rbio
->bio_list_lock
);
489 if (table
->cache_size
> RBIO_CACHE_SIZE
) {
490 struct btrfs_raid_bio
*found
;
492 found
= list_entry(table
->stripe_cache
.prev
,
493 struct btrfs_raid_bio
,
497 __remove_rbio_from_cache(found
);
500 spin_unlock_irqrestore(&table
->cache_lock
, flags
);
504 * helper function to run the xor_blocks api. It is only
505 * able to do MAX_XOR_BLOCKS at a time, so we need to
508 static void run_xor(void **pages
, int src_cnt
, ssize_t len
)
512 void *dest
= pages
[src_cnt
];
515 xor_src_cnt
= min(src_cnt
, MAX_XOR_BLOCKS
);
516 xor_blocks(xor_src_cnt
, len
, dest
, pages
+ src_off
);
518 src_cnt
-= xor_src_cnt
;
519 src_off
+= xor_src_cnt
;
524 * Returns true if the bio list inside this rbio covers an entire stripe (no
527 static int rbio_is_full(struct btrfs_raid_bio
*rbio
)
530 unsigned long size
= rbio
->bio_list_bytes
;
533 spin_lock_irqsave(&rbio
->bio_list_lock
, flags
);
534 if (size
!= rbio
->nr_data
* rbio
->stripe_len
)
536 BUG_ON(size
> rbio
->nr_data
* rbio
->stripe_len
);
537 spin_unlock_irqrestore(&rbio
->bio_list_lock
, flags
);
543 * returns 1 if it is safe to merge two rbios together.
544 * The merging is safe if the two rbios correspond to
545 * the same stripe and if they are both going in the same
546 * direction (read vs write), and if neither one is
547 * locked for final IO
549 * The caller is responsible for locking such that
550 * rmw_locked is safe to test
552 static int rbio_can_merge(struct btrfs_raid_bio
*last
,
553 struct btrfs_raid_bio
*cur
)
555 if (test_bit(RBIO_RMW_LOCKED_BIT
, &last
->flags
) ||
556 test_bit(RBIO_RMW_LOCKED_BIT
, &cur
->flags
))
560 * we can't merge with cached rbios, since the
561 * idea is that when we merge the destination
562 * rbio is going to run our IO for us. We can
563 * steal from cached rbios though, other functions
566 if (test_bit(RBIO_CACHE_BIT
, &last
->flags
) ||
567 test_bit(RBIO_CACHE_BIT
, &cur
->flags
))
570 if (last
->bbio
->raid_map
[0] !=
571 cur
->bbio
->raid_map
[0])
574 /* we can't merge with different operations */
575 if (last
->operation
!= cur
->operation
)
578 * We've need read the full stripe from the drive.
579 * check and repair the parity and write the new results.
581 * We're not allowed to add any new bios to the
582 * bio list here, anyone else that wants to
583 * change this stripe needs to do their own rmw.
585 if (last
->operation
== BTRFS_RBIO_PARITY_SCRUB
)
588 if (last
->operation
== BTRFS_RBIO_REBUILD_MISSING
)
591 if (last
->operation
== BTRFS_RBIO_READ_REBUILD
) {
592 int fa
= last
->faila
;
593 int fb
= last
->failb
;
594 int cur_fa
= cur
->faila
;
595 int cur_fb
= cur
->failb
;
597 if (last
->faila
>= last
->failb
) {
602 if (cur
->faila
>= cur
->failb
) {
607 if (fa
!= cur_fa
|| fb
!= cur_fb
)
613 static int rbio_stripe_page_index(struct btrfs_raid_bio
*rbio
, int stripe
,
616 return stripe
* rbio
->stripe_npages
+ index
;
620 * these are just the pages from the rbio array, not from anything
621 * the FS sent down to us
623 static struct page
*rbio_stripe_page(struct btrfs_raid_bio
*rbio
, int stripe
,
626 return rbio
->stripe_pages
[rbio_stripe_page_index(rbio
, stripe
, index
)];
630 * helper to index into the pstripe
632 static struct page
*rbio_pstripe_page(struct btrfs_raid_bio
*rbio
, int index
)
634 return rbio_stripe_page(rbio
, rbio
->nr_data
, index
);
638 * helper to index into the qstripe, returns null
639 * if there is no qstripe
641 static struct page
*rbio_qstripe_page(struct btrfs_raid_bio
*rbio
, int index
)
643 if (rbio
->nr_data
+ 1 == rbio
->real_stripes
)
645 return rbio_stripe_page(rbio
, rbio
->nr_data
+ 1, index
);
649 * The first stripe in the table for a logical address
650 * has the lock. rbios are added in one of three ways:
652 * 1) Nobody has the stripe locked yet. The rbio is given
653 * the lock and 0 is returned. The caller must start the IO
656 * 2) Someone has the stripe locked, but we're able to merge
657 * with the lock owner. The rbio is freed and the IO will
658 * start automatically along with the existing rbio. 1 is returned.
660 * 3) Someone has the stripe locked, but we're not able to merge.
661 * The rbio is added to the lock owner's plug list, or merged into
662 * an rbio already on the plug list. When the lock owner unlocks,
663 * the next rbio on the list is run and the IO is started automatically.
666 * If we return 0, the caller still owns the rbio and must continue with
667 * IO submission. If we return 1, the caller must assume the rbio has
668 * already been freed.
670 static noinline
int lock_stripe_add(struct btrfs_raid_bio
*rbio
)
672 struct btrfs_stripe_hash
*h
;
673 struct btrfs_raid_bio
*cur
;
674 struct btrfs_raid_bio
*pending
;
676 struct btrfs_raid_bio
*freeit
= NULL
;
677 struct btrfs_raid_bio
*cache_drop
= NULL
;
680 h
= rbio
->fs_info
->stripe_hash_table
->table
+ rbio_bucket(rbio
);
682 spin_lock_irqsave(&h
->lock
, flags
);
683 list_for_each_entry(cur
, &h
->hash_list
, hash_list
) {
684 if (cur
->bbio
->raid_map
[0] != rbio
->bbio
->raid_map
[0])
687 spin_lock(&cur
->bio_list_lock
);
689 /* Can we steal this cached rbio's pages? */
690 if (bio_list_empty(&cur
->bio_list
) &&
691 list_empty(&cur
->plug_list
) &&
692 test_bit(RBIO_CACHE_BIT
, &cur
->flags
) &&
693 !test_bit(RBIO_RMW_LOCKED_BIT
, &cur
->flags
)) {
694 list_del_init(&cur
->hash_list
);
695 refcount_dec(&cur
->refs
);
697 steal_rbio(cur
, rbio
);
699 spin_unlock(&cur
->bio_list_lock
);
704 /* Can we merge into the lock owner? */
705 if (rbio_can_merge(cur
, rbio
)) {
706 merge_rbio(cur
, rbio
);
707 spin_unlock(&cur
->bio_list_lock
);
715 * We couldn't merge with the running rbio, see if we can merge
716 * with the pending ones. We don't have to check for rmw_locked
717 * because there is no way they are inside finish_rmw right now
719 list_for_each_entry(pending
, &cur
->plug_list
, plug_list
) {
720 if (rbio_can_merge(pending
, rbio
)) {
721 merge_rbio(pending
, rbio
);
722 spin_unlock(&cur
->bio_list_lock
);
730 * No merging, put us on the tail of the plug list, our rbio
731 * will be started with the currently running rbio unlocks
733 list_add_tail(&rbio
->plug_list
, &cur
->plug_list
);
734 spin_unlock(&cur
->bio_list_lock
);
739 refcount_inc(&rbio
->refs
);
740 list_add(&rbio
->hash_list
, &h
->hash_list
);
742 spin_unlock_irqrestore(&h
->lock
, flags
);
744 remove_rbio_from_cache(cache_drop
);
746 __free_raid_bio(freeit
);
751 * called as rmw or parity rebuild is completed. If the plug list has more
752 * rbios waiting for this stripe, the next one on the list will be started
754 static noinline
void unlock_stripe(struct btrfs_raid_bio
*rbio
)
757 struct btrfs_stripe_hash
*h
;
761 bucket
= rbio_bucket(rbio
);
762 h
= rbio
->fs_info
->stripe_hash_table
->table
+ bucket
;
764 if (list_empty(&rbio
->plug_list
))
767 spin_lock_irqsave(&h
->lock
, flags
);
768 spin_lock(&rbio
->bio_list_lock
);
770 if (!list_empty(&rbio
->hash_list
)) {
772 * if we're still cached and there is no other IO
773 * to perform, just leave this rbio here for others
774 * to steal from later
776 if (list_empty(&rbio
->plug_list
) &&
777 test_bit(RBIO_CACHE_BIT
, &rbio
->flags
)) {
779 clear_bit(RBIO_RMW_LOCKED_BIT
, &rbio
->flags
);
780 BUG_ON(!bio_list_empty(&rbio
->bio_list
));
784 list_del_init(&rbio
->hash_list
);
785 refcount_dec(&rbio
->refs
);
788 * we use the plug list to hold all the rbios
789 * waiting for the chance to lock this stripe.
