1 // SPDX-License-Identifier: GPL-2.0
3 * Copyright (C) 2012 Alexander Block. All rights reserved.
6 #include <linux/bsearch.h>
8 #include <linux/file.h>
9 #include <linux/sort.h>
10 #include <linux/mount.h>
11 #include <linux/xattr.h>
12 #include <linux/posix_acl_xattr.h>
13 #include <linux/radix-tree.h>
14 #include <linux/vmalloc.h>
15 #include <linux/string.h>
16 #include <linux/compat.h>
17 #include <linux/crc32c.h>
23 #include "btrfs_inode.h"
24 #include "transaction.h"
25 #include "compression.h"
29 * Maximum number of references an extent can have in order for us to attempt to
30 * issue clone operations instead of write operations. This currently exists to
31 * avoid hitting limitations of the backreference walking code (taking a lot of
32 * time and using too much memory for extents with large number of references).
34 #define SEND_MAX_EXTENT_REFS 64
37 * A fs_path is a helper to dynamically build path names with unknown size.
38 * It reallocates the internal buffer on demand.
39 * It allows fast adding of path elements on the right side (normal path) and
40 * fast adding to the left side (reversed path). A reversed path can also be
41 * unreversed if needed.
50 unsigned short buf_len
:15;
51 unsigned short reversed
:1;
55 * Average path length does not exceed 200 bytes, we'll have
56 * better packing in the slab and higher chance to satisfy
57 * a allocation later during send.
62 #define FS_PATH_INLINE_SIZE \
63 (sizeof(struct fs_path) - offsetof(struct fs_path, inline_buf))
66 /* reused for each extent */
68 struct btrfs_root
*root
;
75 #define SEND_CTX_MAX_NAME_CACHE_SIZE 128
76 #define SEND_CTX_NAME_CACHE_CLEAN_SIZE (SEND_CTX_MAX_NAME_CACHE_SIZE * 2)
79 struct file
*send_filp
;
85 u64 cmd_send_size
[BTRFS_SEND_C_MAX
+ 1];
86 u64 flags
; /* 'flags' member of btrfs_ioctl_send_args is u64 */
88 struct btrfs_root
*send_root
;
89 struct btrfs_root
*parent_root
;
90 struct clone_root
*clone_roots
;
93 /* current state of the compare_tree call */
94 struct btrfs_path
*left_path
;
95 struct btrfs_path
*right_path
;
96 struct btrfs_key
*cmp_key
;
99 * infos of the currently processed inode. In case of deleted inodes,
100 * these are the values from the deleted inode.
105 int cur_inode_new_gen
;
106 int cur_inode_deleted
;
110 u64 cur_inode_last_extent
;
111 u64 cur_inode_next_write_offset
;
112 bool ignore_cur_inode
;
116 struct list_head new_refs
;
117 struct list_head deleted_refs
;
119 struct radix_tree_root name_cache
;
120 struct list_head name_cache_list
;
123 struct file_ra_state ra
;
128 * We process inodes by their increasing order, so if before an
129 * incremental send we reverse the parent/child relationship of
130 * directories such that a directory with a lower inode number was
131 * the parent of a directory with a higher inode number, and the one
132 * becoming the new parent got renamed too, we can't rename/move the
133 * directory with lower inode number when we finish processing it - we
134 * must process the directory with higher inode number first, then
135 * rename/move it and then rename/move the directory with lower inode
136 * number. Example follows.
138 * Tree state when the first send was performed:
150 * Tree state when the second (incremental) send is performed:
159 * The sequence of steps that lead to the second state was:
161 * mv /a/b/c/d /a/b/c2/d2
162 * mv /a/b/c /a/b/c2/d2/cc
164 * "c" has lower inode number, but we can't move it (2nd mv operation)
165 * before we move "d", which has higher inode number.
167 * So we just memorize which move/rename operations must be performed
168 * later when their respective parent is processed and moved/renamed.
171 /* Indexed by parent directory inode number. */
172 struct rb_root pending_dir_moves
;
175 * Reverse index, indexed by the inode number of a directory that
176 * is waiting for the move/rename of its immediate parent before its
177 * own move/rename can be performed.
179 struct rb_root waiting_dir_moves
;
182 * A directory that is going to be rm'ed might have a child directory
183 * which is in the pending directory moves index above. In this case,
184 * the directory can only be removed after the move/rename of its child
185 * is performed. Example:
205 * Sequence of steps that lead to the send snapshot:
206 * rm -f /a/b/c/foo.txt
208 * mv /a/b/c/x /a/b/YY
211 * When the child is processed, its move/rename is delayed until its
212 * parent is processed (as explained above), but all other operations
213 * like update utimes, chown, chgrp, etc, are performed and the paths
214 * that it uses for those operations must use the orphanized name of
215 * its parent (the directory we're going to rm later), so we need to
216 * memorize that name.
218 * Indexed by the inode number of the directory to be deleted.
220 struct rb_root orphan_dirs
;
223 struct pending_dir_move
{
225 struct list_head list
;
229 struct list_head update_refs
;
232 struct waiting_dir_move
{
236 * There might be some directory that could not be removed because it
237 * was waiting for this directory inode to be moved first. Therefore
238 * after this directory is moved, we can try to rmdir the ino rmdir_ino.
244 struct orphan_dir_info
{
248 u64 last_dir_index_offset
;
251 struct name_cache_entry
{
252 struct list_head list
;
254 * radix_tree has only 32bit entries but we need to handle 64bit inums.
255 * We use the lower 32bit of the 64bit inum to store it in the tree. If
256 * more then one inum would fall into the same entry, we use radix_list
257 * to store the additional entries. radix_list is also used to store
258 * entries where two entries have the same inum but different
261 struct list_head radix_list
;
267 int need_later_update
;
273 #define ADVANCE_ONLY_NEXT -1
275 enum btrfs_compare_tree_result
{
276 BTRFS_COMPARE_TREE_NEW
,
277 BTRFS_COMPARE_TREE_DELETED
,
278 BTRFS_COMPARE_TREE_CHANGED
,
279 BTRFS_COMPARE_TREE_SAME
,
281 typedef int (*btrfs_changed_cb_t
)(struct btrfs_path
*left_path
,
282 struct btrfs_path
*right_path
,
283 struct btrfs_key
*key
,
284 enum btrfs_compare_tree_result result
,
288 static void inconsistent_snapshot_error(struct send_ctx
*sctx
,
289 enum btrfs_compare_tree_result result
,
292 const char *result_string
;
295 case BTRFS_COMPARE_TREE_NEW
:
296 result_string
= "new";
298 case BTRFS_COMPARE_TREE_DELETED
:
299 result_string
= "deleted";
301 case BTRFS_COMPARE_TREE_CHANGED
:
302 result_string
= "updated";
304 case BTRFS_COMPARE_TREE_SAME
:
306 result_string
= "unchanged";
310 result_string
= "unexpected";
313 btrfs_err(sctx
->send_root
->fs_info
,
314 "Send: inconsistent snapshot, found %s %s for inode %llu without updated inode item, send root is %llu, parent root is %llu",
315 result_string
, what
, sctx
->cmp_key
->objectid
,
316 sctx
->send_root
->root_key
.objectid
,
318 sctx
->parent_root
->root_key
.objectid
: 0));
321 static int is_waiting_for_move(struct send_ctx
*sctx
, u64 ino
);
323 static struct waiting_dir_move
*
324 get_waiting_dir_move(struct send_ctx
*sctx
, u64 ino
);
326 static int is_waiting_for_rm(struct send_ctx
*sctx
, u64 dir_ino
);
328 static int need_send_hole(struct send_ctx
*sctx
)
330 return (sctx
->parent_root
&& !sctx
->cur_inode_new
&&
331 !sctx
->cur_inode_new_gen
&& !sctx
->cur_inode_deleted
&&
332 S_ISREG(sctx
->cur_inode_mode
));
335 static void fs_path_reset(struct fs_path
*p
)
338 p
->start
= p
->buf
+ p
->buf_len
- 1;
348 static struct fs_path
*fs_path_alloc(void)
352 p
= kmalloc(sizeof(*p
), GFP_KERNEL
);
356 p
->buf
= p
->inline_buf
;
357 p
->buf_len
= FS_PATH_INLINE_SIZE
;
362 static struct fs_path
*fs_path_alloc_reversed(void)
374 static void fs_path_free(struct fs_path
*p
)
378 if (p
->buf
!= p
->inline_buf
)
383 static int fs_path_len(struct fs_path
*p
)
385 return p
->end
- p
->start
;
388 static int fs_path_ensure_buf(struct fs_path
*p
, int len
)
396 if (p
->buf_len
>= len
)
399 if (len
> PATH_MAX
) {
404 path_len
= p
->end
- p
->start
;
405 old_buf_len
= p
->buf_len
;
408 * First time the inline_buf does not suffice
410 if (p
->buf
== p
->inline_buf
) {
411 tmp_buf
= kmalloc(len
, GFP_KERNEL
);
413 memcpy(tmp_buf
, p
->buf
, old_buf_len
);
415 tmp_buf
= krealloc(p
->buf
, len
, GFP_KERNEL
);
421 * The real size of the buffer is bigger, this will let the fast path
422 * happen most of the time
424 p
->buf_len
= ksize(p
->buf
);
427 tmp_buf
= p
->buf
+ old_buf_len
- path_len
- 1;
428 p
->end
= p
->buf
+ p
->buf_len
- 1;
429 p
->start
= p
->end
- path_len
;
430 memmove(p
->start
, tmp_buf
, path_len
+ 1);
433 p
->end
= p
->start
+ path_len
;
438 static int fs_path_prepare_for_add(struct fs_path
*p
, int name_len
,
444 new_len
= p
->end
- p
->start
+ name_len
;
445 if (p
->start
!= p
->end
)
447 ret
= fs_path_ensure_buf(p
, new_len
);
452 if (p
->start
!= p
->end
)
454 p
->start
-= name_len
;
455 *prepared
= p
->start
;
457 if (p
->start
!= p
->end
)
468 static int fs_path_add(struct fs_path
*p
, const char *name
, int name_len
)
473 ret
= fs_path_prepare_for_add(p
, name_len
, &prepared
);
476 memcpy(prepared
, name
, name_len
);
482 static int fs_path_add_path(struct fs_path
*p
, struct fs_path
*p2
)
487 ret
= fs_path_prepare_for_add(p
, p2
->end
- p2
->start
, &prepared
);
490 memcpy(prepared
, p2
->start
, p2
->end
- p2
->start
);
496 static int fs_path_add_from_extent_buffer(struct fs_path
*p
,
497 struct extent_buffer
*eb
,
498 unsigned long off
, int len
)
503 ret
= fs_path_prepare_for_add(p
, len
, &prepared
);
507 read_extent_buffer(eb
, prepared
, off
, len
);
513 static int fs_path_copy(struct fs_path
*p
, struct fs_path
*from
)
517 p
->reversed
= from
->reversed
;
520 ret
= fs_path_add_path(p
, from
);
526 static void fs_path_unreverse(struct fs_path
*p
)
535 len
= p
->end
- p
->start
;
537 p
->end
= p
->start
+ len
;
538 memmove(p
->start
, tmp
, len
+ 1);
542 static struct btrfs_path
*alloc_path_for_send(void)
544 struct btrfs_path
*path
;
546 path
= btrfs_alloc_path();
549 path
->search_commit_root
= 1;
550 path
->skip_locking
= 1;
551 path
->need_commit_sem
= 1;
555 static int write_buf(struct file
*filp
, const void *buf
, u32 len
, loff_t
*off
)
561 ret
= kernel_write(filp
, buf
+ pos
, len
- pos
, off
);
562 /* TODO handle that correctly */
563 /*if (ret == -ERESTARTSYS) {
577 static int tlv_put(struct send_ctx
*sctx
, u16 attr
, const void *data
, int len
)
579 struct btrfs_tlv_header
*hdr
;
580 int total_len
= sizeof(*hdr
) + len
;
581 int left
= sctx
->send_max_size
- sctx
->send_size
;
583 if (unlikely(left
< total_len
))
586 hdr
= (struct btrfs_tlv_header
*) (sctx
->send_buf
+ sctx
->send_size
);
587 hdr
->tlv_type
= cpu_to_le16(attr
);
588 hdr
->tlv_len
= cpu_to_le16(len
);
589 memcpy(hdr
+ 1, data
, len
);
590 sctx
->send_size
+= total_len
;
595 #define TLV_PUT_DEFINE_INT(bits) \
596 static int tlv_put_u##bits(struct send_ctx *sctx, \
597 u##bits attr, u##bits value) \
599 __le##bits __tmp = cpu_to_le##bits(value); \
600 return tlv_put(sctx, attr, &__tmp, sizeof(__tmp)); \
603 TLV_PUT_DEFINE_INT(64)
605 static int tlv_put_string(struct send_ctx
*sctx
, u16 attr
,
606 const char *str
, int len
)
610 return tlv_put(sctx
, attr
, str
, len
);
613 static int tlv_put_uuid(struct send_ctx
*sctx
, u16 attr
,
616 return tlv_put(sctx
, attr
, uuid
, BTRFS_UUID_SIZE
);
619 static int tlv_put_btrfs_timespec(struct send_ctx
*sctx
, u16 attr
,
620 struct extent_buffer
*eb
,
621 struct btrfs_timespec
*ts
)
623 struct btrfs_timespec bts
;
624 read_extent_buffer(eb
, &bts
, (unsigned long)ts
, sizeof(bts
));
625 return tlv_put(sctx
, attr
, &bts
, sizeof(bts
));
629 #define TLV_PUT(sctx, attrtype, data, attrlen) \
631 ret = tlv_put(sctx, attrtype, data, attrlen); \
633 goto tlv_put_failure; \
636 #define TLV_PUT_INT(sctx, attrtype, bits, value) \
638 ret = tlv_put_u##bits(sctx, attrtype, value); \
640 goto tlv_put_failure; \
643 #define TLV_PUT_U8(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 8, data)
644 #define TLV_PUT_U16(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 16, data)
645 #define TLV_PUT_U32(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 32, data)
646 #define TLV_PUT_U64(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 64, data)
647 #define TLV_PUT_STRING(sctx, attrtype, str, len) \
649 ret = tlv_put_string(sctx, attrtype, str, len); \
651 goto tlv_put_failure; \
653 #define TLV_PUT_PATH(sctx, attrtype, p) \
655 ret = tlv_put_string(sctx, attrtype, p->start, \
656 p->end - p->start); \
658 goto tlv_put_failure; \
660 #define TLV_PUT_UUID(sctx, attrtype, uuid) \
662 ret = tlv_put_uuid(sctx, attrtype, uuid); \
664 goto tlv_put_failure; \
666 #define TLV_PUT_BTRFS_TIMESPEC(sctx, attrtype, eb, ts) \
668 ret = tlv_put_btrfs_timespec(sctx, attrtype, eb, ts); \
670 goto tlv_put_failure; \
673 static int send_header(struct send_ctx
*sctx
)
675 struct btrfs_stream_header hdr
;
677 strcpy(hdr
.magic
, BTRFS_SEND_STREAM_MAGIC
);
678 hdr
.version
= cpu_to_le32(BTRFS_SEND_STREAM_VERSION
);
680 return write_buf(sctx
->send_filp
, &hdr
, sizeof(hdr
),
685 * For each command/item we want to send to userspace, we call this function.
687 static int begin_cmd(struct send_ctx
*sctx
, int cmd
)
689 struct btrfs_cmd_header
*hdr
;
691 if (WARN_ON(!sctx
->send_buf
))
694 BUG_ON(sctx
->send_size
);
696 sctx
->send_size
+= sizeof(*hdr
);
697 hdr
= (struct btrfs_cmd_header
*)sctx
->send_buf
;
698 hdr
->cmd
= cpu_to_le16(cmd
);
703 static int send_cmd(struct send_ctx
*sctx
)
706 struct btrfs_cmd_header
*hdr
;
709 hdr
= (struct btrfs_cmd_header
*)sctx
->send_buf
;
710 hdr
->len
= cpu_to_le32(sctx
->send_size
- sizeof(*hdr
));
713 crc
= btrfs_crc32c(0, (unsigned char *)sctx
->send_buf
, sctx
->send_size
);
714 hdr
->crc
= cpu_to_le32(crc
);
716 ret
= write_buf(sctx
->send_filp
, sctx
->send_buf
, sctx
->send_size
,
719 sctx
->total_send_size
+= sctx
->send_size
;
720 sctx
->cmd_send_size
[le16_to_cpu(hdr
->cmd
)] += sctx
->send_size
;
727 * Sends a move instruction to user space
729 static int send_rename(struct send_ctx
*sctx
,
730 struct fs_path
*from
, struct fs_path
*to
)
732 struct btrfs_fs_info
*fs_info
= sctx
->send_root
->fs_info
;
735 btrfs_debug(fs_info
, "send_rename %s -> %s", from
->start
, to
->start
);
737 ret
= begin_cmd(sctx
, BTRFS_SEND_C_RENAME
);
741 TLV_PUT_PATH(sctx
, BTRFS_SEND_A_PATH
, from
);
742 TLV_PUT_PATH(sctx
, BTRFS_SEND_A_PATH_TO
, to
);
744 ret
= send_cmd(sctx
);
752 * Sends a link instruction to user space
754 static int send_link(struct send_ctx
*sctx
,
755 struct fs_path
*path
, struct fs_path
*lnk
)
757 struct btrfs_fs_info
*fs_info
= sctx
->send_root
->fs_info
;
760 btrfs_debug(fs_info
, "send_link %s -> %s", path
->start
, lnk
->start
);
762 ret
= begin_cmd(sctx
, BTRFS_SEND_C_LINK
);
766 TLV_PUT_PATH(sctx
, BTRFS_SEND_A_PATH
, path
);
767 TLV_PUT_PATH(sctx
, BTRFS_SEND_A_PATH_LINK
, lnk
);
769 ret
= send_cmd(sctx
);
777 * Sends an unlink instruction to user space
779 static int send_unlink(struct send_ctx
*sctx
, struct fs_path
*path
)
781 struct btrfs_fs_info
*fs_info
= sctx
->send_root
->fs_info
;
784 btrfs_debug(fs_info
, "send_unlink %s", path
->start
);
786 ret
= begin_cmd(sctx
, BTRFS_SEND_C_UNLINK
);
790 TLV_PUT_PATH(sctx
, BTRFS_SEND_A_PATH
, path
);
792 ret
= send_cmd(sctx
);
800 * Sends a rmdir instruction to user space
802 static int send_rmdir(struct send_ctx
*sctx
, struct fs_path
*path
)
804 struct btrfs_fs_info
*fs_info
= sctx
->send_root
->fs_info
;
807 btrfs_debug(fs_info
, "send_rmdir %s", path
->start
);
809 ret
= begin_cmd(sctx
, BTRFS_SEND_C_RMDIR
);
813 TLV_PUT_PATH(sctx
, BTRFS_SEND_A_PATH
, path
);
815 ret
= send_cmd(sctx
);
823 * Helper function to retrieve some fields from an inode item.
825 static int __get_inode_info(struct btrfs_root
*root
, struct btrfs_path
*path
,
826 u64 ino
, u64
*size
, u64
*gen
, u64
*mode
, u64
*uid
,
830 struct btrfs_inode_item
*ii
;
831 struct btrfs_key key
;
834 key
.type
= BTRFS_INODE_ITEM_KEY
;
836 ret
= btrfs_search_slot(NULL
, root
, &key
, path
, 0, 0);
843 ii
= btrfs_item_ptr(path
->nodes
[0], path
->slots
[0],
844 struct btrfs_inode_item
);
846 *size
= btrfs_inode_size(path
->nodes
[0], ii
);
848 *gen
= btrfs_inode_generation(path
->nodes
[0], ii
);
850 *mode
= btrfs_inode_mode(path
->nodes
[0], ii
);
852 *uid
= btrfs_inode_uid(path
->nodes
[0], ii
);
854 *gid
= btrfs_inode_gid(path
->nodes
[0], ii
);
856 *rdev
= btrfs_inode_rdev(path
->nodes
[0], ii
);
861 static int get_inode_info(struct btrfs_root
*root
,
862 u64 ino
, u64
*size
, u64
*gen
,
863 u64
*mode
, u64
*uid
, u64
*gid
,
866 struct btrfs_path
*path
;
869 path
= alloc_path_for_send();
872 ret
= __get_inode_info(root
, path
, ino
, size
, gen
, mode
, uid
, gid
,
874 btrfs_free_path(path
);
878 typedef int (*iterate_inode_ref_t
)(int num
, u64 dir
, int index
,
883 * Helper function to iterate the entries in ONE btrfs_inode_ref or
884 * btrfs_inode_extref.
885 * The iterate callback may return a non zero value to stop iteration. This can
886 * be a negative value for error codes or 1 to simply stop it.
888 * path must point to the INODE_REF or INODE_EXTREF when called.
890 static int iterate_inode_ref(struct btrfs_root
*root
, struct btrfs_path
*path
,
891 struct btrfs_key
*found_key
, int resolve
,
892 iterate_inode_ref_t iterate
, void *ctx
)
894 struct extent_buffer
*eb
= path
->nodes
[0];
895 struct btrfs_item
*item
;
896 struct btrfs_inode_ref
*iref
;
897 struct btrfs_inode_extref
*extref
;
898 struct btrfs_path
*tmp_path
;
902 int slot
= path
->slots
[0];
909 unsigned long name_off
;
910 unsigned long elem_size
;
913 p
= fs_path_alloc_reversed();
917 tmp_path
= alloc_path_for_send();
924 if (found_key
->type
== BTRFS_INODE_REF_KEY
) {
925 ptr
= (unsigned long)btrfs_item_ptr(eb
, slot
,
926 struct btrfs_inode_ref
);
927 item
= btrfs_item_nr(slot
);
928 total
= btrfs_item_size(eb
, item
);
929 elem_size
= sizeof(*iref
);
931 ptr
= btrfs_item_ptr_offset(eb
, slot
);
932 total
= btrfs_item_size_nr(eb
, slot
);
933 elem_size
= sizeof(*extref
);
936 while (cur
< total
) {
939 if (found_key
->type
== BTRFS_INODE_REF_KEY
) {
940 iref
= (struct btrfs_inode_ref
*)(ptr
+ cur
);
941 name_len
= btrfs_inode_ref_name_len(eb
, iref
);
942 name_off
= (unsigned long)(iref
+ 1);
943 index
= btrfs_inode_ref_index(eb
, iref
);
944 dir
= found_key
->offset
;
946 extref
= (struct btrfs_inode_extref
*)(ptr
+ cur
);
947 name_len
= btrfs_inode_extref_name_len(eb
, extref
);
948 name_off
= (unsigned long)&extref
->name
;
949 index
= btrfs_inode_extref_index(eb
, extref
);
950 dir
= btrfs_inode_extref_parent(eb
, extref
);
954 start
= btrfs_ref_to_path(root
, tmp_path
, name_len
,
958 ret
= PTR_ERR(start
);
961 if (start
< p
->buf
) {
962 /* overflow , try again with larger buffer */
963 ret
= fs_path_ensure_buf(p
,
964 p
->buf_len
+ p
->buf
- start
);
967 start
= btrfs_ref_to_path(root
, tmp_path
,
972 ret
= PTR_ERR(start
);
975 BUG_ON(start
< p
->buf
);
979 ret
= fs_path_add_from_extent_buffer(p
, eb
, name_off
,
985 cur
+= elem_size
+ name_len
;
986 ret
= iterate(num
, dir
, index
, p
, ctx
);
993 btrfs_free_path(tmp_path
);
998 typedef int (*iterate_dir_item_t
)(int num
, struct btrfs_key
*di_key
,
999 const char *name
, int name_len
,
1000 const char *data
, int data_len
,
1001 u8 type
, void *ctx
);
1004 * Helper function to iterate the entries in ONE btrfs_dir_item.
1005 * The iterate callback may return a non zero value to stop iteration. This can
1006 * be a negative value for error codes or 1 to simply stop it.
1008 * path must point to the dir item when called.
