1 // SPDX-License-Identifier: GPL-2.0
3 * Copyright (C) 2009 Oracle. All rights reserved.
6 #include <linux/sched.h>
7 #include <linux/pagemap.h>
8 #include <linux/writeback.h>
9 #include <linux/blkdev.h>
10 #include <linux/rbtree.h>
11 #include <linux/slab.h>
12 #include <linux/error-injection.h>
15 #include "transaction.h"
18 #include "btrfs_inode.h"
19 #include "async-thread.h"
20 #include "free-space-cache.h"
21 #include "inode-map.h"
23 #include "print-tree.h"
24 #include "delalloc-space.h"
25 #include "block-group.h"
32 * [What does relocation do]
34 * The objective of relocation is to relocate all extents of the target block
35 * group to other block groups.
36 * This is utilized by resize (shrink only), profile converting, compacting
37 * space, or balance routine to spread chunks over devices.
40 * ------------------------------------------------------------------
41 * BG A: 10 data extents | BG A: deleted
42 * BG B: 2 data extents | BG B: 10 data extents (2 old + 8 relocated)
43 * BG C: 1 extents | BG C: 3 data extents (1 old + 2 relocated)
45 * [How does relocation work]
47 * 1. Mark the target block group read-only
48 * New extents won't be allocated from the target block group.
50 * 2.1 Record each extent in the target block group
51 * To build a proper map of extents to be relocated.
53 * 2.2 Build data reloc tree and reloc trees
54 * Data reloc tree will contain an inode, recording all newly relocated
56 * There will be only one data reloc tree for one data block group.
58 * Reloc tree will be a special snapshot of its source tree, containing
59 * relocated tree blocks.
60 * Each tree referring to a tree block in target block group will get its
63 * 2.3 Swap source tree with its corresponding reloc tree
64 * Each involved tree only refers to new extents after swap.
66 * 3. Cleanup reloc trees and data reloc tree.
67 * As old extents in the target block group are still referenced by reloc
68 * trees, we need to clean them up before really freeing the target block
71 * The main complexity is in steps 2.2 and 2.3.
73 * The entry point of relocation is relocate_block_group() function.
76 #define RELOCATION_RESERVED_NODES 256
78 * map address of tree root to tree
82 struct rb_node rb_node
;
84 }; /* Use rb_simle_node for search/insert */
89 struct rb_root rb_root
;
94 * present a tree block to process
98 struct rb_node rb_node
;
100 }; /* Use rb_simple_node for search/insert */
101 struct btrfs_key key
;
102 unsigned int level
:8;
103 unsigned int key_ready
:1;
106 #define MAX_EXTENTS 128
108 struct file_extent_cluster
{
111 u64 boundary
[MAX_EXTENTS
];
115 struct reloc_control
{
116 /* block group to relocate */
117 struct btrfs_block_group
*block_group
;
119 struct btrfs_root
*extent_root
;
120 /* inode for moving data */
121 struct inode
*data_inode
;
123 struct btrfs_block_rsv
*block_rsv
;
125 struct btrfs_backref_cache backref_cache
;
127 struct file_extent_cluster cluster
;
128 /* tree blocks have been processed */
129 struct extent_io_tree processed_blocks
;
130 /* map start of tree root to corresponding reloc tree */
131 struct mapping_tree reloc_root_tree
;
132 /* list of reloc trees */
133 struct list_head reloc_roots
;
134 /* list of subvolume trees that get relocated */
135 struct list_head dirty_subvol_roots
;
136 /* size of metadata reservation for merging reloc trees */
137 u64 merging_rsv_size
;
138 /* size of relocated tree nodes */
140 /* reserved size for block group relocation*/
146 unsigned int stage
:8;
147 unsigned int create_reloc_tree
:1;
148 unsigned int merge_reloc_tree
:1;
149 unsigned int found_file_extent
:1;
152 /* stages of data relocation */
153 #define MOVE_DATA_EXTENTS 0
154 #define UPDATE_DATA_PTRS 1
156 static void mark_block_processed(struct reloc_control
*rc
,
157 struct btrfs_backref_node
*node
)
161 if (node
->level
== 0 ||
162 in_range(node
->bytenr
, rc
->block_group
->start
,
163 rc
->block_group
->length
)) {
164 blocksize
= rc
->extent_root
->fs_info
->nodesize
;
165 set_extent_bits(&rc
->processed_blocks
, node
->bytenr
,
166 node
->bytenr
+ blocksize
- 1, EXTENT_DIRTY
);
172 static void mapping_tree_init(struct mapping_tree
*tree
)
174 tree
->rb_root
= RB_ROOT
;
175 spin_lock_init(&tree
->lock
);
179 * walk up backref nodes until reach node presents tree root
181 static struct btrfs_backref_node
*walk_up_backref(
182 struct btrfs_backref_node
*node
,
183 struct btrfs_backref_edge
*edges
[], int *index
)
185 struct btrfs_backref_edge
*edge
;
188 while (!list_empty(&node
->upper
)) {
189 edge
= list_entry(node
->upper
.next
,
190 struct btrfs_backref_edge
, list
[LOWER
]);
192 node
= edge
->node
[UPPER
];
194 BUG_ON(node
->detached
);
200 * walk down backref nodes to find start of next reference path
202 static struct btrfs_backref_node
*walk_down_backref(
203 struct btrfs_backref_edge
*edges
[], int *index
)
205 struct btrfs_backref_edge
*edge
;
206 struct btrfs_backref_node
*lower
;
210 edge
= edges
[idx
- 1];
211 lower
= edge
->node
[LOWER
];
212 if (list_is_last(&edge
->list
[LOWER
], &lower
->upper
)) {
216 edge
= list_entry(edge
->list
[LOWER
].next
,
217 struct btrfs_backref_edge
, list
[LOWER
]);
218 edges
[idx
- 1] = edge
;
220 return edge
->node
[UPPER
];
226 static void update_backref_node(struct btrfs_backref_cache
*cache
,
227 struct btrfs_backref_node
*node
, u64 bytenr
)
229 struct rb_node
*rb_node
;
230 rb_erase(&node
->rb_node
, &cache
->rb_root
);
231 node
->bytenr
= bytenr
;
232 rb_node
= rb_simple_insert(&cache
->rb_root
, node
->bytenr
, &node
->rb_node
);
234 btrfs_backref_panic(cache
->fs_info
, bytenr
, -EEXIST
);
238 * update backref cache after a transaction commit
240 static int update_backref_cache(struct btrfs_trans_handle
*trans
,
241 struct btrfs_backref_cache
*cache
)
243 struct btrfs_backref_node
*node
;
246 if (cache
->last_trans
== 0) {
247 cache
->last_trans
= trans
->transid
;
251 if (cache
->last_trans
== trans
->transid
)
255 * detached nodes are used to avoid unnecessary backref
256 * lookup. transaction commit changes the extent tree.
257 * so the detached nodes are no longer useful.
259 while (!list_empty(&cache
->detached
)) {
260 node
= list_entry(cache
->detached
.next
,
261 struct btrfs_backref_node
, list
);
262 btrfs_backref_cleanup_node(cache
, node
);
265 while (!list_empty(&cache
->changed
)) {
266 node
= list_entry(cache
->changed
.next
,
267 struct btrfs_backref_node
, list
);
268 list_del_init(&node
->list
);
269 BUG_ON(node
->pending
);
270 update_backref_node(cache
, node
, node
->new_bytenr
);
274 * some nodes can be left in the pending list if there were
275 * errors during processing the pending nodes.
277 for (level
= 0; level
< BTRFS_MAX_LEVEL
; level
++) {
278 list_for_each_entry(node
, &cache
->pending
[level
], list
) {
279 BUG_ON(!node
->pending
);
280 if (node
->bytenr
== node
->new_bytenr
)
282 update_backref_node(cache
, node
, node
->new_bytenr
);
286 cache
->last_trans
= 0;
290 static bool reloc_root_is_dead(struct btrfs_root
*root
)
293 * Pair with set_bit/clear_bit in clean_dirty_subvols and
294 * btrfs_update_reloc_root. We need to see the updated bit before
295 * trying to access reloc_root
298 if (test_bit(BTRFS_ROOT_DEAD_RELOC_TREE
, &root
->state
))
304 * Check if this subvolume tree has valid reloc tree.
306 * Reloc tree after swap is considered dead, thus not considered as valid.
307 * This is enough for most callers, as they don't distinguish dead reloc root
308 * from no reloc root. But btrfs_should_ignore_reloc_root() below is a
311 static bool have_reloc_root(struct btrfs_root
*root
)
313 if (reloc_root_is_dead(root
))
315 if (!root
->reloc_root
)
320 int btrfs_should_ignore_reloc_root(struct btrfs_root
*root
)
322 struct btrfs_root
*reloc_root
;
324 if (!test_bit(BTRFS_ROOT_SHAREABLE
, &root
->state
))
327 /* This root has been merged with its reloc tree, we can ignore it */
328 if (reloc_root_is_dead(root
))
331 reloc_root
= root
->reloc_root
;
335 if (btrfs_header_generation(reloc_root
->commit_root
) ==
336 root
->fs_info
->running_transaction
->transid
)
339 * if there is reloc tree and it was created in previous
340 * transaction backref lookup can find the reloc tree,
341 * so backref node for the fs tree root is useless for
348 * find reloc tree by address of tree root
350 struct btrfs_root
*find_reloc_root(struct btrfs_fs_info
*fs_info
, u64 bytenr
)
352 struct reloc_control
*rc
= fs_info
->reloc_ctl
;
353 struct rb_node
*rb_node
;
354 struct mapping_node
*node
;
355 struct btrfs_root
*root
= NULL
;
358 spin_lock(&rc
->reloc_root_tree
.lock
);
359 rb_node
= rb_simple_search(&rc
->reloc_root_tree
.rb_root
, bytenr
);
361 node
= rb_entry(rb_node
, struct mapping_node
, rb_node
);
362 root
= (struct btrfs_root
*)node
->data
;
364 spin_unlock(&rc
->reloc_root_tree
.lock
);
365 return btrfs_grab_root(root
);
369 * For useless nodes, do two major clean ups:
371 * - Cleanup the children edges and nodes
372 * If child node is also orphan (no parent) during cleanup, then the child
373 * node will also be cleaned up.
375 * - Freeing up leaves (level 0), keeps nodes detached
376 * For nodes, the node is still cached as "detached"
378 * Return false if @node is not in the @useless_nodes list.
379 * Return true if @node is in the @useless_nodes list.
381 static bool handle_useless_nodes(struct reloc_control
*rc
,
382 struct btrfs_backref_node
*node
)
384 struct btrfs_backref_cache
*cache
= &rc
->backref_cache
;
385 struct list_head
*useless_node
= &cache
->useless_node
;
388 while (!list_empty(useless_node
)) {
389 struct btrfs_backref_node
*cur
;
391 cur
= list_first_entry(useless_node
, struct btrfs_backref_node
,
393 list_del_init(&cur
->list
);
395 /* Only tree root nodes can be added to @useless_nodes */
396 ASSERT(list_empty(&cur
->upper
));
401 /* The node is the lowest node */
403 list_del_init(&cur
->lower
);
407 /* Cleanup the lower edges */
408 while (!list_empty(&cur
->lower
)) {
409 struct btrfs_backref_edge
*edge
;
410 struct btrfs_backref_node
*lower
;
412 edge
= list_entry(cur
->lower
.next
,
413 struct btrfs_backref_edge
, list
[UPPER
]);
414 list_del(&edge
->list
[UPPER
]);
415 list_del(&edge
->list
[LOWER
]);
416 lower
= edge
->node
[LOWER
];
417 btrfs_backref_free_edge(cache
, edge
);
419 /* Child node is also orphan, queue for cleanup */
420 if (list_empty(&lower
->upper
))
421 list_add(&lower
->list
, useless_node
);
423 /* Mark this block processed for relocation */
424 mark_block_processed(rc
, cur
);
427 * Backref nodes for tree leaves are deleted from the cache.
428 * Backref nodes for upper level tree blocks are left in the
429 * cache to avoid unnecessary backref lookup.
431 if (cur
->level
> 0) {
432 list_add(&cur
->list
, &cache
->detached
);
435 rb_erase(&cur
->rb_node
, &cache
->rb_root
);
436 btrfs_backref_free_node(cache
, cur
);
443 * Build backref tree for a given tree block. Root of the backref tree
444 * corresponds the tree block, leaves of the backref tree correspond roots of
445 * b-trees that reference the tree block.
447 * The basic idea of this function is check backrefs of a given block to find
448 * upper level blocks that reference the block, and then check backrefs of
449 * these upper level blocks recursively. The recursion stops when tree root is
450 * reached or backrefs for the block is cached.
452 * NOTE: if we find that backrefs for a block are cached, we know backrefs for
453 * all upper level blocks that directly/indirectly reference the block are also
456 static noinline_for_stack
struct btrfs_backref_node
*build_backref_tree(
457 struct reloc_control
*rc
, struct btrfs_key
*node_key
,
458 int level
, u64 bytenr
)
460 struct btrfs_backref_iter
*iter
;
461 struct btrfs_backref_cache
*cache
= &rc
->backref_cache
;
462 /* For searching parent of TREE_BLOCK_REF */
463 struct btrfs_path
*path
;
464 struct btrfs_backref_node
*cur
;
465 struct btrfs_backref_node
*node
= NULL
;
466 struct btrfs_backref_edge
*edge
;
470 iter
= btrfs_backref_iter_alloc(rc
->extent_root
->fs_info
, GFP_NOFS
);
472 return ERR_PTR(-ENOMEM
);
473 path
= btrfs_alloc_path();
479 node
= btrfs_backref_alloc_node(cache
, bytenr
, level
);
488 /* Breadth-first search to build backref cache */
490 ret
= btrfs_backref_add_tree_node(cache
, path
, iter
, node_key
,
496 edge
= list_first_entry_or_null(&cache
->pending_edge
,
497 struct btrfs_backref_edge
, list
[UPPER
]);
499 * The pending list isn't empty, take the first block to
503 list_del_init(&edge
->list
[UPPER
]);
504 cur
= edge
->node
[UPPER
];
508 /* Finish the upper linkage of newly added edges/nodes */
509 ret
= btrfs_backref_finish_upper_links(cache
, node
);
515 if (handle_useless_nodes(rc
, node
))
518 btrfs_backref_iter_free(iter
);
519 btrfs_free_path(path
);
521 btrfs_backref_error_cleanup(cache
, node
);
524 ASSERT(!node
|| !node
->detached
);
525 ASSERT(list_empty(&cache
->useless_node
) &&
526 list_empty(&cache
->pending_edge
));
531 * helper to add backref node for the newly created snapshot.
