1 // SPDX-License-Identifier: GPL-2.0
3 * Copyright (C) 2007 Oracle. All rights reserved.
7 #include <linux/slab.h>
8 #include <linux/sched.h>
9 #include <linux/writeback.h>
10 #include <linux/pagemap.h>
11 #include <linux/blkdev.h>
12 #include <linux/uuid.h>
16 #include "transaction.h"
19 #include "inode-map.h"
21 #include "dev-replace.h"
23 #include "block-group.h"
24 #include "space-info.h"
26 #define BTRFS_ROOT_TRANS_TAG 0
29 * Transaction states and transitions
31 * No running transaction (fs tree blocks are not modified)
34 * | Call start_transaction() variants. Except btrfs_join_transaction_nostart().
36 * Transaction N [[TRANS_STATE_RUNNING]]
38 * | New trans handles can be attached to transaction N by calling all
39 * | start_transaction() variants.
42 * | Call btrfs_commit_transaction() on any trans handle attached to
45 * Transaction N [[TRANS_STATE_COMMIT_START]]
47 * | Will wait for previous running transaction to completely finish if there
50 * | Then one of the following happes:
51 * | - Wait for all other trans handle holders to release.
52 * | The btrfs_commit_transaction() caller will do the commit work.
53 * | - Wait for current transaction to be committed by others.
54 * | Other btrfs_commit_transaction() caller will do the commit work.
56 * | At this stage, only btrfs_join_transaction*() variants can attach
57 * | to this running transaction.
58 * | All other variants will wait for current one to finish and attach to
62 * | Caller is chosen to commit transaction N, and all other trans handle
63 * | haven been released.
65 * Transaction N [[TRANS_STATE_COMMIT_DOING]]
67 * | The heavy lifting transaction work is started.
68 * | From running delayed refs (modifying extent tree) to creating pending
69 * | snapshots, running qgroups.
70 * | In short, modify supporting trees to reflect modifications of subvolume
73 * | At this stage, all start_transaction() calls will wait for this
74 * | transaction to finish and attach to transaction N+1.
77 * | Until all supporting trees are updated.
79 * Transaction N [[TRANS_STATE_UNBLOCKED]]
81 * | All needed trees are modified, thus we only [[TRANS_STATE_RUNNING]]
82 * | need to write them back to disk and update |
85 * | At this stage, new transaction is allowed to |
87 * | All new start_transaction() calls will be |
88 * | attached to transid N+1. |
91 * | Until all tree blocks are super blocks are |
92 * | written to block devices |
94 * Transaction N [[TRANS_STATE_COMPLETED]] V
95 * All tree blocks and super blocks are written. Transaction N+1
96 * This transaction is finished and all its [[TRANS_STATE_COMMIT_START]]
97 * data structures will be cleaned up. | Life goes on
99 static const unsigned int btrfs_blocked_trans_types
[TRANS_STATE_MAX
] = {
100 [TRANS_STATE_RUNNING
] = 0U,
101 [TRANS_STATE_COMMIT_START
] = (__TRANS_START
| __TRANS_ATTACH
),
102 [TRANS_STATE_COMMIT_DOING
] = (__TRANS_START
|
105 __TRANS_JOIN_NOSTART
),
106 [TRANS_STATE_UNBLOCKED
] = (__TRANS_START
|
109 __TRANS_JOIN_NOLOCK
|
110 __TRANS_JOIN_NOSTART
),
111 [TRANS_STATE_COMPLETED
] = (__TRANS_START
|
114 __TRANS_JOIN_NOLOCK
|
115 __TRANS_JOIN_NOSTART
),
118 void btrfs_put_transaction(struct btrfs_transaction
*transaction
)
120 WARN_ON(refcount_read(&transaction
->use_count
) == 0);
121 if (refcount_dec_and_test(&transaction
->use_count
)) {
122 BUG_ON(!list_empty(&transaction
->list
));
123 WARN_ON(!RB_EMPTY_ROOT(
124 &transaction
->delayed_refs
.href_root
.rb_root
));
125 WARN_ON(!RB_EMPTY_ROOT(
126 &transaction
->delayed_refs
.dirty_extent_root
));
127 if (transaction
->delayed_refs
.pending_csums
)
128 btrfs_err(transaction
->fs_info
,
129 "pending csums is %llu",
130 transaction
->delayed_refs
.pending_csums
);
132 * If any block groups are found in ->deleted_bgs then it's
133 * because the transaction was aborted and a commit did not
134 * happen (things failed before writing the new superblock
135 * and calling btrfs_finish_extent_commit()), so we can not
136 * discard the physical locations of the block groups.