1010 static int iterate_dir_item(struct btrfs_root
*root
, struct btrfs_path
*path
,
1011 iterate_dir_item_t iterate
, void *ctx
)
1014 struct extent_buffer
*eb
;
1015 struct btrfs_item
*item
;
1016 struct btrfs_dir_item
*di
;
1017 struct btrfs_key di_key
;
1030 * Start with a small buffer (1 page). If later we end up needing more
1031 * space, which can happen for xattrs on a fs with a leaf size greater
1032 * then the page size, attempt to increase the buffer. Typically xattr
1036 buf
= kmalloc(buf_len
, GFP_KERNEL
);
1042 eb
= path
->nodes
[0];
1043 slot
= path
->slots
[0];
1044 item
= btrfs_item_nr(slot
);
1045 di
= btrfs_item_ptr(eb
, slot
, struct btrfs_dir_item
);
1048 total
= btrfs_item_size(eb
, item
);
1051 while (cur
< total
) {
1052 name_len
= btrfs_dir_name_len(eb
, di
);
1053 data_len
= btrfs_dir_data_len(eb
, di
);
1054 type
= btrfs_dir_type(eb
, di
);
1055 btrfs_dir_item_key_to_cpu(eb
, di
, &di_key
);
1057 if (type
== BTRFS_FT_XATTR
) {
1058 if (name_len
> XATTR_NAME_MAX
) {
1059 ret
= -ENAMETOOLONG
;
1062 if (name_len
+ data_len
>
1063 BTRFS_MAX_XATTR_SIZE(root
->fs_info
)) {
1071 if (name_len
+ data_len
> PATH_MAX
) {
1072 ret
= -ENAMETOOLONG
;
1077 if (name_len
+ data_len
> buf_len
) {
1078 buf_len
= name_len
+ data_len
;
1079 if (is_vmalloc_addr(buf
)) {
1083 char *tmp
= krealloc(buf
, buf_len
,
1084 GFP_KERNEL
| __GFP_NOWARN
);
1091 buf
= kvmalloc(buf_len
, GFP_KERNEL
);
1099 read_extent_buffer(eb
, buf
, (unsigned long)(di
+ 1),
1100 name_len
+ data_len
);
1102 len
= sizeof(*di
) + name_len
+ data_len
;
1103 di
= (struct btrfs_dir_item
*)((char *)di
+ len
);
1106 ret
= iterate(num
, &di_key
, buf
, name_len
, buf
+ name_len
,
1107 data_len
, type
, ctx
);
1123 static int __copy_first_ref(int num
, u64 dir
, int index
,
1124 struct fs_path
*p
, void *ctx
)
1127 struct fs_path
*pt
= ctx
;
1129 ret
= fs_path_copy(pt
, p
);
1133 /* we want the first only */
1138 * Retrieve the first path of an inode. If an inode has more then one
1139 * ref/hardlink, this is ignored.
1141 static int get_inode_path(struct btrfs_root
*root
,
1142 u64 ino
, struct fs_path
*path
)
1145 struct btrfs_key key
, found_key
;
1146 struct btrfs_path
*p
;
1148 p
= alloc_path_for_send();
1152 fs_path_reset(path
);
1155 key
.type
= BTRFS_INODE_REF_KEY
;
1158 ret
= btrfs_search_slot_for_read(root
, &key
, p
, 1, 0);
1165 btrfs_item_key_to_cpu(p
->nodes
[0], &found_key
, p
->slots
[0]);
1166 if (found_key
.objectid
!= ino
||
1167 (found_key
.type
!= BTRFS_INODE_REF_KEY
&&
1168 found_key
.type
!= BTRFS_INODE_EXTREF_KEY
)) {
1173 ret
= iterate_inode_ref(root
, p
, &found_key
, 1,
1174 __copy_first_ref
, path
);
1184 struct backref_ctx
{
1185 struct send_ctx
*sctx
;
1187 /* number of total found references */
1191 * used for clones found in send_root. clones found behind cur_objectid
1192 * and cur_offset are not considered as allowed clones.
1197 /* may be truncated in case it's the last extent in a file */
1200 /* data offset in the file extent item */
1203 /* Just to check for bugs in backref resolving */
1207 static int __clone_root_cmp_bsearch(const void *key
, const void *elt
)
1209 u64 root
= (u64
)(uintptr_t)key
;
1210 struct clone_root
*cr
= (struct clone_root
*)elt
;
1212 if (root
< cr
->root
->root_key
.objectid
)
1214 if (root
> cr
->root
->root_key
.objectid
)
1219 static int __clone_root_cmp_sort(const void *e1
, const void *e2
)
1221 struct clone_root
*cr1
= (struct clone_root
*)e1
;
1222 struct clone_root
*cr2
= (struct clone_root
*)e2
;
1224 if (cr1
->root
->root_key
.objectid
< cr2
->root
->root_key
.objectid
)
1226 if (cr1
->root
->root_key
.objectid
> cr2
->root
->root_key
.objectid
)
1232 * Called for every backref that is found for the current extent.
1233 * Results are collected in sctx->clone_roots->ino/offset/found_refs
1235 static int __iterate_backrefs(u64 ino
, u64 offset
, u64 root
, void *ctx_
)
1237 struct backref_ctx
*bctx
= ctx_
;
1238 struct clone_root
*found
;
1240 /* First check if the root is in the list of accepted clone sources */
1241 found
= bsearch((void *)(uintptr_t)root
, bctx
->sctx
->clone_roots
,
1242 bctx
->sctx
->clone_roots_cnt
,
1243 sizeof(struct clone_root
),
1244 __clone_root_cmp_bsearch
);
1248 if (found
->root
== bctx
->sctx
->send_root
&&
1249 ino
== bctx
->cur_objectid
&&
1250 offset
== bctx
->cur_offset
) {
1251 bctx
->found_itself
= 1;
1255 * Make sure we don't consider clones from send_root that are
1256 * behind the current inode/offset.
1258 if (found
->root
== bctx
->sctx
->send_root
) {
1260 * If the source inode was not yet processed we can't issue a
1261 * clone operation, as the source extent does not exist yet at
1262 * the destination of the stream.
1264 if (ino
> bctx
->cur_objectid
)
1267 * We clone from the inode currently being sent as long as the
1268 * source extent is already processed, otherwise we could try
1269 * to clone from an extent that does not exist yet at the
1270 * destination of the stream.
1272 if (ino
== bctx
->cur_objectid
&&
1273 offset
+ bctx
->extent_len
>
1274 bctx
->sctx
->cur_inode_next_write_offset
)
1279 found
->found_refs
++;
1280 if (ino
< found
->ino
) {
1282 found
->offset
= offset
;
1283 } else if (found
->ino
== ino
) {
1285 * same extent found more then once in the same file.
1287 if (found
->offset
> offset
+ bctx
->extent_len
)
1288 found
->offset
= offset
;
1295 * Given an inode, offset and extent item, it finds a good clone for a clone
1296 * instruction. Returns -ENOENT when none could be found. The function makes
1297 * sure that the returned clone is usable at the point where sending is at the
1298 * moment. This means, that no clones are accepted which lie behind the current
1301 * path must point to the extent item when called.
1303 static int find_extent_clone(struct send_ctx
*sctx
,
1304 struct btrfs_path
*path
,
1305 u64 ino
, u64 data_offset
,
1307 struct clone_root
**found
)
1309 struct btrfs_fs_info
*fs_info
= sctx
->send_root
->fs_info
;
1315 u64 extent_item_pos
;
1317 struct btrfs_file_extent_item
*fi
;
1318 struct extent_buffer
*eb
= path
->nodes
[0];
1319 struct backref_ctx
*backref_ctx
= NULL
;
1320 struct clone_root
*cur_clone_root
;
1321 struct btrfs_key found_key
;
1322 struct btrfs_path
*tmp_path
;
1323 struct btrfs_extent_item
*ei
;
1327 tmp_path
= alloc_path_for_send();
1331 /* We only use this path under the commit sem */
1332 tmp_path
->need_commit_sem
= 0;
1334 backref_ctx
= kmalloc(sizeof(*backref_ctx
), GFP_KERNEL
);
1340 if (data_offset
>= ino_size
) {
1342 * There may be extents that lie behind the file's size.
1343 * I at least had this in combination with snapshotting while
1344 * writing large files.
1350 fi
= btrfs_item_ptr(eb
, path
->slots
[0],
1351 struct btrfs_file_extent_item
);
1352 extent_type
= btrfs_file_extent_type(eb
, fi
);
1353 if (extent_type
== BTRFS_FILE_EXTENT_INLINE
) {
1357 compressed
= btrfs_file_extent_compression(eb
, fi
);
1359 num_bytes
= btrfs_file_extent_num_bytes(eb
, fi
);
1360 disk_byte
= btrfs_file_extent_disk_bytenr(eb
, fi
);
1361 if (disk_byte
== 0) {
1365 logical
= disk_byte
+ btrfs_file_extent_offset(eb
, fi
);
1367 down_read(&fs_info
->commit_root_sem
);
1368 ret
= extent_from_logical(fs_info
, disk_byte
, tmp_path
,
1369 &found_key
, &flags
);
1370 up_read(&fs_info
->commit_root_sem
);
1374 if (flags
& BTRFS_EXTENT_FLAG_TREE_BLOCK
) {
1379 ei
= btrfs_item_ptr(tmp_path
->nodes
[0], tmp_path
->slots
[0],
1380 struct btrfs_extent_item
);
1382 * Backreference walking (iterate_extent_inodes() below) is currently
1383 * too expensive when an extent has a large number of references, both
1384 * in time spent and used memory. So for now just fallback to write
1385 * operations instead of clone operations when an extent has more than
1386 * a certain amount of references.
1388 if (btrfs_extent_refs(tmp_path
->nodes
[0], ei
) > SEND_MAX_EXTENT_REFS
) {
1392 btrfs_release_path(tmp_path
);
1395 * Setup the clone roots.
1397 for (i
= 0; i
< sctx
->clone_roots_cnt
; i
++) {
1398 cur_clone_root
= sctx
->clone_roots
+ i
;
1399 cur_clone_root
->ino
= (u64
)-1;
1400 cur_clone_root
->offset
= 0;
1401 cur_clone_root
->found_refs
= 0;
1404 backref_ctx
->sctx
= sctx
;
1405 backref_ctx
->found
= 0;
1406 backref_ctx
->cur_objectid
= ino
;
1407 backref_ctx
->cur_offset
= data_offset
;
1408 backref_ctx
->found_itself
= 0;
1409 backref_ctx
->extent_len
= num_bytes
;
1411 * For non-compressed extents iterate_extent_inodes() gives us extent
1412 * offsets that already take into account the data offset, but not for
1413 * compressed extents, since the offset is logical and not relative to
1414 * the physical extent locations. We must take this into account to
1415 * avoid sending clone offsets that go beyond the source file's size,
1416 * which would result in the clone ioctl failing with -EINVAL on the
1419 if (compressed
== BTRFS_COMPRESS_NONE
)
1420 backref_ctx
->data_offset
= 0;
1422 backref_ctx
->data_offset
= btrfs_file_extent_offset(eb
, fi
);
1425 * The last extent of a file may be too large due to page alignment.
1426 * We need to adjust extent_len in this case so that the checks in
1427 * __iterate_backrefs work.
1429 if (data_offset
+ num_bytes
>= ino_size
)
1430 backref_ctx
->extent_len
= ino_size
- data_offset
;
1433 * Now collect all backrefs.
1435 if (compressed
== BTRFS_COMPRESS_NONE
)
1436 extent_item_pos
= logical
- found_key
.objectid
;
1438 extent_item_pos
= 0;
1439 ret
= iterate_extent_inodes(fs_info
, found_key
.objectid
,
1440 extent_item_pos
, 1, __iterate_backrefs
,
1441 backref_ctx
, false);
1446 if (!backref_ctx
->found_itself
) {
1447 /* found a bug in backref code? */
1450 "did not find backref in send_root. inode=%llu, offset=%llu, disk_byte=%llu found extent=%llu",
1451 ino
, data_offset
, disk_byte
, found_key
.objectid
);
1455 btrfs_debug(fs_info
,
1456 "find_extent_clone: data_offset=%llu, ino=%llu, num_bytes=%llu, logical=%llu",
1457 data_offset
, ino
, num_bytes
, logical
);
1459 if (!backref_ctx
->found
)
1460 btrfs_debug(fs_info
, "no clones found");
1462 cur_clone_root
= NULL
;
1463 for (i
= 0; i
< sctx
->clone_roots_cnt
; i
++) {
1464 if (sctx
->clone_roots
[i
].found_refs
) {
1465 if (!cur_clone_root
)
1466 cur_clone_root
= sctx
->clone_roots
+ i
;
1467 else if (sctx
->clone_roots
[i
].root
== sctx
->send_root
)
1468 /* prefer clones from send_root over others */
1469 cur_clone_root
= sctx
->clone_roots
+ i
;
1474 if (cur_clone_root
) {
1475 *found
= cur_clone_root
;
1482 btrfs_free_path(tmp_path
);
1487 static int read_symlink(struct btrfs_root
*root
,
1489 struct fs_path
*dest
)
1492 struct btrfs_path
*path
;
1493 struct btrfs_key key
;
1494 struct btrfs_file_extent_item
*ei
;
1500 path
= alloc_path_for_send();
1505 key
.type
= BTRFS_EXTENT_DATA_KEY
;
1507 ret
= btrfs_search_slot(NULL
, root
, &key
, path
, 0, 0);
1512 * An empty symlink inode. Can happen in rare error paths when
1513 * creating a symlink (transaction committed before the inode
1514 * eviction handler removed the symlink inode items and a crash
1515 * happened in between or the subvol was snapshoted in between).
1516 * Print an informative message to dmesg/syslog so that the user
1517 * can delete the symlink.
1519 btrfs_err(root
->fs_info
,
1520 "Found empty symlink inode %llu at root %llu",
1521 ino
, root
->root_key
.objectid
);
1526 ei
= btrfs_item_ptr(path
->nodes
[0], path
->slots
[0],
1527 struct btrfs_file_extent_item
);
1528 type
= btrfs_file_extent_type(path
->nodes
[0], ei
);
1529 compression
= btrfs_file_extent_compression(path
->nodes
[0], ei
);
1530 BUG_ON(type
!= BTRFS_FILE_EXTENT_INLINE
);
1531 BUG_ON(compression
);
1533 off
= btrfs_file_extent_inline_start(ei
);
1534 len
= btrfs_file_extent_ram_bytes(path
->nodes
[0], ei
);
1536 ret
= fs_path_add_from_extent_buffer(dest
, path
->nodes
[0], off
, len
);
1539 btrfs_free_path(path
);
1544 * Helper function to generate a file name that is unique in the root of
1545 * send_root and parent_root. This is used to generate names for orphan inodes.
1547 static int gen_unique_name(struct send_ctx
*sctx
,
1549 struct fs_path
*dest
)
1552 struct btrfs_path
*path
;
1553 struct btrfs_dir_item
*di
;
1558 path
= alloc_path_for_send();
1563 len
= snprintf(tmp
, sizeof(tmp
), "o%llu-%llu-%llu",
1565 ASSERT(len
< sizeof(tmp
));
1567 di
= btrfs_lookup_dir_item(NULL
, sctx
->send_root
,
1568 path
, BTRFS_FIRST_FREE_OBJECTID
,
1569 tmp
, strlen(tmp
), 0);
1570 btrfs_release_path(path
);
1576 /* not unique, try again */
1581 if (!sctx
->parent_root
) {
1587 di
= btrfs_lookup_dir_item(NULL
, sctx
->parent_root
,
1588 path
, BTRFS_FIRST_FREE_OBJECTID
,
1589 tmp
, strlen(tmp
), 0);
1590 btrfs_release_path(path
);
1596 /* not unique, try again */
1604 ret
= fs_path_add(dest
, tmp
, strlen(tmp
));
1607 btrfs_free_path(path
);
1612 inode_state_no_change
,
1613 inode_state_will_create
,
1614 inode_state_did_create
,
1615 inode_state_will_delete
,
1616 inode_state_did_delete
,
1619 static int get_cur_inode_state(struct send_ctx
*sctx
, u64 ino
, u64 gen
)
1627 ret
= get_inode_info(sctx
->send_root
, ino
, NULL
, &left_gen
, NULL
, NULL
,
1629 if (ret
< 0 && ret
!= -ENOENT
)
1633 if (!sctx
->parent_root
) {
1634 right_ret
= -ENOENT
;
1636 ret
= get_inode_info(sctx
->parent_root
, ino
, NULL
, &right_gen
,
1637 NULL
, NULL
, NULL
, NULL
);
1638 if (ret
< 0 && ret
!= -ENOENT
)
1643 if (!left_ret
&& !right_ret
) {
1644 if (left_gen
== gen
&& right_gen
== gen
) {
1645 ret
= inode_state_no_change
;
1646 } else if (left_gen
== gen
) {
1647 if (ino
< sctx
->send_progress
)
1648 ret
= inode_state_did_create
;
1650 ret
= inode_state_will_create
;
1651 } else if (right_gen
== gen
) {
1652 if (ino
< sctx
->send_progress
)
1653 ret
= inode_state_did_delete
;
1655 ret
= inode_state_will_delete
;
1659 } else if (!left_ret
) {
1660 if (left_gen
== gen
) {
1661 if (ino
< sctx
->send_progress
)
1662 ret
= inode_state_did_create
;
1664 ret
= inode_state_will_create
;
1668 } else if (!right_ret
) {
1669 if (right_gen
== gen
) {
1670 if (ino
< sctx
->send_progress
)
1671 ret
= inode_state_did_delete
;
1673 ret
= inode_state_will_delete
;
1685 static int is_inode_existent(struct send_ctx
*sctx
, u64 ino
, u64 gen
)
1689 if (ino
== BTRFS_FIRST_FREE_OBJECTID
)
1692 ret
= get_cur_inode_state(sctx
, ino
, gen
);
1696 if (ret
== inode_state_no_change
||
1697 ret
== inode_state_did_create
||
1698 ret
== inode_state_will_delete
)
1708 * Helper function to lookup a dir item in a dir.
1710 static int lookup_dir_item_inode(struct btrfs_root
*root
,
1711 u64 dir
, const char *name
, int name_len
,
1716 struct btrfs_dir_item
*di
;
1717 struct btrfs_key key
;
1718 struct btrfs_path
*path
;
1720 path
= alloc_path_for_send();
1724 di
= btrfs_lookup_dir_item(NULL
, root
, path
,
1725 dir
, name
, name_len
, 0);
1726 if (IS_ERR_OR_NULL(di
)) {
1727 ret
= di
? PTR_ERR(di
) : -ENOENT
;
1730 btrfs_dir_item_key_to_cpu(path
->nodes
[0], di
, &key
);
1731 if (key
.type
== BTRFS_ROOT_ITEM_KEY
) {
1735 *found_inode
= key
.objectid
;
1736 *found_type
= btrfs_dir_type(path
->nodes
[0], di
);
1739 btrfs_free_path(path
);
1744 * Looks up the first btrfs_inode_ref of a given ino. It returns the parent dir,
1745 * generation of the parent dir and the name of the dir entry.
1747 static int get_first_ref(struct btrfs_root
*root
, u64 ino
,
1748 u64
*dir
, u64
*dir_gen
, struct fs_path
*name
)
1751 struct btrfs_key key
;
1752 struct btrfs_key found_key
;
1753 struct btrfs_path
*path
;
1757 path
= alloc_path_for_send();
1762 key
.type
= BTRFS_INODE_REF_KEY
;
1765 ret
= btrfs_search_slot_for_read(root
, &key
, path
, 1, 0);
1769 btrfs_item_key_to_cpu(path
->nodes
[0], &found_key
,
1771 if (ret
|| found_key
.objectid
!= ino
||
1772 (found_key
.type
!= BTRFS_INODE_REF_KEY
&&
1773 found_key
.type
!= BTRFS_INODE_EXTREF_KEY
)) {
1778 if (found_key
.type
== BTRFS_INODE_REF_KEY
) {
1779 struct btrfs_inode_ref
*iref
;
1780 iref
= btrfs_item_ptr(path
->nodes
[0], path
->slots
[0],
1781 struct btrfs_inode_ref
);
1782 len
= btrfs_inode_ref_name_len(path
->nodes
[0], iref
);
1783 ret
= fs_path_add_from_extent_buffer(name
, path
->nodes
[0],
1784 (unsigned long)(iref
+ 1),
1786 parent_dir
= found_key
.offset
;
1788 struct btrfs_inode_extref
*extref
;
1789 extref
= btrfs_item_ptr(path
->nodes
[0], path
->slots
[0],
1790 struct btrfs_inode_extref
);
1791 len
= btrfs_inode_extref_name_len(path
->nodes
[0], extref
);
1792 ret
= fs_path_add_from_extent_buffer(name
, path
->nodes
[0],
1793 (unsigned long)&extref
->name
, len
);
1794 parent_dir
= btrfs_inode_extref_parent(path
->nodes
[0], extref
);
1798 btrfs_release_path(path
);
1801 ret
= get_inode_info(root
, parent_dir
, NULL
, dir_gen
, NULL
,
1810 btrfs_free_path(path
);
1814 static int is_first_ref(struct btrfs_root
*root
,
1816 const char *name
, int name_len
)
1819 struct fs_path
*tmp_name
;
1822 tmp_name
= fs_path_alloc();
1826 ret
= get_first_ref(root
, ino
, &tmp_dir
, NULL
, tmp_name
);
1830 if (dir
!= tmp_dir
|| name_len
!= fs_path_len(tmp_name
)) {
1835 ret
= !memcmp(tmp_name
->start
, name
, name_len
);
1838 fs_path_free(tmp_name
);
1843 * Used by process_recorded_refs to determine if a new ref would overwrite an
1844 * already existing ref. In case it detects an overwrite, it returns the
1845 * inode/gen in who_ino/who_gen.
1846 * When an overwrite is detected, process_recorded_refs does proper orphanizing
1847 * to make sure later references to the overwritten inode are possible.
1848 * Orphanizing is however only required for the first ref of an inode.
1849 * process_recorded_refs does an additional is_first_ref check to see if
1850 * orphanizing is really required.
1852 static int will_overwrite_ref(struct send_ctx
*sctx
, u64 dir
, u64 dir_gen
,
1853 const char *name
, int name_len
,
1854 u64
*who_ino
, u64
*who_gen
, u64
*who_mode
)
1858 u64 other_inode
= 0;
1861 if (!sctx
->parent_root
)
1864 ret
= is_inode_existent(sctx
, dir
, dir_gen
);
1869 * If we have a parent root we need to verify that the parent dir was
1870 * not deleted and then re-created, if it was then we have no overwrite
1871 * and we can just unlink this entry.
1873 if (sctx
->parent_root
&& dir
!= BTRFS_FIRST_FREE_OBJECTID
) {
1874 ret
= get_inode_info(sctx
->parent_root
, dir
, NULL
, &gen
, NULL
,
1876 if (ret
< 0 && ret
!= -ENOENT
)
1886 ret
= lookup_dir_item_inode(sctx
->parent_root
, dir
, name
, name_len
,
1887 &other_inode
, &other_type
);
1888 if (ret
< 0 && ret
!= -ENOENT
)
1896 * Check if the overwritten ref was already processed. If yes, the ref
1897 * was already unlinked/moved, so we can safely assume that we will not
1898 * overwrite anything at this point in time.
1900 if (other_inode
> sctx
->send_progress
||
1901 is_waiting_for_move(sctx
, other_inode
)) {
1902 ret
= get_inode_info(sctx
->parent_root
, other_inode
, NULL
,
1903 who_gen
, who_mode
, NULL
, NULL
, NULL
);
1908 *who_ino
= other_inode
;
1918 * Checks if the ref was overwritten by an already processed inode. This is
1919 * used by __get_cur_name_and_parent to find out if the ref was orphanized and
1920 * thus the orphan name needs be used.
1921 * process_recorded_refs also uses it to avoid unlinking of refs that were
1924 static int did_overwrite_ref(struct send_ctx
*sctx
,
1925 u64 dir
, u64 dir_gen
,
1926 u64 ino
, u64 ino_gen
,
1927 const char *name
, int name_len
)
1934 if (!sctx
->parent_root
)
1937 ret
= is_inode_existent(sctx
, dir
, dir_gen
);
1941 if (dir
!= BTRFS_FIRST_FREE_OBJECTID
) {
1942 ret
= get_inode_info(sctx
->send_root
, dir
, NULL
, &gen
, NULL
,
1944 if (ret
< 0 && ret
!= -ENOENT
)
1954 /* check if the ref was overwritten by another ref */
1955 ret
= lookup_dir_item_inode(sctx
->send_root
, dir
, name
, name_len
,
1956 &ow_inode
, &other_type
);
1957 if (ret
< 0 && ret
!= -ENOENT
)
1960 /* was never and will never be overwritten */
1965 ret
= get_inode_info(sctx
->send_root
, ow_inode
, NULL
, &gen
, NULL
, NULL
,
1970 if (ow_inode
== ino
&& gen
== ino_gen
) {
1976 * We know that it is or will be overwritten. Check this now.
1977 * The current inode being processed might have been the one that caused
1978 * inode 'ino' to be orphanized, therefore check if ow_inode matches
1979 * the current inode being processed.
1981 if ((ow_inode
< sctx
->send_progress
) ||
1982 (ino
!= sctx
->cur_ino
&& ow_inode
== sctx
->cur_ino
&&
1983 gen
== sctx
->cur_inode_gen
))
1993 * Same as did_overwrite_ref, but also checks if it is the first ref of an inode
1994 * that got overwritten. This is used by process_recorded_refs to determine
1995 * if it has to use the path as returned by get_cur_path or the orphan name.
1997 static int did_overwrite_first_ref(struct send_ctx
*sctx
, u64 ino
, u64 gen
)
2000 struct fs_path
*name
= NULL
;
2004 if (!sctx
->parent_root
)
2007 name
= fs_path_alloc();
2011 ret
= get_first_ref(sctx
->parent_root
, ino
, &dir
, &dir_gen
, name
);
2015 ret
= did_overwrite_ref(sctx
, dir
, dir_gen
, ino
, gen
,
2016 name
->start
, fs_path_len(name
));
2024 * Insert a name cache entry. On 32bit kernels the radix tree index is 32bit,
2025 * so we need to do some special handling in case we have clashes. This function
2026 * takes care of this with the help of name_cache_entry::radix_list.