790 * hand the lock over to one of them.
792 if (!list_empty(&rbio
->plug_list
)) {
793 struct btrfs_raid_bio
*next
;
794 struct list_head
*head
= rbio
->plug_list
.next
;
796 next
= list_entry(head
, struct btrfs_raid_bio
,
799 list_del_init(&rbio
->plug_list
);
801 list_add(&next
->hash_list
, &h
->hash_list
);
802 refcount_inc(&next
->refs
);
803 spin_unlock(&rbio
->bio_list_lock
);
804 spin_unlock_irqrestore(&h
->lock
, flags
);
806 if (next
->operation
== BTRFS_RBIO_READ_REBUILD
)
807 start_async_work(next
, read_rebuild_work
);
808 else if (next
->operation
== BTRFS_RBIO_REBUILD_MISSING
) {
809 steal_rbio(rbio
, next
);
810 start_async_work(next
, read_rebuild_work
);
811 } else if (next
->operation
== BTRFS_RBIO_WRITE
) {
812 steal_rbio(rbio
, next
);
813 start_async_work(next
, rmw_work
);
814 } else if (next
->operation
== BTRFS_RBIO_PARITY_SCRUB
) {
815 steal_rbio(rbio
, next
);
816 start_async_work(next
, scrub_parity_work
);
823 spin_unlock(&rbio
->bio_list_lock
);
824 spin_unlock_irqrestore(&h
->lock
, flags
);
828 remove_rbio_from_cache(rbio
);
831 static void __free_raid_bio(struct btrfs_raid_bio
*rbio
)
835 if (!refcount_dec_and_test(&rbio
->refs
))
838 WARN_ON(!list_empty(&rbio
->stripe_cache
));
839 WARN_ON(!list_empty(&rbio
->hash_list
));
840 WARN_ON(!bio_list_empty(&rbio
->bio_list
));
842 for (i
= 0; i
< rbio
->nr_pages
; i
++) {
843 if (rbio
->stripe_pages
[i
]) {
844 __free_page(rbio
->stripe_pages
[i
]);
845 rbio
->stripe_pages
[i
] = NULL
;
849 btrfs_put_bbio(rbio
->bbio
);
853 static void rbio_endio_bio_list(struct bio
*cur
, blk_status_t err
)
860 cur
->bi_status
= err
;
867 * this frees the rbio and runs through all the bios in the
868 * bio_list and calls end_io on them
870 static void rbio_orig_end_io(struct btrfs_raid_bio
*rbio
, blk_status_t err
)
872 struct bio
*cur
= bio_list_get(&rbio
->bio_list
);
875 if (rbio
->generic_bio_cnt
)
876 btrfs_bio_counter_sub(rbio
->fs_info
, rbio
->generic_bio_cnt
);
879 * At this moment, rbio->bio_list is empty, however since rbio does not
880 * always have RBIO_RMW_LOCKED_BIT set and rbio is still linked on the
881 * hash list, rbio may be merged with others so that rbio->bio_list
883 * Once unlock_stripe() is done, rbio->bio_list will not be updated any
884 * more and we can call bio_endio() on all queued bios.
887 extra
= bio_list_get(&rbio
->bio_list
);
888 __free_raid_bio(rbio
);
890 rbio_endio_bio_list(cur
, err
);
892 rbio_endio_bio_list(extra
, err
);
896 * end io function used by finish_rmw. When we finally
897 * get here, we've written a full stripe
899 static void raid_write_end_io(struct bio
*bio
)
901 struct btrfs_raid_bio
*rbio
= bio
->bi_private
;
902 blk_status_t err
= bio
->bi_status
;
906 fail_bio_stripe(rbio
, bio
);
910 if (!atomic_dec_and_test(&rbio
->stripes_pending
))
915 /* OK, we have read all the stripes we need to. */
916 max_errors
= (rbio
->operation
== BTRFS_RBIO_PARITY_SCRUB
) ?
917 0 : rbio
->bbio
->max_errors
;
918 if (atomic_read(&rbio
->error
) > max_errors
)
921 rbio_orig_end_io(rbio
, err
);
925 * the read/modify/write code wants to use the original bio for
926 * any pages it included, and then use the rbio for everything
927 * else. This function decides if a given index (stripe number)
928 * and page number in that stripe fall inside the original bio
931 * if you set bio_list_only, you'll get a NULL back for any ranges
932 * that are outside the bio_list
934 * This doesn't take any refs on anything, you get a bare page pointer
935 * and the caller must bump refs as required.
937 * You must call index_rbio_pages once before you can trust
938 * the answers from this function.
940 static struct page
*page_in_rbio(struct btrfs_raid_bio
*rbio
,
941 int index
, int pagenr
, int bio_list_only
)
944 struct page
*p
= NULL
;
946 chunk_page
= index
* (rbio
->stripe_len
>> PAGE_SHIFT
) + pagenr
;
948 spin_lock_irq(&rbio
->bio_list_lock
);
949 p
= rbio
->bio_pages
[chunk_page
];
950 spin_unlock_irq(&rbio
->bio_list_lock
);
952 if (p
|| bio_list_only
)
955 return rbio
->stripe_pages
[chunk_page
];
959 * number of pages we need for the entire stripe across all the
962 static unsigned long rbio_nr_pages(unsigned long stripe_len
, int nr_stripes
)
964 return DIV_ROUND_UP(stripe_len
, PAGE_SIZE
) * nr_stripes
;
968 * allocation and initial setup for the btrfs_raid_bio. Not
969 * this does not allocate any pages for rbio->pages.
971 static struct btrfs_raid_bio
*alloc_rbio(struct btrfs_fs_info
*fs_info
,
972 struct btrfs_bio
*bbio
,
975 struct btrfs_raid_bio
*rbio
;
977 int real_stripes
= bbio
->num_stripes
- bbio
->num_tgtdevs
;
978 int num_pages
= rbio_nr_pages(stripe_len
, real_stripes
);
979 int stripe_npages
= DIV_ROUND_UP(stripe_len
, PAGE_SIZE
);
982 rbio
= kzalloc(sizeof(*rbio
) +
983 sizeof(*rbio
->stripe_pages
) * num_pages
+
984 sizeof(*rbio
->bio_pages
) * num_pages
+
985 sizeof(*rbio
->finish_pointers
) * real_stripes
+
986 sizeof(*rbio
->dbitmap
) * BITS_TO_LONGS(stripe_npages
) +
987 sizeof(*rbio
->finish_pbitmap
) *
988 BITS_TO_LONGS(stripe_npages
),
991 return ERR_PTR(-ENOMEM
);
993 bio_list_init(&rbio
->bio_list
);
994 INIT_LIST_HEAD(&rbio
->plug_list
);
995 spin_lock_init(&rbio
->bio_list_lock
);
996 INIT_LIST_HEAD(&rbio
->stripe_cache
);
997 INIT_LIST_HEAD(&rbio
->hash_list
);
999 rbio
->fs_info
= fs_info
;
1000 rbio
->stripe_len
= stripe_len
;
1001 rbio
->nr_pages
= num_pages
;
1002 rbio
->real_stripes
= real_stripes
;
1003 rbio
->stripe_npages
= stripe_npages
;
1006 refcount_set(&rbio
->refs
, 1);
1007 atomic_set(&rbio
->error
, 0);
1008 atomic_set(&rbio
->stripes_pending
, 0);
1011 * the stripe_pages, bio_pages, etc arrays point to the extra
1012 * memory we allocated past the end of the rbio
1015 #define CONSUME_ALLOC(ptr, count) do { \
1017 p = (unsigned char *)p + sizeof(*(ptr)) * (count); \
1019 CONSUME_ALLOC(rbio
->stripe_pages
, num_pages
);
1020 CONSUME_ALLOC(rbio
->bio_pages
, num_pages
);
1021 CONSUME_ALLOC(rbio
->finish_pointers
, real_stripes
);
1022 CONSUME_ALLOC(rbio
->dbitmap
, BITS_TO_LONGS(stripe_npages
));
1023 CONSUME_ALLOC(rbio
->finish_pbitmap
, BITS_TO_LONGS(stripe_npages
));
1024 #undef CONSUME_ALLOC
1026 if (bbio
->map_type
& BTRFS_BLOCK_GROUP_RAID5
)
1027 nr_data
= real_stripes
- 1;
1028 else if (bbio
->map_type
& BTRFS_BLOCK_GROUP_RAID6
)
1029 nr_data
= real_stripes
- 2;
1033 rbio
->nr_data
= nr_data
;
1037 /* allocate pages for all the stripes in the bio, including parity */
1038 static int alloc_rbio_pages(struct btrfs_raid_bio
*rbio
)
1043 for (i
= 0; i
< rbio
->nr_pages
; i
++) {
1044 if (rbio
->stripe_pages
[i
])
1046 page
= alloc_page(GFP_NOFS
| __GFP_HIGHMEM
);
1049 rbio
->stripe_pages
[i
] = page
;
1054 /* only allocate pages for p/q stripes */
1055 static int alloc_rbio_parity_pages(struct btrfs_raid_bio
*rbio
)
1060 i
= rbio_stripe_page_index(rbio
, rbio
->nr_data
, 0);
1062 for (; i
< rbio
->nr_pages
; i
++) {
1063 if (rbio
->stripe_pages
[i
])
1065 page
= alloc_page(GFP_NOFS
| __GFP_HIGHMEM
);
1068 rbio
->stripe_pages
[i
] = page
;
1074 * add a single page from a specific stripe into our list of bios for IO
1075 * this will try to merge into existing bios if possible, and returns
1076 * zero if all went well.