138 while (!list_empty(&transaction
->deleted_bgs
)) {
139 struct btrfs_block_group
*cache
;
141 cache
= list_first_entry(&transaction
->deleted_bgs
,
142 struct btrfs_block_group
,
144 list_del_init(&cache
->bg_list
);
145 btrfs_unfreeze_block_group(cache
);
146 btrfs_put_block_group(cache
);
148 WARN_ON(!list_empty(&transaction
->dev_update_list
));
153 static noinline
void switch_commit_roots(struct btrfs_trans_handle
*trans
)
155 struct btrfs_transaction
*cur_trans
= trans
->transaction
;
156 struct btrfs_fs_info
*fs_info
= trans
->fs_info
;
157 struct btrfs_root
*root
, *tmp
;
159 down_write(&fs_info
->commit_root_sem
);
160 list_for_each_entry_safe(root
, tmp
, &cur_trans
->switch_commits
,
162 list_del_init(&root
->dirty_list
);
163 free_extent_buffer(root
->commit_root
);
164 root
->commit_root
= btrfs_root_node(root
);
165 if (is_fstree(root
->root_key
.objectid
))
166 btrfs_unpin_free_ino(root
);
167 extent_io_tree_release(&root
->dirty_log_pages
);
168 btrfs_qgroup_clean_swapped_blocks(root
);
171 /* We can free old roots now. */
172 spin_lock(&cur_trans
->dropped_roots_lock
);
173 while (!list_empty(&cur_trans
->dropped_roots
)) {
174 root
= list_first_entry(&cur_trans
->dropped_roots
,
175 struct btrfs_root
, root_list
);
176 list_del_init(&root
->root_list
);
177 spin_unlock(&cur_trans
->dropped_roots_lock
);
178 btrfs_free_log(trans
, root
);
179 btrfs_drop_and_free_fs_root(fs_info
, root
);
180 spin_lock(&cur_trans
->dropped_roots_lock
);
182 spin_unlock(&cur_trans
->dropped_roots_lock
);
183 up_write(&fs_info
->commit_root_sem
);
186 static inline void extwriter_counter_inc(struct btrfs_transaction
*trans
,
189 if (type
& TRANS_EXTWRITERS
)
190 atomic_inc(&trans
->num_extwriters
);
193 static inline void extwriter_counter_dec(struct btrfs_transaction
*trans
,
196 if (type
& TRANS_EXTWRITERS
)
197 atomic_dec(&trans
->num_extwriters
);
200 static inline void extwriter_counter_init(struct btrfs_transaction
*trans
,
203 atomic_set(&trans
->num_extwriters
, ((type
& TRANS_EXTWRITERS
) ? 1 : 0));
206 static inline int extwriter_counter_read(struct btrfs_transaction
*trans
)
208 return atomic_read(&trans
->num_extwriters
);
212 * To be called after all the new block groups attached to the transaction
213 * handle have been created (btrfs_create_pending_block_groups()).