2027 * In case of error, nce is kfreed.
2029 static int name_cache_insert(struct send_ctx
*sctx
,
2030 struct name_cache_entry
*nce
)
2033 struct list_head
*nce_head
;
2035 nce_head
= radix_tree_lookup(&sctx
->name_cache
,
2036 (unsigned long)nce
->ino
);
2038 nce_head
= kmalloc(sizeof(*nce_head
), GFP_KERNEL
);
2043 INIT_LIST_HEAD(nce_head
);
2045 ret
= radix_tree_insert(&sctx
->name_cache
, nce
->ino
, nce_head
);
2052 list_add_tail(&nce
->radix_list
, nce_head
);
2053 list_add_tail(&nce
->list
, &sctx
->name_cache_list
);
2054 sctx
->name_cache_size
++;
2059 static void name_cache_delete(struct send_ctx
*sctx
,
2060 struct name_cache_entry
*nce
)
2062 struct list_head
*nce_head
;
2064 nce_head
= radix_tree_lookup(&sctx
->name_cache
,
2065 (unsigned long)nce
->ino
);
2067 btrfs_err(sctx
->send_root
->fs_info
,
2068 "name_cache_delete lookup failed ino %llu cache size %d, leaking memory",
2069 nce
->ino
, sctx
->name_cache_size
);
2072 list_del(&nce
->radix_list
);
2073 list_del(&nce
->list
);
2074 sctx
->name_cache_size
--;
2077 * We may not get to the final release of nce_head if the lookup fails
2079 if (nce_head
&& list_empty(nce_head
)) {
2080 radix_tree_delete(&sctx
->name_cache
, (unsigned long)nce
->ino
);
2085 static struct name_cache_entry
*name_cache_search(struct send_ctx
*sctx
,
2088 struct list_head
*nce_head
;
2089 struct name_cache_entry
*cur
;
2091 nce_head
= radix_tree_lookup(&sctx
->name_cache
, (unsigned long)ino
);
2095 list_for_each_entry(cur
, nce_head
, radix_list
) {
2096 if (cur
->ino
== ino
&& cur
->gen
== gen
)
2103 * Removes the entry from the list and adds it back to the end. This marks the
2104 * entry as recently used so that name_cache_clean_unused does not remove it.
2106 static void name_cache_used(struct send_ctx
*sctx
, struct name_cache_entry
*nce
)
2108 list_del(&nce
->list
);
2109 list_add_tail(&nce
->list
, &sctx
->name_cache_list
);
2113 * Remove some entries from the beginning of name_cache_list.
2115 static void name_cache_clean_unused(struct send_ctx
*sctx
)
2117 struct name_cache_entry
*nce
;
2119 if (sctx
->name_cache_size
< SEND_CTX_NAME_CACHE_CLEAN_SIZE
)
2122 while (sctx
->name_cache_size
> SEND_CTX_MAX_NAME_CACHE_SIZE
) {
2123 nce
= list_entry(sctx
->name_cache_list
.next
,
2124 struct name_cache_entry
, list
);
2125 name_cache_delete(sctx
, nce
);
2130 static void name_cache_free(struct send_ctx
*sctx
)
2132 struct name_cache_entry
*nce
;
2134 while (!list_empty(&sctx
->name_cache_list
)) {
2135 nce
= list_entry(sctx
->name_cache_list
.next
,
2136 struct name_cache_entry
, list
);
2137 name_cache_delete(sctx
, nce
);
2143 * Used by get_cur_path for each ref up to the root.
2144 * Returns 0 if it succeeded.
2145 * Returns 1 if the inode is not existent or got overwritten. In that case, the
2146 * name is an orphan name. This instructs get_cur_path to stop iterating. If 1
2147 * is returned, parent_ino/parent_gen are not guaranteed to be valid.
2148 * Returns <0 in case of error.
2150 static int __get_cur_name_and_parent(struct send_ctx
*sctx
,
2154 struct fs_path
*dest
)
2158 struct name_cache_entry
*nce
= NULL
;
2161 * First check if we already did a call to this function with the same
2162 * ino/gen. If yes, check if the cache entry is still up-to-date. If yes
2163 * return the cached result.
2165 nce
= name_cache_search(sctx
, ino
, gen
);
2167 if (ino
< sctx
->send_progress
&& nce
->need_later_update
) {
2168 name_cache_delete(sctx
, nce
);
2172 name_cache_used(sctx
, nce
);
2173 *parent_ino
= nce
->parent_ino
;
2174 *parent_gen
= nce
->parent_gen
;
2175 ret
= fs_path_add(dest
, nce
->name
, nce
->name_len
);
2184 * If the inode is not existent yet, add the orphan name and return 1.
2185 * This should only happen for the parent dir that we determine in
2188 ret
= is_inode_existent(sctx
, ino
, gen
);
2193 ret
= gen_unique_name(sctx
, ino
, gen
, dest
);
2201 * Depending on whether the inode was already processed or not, use
2202 * send_root or parent_root for ref lookup.
2204 if (ino
< sctx
->send_progress
)
2205 ret
= get_first_ref(sctx
->send_root
, ino
,
2206 parent_ino
, parent_gen
, dest
);
2208 ret
= get_first_ref(sctx
->parent_root
, ino
,
2209 parent_ino
, parent_gen
, dest
);
2214 * Check if the ref was overwritten by an inode's ref that was processed
2215 * earlier. If yes, treat as orphan and return 1.
2217 ret
= did_overwrite_ref(sctx
, *parent_ino
, *parent_gen
, ino
, gen
,
2218 dest
->start
, dest
->end
- dest
->start
);
2222 fs_path_reset(dest
);
2223 ret
= gen_unique_name(sctx
, ino
, gen
, dest
);
2231 * Store the result of the lookup in the name cache.
2233 nce
= kmalloc(sizeof(*nce
) + fs_path_len(dest
) + 1, GFP_KERNEL
);
2241 nce
->parent_ino
= *parent_ino
;
2242 nce
->parent_gen
= *parent_gen
;
2243 nce
->name_len
= fs_path_len(dest
);
2245 strcpy(nce
->name
, dest
->start
);
2247 if (ino
< sctx
->send_progress
)
2248 nce
->need_later_update
= 0;
2250 nce
->need_later_update
= 1;
2252 nce_ret
= name_cache_insert(sctx
, nce
);
2255 name_cache_clean_unused(sctx
);
2262 * Magic happens here. This function returns the first ref to an inode as it
2263 * would look like while receiving the stream at this point in time.
2264 * We walk the path up to the root. For every inode in between, we check if it
2265 * was already processed/sent. If yes, we continue with the parent as found
2266 * in send_root. If not, we continue with the parent as found in parent_root.
2267 * If we encounter an inode that was deleted at this point in time, we use the
2268 * inodes "orphan" name instead of the real name and stop. Same with new inodes
2269 * that were not created yet and overwritten inodes/refs.
2271 * When do we have orphan inodes:
2272 * 1. When an inode is freshly created and thus no valid refs are available yet
2273 * 2. When a directory lost all it's refs (deleted) but still has dir items
2274 * inside which were not processed yet (pending for move/delete). If anyone
2275 * tried to get the path to the dir items, it would get a path inside that
2277 * 3. When an inode is moved around or gets new links, it may overwrite the ref
2278 * of an unprocessed inode. If in that case the first ref would be
2279 * overwritten, the overwritten inode gets "orphanized". Later when we
2280 * process this overwritten inode, it is restored at a new place by moving
2283 * sctx->send_progress tells this function at which point in time receiving
2286 static int get_cur_path(struct send_ctx
*sctx
, u64 ino
, u64 gen
,
2287 struct fs_path
*dest
)
2290 struct fs_path
*name
= NULL
;
2291 u64 parent_inode
= 0;
2295 name
= fs_path_alloc();
2302 fs_path_reset(dest
);
2304 while (!stop
&& ino
!= BTRFS_FIRST_FREE_OBJECTID
) {
2305 struct waiting_dir_move
*wdm
;
2307 fs_path_reset(name
);
2309 if (is_waiting_for_rm(sctx
, ino
)) {
2310 ret
= gen_unique_name(sctx
, ino
, gen
, name
);
2313 ret
= fs_path_add_path(dest
, name
);
2317 wdm
= get_waiting_dir_move(sctx
, ino
);
2318 if (wdm
&& wdm
->orphanized
) {
2319 ret
= gen_unique_name(sctx
, ino
, gen
, name
);
2322 ret
= get_first_ref(sctx
->parent_root
, ino
,
2323 &parent_inode
, &parent_gen
, name
);
2325 ret
= __get_cur_name_and_parent(sctx
, ino
, gen
,
2335 ret
= fs_path_add_path(dest
, name
);
2346 fs_path_unreverse(dest
);
2351 * Sends a BTRFS_SEND_C_SUBVOL command/item to userspace
2353 static int send_subvol_begin(struct send_ctx
*sctx
)
2356 struct btrfs_root
*send_root
= sctx
->send_root
;
2357 struct btrfs_root
*parent_root
= sctx
->parent_root
;
2358 struct btrfs_path
*path
;
2359 struct btrfs_key key
;
2360 struct btrfs_root_ref
*ref
;
2361 struct extent_buffer
*leaf
;
2365 path
= btrfs_alloc_path();
2369 name
= kmalloc(BTRFS_PATH_NAME_MAX
, GFP_KERNEL
);
2371 btrfs_free_path(path
);
2375 key
.objectid
= send_root
->root_key
.objectid
;
2376 key
.type
= BTRFS_ROOT_BACKREF_KEY
;
2379 ret
= btrfs_search_slot_for_read(send_root
->fs_info
->tree_root
,
2388 leaf
= path
->nodes
[0];
2389 btrfs_item_key_to_cpu(leaf
, &key
, path
->slots
[0]);
2390 if (key
.type
!= BTRFS_ROOT_BACKREF_KEY
||
2391 key
.objectid
!= send_root
->root_key
.objectid
) {
2395 ref
= btrfs_item_ptr(leaf
, path
->slots
[0], struct btrfs_root_ref
);
2396 namelen
= btrfs_root_ref_name_len(leaf
, ref
);
2397 read_extent_buffer(leaf
, name
, (unsigned long)(ref
+ 1), namelen
);
2398 btrfs_release_path(path
);
2401 ret
= begin_cmd(sctx
, BTRFS_SEND_C_SNAPSHOT
);
2405 ret
= begin_cmd(sctx
, BTRFS_SEND_C_SUBVOL
);
2410 TLV_PUT_STRING(sctx
, BTRFS_SEND_A_PATH
, name
, namelen
);
2412 if (!btrfs_is_empty_uuid(sctx
->send_root
->root_item
.received_uuid
))
2413 TLV_PUT_UUID(sctx
, BTRFS_SEND_A_UUID
,
2414 sctx
->send_root
->root_item
.received_uuid
);
2416 TLV_PUT_UUID(sctx
, BTRFS_SEND_A_UUID
,
2417 sctx
->send_root
->root_item
.uuid
);
2419 TLV_PUT_U64(sctx
, BTRFS_SEND_A_CTRANSID
,
2420 le64_to_cpu(sctx
->send_root
->root_item
.ctransid
));
2422 if (!btrfs_is_empty_uuid(parent_root
->root_item
.received_uuid
))
2423 TLV_PUT_UUID(sctx
, BTRFS_SEND_A_CLONE_UUID
,
2424 parent_root
->root_item
.received_uuid
);
2426 TLV_PUT_UUID(sctx
, BTRFS_SEND_A_CLONE_UUID
,
2427 parent_root
->root_item
.uuid
);
2428 TLV_PUT_U64(sctx
, BTRFS_SEND_A_CLONE_CTRANSID
,
2429 le64_to_cpu(sctx
->parent_root
->root_item
.ctransid
));
2432 ret
= send_cmd(sctx
);
2436 btrfs_free_path(path
);
2441 static int send_truncate(struct send_ctx
*sctx
, u64 ino
, u64 gen
, u64 size
)
2443 struct btrfs_fs_info
*fs_info
= sctx
->send_root
->fs_info
;
2447 btrfs_debug(fs_info
, "send_truncate %llu size=%llu", ino
, size
);
2449 p
= fs_path_alloc();
2453 ret
= begin_cmd(sctx
, BTRFS_SEND_C_TRUNCATE
);
2457 ret
= get_cur_path(sctx
, ino
, gen
, p
);
2460 TLV_PUT_PATH(sctx
, BTRFS_SEND_A_PATH
, p
);
2461 TLV_PUT_U64(sctx
, BTRFS_SEND_A_SIZE
, size
);
2463 ret
= send_cmd(sctx
);
2471 static int send_chmod(struct send_ctx
*sctx
, u64 ino
, u64 gen
, u64 mode
)
2473 struct btrfs_fs_info
*fs_info
= sctx
->send_root
->fs_info
;
2477 btrfs_debug(fs_info
, "send_chmod %llu mode=%llu", ino
, mode
);
2479 p
= fs_path_alloc();
2483 ret
= begin_cmd(sctx
, BTRFS_SEND_C_CHMOD
);
2487 ret
= get_cur_path(sctx
, ino
, gen
, p
);
2490 TLV_PUT_PATH(sctx
, BTRFS_SEND_A_PATH
, p
);
2491 TLV_PUT_U64(sctx
, BTRFS_SEND_A_MODE
, mode
& 07777);
2493 ret
= send_cmd(sctx
);
2501 static int send_chown(struct send_ctx
*sctx
, u64 ino
, u64 gen
, u64 uid
, u64 gid
)
2503 struct btrfs_fs_info
*fs_info
= sctx
->send_root
->fs_info
;
2507 btrfs_debug(fs_info
, "send_chown %llu uid=%llu, gid=%llu",
2510 p
= fs_path_alloc();
2514 ret
= begin_cmd(sctx
, BTRFS_SEND_C_CHOWN
);
2518 ret
= get_cur_path(sctx
, ino
, gen
, p
);
2521 TLV_PUT_PATH(sctx
, BTRFS_SEND_A_PATH
, p
);
2522 TLV_PUT_U64(sctx
, BTRFS_SEND_A_UID
, uid
);
2523 TLV_PUT_U64(sctx
, BTRFS_SEND_A_GID
, gid
);
2525 ret
= send_cmd(sctx
);
2533 static int send_utimes(struct send_ctx
*sctx
, u64 ino
, u64 gen
)
2535 struct btrfs_fs_info
*fs_info
= sctx
->send_root
->fs_info
;
2537 struct fs_path
*p
= NULL
;
2538 struct btrfs_inode_item
*ii
;
2539 struct btrfs_path
*path
= NULL
;
2540 struct extent_buffer
*eb
;
2541 struct btrfs_key key
;
2544 btrfs_debug(fs_info
, "send_utimes %llu", ino
);
2546 p
= fs_path_alloc();
2550 path
= alloc_path_for_send();
2557 key
.type
= BTRFS_INODE_ITEM_KEY
;
2559 ret
= btrfs_search_slot(NULL
, sctx
->send_root
, &key
, path
, 0, 0);
2565 eb
= path
->nodes
[0];
2566 slot
= path
->slots
[0];
2567 ii
= btrfs_item_ptr(eb
, slot
, struct btrfs_inode_item
);
2569 ret
= begin_cmd(sctx
, BTRFS_SEND_C_UTIMES
);
2573 ret
= get_cur_path(sctx
, ino
, gen
, p
);
2576 TLV_PUT_PATH(sctx
, BTRFS_SEND_A_PATH
, p
);
2577 TLV_PUT_BTRFS_TIMESPEC(sctx
, BTRFS_SEND_A_ATIME
, eb
, &ii
->atime
);
2578 TLV_PUT_BTRFS_TIMESPEC(sctx
, BTRFS_SEND_A_MTIME
, eb
, &ii
->mtime
);
2579 TLV_PUT_BTRFS_TIMESPEC(sctx
, BTRFS_SEND_A_CTIME
, eb
, &ii
->ctime
);
2580 /* TODO Add otime support when the otime patches get into upstream */
2582 ret
= send_cmd(sctx
);
2587 btrfs_free_path(path
);
2592 * Sends a BTRFS_SEND_C_MKXXX or SYMLINK command to user space. We don't have
2593 * a valid path yet because we did not process the refs yet. So, the inode
2594 * is created as orphan.
2596 static int send_create_inode(struct send_ctx
*sctx
, u64 ino
)
2598 struct btrfs_fs_info
*fs_info
= sctx
->send_root
->fs_info
;
2606 btrfs_debug(fs_info
, "send_create_inode %llu", ino
);
2608 p
= fs_path_alloc();
2612 if (ino
!= sctx
->cur_ino
) {
2613 ret
= get_inode_info(sctx
->send_root
, ino
, NULL
, &gen
, &mode
,
2618 gen
= sctx
->cur_inode_gen
;
2619 mode
= sctx
->cur_inode_mode
;
2620 rdev
= sctx
->cur_inode_rdev
;
2623 if (S_ISREG(mode
)) {
2624 cmd
= BTRFS_SEND_C_MKFILE
;
2625 } else if (S_ISDIR(mode
)) {
2626 cmd
= BTRFS_SEND_C_MKDIR
;
2627 } else if (S_ISLNK(mode
)) {
2628 cmd
= BTRFS_SEND_C_SYMLINK
;
2629 } else if (S_ISCHR(mode
) || S_ISBLK(mode
)) {
2630 cmd
= BTRFS_SEND_C_MKNOD
;
2631 } else if (S_ISFIFO(mode
)) {
2632 cmd
= BTRFS_SEND_C_MKFIFO
;
2633 } else if (S_ISSOCK(mode
)) {
2634 cmd
= BTRFS_SEND_C_MKSOCK
;
2636 btrfs_warn(sctx
->send_root
->fs_info
, "unexpected inode type %o",
2637 (int)(mode
& S_IFMT
));
2642 ret
= begin_cmd(sctx
, cmd
);
2646 ret
= gen_unique_name(sctx
, ino
, gen
, p
);
2650 TLV_PUT_PATH(sctx
, BTRFS_SEND_A_PATH
, p
);
2651 TLV_PUT_U64(sctx
, BTRFS_SEND_A_INO
, ino
);
2653 if (S_ISLNK(mode
)) {
2655 ret
= read_symlink(sctx
->send_root
, ino
, p
);
2658 TLV_PUT_PATH(sctx
, BTRFS_SEND_A_PATH_LINK
, p
);
2659 } else if (S_ISCHR(mode
) || S_ISBLK(mode
) ||
2660 S_ISFIFO(mode
) || S_ISSOCK(mode
)) {
2661 TLV_PUT_U64(sctx
, BTRFS_SEND_A_RDEV
, new_encode_dev(rdev
));
2662 TLV_PUT_U64(sctx
, BTRFS_SEND_A_MODE
, mode
);
2665 ret
= send_cmd(sctx
);
2677 * We need some special handling for inodes that get processed before the parent
2678 * directory got created. See process_recorded_refs for details.
2679 * This function does the check if we already created the dir out of order.
2681 static int did_create_dir(struct send_ctx
*sctx
, u64 dir
)
2684 struct btrfs_path
*path
= NULL
;
2685 struct btrfs_key key
;
2686 struct btrfs_key found_key
;
2687 struct btrfs_key di_key
;
2688 struct extent_buffer
*eb
;
2689 struct btrfs_dir_item
*di
;
2692 path
= alloc_path_for_send();
2699 key
.type
= BTRFS_DIR_INDEX_KEY
;
2701 ret
= btrfs_search_slot(NULL
, sctx
->send_root
, &key
, path
, 0, 0);
2706 eb
= path
->nodes
[0];
2707 slot
= path
->slots
[0];
2708 if (slot
>= btrfs_header_nritems(eb
)) {
2709 ret
= btrfs_next_leaf(sctx
->send_root
, path
);
2712 } else if (ret
> 0) {
2719 btrfs_item_key_to_cpu(eb
, &found_key
, slot
);
2720 if (found_key
.objectid
!= key
.objectid
||
2721 found_key
.type
!= key
.type
) {
2726 di
= btrfs_item_ptr(eb
, slot
, struct btrfs_dir_item
);
2727 btrfs_dir_item_key_to_cpu(eb
, di
, &di_key
);
2729 if (di_key
.type
!= BTRFS_ROOT_ITEM_KEY
&&
2730 di_key
.objectid
< sctx
->send_progress
) {
2739 btrfs_free_path(path
);
2744 * Only creates the inode if it is:
2745 * 1. Not a directory
2746 * 2. Or a directory which was not created already due to out of order
2747 * directories. See did_create_dir and process_recorded_refs for details.
2749 static int send_create_inode_if_needed(struct send_ctx
*sctx
)
2753 if (S_ISDIR(sctx
->cur_inode_mode
)) {
2754 ret
= did_create_dir(sctx
, sctx
->cur_ino
);
2763 ret
= send_create_inode(sctx
, sctx
->cur_ino
);
2771 struct recorded_ref
{
2772 struct list_head list
;
2774 struct fs_path
*full_path
;
2780 static void set_ref_path(struct recorded_ref
*ref
, struct fs_path
*path
)
2782 ref
->full_path
= path
;
2783 ref
->name
= (char *)kbasename(ref
->full_path
->start
);
2784 ref
->name_len
= ref
->full_path
->end
- ref
->name
;
2788 * We need to process new refs before deleted refs, but compare_tree gives us
2789 * everything mixed. So we first record all refs and later process them.
2790 * This function is a helper to record one ref.
2792 static int __record_ref(struct list_head
*head
, u64 dir
,
2793 u64 dir_gen
, struct fs_path
*path
)
2795 struct recorded_ref
*ref
;
2797 ref
= kmalloc(sizeof(*ref
), GFP_KERNEL
);
2802 ref
->dir_gen
= dir_gen
;
2803 set_ref_path(ref
, path
);
2804 list_add_tail(&ref
->list
, head
);
2808 static int dup_ref(struct recorded_ref
*ref
, struct list_head
*list
)
2810 struct recorded_ref
*new;
2812 new = kmalloc(sizeof(*ref
), GFP_KERNEL
);
2816 new->dir
= ref
->dir
;
2817 new->dir_gen
= ref
->dir_gen
;
2818 new->full_path
= NULL
;
2819 INIT_LIST_HEAD(&new->list
);
2820 list_add_tail(&new->list
, list
);
2824 static void __free_recorded_refs(struct list_head
*head
)
2826 struct recorded_ref
*cur
;
2828 while (!list_empty(head
)) {
2829 cur
= list_entry(head
->next
, struct recorded_ref
, list
);
2830 fs_path_free(cur
->full_path
);
2831 list_del(&cur
->list
);
2836 static void free_recorded_refs(struct send_ctx
*sctx
)
2838 __free_recorded_refs(&sctx
->new_refs
);
2839 __free_recorded_refs(&sctx
->deleted_refs
);
2843 * Renames/moves a file/dir to its orphan name. Used when the first
2844 * ref of an unprocessed inode gets overwritten and for all non empty
2847 static int orphanize_inode(struct send_ctx
*sctx
, u64 ino
, u64 gen
,
2848 struct fs_path
*path
)
2851 struct fs_path
*orphan
;
2853 orphan
= fs_path_alloc();
2857 ret
= gen_unique_name(sctx
, ino
, gen
, orphan
);
2861 ret
= send_rename(sctx
, path
, orphan
);
2864 fs_path_free(orphan
);
2868 static struct orphan_dir_info
*
2869 add_orphan_dir_info(struct send_ctx
*sctx
, u64 dir_ino
)
2871 struct rb_node
**p
= &sctx
->orphan_dirs
.rb_node
;
2872 struct rb_node
*parent
= NULL
;
2873 struct orphan_dir_info
*entry
, *odi
;
2877 entry
= rb_entry(parent
, struct orphan_dir_info
, node
);
2878 if (dir_ino
< entry
->ino
) {
2880 } else if (dir_ino
> entry
->ino
) {
2881 p
= &(*p
)->rb_right
;
2887 odi
= kmalloc(sizeof(*odi
), GFP_KERNEL
);
2889 return ERR_PTR(-ENOMEM
);
2892 odi
->last_dir_index_offset
= 0;
2894 rb_link_node(&odi
->node
, parent
, p
);
2895 rb_insert_color(&odi
->node
, &sctx
->orphan_dirs
);
2899 static struct orphan_dir_info
*
2900 get_orphan_dir_info(struct send_ctx
*sctx
, u64 dir_ino
)
2902 struct rb_node
*n
= sctx
->orphan_dirs
.rb_node
;
2903 struct orphan_dir_info
*entry
;
2906 entry
= rb_entry(n
, struct orphan_dir_info
, node
);
2907 if (dir_ino
< entry
->ino
)
2909 else if (dir_ino
> entry
->ino
)
2917 static int is_waiting_for_rm(struct send_ctx
*sctx
, u64 dir_ino
)
2919 struct orphan_dir_info
*odi
= get_orphan_dir_info(sctx
, dir_ino
);
2924 static void free_orphan_dir_info(struct send_ctx
*sctx
,
2925 struct orphan_dir_info
*odi
)
2929 rb_erase(&odi
->node
, &sctx
->orphan_dirs
);
2934 * Returns 1 if a directory can be removed at this point in time.