1078 static int rbio_add_io_page(struct btrfs_raid_bio
*rbio
,
1079 struct bio_list
*bio_list
,
1082 unsigned long page_index
,
1083 unsigned long bio_max_len
)
1085 struct bio
*last
= bio_list
->tail
;
1089 struct btrfs_bio_stripe
*stripe
;
1092 stripe
= &rbio
->bbio
->stripes
[stripe_nr
];
1093 disk_start
= stripe
->physical
+ (page_index
<< PAGE_SHIFT
);
1095 /* if the device is missing, just fail this stripe */
1096 if (!stripe
->dev
->bdev
)
1097 return fail_rbio_index(rbio
, stripe_nr
);
1099 /* see if we can add this page onto our existing bio */
1101 last_end
= (u64
)last
->bi_iter
.bi_sector
<< 9;
1102 last_end
+= last
->bi_iter
.bi_size
;
1105 * we can't merge these if they are from different
1106 * devices or if they are not contiguous
1108 if (last_end
== disk_start
&& stripe
->dev
->bdev
&&
1110 last
->bi_disk
== stripe
->dev
->bdev
->bd_disk
&&
1111 last
->bi_partno
== stripe
->dev
->bdev
->bd_partno
) {
1112 ret
= bio_add_page(last
, page
, PAGE_SIZE
, 0);
1113 if (ret
== PAGE_SIZE
)
1118 /* put a new bio on the list */
1119 bio
= btrfs_io_bio_alloc(bio_max_len
>> PAGE_SHIFT
?: 1);
1120 bio
->bi_iter
.bi_size
= 0;
1121 bio_set_dev(bio
, stripe
->dev
->bdev
);
1122 bio
->bi_iter
.bi_sector
= disk_start
>> 9;
1124 bio_add_page(bio
, page
, PAGE_SIZE
, 0);
1125 bio_list_add(bio_list
, bio
);
1130 * while we're doing the read/modify/write cycle, we could
1131 * have errors in reading pages off the disk. This checks
1132 * for errors and if we're not able to read the page it'll
1133 * trigger parity reconstruction. The rmw will be finished
1134 * after we've reconstructed the failed stripes
1136 static void validate_rbio_for_rmw(struct btrfs_raid_bio
*rbio
)
1138 if (rbio
->faila
>= 0 || rbio
->failb
>= 0) {
1139 BUG_ON(rbio
->faila
== rbio
->real_stripes
- 1);
1140 __raid56_parity_recover(rbio
);
1147 * helper function to walk our bio list and populate the bio_pages array with
1148 * the result. This seems expensive, but it is faster than constantly
1149 * searching through the bio list as we setup the IO in finish_rmw or stripe
1152 * This must be called before you trust the answers from page_in_rbio
1154 static void index_rbio_pages(struct btrfs_raid_bio
*rbio
)
1158 unsigned long stripe_offset
;
1159 unsigned long page_index
;
1161 spin_lock_irq(&rbio
->bio_list_lock
);
1162 bio_list_for_each(bio
, &rbio
->bio_list
) {
1163 struct bio_vec bvec
;
1164 struct bvec_iter iter
;
1167 start
= (u64
)bio
->bi_iter
.bi_sector
<< 9;
1168 stripe_offset
= start
- rbio
->bbio
->raid_map
[0];
1169 page_index
= stripe_offset
>> PAGE_SHIFT
;
1171 if (bio_flagged(bio
, BIO_CLONED
))
1172 bio
->bi_iter
= btrfs_io_bio(bio
)->iter
;
1174 bio_for_each_segment(bvec
, bio
, iter
) {
1175 rbio
->bio_pages
[page_index
+ i
] = bvec
.bv_page
;
1179 spin_unlock_irq(&rbio
->bio_list_lock
);
1183 * this is called from one of two situations. We either
1184 * have a full stripe from the higher layers, or we've read all
1185 * the missing bits off disk.
1187 * This will calculate the parity and then send down any
1190 static noinline
void finish_rmw(struct btrfs_raid_bio
*rbio
)
1192 struct btrfs_bio
*bbio
= rbio
->bbio
;
1193 void **pointers
= rbio
->finish_pointers
;
1194 int nr_data
= rbio
->nr_data
;
1198 struct bio_list bio_list
;
1202 bio_list_init(&bio_list
);
1204 if (rbio
->real_stripes
- rbio
->nr_data
== 1)
1205 has_qstripe
= false;
1206 else if (rbio
->real_stripes
- rbio
->nr_data
== 2)
1211 /* at this point we either have a full stripe,
1212 * or we've read the full stripe from the drive.
1213 * recalculate the parity and write the new results.
1215 * We're not allowed to add any new bios to the
1216 * bio list here, anyone else that wants to
1217 * change this stripe needs to do their own rmw.
1219 spin_lock_irq(&rbio
->bio_list_lock
);
1220 set_bit(RBIO_RMW_LOCKED_BIT
, &rbio
->flags
);
1221 spin_unlock_irq(&rbio
->bio_list_lock
);
1223 atomic_set(&rbio
->error
, 0);
1226 * now that we've set rmw_locked, run through the
1227 * bio list one last time and map the page pointers
1229 * We don't cache full rbios because we're assuming
1230 * the higher layers are unlikely to use this area of
1231 * the disk again soon. If they do use it again,
1232 * hopefully they will send another full bio.