215 void btrfs_trans_release_chunk_metadata(struct btrfs_trans_handle
*trans
)
217 struct btrfs_fs_info
*fs_info
= trans
->fs_info
;
219 if (!trans
->chunk_bytes_reserved
)
222 WARN_ON_ONCE(!list_empty(&trans
->new_bgs
));
224 btrfs_block_rsv_release(fs_info
, &fs_info
->chunk_block_rsv
,
225 trans
->chunk_bytes_reserved
, NULL
);
226 trans
->chunk_bytes_reserved
= 0;
230 * either allocate a new transaction or hop into the existing one
232 static noinline
int join_transaction(struct btrfs_fs_info
*fs_info
,
235 struct btrfs_transaction
*cur_trans
;
237 spin_lock(&fs_info
->trans_lock
);
239 /* The file system has been taken offline. No new transactions. */
240 if (test_bit(BTRFS_FS_STATE_ERROR
, &fs_info
->fs_state
)) {
241 spin_unlock(&fs_info
->trans_lock
);
245 cur_trans
= fs_info
->running_transaction
;
247 if (TRANS_ABORTED(cur_trans
)) {
248 spin_unlock(&fs_info
->trans_lock
);
249 return cur_trans
->aborted
;
251 if (btrfs_blocked_trans_types
[cur_trans
->state
] & type
) {
252 spin_unlock(&fs_info
->trans_lock
);
255 refcount_inc(&cur_trans
->use_count
);
256 atomic_inc(&cur_trans
->num_writers
);
257 extwriter_counter_inc(cur_trans
, type
);
258 spin_unlock(&fs_info
->trans_lock
);
261 spin_unlock(&fs_info
->trans_lock
);
264 * If we are ATTACH, we just want to catch the current transaction,
265 * and commit it. If there is no transaction, just return ENOENT.
267 if (type
== TRANS_ATTACH
)
271 * JOIN_NOLOCK only happens during the transaction commit, so
272 * it is impossible that ->running_transaction is NULL
274 BUG_ON(type
== TRANS_JOIN_NOLOCK
);
276 cur_trans
= kmalloc(sizeof(*cur_trans
), GFP_NOFS
);
280 spin_lock(&fs_info
->trans_lock
);
281 if (fs_info
->running_transaction
) {
283 * someone started a transaction after we unlocked. Make sure
284 * to redo the checks above
288 } else if (test_bit(BTRFS_FS_STATE_ERROR
, &fs_info
->fs_state
)) {
289 spin_unlock(&fs_info
->trans_lock
);
294 cur_trans
->fs_info
= fs_info
;
295 atomic_set(&cur_trans
->num_writers
, 1);
296 extwriter_counter_init(cur_trans
, type
);
297 init_waitqueue_head(&cur_trans
->writer_wait
);
298 init_waitqueue_head(&cur_trans
->commit_wait
);
299 cur_trans
->state
= TRANS_STATE_RUNNING
;
301 * One for this trans handle, one so it will live on until we
302 * commit the transaction.
304 refcount_set(&cur_trans
->use_count
, 2);
305 cur_trans
->flags
= 0;
306 cur_trans
->start_time
= ktime_get_seconds();
308 memset(&cur_trans
->delayed_refs
, 0, sizeof(cur_trans
->delayed_refs
));
310 cur_trans
->delayed_refs
.href_root
= RB_ROOT_CACHED
;
311 cur_trans
->delayed_refs
.dirty_extent_root
= RB_ROOT
;
312 atomic_set(&cur_trans
->delayed_refs
.num_entries
, 0);
315 * although the tree mod log is per file system and not per transaction,
316 * the log must never go across transaction boundaries.
319 if (!list_empty(&fs_info
->tree_mod_seq_list
))
320 WARN(1, KERN_ERR
"BTRFS: tree_mod_seq_list not empty when creating a fresh transaction\n");
321 if (!RB_EMPTY_ROOT(&fs_info
->tree_mod_log
))
322 WARN(1, KERN_ERR
"BTRFS: tree_mod_log rb tree not empty when creating a fresh transaction\n");
323 atomic64_set(&fs_info
->tree_mod_seq
, 0);
325 spin_lock_init(&cur_trans
->delayed_refs
.lock
);
327 INIT_LIST_HEAD(&cur_trans
->pending_snapshots
);
328 INIT_LIST_HEAD(&cur_trans
->dev_update_list
);
329 INIT_LIST_HEAD(&cur_trans
->switch_commits
);
330 INIT_LIST_HEAD(&cur_trans
->dirty_bgs
);
331 INIT_LIST_HEAD(&cur_trans
->io_bgs
);
332 INIT_LIST_HEAD(&cur_trans
->dropped_roots
);
333 mutex_init(&cur_trans
->cache_write_mutex
);
334 spin_lock_init(&cur_trans
->dirty_bgs_lock
);
335 INIT_LIST_HEAD(&cur_trans
->deleted_bgs
);
336 spin_lock_init(&cur_trans
->dropped_roots_lock
);
337 list_add_tail(&cur_trans
->list
, &fs_info
->trans_list
);
338 extent_io_tree_init(fs_info
, &cur_trans
->dirty_pages
,
339 IO_TREE_TRANS_DIRTY_PAGES
, fs_info
->btree_inode
);
340 extent_io_tree_init(fs_info
, &cur_trans
->pinned_extents
,
341 IO_TREE_FS_PINNED_EXTENTS
, NULL
);
342 fs_info
->generation
++;
343 cur_trans
->transid
= fs_info
->generation
;
344 fs_info
->running_transaction
= cur_trans
;
345 cur_trans
->aborted
= 0;
346 spin_unlock(&fs_info
->trans_lock
);
352 * This does all the record keeping required to make sure that a shareable root
353 * is properly recorded in a given transaction. This is required to make sure
354 * the old root from before we joined the transaction is deleted when the
355 * transaction commits.