532 * the backref node is created by cloning backref node that
533 * corresponds to root of source tree
535 static int clone_backref_node(struct btrfs_trans_handle
*trans
,
536 struct reloc_control
*rc
,
537 struct btrfs_root
*src
,
538 struct btrfs_root
*dest
)
540 struct btrfs_root
*reloc_root
= src
->reloc_root
;
541 struct btrfs_backref_cache
*cache
= &rc
->backref_cache
;
542 struct btrfs_backref_node
*node
= NULL
;
543 struct btrfs_backref_node
*new_node
;
544 struct btrfs_backref_edge
*edge
;
545 struct btrfs_backref_edge
*new_edge
;
546 struct rb_node
*rb_node
;
548 if (cache
->last_trans
> 0)
549 update_backref_cache(trans
, cache
);
551 rb_node
= rb_simple_search(&cache
->rb_root
, src
->commit_root
->start
);
553 node
= rb_entry(rb_node
, struct btrfs_backref_node
, rb_node
);
557 BUG_ON(node
->new_bytenr
!= reloc_root
->node
->start
);
561 rb_node
= rb_simple_search(&cache
->rb_root
,
562 reloc_root
->commit_root
->start
);
564 node
= rb_entry(rb_node
, struct btrfs_backref_node
,
566 BUG_ON(node
->detached
);
573 new_node
= btrfs_backref_alloc_node(cache
, dest
->node
->start
,
578 new_node
->lowest
= node
->lowest
;
579 new_node
->checked
= 1;
580 new_node
->root
= btrfs_grab_root(dest
);
581 ASSERT(new_node
->root
);
584 list_for_each_entry(edge
, &node
->lower
, list
[UPPER
]) {
585 new_edge
= btrfs_backref_alloc_edge(cache
);
589 btrfs_backref_link_edge(new_edge
, edge
->node
[LOWER
],
590 new_node
, LINK_UPPER
);
593 list_add_tail(&new_node
->lower
, &cache
->leaves
);
596 rb_node
= rb_simple_insert(&cache
->rb_root
, new_node
->bytenr
,
599 btrfs_backref_panic(trans
->fs_info
, new_node
->bytenr
, -EEXIST
);
601 if (!new_node
->lowest
) {
602 list_for_each_entry(new_edge
, &new_node
->lower
, list
[UPPER
]) {
603 list_add_tail(&new_edge
->list
[LOWER
],
604 &new_edge
->node
[LOWER
]->upper
);
609 while (!list_empty(&new_node
->lower
)) {
610 new_edge
= list_entry(new_node
->lower
.next
,
611 struct btrfs_backref_edge
, list
[UPPER
]);
612 list_del(&new_edge
->list
[UPPER
]);
613 btrfs_backref_free_edge(cache
, new_edge
);
615 btrfs_backref_free_node(cache
, new_node
);
620 * helper to add 'address of tree root -> reloc tree' mapping
622 static int __must_check
__add_reloc_root(struct btrfs_root
*root
)
624 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
625 struct rb_node
*rb_node
;
626 struct mapping_node
*node
;
627 struct reloc_control
*rc
= fs_info
->reloc_ctl
;
629 node
= kmalloc(sizeof(*node
), GFP_NOFS
);
633 node
->bytenr
= root
->commit_root
->start
;
636 spin_lock(&rc
->reloc_root_tree
.lock
);
637 rb_node
= rb_simple_insert(&rc
->reloc_root_tree
.rb_root
,
638 node
->bytenr
, &node
->rb_node
);
639 spin_unlock(&rc
->reloc_root_tree
.lock
);
641 btrfs_panic(fs_info
, -EEXIST
,
642 "Duplicate root found for start=%llu while inserting into relocation tree",
646 list_add_tail(&root
->root_list
, &rc
->reloc_roots
);
651 * helper to delete the 'address of tree root -> reloc tree'
654 static void __del_reloc_root(struct btrfs_root
*root
)
656 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
657 struct rb_node
*rb_node
;
658 struct mapping_node
*node
= NULL
;
659 struct reloc_control
*rc
= fs_info
->reloc_ctl
;
660 bool put_ref
= false;
662 if (rc
&& root
->node
) {
663 spin_lock(&rc
->reloc_root_tree
.lock
);
664 rb_node
= rb_simple_search(&rc
->reloc_root_tree
.rb_root
,
665 root
->commit_root
->start
);
667 node
= rb_entry(rb_node
, struct mapping_node
, rb_node
);
668 rb_erase(&node
->rb_node
, &rc
->reloc_root_tree
.rb_root
);
669 RB_CLEAR_NODE(&node
->rb_node
);
671 spin_unlock(&rc
->reloc_root_tree
.lock
);
674 BUG_ON((struct btrfs_root
*)node
->data
!= root
);
678 * We only put the reloc root here if it's on the list. There's a lot
679 * of places where the pattern is to splice the rc->reloc_roots, process
680 * the reloc roots, and then add the reloc root back onto
681 * rc->reloc_roots. If we call __del_reloc_root while it's off of the
682 * list we don't want the reference being dropped, because the guy
683 * messing with the list is in charge of the reference.
685 spin_lock(&fs_info
->trans_lock
);
686 if (!list_empty(&root
->root_list
)) {
688 list_del_init(&root
->root_list
);
690 spin_unlock(&fs_info
->trans_lock
);
692 btrfs_put_root(root
);
697 * helper to update the 'address of tree root -> reloc tree'
700 static int __update_reloc_root(struct btrfs_root
*root
)
702 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
703 struct rb_node
*rb_node
;
704 struct mapping_node
*node
= NULL
;
705 struct reloc_control
*rc
= fs_info
->reloc_ctl
;
707 spin_lock(&rc
->reloc_root_tree
.lock
);
708 rb_node
= rb_simple_search(&rc
->reloc_root_tree
.rb_root
,
709 root
->commit_root
->start
);
711 node
= rb_entry(rb_node
, struct mapping_node
, rb_node
);
712 rb_erase(&node
->rb_node
, &rc
->reloc_root_tree
.rb_root
);
714 spin_unlock(&rc
->reloc_root_tree
.lock
);
718 BUG_ON((struct btrfs_root
*)node
->data
!= root
);
720 spin_lock(&rc
->reloc_root_tree
.lock
);
721 node
->bytenr
= root
->node
->start
;
722 rb_node
= rb_simple_insert(&rc
->reloc_root_tree
.rb_root
,
723 node
->bytenr
, &node
->rb_node
);
724 spin_unlock(&rc
->reloc_root_tree
.lock
);
726 btrfs_backref_panic(fs_info
, node
->bytenr
, -EEXIST
);
730 static struct btrfs_root
*create_reloc_root(struct btrfs_trans_handle
*trans
,
731 struct btrfs_root
*root
, u64 objectid
)
733 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
734 struct btrfs_root
*reloc_root
;
735 struct extent_buffer
*eb
;
736 struct btrfs_root_item
*root_item
;
737 struct btrfs_key root_key
;
740 root_item
= kmalloc(sizeof(*root_item
), GFP_NOFS
);
743 root_key
.objectid
= BTRFS_TREE_RELOC_OBJECTID
;
744 root_key
.type
= BTRFS_ROOT_ITEM_KEY
;
745 root_key
.offset
= objectid
;
747 if (root
->root_key
.objectid
== objectid
) {
750 /* called by btrfs_init_reloc_root */
751 ret
= btrfs_copy_root(trans
, root
, root
->commit_root
, &eb
,
752 BTRFS_TREE_RELOC_OBJECTID
);
755 * Set the last_snapshot field to the generation of the commit
756 * root - like this ctree.c:btrfs_block_can_be_shared() behaves
757 * correctly (returns true) when the relocation root is created
758 * either inside the critical section of a transaction commit
759 * (through transaction.c:qgroup_account_snapshot()) and when
760 * it's created before the transaction commit is started.
762 commit_root_gen
= btrfs_header_generation(root
->commit_root
);
763 btrfs_set_root_last_snapshot(&root
->root_item
, commit_root_gen
);
766 * called by btrfs_reloc_post_snapshot_hook.
767 * the source tree is a reloc tree, all tree blocks
768 * modified after it was created have RELOC flag
769 * set in their headers. so it's OK to not update
770 * the 'last_snapshot'.
772 ret
= btrfs_copy_root(trans
, root
, root
->node
, &eb
,
773 BTRFS_TREE_RELOC_OBJECTID
);
777 memcpy(root_item
, &root
->root_item
, sizeof(*root_item
));
778 btrfs_set_root_bytenr(root_item
, eb
->start
);
779 btrfs_set_root_level(root_item
, btrfs_header_level(eb
));
780 btrfs_set_root_generation(root_item
, trans
->transid
);
782 if (root
->root_key
.objectid
== objectid
) {
783 btrfs_set_root_refs(root_item
, 0);
784 memset(&root_item
->drop_progress
, 0,
785 sizeof(struct btrfs_disk_key
));
786 root_item
->drop_level
= 0;
789 btrfs_tree_unlock(eb
);
790 free_extent_buffer(eb
);
792 ret
= btrfs_insert_root(trans
, fs_info
->tree_root
,
793 &root_key
, root_item
);
797 reloc_root
= btrfs_read_tree_root(fs_info
->tree_root
, &root_key
);
798 BUG_ON(IS_ERR(reloc_root
));
799 set_bit(BTRFS_ROOT_SHAREABLE
, &reloc_root
->state
);
800 reloc_root
->last_trans
= trans
->transid
;
805 * create reloc tree for a given fs tree. reloc tree is just a
806 * snapshot of the fs tree with special root objectid.
808 * The reloc_root comes out of here with two references, one for
809 * root->reloc_root, and another for being on the rc->reloc_roots list.
811 int btrfs_init_reloc_root(struct btrfs_trans_handle
*trans
,
812 struct btrfs_root
*root
)
814 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
815 struct btrfs_root
*reloc_root
;
816 struct reloc_control
*rc
= fs_info
->reloc_ctl
;
817 struct btrfs_block_rsv
*rsv
;
825 * The subvolume has reloc tree but the swap is finished, no need to
826 * create/update the dead reloc tree
828 if (reloc_root_is_dead(root
))
832 * This is subtle but important. We do not do
833 * record_root_in_transaction for reloc roots, instead we record their
834 * corresponding fs root, and then here we update the last trans for the
835 * reloc root. This means that we have to do this for the entire life
836 * of the reloc root, regardless of which stage of the relocation we are
839 if (root
->reloc_root
) {
840 reloc_root
= root
->reloc_root
;
841 reloc_root
->last_trans
= trans
->transid
;
846 * We are merging reloc roots, we do not need new reloc trees. Also
847 * reloc trees never need their own reloc tree.
849 if (!rc
->create_reloc_tree
||
850 root
->root_key
.objectid
== BTRFS_TREE_RELOC_OBJECTID
)
853 if (!trans
->reloc_reserved
) {
854 rsv
= trans
->block_rsv
;
855 trans
->block_rsv
= rc
->block_rsv
;
858 reloc_root
= create_reloc_root(trans
, root
, root
->root_key
.objectid
);
860 trans
->block_rsv
= rsv
;
862 ret
= __add_reloc_root(reloc_root
);
864 root
->reloc_root
= btrfs_grab_root(reloc_root
);
869 * update root item of reloc tree
871 int btrfs_update_reloc_root(struct btrfs_trans_handle
*trans
,
872 struct btrfs_root
*root
)
874 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
875 struct btrfs_root
*reloc_root
;
876 struct btrfs_root_item
*root_item
;
879 if (!have_reloc_root(root
))
882 reloc_root
= root
->reloc_root
;
883 root_item
= &reloc_root
->root_item
;
886 * We are probably ok here, but __del_reloc_root() will drop its ref of
887 * the root. We have the ref for root->reloc_root, but just in case
888 * hold it while we update the reloc root.
890 btrfs_grab_root(reloc_root
);
892 /* root->reloc_root will stay until current relocation finished */
893 if (fs_info
->reloc_ctl
->merge_reloc_tree
&&
894 btrfs_root_refs(root_item
) == 0) {
895 set_bit(BTRFS_ROOT_DEAD_RELOC_TREE
, &root
->state
);
897 * Mark the tree as dead before we change reloc_root so
898 * have_reloc_root will not touch it from now on.
901 __del_reloc_root(reloc_root
);
904 if (reloc_root
->commit_root
!= reloc_root
->node
) {
905 __update_reloc_root(reloc_root
);
906 btrfs_set_root_node(root_item
, reloc_root
->node
);
907 free_extent_buffer(reloc_root
->commit_root
);
908 reloc_root
->commit_root
= btrfs_root_node(reloc_root
);
911 ret
= btrfs_update_root(trans
, fs_info
->tree_root
,
912 &reloc_root
->root_key
, root_item
);
914 btrfs_put_root(reloc_root
);
920 * helper to find first cached inode with inode number >= objectid
923 static struct inode
*find_next_inode(struct btrfs_root
*root
, u64 objectid
)
925 struct rb_node
*node
;
926 struct rb_node
*prev
;
927 struct btrfs_inode
*entry
;
930 spin_lock(&root
->inode_lock
);
932 node
= root
->inode_tree
.rb_node
;
936 entry
= rb_entry(node
, struct btrfs_inode
, rb_node
);
938 if (objectid
< btrfs_ino(entry
))
939 node
= node
->rb_left
;
940 else if (objectid
> btrfs_ino(entry
))
941 node
= node
->rb_right
;
947 entry
= rb_entry(prev
, struct btrfs_inode
, rb_node
);
948 if (objectid
<= btrfs_ino(entry
)) {
952 prev
= rb_next(prev
);
956 entry
= rb_entry(node
, struct btrfs_inode
, rb_node
);
957 inode
= igrab(&entry
->vfs_inode
);
959 spin_unlock(&root
->inode_lock
);
963 objectid
= btrfs_ino(entry
) + 1;
964 if (cond_resched_lock(&root
->inode_lock
))
967 node
= rb_next(node
);
969 spin_unlock(&root
->inode_lock
);
974 * get new location of data
976 static int get_new_location(struct inode
*reloc_inode
, u64
*new_bytenr
,
977 u64 bytenr
, u64 num_bytes
)
979 struct btrfs_root
*root
= BTRFS_I(reloc_inode
)->root
;
980 struct btrfs_path
*path
;
981 struct btrfs_file_extent_item
*fi
;
982 struct extent_buffer
*leaf
;
985 path
= btrfs_alloc_path();
989 bytenr
-= BTRFS_I(reloc_inode
)->index_cnt
;
990 ret
= btrfs_lookup_file_extent(NULL
, root
, path
,
991 btrfs_ino(BTRFS_I(reloc_inode
)), bytenr
, 0);
999 leaf
= path
->nodes
[0];
1000 fi
= btrfs_item_ptr(leaf
, path
->slots
[0],
1001 struct btrfs_file_extent_item
);
1003 BUG_ON(btrfs_file_extent_offset(leaf
, fi
) ||
1004 btrfs_file_extent_compression(leaf
, fi
) ||
1005 btrfs_file_extent_encryption(leaf
, fi
) ||
1006 btrfs_file_extent_other_encoding(leaf
, fi
));
1008 if (num_bytes
!= btrfs_file_extent_disk_num_bytes(leaf
, fi
)) {
1013 *new_bytenr
= btrfs_file_extent_disk_bytenr(leaf
, fi
);
1016 btrfs_free_path(path
);
1021 * update file extent items in the tree leaf to point to
1022 * the new locations.