1234 index_rbio_pages(rbio
);
1235 if (!rbio_is_full(rbio
))
1236 cache_rbio_pages(rbio
);
1238 clear_bit(RBIO_CACHE_READY_BIT
, &rbio
->flags
);
1240 for (pagenr
= 0; pagenr
< rbio
->stripe_npages
; pagenr
++) {
1242 /* first collect one page from each data stripe */
1243 for (stripe
= 0; stripe
< nr_data
; stripe
++) {
1244 p
= page_in_rbio(rbio
, stripe
, pagenr
, 0);
1245 pointers
[stripe
] = kmap(p
);
1248 /* then add the parity stripe */
1249 p
= rbio_pstripe_page(rbio
, pagenr
);
1251 pointers
[stripe
++] = kmap(p
);
1256 * raid6, add the qstripe and call the
1257 * library function to fill in our p/q
1259 p
= rbio_qstripe_page(rbio
, pagenr
);
1261 pointers
[stripe
++] = kmap(p
);
1263 raid6_call
.gen_syndrome(rbio
->real_stripes
, PAGE_SIZE
,
1267 copy_page(pointers
[nr_data
], pointers
[0]);
1268 run_xor(pointers
+ 1, nr_data
- 1, PAGE_SIZE
);
1272 for (stripe
= 0; stripe
< rbio
->real_stripes
; stripe
++)
1273 kunmap(page_in_rbio(rbio
, stripe
, pagenr
, 0));
1277 * time to start writing. Make bios for everything from the
1278 * higher layers (the bio_list in our rbio) and our p/q. Ignore
1281 for (stripe
= 0; stripe
< rbio
->real_stripes
; stripe
++) {
1282 for (pagenr
= 0; pagenr
< rbio
->stripe_npages
; pagenr
++) {
1284 if (stripe
< rbio
->nr_data
) {
1285 page
= page_in_rbio(rbio
, stripe
, pagenr
, 1);
1289 page
= rbio_stripe_page(rbio
, stripe
, pagenr
);
1292 ret
= rbio_add_io_page(rbio
, &bio_list
,
1293 page
, stripe
, pagenr
, rbio
->stripe_len
);
1299 if (likely(!bbio
->num_tgtdevs
))
1302 for (stripe
= 0; stripe
< rbio
->real_stripes
; stripe
++) {
1303 if (!bbio
->tgtdev_map
[stripe
])
1306 for (pagenr
= 0; pagenr
< rbio
->stripe_npages
; pagenr
++) {
1308 if (stripe
< rbio
->nr_data
) {
1309 page
= page_in_rbio(rbio
, stripe
, pagenr
, 1);
1313 page
= rbio_stripe_page(rbio
, stripe
, pagenr
);
1316 ret
= rbio_add_io_page(rbio
, &bio_list
, page
,
1317 rbio
->bbio
->tgtdev_map
[stripe
],
1318 pagenr
, rbio
->stripe_len
);
1325 atomic_set(&rbio
->stripes_pending
, bio_list_size(&bio_list
));
1326 BUG_ON(atomic_read(&rbio
->stripes_pending
) == 0);
1329 bio
= bio_list_pop(&bio_list
);
1333 bio
->bi_private
= rbio
;
1334 bio
->bi_end_io
= raid_write_end_io
;
1335 bio
->bi_opf
= REQ_OP_WRITE
;
1342 rbio_orig_end_io(rbio
, BLK_STS_IOERR
);
1344 while ((bio
= bio_list_pop(&bio_list
)))
1349 * helper to find the stripe number for a given bio. Used to figure out which
1350 * stripe has failed. This expects the bio to correspond to a physical disk,
1351 * so it looks up based on physical sector numbers.
1353 static int find_bio_stripe(struct btrfs_raid_bio
*rbio
,
1356 u64 physical
= bio
->bi_iter
.bi_sector
;
1359 struct btrfs_bio_stripe
*stripe
;
1363 for (i
= 0; i
< rbio
->bbio
->num_stripes
; i
++) {
1364 stripe
= &rbio
->bbio
->stripes
[i
];
1365 stripe_start
= stripe
->physical
;
1366 if (physical
>= stripe_start
&&
1367 physical
< stripe_start
+ rbio
->stripe_len
&&
1368 stripe
->dev
->bdev
&&
1369 bio
->bi_disk
== stripe
->dev
->bdev
->bd_disk
&&
1370 bio
->bi_partno
== stripe
->dev
->bdev
->bd_partno
) {
1378 * helper to find the stripe number for a given
1379 * bio (before mapping). Used to figure out which stripe has
1380 * failed. This looks up based on logical block numbers.
1382 static int find_logical_bio_stripe(struct btrfs_raid_bio
*rbio
,
1385 u64 logical
= bio
->bi_iter
.bi_sector
;
1391 for (i
= 0; i
< rbio
->nr_data
; i
++) {
1392 stripe_start
= rbio
->bbio
->raid_map
[i
];
1393 if (logical
>= stripe_start
&&
1394 logical
< stripe_start
+ rbio
->stripe_len
) {
1402 * returns -EIO if we had too many failures
1404 static int fail_rbio_index(struct btrfs_raid_bio
*rbio
, int failed
)
1406 unsigned long flags
;
1409 spin_lock_irqsave(&rbio
->bio_list_lock
, flags
);
1411 /* we already know this stripe is bad, move on */
1412 if (rbio
->faila
== failed
|| rbio
->failb
== failed
)
1415 if (rbio
->faila
== -1) {
1416 /* first failure on this rbio */
1417 rbio
->faila
= failed
;
1418 atomic_inc(&rbio
->error
);
1419 } else if (rbio
->failb
== -1) {
1420 /* second failure on this rbio */
1421 rbio
->failb
= failed
;
1422 atomic_inc(&rbio
->error
);
1427 spin_unlock_irqrestore(&rbio
->bio_list_lock
, flags
);
1433 * helper to fail a stripe based on a physical disk
1436 static int fail_bio_stripe(struct btrfs_raid_bio
*rbio
,
1439 int failed
= find_bio_stripe(rbio
, bio
);
1444 return fail_rbio_index(rbio
, failed
);
1448 * this sets each page in the bio uptodate. It should only be used on private
1449 * rbio pages, nothing that comes in from the higher layers
1451 static void set_bio_pages_uptodate(struct bio
*bio
)
1453 struct bio_vec
*bvec
;
1454 struct bvec_iter_all iter_all
;
1456 ASSERT(!bio_flagged(bio
, BIO_CLONED
));
1458 bio_for_each_segment_all(bvec
, bio
, iter_all
)
1459 SetPageUptodate(bvec
->bv_page
);
1463 * end io for the read phase of the rmw cycle. All the bios here are physical
1464 * stripe bios we've read from the disk so we can recalculate the parity of the
1467 * This will usually kick off finish_rmw once all the bios are read in, but it
1468 * may trigger parity reconstruction if we had any errors along the way
1470 static void raid_rmw_end_io(struct bio
*bio
)
1472 struct btrfs_raid_bio
*rbio
= bio
->bi_private
;
1475 fail_bio_stripe(rbio
, bio
);
1477 set_bio_pages_uptodate(bio
);
1481 if (!atomic_dec_and_test(&rbio
->stripes_pending
))
1484 if (atomic_read(&rbio
->error
) > rbio
->bbio
->max_errors
)
1488 * this will normally call finish_rmw to start our write
1489 * but if there are any failed stripes we'll reconstruct
1492 validate_rbio_for_rmw(rbio
);
1497 rbio_orig_end_io(rbio
, BLK_STS_IOERR
);
1501 * the stripe must be locked by the caller. It will
1502 * unlock after all the writes are done
1504 static int raid56_rmw_stripe(struct btrfs_raid_bio
*rbio
)
1506 int bios_to_read
= 0;
1507 struct bio_list bio_list
;
1513 bio_list_init(&bio_list
);
1515 ret
= alloc_rbio_pages(rbio
);
1519 index_rbio_pages(rbio
);
1521 atomic_set(&rbio
->error
, 0);
1523 * build a list of bios to read all the missing parts of this
1526 for (stripe
= 0; stripe
< rbio
->nr_data
; stripe
++) {
1527 for (pagenr
= 0; pagenr
< rbio
->stripe_npages
; pagenr
++) {
1530 * we want to find all the pages missing from
1531 * the rbio and read them from the disk. If
1532 * page_in_rbio finds a page in the bio list
1533 * we don't need to read it off the stripe.
1535 page
= page_in_rbio(rbio
, stripe
, pagenr
, 1);
1539 page
= rbio_stripe_page(rbio
, stripe
, pagenr
);
1541 * the bio cache may have handed us an uptodate
1542 * page. If so, be happy and use it
1544 if (PageUptodate(page
))
1547 ret
= rbio_add_io_page(rbio
, &bio_list
, page
,
1548 stripe
, pagenr
, rbio
->stripe_len
);
1554 bios_to_read
= bio_list_size(&bio_list
);
1555 if (!bios_to_read
) {
1557 * this can happen if others have merged with
1558 * us, it means there is nothing left to read.
1559 * But if there are missing devices it may not be
1560 * safe to do the full stripe write yet.
1566 * the bbio may be freed once we submit the last bio. Make sure
1567 * not to touch it after that
1569 atomic_set(&rbio
->stripes_pending
, bios_to_read
);
1571 bio
= bio_list_pop(&bio_list
);
1575 bio
->bi_private
= rbio
;
1576 bio
->bi_end_io
= raid_rmw_end_io
;
1577 bio
->bi_opf
= REQ_OP_READ
;
1579 btrfs_bio_wq_end_io(rbio
->fs_info
, bio
, BTRFS_WQ_ENDIO_RAID56
);
1583 /* the actual write will happen once the reads are done */
1587 rbio_orig_end_io(rbio
, BLK_STS_IOERR
);
1589 while ((bio
= bio_list_pop(&bio_list
)))
1595 validate_rbio_for_rmw(rbio
);
1600 * if the upper layers pass in a full stripe, we thank them by only allocating
1601 * enough pages to hold the parity, and sending it all down quickly.