2935 * We check this by iterating all dir items and checking if the inode behind
2936 * the dir item was already processed.
2938 static int can_rmdir(struct send_ctx
*sctx
, u64 dir
, u64 dir_gen
,
2942 struct btrfs_root
*root
= sctx
->parent_root
;
2943 struct btrfs_path
*path
;
2944 struct btrfs_key key
;
2945 struct btrfs_key found_key
;
2946 struct btrfs_key loc
;
2947 struct btrfs_dir_item
*di
;
2948 struct orphan_dir_info
*odi
= NULL
;
2951 * Don't try to rmdir the top/root subvolume dir.
2953 if (dir
== BTRFS_FIRST_FREE_OBJECTID
)
2956 path
= alloc_path_for_send();
2961 key
.type
= BTRFS_DIR_INDEX_KEY
;
2964 odi
= get_orphan_dir_info(sctx
, dir
);
2966 key
.offset
= odi
->last_dir_index_offset
;
2968 ret
= btrfs_search_slot(NULL
, root
, &key
, path
, 0, 0);
2973 struct waiting_dir_move
*dm
;
2975 if (path
->slots
[0] >= btrfs_header_nritems(path
->nodes
[0])) {
2976 ret
= btrfs_next_leaf(root
, path
);
2983 btrfs_item_key_to_cpu(path
->nodes
[0], &found_key
,
2985 if (found_key
.objectid
!= key
.objectid
||
2986 found_key
.type
!= key
.type
)
2989 di
= btrfs_item_ptr(path
->nodes
[0], path
->slots
[0],
2990 struct btrfs_dir_item
);
2991 btrfs_dir_item_key_to_cpu(path
->nodes
[0], di
, &loc
);
2993 dm
= get_waiting_dir_move(sctx
, loc
.objectid
);
2995 odi
= add_orphan_dir_info(sctx
, dir
);
3001 odi
->last_dir_index_offset
= found_key
.offset
;
3002 dm
->rmdir_ino
= dir
;
3007 if (loc
.objectid
> send_progress
) {
3008 odi
= add_orphan_dir_info(sctx
, dir
);
3014 odi
->last_dir_index_offset
= found_key
.offset
;
3021 free_orphan_dir_info(sctx
, odi
);
3026 btrfs_free_path(path
);
3030 static int is_waiting_for_move(struct send_ctx
*sctx
, u64 ino
)
3032 struct waiting_dir_move
*entry
= get_waiting_dir_move(sctx
, ino
);
3034 return entry
!= NULL
;
3037 static int add_waiting_dir_move(struct send_ctx
*sctx
, u64 ino
, bool orphanized
)
3039 struct rb_node
**p
= &sctx
->waiting_dir_moves
.rb_node
;
3040 struct rb_node
*parent
= NULL
;
3041 struct waiting_dir_move
*entry
, *dm
;
3043 dm
= kmalloc(sizeof(*dm
), GFP_KERNEL
);
3048 dm
->orphanized
= orphanized
;
3052 entry
= rb_entry(parent
, struct waiting_dir_move
, node
);
3053 if (ino
< entry
->ino
) {
3055 } else if (ino
> entry
->ino
) {
3056 p
= &(*p
)->rb_right
;
3063 rb_link_node(&dm
->node
, parent
, p
);
3064 rb_insert_color(&dm
->node
, &sctx
->waiting_dir_moves
);
3068 static struct waiting_dir_move
*
3069 get_waiting_dir_move(struct send_ctx
*sctx
, u64 ino
)
3071 struct rb_node
*n
= sctx
->waiting_dir_moves
.rb_node
;
3072 struct waiting_dir_move
*entry
;
3075 entry
= rb_entry(n
, struct waiting_dir_move
, node
);
3076 if (ino
< entry
->ino
)
3078 else if (ino
> entry
->ino
)
3086 static void free_waiting_dir_move(struct send_ctx
*sctx
,
3087 struct waiting_dir_move
*dm
)
3091 rb_erase(&dm
->node
, &sctx
->waiting_dir_moves
);
3095 static int add_pending_dir_move(struct send_ctx
*sctx
,
3099 struct list_head
*new_refs
,
3100 struct list_head
*deleted_refs
,
3101 const bool is_orphan
)
3103 struct rb_node
**p
= &sctx
->pending_dir_moves
.rb_node
;
3104 struct rb_node
*parent
= NULL
;
3105 struct pending_dir_move
*entry
= NULL
, *pm
;
3106 struct recorded_ref
*cur
;
3110 pm
= kmalloc(sizeof(*pm
), GFP_KERNEL
);
3113 pm
->parent_ino
= parent_ino
;
3116 INIT_LIST_HEAD(&pm
->list
);
3117 INIT_LIST_HEAD(&pm
->update_refs
);
3118 RB_CLEAR_NODE(&pm
->node
);
3122 entry
= rb_entry(parent
, struct pending_dir_move
, node
);
3123 if (parent_ino
< entry
->parent_ino
) {
3125 } else if (parent_ino
> entry
->parent_ino
) {
3126 p
= &(*p
)->rb_right
;
3133 list_for_each_entry(cur
, deleted_refs
, list
) {
3134 ret
= dup_ref(cur
, &pm
->update_refs
);
3138 list_for_each_entry(cur
, new_refs
, list
) {
3139 ret
= dup_ref(cur
, &pm
->update_refs
);
3144 ret
= add_waiting_dir_move(sctx
, pm
->ino
, is_orphan
);
3149 list_add_tail(&pm
->list
, &entry
->list
);
3151 rb_link_node(&pm
->node
, parent
, p
);
3152 rb_insert_color(&pm
->node
, &sctx
->pending_dir_moves
);
3157 __free_recorded_refs(&pm
->update_refs
);
3163 static struct pending_dir_move
*get_pending_dir_moves(struct send_ctx
*sctx
,
3166 struct rb_node
*n
= sctx
->pending_dir_moves
.rb_node
;
3167 struct pending_dir_move
*entry
;
3170 entry
= rb_entry(n
, struct pending_dir_move
, node
);
3171 if (parent_ino
< entry
->parent_ino
)
3173 else if (parent_ino
> entry
->parent_ino
)
3181 static int path_loop(struct send_ctx
*sctx
, struct fs_path
*name
,
3182 u64 ino
, u64 gen
, u64
*ancestor_ino
)
3185 u64 parent_inode
= 0;
3187 u64 start_ino
= ino
;
3190 while (ino
!= BTRFS_FIRST_FREE_OBJECTID
) {
3191 fs_path_reset(name
);
3193 if (is_waiting_for_rm(sctx
, ino
))
3195 if (is_waiting_for_move(sctx
, ino
)) {
3196 if (*ancestor_ino
== 0)
3197 *ancestor_ino
= ino
;
3198 ret
= get_first_ref(sctx
->parent_root
, ino
,
3199 &parent_inode
, &parent_gen
, name
);
3201 ret
= __get_cur_name_and_parent(sctx
, ino
, gen
,
3211 if (parent_inode
== start_ino
) {
3213 if (*ancestor_ino
== 0)
3214 *ancestor_ino
= ino
;
3223 static int apply_dir_move(struct send_ctx
*sctx
, struct pending_dir_move
*pm
)
3225 struct fs_path
*from_path
= NULL
;
3226 struct fs_path
*to_path
= NULL
;
3227 struct fs_path
*name
= NULL
;
3228 u64 orig_progress
= sctx
->send_progress
;
3229 struct recorded_ref
*cur
;
3230 u64 parent_ino
, parent_gen
;
3231 struct waiting_dir_move
*dm
= NULL
;
3237 name
= fs_path_alloc();
3238 from_path
= fs_path_alloc();
3239 if (!name
|| !from_path
) {
3244 dm
= get_waiting_dir_move(sctx
, pm
->ino
);
3246 rmdir_ino
= dm
->rmdir_ino
;
3247 is_orphan
= dm
->orphanized
;
3248 free_waiting_dir_move(sctx
, dm
);
3251 ret
= gen_unique_name(sctx
, pm
->ino
,
3252 pm
->gen
, from_path
);
3254 ret
= get_first_ref(sctx
->parent_root
, pm
->ino
,
3255 &parent_ino
, &parent_gen
, name
);
3258 ret
= get_cur_path(sctx
, parent_ino
, parent_gen
,
3262 ret
= fs_path_add_path(from_path
, name
);
3267 sctx
->send_progress
= sctx
->cur_ino
+ 1;
3268 ret
= path_loop(sctx
, name
, pm
->ino
, pm
->gen
, &ancestor
);
3272 LIST_HEAD(deleted_refs
);
3273 ASSERT(ancestor
> BTRFS_FIRST_FREE_OBJECTID
);
3274 ret
= add_pending_dir_move(sctx
, pm
->ino
, pm
->gen
, ancestor
,
3275 &pm
->update_refs
, &deleted_refs
,
3280 dm
= get_waiting_dir_move(sctx
, pm
->ino
);
3282 dm
->rmdir_ino
= rmdir_ino
;
3286 fs_path_reset(name
);
3289 ret
= get_cur_path(sctx
, pm
->ino
, pm
->gen
, to_path
);
3293 ret
= send_rename(sctx
, from_path
, to_path
);
3298 struct orphan_dir_info
*odi
;
3301 odi
= get_orphan_dir_info(sctx
, rmdir_ino
);
3303 /* already deleted */
3308 ret
= can_rmdir(sctx
, rmdir_ino
, gen
, sctx
->cur_ino
);
3314 name
= fs_path_alloc();
3319 ret
= get_cur_path(sctx
, rmdir_ino
, gen
, name
);
3322 ret
= send_rmdir(sctx
, name
);
3328 ret
= send_utimes(sctx
, pm
->ino
, pm
->gen
);
3333 * After rename/move, need to update the utimes of both new parent(s)
3334 * and old parent(s).
3336 list_for_each_entry(cur
, &pm
->update_refs
, list
) {
3338 * The parent inode might have been deleted in the send snapshot
3340 ret
= get_inode_info(sctx
->send_root
, cur
->dir
, NULL
,
3341 NULL
, NULL
, NULL
, NULL
, NULL
);
3342 if (ret
== -ENOENT
) {
3349 ret
= send_utimes(sctx
, cur
->dir
, cur
->dir_gen
);
3356 fs_path_free(from_path
);
3357 fs_path_free(to_path
);
3358 sctx
->send_progress
= orig_progress
;
3363 static void free_pending_move(struct send_ctx
*sctx
, struct pending_dir_move
*m
)
3365 if (!list_empty(&m
->list
))
3367 if (!RB_EMPTY_NODE(&m
->node
))
3368 rb_erase(&m
->node
, &sctx
->pending_dir_moves
);
3369 __free_recorded_refs(&m
->update_refs
);
3373 static void tail_append_pending_moves(struct send_ctx
*sctx
,
3374 struct pending_dir_move
*moves
,
3375 struct list_head
*stack
)
3377 if (list_empty(&moves
->list
)) {
3378 list_add_tail(&moves
->list
, stack
);
3381 list_splice_init(&moves
->list
, &list
);
3382 list_add_tail(&moves
->list
, stack
);
3383 list_splice_tail(&list
, stack
);
3385 if (!RB_EMPTY_NODE(&moves
->node
)) {
3386 rb_erase(&moves
->node
, &sctx
->pending_dir_moves
);
3387 RB_CLEAR_NODE(&moves
->node
);
3391 static int apply_children_dir_moves(struct send_ctx
*sctx
)
3393 struct pending_dir_move
*pm
;
3394 struct list_head stack
;
3395 u64 parent_ino
= sctx
->cur_ino
;
3398 pm
= get_pending_dir_moves(sctx
, parent_ino
);
3402 INIT_LIST_HEAD(&stack
);
3403 tail_append_pending_moves(sctx
, pm
, &stack
);
3405 while (!list_empty(&stack
)) {
3406 pm
= list_first_entry(&stack
, struct pending_dir_move
, list
);
3407 parent_ino
= pm
->ino
;
3408 ret
= apply_dir_move(sctx
, pm
);
3409 free_pending_move(sctx
, pm
);
3412 pm
= get_pending_dir_moves(sctx
, parent_ino
);
3414 tail_append_pending_moves(sctx
, pm
, &stack
);
3419 while (!list_empty(&stack
)) {
3420 pm
= list_first_entry(&stack
, struct pending_dir_move
, list
);
3421 free_pending_move(sctx
, pm
);
3427 * We might need to delay a directory rename even when no ancestor directory
3428 * (in the send root) with a higher inode number than ours (sctx->cur_ino) was
3429 * renamed. This happens when we rename a directory to the old name (the name
3430 * in the parent root) of some other unrelated directory that got its rename
3431 * delayed due to some ancestor with higher number that got renamed.
3437 * |---- a/ (ino 257)
3438 * | |---- file (ino 260)
3440 * |---- b/ (ino 258)
3441 * |---- c/ (ino 259)
3445 * |---- a/ (ino 258)
3446 * |---- x/ (ino 259)
3447 * |---- y/ (ino 257)
3448 * |----- file (ino 260)
3450 * Here we can not rename 258 from 'b' to 'a' without the rename of inode 257
3451 * from 'a' to 'x/y' happening first, which in turn depends on the rename of
3452 * inode 259 from 'c' to 'x'. So the order of rename commands the send stream
3455 * 1 - rename 259 from 'c' to 'x'
3456 * 2 - rename 257 from 'a' to 'x/y'
3457 * 3 - rename 258 from 'b' to 'a'
3459 * Returns 1 if the rename of sctx->cur_ino needs to be delayed, 0 if it can
3460 * be done right away and < 0 on error.
3462 static int wait_for_dest_dir_move(struct send_ctx
*sctx
,
3463 struct recorded_ref
*parent_ref
,
3464 const bool is_orphan
)
3466 struct btrfs_fs_info
*fs_info
= sctx
->parent_root
->fs_info
;
3467 struct btrfs_path
*path
;
3468 struct btrfs_key key
;
3469 struct btrfs_key di_key
;
3470 struct btrfs_dir_item
*di
;
3474 struct waiting_dir_move
*wdm
;
3476 if (RB_EMPTY_ROOT(&sctx
->waiting_dir_moves
))
3479 path
= alloc_path_for_send();
3483 key
.objectid
= parent_ref
->dir
;
3484 key
.type
= BTRFS_DIR_ITEM_KEY
;
3485 key
.offset
= btrfs_name_hash(parent_ref
->name
, parent_ref
->name_len
);
3487 ret
= btrfs_search_slot(NULL
, sctx
->parent_root
, &key
, path
, 0, 0);
3490 } else if (ret
> 0) {
3495 di
= btrfs_match_dir_item_name(fs_info
, path
, parent_ref
->name
,
3496 parent_ref
->name_len
);
3502 * di_key.objectid has the number of the inode that has a dentry in the
3503 * parent directory with the same name that sctx->cur_ino is being
3504 * renamed to. We need to check if that inode is in the send root as
3505 * well and if it is currently marked as an inode with a pending rename,
3506 * if it is, we need to delay the rename of sctx->cur_ino as well, so
3507 * that it happens after that other inode is renamed.
3509 btrfs_dir_item_key_to_cpu(path
->nodes
[0], di
, &di_key
);
3510 if (di_key
.type
!= BTRFS_INODE_ITEM_KEY
) {
3515 ret
= get_inode_info(sctx
->parent_root
, di_key
.objectid
, NULL
,
3516 &left_gen
, NULL
, NULL
, NULL
, NULL
);
3519 ret
= get_inode_info(sctx
->send_root
, di_key
.objectid
, NULL
,
3520 &right_gen
, NULL
, NULL
, NULL
, NULL
);
3527 /* Different inode, no need to delay the rename of sctx->cur_ino */
3528 if (right_gen
!= left_gen
) {
3533 wdm
= get_waiting_dir_move(sctx
, di_key
.objectid
);
3534 if (wdm
&& !wdm
->orphanized
) {
3535 ret
= add_pending_dir_move(sctx
,
3537 sctx
->cur_inode_gen
,
3540 &sctx
->deleted_refs
,
3546 btrfs_free_path(path
);
3551 * Check if inode ino2, or any of its ancestors, is inode ino1.
3552 * Return 1 if true, 0 if false and < 0 on error.
3554 static int check_ino_in_path(struct btrfs_root
*root
,
3559 struct fs_path
*fs_path
)
3564 return ino1_gen
== ino2_gen
;
3566 while (ino
> BTRFS_FIRST_FREE_OBJECTID
) {
3571 fs_path_reset(fs_path
);
3572 ret
= get_first_ref(root
, ino
, &parent
, &parent_gen
, fs_path
);
3576 return parent_gen
== ino1_gen
;
3583 * Check if ino ino1 is an ancestor of inode ino2 in the given root for any
3584 * possible path (in case ino2 is not a directory and has multiple hard links).
3585 * Return 1 if true, 0 if false and < 0 on error.
3587 static int is_ancestor(struct btrfs_root
*root
,
3591 struct fs_path
*fs_path
)
3593 bool free_fs_path
= false;
3595 struct btrfs_path
*path
= NULL
;
3596 struct btrfs_key key
;
3599 fs_path
= fs_path_alloc();
3602 free_fs_path
= true;
3605 path
= alloc_path_for_send();
3611 key
.objectid
= ino2
;
3612 key
.type
= BTRFS_INODE_REF_KEY
;
3615 ret
= btrfs_search_slot(NULL
, root
, &key
, path
, 0, 0);
3620 struct extent_buffer
*leaf
= path
->nodes
[0];
3621 int slot
= path
->slots
[0];
3625 if (slot
>= btrfs_header_nritems(leaf
)) {
3626 ret
= btrfs_next_leaf(root
, path
);
3634 btrfs_item_key_to_cpu(leaf
, &key
, slot
);
3635 if (key
.objectid
!= ino2
)
3637 if (key
.type
!= BTRFS_INODE_REF_KEY
&&
3638 key
.type
!= BTRFS_INODE_EXTREF_KEY
)
3641 item_size
= btrfs_item_size_nr(leaf
, slot
);
3642 while (cur_offset
< item_size
) {
3646 if (key
.type
== BTRFS_INODE_EXTREF_KEY
) {
3648 struct btrfs_inode_extref
*extref
;
3650 ptr
= btrfs_item_ptr_offset(leaf
, slot
);
3651 extref
= (struct btrfs_inode_extref
*)
3653 parent
= btrfs_inode_extref_parent(leaf
,
3655 cur_offset
+= sizeof(*extref
);
3656 cur_offset
+= btrfs_inode_extref_name_len(leaf
,
3659 parent
= key
.offset
;
3660 cur_offset
= item_size
;
3663 ret
= get_inode_info(root
, parent
, NULL
, &parent_gen
,
3664 NULL
, NULL
, NULL
, NULL
);
3667 ret
= check_ino_in_path(root
, ino1
, ino1_gen
,
3668 parent
, parent_gen
, fs_path
);
3676 btrfs_free_path(path
);
3678 fs_path_free(fs_path
);
3682 static int wait_for_parent_move(struct send_ctx
*sctx
,
3683 struct recorded_ref
*parent_ref
,
3684 const bool is_orphan
)
3687 u64 ino
= parent_ref
->dir
;
3688 u64 ino_gen
= parent_ref
->dir_gen
;
3689 u64 parent_ino_before
, parent_ino_after
;
3690 struct fs_path
*path_before
= NULL
;
3691 struct fs_path
*path_after
= NULL
;
3694 path_after
= fs_path_alloc();
3695 path_before
= fs_path_alloc();
3696 if (!path_after
|| !path_before
) {
3702 * Our current directory inode may not yet be renamed/moved because some
3703 * ancestor (immediate or not) has to be renamed/moved first. So find if
3704 * such ancestor exists and make sure our own rename/move happens after
3705 * that ancestor is processed to avoid path build infinite loops (done
3706 * at get_cur_path()).
3708 while (ino
> BTRFS_FIRST_FREE_OBJECTID
) {
3709 u64 parent_ino_after_gen
;
3711 if (is_waiting_for_move(sctx
, ino
)) {
3713 * If the current inode is an ancestor of ino in the
3714 * parent root, we need to delay the rename of the
3715 * current inode, otherwise don't delayed the rename
3716 * because we can end up with a circular dependency
3717 * of renames, resulting in some directories never
3718 * getting the respective rename operations issued in
3719 * the send stream or getting into infinite path build
3722 ret
= is_ancestor(sctx
->parent_root
,
3723 sctx
->cur_ino
, sctx
->cur_inode_gen
,
3729 fs_path_reset(path_before
);
3730 fs_path_reset(path_after
);
3732 ret
= get_first_ref(sctx
->send_root
, ino
, &parent_ino_after
,
3733 &parent_ino_after_gen
, path_after
);
3736 ret
= get_first_ref(sctx
->parent_root
, ino
, &parent_ino_before
,
3738 if (ret
< 0 && ret
!= -ENOENT
) {
3740 } else if (ret
== -ENOENT
) {
3745 len1
= fs_path_len(path_before
);
3746 len2
= fs_path_len(path_after
);
3747 if (ino
> sctx
->cur_ino
&&
3748 (parent_ino_before
!= parent_ino_after
|| len1
!= len2
||
3749 memcmp(path_before
->start
, path_after
->start
, len1
))) {
3752 ret
= get_inode_info(sctx
->parent_root
, ino
, NULL
,
3753 &parent_ino_gen
, NULL
, NULL
, NULL
,
3757 if (ino_gen
== parent_ino_gen
) {
3762 ino
= parent_ino_after
;
3763 ino_gen
= parent_ino_after_gen
;
3767 fs_path_free(path_before
);
3768 fs_path_free(path_after
);
3771 ret
= add_pending_dir_move(sctx
,
3773 sctx
->cur_inode_gen
,
3776 &sctx
->deleted_refs
,
3785 static int update_ref_path(struct send_ctx
*sctx
, struct recorded_ref
*ref
)
3788 struct fs_path
*new_path
;
3791 * Our reference's name member points to its full_path member string, so
3792 * we use here a new path.
3794 new_path
= fs_path_alloc();
3798 ret
= get_cur_path(sctx
, ref
->dir
, ref
->dir_gen
, new_path
);
3800 fs_path_free(new_path
);
3803 ret
= fs_path_add(new_path
, ref
->name
, ref
->name_len
);
3805 fs_path_free(new_path
);
3809 fs_path_free(ref
->full_path
);
3810 set_ref_path(ref
, new_path
);
3816 * This does all the move/link/unlink/rmdir magic.
3818 static int process_recorded_refs(struct send_ctx
*sctx
, int *pending_move
)
3820 struct btrfs_fs_info
*fs_info
= sctx
->send_root
->fs_info
;
3822 struct recorded_ref
*cur
;
3823 struct recorded_ref
*cur2
;
3824 struct list_head check_dirs
;
3825 struct fs_path
*valid_path
= NULL
;
3829 int did_overwrite
= 0;
3831 u64 last_dir_ino_rm
= 0;
3832 bool can_rename
= true;
3833 bool orphanized_dir
= false;
3834 bool orphanized_ancestor
= false;
3836 btrfs_debug(fs_info
, "process_recorded_refs %llu", sctx
->cur_ino
);
3839 * This should never happen as the root dir always has the same ref
3840 * which is always '..'
3842 BUG_ON(sctx
->cur_ino
<= BTRFS_FIRST_FREE_OBJECTID
);
3843 INIT_LIST_HEAD(&check_dirs
);
3845 valid_path
= fs_path_alloc();
3852 * First, check if the first ref of the current inode was overwritten
3853 * before. If yes, we know that the current inode was already orphanized
3854 * and thus use the orphan name. If not, we can use get_cur_path to
3855 * get the path of the first ref as it would like while receiving at
3856 * this point in time.
3857 * New inodes are always orphan at the beginning, so force to use the
3858 * orphan name in this case.
3859 * The first ref is stored in valid_path and will be updated if it
3860 * gets moved around.
3862 if (!sctx
->cur_inode_new
) {
3863 ret
= did_overwrite_first_ref(sctx
, sctx
->cur_ino
,
3864 sctx
->cur_inode_gen
);
3870 if (sctx
->cur_inode_new
|| did_overwrite
) {
3871 ret
= gen_unique_name(sctx
, sctx
->cur_ino
,
3872 sctx
->cur_inode_gen
, valid_path
);
3877 ret
= get_cur_path(sctx
, sctx
->cur_ino
, sctx
->cur_inode_gen
,
3883 list_for_each_entry(cur
, &sctx
->new_refs
, list
) {
3885 * We may have refs where the parent directory does not exist
3886 * yet. This happens if the parent directories inum is higher
3887 * than the current inum. To handle this case, we create the
3888 * parent directory out of order. But we need to check if this
3889 * did already happen before due to other refs in the same dir.
3891 ret
= get_cur_inode_state(sctx
, cur
->dir
, cur
->dir_gen
);
3894 if (ret
== inode_state_will_create
) {
3897 * First check if any of the current inodes refs did
3898 * already create the dir.
3900 list_for_each_entry(cur2
, &sctx
->new_refs
, list
) {
3903 if (cur2
->dir
== cur
->dir
) {
3910 * If that did not happen, check if a previous inode
3911 * did already create the dir.