1024 static noinline_for_stack
1025 int replace_file_extents(struct btrfs_trans_handle
*trans
,
1026 struct reloc_control
*rc
,
1027 struct btrfs_root
*root
,
1028 struct extent_buffer
*leaf
)
1030 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
1031 struct btrfs_key key
;
1032 struct btrfs_file_extent_item
*fi
;
1033 struct inode
*inode
= NULL
;
1045 if (rc
->stage
!= UPDATE_DATA_PTRS
)
1048 /* reloc trees always use full backref */
1049 if (root
->root_key
.objectid
== BTRFS_TREE_RELOC_OBJECTID
)
1050 parent
= leaf
->start
;
1054 nritems
= btrfs_header_nritems(leaf
);
1055 for (i
= 0; i
< nritems
; i
++) {
1056 struct btrfs_ref ref
= { 0 };
1059 btrfs_item_key_to_cpu(leaf
, &key
, i
);
1060 if (key
.type
!= BTRFS_EXTENT_DATA_KEY
)
1062 fi
= btrfs_item_ptr(leaf
, i
, struct btrfs_file_extent_item
);
1063 if (btrfs_file_extent_type(leaf
, fi
) ==
1064 BTRFS_FILE_EXTENT_INLINE
)
1066 bytenr
= btrfs_file_extent_disk_bytenr(leaf
, fi
);
1067 num_bytes
= btrfs_file_extent_disk_num_bytes(leaf
, fi
);
1070 if (!in_range(bytenr
, rc
->block_group
->start
,
1071 rc
->block_group
->length
))
1075 * if we are modifying block in fs tree, wait for readpage
1076 * to complete and drop the extent cache
1078 if (root
->root_key
.objectid
!= BTRFS_TREE_RELOC_OBJECTID
) {
1080 inode
= find_next_inode(root
, key
.objectid
);
1082 } else if (inode
&& btrfs_ino(BTRFS_I(inode
)) < key
.objectid
) {
1083 btrfs_add_delayed_iput(inode
);
1084 inode
= find_next_inode(root
, key
.objectid
);
1086 if (inode
&& btrfs_ino(BTRFS_I(inode
)) == key
.objectid
) {
1088 btrfs_file_extent_num_bytes(leaf
, fi
);
1089 WARN_ON(!IS_ALIGNED(key
.offset
,
1090 fs_info
->sectorsize
));
1091 WARN_ON(!IS_ALIGNED(end
, fs_info
->sectorsize
));
1093 ret
= try_lock_extent(&BTRFS_I(inode
)->io_tree
,
1098 btrfs_drop_extent_cache(BTRFS_I(inode
),
1099 key
.offset
, end
, 1);
1100 unlock_extent(&BTRFS_I(inode
)->io_tree
,
1105 ret
= get_new_location(rc
->data_inode
, &new_bytenr
,
1109 * Don't have to abort since we've not changed anything
1110 * in the file extent yet.
1115 btrfs_set_file_extent_disk_bytenr(leaf
, fi
, new_bytenr
);
1118 key
.offset
-= btrfs_file_extent_offset(leaf
, fi
);
1119 btrfs_init_generic_ref(&ref
, BTRFS_ADD_DELAYED_REF
, new_bytenr
,
1121 ref
.real_root
= root
->root_key
.objectid
;
1122 btrfs_init_data_ref(&ref
, btrfs_header_owner(leaf
),
1123 key
.objectid
, key
.offset
);
1124 ret
= btrfs_inc_extent_ref(trans
, &ref
);
1126 btrfs_abort_transaction(trans
, ret
);
1130 btrfs_init_generic_ref(&ref
, BTRFS_DROP_DELAYED_REF
, bytenr
,
1132 ref
.real_root
= root
->root_key
.objectid
;
1133 btrfs_init_data_ref(&ref
, btrfs_header_owner(leaf
),
1134 key
.objectid
, key
.offset
);
1135 ret
= btrfs_free_extent(trans
, &ref
);
1137 btrfs_abort_transaction(trans
, ret
);
1142 btrfs_mark_buffer_dirty(leaf
);
1144 btrfs_add_delayed_iput(inode
);
1148 static noinline_for_stack
1149 int memcmp_node_keys(struct extent_buffer
*eb
, int slot
,
1150 struct btrfs_path
*path
, int level
)
1152 struct btrfs_disk_key key1
;
1153 struct btrfs_disk_key key2
;
1154 btrfs_node_key(eb
, &key1
, slot
);
1155 btrfs_node_key(path
->nodes
[level
], &key2
, path
->slots
[level
]);
1156 return memcmp(&key1
, &key2
, sizeof(key1
));
1160 * try to replace tree blocks in fs tree with the new blocks
1161 * in reloc tree. tree blocks haven't been modified since the
1162 * reloc tree was create can be replaced.
1164 * if a block was replaced, level of the block + 1 is returned.
1165 * if no block got replaced, 0 is returned. if there are other
1166 * errors, a negative error number is returned.
1168 static noinline_for_stack
1169 int replace_path(struct btrfs_trans_handle
*trans
, struct reloc_control
*rc
,
1170 struct btrfs_root
*dest
, struct btrfs_root
*src
,
1171 struct btrfs_path
*path
, struct btrfs_key
*next_key
,
1172 int lowest_level
, int max_level
)
1174 struct btrfs_fs_info
*fs_info
= dest
->fs_info
;
1175 struct extent_buffer
*eb
;
1176 struct extent_buffer
*parent
;
1177 struct btrfs_ref ref
= { 0 };
1178 struct btrfs_key key
;
1190 BUG_ON(src
->root_key
.objectid
!= BTRFS_TREE_RELOC_OBJECTID
);
1191 BUG_ON(dest
->root_key
.objectid
== BTRFS_TREE_RELOC_OBJECTID
);
1193 last_snapshot
= btrfs_root_last_snapshot(&src
->root_item
);
1195 slot
= path
->slots
[lowest_level
];
1196 btrfs_node_key_to_cpu(path
->nodes
[lowest_level
], &key
, slot
);
1198 eb
= btrfs_lock_root_node(dest
);
1199 btrfs_set_lock_blocking_write(eb
);
1200 level
= btrfs_header_level(eb
);
1202 if (level
< lowest_level
) {
1203 btrfs_tree_unlock(eb
);
1204 free_extent_buffer(eb
);
1209 ret
= btrfs_cow_block(trans
, dest
, eb
, NULL
, 0, &eb
);
1212 btrfs_set_lock_blocking_write(eb
);
1215 next_key
->objectid
= (u64
)-1;
1216 next_key
->type
= (u8
)-1;
1217 next_key
->offset
= (u64
)-1;
1222 struct btrfs_key first_key
;
1224 level
= btrfs_header_level(parent
);
1225 BUG_ON(level
< lowest_level
);
1227 ret
= btrfs_bin_search(parent
, &key
, &slot
);
1230 if (ret
&& slot
> 0)
1233 if (next_key
&& slot
+ 1 < btrfs_header_nritems(parent
))
1234 btrfs_node_key_to_cpu(parent
, next_key
, slot
+ 1);
1236 old_bytenr
= btrfs_node_blockptr(parent
, slot
);
1237 blocksize
= fs_info
->nodesize
;
1238 old_ptr_gen
= btrfs_node_ptr_generation(parent
, slot
);
1239 btrfs_node_key_to_cpu(parent
, &first_key
, slot
);
1241 if (level
<= max_level
) {
1242 eb
= path
->nodes
[level
];
1243 new_bytenr
= btrfs_node_blockptr(eb
,
1244 path
->slots
[level
]);
1245 new_ptr_gen
= btrfs_node_ptr_generation(eb
,
1246 path
->slots
[level
]);
1252 if (WARN_ON(new_bytenr
> 0 && new_bytenr
== old_bytenr
)) {
1257 if (new_bytenr
== 0 || old_ptr_gen
> last_snapshot
||
1258 memcmp_node_keys(parent
, slot
, path
, level
)) {
1259 if (level
<= lowest_level
) {
1264 eb
= read_tree_block(fs_info
, old_bytenr
, old_ptr_gen
,
1265 level
- 1, &first_key
);
1269 } else if (!extent_buffer_uptodate(eb
)) {
1271 free_extent_buffer(eb
);
1274 btrfs_tree_lock(eb
);
1276 ret
= btrfs_cow_block(trans
, dest
, eb
, parent
,
1280 btrfs_set_lock_blocking_write(eb
);
1282 btrfs_tree_unlock(parent
);
1283 free_extent_buffer(parent
);
1290 btrfs_tree_unlock(parent
);
1291 free_extent_buffer(parent
);
1296 btrfs_node_key_to_cpu(path
->nodes
[level
], &key
,
1297 path
->slots
[level
]);
1298 btrfs_release_path(path
);
1300 path
->lowest_level
= level
;
1301 ret
= btrfs_search_slot(trans
, src
, &key
, path
, 0, 1);
1302 path
->lowest_level
= 0;
1306 * Info qgroup to trace both subtrees.
1308 * We must trace both trees.
1309 * 1) Tree reloc subtree
1310 * If not traced, we will leak data numbers
1312 * If not traced, we will double count old data
1314 * We don't scan the subtree right now, but only record
1315 * the swapped tree blocks.
1316 * The real subtree rescan is delayed until we have new
1317 * CoW on the subtree root node before transaction commit.
1319 ret
= btrfs_qgroup_add_swapped_blocks(trans
, dest
,
1320 rc
->block_group
, parent
, slot
,
1321 path
->nodes
[level
], path
->slots
[level
],
1326 * swap blocks in fs tree and reloc tree.
1328 btrfs_set_node_blockptr(parent
, slot
, new_bytenr
);
1329 btrfs_set_node_ptr_generation(parent
, slot
, new_ptr_gen
);
1330 btrfs_mark_buffer_dirty(parent
);
1332 btrfs_set_node_blockptr(path
->nodes
[level
],
1333 path
->slots
[level
], old_bytenr
);
1334 btrfs_set_node_ptr_generation(path
->nodes
[level
],
1335 path
->slots
[level
], old_ptr_gen
);
1336 btrfs_mark_buffer_dirty(path
->nodes
[level
]);
1338 btrfs_init_generic_ref(&ref
, BTRFS_ADD_DELAYED_REF
, old_bytenr
,
1339 blocksize
, path
->nodes
[level
]->start
);
1340 ref
.skip_qgroup
= true;
1341 btrfs_init_tree_ref(&ref
, level
- 1, src
->root_key
.objectid
);
1342 ret
= btrfs_inc_extent_ref(trans
, &ref
);
1344 btrfs_init_generic_ref(&ref
, BTRFS_ADD_DELAYED_REF
, new_bytenr
,
1346 ref
.skip_qgroup
= true;
1347 btrfs_init_tree_ref(&ref
, level
- 1, dest
->root_key
.objectid
);
1348 ret
= btrfs_inc_extent_ref(trans
, &ref
);
1351 btrfs_init_generic_ref(&ref
, BTRFS_DROP_DELAYED_REF
, new_bytenr
,
1352 blocksize
, path
->nodes
[level
]->start
);
1353 btrfs_init_tree_ref(&ref
, level
- 1, src
->root_key
.objectid
);
1354 ref
.skip_qgroup
= true;
1355 ret
= btrfs_free_extent(trans
, &ref
);
1358 btrfs_init_generic_ref(&ref
, BTRFS_DROP_DELAYED_REF
, old_bytenr
,
1360 btrfs_init_tree_ref(&ref
, level
- 1, dest
->root_key
.objectid
);
1361 ref
.skip_qgroup
= true;
1362 ret
= btrfs_free_extent(trans
, &ref
);
1365 btrfs_unlock_up_safe(path
, 0);
1370 btrfs_tree_unlock(parent
);
1371 free_extent_buffer(parent
);
1376 * helper to find next relocated block in reloc tree
1378 static noinline_for_stack
1379 int walk_up_reloc_tree(struct btrfs_root
*root
, struct btrfs_path
*path
,
1382 struct extent_buffer
*eb
;
1387 last_snapshot
= btrfs_root_last_snapshot(&root
->root_item
);
1389 for (i
= 0; i
< *level
; i
++) {
1390 free_extent_buffer(path
->nodes
[i
]);
1391 path
->nodes
[i
] = NULL
;
1394 for (i
= *level
; i
< BTRFS_MAX_LEVEL
&& path
->nodes
[i
]; i
++) {
1395 eb
= path
->nodes
[i
];
1396 nritems
= btrfs_header_nritems(eb
);
1397 while (path
->slots
[i
] + 1 < nritems
) {
1399 if (btrfs_node_ptr_generation(eb
, path
->slots
[i
]) <=
1406 free_extent_buffer(path
->nodes
[i
]);
1407 path
->nodes
[i
] = NULL
;
1413 * walk down reloc tree to find relocated block of lowest level
1415 static noinline_for_stack
1416 int walk_down_reloc_tree(struct btrfs_root
*root
, struct btrfs_path
*path
,
1419 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
1420 struct extent_buffer
*eb
= NULL
;
1427 last_snapshot
= btrfs_root_last_snapshot(&root
->root_item
);
1429 for (i
= *level
; i
> 0; i
--) {
1430 struct btrfs_key first_key
;
1432 eb
= path
->nodes
[i
];
1433 nritems
= btrfs_header_nritems(eb
);
1434 while (path
->slots
[i
] < nritems
) {
1435 ptr_gen
= btrfs_node_ptr_generation(eb
, path
->slots
[i
]);
1436 if (ptr_gen
> last_snapshot
)
1440 if (path
->slots
[i
] >= nritems
) {
1451 bytenr
= btrfs_node_blockptr(eb
, path
->slots
[i
]);
1452 btrfs_node_key_to_cpu(eb
, &first_key
, path
->slots
[i
]);
1453 eb
= read_tree_block(fs_info
, bytenr
, ptr_gen
, i
- 1,
1457 } else if (!extent_buffer_uptodate(eb
)) {
1458 free_extent_buffer(eb
);
1461 BUG_ON(btrfs_header_level(eb
) != i
- 1);
1462 path
->nodes
[i
- 1] = eb
;
1463 path
->slots
[i
- 1] = 0;
1469 * invalidate extent cache for file extents whose key in range of
1470 * [min_key, max_key)
1472 static int invalidate_extent_cache(struct btrfs_root
*root
,
1473 struct btrfs_key
*min_key
,
1474 struct btrfs_key
*max_key
)
1476 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
1477 struct inode
*inode
= NULL
;
1482 objectid
= min_key
->objectid
;
1487 if (objectid
> max_key
->objectid
)
1490 inode
= find_next_inode(root
, objectid
);
1493 ino
= btrfs_ino(BTRFS_I(inode
));
1495 if (ino
> max_key
->objectid
) {
1501 if (!S_ISREG(inode
->i_mode
))
1504 if (unlikely(min_key
->objectid
== ino
)) {
1505 if (min_key
->type
> BTRFS_EXTENT_DATA_KEY
)
1507 if (min_key
->type
< BTRFS_EXTENT_DATA_KEY
)
1510 start
= min_key
->offset
;
1511 WARN_ON(!IS_ALIGNED(start
, fs_info
->sectorsize
));
1517 if (unlikely(max_key
->objectid
== ino
)) {
1518 if (max_key
->type
< BTRFS_EXTENT_DATA_KEY
)
1520 if (max_key
->type
> BTRFS_EXTENT_DATA_KEY
) {
1523 if (max_key
->offset
== 0)
1525 end
= max_key
->offset
;
1526 WARN_ON(!IS_ALIGNED(end
, fs_info
->sectorsize
));
1533 /* the lock_extent waits for readpage to complete */
1534 lock_extent(&BTRFS_I(inode
)->io_tree
, start
, end
);
1535 btrfs_drop_extent_cache(BTRFS_I(inode
), start
, end
, 1);
1536 unlock_extent(&BTRFS_I(inode
)->io_tree
, start
, end
);
1541 static int find_next_key(struct btrfs_path
*path
, int level
,
1542 struct btrfs_key
*key
)
1545 while (level
< BTRFS_MAX_LEVEL
) {
1546 if (!path
->nodes
[level
])
1548 if (path
->slots
[level
] + 1 <
1549 btrfs_header_nritems(path
->nodes
[level
])) {
1550 btrfs_node_key_to_cpu(path
->nodes
[level
], key
,
1551 path
->slots
[level
] + 1);
1560 * Insert current subvolume into reloc_control::dirty_subvol_roots
1562 static void insert_dirty_subvol(struct btrfs_trans_handle
*trans
,
1563 struct reloc_control
*rc
,
1564 struct btrfs_root
*root
)
1566 struct btrfs_root
*reloc_root
= root
->reloc_root
;
1567 struct btrfs_root_item
*reloc_root_item
;
1569 /* @root must be a subvolume tree root with a valid reloc tree */
1570 ASSERT(root
->root_key
.objectid
!= BTRFS_TREE_RELOC_OBJECTID
);
1573 reloc_root_item
= &reloc_root
->root_item
;
1574 memset(&reloc_root_item
->drop_progress
, 0,
1575 sizeof(reloc_root_item
->drop_progress
));
1576 reloc_root_item
->drop_level
= 0;
1577 btrfs_set_root_refs(reloc_root_item
, 0);
1578 btrfs_update_reloc_root(trans
, root
);
1580 if (list_empty(&root
->reloc_dirty_list
)) {
1581 btrfs_grab_root(root
);
1582 list_add_tail(&root
->reloc_dirty_list
, &rc
->dirty_subvol_roots
);
1586 static int clean_dirty_subvols(struct reloc_control
*rc
)
1588 struct btrfs_root
*root
;
1589 struct btrfs_root
*next
;
1593 list_for_each_entry_safe(root
, next
, &rc
->dirty_subvol_roots
,
1595 if (root
->root_key
.objectid
!= BTRFS_TREE_RELOC_OBJECTID
) {
1596 /* Merged subvolume, cleanup its reloc root */
1597 struct btrfs_root
*reloc_root
= root
->reloc_root
;
1599 list_del_init(&root
->reloc_dirty_list
);
1600 root
->reloc_root
= NULL
;
1602 * Need barrier to ensure clear_bit() only happens after
1603 * root->reloc_root = NULL. Pairs with have_reloc_root.