1603 static int full_stripe_write(struct btrfs_raid_bio
*rbio
)
1607 ret
= alloc_rbio_parity_pages(rbio
);
1609 __free_raid_bio(rbio
);
1613 ret
= lock_stripe_add(rbio
);
1620 * partial stripe writes get handed over to async helpers.
1621 * We're really hoping to merge a few more writes into this
1622 * rbio before calculating new parity
1624 static int partial_stripe_write(struct btrfs_raid_bio
*rbio
)
1628 ret
= lock_stripe_add(rbio
);
1630 start_async_work(rbio
, rmw_work
);
1635 * sometimes while we were reading from the drive to
1636 * recalculate parity, enough new bios come into create
1637 * a full stripe. So we do a check here to see if we can
1638 * go directly to finish_rmw
1640 static int __raid56_parity_write(struct btrfs_raid_bio
*rbio
)
1642 /* head off into rmw land if we don't have a full stripe */
1643 if (!rbio_is_full(rbio
))
1644 return partial_stripe_write(rbio
);
1645 return full_stripe_write(rbio
);
1649 * We use plugging call backs to collect full stripes.
1650 * Any time we get a partial stripe write while plugged
1651 * we collect it into a list. When the unplug comes down,
1652 * we sort the list by logical block number and merge
1653 * everything we can into the same rbios
1655 struct btrfs_plug_cb
{
1656 struct blk_plug_cb cb
;
1657 struct btrfs_fs_info
*info
;
1658 struct list_head rbio_list
;
1659 struct btrfs_work work
;
1663 * rbios on the plug list are sorted for easier merging.
1665 static int plug_cmp(void *priv
, struct list_head
*a
, struct list_head
*b
)
1667 struct btrfs_raid_bio
*ra
= container_of(a
, struct btrfs_raid_bio
,
1669 struct btrfs_raid_bio
*rb
= container_of(b
, struct btrfs_raid_bio
,
1671 u64 a_sector
= ra
->bio_list
.head
->bi_iter
.bi_sector
;
1672 u64 b_sector
= rb
->bio_list
.head
->bi_iter
.bi_sector
;
1674 if (a_sector
< b_sector
)
1676 if (a_sector
> b_sector
)
1681 static void run_plug(struct btrfs_plug_cb
*plug
)
1683 struct btrfs_raid_bio
*cur
;
1684 struct btrfs_raid_bio
*last
= NULL
;
1687 * sort our plug list then try to merge
1688 * everything we can in hopes of creating full
1691 list_sort(NULL
, &plug
->rbio_list
, plug_cmp
);
1692 while (!list_empty(&plug
->rbio_list
)) {
1693 cur
= list_entry(plug
->rbio_list
.next
,
1694 struct btrfs_raid_bio
, plug_list
);
1695 list_del_init(&cur
->plug_list
);
1697 if (rbio_is_full(cur
)) {
1700 /* we have a full stripe, send it down */
1701 ret
= full_stripe_write(cur
);
1706 if (rbio_can_merge(last
, cur
)) {
1707 merge_rbio(last
, cur
);
1708 __free_raid_bio(cur
);
1712 __raid56_parity_write(last
);
1717 __raid56_parity_write(last
);
1723 * if the unplug comes from schedule, we have to push the
1724 * work off to a helper thread
1726 static void unplug_work(struct btrfs_work
*work
)
1728 struct btrfs_plug_cb
*plug
;
1729 plug
= container_of(work
, struct btrfs_plug_cb
, work
);
1733 static void btrfs_raid_unplug(struct blk_plug_cb
*cb
, bool from_schedule
)
1735 struct btrfs_plug_cb
*plug
;
1736 plug
= container_of(cb
, struct btrfs_plug_cb
, cb
);
1738 if (from_schedule
) {
1739 btrfs_init_work(&plug
->work
, unplug_work
, NULL
, NULL
);
1740 btrfs_queue_work(plug
->info
->rmw_workers
,
1748 * our main entry point for writes from the rest of the FS.
1750 int raid56_parity_write(struct btrfs_fs_info
*fs_info
, struct bio
*bio
,
1751 struct btrfs_bio
*bbio
, u64 stripe_len
)
1753 struct btrfs_raid_bio
*rbio
;
1754 struct btrfs_plug_cb
*plug
= NULL
;
1755 struct blk_plug_cb
*cb
;
1758 rbio
= alloc_rbio(fs_info
, bbio
, stripe_len
);
1760 btrfs_put_bbio(bbio
);
1761 return PTR_ERR(rbio
);
1763 bio_list_add(&rbio
->bio_list
, bio
);
1764 rbio
->bio_list_bytes
= bio
->bi_iter
.bi_size
;
1765 rbio
->operation
= BTRFS_RBIO_WRITE
;
1767 btrfs_bio_counter_inc_noblocked(fs_info
);
1768 rbio
->generic_bio_cnt
= 1;
1771 * don't plug on full rbios, just get them out the door
1772 * as quickly as we can
1774 if (rbio_is_full(rbio
)) {
1775 ret
= full_stripe_write(rbio
);
1777 btrfs_bio_counter_dec(fs_info
);
1781 cb
= blk_check_plugged(btrfs_raid_unplug
, fs_info
, sizeof(*plug
));
1783 plug
= container_of(cb
, struct btrfs_plug_cb
, cb
);
1785 plug
->info
= fs_info
;
1786 INIT_LIST_HEAD(&plug
->rbio_list
);
1788 list_add_tail(&rbio
->plug_list
, &plug
->rbio_list
);
1791 ret
= __raid56_parity_write(rbio
);
1793 btrfs_bio_counter_dec(fs_info
);
1799 * all parity reconstruction happens here. We've read in everything
1800 * we can find from the drives and this does the heavy lifting of
1801 * sorting the good from the bad.
1803 static void __raid_recover_end_io(struct btrfs_raid_bio
*rbio
)
1807 int faila
= -1, failb
= -1;
1812 pointers
= kcalloc(rbio
->real_stripes
, sizeof(void *), GFP_NOFS
);
1814 err
= BLK_STS_RESOURCE
;
1818 faila
= rbio
->faila
;
1819 failb
= rbio
->failb
;
1821 if (rbio
->operation
== BTRFS_RBIO_READ_REBUILD
||
1822 rbio
->operation
== BTRFS_RBIO_REBUILD_MISSING
) {
1823 spin_lock_irq(&rbio
->bio_list_lock
);
1824 set_bit(RBIO_RMW_LOCKED_BIT
, &rbio
->flags
);
1825 spin_unlock_irq(&rbio
->bio_list_lock
);
1828 index_rbio_pages(rbio
);
1830 for (pagenr
= 0; pagenr
< rbio
->stripe_npages
; pagenr
++) {
1832 * Now we just use bitmap to mark the horizontal stripes in
1833 * which we have data when doing parity scrub.
1835 if (rbio
->operation
== BTRFS_RBIO_PARITY_SCRUB
&&
1836 !test_bit(pagenr
, rbio
->dbitmap
))
1839 /* setup our array of pointers with pages
1842 for (stripe
= 0; stripe
< rbio
->real_stripes
; stripe
++) {
1844 * if we're rebuilding a read, we have to use
1845 * pages from the bio list
1847 if ((rbio
->operation
== BTRFS_RBIO_READ_REBUILD
||
1848 rbio
->operation
== BTRFS_RBIO_REBUILD_MISSING
) &&
1849 (stripe
== faila
|| stripe
== failb
)) {
1850 page
= page_in_rbio(rbio
, stripe
, pagenr
, 0);
1852 page
= rbio_stripe_page(rbio
, stripe
, pagenr
);
1854 pointers
[stripe
] = kmap(page
);
1857 /* all raid6 handling here */
1858 if (rbio
->bbio
->map_type
& BTRFS_BLOCK_GROUP_RAID6
) {
1860 * single failure, rebuild from parity raid5
1864 if (faila
== rbio
->nr_data
) {
1866 * Just the P stripe has failed, without
1867 * a bad data or Q stripe.
1868 * TODO, we should redo the xor here.
1870 err
= BLK_STS_IOERR
;
1874 * a single failure in raid6 is rebuilt
1875 * in the pstripe code below
1880 /* make sure our ps and qs are in order */
1881 if (faila
> failb
) {
1887 /* if the q stripe is failed, do a pstripe reconstruction
1889 * If both the q stripe and the P stripe are failed, we're
1890 * here due to a crc mismatch and we can't give them the
1893 if (rbio
->bbio
->raid_map
[failb
] == RAID6_Q_STRIPE
) {
1894 if (rbio
->bbio
->raid_map
[faila
] ==
1896 err
= BLK_STS_IOERR
;
1900 * otherwise we have one bad data stripe and
1901 * a good P stripe. raid5!