3914 ret
= did_create_dir(sctx
, cur
->dir
);
3918 ret
= send_create_inode(sctx
, cur
->dir
);
3925 * Check if this new ref would overwrite the first ref of
3926 * another unprocessed inode. If yes, orphanize the
3927 * overwritten inode. If we find an overwritten ref that is
3928 * not the first ref, simply unlink it.
3930 ret
= will_overwrite_ref(sctx
, cur
->dir
, cur
->dir_gen
,
3931 cur
->name
, cur
->name_len
,
3932 &ow_inode
, &ow_gen
, &ow_mode
);
3936 ret
= is_first_ref(sctx
->parent_root
,
3937 ow_inode
, cur
->dir
, cur
->name
,
3942 struct name_cache_entry
*nce
;
3943 struct waiting_dir_move
*wdm
;
3945 ret
= orphanize_inode(sctx
, ow_inode
, ow_gen
,
3949 if (S_ISDIR(ow_mode
))
3950 orphanized_dir
= true;
3953 * If ow_inode has its rename operation delayed
3954 * make sure that its orphanized name is used in
3955 * the source path when performing its rename
3958 if (is_waiting_for_move(sctx
, ow_inode
)) {
3959 wdm
= get_waiting_dir_move(sctx
,
3962 wdm
->orphanized
= true;
3966 * Make sure we clear our orphanized inode's
3967 * name from the name cache. This is because the
3968 * inode ow_inode might be an ancestor of some
3969 * other inode that will be orphanized as well
3970 * later and has an inode number greater than
3971 * sctx->send_progress. We need to prevent
3972 * future name lookups from using the old name
3973 * and get instead the orphan name.
3975 nce
= name_cache_search(sctx
, ow_inode
, ow_gen
);
3977 name_cache_delete(sctx
, nce
);
3982 * ow_inode might currently be an ancestor of
3983 * cur_ino, therefore compute valid_path (the
3984 * current path of cur_ino) again because it
3985 * might contain the pre-orphanization name of
3986 * ow_inode, which is no longer valid.
3988 ret
= is_ancestor(sctx
->parent_root
,
3990 sctx
->cur_ino
, NULL
);
3992 orphanized_ancestor
= true;
3993 fs_path_reset(valid_path
);
3994 ret
= get_cur_path(sctx
, sctx
->cur_ino
,
3995 sctx
->cur_inode_gen
,
4001 ret
= send_unlink(sctx
, cur
->full_path
);
4007 if (S_ISDIR(sctx
->cur_inode_mode
) && sctx
->parent_root
) {
4008 ret
= wait_for_dest_dir_move(sctx
, cur
, is_orphan
);
4017 if (S_ISDIR(sctx
->cur_inode_mode
) && sctx
->parent_root
&&
4019 ret
= wait_for_parent_move(sctx
, cur
, is_orphan
);
4029 * link/move the ref to the new place. If we have an orphan
4030 * inode, move it and update valid_path. If not, link or move
4031 * it depending on the inode mode.
4033 if (is_orphan
&& can_rename
) {
4034 ret
= send_rename(sctx
, valid_path
, cur
->full_path
);
4038 ret
= fs_path_copy(valid_path
, cur
->full_path
);
4041 } else if (can_rename
) {
4042 if (S_ISDIR(sctx
->cur_inode_mode
)) {
4044 * Dirs can't be linked, so move it. For moved
4045 * dirs, we always have one new and one deleted
4046 * ref. The deleted ref is ignored later.
4048 ret
= send_rename(sctx
, valid_path
,
4051 ret
= fs_path_copy(valid_path
,
4057 * We might have previously orphanized an inode
4058 * which is an ancestor of our current inode,
4059 * so our reference's full path, which was
4060 * computed before any such orphanizations, must
4063 if (orphanized_dir
) {
4064 ret
= update_ref_path(sctx
, cur
);
4068 ret
= send_link(sctx
, cur
->full_path
,
4074 ret
= dup_ref(cur
, &check_dirs
);
4079 if (S_ISDIR(sctx
->cur_inode_mode
) && sctx
->cur_inode_deleted
) {
4081 * Check if we can already rmdir the directory. If not,
4082 * orphanize it. For every dir item inside that gets deleted
4083 * later, we do this check again and rmdir it then if possible.
4084 * See the use of check_dirs for more details.
4086 ret
= can_rmdir(sctx
, sctx
->cur_ino
, sctx
->cur_inode_gen
,
4091 ret
= send_rmdir(sctx
, valid_path
);
4094 } else if (!is_orphan
) {
4095 ret
= orphanize_inode(sctx
, sctx
->cur_ino
,
4096 sctx
->cur_inode_gen
, valid_path
);
4102 list_for_each_entry(cur
, &sctx
->deleted_refs
, list
) {
4103 ret
= dup_ref(cur
, &check_dirs
);
4107 } else if (S_ISDIR(sctx
->cur_inode_mode
) &&
4108 !list_empty(&sctx
->deleted_refs
)) {
4110 * We have a moved dir. Add the old parent to check_dirs
4112 cur
= list_entry(sctx
->deleted_refs
.next
, struct recorded_ref
,
4114 ret
= dup_ref(cur
, &check_dirs
);
4117 } else if (!S_ISDIR(sctx
->cur_inode_mode
)) {
4119 * We have a non dir inode. Go through all deleted refs and
4120 * unlink them if they were not already overwritten by other
4123 list_for_each_entry(cur
, &sctx
->deleted_refs
, list
) {
4124 ret
= did_overwrite_ref(sctx
, cur
->dir
, cur
->dir_gen
,
4125 sctx
->cur_ino
, sctx
->cur_inode_gen
,
4126 cur
->name
, cur
->name_len
);
4131 * If we orphanized any ancestor before, we need
4132 * to recompute the full path for deleted names,
4133 * since any such path was computed before we
4134 * processed any references and orphanized any
4137 if (orphanized_ancestor
) {
4138 ret
= update_ref_path(sctx
, cur
);
4142 ret
= send_unlink(sctx
, cur
->full_path
);
4146 ret
= dup_ref(cur
, &check_dirs
);
4151 * If the inode is still orphan, unlink the orphan. This may
4152 * happen when a previous inode did overwrite the first ref
4153 * of this inode and no new refs were added for the current
4154 * inode. Unlinking does not mean that the inode is deleted in
4155 * all cases. There may still be links to this inode in other
4159 ret
= send_unlink(sctx
, valid_path
);
4166 * We did collect all parent dirs where cur_inode was once located. We
4167 * now go through all these dirs and check if they are pending for
4168 * deletion and if it's finally possible to perform the rmdir now.
4169 * We also update the inode stats of the parent dirs here.
4171 list_for_each_entry(cur
, &check_dirs
, list
) {
4173 * In case we had refs into dirs that were not processed yet,
4174 * we don't need to do the utime and rmdir logic for these dirs.
4175 * The dir will be processed later.
4177 if (cur
->dir
> sctx
->cur_ino
)
4180 ret
= get_cur_inode_state(sctx
, cur
->dir
, cur
->dir_gen
);
4184 if (ret
== inode_state_did_create
||
4185 ret
== inode_state_no_change
) {
4186 /* TODO delayed utimes */
4187 ret
= send_utimes(sctx
, cur
->dir
, cur
->dir_gen
);
4190 } else if (ret
== inode_state_did_delete
&&
4191 cur
->dir
!= last_dir_ino_rm
) {
4192 ret
= can_rmdir(sctx
, cur
->dir
, cur
->dir_gen
,
4197 ret
= get_cur_path(sctx
, cur
->dir
,
4198 cur
->dir_gen
, valid_path
);
4201 ret
= send_rmdir(sctx
, valid_path
);
4204 last_dir_ino_rm
= cur
->dir
;
4212 __free_recorded_refs(&check_dirs
);
4213 free_recorded_refs(sctx
);
4214 fs_path_free(valid_path
);
4218 static int record_ref(struct btrfs_root
*root
, u64 dir
, struct fs_path
*name
,
4219 void *ctx
, struct list_head
*refs
)
4222 struct send_ctx
*sctx
= ctx
;
4226 p
= fs_path_alloc();
4230 ret
= get_inode_info(root
, dir
, NULL
, &gen
, NULL
, NULL
,
4235 ret
= get_cur_path(sctx
, dir
, gen
, p
);
4238 ret
= fs_path_add_path(p
, name
);
4242 ret
= __record_ref(refs
, dir
, gen
, p
);
4250 static int __record_new_ref(int num
, u64 dir
, int index
,
4251 struct fs_path
*name
,
4254 struct send_ctx
*sctx
= ctx
;
4255 return record_ref(sctx
->send_root
, dir
, name
, ctx
, &sctx
->new_refs
);
4259 static int __record_deleted_ref(int num
, u64 dir
, int index
,
4260 struct fs_path
*name
,
4263 struct send_ctx
*sctx
= ctx
;
4264 return record_ref(sctx
->parent_root
, dir
, name
, ctx
,
4265 &sctx
->deleted_refs
);
4268 static int record_new_ref(struct send_ctx
*sctx
)
4272 ret
= iterate_inode_ref(sctx
->send_root
, sctx
->left_path
,
4273 sctx
->cmp_key
, 0, __record_new_ref
, sctx
);
4282 static int record_deleted_ref(struct send_ctx
*sctx
)
4286 ret
= iterate_inode_ref(sctx
->parent_root
, sctx
->right_path
,
4287 sctx
->cmp_key
, 0, __record_deleted_ref
, sctx
);
4296 struct find_ref_ctx
{
4299 struct btrfs_root
*root
;
4300 struct fs_path
*name
;
4304 static int __find_iref(int num
, u64 dir
, int index
,
4305 struct fs_path
*name
,
4308 struct find_ref_ctx
*ctx
= ctx_
;
4312 if (dir
== ctx
->dir
&& fs_path_len(name
) == fs_path_len(ctx
->name
) &&
4313 strncmp(name
->start
, ctx
->name
->start
, fs_path_len(name
)) == 0) {
4315 * To avoid doing extra lookups we'll only do this if everything
4318 ret
= get_inode_info(ctx
->root
, dir
, NULL
, &dir_gen
, NULL
,
4322 if (dir_gen
!= ctx
->dir_gen
)
4324 ctx
->found_idx
= num
;
4330 static int find_iref(struct btrfs_root
*root
,
4331 struct btrfs_path
*path
,
4332 struct btrfs_key
*key
,
4333 u64 dir
, u64 dir_gen
, struct fs_path
*name
)
4336 struct find_ref_ctx ctx
;
4340 ctx
.dir_gen
= dir_gen
;
4344 ret
= iterate_inode_ref(root
, path
, key
, 0, __find_iref
, &ctx
);
4348 if (ctx
.found_idx
== -1)
4351 return ctx
.found_idx
;
4354 static int __record_changed_new_ref(int num
, u64 dir
, int index
,
4355 struct fs_path
*name
,
4360 struct send_ctx
*sctx
= ctx
;
4362 ret
= get_inode_info(sctx
->send_root
, dir
, NULL
, &dir_gen
, NULL
,
4367 ret
= find_iref(sctx
->parent_root
, sctx
->right_path
,
4368 sctx
->cmp_key
, dir
, dir_gen
, name
);
4370 ret
= __record_new_ref(num
, dir
, index
, name
, sctx
);
4377 static int __record_changed_deleted_ref(int num
, u64 dir
, int index
,
4378 struct fs_path
*name
,
4383 struct send_ctx
*sctx
= ctx
;
4385 ret
= get_inode_info(sctx
->parent_root
, dir
, NULL
, &dir_gen
, NULL
,
4390 ret
= find_iref(sctx
->send_root
, sctx
->left_path
, sctx
->cmp_key
,
4391 dir
, dir_gen
, name
);
4393 ret
= __record_deleted_ref(num
, dir
, index
, name
, sctx
);
4400 static int record_changed_ref(struct send_ctx
*sctx
)
4404 ret
= iterate_inode_ref(sctx
->send_root
, sctx
->left_path
,
4405 sctx
->cmp_key
, 0, __record_changed_new_ref
, sctx
);
4408 ret
= iterate_inode_ref(sctx
->parent_root
, sctx
->right_path
,
4409 sctx
->cmp_key
, 0, __record_changed_deleted_ref
, sctx
);
4419 * Record and process all refs at once. Needed when an inode changes the
4420 * generation number, which means that it was deleted and recreated.
4422 static int process_all_refs(struct send_ctx
*sctx
,
4423 enum btrfs_compare_tree_result cmd
)
4426 struct btrfs_root
*root
;
4427 struct btrfs_path
*path
;
4428 struct btrfs_key key
;
4429 struct btrfs_key found_key
;
4430 struct extent_buffer
*eb
;
4432 iterate_inode_ref_t cb
;
4433 int pending_move
= 0;
4435 path
= alloc_path_for_send();
4439 if (cmd
== BTRFS_COMPARE_TREE_NEW
) {
4440 root
= sctx
->send_root
;
4441 cb
= __record_new_ref
;
4442 } else if (cmd
== BTRFS_COMPARE_TREE_DELETED
) {
4443 root
= sctx
->parent_root
;
4444 cb
= __record_deleted_ref
;
4446 btrfs_err(sctx
->send_root
->fs_info
,
4447 "Wrong command %d in process_all_refs", cmd
);
4452 key
.objectid
= sctx
->cmp_key
->objectid
;
4453 key
.type
= BTRFS_INODE_REF_KEY
;
4455 ret
= btrfs_search_slot(NULL
, root
, &key
, path
, 0, 0);
4460 eb
= path
->nodes
[0];
4461 slot
= path
->slots
[0];
4462 if (slot
>= btrfs_header_nritems(eb
)) {
4463 ret
= btrfs_next_leaf(root
, path
);
4471 btrfs_item_key_to_cpu(eb
, &found_key
, slot
);
4473 if (found_key
.objectid
!= key
.objectid
||
4474 (found_key
.type
!= BTRFS_INODE_REF_KEY
&&
4475 found_key
.type
!= BTRFS_INODE_EXTREF_KEY
))
4478 ret
= iterate_inode_ref(root
, path
, &found_key
, 0, cb
, sctx
);
4484 btrfs_release_path(path
);
4487 * We don't actually care about pending_move as we are simply
4488 * re-creating this inode and will be rename'ing it into place once we
4489 * rename the parent directory.
4491 ret
= process_recorded_refs(sctx
, &pending_move
);
4493 btrfs_free_path(path
);
4497 static int send_set_xattr(struct send_ctx
*sctx
,
4498 struct fs_path
*path
,
4499 const char *name
, int name_len
,
4500 const char *data
, int data_len
)
4504 ret
= begin_cmd(sctx
, BTRFS_SEND_C_SET_XATTR
);
4508 TLV_PUT_PATH(sctx
, BTRFS_SEND_A_PATH
, path
);
4509 TLV_PUT_STRING(sctx
, BTRFS_SEND_A_XATTR_NAME
, name
, name_len
);
4510 TLV_PUT(sctx
, BTRFS_SEND_A_XATTR_DATA
, data
, data_len
);
4512 ret
= send_cmd(sctx
);
4519 static int send_remove_xattr(struct send_ctx
*sctx
,
4520 struct fs_path
*path
,
4521 const char *name
, int name_len
)
4525 ret
= begin_cmd(sctx
, BTRFS_SEND_C_REMOVE_XATTR
);
4529 TLV_PUT_PATH(sctx
, BTRFS_SEND_A_PATH
, path
);
4530 TLV_PUT_STRING(sctx
, BTRFS_SEND_A_XATTR_NAME
, name
, name_len
);
4532 ret
= send_cmd(sctx
);
4539 static int __process_new_xattr(int num
, struct btrfs_key
*di_key
,
4540 const char *name
, int name_len
,
4541 const char *data
, int data_len
,
4545 struct send_ctx
*sctx
= ctx
;
4547 struct posix_acl_xattr_header dummy_acl
;
4549 /* Capabilities are emitted by finish_inode_if_needed */
4550 if (!strncmp(name
, XATTR_NAME_CAPS
, name_len
))
4553 p
= fs_path_alloc();
4558 * This hack is needed because empty acls are stored as zero byte
4559 * data in xattrs. Problem with that is, that receiving these zero byte
4560 * acls will fail later. To fix this, we send a dummy acl list that
4561 * only contains the version number and no entries.
4563 if (!strncmp(name
, XATTR_NAME_POSIX_ACL_ACCESS
, name_len
) ||
4564 !strncmp(name
, XATTR_NAME_POSIX_ACL_DEFAULT
, name_len
)) {
4565 if (data_len
== 0) {
4566 dummy_acl
.a_version
=
4567 cpu_to_le32(POSIX_ACL_XATTR_VERSION
);
4568 data
= (char *)&dummy_acl
;
4569 data_len
= sizeof(dummy_acl
);
4573 ret
= get_cur_path(sctx
, sctx
->cur_ino
, sctx
->cur_inode_gen
, p
);
4577 ret
= send_set_xattr(sctx
, p
, name
, name_len
, data
, data_len
);
4584 static int __process_deleted_xattr(int num
, struct btrfs_key
*di_key
,
4585 const char *name
, int name_len
,
4586 const char *data
, int data_len
,
4590 struct send_ctx
*sctx
= ctx
;
4593 p
= fs_path_alloc();
4597 ret
= get_cur_path(sctx
, sctx
->cur_ino
, sctx
->cur_inode_gen
, p
);
4601 ret
= send_remove_xattr(sctx
, p
, name
, name_len
);
4608 static int process_new_xattr(struct send_ctx
*sctx
)
4612 ret
= iterate_dir_item(sctx
->send_root
, sctx
->left_path
,
4613 __process_new_xattr
, sctx
);
4618 static int process_deleted_xattr(struct send_ctx
*sctx
)
4620 return iterate_dir_item(sctx
->parent_root
, sctx
->right_path
,
4621 __process_deleted_xattr
, sctx
);
4624 struct find_xattr_ctx
{
4632 static int __find_xattr(int num
, struct btrfs_key
*di_key
,
4633 const char *name
, int name_len
,
4634 const char *data
, int data_len
,
4635 u8 type
, void *vctx
)
4637 struct find_xattr_ctx
*ctx
= vctx
;
4639 if (name_len
== ctx
->name_len
&&
4640 strncmp(name
, ctx
->name
, name_len
) == 0) {
4641 ctx
->found_idx
= num
;
4642 ctx
->found_data_len
= data_len
;
4643 ctx
->found_data
= kmemdup(data
, data_len
, GFP_KERNEL
);
4644 if (!ctx
->found_data
)
4651 static int find_xattr(struct btrfs_root
*root
,
4652 struct btrfs_path
*path
,
4653 struct btrfs_key
*key
,
4654 const char *name
, int name_len
,
4655 char **data
, int *data_len
)
4658 struct find_xattr_ctx ctx
;
4661 ctx
.name_len
= name_len
;
4663 ctx
.found_data
= NULL
;
4664 ctx
.found_data_len
= 0;
4666 ret
= iterate_dir_item(root
, path
, __find_xattr
, &ctx
);
4670 if (ctx
.found_idx
== -1)
4673 *data
= ctx
.found_data
;
4674 *data_len
= ctx
.found_data_len
;
4676 kfree(ctx
.found_data
);
4678 return ctx
.found_idx
;
4682 static int __process_changed_new_xattr(int num
, struct btrfs_key
*di_key
,
4683 const char *name
, int name_len
,
4684 const char *data
, int data_len
,
4688 struct send_ctx
*sctx
= ctx
;
4689 char *found_data
= NULL
;
4690 int found_data_len
= 0;
4692 ret
= find_xattr(sctx
->parent_root
, sctx
->right_path
,
4693 sctx
->cmp_key
, name
, name_len
, &found_data
,
4695 if (ret
== -ENOENT
) {
4696 ret
= __process_new_xattr(num
, di_key
, name
, name_len
, data
,
4697 data_len
, type
, ctx
);
4698 } else if (ret
>= 0) {
4699 if (data_len
!= found_data_len
||
4700 memcmp(data
, found_data
, data_len
)) {
4701 ret
= __process_new_xattr(num
, di_key
, name
, name_len
,
4702 data
, data_len
, type
, ctx
);
4712 static int __process_changed_deleted_xattr(int num
, struct btrfs_key
*di_key
,
4713 const char *name
, int name_len
,
4714 const char *data
, int data_len
,
4718 struct send_ctx
*sctx
= ctx
;
4720 ret
= find_xattr(sctx
->send_root
, sctx
->left_path
, sctx
->cmp_key
,
4721 name
, name_len
, NULL
, NULL
);
4723 ret
= __process_deleted_xattr(num
, di_key
, name
, name_len
, data
,
4724 data_len
, type
, ctx
);
4731 static int process_changed_xattr(struct send_ctx
*sctx
)
4735 ret
= iterate_dir_item(sctx
->send_root
, sctx
->left_path
,
4736 __process_changed_new_xattr
, sctx
);
4739 ret
= iterate_dir_item(sctx
->parent_root
, sctx
->right_path
,
4740 __process_changed_deleted_xattr
, sctx
);
4746 static int process_all_new_xattrs(struct send_ctx
*sctx
)
4749 struct btrfs_root
*root
;
4750 struct btrfs_path
*path
;
4751 struct btrfs_key key
;
4752 struct btrfs_key found_key
;
4753 struct extent_buffer
*eb
;
4756 path
= alloc_path_for_send();
4760 root
= sctx
->send_root
;
4762 key
.objectid
= sctx
->cmp_key
->objectid
;
4763 key
.type
= BTRFS_XATTR_ITEM_KEY
;
4765 ret
= btrfs_search_slot(NULL
, root
, &key
, path
, 0, 0);
4770 eb
= path
->nodes
[0];
4771 slot
= path
->slots
[0];
4772 if (slot
>= btrfs_header_nritems(eb
)) {
4773 ret
= btrfs_next_leaf(root
, path
);
4776 } else if (ret
> 0) {
4783 btrfs_item_key_to_cpu(eb
, &found_key
, slot
);
4784 if (found_key
.objectid
!= key
.objectid
||
4785 found_key
.type
!= key
.type
) {
4790 ret
= iterate_dir_item(root
, path
, __process_new_xattr
, sctx
);
4798 btrfs_free_path(path
);
4802 static ssize_t
fill_read_buf(struct send_ctx
*sctx
, u64 offset
, u32 len
)
4804 struct btrfs_root
*root
= sctx
->send_root
;
4805 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
4806 struct inode
*inode
;
4809 pgoff_t index
= offset
>> PAGE_SHIFT
;
4811 unsigned pg_offset
= offset_in_page(offset
);
4814 inode
= btrfs_iget(fs_info
->sb
, sctx
->cur_ino
, root
);
4816 return PTR_ERR(inode
);
4818 if (offset
+ len
> i_size_read(inode
)) {
4819 if (offset
> i_size_read(inode
))
4822 len
= offset
- i_size_read(inode
);
4827 last_index
= (offset
+ len
- 1) >> PAGE_SHIFT
;
4829 /* initial readahead */
4830 memset(&sctx
->ra
, 0, sizeof(struct file_ra_state
));
4831 file_ra_state_init(&sctx
->ra
, inode
->i_mapping
);
4833 while (index
<= last_index
) {
4834 unsigned cur_len
= min_t(unsigned, len
,
4835 PAGE_SIZE
- pg_offset
);
4837 page
= find_lock_page(inode
->i_mapping
, index
);
4839 page_cache_sync_readahead(inode
->i_mapping
, &sctx
->ra
,
4840 NULL
, index
, last_index
+ 1 - index
);
4842 page
= find_or_create_page(inode
->i_mapping
, index
,
4850 if (PageReadahead(page
)) {
4851 page_cache_async_readahead(inode
->i_mapping
, &sctx
->ra
,
4852 NULL
, page
, index
, last_index
+ 1 - index
);
4855 if (!PageUptodate(page
)) {
4856 btrfs_readpage(NULL
, page
);
4858 if (!PageUptodate(page
)) {
4867 memcpy(sctx
->read_buf
+ ret
, addr
+ pg_offset
, cur_len
);
4882 * Read some bytes from the current inode/file and send a write command to
4885 static int send_write(struct send_ctx
*sctx
, u64 offset
, u32 len
)
4887 struct btrfs_fs_info
*fs_info
= sctx
->send_root
->fs_info
;
4890 ssize_t num_read
= 0;
4892 p
= fs_path_alloc();
4896 btrfs_debug(fs_info
, "send_write offset=%llu, len=%d", offset
, len
);
4898 num_read
= fill_read_buf(sctx
, offset
, len
);
4899 if (num_read
<= 0) {
4905 ret
= begin_cmd(sctx
, BTRFS_SEND_C_WRITE
);
4909 ret
= get_cur_path(sctx
, sctx
->cur_ino
, sctx
->cur_inode_gen
, p
);
4913 TLV_PUT_PATH(sctx
, BTRFS_SEND_A_PATH
, p
);
4914 TLV_PUT_U64(sctx
, BTRFS_SEND_A_FILE_OFFSET
, offset
);
4915 TLV_PUT(sctx
, BTRFS_SEND_A_DATA
, sctx
->read_buf
, num_read
);
4917 ret
= send_cmd(sctx
);
4928 * Send a clone command to user space.