1606 clear_bit(BTRFS_ROOT_DEAD_RELOC_TREE
, &root
->state
);
1609 * btrfs_drop_snapshot drops our ref we hold for
1610 * ->reloc_root. If it fails however we must
1611 * drop the ref ourselves.
1613 ret2
= btrfs_drop_snapshot(reloc_root
, 0, 1);
1615 btrfs_put_root(reloc_root
);
1620 btrfs_put_root(root
);
1622 /* Orphan reloc tree, just clean it up */
1623 ret2
= btrfs_drop_snapshot(root
, 0, 1);
1625 btrfs_put_root(root
);
1635 * merge the relocated tree blocks in reloc tree with corresponding
1638 static noinline_for_stack
int merge_reloc_root(struct reloc_control
*rc
,
1639 struct btrfs_root
*root
)
1641 struct btrfs_fs_info
*fs_info
= rc
->extent_root
->fs_info
;
1642 struct btrfs_key key
;
1643 struct btrfs_key next_key
;
1644 struct btrfs_trans_handle
*trans
= NULL
;
1645 struct btrfs_root
*reloc_root
;
1646 struct btrfs_root_item
*root_item
;
1647 struct btrfs_path
*path
;
1648 struct extent_buffer
*leaf
;
1656 path
= btrfs_alloc_path();
1659 path
->reada
= READA_FORWARD
;
1661 reloc_root
= root
->reloc_root
;
1662 root_item
= &reloc_root
->root_item
;
1664 if (btrfs_disk_key_objectid(&root_item
->drop_progress
) == 0) {
1665 level
= btrfs_root_level(root_item
);
1666 atomic_inc(&reloc_root
->node
->refs
);
1667 path
->nodes
[level
] = reloc_root
->node
;
1668 path
->slots
[level
] = 0;
1670 btrfs_disk_key_to_cpu(&key
, &root_item
->drop_progress
);
1672 level
= root_item
->drop_level
;
1674 path
->lowest_level
= level
;
1675 ret
= btrfs_search_slot(NULL
, reloc_root
, &key
, path
, 0, 0);
1676 path
->lowest_level
= 0;
1678 btrfs_free_path(path
);
1682 btrfs_node_key_to_cpu(path
->nodes
[level
], &next_key
,
1683 path
->slots
[level
]);
1684 WARN_ON(memcmp(&key
, &next_key
, sizeof(key
)));
1686 btrfs_unlock_up_safe(path
, 0);
1689 min_reserved
= fs_info
->nodesize
* (BTRFS_MAX_LEVEL
- 1) * 2;
1690 memset(&next_key
, 0, sizeof(next_key
));
1693 ret
= btrfs_block_rsv_refill(root
, rc
->block_rsv
, min_reserved
,
1694 BTRFS_RESERVE_FLUSH_ALL
);
1699 trans
= btrfs_start_transaction(root
, 0);
1700 if (IS_ERR(trans
)) {
1701 err
= PTR_ERR(trans
);
1707 * At this point we no longer have a reloc_control, so we can't
1708 * depend on btrfs_init_reloc_root to update our last_trans.
1710 * But that's ok, we started the trans handle on our
1711 * corresponding fs_root, which means it's been added to the
1712 * dirty list. At commit time we'll still call
1713 * btrfs_update_reloc_root() and update our root item
1716 reloc_root
->last_trans
= trans
->transid
;
1717 trans
->block_rsv
= rc
->block_rsv
;
1722 ret
= walk_down_reloc_tree(reloc_root
, path
, &level
);
1730 if (!find_next_key(path
, level
, &key
) &&
1731 btrfs_comp_cpu_keys(&next_key
, &key
) >= 0) {
1734 ret
= replace_path(trans
, rc
, root
, reloc_root
, path
,
1735 &next_key
, level
, max_level
);
1744 btrfs_node_key_to_cpu(path
->nodes
[level
], &key
,
1745 path
->slots
[level
]);
1749 ret
= walk_up_reloc_tree(reloc_root
, path
, &level
);
1755 * save the merging progress in the drop_progress.
1756 * this is OK since root refs == 1 in this case.
1758 btrfs_node_key(path
->nodes
[level
], &root_item
->drop_progress
,
1759 path
->slots
[level
]);
1760 root_item
->drop_level
= level
;
1762 btrfs_end_transaction_throttle(trans
);
1765 btrfs_btree_balance_dirty(fs_info
);
1767 if (replaced
&& rc
->stage
== UPDATE_DATA_PTRS
)
1768 invalidate_extent_cache(root
, &key
, &next_key
);
1772 * handle the case only one block in the fs tree need to be
1773 * relocated and the block is tree root.
1775 leaf
= btrfs_lock_root_node(root
);
1776 ret
= btrfs_cow_block(trans
, root
, leaf
, NULL
, 0, &leaf
);
1777 btrfs_tree_unlock(leaf
);
1778 free_extent_buffer(leaf
);
1782 btrfs_free_path(path
);
1785 insert_dirty_subvol(trans
, rc
, root
);
1788 btrfs_end_transaction_throttle(trans
);
1790 btrfs_btree_balance_dirty(fs_info
);
1792 if (replaced
&& rc
->stage
== UPDATE_DATA_PTRS
)
1793 invalidate_extent_cache(root
, &key
, &next_key
);
1798 static noinline_for_stack
1799 int prepare_to_merge(struct reloc_control
*rc
, int err
)
1801 struct btrfs_root
*root
= rc
->extent_root
;
1802 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
1803 struct btrfs_root
*reloc_root
;
1804 struct btrfs_trans_handle
*trans
;
1805 LIST_HEAD(reloc_roots
);
1809 mutex_lock(&fs_info
->reloc_mutex
);
1810 rc
->merging_rsv_size
+= fs_info
->nodesize
* (BTRFS_MAX_LEVEL
- 1) * 2;
1811 rc
->merging_rsv_size
+= rc
->nodes_relocated
* 2;
1812 mutex_unlock(&fs_info
->reloc_mutex
);
1816 num_bytes
= rc
->merging_rsv_size
;
1817 ret
= btrfs_block_rsv_add(root
, rc
->block_rsv
, num_bytes
,
1818 BTRFS_RESERVE_FLUSH_ALL
);
1823 trans
= btrfs_join_transaction(rc
->extent_root
);
1824 if (IS_ERR(trans
)) {
1826 btrfs_block_rsv_release(fs_info
, rc
->block_rsv
,
1828 return PTR_ERR(trans
);
1832 if (num_bytes
!= rc
->merging_rsv_size
) {
1833 btrfs_end_transaction(trans
);
1834 btrfs_block_rsv_release(fs_info
, rc
->block_rsv
,
1840 rc
->merge_reloc_tree
= 1;
1842 while (!list_empty(&rc
->reloc_roots
)) {
1843 reloc_root
= list_entry(rc
->reloc_roots
.next
,
1844 struct btrfs_root
, root_list
);
1845 list_del_init(&reloc_root
->root_list
);
1847 root
= btrfs_get_fs_root(fs_info
, reloc_root
->root_key
.offset
,
1849 BUG_ON(IS_ERR(root
));
1850 BUG_ON(root
->reloc_root
!= reloc_root
);
1853 * set reference count to 1, so btrfs_recover_relocation
1854 * knows it should resumes merging
1857 btrfs_set_root_refs(&reloc_root
->root_item
, 1);
1858 btrfs_update_reloc_root(trans
, root
);
1860 list_add(&reloc_root
->root_list
, &reloc_roots
);
1861 btrfs_put_root(root
);
1864 list_splice(&reloc_roots
, &rc
->reloc_roots
);
1867 btrfs_commit_transaction(trans
);
1869 btrfs_end_transaction(trans
);
1873 static noinline_for_stack
1874 void free_reloc_roots(struct list_head
*list
)
1876 struct btrfs_root
*reloc_root
, *tmp
;
1878 list_for_each_entry_safe(reloc_root
, tmp
, list
, root_list
)
1879 __del_reloc_root(reloc_root
);
1882 static noinline_for_stack
1883 void merge_reloc_roots(struct reloc_control
*rc
)
1885 struct btrfs_fs_info
*fs_info
= rc
->extent_root
->fs_info
;
1886 struct btrfs_root
*root
;
1887 struct btrfs_root
*reloc_root
;
1888 LIST_HEAD(reloc_roots
);
1892 root
= rc
->extent_root
;
1895 * this serializes us with btrfs_record_root_in_transaction,
1896 * we have to make sure nobody is in the middle of
1897 * adding their roots to the list while we are
1900 mutex_lock(&fs_info
->reloc_mutex
);
1901 list_splice_init(&rc
->reloc_roots
, &reloc_roots
);
1902 mutex_unlock(&fs_info
->reloc_mutex
);
1904 while (!list_empty(&reloc_roots
)) {
1906 reloc_root
= list_entry(reloc_roots
.next
,
1907 struct btrfs_root
, root_list
);
1909 root
= btrfs_get_fs_root(fs_info
, reloc_root
->root_key
.offset
,
1911 if (btrfs_root_refs(&reloc_root
->root_item
) > 0) {
1912 BUG_ON(IS_ERR(root
));
1913 BUG_ON(root
->reloc_root
!= reloc_root
);
1914 ret
= merge_reloc_root(rc
, root
);
1915 btrfs_put_root(root
);
1917 if (list_empty(&reloc_root
->root_list
))
1918 list_add_tail(&reloc_root
->root_list
,
1923 if (!IS_ERR(root
)) {
1924 if (root
->reloc_root
== reloc_root
) {
1925 root
->reloc_root
= NULL
;
1926 btrfs_put_root(reloc_root
);
1928 clear_bit(BTRFS_ROOT_DEAD_RELOC_TREE
,
1930 btrfs_put_root(root
);
1933 list_del_init(&reloc_root
->root_list
);
1934 /* Don't forget to queue this reloc root for cleanup */
1935 list_add_tail(&reloc_root
->reloc_dirty_list
,
1936 &rc
->dirty_subvol_roots
);
1946 btrfs_handle_fs_error(fs_info
, ret
, NULL
);
1947 free_reloc_roots(&reloc_roots
);
1949 /* new reloc root may be added */
1950 mutex_lock(&fs_info
->reloc_mutex
);
1951 list_splice_init(&rc
->reloc_roots
, &reloc_roots
);
1952 mutex_unlock(&fs_info
->reloc_mutex
);
1953 free_reloc_roots(&reloc_roots
);
1959 * BUG_ON(!RB_EMPTY_ROOT(&rc->reloc_root_tree.rb_root));
1961 * here, but it's wrong. If we fail to start the transaction in
1962 * prepare_to_merge() we will have only 0 ref reloc roots, none of which
1963 * have actually been removed from the reloc_root_tree rb tree. This is
1964 * fine because we're bailing here, and we hold a reference on the root
1965 * for the list that holds it, so these roots will be cleaned up when we
1966 * do the reloc_dirty_list afterwards. Meanwhile the root->reloc_root
1967 * will be cleaned up on unmount.
1969 * The remaining nodes will be cleaned up by free_reloc_control.