1906 if (rbio
->bbio
->raid_map
[failb
] == RAID5_P_STRIPE
) {
1907 raid6_datap_recov(rbio
->real_stripes
,
1908 PAGE_SIZE
, faila
, pointers
);
1910 raid6_2data_recov(rbio
->real_stripes
,
1911 PAGE_SIZE
, faila
, failb
,
1917 /* rebuild from P stripe here (raid5 or raid6) */
1918 BUG_ON(failb
!= -1);
1920 /* Copy parity block into failed block to start with */
1921 copy_page(pointers
[faila
], pointers
[rbio
->nr_data
]);
1923 /* rearrange the pointer array */
1924 p
= pointers
[faila
];
1925 for (stripe
= faila
; stripe
< rbio
->nr_data
- 1; stripe
++)
1926 pointers
[stripe
] = pointers
[stripe
+ 1];
1927 pointers
[rbio
->nr_data
- 1] = p
;
1929 /* xor in the rest */
1930 run_xor(pointers
, rbio
->nr_data
- 1, PAGE_SIZE
);
1932 /* if we're doing this rebuild as part of an rmw, go through
1933 * and set all of our private rbio pages in the
1934 * failed stripes as uptodate. This way finish_rmw will
1935 * know they can be trusted. If this was a read reconstruction,
1936 * other endio functions will fiddle the uptodate bits
1938 if (rbio
->operation
== BTRFS_RBIO_WRITE
) {
1939 for (i
= 0; i
< rbio
->stripe_npages
; i
++) {
1941 page
= rbio_stripe_page(rbio
, faila
, i
);
1942 SetPageUptodate(page
);
1945 page
= rbio_stripe_page(rbio
, failb
, i
);
1946 SetPageUptodate(page
);
1950 for (stripe
= 0; stripe
< rbio
->real_stripes
; stripe
++) {
1952 * if we're rebuilding a read, we have to use
1953 * pages from the bio list
1955 if ((rbio
->operation
== BTRFS_RBIO_READ_REBUILD
||
1956 rbio
->operation
== BTRFS_RBIO_REBUILD_MISSING
) &&
1957 (stripe
== faila
|| stripe
== failb
)) {
1958 page
= page_in_rbio(rbio
, stripe
, pagenr
, 0);
1960 page
= rbio_stripe_page(rbio
, stripe
, pagenr
);
1972 * Similar to READ_REBUILD, REBUILD_MISSING at this point also has a
1973 * valid rbio which is consistent with ondisk content, thus such a
1974 * valid rbio can be cached to avoid further disk reads.
1976 if (rbio
->operation
== BTRFS_RBIO_READ_REBUILD
||
1977 rbio
->operation
== BTRFS_RBIO_REBUILD_MISSING
) {
1979 * - In case of two failures, where rbio->failb != -1:
1981 * Do not cache this rbio since the above read reconstruction
1982 * (raid6_datap_recov() or raid6_2data_recov()) may have
1983 * changed some content of stripes which are not identical to
1984 * on-disk content any more, otherwise, a later write/recover
1985 * may steal stripe_pages from this rbio and end up with
1986 * corruptions or rebuild failures.
1988 * - In case of single failure, where rbio->failb == -1:
1990 * Cache this rbio iff the above read reconstruction is
1991 * executed without problems.
1993 if (err
== BLK_STS_OK
&& rbio
->failb
< 0)
1994 cache_rbio_pages(rbio
);
1996 clear_bit(RBIO_CACHE_READY_BIT
, &rbio
->flags
);
1998 rbio_orig_end_io(rbio
, err
);
1999 } else if (err
== BLK_STS_OK
) {
2003 if (rbio
->operation
== BTRFS_RBIO_WRITE
)
2005 else if (rbio
->operation
== BTRFS_RBIO_PARITY_SCRUB
)
2006 finish_parity_scrub(rbio
, 0);
2010 rbio_orig_end_io(rbio
, err
);
2015 * This is called only for stripes we've read from disk to
2016 * reconstruct the parity.
2018 static void raid_recover_end_io(struct bio
*bio
)
2020 struct btrfs_raid_bio
*rbio
= bio
->bi_private
;
2023 * we only read stripe pages off the disk, set them
2024 * up to date if there were no errors
2027 fail_bio_stripe(rbio
, bio
);
2029 set_bio_pages_uptodate(bio
);
2032 if (!atomic_dec_and_test(&rbio
->stripes_pending
))
2035 if (atomic_read(&rbio
->error
) > rbio
->bbio
->max_errors
)
2036 rbio_orig_end_io(rbio
, BLK_STS_IOERR
);
2038 __raid_recover_end_io(rbio
);
2042 * reads everything we need off the disk to reconstruct
2043 * the parity. endio handlers trigger final reconstruction
2044 * when the IO is done.
2046 * This is used both for reads from the higher layers and for
2047 * parity construction required to finish a rmw cycle.
2049 static int __raid56_parity_recover(struct btrfs_raid_bio
*rbio
)
2051 int bios_to_read
= 0;
2052 struct bio_list bio_list
;
2058 bio_list_init(&bio_list
);
2060 ret
= alloc_rbio_pages(rbio
);
2064 atomic_set(&rbio
->error
, 0);
2067 * read everything that hasn't failed. Thanks to the
2068 * stripe cache, it is possible that some or all of these
2069 * pages are going to be uptodate.
2071 for (stripe
= 0; stripe
< rbio
->real_stripes
; stripe
++) {
2072 if (rbio
->faila
== stripe
|| rbio
->failb
== stripe
) {
2073 atomic_inc(&rbio
->error
);
2077 for (pagenr
= 0; pagenr
< rbio
->stripe_npages
; pagenr
++) {
2081 * the rmw code may have already read this
2084 p
= rbio_stripe_page(rbio
, stripe
, pagenr
);
2085 if (PageUptodate(p
))
2088 ret
= rbio_add_io_page(rbio
, &bio_list
,
2089 rbio_stripe_page(rbio
, stripe
, pagenr
),
2090 stripe
, pagenr
, rbio
->stripe_len
);
2096 bios_to_read
= bio_list_size(&bio_list
);
2097 if (!bios_to_read
) {
2099 * we might have no bios to read just because the pages
2100 * were up to date, or we might have no bios to read because
2101 * the devices were gone.
2103 if (atomic_read(&rbio
->error
) <= rbio
->bbio
->max_errors
) {
2104 __raid_recover_end_io(rbio
);
2112 * the bbio may be freed once we submit the last bio. Make sure
2113 * not to touch it after that
2115 atomic_set(&rbio
->stripes_pending
, bios_to_read
);
2117 bio
= bio_list_pop(&bio_list
);
2121 bio
->bi_private
= rbio
;
2122 bio
->bi_end_io
= raid_recover_end_io
;
2123 bio
->bi_opf
= REQ_OP_READ
;
2125 btrfs_bio_wq_end_io(rbio
->fs_info
, bio
, BTRFS_WQ_ENDIO_RAID56
);
2133 if (rbio
->operation
== BTRFS_RBIO_READ_REBUILD
||
2134 rbio
->operation
== BTRFS_RBIO_REBUILD_MISSING
)
2135 rbio_orig_end_io(rbio
, BLK_STS_IOERR
);
2137 while ((bio
= bio_list_pop(&bio_list
)))
2144 * the main entry point for reads from the higher layers. This
2145 * is really only called when the normal read path had a failure,
2146 * so we assume the bio they send down corresponds to a failed part
2149 int raid56_parity_recover(struct btrfs_fs_info
*fs_info
, struct bio
*bio
,
2150 struct btrfs_bio
*bbio
, u64 stripe_len
,
2151 int mirror_num
, int generic_io
)
2153 struct btrfs_raid_bio
*rbio
;
2157 ASSERT(bbio
->mirror_num
== mirror_num
);
2158 btrfs_io_bio(bio
)->mirror_num
= mirror_num
;
2161 rbio
= alloc_rbio(fs_info
, bbio
, stripe_len
);
2164 btrfs_put_bbio(bbio
);
2165 return PTR_ERR(rbio
);
2168 rbio
->operation
= BTRFS_RBIO_READ_REBUILD
;
2169 bio_list_add(&rbio
->bio_list
, bio
);
2170 rbio
->bio_list_bytes
= bio
->bi_iter
.bi_size
;
2172 rbio
->faila
= find_logical_bio_stripe(rbio
, bio
);
2173 if (rbio
->faila
== -1) {
2175 "%s could not find the bad stripe in raid56 so that we cannot recover any more (bio has logical %llu len %llu, bbio has map_type %llu)",
2176 __func__
, (u64
)bio
->bi_iter
.bi_sector
<< 9,
2177 (u64
)bio
->bi_iter
.bi_size
, bbio
->map_type
);
2179 btrfs_put_bbio(bbio
);
2185 btrfs_bio_counter_inc_noblocked(fs_info
);
2186 rbio
->generic_bio_cnt
= 1;
2188 btrfs_get_bbio(bbio
);
2193 * for 'mirror == 2', reconstruct from all other stripes.