4930 static int send_clone(struct send_ctx
*sctx
,
4931 u64 offset
, u32 len
,
4932 struct clone_root
*clone_root
)
4938 btrfs_debug(sctx
->send_root
->fs_info
,
4939 "send_clone offset=%llu, len=%d, clone_root=%llu, clone_inode=%llu, clone_offset=%llu",
4940 offset
, len
, clone_root
->root
->root_key
.objectid
,
4941 clone_root
->ino
, clone_root
->offset
);
4943 p
= fs_path_alloc();
4947 ret
= begin_cmd(sctx
, BTRFS_SEND_C_CLONE
);
4951 ret
= get_cur_path(sctx
, sctx
->cur_ino
, sctx
->cur_inode_gen
, p
);
4955 TLV_PUT_U64(sctx
, BTRFS_SEND_A_FILE_OFFSET
, offset
);
4956 TLV_PUT_U64(sctx
, BTRFS_SEND_A_CLONE_LEN
, len
);
4957 TLV_PUT_PATH(sctx
, BTRFS_SEND_A_PATH
, p
);
4959 if (clone_root
->root
== sctx
->send_root
) {
4960 ret
= get_inode_info(sctx
->send_root
, clone_root
->ino
, NULL
,
4961 &gen
, NULL
, NULL
, NULL
, NULL
);
4964 ret
= get_cur_path(sctx
, clone_root
->ino
, gen
, p
);
4966 ret
= get_inode_path(clone_root
->root
, clone_root
->ino
, p
);
4972 * If the parent we're using has a received_uuid set then use that as
4973 * our clone source as that is what we will look for when doing a
4976 * This covers the case that we create a snapshot off of a received
4977 * subvolume and then use that as the parent and try to receive on a
4980 if (!btrfs_is_empty_uuid(clone_root
->root
->root_item
.received_uuid
))
4981 TLV_PUT_UUID(sctx
, BTRFS_SEND_A_CLONE_UUID
,
4982 clone_root
->root
->root_item
.received_uuid
);
4984 TLV_PUT_UUID(sctx
, BTRFS_SEND_A_CLONE_UUID
,
4985 clone_root
->root
->root_item
.uuid
);
4986 TLV_PUT_U64(sctx
, BTRFS_SEND_A_CLONE_CTRANSID
,
4987 le64_to_cpu(clone_root
->root
->root_item
.ctransid
));
4988 TLV_PUT_PATH(sctx
, BTRFS_SEND_A_CLONE_PATH
, p
);
4989 TLV_PUT_U64(sctx
, BTRFS_SEND_A_CLONE_OFFSET
,
4990 clone_root
->offset
);
4992 ret
= send_cmd(sctx
);
5001 * Send an update extent command to user space.
5003 static int send_update_extent(struct send_ctx
*sctx
,
5004 u64 offset
, u32 len
)
5009 p
= fs_path_alloc();
5013 ret
= begin_cmd(sctx
, BTRFS_SEND_C_UPDATE_EXTENT
);
5017 ret
= get_cur_path(sctx
, sctx
->cur_ino
, sctx
->cur_inode_gen
, p
);
5021 TLV_PUT_PATH(sctx
, BTRFS_SEND_A_PATH
, p
);
5022 TLV_PUT_U64(sctx
, BTRFS_SEND_A_FILE_OFFSET
, offset
);
5023 TLV_PUT_U64(sctx
, BTRFS_SEND_A_SIZE
, len
);
5025 ret
= send_cmd(sctx
);
5033 static int send_hole(struct send_ctx
*sctx
, u64 end
)
5035 struct fs_path
*p
= NULL
;
5036 u64 offset
= sctx
->cur_inode_last_extent
;
5041 * A hole that starts at EOF or beyond it. Since we do not yet support
5042 * fallocate (for extent preallocation and hole punching), sending a
5043 * write of zeroes starting at EOF or beyond would later require issuing
5044 * a truncate operation which would undo the write and achieve nothing.
5046 if (offset
>= sctx
->cur_inode_size
)
5050 * Don't go beyond the inode's i_size due to prealloc extents that start
5053 end
= min_t(u64
, end
, sctx
->cur_inode_size
);
5055 if (sctx
->flags
& BTRFS_SEND_FLAG_NO_FILE_DATA
)
5056 return send_update_extent(sctx
, offset
, end
- offset
);
5058 p
= fs_path_alloc();
5061 ret
= get_cur_path(sctx
, sctx
->cur_ino
, sctx
->cur_inode_gen
, p
);
5063 goto tlv_put_failure
;
5064 memset(sctx
->read_buf
, 0, BTRFS_SEND_READ_SIZE
);
5065 while (offset
< end
) {
5066 len
= min_t(u64
, end
- offset
, BTRFS_SEND_READ_SIZE
);
5068 ret
= begin_cmd(sctx
, BTRFS_SEND_C_WRITE
);
5071 TLV_PUT_PATH(sctx
, BTRFS_SEND_A_PATH
, p
);
5072 TLV_PUT_U64(sctx
, BTRFS_SEND_A_FILE_OFFSET
, offset
);
5073 TLV_PUT(sctx
, BTRFS_SEND_A_DATA
, sctx
->read_buf
, len
);
5074 ret
= send_cmd(sctx
);
5079 sctx
->cur_inode_next_write_offset
= offset
;
5085 static int send_extent_data(struct send_ctx
*sctx
,
5091 if (sctx
->flags
& BTRFS_SEND_FLAG_NO_FILE_DATA
)
5092 return send_update_extent(sctx
, offset
, len
);
5094 while (sent
< len
) {
5095 u64 size
= len
- sent
;
5098 if (size
> BTRFS_SEND_READ_SIZE
)
5099 size
= BTRFS_SEND_READ_SIZE
;
5100 ret
= send_write(sctx
, offset
+ sent
, size
);
5111 * Search for a capability xattr related to sctx->cur_ino. If the capability is
5112 * found, call send_set_xattr function to emit it.
5114 * Return 0 if there isn't a capability, or when the capability was emitted
5115 * successfully, or < 0 if an error occurred.
5117 static int send_capabilities(struct send_ctx
*sctx
)
5119 struct fs_path
*fspath
= NULL
;
5120 struct btrfs_path
*path
;
5121 struct btrfs_dir_item
*di
;
5122 struct extent_buffer
*leaf
;
5123 unsigned long data_ptr
;
5128 path
= alloc_path_for_send();
5132 di
= btrfs_lookup_xattr(NULL
, sctx
->send_root
, path
, sctx
->cur_ino
,
5133 XATTR_NAME_CAPS
, strlen(XATTR_NAME_CAPS
), 0);
5135 /* There is no xattr for this inode */
5137 } else if (IS_ERR(di
)) {
5142 leaf
= path
->nodes
[0];
5143 buf_len
= btrfs_dir_data_len(leaf
, di
);
5145 fspath
= fs_path_alloc();
5146 buf
= kmalloc(buf_len
, GFP_KERNEL
);
5147 if (!fspath
|| !buf
) {
5152 ret
= get_cur_path(sctx
, sctx
->cur_ino
, sctx
->cur_inode_gen
, fspath
);
5156 data_ptr
= (unsigned long)(di
+ 1) + btrfs_dir_name_len(leaf
, di
);
5157 read_extent_buffer(leaf
, buf
, data_ptr
, buf_len
);
5159 ret
= send_set_xattr(sctx
, fspath
, XATTR_NAME_CAPS
,
5160 strlen(XATTR_NAME_CAPS
), buf
, buf_len
);
5163 fs_path_free(fspath
);
5164 btrfs_free_path(path
);
5168 static int clone_range(struct send_ctx
*sctx
,
5169 struct clone_root
*clone_root
,
5170 const u64 disk_byte
,
5175 struct btrfs_path
*path
;
5176 struct btrfs_key key
;
5178 u64 clone_src_i_size
= 0;
5181 * Prevent cloning from a zero offset with a length matching the sector
5182 * size because in some scenarios this will make the receiver fail.
5184 * For example, if in the source filesystem the extent at offset 0
5185 * has a length of sectorsize and it was written using direct IO, then
5186 * it can never be an inline extent (even if compression is enabled).
5187 * Then this extent can be cloned in the original filesystem to a non
5188 * zero file offset, but it may not be possible to clone in the
5189 * destination filesystem because it can be inlined due to compression
5190 * on the destination filesystem (as the receiver's write operations are
5191 * always done using buffered IO). The same happens when the original
5192 * filesystem does not have compression enabled but the destination
5195 if (clone_root
->offset
== 0 &&
5196 len
== sctx
->send_root
->fs_info
->sectorsize
)
5197 return send_extent_data(sctx
, offset
, len
);
5199 path
= alloc_path_for_send();
5204 * There are inodes that have extents that lie behind its i_size. Don't
5205 * accept clones from these extents.
5207 ret
= __get_inode_info(clone_root
->root
, path
, clone_root
->ino
,
5208 &clone_src_i_size
, NULL
, NULL
, NULL
, NULL
, NULL
);
5209 btrfs_release_path(path
);
5214 * We can't send a clone operation for the entire range if we find
5215 * extent items in the respective range in the source file that
5216 * refer to different extents or if we find holes.
5217 * So check for that and do a mix of clone and regular write/copy
5218 * operations if needed.
5222 * mkfs.btrfs -f /dev/sda
5223 * mount /dev/sda /mnt
5224 * xfs_io -f -c "pwrite -S 0xaa 0K 100K" /mnt/foo
5225 * cp --reflink=always /mnt/foo /mnt/bar
5226 * xfs_io -c "pwrite -S 0xbb 50K 50K" /mnt/foo
5227 * btrfs subvolume snapshot -r /mnt /mnt/snap
5229 * If when we send the snapshot and we are processing file bar (which
5230 * has a higher inode number than foo) we blindly send a clone operation
5231 * for the [0, 100K[ range from foo to bar, the receiver ends up getting
5232 * a file bar that matches the content of file foo - iow, doesn't match
5233 * the content from bar in the original filesystem.
5235 key
.objectid
= clone_root
->ino
;
5236 key
.type
= BTRFS_EXTENT_DATA_KEY
;
5237 key
.offset
= clone_root
->offset
;
5238 ret
= btrfs_search_slot(NULL
, clone_root
->root
, &key
, path
, 0, 0);
5241 if (ret
> 0 && path
->slots
[0] > 0) {
5242 btrfs_item_key_to_cpu(path
->nodes
[0], &key
, path
->slots
[0] - 1);
5243 if (key
.objectid
== clone_root
->ino
&&
5244 key
.type
== BTRFS_EXTENT_DATA_KEY
)
5249 struct extent_buffer
*leaf
= path
->nodes
[0];
5250 int slot
= path
->slots
[0];
5251 struct btrfs_file_extent_item
*ei
;
5255 u64 clone_data_offset
;
5257 if (slot
>= btrfs_header_nritems(leaf
)) {
5258 ret
= btrfs_next_leaf(clone_root
->root
, path
);
5266 btrfs_item_key_to_cpu(leaf
, &key
, slot
);
5269 * We might have an implicit trailing hole (NO_HOLES feature
5270 * enabled). We deal with it after leaving this loop.
5272 if (key
.objectid
!= clone_root
->ino
||
5273 key
.type
!= BTRFS_EXTENT_DATA_KEY
)
5276 ei
= btrfs_item_ptr(leaf
, slot
, struct btrfs_file_extent_item
);
5277 type
= btrfs_file_extent_type(leaf
, ei
);
5278 if (type
== BTRFS_FILE_EXTENT_INLINE
) {
5279 ext_len
= btrfs_file_extent_ram_bytes(leaf
, ei
);
5280 ext_len
= PAGE_ALIGN(ext_len
);
5282 ext_len
= btrfs_file_extent_num_bytes(leaf
, ei
);
5285 if (key
.offset
+ ext_len
<= clone_root
->offset
)
5288 if (key
.offset
> clone_root
->offset
) {
5289 /* Implicit hole, NO_HOLES feature enabled. */
5290 u64 hole_len
= key
.offset
- clone_root
->offset
;
5294 ret
= send_extent_data(sctx
, offset
, hole_len
);
5302 clone_root
->offset
+= hole_len
;
5303 data_offset
+= hole_len
;
5306 if (key
.offset
>= clone_root
->offset
+ len
)
5309 if (key
.offset
>= clone_src_i_size
)
5312 if (key
.offset
+ ext_len
> clone_src_i_size
)
5313 ext_len
= clone_src_i_size
- key
.offset
;
5315 clone_data_offset
= btrfs_file_extent_offset(leaf
, ei
);
5316 if (btrfs_file_extent_disk_bytenr(leaf
, ei
) == disk_byte
) {
5317 clone_root
->offset
= key
.offset
;
5318 if (clone_data_offset
< data_offset
&&
5319 clone_data_offset
+ ext_len
> data_offset
) {
5322 extent_offset
= data_offset
- clone_data_offset
;
5323 ext_len
-= extent_offset
;
5324 clone_data_offset
+= extent_offset
;
5325 clone_root
->offset
+= extent_offset
;
5329 clone_len
= min_t(u64
, ext_len
, len
);
5331 if (btrfs_file_extent_disk_bytenr(leaf
, ei
) == disk_byte
&&
5332 clone_data_offset
== data_offset
) {
5333 const u64 src_end
= clone_root
->offset
+ clone_len
;
5334 const u64 sectorsize
= SZ_64K
;
5337 * We can't clone the last block, when its size is not
5338 * sector size aligned, into the middle of a file. If we
5339 * do so, the receiver will get a failure (-EINVAL) when
5340 * trying to clone or will silently corrupt the data in
5341 * the destination file if it's on a kernel without the
5342 * fix introduced by commit ac765f83f1397646
5343 * ("Btrfs: fix data corruption due to cloning of eof
5346 * So issue a clone of the aligned down range plus a
5347 * regular write for the eof block, if we hit that case.
5349 * Also, we use the maximum possible sector size, 64K,
5350 * because we don't know what's the sector size of the
5351 * filesystem that receives the stream, so we have to
5352 * assume the largest possible sector size.
5354 if (src_end
== clone_src_i_size
&&
5355 !IS_ALIGNED(src_end
, sectorsize
) &&
5356 offset
+ clone_len
< sctx
->cur_inode_size
) {
5359 slen
= ALIGN_DOWN(src_end
- clone_root
->offset
,
5362 ret
= send_clone(sctx
, offset
, slen
,
5367 ret
= send_extent_data(sctx
, offset
+ slen
,
5370 ret
= send_clone(sctx
, offset
, clone_len
,
5374 ret
= send_extent_data(sctx
, offset
, clone_len
);
5383 offset
+= clone_len
;
5384 clone_root
->offset
+= clone_len
;
5385 data_offset
+= clone_len
;
5391 ret
= send_extent_data(sctx
, offset
, len
);
5395 btrfs_free_path(path
);
5399 static int send_write_or_clone(struct send_ctx
*sctx
,
5400 struct btrfs_path
*path
,
5401 struct btrfs_key
*key
,
5402 struct clone_root
*clone_root
)
5405 struct btrfs_file_extent_item
*ei
;
5406 u64 offset
= key
->offset
;
5409 u64 bs
= sctx
->send_root
->fs_info
->sb
->s_blocksize
;
5411 ei
= btrfs_item_ptr(path
->nodes
[0], path
->slots
[0],
5412 struct btrfs_file_extent_item
);
5413 type
= btrfs_file_extent_type(path
->nodes
[0], ei
);
5414 if (type
== BTRFS_FILE_EXTENT_INLINE
) {
5415 len
= btrfs_file_extent_ram_bytes(path
->nodes
[0], ei
);
5417 * it is possible the inline item won't cover the whole page,
5418 * but there may be items after this page. Make
5419 * sure to send the whole thing
5421 len
= PAGE_ALIGN(len
);
5423 len
= btrfs_file_extent_num_bytes(path
->nodes
[0], ei
);
5426 if (offset
>= sctx
->cur_inode_size
) {
5430 if (offset
+ len
> sctx
->cur_inode_size
)
5431 len
= sctx
->cur_inode_size
- offset
;
5437 if (clone_root
&& IS_ALIGNED(offset
+ len
, bs
)) {
5441 disk_byte
= btrfs_file_extent_disk_bytenr(path
->nodes
[0], ei
);
5442 data_offset
= btrfs_file_extent_offset(path
->nodes
[0], ei
);
5443 ret
= clone_range(sctx
, clone_root
, disk_byte
, data_offset
,
5446 ret
= send_extent_data(sctx
, offset
, len
);
5448 sctx
->cur_inode_next_write_offset
= offset
+ len
;
5453 static int is_extent_unchanged(struct send_ctx
*sctx
,
5454 struct btrfs_path
*left_path
,
5455 struct btrfs_key
*ekey
)
5458 struct btrfs_key key
;
5459 struct btrfs_path
*path
= NULL
;
5460 struct extent_buffer
*eb
;
5462 struct btrfs_key found_key
;
5463 struct btrfs_file_extent_item
*ei
;
5468 u64 left_offset_fixed
;
5476 path
= alloc_path_for_send();
5480 eb
= left_path
->nodes
[0];
5481 slot
= left_path
->slots
[0];
5482 ei
= btrfs_item_ptr(eb
, slot
, struct btrfs_file_extent_item
);
5483 left_type
= btrfs_file_extent_type(eb
, ei
);
5485 if (left_type
!= BTRFS_FILE_EXTENT_REG
) {
5489 left_disknr
= btrfs_file_extent_disk_bytenr(eb
, ei
);
5490 left_len
= btrfs_file_extent_num_bytes(eb
, ei
);
5491 left_offset
= btrfs_file_extent_offset(eb
, ei
);
5492 left_gen
= btrfs_file_extent_generation(eb
, ei
);
5495 * Following comments will refer to these graphics. L is the left
5496 * extents which we are checking at the moment. 1-8 are the right
5497 * extents that we iterate.
5500 * |-1-|-2a-|-3-|-4-|-5-|-6-|
5503 * |--1--|-2b-|...(same as above)
5505 * Alternative situation. Happens on files where extents got split.
5507 * |-----------7-----------|-6-|
5509 * Alternative situation. Happens on files which got larger.
5512 * Nothing follows after 8.
5515 key
.objectid
= ekey
->objectid
;
5516 key
.type
= BTRFS_EXTENT_DATA_KEY
;
5517 key
.offset
= ekey
->offset
;
5518 ret
= btrfs_search_slot_for_read(sctx
->parent_root
, &key
, path
, 0, 0);
5527 * Handle special case where the right side has no extents at all.
5529 eb
= path
->nodes
[0];
5530 slot
= path
->slots
[0];
5531 btrfs_item_key_to_cpu(eb
, &found_key
, slot
);
5532 if (found_key
.objectid
!= key
.objectid
||
5533 found_key
.type
!= key
.type
) {
5534 /* If we're a hole then just pretend nothing changed */
5535 ret
= (left_disknr
) ? 0 : 1;
5540 * We're now on 2a, 2b or 7.
5543 while (key
.offset
< ekey
->offset
+ left_len
) {
5544 ei
= btrfs_item_ptr(eb
, slot
, struct btrfs_file_extent_item
);
5545 right_type
= btrfs_file_extent_type(eb
, ei
);
5546 if (right_type
!= BTRFS_FILE_EXTENT_REG
&&
5547 right_type
!= BTRFS_FILE_EXTENT_INLINE
) {
5552 if (right_type
== BTRFS_FILE_EXTENT_INLINE
) {
5553 right_len
= btrfs_file_extent_ram_bytes(eb
, ei
);
5554 right_len
= PAGE_ALIGN(right_len
);
5556 right_len
= btrfs_file_extent_num_bytes(eb
, ei
);
5560 * Are we at extent 8? If yes, we know the extent is changed.
5561 * This may only happen on the first iteration.
5563 if (found_key
.offset
+ right_len
<= ekey
->offset
) {
5564 /* If we're a hole just pretend nothing changed */
5565 ret
= (left_disknr
) ? 0 : 1;
5570 * We just wanted to see if when we have an inline extent, what
5571 * follows it is a regular extent (wanted to check the above
5572 * condition for inline extents too). This should normally not
5573 * happen but it's possible for example when we have an inline
5574 * compressed extent representing data with a size matching
5575 * the page size (currently the same as sector size).
5577 if (right_type
== BTRFS_FILE_EXTENT_INLINE
) {
5582 right_disknr
= btrfs_file_extent_disk_bytenr(eb
, ei
);
5583 right_offset
= btrfs_file_extent_offset(eb
, ei
);
5584 right_gen
= btrfs_file_extent_generation(eb
, ei
);
5586 left_offset_fixed
= left_offset
;
5587 if (key
.offset
< ekey
->offset
) {
5588 /* Fix the right offset for 2a and 7. */
5589 right_offset
+= ekey
->offset
- key
.offset
;
5591 /* Fix the left offset for all behind 2a and 2b */
5592 left_offset_fixed
+= key
.offset
- ekey
->offset
;
5596 * Check if we have the same extent.
5598 if (left_disknr
!= right_disknr
||
5599 left_offset_fixed
!= right_offset
||
5600 left_gen
!= right_gen
) {
5606 * Go to the next extent.
5608 ret
= btrfs_next_item(sctx
->parent_root
, path
);
5612 eb
= path
->nodes
[0];
5613 slot
= path
->slots
[0];
5614 btrfs_item_key_to_cpu(eb
, &found_key
, slot
);
5616 if (ret
|| found_key
.objectid
!= key
.objectid
||
5617 found_key
.type
!= key
.type
) {
5618 key
.offset
+= right_len
;
5621 if (found_key
.offset
!= key
.offset
+ right_len
) {
5629 * We're now behind the left extent (treat as unchanged) or at the end
5630 * of the right side (treat as changed).
5632 if (key
.offset
>= ekey
->offset
+ left_len
)
5639 btrfs_free_path(path
);
5643 static int get_last_extent(struct send_ctx
*sctx
, u64 offset
)
5645 struct btrfs_path
*path
;
5646 struct btrfs_root
*root
= sctx
->send_root
;
5647 struct btrfs_key key
;
5650 path
= alloc_path_for_send();
5654 sctx
->cur_inode_last_extent
= 0;
5656 key
.objectid
= sctx
->cur_ino
;
5657 key
.type
= BTRFS_EXTENT_DATA_KEY
;
5658 key
.offset
= offset
;
5659 ret
= btrfs_search_slot_for_read(root
, &key
, path
, 0, 1);
5663 btrfs_item_key_to_cpu(path
->nodes
[0], &key
, path
->slots
[0]);
5664 if (key
.objectid
!= sctx
->cur_ino
|| key
.type
!= BTRFS_EXTENT_DATA_KEY
)
5667 sctx
->cur_inode_last_extent
= btrfs_file_extent_end(path
);
5669 btrfs_free_path(path
);
5673 static int range_is_hole_in_parent(struct send_ctx
*sctx
,
5677 struct btrfs_path
*path
;
5678 struct btrfs_key key
;
5679 struct btrfs_root
*root
= sctx
->parent_root
;
5680 u64 search_start
= start
;
5683 path
= alloc_path_for_send();
5687 key
.objectid
= sctx
->cur_ino
;
5688 key
.type
= BTRFS_EXTENT_DATA_KEY
;
5689 key
.offset
= search_start
;
5690 ret
= btrfs_search_slot(NULL
, root
, &key
, path
, 0, 0);
5693 if (ret
> 0 && path
->slots
[0] > 0)
5696 while (search_start
< end
) {
5697 struct extent_buffer
*leaf
= path
->nodes
[0];
5698 int slot
= path
->slots
[0];
5699 struct btrfs_file_extent_item
*fi
;
5702 if (slot
>= btrfs_header_nritems(leaf
)) {
5703 ret
= btrfs_next_leaf(root
, path
);
5711 btrfs_item_key_to_cpu(leaf
, &key
, slot
);
5712 if (key
.objectid
< sctx
->cur_ino
||
5713 key
.type
< BTRFS_EXTENT_DATA_KEY
)
5715 if (key
.objectid
> sctx
->cur_ino
||
5716 key
.type
> BTRFS_EXTENT_DATA_KEY
||
5720 fi
= btrfs_item_ptr(leaf
, slot
, struct btrfs_file_extent_item
);
5721 extent_end
= btrfs_file_extent_end(path
);
5722 if (extent_end
<= start
)
5724 if (btrfs_file_extent_disk_bytenr(leaf
, fi
) == 0) {
5725 search_start
= extent_end
;
5735 btrfs_free_path(path
);
5739 static int maybe_send_hole(struct send_ctx
*sctx
, struct btrfs_path
*path
,
5740 struct btrfs_key
*key
)
5744 if (sctx
->cur_ino
!= key
->objectid
|| !need_send_hole(sctx
))
5747 if (sctx
->cur_inode_last_extent
== (u64
)-1) {
5748 ret
= get_last_extent(sctx
, key
->offset
- 1);
5753 if (path
->slots
[0] == 0 &&
5754 sctx
->cur_inode_last_extent
< key
->offset
) {
5756 * We might have skipped entire leafs that contained only
5757 * file extent items for our current inode. These leafs have
5758 * a generation number smaller (older) than the one in the
5759 * current leaf and the leaf our last extent came from, and
5760 * are located between these 2 leafs.