1973 static void free_block_list(struct rb_root
*blocks
)
1975 struct tree_block
*block
;
1976 struct rb_node
*rb_node
;
1977 while ((rb_node
= rb_first(blocks
))) {
1978 block
= rb_entry(rb_node
, struct tree_block
, rb_node
);
1979 rb_erase(rb_node
, blocks
);
1984 static int record_reloc_root_in_trans(struct btrfs_trans_handle
*trans
,
1985 struct btrfs_root
*reloc_root
)
1987 struct btrfs_fs_info
*fs_info
= reloc_root
->fs_info
;
1988 struct btrfs_root
*root
;
1991 if (reloc_root
->last_trans
== trans
->transid
)
1994 root
= btrfs_get_fs_root(fs_info
, reloc_root
->root_key
.offset
, false);
1995 BUG_ON(IS_ERR(root
));
1996 BUG_ON(root
->reloc_root
!= reloc_root
);
1997 ret
= btrfs_record_root_in_trans(trans
, root
);
1998 btrfs_put_root(root
);
2003 static noinline_for_stack
2004 struct btrfs_root
*select_reloc_root(struct btrfs_trans_handle
*trans
,
2005 struct reloc_control
*rc
,
2006 struct btrfs_backref_node
*node
,
2007 struct btrfs_backref_edge
*edges
[])
2009 struct btrfs_backref_node
*next
;
2010 struct btrfs_root
*root
;
2016 next
= walk_up_backref(next
, edges
, &index
);
2019 BUG_ON(!test_bit(BTRFS_ROOT_SHAREABLE
, &root
->state
));
2021 if (root
->root_key
.objectid
== BTRFS_TREE_RELOC_OBJECTID
) {
2022 record_reloc_root_in_trans(trans
, root
);
2026 btrfs_record_root_in_trans(trans
, root
);
2027 root
= root
->reloc_root
;
2029 if (next
->new_bytenr
!= root
->node
->start
) {
2030 BUG_ON(next
->new_bytenr
);
2031 BUG_ON(!list_empty(&next
->list
));
2032 next
->new_bytenr
= root
->node
->start
;
2033 btrfs_put_root(next
->root
);
2034 next
->root
= btrfs_grab_root(root
);
2036 list_add_tail(&next
->list
,
2037 &rc
->backref_cache
.changed
);
2038 mark_block_processed(rc
, next
);
2044 next
= walk_down_backref(edges
, &index
);
2045 if (!next
|| next
->level
<= node
->level
)
2052 /* setup backref node path for btrfs_reloc_cow_block */
2054 rc
->backref_cache
.path
[next
->level
] = next
;
2057 next
= edges
[index
]->node
[UPPER
];
2063 * Select a tree root for relocation.
2065 * Return NULL if the block is not shareable. We should use do_relocation() in
2068 * Return a tree root pointer if the block is shareable.
2069 * Return -ENOENT if the block is root of reloc tree.
2071 static noinline_for_stack
2072 struct btrfs_root
*select_one_root(struct btrfs_backref_node
*node
)
2074 struct btrfs_backref_node
*next
;
2075 struct btrfs_root
*root
;
2076 struct btrfs_root
*fs_root
= NULL
;
2077 struct btrfs_backref_edge
*edges
[BTRFS_MAX_LEVEL
- 1];
2083 next
= walk_up_backref(next
, edges
, &index
);
2087 /* No other choice for non-shareable tree */
2088 if (!test_bit(BTRFS_ROOT_SHAREABLE
, &root
->state
))
2091 if (root
->root_key
.objectid
!= BTRFS_TREE_RELOC_OBJECTID
)
2097 next
= walk_down_backref(edges
, &index
);
2098 if (!next
|| next
->level
<= node
->level
)
2103 return ERR_PTR(-ENOENT
);
2107 static noinline_for_stack
2108 u64
calcu_metadata_size(struct reloc_control
*rc
,
2109 struct btrfs_backref_node
*node
, int reserve
)
2111 struct btrfs_fs_info
*fs_info
= rc
->extent_root
->fs_info
;
2112 struct btrfs_backref_node
*next
= node
;
2113 struct btrfs_backref_edge
*edge
;
2114 struct btrfs_backref_edge
*edges
[BTRFS_MAX_LEVEL
- 1];
2118 BUG_ON(reserve
&& node
->processed
);
2123 if (next
->processed
&& (reserve
|| next
!= node
))
2126 num_bytes
+= fs_info
->nodesize
;
2128 if (list_empty(&next
->upper
))
2131 edge
= list_entry(next
->upper
.next
,
2132 struct btrfs_backref_edge
, list
[LOWER
]);
2133 edges
[index
++] = edge
;
2134 next
= edge
->node
[UPPER
];
2136 next
= walk_down_backref(edges
, &index
);
2141 static int reserve_metadata_space(struct btrfs_trans_handle
*trans
,
2142 struct reloc_control
*rc
,
2143 struct btrfs_backref_node
*node
)
2145 struct btrfs_root
*root
= rc
->extent_root
;
2146 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
2151 num_bytes
= calcu_metadata_size(rc
, node
, 1) * 2;
2153 trans
->block_rsv
= rc
->block_rsv
;
2154 rc
->reserved_bytes
+= num_bytes
;
2157 * We are under a transaction here so we can only do limited flushing.
2158 * If we get an enospc just kick back -EAGAIN so we know to drop the
2159 * transaction and try to refill when we can flush all the things.
2161 ret
= btrfs_block_rsv_refill(root
, rc
->block_rsv
, num_bytes
,
2162 BTRFS_RESERVE_FLUSH_LIMIT
);
2164 tmp
= fs_info
->nodesize
* RELOCATION_RESERVED_NODES
;
2165 while (tmp
<= rc
->reserved_bytes
)
2168 * only one thread can access block_rsv at this point,
2169 * so we don't need hold lock to protect block_rsv.
2170 * we expand more reservation size here to allow enough
2171 * space for relocation and we will return earlier in
2174 rc
->block_rsv
->size
= tmp
+ fs_info
->nodesize
*
2175 RELOCATION_RESERVED_NODES
;
2183 * relocate a block tree, and then update pointers in upper level
2184 * blocks that reference the block to point to the new location.
2186 * if called by link_to_upper, the block has already been relocated.
2187 * in that case this function just updates pointers.
2189 static int do_relocation(struct btrfs_trans_handle
*trans
,
2190 struct reloc_control
*rc
,
2191 struct btrfs_backref_node
*node
,
2192 struct btrfs_key
*key
,
2193 struct btrfs_path
*path
, int lowest
)
2195 struct btrfs_fs_info
*fs_info
= rc
->extent_root
->fs_info
;
2196 struct btrfs_backref_node
*upper
;
2197 struct btrfs_backref_edge
*edge
;
2198 struct btrfs_backref_edge
*edges
[BTRFS_MAX_LEVEL
- 1];
2199 struct btrfs_root
*root
;
2200 struct extent_buffer
*eb
;
2208 BUG_ON(lowest
&& node
->eb
);
2210 path
->lowest_level
= node
->level
+ 1;
2211 rc
->backref_cache
.path
[node
->level
] = node
;
2212 list_for_each_entry(edge
, &node
->upper
, list
[LOWER
]) {
2213 struct btrfs_key first_key
;
2214 struct btrfs_ref ref
= { 0 };
2218 upper
= edge
->node
[UPPER
];
2219 root
= select_reloc_root(trans
, rc
, upper
, edges
);
2222 if (upper
->eb
&& !upper
->locked
) {
2224 ret
= btrfs_bin_search(upper
->eb
, key
, &slot
);
2230 bytenr
= btrfs_node_blockptr(upper
->eb
, slot
);
2231 if (node
->eb
->start
== bytenr
)
2234 btrfs_backref_drop_node_buffer(upper
);
2238 ret
= btrfs_search_slot(trans
, root
, key
, path
, 0, 1);
2245 btrfs_release_path(path
);
2250 upper
->eb
= path
->nodes
[upper
->level
];
2251 path
->nodes
[upper
->level
] = NULL
;
2253 BUG_ON(upper
->eb
!= path
->nodes
[upper
->level
]);
2257 path
->locks
[upper
->level
] = 0;
2259 slot
= path
->slots
[upper
->level
];
2260 btrfs_release_path(path
);
2262 ret
= btrfs_bin_search(upper
->eb
, key
, &slot
);
2270 bytenr
= btrfs_node_blockptr(upper
->eb
, slot
);
2272 if (bytenr
!= node
->bytenr
) {
2273 btrfs_err(root
->fs_info
,
2274 "lowest leaf/node mismatch: bytenr %llu node->bytenr %llu slot %d upper %llu",
2275 bytenr
, node
->bytenr
, slot
,
2281 if (node
->eb
->start
== bytenr
)
2285 blocksize
= root
->fs_info
->nodesize
;
2286 generation
= btrfs_node_ptr_generation(upper
->eb
, slot
);
2287 btrfs_node_key_to_cpu(upper
->eb
, &first_key
, slot
);
2288 eb
= read_tree_block(fs_info
, bytenr
, generation
,
2289 upper
->level
- 1, &first_key
);
2293 } else if (!extent_buffer_uptodate(eb
)) {
2294 free_extent_buffer(eb
);
2298 btrfs_tree_lock(eb
);
2299 btrfs_set_lock_blocking_write(eb
);
2302 ret
= btrfs_cow_block(trans
, root
, eb
, upper
->eb
,
2304 btrfs_tree_unlock(eb
);
2305 free_extent_buffer(eb
);
2310 BUG_ON(node
->eb
!= eb
);
2312 btrfs_set_node_blockptr(upper
->eb
, slot
,
2314 btrfs_set_node_ptr_generation(upper
->eb
, slot
,
2316 btrfs_mark_buffer_dirty(upper
->eb
);
2318 btrfs_init_generic_ref(&ref
, BTRFS_ADD_DELAYED_REF
,
2319 node
->eb
->start
, blocksize
,
2321 ref
.real_root
= root
->root_key
.objectid
;
2322 btrfs_init_tree_ref(&ref
, node
->level
,
2323 btrfs_header_owner(upper
->eb
));
2324 ret
= btrfs_inc_extent_ref(trans
, &ref
);
2327 ret
= btrfs_drop_subtree(trans
, root
, eb
, upper
->eb
);
2331 if (!upper
->pending
)
2332 btrfs_backref_drop_node_buffer(upper
);
2334 btrfs_backref_unlock_node_buffer(upper
);
2339 if (!err
&& node
->pending
) {
2340 btrfs_backref_drop_node_buffer(node
);
2341 list_move_tail(&node
->list
, &rc
->backref_cache
.changed
);
2345 path
->lowest_level
= 0;
2346 BUG_ON(err
== -ENOSPC
);
2350 static int link_to_upper(struct btrfs_trans_handle
*trans
,
2351 struct reloc_control
*rc
,
2352 struct btrfs_backref_node
*node
,
2353 struct btrfs_path
*path
)
2355 struct btrfs_key key
;
2357 btrfs_node_key_to_cpu(node
->eb
, &key
, 0);
2358 return do_relocation(trans
, rc
, node
, &key
, path
, 0);
2361 static int finish_pending_nodes(struct btrfs_trans_handle
*trans
,
2362 struct reloc_control
*rc
,
2363 struct btrfs_path
*path
, int err
)
2366 struct btrfs_backref_cache
*cache
= &rc
->backref_cache
;
2367 struct btrfs_backref_node
*node
;
2371 for (level
= 0; level
< BTRFS_MAX_LEVEL
; level
++) {
2372 while (!list_empty(&cache
->pending
[level
])) {
2373 node
= list_entry(cache
->pending
[level
].next
,
2374 struct btrfs_backref_node
, list
);
2375 list_move_tail(&node
->list
, &list
);
2376 BUG_ON(!node
->pending
);
2379 ret
= link_to_upper(trans
, rc
, node
, path
);
2384 list_splice_init(&list
, &cache
->pending
[level
]);
2390 * mark a block and all blocks directly/indirectly reference the block
2393 static void update_processed_blocks(struct reloc_control
*rc
,
2394 struct btrfs_backref_node
*node
)
2396 struct btrfs_backref_node
*next
= node
;
2397 struct btrfs_backref_edge
*edge
;
2398 struct btrfs_backref_edge
*edges
[BTRFS_MAX_LEVEL
- 1];
2404 if (next
->processed
)
2407 mark_block_processed(rc
, next
);
2409 if (list_empty(&next
->upper
))
2412 edge
= list_entry(next
->upper
.next
,
2413 struct btrfs_backref_edge
, list
[LOWER
]);
2414 edges
[index
++] = edge
;
2415 next
= edge
->node
[UPPER
];
2417 next
= walk_down_backref(edges
, &index
);
2421 static int tree_block_processed(u64 bytenr
, struct reloc_control
*rc
)
2423 u32 blocksize
= rc
->extent_root
->fs_info
->nodesize
;
2425 if (test_range_bit(&rc
->processed_blocks
, bytenr
,
2426 bytenr
+ blocksize
- 1, EXTENT_DIRTY
, 1, NULL
))
2431 static int get_tree_block_key(struct btrfs_fs_info
*fs_info
,
2432 struct tree_block
*block
)
2434 struct extent_buffer
*eb
;
2436 eb
= read_tree_block(fs_info
, block
->bytenr
, block
->key
.offset
,
2437 block
->level
, NULL
);
2440 } else if (!extent_buffer_uptodate(eb
)) {
2441 free_extent_buffer(eb
);
2444 if (block
->level
== 0)
2445 btrfs_item_key_to_cpu(eb
, &block
->key
, 0);
2447 btrfs_node_key_to_cpu(eb
, &block
->key
, 0);
2448 free_extent_buffer(eb
);
2449 block
->key_ready
= 1;
2454 * helper function to relocate a tree block
2456 static int relocate_tree_block(struct btrfs_trans_handle
*trans
,
2457 struct reloc_control
*rc
,
2458 struct btrfs_backref_node
*node
,
2459 struct btrfs_key
*key
,
2460 struct btrfs_path
*path
)
2462 struct btrfs_root
*root
;
2469 * If we fail here we want to drop our backref_node because we are going
2470 * to start over and regenerate the tree for it.