2194 * for 'mirror_num > 2', select a stripe to fail on every retry.
2196 if (mirror_num
> 2) {
2198 * 'mirror == 3' is to fail the p stripe and
2199 * reconstruct from the q stripe. 'mirror > 3' is to
2200 * fail a data stripe and reconstruct from p+q stripe.
2202 rbio
->failb
= rbio
->real_stripes
- (mirror_num
- 1);
2203 ASSERT(rbio
->failb
> 0);
2204 if (rbio
->failb
<= rbio
->faila
)
2208 ret
= lock_stripe_add(rbio
);
2211 * __raid56_parity_recover will end the bio with
2212 * any errors it hits. We don't want to return
2213 * its error value up the stack because our caller
2214 * will end up calling bio_endio with any nonzero
2218 __raid56_parity_recover(rbio
);
2220 * our rbio has been added to the list of
2221 * rbios that will be handled after the
2222 * currently lock owner is done
2228 static void rmw_work(struct btrfs_work
*work
)
2230 struct btrfs_raid_bio
*rbio
;
2232 rbio
= container_of(work
, struct btrfs_raid_bio
, work
);
2233 raid56_rmw_stripe(rbio
);
2236 static void read_rebuild_work(struct btrfs_work
*work
)
2238 struct btrfs_raid_bio
*rbio
;
2240 rbio
= container_of(work
, struct btrfs_raid_bio
, work
);
2241 __raid56_parity_recover(rbio
);
2245 * The following code is used to scrub/replace the parity stripe
2247 * Caller must have already increased bio_counter for getting @bbio.
2249 * Note: We need make sure all the pages that add into the scrub/replace
2250 * raid bio are correct and not be changed during the scrub/replace. That
2251 * is those pages just hold metadata or file data with checksum.
2254 struct btrfs_raid_bio
*
2255 raid56_parity_alloc_scrub_rbio(struct btrfs_fs_info
*fs_info
, struct bio
*bio
,
2256 struct btrfs_bio
*bbio
, u64 stripe_len
,
2257 struct btrfs_device
*scrub_dev
,
2258 unsigned long *dbitmap
, int stripe_nsectors
)
2260 struct btrfs_raid_bio
*rbio
;
2263 rbio
= alloc_rbio(fs_info
, bbio
, stripe_len
);
2266 bio_list_add(&rbio
->bio_list
, bio
);
2268 * This is a special bio which is used to hold the completion handler
2269 * and make the scrub rbio is similar to the other types
2271 ASSERT(!bio
->bi_iter
.bi_size
);
2272 rbio
->operation
= BTRFS_RBIO_PARITY_SCRUB
;
2275 * After mapping bbio with BTRFS_MAP_WRITE, parities have been sorted
2276 * to the end position, so this search can start from the first parity
2279 for (i
= rbio
->nr_data
; i
< rbio
->real_stripes
; i
++) {
2280 if (bbio
->stripes
[i
].dev
== scrub_dev
) {
2285 ASSERT(i
< rbio
->real_stripes
);
2287 /* Now we just support the sectorsize equals to page size */
2288 ASSERT(fs_info
->sectorsize
== PAGE_SIZE
);
2289 ASSERT(rbio
->stripe_npages
== stripe_nsectors
);
2290 bitmap_copy(rbio
->dbitmap
, dbitmap
, stripe_nsectors
);
2293 * We have already increased bio_counter when getting bbio, record it
2294 * so we can free it at rbio_orig_end_io().
2296 rbio
->generic_bio_cnt
= 1;
2301 /* Used for both parity scrub and missing. */
2302 void raid56_add_scrub_pages(struct btrfs_raid_bio
*rbio
, struct page
*page
,
2308 ASSERT(logical
>= rbio
->bbio
->raid_map
[0]);
2309 ASSERT(logical
+ PAGE_SIZE
<= rbio
->bbio
->raid_map
[0] +
2310 rbio
->stripe_len
* rbio
->nr_data
);
2311 stripe_offset
= (int)(logical
- rbio
->bbio
->raid_map
[0]);
2312 index
= stripe_offset
>> PAGE_SHIFT
;
2313 rbio
->bio_pages
[index
] = page
;
2317 * We just scrub the parity that we have correct data on the same horizontal,
2318 * so we needn't allocate all pages for all the stripes.
2320 static int alloc_rbio_essential_pages(struct btrfs_raid_bio
*rbio
)
2327 for_each_set_bit(bit
, rbio
->dbitmap
, rbio
->stripe_npages
) {
2328 for (i
= 0; i
< rbio
->real_stripes
; i
++) {
2329 index
= i
* rbio
->stripe_npages
+ bit
;
2330 if (rbio
->stripe_pages
[index
])
2333 page
= alloc_page(GFP_NOFS
| __GFP_HIGHMEM
);
2336 rbio
->stripe_pages
[index
] = page
;
2342 static noinline
void finish_parity_scrub(struct btrfs_raid_bio
*rbio
,
2345 struct btrfs_bio
*bbio
= rbio
->bbio
;
2346 void **pointers
= rbio
->finish_pointers
;
2347 unsigned long *pbitmap
= rbio
->finish_pbitmap
;
2348 int nr_data
= rbio
->nr_data
;
2352 struct page
*p_page
= NULL
;
2353 struct page
*q_page
= NULL
;
2354 struct bio_list bio_list
;
2359 bio_list_init(&bio_list
);
2361 if (rbio
->real_stripes
- rbio
->nr_data
== 1)
2362 has_qstripe
= false;
2363 else if (rbio
->real_stripes
- rbio
->nr_data
== 2)
2368 if (bbio
->num_tgtdevs
&& bbio
->tgtdev_map
[rbio
->scrubp
]) {
2370 bitmap_copy(pbitmap
, rbio
->dbitmap
, rbio
->stripe_npages
);
2374 * Because the higher layers(scrubber) are unlikely to
2375 * use this area of the disk again soon, so don't cache
2378 clear_bit(RBIO_CACHE_READY_BIT
, &rbio
->flags
);
2383 p_page
= alloc_page(GFP_NOFS
| __GFP_HIGHMEM
);
2386 SetPageUptodate(p_page
);
2389 q_page
= alloc_page(GFP_NOFS
| __GFP_HIGHMEM
);
2391 __free_page(p_page
);
2394 SetPageUptodate(q_page
);
2397 atomic_set(&rbio
->error
, 0);
2399 for_each_set_bit(pagenr
, rbio
->dbitmap
, rbio
->stripe_npages
) {
2402 /* first collect one page from each data stripe */
2403 for (stripe
= 0; stripe
< nr_data
; stripe
++) {
2404 p
= page_in_rbio(rbio
, stripe
, pagenr
, 0);
2405 pointers
[stripe
] = kmap(p
);
2408 /* then add the parity stripe */
2409 pointers
[stripe
++] = kmap(p_page
);
2413 * raid6, add the qstripe and call the
2414 * library function to fill in our p/q
2416 pointers
[stripe
++] = kmap(q_page
);
2418 raid6_call
.gen_syndrome(rbio
->real_stripes
, PAGE_SIZE
,
2422 copy_page(pointers
[nr_data
], pointers
[0]);
2423 run_xor(pointers
+ 1, nr_data
- 1, PAGE_SIZE
);
2426 /* Check scrubbing parity and repair it */
2427 p
= rbio_stripe_page(rbio
, rbio
->scrubp
, pagenr
);
2429 if (memcmp(parity
, pointers
[rbio
->scrubp
], PAGE_SIZE
))
2430 copy_page(parity
, pointers
[rbio
->scrubp
]);
2432 /* Parity is right, needn't writeback */
2433 bitmap_clear(rbio
->dbitmap
, pagenr
, 1);
2436 for (stripe
= 0; stripe
< nr_data
; stripe
++)
2437 kunmap(page_in_rbio(rbio
, stripe
, pagenr
, 0));
2441 __free_page(p_page
);
2443 __free_page(q_page
);
2447 * time to start writing. Make bios for everything from the
2448 * higher layers (the bio_list in our rbio) and our p/q. Ignore
2451 for_each_set_bit(pagenr
, rbio
->dbitmap
, rbio
->stripe_npages
) {
2454 page
= rbio_stripe_page(rbio
, rbio
->scrubp
, pagenr
);
2455 ret
= rbio_add_io_page(rbio