5762 ret
= get_last_extent(sctx
, key
->offset
- 1);
5767 if (sctx
->cur_inode_last_extent
< key
->offset
) {
5768 ret
= range_is_hole_in_parent(sctx
,
5769 sctx
->cur_inode_last_extent
,
5774 ret
= send_hole(sctx
, key
->offset
);
5778 sctx
->cur_inode_last_extent
= btrfs_file_extent_end(path
);
5782 static int process_extent(struct send_ctx
*sctx
,
5783 struct btrfs_path
*path
,
5784 struct btrfs_key
*key
)
5786 struct clone_root
*found_clone
= NULL
;
5789 if (S_ISLNK(sctx
->cur_inode_mode
))
5792 if (sctx
->parent_root
&& !sctx
->cur_inode_new
) {
5793 ret
= is_extent_unchanged(sctx
, path
, key
);
5801 struct btrfs_file_extent_item
*ei
;
5804 ei
= btrfs_item_ptr(path
->nodes
[0], path
->slots
[0],
5805 struct btrfs_file_extent_item
);
5806 type
= btrfs_file_extent_type(path
->nodes
[0], ei
);
5807 if (type
== BTRFS_FILE_EXTENT_PREALLOC
||
5808 type
== BTRFS_FILE_EXTENT_REG
) {
5810 * The send spec does not have a prealloc command yet,
5811 * so just leave a hole for prealloc'ed extents until
5812 * we have enough commands queued up to justify rev'ing
5815 if (type
== BTRFS_FILE_EXTENT_PREALLOC
) {
5820 /* Have a hole, just skip it. */
5821 if (btrfs_file_extent_disk_bytenr(path
->nodes
[0], ei
) == 0) {
5828 ret
= find_extent_clone(sctx
, path
, key
->objectid
, key
->offset
,
5829 sctx
->cur_inode_size
, &found_clone
);
5830 if (ret
!= -ENOENT
&& ret
< 0)
5833 ret
= send_write_or_clone(sctx
, path
, key
, found_clone
);
5837 ret
= maybe_send_hole(sctx
, path
, key
);
5842 static int process_all_extents(struct send_ctx
*sctx
)
5845 struct btrfs_root
*root
;
5846 struct btrfs_path
*path
;
5847 struct btrfs_key key
;
5848 struct btrfs_key found_key
;
5849 struct extent_buffer
*eb
;
5852 root
= sctx
->send_root
;
5853 path
= alloc_path_for_send();
5857 key
.objectid
= sctx
->cmp_key
->objectid
;
5858 key
.type
= BTRFS_EXTENT_DATA_KEY
;
5860 ret
= btrfs_search_slot(NULL
, root
, &key
, path
, 0, 0);
5865 eb
= path
->nodes
[0];
5866 slot
= path
->slots
[0];
5868 if (slot
>= btrfs_header_nritems(eb
)) {
5869 ret
= btrfs_next_leaf(root
, path
);
5872 } else if (ret
> 0) {
5879 btrfs_item_key_to_cpu(eb
, &found_key
, slot
);
5881 if (found_key
.objectid
!= key
.objectid
||
5882 found_key
.type
!= key
.type
) {
5887 ret
= process_extent(sctx
, path
, &found_key
);
5895 btrfs_free_path(path
);
5899 static int process_recorded_refs_if_needed(struct send_ctx
*sctx
, int at_end
,
5901 int *refs_processed
)
5905 if (sctx
->cur_ino
== 0)
5907 if (!at_end
&& sctx
->cur_ino
== sctx
->cmp_key
->objectid
&&
5908 sctx
->cmp_key
->type
<= BTRFS_INODE_EXTREF_KEY
)
5910 if (list_empty(&sctx
->new_refs
) && list_empty(&sctx
->deleted_refs
))
5913 ret
= process_recorded_refs(sctx
, pending_move
);
5917 *refs_processed
= 1;
5922 static int finish_inode_if_needed(struct send_ctx
*sctx
, int at_end
)
5933 int need_truncate
= 1;
5934 int pending_move
= 0;
5935 int refs_processed
= 0;
5937 if (sctx
->ignore_cur_inode
)
5940 ret
= process_recorded_refs_if_needed(sctx
, at_end
, &pending_move
,
5946 * We have processed the refs and thus need to advance send_progress.
5947 * Now, calls to get_cur_xxx will take the updated refs of the current
5948 * inode into account.
5950 * On the other hand, if our current inode is a directory and couldn't
5951 * be moved/renamed because its parent was renamed/moved too and it has
5952 * a higher inode number, we can only move/rename our current inode
5953 * after we moved/renamed its parent. Therefore in this case operate on
5954 * the old path (pre move/rename) of our current inode, and the
5955 * move/rename will be performed later.
5957 if (refs_processed
&& !pending_move
)
5958 sctx
->send_progress
= sctx
->cur_ino
+ 1;
5960 if (sctx
->cur_ino
== 0 || sctx
->cur_inode_deleted
)
5962 if (!at_end
&& sctx
->cmp_key
->objectid
== sctx
->cur_ino
)
5965 ret
= get_inode_info(sctx
->send_root
, sctx
->cur_ino
, NULL
, NULL
,
5966 &left_mode
, &left_uid
, &left_gid
, NULL
);
5970 if (!sctx
->parent_root
|| sctx
->cur_inode_new
) {
5972 if (!S_ISLNK(sctx
->cur_inode_mode
))
5974 if (sctx
->cur_inode_next_write_offset
== sctx
->cur_inode_size
)
5979 ret
= get_inode_info(sctx
->parent_root
, sctx
->cur_ino
,
5980 &old_size
, NULL
, &right_mode
, &right_uid
,
5985 if (left_uid
!= right_uid
|| left_gid
!= right_gid
)
5987 if (!S_ISLNK(sctx
->cur_inode_mode
) && left_mode
!= right_mode
)
5989 if ((old_size
== sctx
->cur_inode_size
) ||
5990 (sctx
->cur_inode_size
> old_size
&&
5991 sctx
->cur_inode_next_write_offset
== sctx
->cur_inode_size
))
5995 if (S_ISREG(sctx
->cur_inode_mode
)) {
5996 if (need_send_hole(sctx
)) {
5997 if (sctx
->cur_inode_last_extent
== (u64
)-1 ||
5998 sctx
->cur_inode_last_extent
<
5999 sctx
->cur_inode_size
) {
6000 ret
= get_last_extent(sctx
, (u64
)-1);
6004 if (sctx
->cur_inode_last_extent
<
6005 sctx
->cur_inode_size
) {
6006 ret
= send_hole(sctx
, sctx
->cur_inode_size
);
6011 if (need_truncate
) {
6012 ret
= send_truncate(sctx
, sctx
->cur_ino
,
6013 sctx
->cur_inode_gen
,
6014 sctx
->cur_inode_size
);
6021 ret
= send_chown(sctx
, sctx
->cur_ino
, sctx
->cur_inode_gen
,
6022 left_uid
, left_gid
);
6027 ret
= send_chmod(sctx
, sctx
->cur_ino
, sctx
->cur_inode_gen
,
6033 ret
= send_capabilities(sctx
);
6038 * If other directory inodes depended on our current directory
6039 * inode's move/rename, now do their move/rename operations.
6041 if (!is_waiting_for_move(sctx
, sctx
->cur_ino
)) {
6042 ret
= apply_children_dir_moves(sctx
);
6046 * Need to send that every time, no matter if it actually
6047 * changed between the two trees as we have done changes to
6048 * the inode before. If our inode is a directory and it's
6049 * waiting to be moved/renamed, we will send its utimes when
6050 * it's moved/renamed, therefore we don't need to do it here.
6052 sctx
->send_progress
= sctx
->cur_ino
+ 1;
6053 ret
= send_utimes(sctx
, sctx
->cur_ino
, sctx
->cur_inode_gen
);
6062 struct parent_paths_ctx
{
6063 struct list_head
*refs
;
6064 struct send_ctx
*sctx
;
6067 static int record_parent_ref(int num
, u64 dir
, int index
, struct fs_path
*name
,
6070 struct parent_paths_ctx
*ppctx
= ctx
;
6072 return record_ref(ppctx
->sctx
->parent_root
, dir
, name
, ppctx
->sctx
,
6077 * Issue unlink operations for all paths of the current inode found in the
6080 static int btrfs_unlink_all_paths(struct send_ctx
*sctx
)
6082 LIST_HEAD(deleted_refs
);
6083 struct btrfs_path
*path
;
6084 struct btrfs_key key
;
6085 struct parent_paths_ctx ctx
;
6088 path
= alloc_path_for_send();
6092 key
.objectid
= sctx
->cur_ino
;
6093 key
.type
= BTRFS_INODE_REF_KEY
;
6095 ret
= btrfs_search_slot(NULL
, sctx
->parent_root
, &key
, path
, 0, 0);
6099 ctx
.refs
= &deleted_refs
;
6103 struct extent_buffer
*eb
= path
->nodes
[0];
6104 int slot
= path
->slots
[0];
6106 if (slot
>= btrfs_header_nritems(eb
)) {
6107 ret
= btrfs_next_leaf(sctx
->parent_root
, path
);
6115 btrfs_item_key_to_cpu(eb
, &key
, slot
);
6116 if (key
.objectid
!= sctx
->cur_ino
)
6118 if (key
.type
!= BTRFS_INODE_REF_KEY
&&
6119 key
.type
!= BTRFS_INODE_EXTREF_KEY
)
6122 ret
= iterate_inode_ref(sctx
->parent_root
, path
, &key
, 1,
6123 record_parent_ref
, &ctx
);
6130 while (!list_empty(&deleted_refs
)) {
6131 struct recorded_ref
*ref
;
6133 ref
= list_first_entry(&deleted_refs
, struct recorded_ref
, list
);
6134 ret
= send_unlink(sctx
, ref
->full_path
);
6137 fs_path_free(ref
->full_path
);
6138 list_del(&ref
->list
);
6143 btrfs_free_path(path
);
6145 __free_recorded_refs(&deleted_refs
);
6149 static int changed_inode(struct send_ctx
*sctx
,
6150 enum btrfs_compare_tree_result result
)
6153 struct btrfs_key
*key
= sctx
->cmp_key
;
6154 struct btrfs_inode_item
*left_ii
= NULL
;
6155 struct btrfs_inode_item
*right_ii
= NULL
;
6159 sctx
->cur_ino
= key
->objectid
;
6160 sctx
->cur_inode_new_gen
= 0;
6161 sctx
->cur_inode_last_extent
= (u64
)-1;
6162 sctx
->cur_inode_next_write_offset
= 0;
6163 sctx
->ignore_cur_inode
= false;
6166 * Set send_progress to current inode. This will tell all get_cur_xxx
6167 * functions that the current inode's refs are not updated yet. Later,
6168 * when process_recorded_refs is finished, it is set to cur_ino + 1.
6170 sctx
->send_progress
= sctx
->cur_ino
;
6172 if (result
== BTRFS_COMPARE_TREE_NEW
||
6173 result
== BTRFS_COMPARE_TREE_CHANGED
) {
6174 left_ii
= btrfs_item_ptr(sctx
->left_path
->nodes
[0],
6175 sctx
->left_path
->slots
[0],
6176 struct btrfs_inode_item
);
6177 left_gen
= btrfs_inode_generation(sctx
->left_path
->nodes
[0],
6180 right_ii
= btrfs_item_ptr(sctx
->right_path
->nodes
[0],
6181 sctx
->right_path
->slots
[0],
6182 struct btrfs_inode_item
);
6183 right_gen
= btrfs_inode_generation(sctx
->right_path
->nodes
[0],
6186 if (result
== BTRFS_COMPARE_TREE_CHANGED
) {
6187 right_ii
= btrfs_item_ptr(sctx
->right_path
->nodes
[0],
6188 sctx
->right_path
->slots
[0],
6189 struct btrfs_inode_item
);
6191 right_gen
= btrfs_inode_generation(sctx
->right_path
->nodes
[0],
6195 * The cur_ino = root dir case is special here. We can't treat
6196 * the inode as deleted+reused because it would generate a
6197 * stream that tries to delete/mkdir the root dir.
6199 if (left_gen
!= right_gen
&&
6200 sctx
->cur_ino
!= BTRFS_FIRST_FREE_OBJECTID
)
6201 sctx
->cur_inode_new_gen
= 1;
6205 * Normally we do not find inodes with a link count of zero (orphans)
6206 * because the most common case is to create a snapshot and use it
6207 * for a send operation. However other less common use cases involve
6208 * using a subvolume and send it after turning it to RO mode just
6209 * after deleting all hard links of a file while holding an open
6210 * file descriptor against it or turning a RO snapshot into RW mode,
6211 * keep an open file descriptor against a file, delete it and then
6212 * turn the snapshot back to RO mode before using it for a send
6213 * operation. So if we find such cases, ignore the inode and all its
6214 * items completely if it's a new inode, or if it's a changed inode
6215 * make sure all its previous paths (from the parent snapshot) are all
6216 * unlinked and all other the inode items are ignored.
6218 if (result
== BTRFS_COMPARE_TREE_NEW
||
6219 result
== BTRFS_COMPARE_TREE_CHANGED
) {
6222 nlinks
= btrfs_inode_nlink(sctx
->left_path
->nodes
[0], left_ii
);
6224 sctx
->ignore_cur_inode
= true;
6225 if (result
== BTRFS_COMPARE_TREE_CHANGED
)
6226 ret
= btrfs_unlink_all_paths(sctx
);
6231 if (result
== BTRFS_COMPARE_TREE_NEW
) {
6232 sctx
->cur_inode_gen
= left_gen
;
6233 sctx
->cur_inode_new
= 1;
6234 sctx
->cur_inode_deleted
= 0;
6235 sctx
->cur_inode_size
= btrfs_inode_size(
6236 sctx
->left_path
->nodes
[0], left_ii
);
6237 sctx
->cur_inode_mode
= btrfs_inode_mode(
6238 sctx
->left_path
->nodes
[0], left_ii
);
6239 sctx
->cur_inode_rdev
= btrfs_inode_rdev(
6240 sctx
->left_path
->nodes
[0], left_ii
);
6241 if (sctx
->cur_ino
!= BTRFS_FIRST_FREE_OBJECTID
)
6242 ret
= send_create_inode_if_needed(sctx
);
6243 } else if (result
== BTRFS_COMPARE_TREE_DELETED
) {
6244 sctx
->cur_inode_gen
= right_gen
;
6245 sctx
->cur_inode_new
= 0;
6246 sctx
->cur_inode_deleted
= 1;
6247 sctx
->cur_inode_size
= btrfs_inode_size(
6248 sctx
->right_path
->nodes
[0], right_ii
);
6249 sctx
->cur_inode_mode
= btrfs_inode_mode(
6250 sctx
->right_path
->nodes
[0], right_ii
);
6251 } else if (result
== BTRFS_COMPARE_TREE_CHANGED
) {
6253 * We need to do some special handling in case the inode was
6254 * reported as changed with a changed generation number. This
6255 * means that the original inode was deleted and new inode
6256 * reused the same inum. So we have to treat the old inode as
6257 * deleted and the new one as new.
6259 if (sctx
->cur_inode_new_gen
) {
6261 * First, process the inode as if it was deleted.
6263 sctx
->cur_inode_gen
= right_gen
;
6264 sctx
->cur_inode_new
= 0;
6265 sctx
->cur_inode_deleted
= 1;
6266 sctx
->cur_inode_size
= btrfs_inode_size(
6267 sctx
->right_path
->nodes
[0], right_ii
);
6268 sctx
->cur_inode_mode
= btrfs_inode_mode(
6269 sctx
->right_path
->nodes
[0], right_ii
);
6270 ret
= process_all_refs(sctx
,
6271 BTRFS_COMPARE_TREE_DELETED
);
6276 * Now process the inode as if it was new.
6278 sctx
->cur_inode_gen
= left_gen
;
6279 sctx
->cur_inode_new
= 1;
6280 sctx
->cur_inode_deleted
= 0;
6281 sctx
->cur_inode_size
= btrfs_inode_size(
6282 sctx
->left_path
->nodes
[0], left_ii
);
6283 sctx
->cur_inode_mode
= btrfs_inode_mode(
6284 sctx
->left_path
->nodes
[0], left_ii
);
6285 sctx
->cur_inode_rdev
= btrfs_inode_rdev(
6286 sctx
->left_path
->nodes
[0], left_ii
);
6287 ret
= send_create_inode_if_needed(sctx
);
6291 ret
= process_all_refs(sctx
, BTRFS_COMPARE_TREE_NEW
);
6295 * Advance send_progress now as we did not get into
6296 * process_recorded_refs_if_needed in the new_gen case.
6298 sctx
->send_progress
= sctx
->cur_ino
+ 1;
6301 * Now process all extents and xattrs of the inode as if
6302 * they were all new.
6304 ret
= process_all_extents(sctx
);
6307 ret
= process_all_new_xattrs(sctx
);
6311 sctx
->cur_inode_gen
= left_gen
;
6312 sctx
->cur_inode_new
= 0;
6313 sctx
->cur_inode_new_gen
= 0;
6314 sctx
->cur_inode_deleted
= 0;
6315 sctx
->cur_inode_size
= btrfs_inode_size(
6316 sctx
->left_path
->nodes
[0], left_ii
);
6317 sctx
->cur_inode_mode
= btrfs_inode_mode(
6318 sctx
->left_path
->nodes
[0], left_ii
);
6327 * We have to process new refs before deleted refs, but compare_trees gives us
6328 * the new and deleted refs mixed. To fix this, we record the new/deleted refs
6329 * first and later process them in process_recorded_refs.
6330 * For the cur_inode_new_gen case, we skip recording completely because
6331 * changed_inode did already initiate processing of refs. The reason for this is
6332 * that in this case, compare_tree actually compares the refs of 2 different
6333 * inodes. To fix this, process_all_refs is used in changed_inode to handle all
6334 * refs of the right tree as deleted and all refs of the left tree as new.
6336 static int changed_ref(struct send_ctx
*sctx
,
6337 enum btrfs_compare_tree_result result
)
6341 if (sctx
->cur_ino
!= sctx
->cmp_key
->objectid
) {
6342 inconsistent_snapshot_error(sctx
, result
, "reference");
6346 if (!sctx
->cur_inode_new_gen
&&
6347 sctx
->cur_ino
!= BTRFS_FIRST_FREE_OBJECTID
) {
6348 if (result
== BTRFS_COMPARE_TREE_NEW
)
6349 ret
= record_new_ref(sctx
);
6350 else if (result
== BTRFS_COMPARE_TREE_DELETED
)
6351 ret
= record_deleted_ref(sctx
);
6352 else if (result
== BTRFS_COMPARE_TREE_CHANGED
)
6353 ret
= record_changed_ref(sctx
);
6360 * Process new/deleted/changed xattrs. We skip processing in the
6361 * cur_inode_new_gen case because changed_inode did already initiate processing
6362 * of xattrs. The reason is the same as in changed_ref
6364 static int changed_xattr(struct send_ctx
*sctx
,
6365 enum btrfs_compare_tree_result result
)
6369 if (sctx
->cur_ino
!= sctx
->cmp_key
->objectid
) {
6370 inconsistent_snapshot_error(sctx
, result
, "xattr");
6374 if (!sctx
->cur_inode_new_gen
&& !sctx
->cur_inode_deleted
) {
6375 if (result
== BTRFS_COMPARE_TREE_NEW
)
6376 ret
= process_new_xattr(sctx
);
6377 else if (result
== BTRFS_COMPARE_TREE_DELETED
)
6378 ret
= process_deleted_xattr(sctx
);
6379 else if (result
== BTRFS_COMPARE_TREE_CHANGED
)
6380 ret
= process_changed_xattr(sctx
);
6387 * Process new/deleted/changed extents. We skip processing in the
6388 * cur_inode_new_gen case because changed_inode did already initiate processing
6389 * of extents. The reason is the same as in changed_ref
6391 static int changed_extent(struct send_ctx
*sctx
,
6392 enum btrfs_compare_tree_result result
)
6397 * We have found an extent item that changed without the inode item
6398 * having changed. This can happen either after relocation (where the
6399 * disk_bytenr of an extent item is replaced at
6400 * relocation.c:replace_file_extents()) or after deduplication into a
6401 * file in both the parent and send snapshots (where an extent item can
6402 * get modified or replaced with a new one). Note that deduplication
6403 * updates the inode item, but it only changes the iversion (sequence
6404 * field in the inode item) of the inode, so if a file is deduplicated
6405 * the same amount of times in both the parent and send snapshots, its
6406 * iversion becames the same in both snapshots, whence the inode item is
6407 * the same on both snapshots.
6409 if (sctx
->cur_ino
!= sctx
->cmp_key
->objectid
)
6412 if (!sctx
->cur_inode_new_gen
&& !sctx
->cur_inode_deleted
) {
6413 if (result
!= BTRFS_COMPARE_TREE_DELETED
)
6414 ret
= process_extent(sctx
, sctx
->left_path
,
6421 static int dir_changed(struct send_ctx
*sctx
, u64 dir
)
6423 u64 orig_gen
, new_gen
;
6426 ret
= get_inode_info(sctx
->send_root
, dir
, NULL
, &new_gen
, NULL
, NULL
,
6431 ret
= get_inode_info(sctx
->parent_root
, dir
, NULL
, &orig_gen
, NULL
,
6436 return (orig_gen
!= new_gen
) ? 1 : 0;
6439 static int compare_refs(struct send_ctx
*sctx
, struct btrfs_path
*path
,
6440 struct btrfs_key
*key
)
6442 struct btrfs_inode_extref
*extref
;
6443 struct extent_buffer
*leaf
;
6444 u64 dirid
= 0, last_dirid
= 0;
6451 /* Easy case, just check this one dirid */
6452 if (key
->type
== BTRFS_INODE_REF_KEY
) {
6453 dirid
= key
->offset
;
6455 ret
= dir_changed(sctx
, dirid
);
6459 leaf
= path
->nodes
[0];
6460 item_size
= btrfs_item_size_nr(leaf
, path
->slots
[0]);
6461 ptr
= btrfs_item_ptr_offset(leaf
, path
->slots
[0]);
6462 while (cur_offset
< item_size
) {
6463 extref
= (struct btrfs_inode_extref
*)(ptr
+
6465 dirid
= btrfs_inode_extref_parent(leaf
, extref
);
6466 ref_name_len
= btrfs_inode_extref_name_len(leaf
, extref
);
6467 cur_offset
+= ref_name_len
+ sizeof(*extref
);
6468 if (dirid
== last_dirid
)
6470 ret
= dir_changed(sctx
, dirid
);
6480 * Updates compare related fields in sctx and simply forwards to the actual
6481 * changed_xxx functions.