2472 ret
= reserve_metadata_space(trans
, rc
, node
);
2476 BUG_ON(node
->processed
);
2477 root
= select_one_root(node
);
2478 if (root
== ERR_PTR(-ENOENT
)) {
2479 update_processed_blocks(rc
, node
);
2484 if (test_bit(BTRFS_ROOT_SHAREABLE
, &root
->state
)) {
2485 BUG_ON(node
->new_bytenr
);
2486 BUG_ON(!list_empty(&node
->list
));
2487 btrfs_record_root_in_trans(trans
, root
);
2488 root
= root
->reloc_root
;
2489 node
->new_bytenr
= root
->node
->start
;
2490 btrfs_put_root(node
->root
);
2491 node
->root
= btrfs_grab_root(root
);
2493 list_add_tail(&node
->list
, &rc
->backref_cache
.changed
);
2495 path
->lowest_level
= node
->level
;
2496 ret
= btrfs_search_slot(trans
, root
, key
, path
, 0, 1);
2497 btrfs_release_path(path
);
2502 update_processed_blocks(rc
, node
);
2504 ret
= do_relocation(trans
, rc
, node
, key
, path
, 1);
2507 if (ret
|| node
->level
== 0 || node
->cowonly
)
2508 btrfs_backref_cleanup_node(&rc
->backref_cache
, node
);
2513 * relocate a list of blocks
2515 static noinline_for_stack
2516 int relocate_tree_blocks(struct btrfs_trans_handle
*trans
,
2517 struct reloc_control
*rc
, struct rb_root
*blocks
)
2519 struct btrfs_fs_info
*fs_info
= rc
->extent_root
->fs_info
;
2520 struct btrfs_backref_node
*node
;
2521 struct btrfs_path
*path
;
2522 struct tree_block
*block
;
2523 struct tree_block
*next
;
2527 path
= btrfs_alloc_path();
2530 goto out_free_blocks
;
2533 /* Kick in readahead for tree blocks with missing keys */
2534 rbtree_postorder_for_each_entry_safe(block
, next
, blocks
, rb_node
) {
2535 if (!block
->key_ready
)
2536 readahead_tree_block(fs_info
, block
->bytenr
);
2539 /* Get first keys */
2540 rbtree_postorder_for_each_entry_safe(block
, next
, blocks
, rb_node
) {
2541 if (!block
->key_ready
) {
2542 err
= get_tree_block_key(fs_info
, block
);
2548 /* Do tree relocation */
2549 rbtree_postorder_for_each_entry_safe(block
, next
, blocks
, rb_node
) {
2550 node
= build_backref_tree(rc
, &block
->key
,
2551 block
->level
, block
->bytenr
);
2553 err
= PTR_ERR(node
);
2557 ret
= relocate_tree_block(trans
, rc
, node
, &block
->key
,
2565 err
= finish_pending_nodes(trans
, rc
, path
, err
);
2568 btrfs_free_path(path
);
2570 free_block_list(blocks
);
2574 static noinline_for_stack
2575 int prealloc_file_extent_cluster(struct inode
*inode
,
2576 struct file_extent_cluster
*cluster
)
2581 u64 offset
= BTRFS_I(inode
)->index_cnt
;
2585 u64 prealloc_start
= cluster
->start
- offset
;
2586 u64 prealloc_end
= cluster
->end
- offset
;
2588 struct extent_changeset
*data_reserved
= NULL
;
2590 BUG_ON(cluster
->start
!= cluster
->boundary
[0]);
2593 ret
= btrfs_check_data_free_space(inode
, &data_reserved
, prealloc_start
,
2594 prealloc_end
+ 1 - prealloc_start
);
2598 cur_offset
= prealloc_start
;
2599 while (nr
< cluster
->nr
) {
2600 start
= cluster
->boundary
[nr
] - offset
;
2601 if (nr
+ 1 < cluster
->nr
)
2602 end
= cluster
->boundary
[nr
+ 1] - 1 - offset
;
2604 end
= cluster
->end
- offset
;
2606 lock_extent(&BTRFS_I(inode
)->io_tree
, start
, end
);
2607 num_bytes
= end
+ 1 - start
;
2608 if (cur_offset
< start
)
2609 btrfs_free_reserved_data_space(inode
, data_reserved
,
2610 cur_offset
, start
- cur_offset
);
2611 ret
= btrfs_prealloc_file_range(inode
, 0, start
,
2612 num_bytes
, num_bytes
,
2613 end
+ 1, &alloc_hint
);
2614 cur_offset
= end
+ 1;
2615 unlock_extent(&BTRFS_I(inode
)->io_tree
, start
, end
);
2620 if (cur_offset
< prealloc_end
)
2621 btrfs_free_reserved_data_space(inode
, data_reserved
,
2622 cur_offset
, prealloc_end
+ 1 - cur_offset
);
2624 inode_unlock(inode
);
2625 extent_changeset_free(data_reserved
);
2629 static noinline_for_stack
2630 int setup_extent_mapping(struct inode
*inode
, u64 start
, u64 end
,
2633 struct extent_map_tree
*em_tree
= &BTRFS_I(inode
)->extent_tree
;
2634 struct extent_map
*em
;
2637 em
= alloc_extent_map();
2642 em
->len
= end
+ 1 - start
;
2643 em
->block_len
= em
->len
;
2644 em
->block_start
= block_start
;
2645 set_bit(EXTENT_FLAG_PINNED
, &em
->flags
);
2647 lock_extent(&BTRFS_I(inode
)->io_tree
, start
, end
);
2649 write_lock(&em_tree
->lock
);
2650 ret
= add_extent_mapping(em_tree
, em
, 0);
2651 write_unlock(&em_tree
->lock
);
2652 if (ret
!= -EEXIST
) {
2653 free_extent_map(em
);
2656 btrfs_drop_extent_cache(BTRFS_I(inode
), start
, end
, 0);
2658 unlock_extent(&BTRFS_I(inode
)->io_tree
, start
, end
);
2663 * Allow error injection to test balance cancellation
2665 int btrfs_should_cancel_balance(struct btrfs_fs_info
*fs_info
)
2667 return atomic_read(&fs_info
->balance_cancel_req
);
2669 ALLOW_ERROR_INJECTION(btrfs_should_cancel_balance
, TRUE
);
2671 static int relocate_file_extent_cluster(struct inode
*inode
,
2672 struct file_extent_cluster
*cluster
)
2674 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
2677 u64 offset
= BTRFS_I(inode
)->index_cnt
;
2678 unsigned long index
;
2679 unsigned long last_index
;
2681 struct file_ra_state
*ra
;
2682 gfp_t mask
= btrfs_alloc_write_mask(inode
->i_mapping
);
2689 ra
= kzalloc(sizeof(*ra
), GFP_NOFS
);
2693 ret
= prealloc_file_extent_cluster(inode
, cluster
);
2697 file_ra_state_init(ra
, inode
->i_mapping
);
2699 ret
= setup_extent_mapping(inode
, cluster
->start
- offset
,
2700 cluster
->end
- offset
, cluster
->start
);
2704 index
= (cluster
->start
- offset
) >> PAGE_SHIFT
;
2705 last_index
= (cluster
->end
- offset
) >> PAGE_SHIFT
;
2706 while (index
<= last_index
) {
2707 ret
= btrfs_delalloc_reserve_metadata(BTRFS_I(inode
),
2712 page
= find_lock_page(inode
->i_mapping
, index
);
2714 page_cache_sync_readahead(inode
->i_mapping
,
2716 last_index
+ 1 - index
);
2717 page
= find_or_create_page(inode
->i_mapping
, index
,
2720 btrfs_delalloc_release_metadata(BTRFS_I(inode
),
2722 btrfs_delalloc_release_extents(BTRFS_I(inode
),
2729 if (PageReadahead(page
)) {
2730 page_cache_async_readahead(inode
->i_mapping
,
2731 ra
, NULL
, page
, index
,
2732 last_index
+ 1 - index
);
2735 if (!PageUptodate(page
)) {
2736 btrfs_readpage(NULL
, page
);
2738 if (!PageUptodate(page
)) {
2741 btrfs_delalloc_release_metadata(BTRFS_I(inode
),
2743 btrfs_delalloc_release_extents(BTRFS_I(inode
),
2750 page_start
= page_offset(page
);
2751 page_end
= page_start
+ PAGE_SIZE
- 1;
2753 lock_extent(&BTRFS_I(inode
)->io_tree
, page_start
, page_end
);
2755 set_page_extent_mapped(page
);
2757 if (nr
< cluster
->nr
&&
2758 page_start
+ offset
== cluster
->boundary
[nr
]) {
2759 set_extent_bits(&BTRFS_I(inode
)->io_tree
,
2760 page_start
, page_end
,
2765 ret
= btrfs_set_extent_delalloc(inode
, page_start
, page_end
, 0,
2770 btrfs_delalloc_release_metadata(BTRFS_I(inode
),
2772 btrfs_delalloc_release_extents(BTRFS_I(inode
),
2775 clear_extent_bits(&BTRFS_I(inode
)->io_tree
,
2776 page_start
, page_end
,
2777 EXTENT_LOCKED
| EXTENT_BOUNDARY
);
2781 set_page_dirty(page
);
2783 unlock_extent(&BTRFS_I(inode
)->io_tree
,
2784 page_start
, page_end
);
2789 btrfs_delalloc_release_extents(BTRFS_I(inode
), PAGE_SIZE
);
2790 balance_dirty_pages_ratelimited(inode
->i_mapping
);
2791 btrfs_throttle(fs_info
);
2792 if (btrfs_should_cancel_balance(fs_info
)) {
2797 WARN_ON(nr
!= cluster
->nr
);
2803 static noinline_for_stack
2804 int relocate_data_extent(struct inode
*inode
, struct btrfs_key
*extent_key
,
2805 struct file_extent_cluster
*cluster
)
2809 if (cluster
->nr
> 0 && extent_key
->objectid
!= cluster
->end
+ 1) {
2810 ret
= relocate_file_extent_cluster(inode
, cluster
);
2817 cluster
->start
= extent_key
->objectid
;
2819 BUG_ON(cluster
->nr
>= MAX_EXTENTS
);
2820 cluster
->end
= extent_key
->objectid
+ extent_key
->offset
- 1;
2821 cluster
->boundary
[cluster
->nr
] = extent_key
->objectid
;
2824 if (cluster
->nr
>= MAX_EXTENTS
) {
2825 ret
= relocate_file_extent_cluster(inode
, cluster
);
2834 * helper to add a tree block to the list.
2835 * the major work is getting the generation and level of the block
2837 static int add_tree_block(struct reloc_control
*rc
,
2838 struct btrfs_key
*extent_key
,
2839 struct btrfs_path
*path
,
2840 struct rb_root
*blocks
)
2842 struct extent_buffer
*eb
;
2843 struct btrfs_extent_item
*ei
;
2844 struct btrfs_tree_block_info
*bi
;
2845 struct tree_block
*block
;
2846 struct rb_node
*rb_node
;
2851 eb
= path
->nodes
[0];
2852 item_size
= btrfs_item_size_nr(eb
, path
->slots
[0]);
2854 if (extent_key
->type
== BTRFS_METADATA_ITEM_KEY
||
2855 item_size
>= sizeof(*ei
) + sizeof(*bi
)) {
2856 ei
= btrfs_item_ptr(eb
, path
->slots
[0],
2857 struct btrfs_extent_item
);
2858 if (extent_key
->type
== BTRFS_EXTENT_ITEM_KEY
) {
2859 bi
= (struct btrfs_tree_block_info
*)(ei
+ 1);
2860 level
= btrfs_tree_block_level(eb
, bi
);
2862 level
= (int)extent_key
->offset
;
2864 generation
= btrfs_extent_generation(eb
, ei
);
2865 } else if (unlikely(item_size
== sizeof(struct btrfs_extent_item_v0
))) {
2866 btrfs_print_v0_err(eb
->fs_info
);
2867 btrfs_handle_fs_error(eb
->fs_info
, -EINVAL
, NULL
);
2873 btrfs_release_path(path
);
2875 BUG_ON(level
== -1);
2877 block
= kmalloc(sizeof(*block
), GFP_NOFS
);
2881 block
->bytenr
= extent_key
->objectid
;
2882 block
->key
.objectid
= rc
->extent_root
->fs_info
->nodesize
;
2883 block
->key
.offset
= generation
;
2884 block
->level
= level
;
2885 block
->key_ready
= 0;
2887 rb_node
= rb_simple_insert(blocks
, block
->bytenr
, &block
->rb_node
);
2889 btrfs_backref_panic(rc
->extent_root
->fs_info
, block
->bytenr
,
2896 * helper to add tree blocks for backref of type BTRFS_SHARED_DATA_REF_KEY
2898 static int __add_tree_block(struct reloc_control
*rc
,
2899 u64 bytenr
, u32 blocksize
,
2900 struct rb_root
*blocks
)
2902 struct btrfs_fs_info
*fs_info
= rc
->extent_root
->fs_info
;
2903 struct btrfs_path
*path
;
2904 struct btrfs_key key
;
2906 bool skinny
= btrfs_fs_incompat(fs_info
, SKINNY_METADATA
);
2908 if (tree_block_processed(bytenr
, rc
))
2911 if (rb_simple_search(blocks
, bytenr
))
2914 path
= btrfs_alloc_path();
2918 key
.objectid
= bytenr
;
2920 key
.type
= BTRFS_METADATA_ITEM_KEY
;
2921 key
.offset
= (u64
)-1;
2923 key
.type
= BTRFS_EXTENT_ITEM_KEY
;
2924 key
.offset
= blocksize
;
2927 path
->search_commit_root
= 1;
2928 path
->skip_locking
= 1;
2929 ret
= btrfs_search_slot(NULL
, rc
->extent_root
, &key
, path
, 0, 0);
2933 if (ret
> 0 && skinny
) {
2934 if (path
->slots
[0]) {
2936 btrfs_item_key_to_cpu(path
->nodes
[0], &key
,
2938 if (key
.objectid
== bytenr
&&
2939 (key
.type
== BTRFS_METADATA_ITEM_KEY
||
2940 (key
.type
== BTRFS_EXTENT_ITEM_KEY
&&
2941 key
.offset
== blocksize
)))
2947 btrfs_release_path(path
);
2953 btrfs_print_leaf(path
->nodes
[0]);
2955 "tree block extent item (%llu) is not found in extent tree",
2962 ret
= add_tree_block(rc
, &key
, path
, blocks
);
2964 btrfs_free_path(path
);
2968 static int delete_block_group_cache(struct btrfs_fs_info
*fs_info
,
2969 struct btrfs_block_group
*block_group
,
2970 struct inode
*inode
,
2973 struct btrfs_root
*root
= fs_info
->tree_root
;
2974 struct btrfs_trans_handle
*trans
;
2980 inode
= btrfs_iget(fs_info
->sb
, ino
, root
);
2985 ret
= btrfs_check_trunc_cache_free_space(fs_info
,
2986 &fs_info
->global_block_rsv
);
2990 trans
= btrfs_join_transaction(root
);
2991 if (IS_ERR(trans
)) {
2992 ret
= PTR_ERR(trans
);
2996 ret
= btrfs_truncate_free_space_cache(trans
, block_group
, inode
);
2998 btrfs_end_transaction(trans
);
2999 btrfs_btree_balance_dirty(fs_info
);
3006 * Locate the free space cache EXTENT_DATA in root tree leaf and delete the
3007 * cache inode, to avoid free space cache data extent blocking data relocation.