, &bio_list
,
2456 page
, rbio
->scrubp
, pagenr
, rbio
->stripe_len
);
2464 for_each_set_bit(pagenr
, pbitmap
, rbio
->stripe_npages
) {
2467 page
= rbio_stripe_page(rbio
, rbio
->scrubp
, pagenr
);
2468 ret
= rbio_add_io_page(rbio
, &bio_list
, page
,
2469 bbio
->tgtdev_map
[rbio
->scrubp
],
2470 pagenr
, rbio
->stripe_len
);
2476 nr_data
= bio_list_size(&bio_list
);
2478 /* Every parity is right */
2479 rbio_orig_end_io(rbio
, BLK_STS_OK
);
2483 atomic_set(&rbio
->stripes_pending
, nr_data
);
2486 bio
= bio_list_pop(&bio_list
);
2490 bio
->bi_private
= rbio
;
2491 bio
->bi_end_io
= raid_write_end_io
;
2492 bio
->bi_opf
= REQ_OP_WRITE
;
2499 rbio_orig_end_io(rbio
, BLK_STS_IOERR
);
2501 while ((bio
= bio_list_pop(&bio_list
)))
2505 static inline int is_data_stripe(struct btrfs_raid_bio
*rbio
, int stripe
)
2507 if (stripe
>= 0 && stripe
< rbio
->nr_data
)
2513 * While we're doing the parity check and repair, we could have errors
2514 * in reading pages off the disk. This checks for errors and if we're
2515 * not able to read the page it'll trigger parity reconstruction. The
2516 * parity scrub will be finished after we've reconstructed the failed
2519 static void validate_rbio_for_parity_scrub(struct btrfs_raid_bio
*rbio
)
2521 if (atomic_read(&rbio
->error
) > rbio
->bbio
->max_errors
)
2524 if (rbio
->faila
>= 0 || rbio
->failb
>= 0) {
2525 int dfail
= 0, failp
= -1;
2527 if (is_data_stripe(rbio
, rbio
->faila
))
2529 else if (is_parity_stripe(rbio
->faila
))
2530 failp
= rbio
->faila
;
2532 if (is_data_stripe(rbio
, rbio
->failb
))
2534 else if (is_parity_stripe(rbio
->failb
))
2535 failp
= rbio
->failb
;
2538 * Because we can not use a scrubbing parity to repair
2539 * the data, so the capability of the repair is declined.
2540 * (In the case of RAID5, we can not repair anything)
2542 if (dfail
> rbio
->bbio
->max_errors
- 1)
2546 * If all data is good, only parity is correctly, just
2547 * repair the parity.
2550 finish_parity_scrub(rbio
, 0);
2555 * Here means we got one corrupted data stripe and one
2556 * corrupted parity on RAID6, if the corrupted parity
2557 * is scrubbing parity, luckily, use the other one to repair
2558 * the data, or we can not repair the data stripe.
2560 if (failp
!= rbio
->scrubp
)
2563 __raid_recover_end_io(rbio
);
2565 finish_parity_scrub(rbio
, 1);
2570 rbio_orig_end_io(rbio
, BLK_STS_IOERR
);
2574 * end io for the read phase of the rmw cycle. All the bios here are physical
2575 * stripe bios we've read from the disk so we can recalculate the parity of the
2578 * This will usually kick off finish_rmw once all the bios are read in, but it
2579 * may trigger parity reconstruction if we had any errors along the way
2581 static void raid56_parity_scrub_end_io(struct bio
*bio
)
2583 struct btrfs_raid_bio
*rbio
= bio
->bi_private
;
2586 fail_bio_stripe(rbio
, bio
);
2588 set_bio_pages_uptodate(bio
);
2592 if (!atomic_dec_and_test(&rbio
->stripes_pending
))
2596 * this will normally call finish_rmw to start our write
2597 * but if there are any failed stripes we'll reconstruct
2600 validate_rbio_for_parity_scrub(rbio
);
2603 static void raid56_parity_scrub_stripe(struct btrfs_raid_bio
*rbio
)
2605 int bios_to_read
= 0;
2606 struct bio_list bio_list
;
2612 bio_list_init(&bio_list
);
2614 ret
= alloc_rbio_essential_pages(rbio
);
2618 atomic_set(&rbio
->error
, 0);
2620 * build a list of bios to read all the missing parts of this
2623 for (stripe
= 0; stripe
< rbio
->real_stripes
; stripe
++) {
2624 for_each_set_bit(pagenr
, rbio
->dbitmap
, rbio
->stripe_npages
) {
2627 * we want to find all the pages missing from
2628 * the rbio and read them from the disk. If
2629 * page_in_rbio finds a page in the bio list
2630 * we don't need to read it off the stripe.
2632 page
= page_in_rbio(rbio
, stripe
, pagenr
, 1);
2636 page
= rbio_stripe_page(rbio
, stripe
, pagenr
);
2638 * the bio cache may have handed us an uptodate
2639 * page. If so, be happy and use it
2641 if (PageUptodate(page
))
2644 ret
= rbio_add_io_page(rbio
, &bio_list
, page
,
2645 stripe
, pagenr
, rbio
->stripe_len
);
2651 bios_to_read
= bio_list_size(&bio_list
);
2652 if (!bios_to_read
) {
2654 * this can happen if others have merged with
2655 * us, it means there is nothing left to read.
2656 * But if there are missing devices it may not be
2657 * safe to do the full stripe write yet.
2663 * the bbio may be freed once we submit the last bio. Make sure
2664 * not to touch it after that
2666 atomic_set(&rbio
->stripes_pending
, bios_to_read
);
2668 bio
= bio_list_pop(&bio_list
);
2672 bio
->bi_private
= rbio
;
2673 bio
->bi_end_io
= raid56_parity_scrub_end_io
;
2674 bio
->bi_opf
= REQ_OP_READ
;
2676 btrfs_bio_wq_end_io(rbio
->fs_info
, bio
, BTRFS_WQ_ENDIO_RAID56
);
2680 /* the actual write will happen once the reads are done */
2684 rbio_orig_end_io(rbio
, BLK_STS_IOERR
);
2686 while ((bio
= bio_list_pop(&bio_list
)))
2692 validate_rbio_for_parity_scrub(rbio
);
2695 static void scrub_parity_work(struct btrfs_work
*work
)
2697 struct btrfs_raid_bio
*rbio
;
2699 rbio
= container_of(work
, struct btrfs_raid_bio
, work
);
2700 raid56_parity_scrub_stripe(rbio
);
2703 void raid56_parity_submit_scrub_rbio(struct btrfs_raid_bio
*rbio
)
2705 if (!lock_stripe_add(rbio
))
2706 start_async_work(rbio
, scrub_parity_work
);
2709 /* The following code is used for dev replace of a missing RAID 5/6 device. */
2711 struct btrfs_raid_bio
*
2712 raid56_alloc_missing_rbio(struct btrfs_fs_info
*fs_info
, struct bio
*bio
,
2713 struct btrfs_bio
*bbio
, u64 length
)
2715 struct btrfs_raid_bio
*rbio
;
2717 rbio
= alloc_rbio(fs_info
, bbio
, length
);
2721 rbio
->operation
= BTRFS_RBIO_REBUILD_MISSING
;
2722 bio_list_add(&rbio
->bio_list
, bio
);
2724 * This is a special bio which is used to hold the completion handler
2725 * and make the scrub rbio is similar to the other types
2727 ASSERT(!bio
->bi_iter
.bi_size
);
2729 rbio
->faila
= find_logical_bio_stripe(rbio
, bio
);
2730 if (rbio
->faila
== -1) {
2737 * When we get bbio, we have already increased bio_counter, record it
2738 * so we can free it at rbio_orig_end_io()
2740 rbio
->generic_bio_cnt
= 1;
2745 void raid56_submit_missing_rbio(struct btrfs_raid_bio
*rbio
)
2747 if (!lock_stripe_add(rbio
))
2748 start_async_work(rbio
, read_rebuild_work
);