6483 static int changed_cb(struct btrfs_path
*left_path
,
6484 struct btrfs_path
*right_path
,
6485 struct btrfs_key
*key
,
6486 enum btrfs_compare_tree_result result
,
6490 struct send_ctx
*sctx
= ctx
;
6492 if (result
== BTRFS_COMPARE_TREE_SAME
) {
6493 if (key
->type
== BTRFS_INODE_REF_KEY
||
6494 key
->type
== BTRFS_INODE_EXTREF_KEY
) {
6495 ret
= compare_refs(sctx
, left_path
, key
);
6500 } else if (key
->type
== BTRFS_EXTENT_DATA_KEY
) {
6501 return maybe_send_hole(sctx
, left_path
, key
);
6505 result
= BTRFS_COMPARE_TREE_CHANGED
;
6509 sctx
->left_path
= left_path
;
6510 sctx
->right_path
= right_path
;
6511 sctx
->cmp_key
= key
;
6513 ret
= finish_inode_if_needed(sctx
, 0);
6517 /* Ignore non-FS objects */
6518 if (key
->objectid
== BTRFS_FREE_INO_OBJECTID
||
6519 key
->objectid
== BTRFS_FREE_SPACE_OBJECTID
)
6522 if (key
->type
== BTRFS_INODE_ITEM_KEY
) {
6523 ret
= changed_inode(sctx
, result
);
6524 } else if (!sctx
->ignore_cur_inode
) {
6525 if (key
->type
== BTRFS_INODE_REF_KEY
||
6526 key
->type
== BTRFS_INODE_EXTREF_KEY
)
6527 ret
= changed_ref(sctx
, result
);
6528 else if (key
->type
== BTRFS_XATTR_ITEM_KEY
)
6529 ret
= changed_xattr(sctx
, result
);
6530 else if (key
->type
== BTRFS_EXTENT_DATA_KEY
)
6531 ret
= changed_extent(sctx
, result
);
6538 static int full_send_tree(struct send_ctx
*sctx
)
6541 struct btrfs_root
*send_root
= sctx
->send_root
;
6542 struct btrfs_key key
;
6543 struct btrfs_path
*path
;
6544 struct extent_buffer
*eb
;
6547 path
= alloc_path_for_send();
6551 key
.objectid
= BTRFS_FIRST_FREE_OBJECTID
;
6552 key
.type
= BTRFS_INODE_ITEM_KEY
;
6555 ret
= btrfs_search_slot_for_read(send_root
, &key
, path
, 1, 0);
6562 eb
= path
->nodes
[0];
6563 slot
= path
->slots
[0];
6564 btrfs_item_key_to_cpu(eb
, &key
, slot
);
6566 ret
= changed_cb(path
, NULL
, &key
,
6567 BTRFS_COMPARE_TREE_NEW
, sctx
);
6571 ret
= btrfs_next_item(send_root
, path
);
6581 ret
= finish_inode_if_needed(sctx
, 1);
6584 btrfs_free_path(path
);
6588 static int tree_move_down(struct btrfs_path
*path
, int *level
)
6590 struct extent_buffer
*eb
;
6592 BUG_ON(*level
== 0);
6593 eb
= btrfs_read_node_slot(path
->nodes
[*level
], path
->slots
[*level
]);
6597 path
->nodes
[*level
- 1] = eb
;
6598 path
->slots
[*level
- 1] = 0;
6603 static int tree_move_next_or_upnext(struct btrfs_path
*path
,
6604 int *level
, int root_level
)
6608 nritems
= btrfs_header_nritems(path
->nodes
[*level
]);
6610 path
->slots
[*level
]++;
6612 while (path
->slots
[*level
] >= nritems
) {
6613 if (*level
== root_level
)
6617 path
->slots
[*level
] = 0;
6618 free_extent_buffer(path
->nodes
[*level
]);
6619 path
->nodes
[*level
] = NULL
;
6621 path
->slots
[*level
]++;
6623 nritems
= btrfs_header_nritems(path
->nodes
[*level
]);
6630 * Returns 1 if it had to move up and next. 0 is returned if it moved only next
6633 static int tree_advance(struct btrfs_path
*path
,
6634 int *level
, int root_level
,
6636 struct btrfs_key
*key
)
6640 if (*level
== 0 || !allow_down
) {
6641 ret
= tree_move_next_or_upnext(path
, level
, root_level
);
6643 ret
= tree_move_down(path
, level
);
6647 btrfs_item_key_to_cpu(path
->nodes
[*level
], key
,
6648 path
->slots
[*level
]);
6650 btrfs_node_key_to_cpu(path
->nodes
[*level
], key
,
6651 path
->slots
[*level
]);
6656 static int tree_compare_item(struct btrfs_path
*left_path
,
6657 struct btrfs_path
*right_path
,
6662 unsigned long off1
, off2
;
6664 len1
= btrfs_item_size_nr(left_path
->nodes
[0], left_path
->slots
[0]);
6665 len2
= btrfs_item_size_nr(right_path
->nodes
[0], right_path
->slots
[0]);
6669 off1
= btrfs_item_ptr_offset(left_path
->nodes
[0], left_path
->slots
[0]);
6670 off2
= btrfs_item_ptr_offset(right_path
->nodes
[0],
6671 right_path
->slots
[0]);
6673 read_extent_buffer(left_path
->nodes
[0], tmp_buf
, off1
, len1
);
6675 cmp
= memcmp_extent_buffer(right_path
->nodes
[0], tmp_buf
, off2
, len1
);
6682 * This function compares two trees and calls the provided callback for
6683 * every changed/new/deleted item it finds.
6684 * If shared tree blocks are encountered, whole subtrees are skipped, making
6685 * the compare pretty fast on snapshotted subvolumes.
6687 * This currently works on commit roots only. As commit roots are read only,
6688 * we don't do any locking. The commit roots are protected with transactions.
6689 * Transactions are ended and rejoined when a commit is tried in between.
6691 * This function checks for modifications done to the trees while comparing.
6692 * If it detects a change, it aborts immediately.
6694 static int btrfs_compare_trees(struct btrfs_root
*left_root
,
6695 struct btrfs_root
*right_root
,
6696 btrfs_changed_cb_t changed_cb
, void *ctx
)
6698 struct btrfs_fs_info
*fs_info
= left_root
->fs_info
;
6701 struct btrfs_path
*left_path
= NULL
;
6702 struct btrfs_path
*right_path
= NULL
;
6703 struct btrfs_key left_key
;
6704 struct btrfs_key right_key
;
6705 char *tmp_buf
= NULL
;
6706 int left_root_level
;
6707 int right_root_level
;
6710 int left_end_reached
;
6711 int right_end_reached
;
6719 left_path
= btrfs_alloc_path();
6724 right_path
= btrfs_alloc_path();
6730 tmp_buf
= kvmalloc(fs_info
->nodesize
, GFP_KERNEL
);
6736 left_path
->search_commit_root
= 1;
6737 left_path
->skip_locking
= 1;
6738 right_path
->search_commit_root
= 1;
6739 right_path
->skip_locking
= 1;
6742 * Strategy: Go to the first items of both trees. Then do
6744 * If both trees are at level 0
6745 * Compare keys of current items
6746 * If left < right treat left item as new, advance left tree
6748 * If left > right treat right item as deleted, advance right tree
6750 * If left == right do deep compare of items, treat as changed if
6751 * needed, advance both trees and repeat
6752 * If both trees are at the same level but not at level 0
6753 * Compare keys of current nodes/leafs
6754 * If left < right advance left tree and repeat
6755 * If left > right advance right tree and repeat
6756 * If left == right compare blockptrs of the next nodes/leafs
6757 * If they match advance both trees but stay at the same level
6759 * If they don't match advance both trees while allowing to go
6761 * If tree levels are different
6762 * Advance the tree that needs it and repeat
6764 * Advancing a tree means:
6765 * If we are at level 0, try to go to the next slot. If that's not
6766 * possible, go one level up and repeat. Stop when we found a level
6767 * where we could go to the next slot. We may at this point be on a
6770 * If we are not at level 0 and not on shared tree blocks, go one
6773 * If we are not at level 0 and on shared tree blocks, go one slot to
6774 * the right if possible or go up and right.
6777 down_read(&fs_info
->commit_root_sem
);
6778 left_level
= btrfs_header_level(left_root
->commit_root
);
6779 left_root_level
= left_level
;
6780 left_path
->nodes
[left_level
] =
6781 btrfs_clone_extent_buffer(left_root
->commit_root
);
6782 if (!left_path
->nodes
[left_level
]) {
6783 up_read(&fs_info
->commit_root_sem
);
6788 right_level
= btrfs_header_level(right_root
->commit_root
);
6789 right_root_level
= right_level
;
6790 right_path
->nodes
[right_level
] =
6791 btrfs_clone_extent_buffer(right_root
->commit_root
);
6792 if (!right_path
->nodes
[right_level
]) {
6793 up_read(&fs_info
->commit_root_sem
);
6797 up_read(&fs_info
->commit_root_sem
);
6799 if (left_level
== 0)
6800 btrfs_item_key_to_cpu(left_path
->nodes
[left_level
],
6801 &left_key
, left_path
->slots
[left_level
]);
6803 btrfs_node_key_to_cpu(left_path
->nodes
[left_level
],
6804 &left_key
, left_path
->slots
[left_level
]);
6805 if (right_level
== 0)
6806 btrfs_item_key_to_cpu(right_path
->nodes
[right_level
],
6807 &right_key
, right_path
->slots
[right_level
]);
6809 btrfs_node_key_to_cpu(right_path
->nodes
[right_level
],
6810 &right_key
, right_path
->slots
[right_level
]);
6812 left_end_reached
= right_end_reached
= 0;
6813 advance_left
= advance_right
= 0;
6817 if (advance_left
&& !left_end_reached
) {
6818 ret
= tree_advance(left_path
, &left_level
,
6820 advance_left
!= ADVANCE_ONLY_NEXT
,
6823 left_end_reached
= ADVANCE
;
6828 if (advance_right
&& !right_end_reached
) {
6829 ret
= tree_advance(right_path
, &right_level
,
6831 advance_right
!= ADVANCE_ONLY_NEXT
,
6834 right_end_reached
= ADVANCE
;
6840 if (left_end_reached
&& right_end_reached
) {
6843 } else if (left_end_reached
) {
6844 if (right_level
== 0) {
6845 ret
= changed_cb(left_path
, right_path
,
6847 BTRFS_COMPARE_TREE_DELETED
,
6852 advance_right
= ADVANCE
;
6854 } else if (right_end_reached
) {
6855 if (left_level
== 0) {
6856 ret
= changed_cb(left_path
, right_path
,
6858 BTRFS_COMPARE_TREE_NEW
,
6863 advance_left
= ADVANCE
;
6867 if (left_level
== 0 && right_level
== 0) {
6868 cmp
= btrfs_comp_cpu_keys(&left_key
, &right_key
);
6870 ret
= changed_cb(left_path
, right_path
,
6872 BTRFS_COMPARE_TREE_NEW
,
6876 advance_left
= ADVANCE
;
6877 } else if (cmp
> 0) {
6878 ret
= changed_cb(left_path
, right_path
,
6880 BTRFS_COMPARE_TREE_DELETED
,
6884 advance_right
= ADVANCE
;
6886 enum btrfs_compare_tree_result result
;
6888 WARN_ON(!extent_buffer_uptodate(left_path
->nodes
[0]));
6889 ret
= tree_compare_item(left_path
, right_path
,
6892 result
= BTRFS_COMPARE_TREE_CHANGED
;
6894 result
= BTRFS_COMPARE_TREE_SAME
;
6895 ret
= changed_cb(left_path
, right_path
,
6896 &left_key
, result
, ctx
);
6899 advance_left
= ADVANCE
;
6900 advance_right
= ADVANCE
;
6902 } else if (left_level
== right_level
) {
6903 cmp
= btrfs_comp_cpu_keys(&left_key
, &right_key
);
6905 advance_left
= ADVANCE
;
6906 } else if (cmp
> 0) {
6907 advance_right
= ADVANCE
;
6909 left_blockptr
= btrfs_node_blockptr(
6910 left_path
->nodes
[left_level
],
6911 left_path
->slots
[left_level
]);
6912 right_blockptr
= btrfs_node_blockptr(
6913 right_path
->nodes
[right_level
],
6914 right_path
->slots
[right_level
]);
6915 left_gen
= btrfs_node_ptr_generation(
6916 left_path
->nodes
[left_level
],
6917 left_path
->slots
[left_level
]);
6918 right_gen
= btrfs_node_ptr_generation(
6919 right_path
->nodes
[right_level
],
6920 right_path
->slots
[right_level
]);
6921 if (left_blockptr
== right_blockptr
&&
6922 left_gen
== right_gen
) {
6924 * As we're on a shared block, don't
6925 * allow to go deeper.
6927 advance_left
= ADVANCE_ONLY_NEXT
;
6928 advance_right
= ADVANCE_ONLY_NEXT
;
6930 advance_left
= ADVANCE
;
6931 advance_right
= ADVANCE
;
6934 } else if (left_level
< right_level
) {
6935 advance_right
= ADVANCE
;
6937 advance_left
= ADVANCE
;
6942 btrfs_free_path(left_path
);
6943 btrfs_free_path(right_path
);
6948 static int send_subvol(struct send_ctx
*sctx
)
6952 if (!(sctx
->flags
& BTRFS_SEND_FLAG_OMIT_STREAM_HEADER
)) {
6953 ret
= send_header(sctx
);
6958 ret
= send_subvol_begin(sctx
);
6962 if (sctx
->parent_root
) {
6963 ret
= btrfs_compare_trees(sctx
->send_root
, sctx
->parent_root
,
6967 ret
= finish_inode_if_needed(sctx
, 1);
6971 ret
= full_send_tree(sctx
);
6977 free_recorded_refs(sctx
);
6982 * If orphan cleanup did remove any orphans from a root, it means the tree
6983 * was modified and therefore the commit root is not the same as the current
6984 * root anymore. This is a problem, because send uses the commit root and
6985 * therefore can see inode items that don't exist in the current root anymore,
6986 * and for example make calls to btrfs_iget, which will do tree lookups based
6987 * on the current root and not on the commit root. Those lookups will fail,
6988 * returning a -ESTALE error, and making send fail with that error. So make
6989 * sure a send does not see any orphans we have just removed, and that it will
6990 * see the same inodes regardless of whether a transaction commit happened
6991 * before it started (meaning that the commit root will be the same as the
6992 * current root) or not.
6994 static int ensure_commit_roots_uptodate(struct send_ctx
*sctx
)
6997 struct btrfs_trans_handle
*trans
= NULL
;
7000 if (sctx
->parent_root
&&
7001 sctx
->parent_root
->node
!= sctx
->parent_root
->commit_root
)
7004 for (i
= 0; i
< sctx
->clone_roots_cnt
; i
++)
7005 if (sctx
->clone_roots
[i
].root
->node
!=
7006 sctx
->clone_roots
[i
].root
->commit_root
)
7010 return btrfs_end_transaction(trans
);
7015 /* Use any root, all fs roots will get their commit roots updated. */
7017 trans
= btrfs_join_transaction(sctx
->send_root
);
7019 return PTR_ERR(trans
);
7023 return btrfs_commit_transaction(trans
);
7027 * Make sure any existing dellaloc is flushed for any root used by a send
7028 * operation so that we do not miss any data and we do not race with writeback
7029 * finishing and changing a tree while send is using the tree. This could
7030 * happen if a subvolume is in RW mode, has delalloc, is turned to RO mode and
7031 * a send operation then uses the subvolume.
7032 * After flushing delalloc ensure_commit_roots_uptodate() must be called.
7034 static int flush_delalloc_roots(struct send_ctx
*sctx
)
7036 struct btrfs_root
*root
= sctx
->parent_root
;
7041 ret
= btrfs_start_delalloc_snapshot(root
);
7044 btrfs_wait_ordered_extents(root
, U64_MAX
, 0, U64_MAX
);
7047 for (i
= 0; i
< sctx
->clone_roots_cnt
; i
++) {
7048 root
= sctx
->clone_roots
[i
].root
;
7049 ret
= btrfs_start_delalloc_snapshot(root
);
7052 btrfs_wait_ordered_extents(root
, U64_MAX
, 0, U64_MAX
);
7058 static void btrfs_root_dec_send_in_progress(struct btrfs_root
* root
)
7060 spin_lock(&root
->root_item_lock
);
7061 root
->send_in_progress
--;
7063 * Not much left to do, we don't know why it's unbalanced and
7064 * can't blindly reset it to 0.
7066 if (root
->send_in_progress
< 0)
7067 btrfs_err(root
->fs_info
,
7068 "send_in_progress unbalanced %d root %llu",
7069 root
->send_in_progress
, root
->root_key
.objectid
);
7070 spin_unlock(&root
->root_item_lock
);
7073 static void dedupe_in_progress_warn(const struct btrfs_root
*root
)
7075 btrfs_warn_rl(root
->fs_info
,
7076 "cannot use root %llu for send while deduplications on it are in progress (%d in progress)",
7077 root
->root_key
.objectid
, root
->dedupe_in_progress
);
7080 long btrfs_ioctl_send(struct file
*mnt_file
, struct btrfs_ioctl_send_args
*arg
)
7083 struct btrfs_root
*send_root
= BTRFS_I(file_inode(mnt_file
))->root
;
7084 struct btrfs_fs_info
*fs_info
= send_root
->fs_info
;
7085 struct btrfs_root
*clone_root
;
7086 struct send_ctx
*sctx
= NULL
;
7088 u64
*clone_sources_tmp
= NULL
;
7089 int clone_sources_to_rollback
= 0;
7090 unsigned alloc_size
;
7091 int sort_clone_roots
= 0;
7093 if (!capable(CAP_SYS_ADMIN
))
7097 * The subvolume must remain read-only during send, protect against
7098 * making it RW. This also protects against deletion.
7100 spin_lock(&send_root
->root_item_lock
);
7101 if (btrfs_root_readonly(send_root
) && send_root
->dedupe_in_progress
) {
7102 dedupe_in_progress_warn(send_root
);
7103 spin_unlock(&send_root
->root_item_lock
);
7106 send_root
->send_in_progress
++;
7107 spin_unlock(&send_root
->root_item_lock
);
7110 * Userspace tools do the checks and warn the user if it's
7113 if (!btrfs_root_readonly(send_root
)) {
7119 * Check that we don't overflow at later allocations, we request
7120 * clone_sources_count + 1 items, and compare to unsigned long inside
7123 if (arg
->clone_sources_count
>
7124 ULONG_MAX
/ sizeof(struct clone_root
) - 1) {
7129 if (arg
->flags
& ~BTRFS_SEND_FLAG_MASK
) {
7134 sctx
= kzalloc(sizeof(struct send_ctx
), GFP_KERNEL
);
7140 INIT_LIST_HEAD(&sctx
->new_refs
);
7141 INIT_LIST_HEAD(&sctx
->deleted_refs
);
7142 INIT_RADIX_TREE(&sctx
->name_cache
, GFP_KERNEL
);
7143 INIT_LIST_HEAD(&sctx
->name_cache_list
);
7145 sctx
->flags
= arg
->flags
;
7147 sctx
->send_filp
= fget(arg
->send_fd
);
7148 if (!sctx
->send_filp
) {
7153 sctx
->send_root
= send_root
;
7155 * Unlikely but possible, if the subvolume is marked for deletion but
7156 * is slow to remove the directory entry, send can still be started
7158 if (btrfs_root_dead(sctx
->send_root
)) {
7163 sctx
->clone_roots_cnt
= arg
->clone_sources_count
;
7165 sctx
->send_max_size
= BTRFS_SEND_BUF_SIZE
;
7166 sctx
->send_buf
= kvmalloc(sctx
->send_max_size
, GFP_KERNEL
);
7167 if (!sctx
->send_buf
) {
7172 sctx
->read_buf
= kvmalloc(BTRFS_SEND_READ_SIZE
, GFP_KERNEL
);
7173 if (!sctx
->read_buf
) {
7178 sctx
->pending_dir_moves
= RB_ROOT
;
7179 sctx
->waiting_dir_moves
= RB_ROOT
;
7180 sctx
->orphan_dirs
= RB_ROOT
;
7182 alloc_size
= sizeof(struct clone_root
) * (arg
->clone_sources_count
+ 1);
7184 sctx
->clone_roots
= kzalloc(alloc_size
, GFP_KERNEL
);
7185 if (!sctx
->clone_roots
) {
7190 alloc_size
= arg
->clone_sources_count
* sizeof(*arg
->clone_sources
);
7192 if (arg
->clone_sources_count
) {
7193 clone_sources_tmp
= kvmalloc(alloc_size
, GFP_KERNEL
);
7194 if (!clone_sources_tmp
) {
7199 ret
= copy_from_user(clone_sources_tmp
, arg
->clone_sources
,
7206 for (i
= 0; i
< arg
->clone_sources_count
; i
++) {
7207 clone_root
= btrfs_get_fs_root(fs_info
,
7208 clone_sources_tmp
[i
], true);
7209 if (IS_ERR(clone_root
)) {
7210 ret
= PTR_ERR(clone_root
);
7213 spin_lock(&clone_root
->root_item_lock
);
7214 if (!btrfs_root_readonly(clone_root
) ||
7215 btrfs_root_dead(clone_root
)) {
7216 spin_unlock(&clone_root
->root_item_lock
);
7217 btrfs_put_root(clone_root
);
7221 if (clone_root
->dedupe_in_progress
) {
7222 dedupe_in_progress_warn(clone_root
);
7223 spin_unlock(&clone_root
->root_item_lock
);
7224 btrfs_put_root(clone_root
);
7228 clone_root
->send_in_progress
++;
7229 spin_unlock(&clone_root
->root_item_lock
);
7231 sctx
->clone_roots
[i
].root
= clone_root
;
7232 clone_sources_to_rollback
= i
+ 1;
7234 kvfree(clone_sources_tmp
);
7235 clone_sources_tmp
= NULL
;
7238 if (arg
->parent_root
) {
7239 sctx
->parent_root
= btrfs_get_fs_root(fs_info
, arg
->parent_root
,
7241 if (IS_ERR(sctx
->parent_root
)) {
7242 ret
= PTR_ERR(sctx
->parent_root
);
7246 spin_lock(&sctx
->parent_root
->root_item_lock
);
7247 sctx
->parent_root
->send_in_progress
++;
7248 if (!btrfs_root_readonly(sctx
->parent_root
) ||
7249 btrfs_root_dead(sctx
->parent_root
)) {
7250 spin_unlock(&sctx
->parent_root
->root_item_lock
);
7254 if (sctx
->parent_root
->dedupe_in_progress
) {
7255 dedupe_in_progress_warn(sctx
->parent_root
);
7256 spin_unlock(&sctx
->parent_root
->root_item_lock
);
7260 spin_unlock(&sctx
->parent_root
->root_item_lock
);
7264 * Clones from send_root are allowed, but only if the clone source
7265 * is behind the current send position. This is checked while searching
7266 * for possible clone sources.
7268 sctx
->clone_roots
[sctx
->clone_roots_cnt
++].root
=
7269 btrfs_grab_root(sctx
->send_root
);
7271 /* We do a bsearch later */
7272 sort(sctx
->clone_roots
, sctx
->clone_roots_cnt
,
7273 sizeof(*sctx
->clone_roots
), __clone_root_cmp_sort
,
7275 sort_clone_roots
= 1;
7277 ret
= flush_delalloc_roots(sctx
);
7281 ret
= ensure_commit_roots_uptodate(sctx
);
7285 mutex_lock(&fs_info
->balance_mutex
);
7286 if (test_bit(BTRFS_FS_BALANCE_RUNNING
, &fs_info
->flags
)) {
7287 mutex_unlock(&fs_info
->balance_mutex
);
7288 btrfs_warn_rl(fs_info
,
7289 "cannot run send because a balance operation is in progress");
7293 fs_info
->send_in_progress
++;
7294 mutex_unlock(&fs_info
->balance_mutex
);
7296 current
->journal_info
= BTRFS_SEND_TRANS_STUB
;
7297 ret
= send_subvol(sctx
);
7298 current
->journal_info
= NULL
;
7299 mutex_lock(&fs_info
->balance_mutex
);
7300 fs_info
->send_in_progress
--;
7301 mutex_unlock(&fs_info
->balance_mutex
);
7305 if (!(sctx
->flags
& BTRFS_SEND_FLAG_OMIT_END_CMD
)) {
7306 ret
= begin_cmd(sctx
, BTRFS_SEND_C_END
);
7309 ret
= send_cmd(sctx
);
7315 WARN_ON(sctx
&& !ret
&& !RB_EMPTY_ROOT(&sctx
->pending_dir_moves
));
7316 while (sctx
&& !RB_EMPTY_ROOT(&sctx
->pending_dir_moves
)) {
7318 struct pending_dir_move
*pm
;
7320 n
= rb_first(&sctx
->pending_dir_moves
);
7321 pm
= rb_entry(n
, struct pending_dir_move
, node
);
7322 while (!list_empty(&pm
->list
)) {
7323 struct pending_dir_move
*pm2
;
7325 pm2
= list_first_entry(&pm
->list
,
7326 struct pending_dir_move
, list
);
7327 free_pending_move(sctx
, pm2
);
7329 free_pending_move(sctx
, pm
);
7332 WARN_ON(sctx
&& !ret
&& !RB_EMPTY_ROOT(&sctx
->waiting_dir_moves
));
7333 while (sctx
&& !RB_EMPTY_ROOT(&sctx
->waiting_dir_moves
)) {
7335 struct waiting_dir_move
*dm
;
7337 n
= rb_first(&sctx
->waiting_dir_moves
);
7338 dm
= rb_entry(n
, struct waiting_dir_move
, node
);
7339 rb_erase(&dm
->node
, &sctx
->waiting_dir_moves
);
7343 WARN_ON(sctx
&& !ret
&& !RB_EMPTY_ROOT(&sctx
->orphan_dirs
));
7344 while (sctx
&& !RB_EMPTY_ROOT(&sctx
->orphan_dirs
)) {
7346 struct orphan_dir_info
*odi
;
7348 n
= rb_first(&sctx
->orphan_dirs
);
7349 odi
= rb_entry(n
, struct orphan_dir_info
, node
);
7350 free_orphan_dir_info(sctx
, odi
);
7353 if (sort_clone_roots
) {
7354 for (i
= 0; i
< sctx
->clone_roots_cnt
; i
++) {
7355 btrfs_root_dec_send_in_progress(
7356 sctx
->clone_roots
[i
].root
);
7357 btrfs_put_root(sctx
->clone_roots
[i
].root
);
7360 for (i
= 0; sctx
&& i
< clone_sources_to_rollback
; i
++) {
7361 btrfs_root_dec_send_in_progress(
7362 sctx
->clone_roots
[i
].root
);
7363 btrfs_put_root(sctx
->clone_roots
[i
].root
);
7366 btrfs_root_dec_send_in_progress(send_root
);
7368 if (sctx
&& !IS_ERR_OR_NULL(sctx
->parent_root
)) {
7369 btrfs_root_dec_send_in_progress(sctx
->parent_root
);
7370 btrfs_put_root(sctx
->parent_root
);
7373 kvfree(clone_sources_tmp
);
7376 if (sctx
->send_filp
)
7377 fput(sctx
->send_filp
);
7379 kvfree(sctx
->clone_roots
);
7380 kvfree(sctx
->send_buf
);
7381 kvfree(sctx
->read_buf
);
7383 name_cache_free(sctx
);