3009 static int delete_v1_space_cache(struct extent_buffer
*leaf
,
3010 struct btrfs_block_group
*block_group
,
3013 u64 space_cache_ino
;
3014 struct btrfs_file_extent_item
*ei
;
3015 struct btrfs_key key
;
3020 if (btrfs_header_owner(leaf
) != BTRFS_ROOT_TREE_OBJECTID
)
3023 for (i
= 0; i
< btrfs_header_nritems(leaf
); i
++) {
3024 btrfs_item_key_to_cpu(leaf
, &key
, i
);
3025 if (key
.type
!= BTRFS_EXTENT_DATA_KEY
)
3027 ei
= btrfs_item_ptr(leaf
, i
, struct btrfs_file_extent_item
);
3028 if (btrfs_file_extent_type(leaf
, ei
) == BTRFS_FILE_EXTENT_REG
&&
3029 btrfs_file_extent_disk_bytenr(leaf
, ei
) == data_bytenr
) {
3031 space_cache_ino
= key
.objectid
;
3037 ret
= delete_block_group_cache(leaf
->fs_info
, block_group
, NULL
,
3043 * helper to find all tree blocks that reference a given data extent
3045 static noinline_for_stack
3046 int add_data_references(struct reloc_control
*rc
,
3047 struct btrfs_key
*extent_key
,
3048 struct btrfs_path
*path
,
3049 struct rb_root
*blocks
)
3051 struct btrfs_fs_info
*fs_info
= rc
->extent_root
->fs_info
;
3052 struct ulist
*leaves
= NULL
;
3053 struct ulist_iterator leaf_uiter
;
3054 struct ulist_node
*ref_node
= NULL
;
3055 const u32 blocksize
= fs_info
->nodesize
;
3058 btrfs_release_path(path
);
3059 ret
= btrfs_find_all_leafs(NULL
, fs_info
, extent_key
->objectid
,
3060 0, &leaves
, NULL
, true);
3064 ULIST_ITER_INIT(&leaf_uiter
);
3065 while ((ref_node
= ulist_next(leaves
, &leaf_uiter
))) {
3066 struct extent_buffer
*eb
;
3068 eb
= read_tree_block(fs_info
, ref_node
->val
, 0, 0, NULL
);
3073 ret
= delete_v1_space_cache(eb
, rc
->block_group
,
3074 extent_key
->objectid
);
3075 free_extent_buffer(eb
);
3078 ret
= __add_tree_block(rc
, ref_node
->val
, blocksize
, blocks
);
3083 free_block_list(blocks
);
3089 * helper to find next unprocessed extent
3091 static noinline_for_stack
3092 int find_next_extent(struct reloc_control
*rc
, struct btrfs_path
*path
,
3093 struct btrfs_key
*extent_key
)
3095 struct btrfs_fs_info
*fs_info
= rc
->extent_root
->fs_info
;
3096 struct btrfs_key key
;
3097 struct extent_buffer
*leaf
;
3098 u64 start
, end
, last
;
3101 last
= rc
->block_group
->start
+ rc
->block_group
->length
;
3104 if (rc
->search_start
>= last
) {
3109 key
.objectid
= rc
->search_start
;
3110 key
.type
= BTRFS_EXTENT_ITEM_KEY
;
3113 path
->search_commit_root
= 1;
3114 path
->skip_locking
= 1;
3115 ret
= btrfs_search_slot(NULL
, rc
->extent_root
, &key
, path
,
3120 leaf
= path
->nodes
[0];
3121 if (path
->slots
[0] >= btrfs_header_nritems(leaf
)) {
3122 ret
= btrfs_next_leaf(rc
->extent_root
, path
);
3125 leaf
= path
->nodes
[0];
3128 btrfs_item_key_to_cpu(leaf
, &key
, path
->slots
[0]);
3129 if (key
.objectid
>= last
) {
3134 if (key
.type
!= BTRFS_EXTENT_ITEM_KEY
&&
3135 key
.type
!= BTRFS_METADATA_ITEM_KEY
) {
3140 if (key
.type
== BTRFS_EXTENT_ITEM_KEY
&&
3141 key
.objectid
+ key
.offset
<= rc
->search_start
) {
3146 if (key
.type
== BTRFS_METADATA_ITEM_KEY
&&
3147 key
.objectid
+ fs_info
->nodesize
<=
3153 ret
= find_first_extent_bit(&rc
->processed_blocks
,
3154 key
.objectid
, &start
, &end
,
3155 EXTENT_DIRTY
, NULL
);
3157 if (ret
== 0 && start
<= key
.objectid
) {
3158 btrfs_release_path(path
);
3159 rc
->search_start
= end
+ 1;
3161 if (key
.type
== BTRFS_EXTENT_ITEM_KEY
)
3162 rc
->search_start
= key
.objectid
+ key
.offset
;
3164 rc
->search_start
= key
.objectid
+
3166 memcpy(extent_key
, &key
, sizeof(key
));
3170 btrfs_release_path(path
);
3174 static void set_reloc_control(struct reloc_control
*rc
)
3176 struct btrfs_fs_info
*fs_info
= rc
->extent_root
->fs_info
;
3178 mutex_lock(&fs_info
->reloc_mutex
);
3179 fs_info
->reloc_ctl
= rc
;
3180 mutex_unlock(&fs_info
->reloc_mutex
);
3183 static void unset_reloc_control(struct reloc_control
*rc
)
3185 struct btrfs_fs_info
*fs_info
= rc
->extent_root
->fs_info
;
3187 mutex_lock(&fs_info
->reloc_mutex
);
3188 fs_info
->reloc_ctl
= NULL
;
3189 mutex_unlock(&fs_info
->reloc_mutex
);
3192 static int check_extent_flags(u64 flags
)
3194 if ((flags
& BTRFS_EXTENT_FLAG_DATA
) &&
3195 (flags
& BTRFS_EXTENT_FLAG_TREE_BLOCK
))
3197 if (!(flags
& BTRFS_EXTENT_FLAG_DATA
) &&
3198 !(flags
& BTRFS_EXTENT_FLAG_TREE_BLOCK
))
3200 if ((flags
& BTRFS_EXTENT_FLAG_DATA
) &&
3201 (flags
& BTRFS_BLOCK_FLAG_FULL_BACKREF
))
3206 static noinline_for_stack
3207 int prepare_to_relocate(struct reloc_control
*rc
)
3209 struct btrfs_trans_handle
*trans
;
3212 rc
->block_rsv
= btrfs_alloc_block_rsv(rc
->extent_root
->fs_info
,
3213 BTRFS_BLOCK_RSV_TEMP
);
3217 memset(&rc
->cluster
, 0, sizeof(rc
->cluster
));
3218 rc
->search_start
= rc
->block_group
->start
;
3219 rc
->extents_found
= 0;
3220 rc
->nodes_relocated
= 0;
3221 rc
->merging_rsv_size
= 0;
3222 rc
->reserved_bytes
= 0;
3223 rc
->block_rsv
->size
= rc
->extent_root
->fs_info
->nodesize
*
3224 RELOCATION_RESERVED_NODES
;
3225 ret
= btrfs_block_rsv_refill(rc
->extent_root
,
3226 rc
->block_rsv
, rc
->block_rsv
->size
,
3227 BTRFS_RESERVE_FLUSH_ALL
);
3231 rc
->create_reloc_tree
= 1;
3232 set_reloc_control(rc
);
3234 trans
= btrfs_join_transaction(rc
->extent_root
);
3235 if (IS_ERR(trans
)) {
3236 unset_reloc_control(rc
);
3238 * extent tree is not a ref_cow tree and has no reloc_root to
3239 * cleanup. And callers are responsible to free the above
3242 return PTR_ERR(trans
);
3244 btrfs_commit_transaction(trans
);
3248 static noinline_for_stack
int relocate_block_group(struct reloc_control
*rc
)
3250 struct btrfs_fs_info
*fs_info
= rc
->extent_root
->fs_info
;
3251 struct rb_root blocks
= RB_ROOT
;
3252 struct btrfs_key key
;
3253 struct btrfs_trans_handle
*trans
= NULL
;
3254 struct btrfs_path
*path
;
3255 struct btrfs_extent_item
*ei
;
3262 path
= btrfs_alloc_path();
3265 path
->reada
= READA_FORWARD
;
3267 ret
= prepare_to_relocate(rc
);
3274 rc
->reserved_bytes
= 0;
3275 ret
= btrfs_block_rsv_refill(rc
->extent_root
,
3276 rc
->block_rsv
, rc
->block_rsv
->size
,
3277 BTRFS_RESERVE_FLUSH_ALL
);
3283 trans
= btrfs_start_transaction(rc
->extent_root
, 0);
3284 if (IS_ERR(trans
)) {
3285 err
= PTR_ERR(trans
);
3290 if (update_backref_cache(trans
, &rc
->backref_cache
)) {
3291 btrfs_end_transaction(trans
);
3296 ret
= find_next_extent(rc
, path
, &key
);
3302 rc
->extents_found
++;
3304 ei
= btrfs_item_ptr(path
->nodes
[0], path
->slots
[0],
3305 struct btrfs_extent_item
);
3306 item_size
= btrfs_item_size_nr(path
->nodes
[0], path
->slots
[0]);
3307 if (item_size
>= sizeof(*ei
)) {
3308 flags
= btrfs_extent_flags(path
->nodes
[0], ei
);
3309 ret
= check_extent_flags(flags
);
3311 } else if (unlikely(item_size
== sizeof(struct btrfs_extent_item_v0
))) {
3313 btrfs_print_v0_err(trans
->fs_info
);
3314 btrfs_abort_transaction(trans
, err
);
3320 if (flags
& BTRFS_EXTENT_FLAG_TREE_BLOCK
) {
3321 ret
= add_tree_block(rc
, &key
, path
, &blocks
);
3322 } else if (rc
->stage
== UPDATE_DATA_PTRS
&&
3323 (flags
& BTRFS_EXTENT_FLAG_DATA
)) {
3324 ret
= add_data_references(rc
, &key
, path
, &blocks
);
3326 btrfs_release_path(path
);
3334 if (!RB_EMPTY_ROOT(&blocks
)) {
3335 ret
= relocate_tree_blocks(trans
, rc
, &blocks
);
3337 if (ret
!= -EAGAIN
) {
3341 rc
->extents_found
--;
3342 rc
->search_start
= key
.objectid
;
3346 btrfs_end_transaction_throttle(trans
);
3347 btrfs_btree_balance_dirty(fs_info
);
3350 if (rc
->stage
== MOVE_DATA_EXTENTS
&&
3351 (flags
& BTRFS_EXTENT_FLAG_DATA
)) {
3352 rc
->found_file_extent
= 1;
3353 ret
= relocate_data_extent(rc
->data_inode
,
3354 &key
, &rc
->cluster
);
3360 if (btrfs_should_cancel_balance(fs_info
)) {
3365 if (trans
&& progress
&& err
== -ENOSPC
) {
3366 ret
= btrfs_force_chunk_alloc(trans
, rc
->block_group
->flags
);
3374 btrfs_release_path(path
);
3375 clear_extent_bits(&rc
->processed_blocks
, 0, (u64
)-1, EXTENT_DIRTY
);
3378 btrfs_end_transaction_throttle(trans
);
3379 btrfs_btree_balance_dirty(fs_info
);
3383 ret
= relocate_file_extent_cluster(rc
->data_inode
,
3389 rc
->create_reloc_tree
= 0;
3390 set_reloc_control(rc
);
3392 btrfs_backref_release_cache(&rc
->backref_cache
);
3393 btrfs_block_rsv_release(fs_info
, rc
->block_rsv
, (u64
)-1, NULL
);
3396 * Even in the case when the relocation is cancelled, we should all go
3397 * through prepare_to_merge() and merge_reloc_roots().
3399 * For error (including cancelled balance), prepare_to_merge() will
3400 * mark all reloc trees orphan, then queue them for cleanup in
3401 * merge_reloc_roots()
3403 err
= prepare_to_merge(rc
, err
);
3405 merge_reloc_roots(rc
);
3407 rc
->merge_reloc_tree
= 0;
3408 unset_reloc_control(rc
);
3409 btrfs_block_rsv_release(fs_info
, rc
->block_rsv
, (u64
)-1, NULL
);
3411 /* get rid of pinned extents */
3412 trans
= btrfs_join_transaction(rc
->extent_root
);
3413 if (IS_ERR(trans
)) {
3414 err
= PTR_ERR(trans
);
3417 btrfs_commit_transaction(trans
);
3419 ret
= clean_dirty_subvols(rc
);
3420 if (ret
< 0 && !err
)
3422 btrfs_free_block_rsv(fs_info
, rc
->block_rsv
);
3423 btrfs_free_path(path
);
3427 static int __insert_orphan_inode(struct btrfs_trans_handle
*trans
,
3428 struct btrfs_root
*root
, u64 objectid
)
3430 struct btrfs_path
*path
;
3431 struct btrfs_inode_item
*item
;
3432 struct extent_buffer
*leaf
;
3435 path
= btrfs_alloc_path();
3439 ret
= btrfs_insert_empty_inode(trans
, root
, path
, objectid
);
3443 leaf
= path
->nodes
[0];
3444 item
= btrfs_item_ptr(leaf
, path
->slots
[0], struct btrfs_inode_item
);
3445 memzero_extent_buffer(leaf
, (unsigned long)item
, sizeof(*item
));
3446 btrfs_set_inode_generation(leaf
, item
, 1);
3447 btrfs_set_inode_size(leaf
, item
, 0);
3448 btrfs_set_inode_mode(leaf
, item
, S_IFREG
| 0600);
3449 btrfs_set_inode_flags(leaf
, item
, BTRFS_INODE_NOCOMPRESS
|
3450 BTRFS_INODE_PREALLOC
);
3451 btrfs_mark_buffer_dirty(leaf
);
3453 btrfs_free_path(path
);
3458 * helper to create inode for data relocation.
3459 * the inode is in data relocation tree and its link count is 0
3461 static noinline_for_stack
3462 struct inode
*create_reloc_inode(struct btrfs_fs_info
*fs_info
,
3463 struct btrfs_block_group
*group
)
3465 struct inode
*inode
= NULL
;
3466 struct btrfs_trans_handle
*trans
;
3467 struct btrfs_root
*root
;
3471 root
= btrfs_grab_root(fs_info
->data_reloc_root
);
3472 trans
= btrfs_start_transaction(root
, 6);
3473 if (IS_ERR(trans
)) {
3474 btrfs_put_root(root
);
3475 return ERR_CAST(trans
);
3478 err
= btrfs_find_free_objectid(root
, &objectid
);
3482 err
= __insert_orphan_inode(trans
, root
, objectid
);
3485 inode
= btrfs_iget(fs_info
->sb
, objectid
, root
);
3486 BUG_ON(IS_ERR(inode
));
3487 BTRFS_I(inode
)->index_cnt
= group
->start
;
3489 err
= btrfs_orphan_add(trans
, BTRFS_I(inode
));
3491 btrfs_put_root(root
);
3492 btrfs_end_transaction(trans
);
3493 btrfs_btree_balance_dirty(fs_info
);
3497 inode
= ERR_PTR(err
);
3502 static struct reloc_control
*alloc_reloc_control(struct btrfs_fs_info
*fs_info
)
3504 struct reloc_control
*rc
;
3506 rc
= kzalloc(sizeof(*rc
), GFP_NOFS
);
3510 INIT_LIST_HEAD(&rc
->reloc_roots
);
3511 INIT_LIST_HEAD(&rc
->dirty_subvol_roots
);
3512 btrfs_backref_init_cache(fs_info
, &rc
->backref_cache
, 1);
3513 mapping_tree_init(&rc
->reloc_root_tree
);
3514 extent_io_tree_init(fs_info
, &rc
->processed_blocks
,
3515 IO_TREE_RELOC_BLOCKS
, NULL
);
3519 static void free_reloc_control(struct reloc_control
*rc
)
3521 struct mapping_node
*node
, *tmp
;
3523 free_reloc_roots(&rc
->reloc_roots
);
3524 rbtree_postorder_for_each_entry_safe(node
, tmp
,
3525 &rc
->reloc_root_tree
.rb_root
, rb_node
)
3532 * Print the block group being relocated
3534 static void describe_relocation(struct btrfs_fs_info
*fs_info
,
3535 struct btrfs_block_group
*block_group
)
3537 char buf
[128] = {'\0'};
3539 btrfs_describe_block_groups(block_group
->flags
, buf
, sizeof(buf
));
3542 "relocating block group %llu flags %s",
3543 block_group
->start
, buf
);
3546 static const char *stage_to_string(int stage
)
3548 if (stage
== MOVE_DATA_EXTENTS
)
3549 return "move data extents";
3550 if (stage
== UPDATE_DATA_PTRS
)
3551 return "update data pointers";
3556 * function to relocate all extents in a block group.
3558 int btrfs_relocate_block_group(struct btrfs_fs_info
*fs_info
, u64 group_start
)
3560 struct btrfs_block_group
*bg
;
3561 struct btrfs_root
*extent_root
= fs_info
->extent_root
;
3562 struct reloc_control
*rc
;
3563 struct inode
*inode
;
3564 struct btrfs_path
*path
;
3569 bg
= btrfs_lookup_block_group(fs_info
, group_start
);
3573 if (btrfs_pinned_by_swapfile(fs_info
, bg
)) {
3574 btrfs_put_block_group(bg
);
3578 rc
= alloc_reloc_control(fs_info
);
3580 btrfs_put_block_group(bg
);
3584 rc
->extent_root
= extent_root
;
3585 rc
->block_group
= bg
;
3587 ret
= btrfs_inc_block_group_ro(rc
->block_group
, true);
3594 path
= btrfs_alloc_path();
3600 inode
= lookup_free_space_inode(rc
->block_group
, path
);
3601 btrfs_free_path(path
);
3604 ret
= delete_block_group_cache(fs_info
, rc
->block_group
, inode
, 0);
3606 ret
= PTR_ERR(inode
);
3608 if (ret
&& ret
!= -ENOENT
) {
3613 rc
->data_inode
= create_reloc_inode(fs_info
, rc
->block_group
);
3614 if (IS_ERR(rc
->data_inode
)) {
3615 err
= PTR_ERR(rc
->data_inode
);
3616 rc
->data_inode
= NULL
;
3620 describe_relocation(fs_info
, rc
->block_group
);
3622 btrfs_wait_block_group_reservations(rc
->block_group
);
3623 btrfs_wait_nocow_writers(rc
->block_group
);
3624 btrfs_wait_ordered_roots(fs_info
, U64_MAX
,
3625 rc
->block_group
->start
,
3626 rc
->block_group
->length
);
3631 mutex_lock(&fs_info
->cleaner_mutex
);
3632 ret
= relocate_block_group(rc
);
3633 mutex_unlock(&fs_info
->cleaner_mutex
);
3637 finishes_stage
= rc
->stage
;
3639 * We may have gotten ENOSPC after we already dirtied some
3640 * extents. If writeout happens while we're relocating a
3641 * different block group we could end up hitting the
3642 * BUG_ON(rc->stage == UPDATE_DATA_PTRS) in
3643 * btrfs_reloc_cow_block. Make sure we write everything out
3644 * properly so we don't trip over this problem, and then break
3645 * out of the loop if we hit an error.
3647 if (rc
->stage
== MOVE_DATA_EXTENTS
&& rc
->found_file_extent
) {
3648 ret
= btrfs_wait_ordered_range(rc
->data_inode
, 0,
3652 invalidate_mapping_pages(rc
->data_inode
->i_mapping
,
3654 rc
->stage
= UPDATE_DATA_PTRS
;
3660 if (rc
->extents_found
== 0)
3663 btrfs_info(fs_info
, "found %llu extents, stage: %s",
3664 rc
->extents_found
, stage_to_string(finishes_stage
));
3667 WARN_ON(rc
->block_group
->pinned
> 0);
3668 WARN_ON(rc
->block_group
->reserved
> 0);
3669 WARN_ON(rc
->block_group
->used
> 0);
3672 btrfs_dec_block_group_ro(rc
->block_group
);
3673 iput(rc
->data_inode
);
3674 btrfs_put_block_group(rc
->block_group
);
3675 free_reloc_control(rc
);
3679 static noinline_for_stack
int mark_garbage_root(struct btrfs_root
*root
)
3681 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
3682 struct btrfs_trans_handle
*trans
;
3685 trans
= btrfs_start_transaction(fs_info
->tree_root
, 0);
3687 return PTR_ERR(trans
);
3689 memset(&root
->root_item
.drop_progress
, 0,
3690 sizeof(root
->root_item
.drop_progress
));
3691 root
->root_item
.drop_level
= 0;
3692 btrfs_set_root_refs(&root
->root_item
, 0);
3693 ret
= btrfs_update_root(trans
, fs_info
->tree_root
,
3694 &root
->root_key
, &root
->root_item
);
3696 err
= btrfs_end_transaction(trans
);
3703 * recover relocation interrupted by system crash.
3705 * this function resumes merging reloc trees with corresponding fs trees.
3706 * this is important for keeping the sharing of tree blocks
3708 int btrfs_recover_relocation(struct btrfs_root
*root
)
3710 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
3711 LIST_HEAD(reloc_roots
);
3712 struct btrfs_key key
;
3713 struct btrfs_root
*fs_root
;
3714 struct btrfs_root
*reloc_root
;
3715 struct btrfs_path
*path
;
3716 struct extent_buffer
*leaf
;
3717 struct reloc_control
*rc
= NULL
;
3718 struct btrfs_trans_handle
*trans
;
3722 path
= btrfs_alloc_path();
3725 path
->reada
= READA_BACK
;
3727 key
.objectid
= BTRFS_TREE_RELOC_OBJECTID
;
3728 key
.type
= BTRFS_ROOT_ITEM_KEY
;
3729 key
.offset
= (u64
)-1;
3732 ret
= btrfs_search_slot(NULL
, fs_info
->tree_root
, &key
,
3739 if (path
->slots
[0] == 0)
3743 leaf
= path
->nodes
[0];
3744 btrfs_item_key_to_cpu(leaf
, &key
, path
->slots
[0]);
3745 btrfs_release_path(path
);
3747 if (key
.objectid
!= BTRFS_TREE_RELOC_OBJECTID
||
3748 key
.type
!= BTRFS_ROOT_ITEM_KEY
)
3751 reloc_root
= btrfs_read_tree_root(root
, &key
);
3752 if (IS_ERR(reloc_root
)) {
3753 err
= PTR_ERR(reloc_root
);
3757 set_bit(BTRFS_ROOT_SHAREABLE
, &reloc_root
->state
);
3758 list_add(&reloc_root
->root_list
, &reloc_roots
);
3760 if (btrfs_root_refs(&reloc_root
->root_item
) > 0) {
3761 fs_root
= btrfs_get_fs_root(fs_info
,
3762 reloc_root
->root_key
.offset
, false);
3763 if (IS_ERR(fs_root
)) {
3764 ret
= PTR_ERR(fs_root
);
3765 if (ret
!= -ENOENT
) {
3769 ret
= mark_garbage_root(reloc_root
);
3775 btrfs_put_root(fs_root
);
3779 if (key
.offset
== 0)
3784 btrfs_release_path(path
);
3786 if (list_empty(&reloc_roots
))
3789 rc
= alloc_reloc_control(fs_info
);
3795 rc
->extent_root
= fs_info
->extent_root
;
3797 set_reloc_control(rc
);
3799 trans
= btrfs_join_transaction(rc
->extent_root
);
3800 if (IS_ERR(trans
)) {
3801 err
= PTR_ERR(trans
);
3805 rc
->merge_reloc_tree
= 1;
3807 while (!list_empty(&reloc_roots
)) {
3808 reloc_root
= list_entry(reloc_roots
.next
,
3809 struct btrfs_root
, root_list
);
3810 list_del(&reloc_root
->root_list
);
3812 if (btrfs_root_refs(&reloc_root
->root_item
) == 0) {
3813 list_add_tail(&reloc_root
->root_list
,
3818 fs_root
= btrfs_get_fs_root(fs_info
, reloc_root
->root_key
.offset
,
3820 if (IS_ERR(fs_root
)) {
3821 err
= PTR_ERR(fs_root
);
3822 list_add_tail(&reloc_root
->root_list
, &reloc_roots
);
3823 btrfs_end_transaction(trans
);
3827 err
= __add_reloc_root(reloc_root
);
3828 BUG_ON(err
< 0); /* -ENOMEM or logic error */
3829 fs_root
->reloc_root
= btrfs_grab_root(reloc_root
);
3830 btrfs_put_root(fs_root
);
3833 err
= btrfs_commit_transaction(trans
);
3837 merge_reloc_roots(rc
);
3839 unset_reloc_control(rc
);
3841 trans
= btrfs_join_transaction(rc
->extent_root
);
3842 if (IS_ERR(trans
)) {
3843 err
= PTR_ERR(trans
);
3846 err
= btrfs_commit_transaction(trans
);
3848 ret
= clean_dirty_subvols(rc
);
3849 if (ret
< 0 && !err
)
3852 unset_reloc_control(rc
);
3853 free_reloc_control(rc
);
3855 free_reloc_roots(&reloc_roots
);
3857 btrfs_free_path(path
);
3860 /* cleanup orphan inode in data relocation tree */
3861 fs_root
= btrfs_grab_root(fs_info
->data_reloc_root
);
3863 err
= btrfs_orphan_cleanup(fs_root
);
3864 btrfs_put_root(fs_root
);
3870 * helper to add ordered checksum for data relocation.
3872 * cloning checksum properly handles the nodatasum extents.
3873 * it also saves CPU time to re-calculate the checksum.
3875 int btrfs_reloc_clone_csums(struct inode
*inode
, u64 file_pos
, u64 len
)
3877 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
3878 struct btrfs_ordered_sum
*sums
;
3879 struct btrfs_ordered_extent
*ordered
;
3885 ordered
= btrfs_lookup_ordered_extent(inode
, file_pos
);
3886 BUG_ON(ordered
->file_offset
!= file_pos
|| ordered
->num_bytes
!= len
);
3888 disk_bytenr
= file_pos
+ BTRFS_I(inode
)->index_cnt
;
3889 ret
= btrfs_lookup_csums_range(fs_info
->csum_root
, disk_bytenr
,
3890 disk_bytenr
+ len
- 1, &list
, 0);
3894 while (!list_empty(&list
)) {
3895 sums
= list_entry(list
.next
, struct btrfs_ordered_sum
, list
);
3896 list_del_init(&sums
->list
);
3899 * We need to offset the new_bytenr based on where the csum is.
3900 * We need to do this because we will read in entire prealloc
3901 * extents but we may have written to say the middle of the
3902 * prealloc extent, so we need to make sure the csum goes with
3903 * the right disk offset.
3905 * We can do this because the data reloc inode refers strictly
3906 * to the on disk bytes, so we don't have to worry about
3907 * disk_len vs real len like with real inodes since it's all
3910 new_bytenr
= ordered
->disk_bytenr
+ sums
->bytenr
- disk_bytenr
;
3911 sums
->bytenr
= new_bytenr
;
3913 btrfs_add_ordered_sum(ordered
, sums
);
3916 btrfs_put_ordered_extent(ordered
);
3920 int btrfs_reloc_cow_block(struct btrfs_trans_handle
*trans
,
3921 struct btrfs_root
*root
, struct extent_buffer
*buf
,
3922 struct extent_buffer
*cow
)
3924 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
3925 struct reloc_control
*rc
;
3926 struct btrfs_backref_node
*node
;
3931 rc
= fs_info
->reloc_ctl
;
3935 BUG_ON(rc
->stage
== UPDATE_DATA_PTRS
&&
3936 root
->root_key
.objectid
== BTRFS_DATA_RELOC_TREE_OBJECTID
);
3938 level
= btrfs_header_level(buf
);
3939 if (btrfs_header_generation(buf
) <=
3940 btrfs_root_last_snapshot(&root
->root_item
))
3943 if (root
->root_key
.objectid
== BTRFS_TREE_RELOC_OBJECTID
&&
3944 rc
->create_reloc_tree
) {
3945 WARN_ON(!first_cow
&& level
== 0);
3947 node
= rc
->backref_cache
.path
[level
];
3948 BUG_ON(node
->bytenr
!= buf
->start
&&
3949 node
->new_bytenr
!= buf
->start
);
3951 btrfs_backref_drop_node_buffer(node
);
3952 atomic_inc(&cow
->refs
);
3954 node
->new_bytenr
= cow
->start
;
3956 if (!node
->pending
) {
3957 list_move_tail(&node
->list
,
3958 &rc
->backref_cache
.pending
[level
]);
3963 mark_block_processed(rc
, node
);
3965 if (first_cow
&& level
> 0)
3966 rc
->nodes_relocated
+= buf
->len
;
3969 if (level
== 0 && first_cow
&& rc
->stage
== UPDATE_DATA_PTRS
)
3970 ret
= replace_file_extents(trans
, rc
, root
, cow
);
3975 * called before creating snapshot. it calculates metadata reservation
3976 * required for relocating tree blocks in the snapshot
3978 void btrfs_reloc_pre_snapshot(struct btrfs_pending_snapshot
*pending
,
3979 u64
*bytes_to_reserve
)
3981 struct btrfs_root
*root
= pending
->root
;
3982 struct reloc_control
*rc
= root
->fs_info
->reloc_ctl
;
3984 if (!rc
|| !have_reloc_root(root
))
3987 if (!rc
->merge_reloc_tree
)
3990 root
= root
->reloc_root
;
3991 BUG_ON(btrfs_root_refs(&root
->root_item
) == 0);
3993 * relocation is in the stage of merging trees. the space
3994 * used by merging a reloc tree is twice the size of
3995 * relocated tree nodes in the worst case. half for cowing
3996 * the reloc tree, half for cowing the fs tree. the space
3997 * used by cowing the reloc tree will be freed after the
3998 * tree is dropped. if we create snapshot, cowing the fs
3999 * tree may use more space than it frees. so we need
4000 * reserve extra space.
4002 *bytes_to_reserve
+= rc
->nodes_relocated
;
4006 * called after snapshot is created. migrate block reservation
4007 * and create reloc root for the newly created snapshot
4009 * This is similar to btrfs_init_reloc_root(), we come out of here with two
4010 * references held on the reloc_root, one for root->reloc_root and one for
4013 int btrfs_reloc_post_snapshot(struct btrfs_trans_handle
*trans
,
4014 struct btrfs_pending_snapshot
*pending
)
4016 struct btrfs_root
*root
= pending
->root
;
4017 struct btrfs_root
*reloc_root
;
4018 struct btrfs_root
*new_root
;
4019 struct reloc_control
*rc
= root
->fs_info
->reloc_ctl
;
4022 if (!rc
|| !have_reloc_root(root
))
4025 rc
= root
->fs_info
->reloc_ctl
;
4026 rc
->merging_rsv_size
+= rc
->nodes_relocated
;
4028 if (rc
->merge_reloc_tree
) {
4029 ret
= btrfs_block_rsv_migrate(&pending
->block_rsv
,
4031 rc
->nodes_relocated
, true);
4036 new_root
= pending
->snap
;
4037 reloc_root
= create_reloc_root(trans
, root
->reloc_root
,
4038 new_root
->root_key
.objectid
);
4039 if (IS_ERR(reloc_root
))
4040 return PTR_ERR(reloc_root
);
4042 ret
= __add_reloc_root(reloc_root
);
4044 new_root
->reloc_root
= btrfs_grab_root(reloc_root
);
4046 if (rc
->create_reloc_tree
)
4047 ret
= clone_backref_node(trans
, rc
, root
, reloc_root
);