357 static int record_root_in_trans(struct btrfs_trans_handle
*trans
,
358 struct btrfs_root
*root
,
361 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
363 if ((test_bit(BTRFS_ROOT_SHAREABLE
, &root
->state
) &&
364 root
->last_trans
< trans
->transid
) || force
) {
365 WARN_ON(root
== fs_info
->extent_root
);
366 WARN_ON(!force
&& root
->commit_root
!= root
->node
);
369 * see below for IN_TRANS_SETUP usage rules
370 * we have the reloc mutex held now, so there
371 * is only one writer in this function
373 set_bit(BTRFS_ROOT_IN_TRANS_SETUP
, &root
->state
);
375 /* make sure readers find IN_TRANS_SETUP before
376 * they find our root->last_trans update
380 spin_lock(&fs_info
->fs_roots_radix_lock
);
381 if (root
->last_trans
== trans
->transid
&& !force
) {
382 spin_unlock(&fs_info
->fs_roots_radix_lock
);
385 radix_tree_tag_set(&fs_info
->fs_roots_radix
,
386 (unsigned long)root
->root_key
.objectid
,
387 BTRFS_ROOT_TRANS_TAG
);
388 spin_unlock(&fs_info
->fs_roots_radix_lock
);
389 root
->last_trans
= trans
->transid
;
391 /* this is pretty tricky. We don't want to
392 * take the relocation lock in btrfs_record_root_in_trans
393 * unless we're really doing the first setup for this root in
396 * Normally we'd use root->last_trans as a flag to decide
397 * if we want to take the expensive mutex.
399 * But, we have to set root->last_trans before we
400 * init the relocation root, otherwise, we trip over warnings
401 * in ctree.c. The solution used here is to flag ourselves
402 * with root IN_TRANS_SETUP. When this is 1, we're still
403 * fixing up the reloc trees and everyone must wait.
405 * When this is zero, they can trust root->last_trans and fly
406 * through btrfs_record_root_in_trans without having to take the
407 * lock. smp_wmb() makes sure that all the writes above are
408 * done before we pop in the zero below
410 btrfs_init_reloc_root(trans
, root
);
411 smp_mb__before_atomic();
412 clear_bit(BTRFS_ROOT_IN_TRANS_SETUP
, &root
->state
);
418 void btrfs_add_dropped_root(struct btrfs_trans_handle
*trans
,
419 struct btrfs_root
*root
)
421 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
422 struct btrfs_transaction
*cur_trans
= trans
->transaction
;
424 /* Add ourselves to the transaction dropped list */
425 spin_lock(&cur_trans
->dropped_roots_lock
);
426 list_add_tail(&root
->root_list
, &cur_trans
->dropped_roots
);
427 spin_unlock(&cur_trans
->dropped_roots_lock
);
429 /* Make sure we don't try to update the root at commit time */
430 spin_lock(&fs_info
->fs_roots_radix_lock
);
431 radix_tree_tag_clear(&fs_info
->fs_roots_radix
,
432 (unsigned long)root
->root_key
.objectid
,
433 BTRFS_ROOT_TRANS_TAG
);
434 spin_unlock(&fs_info
->fs_roots_radix_lock
);
437 int btrfs_record_root_in_trans(struct btrfs_trans_handle
*trans
,
438 struct btrfs_root
*root
)
440 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
442 if (!test_bit(BTRFS_ROOT_SHAREABLE
, &root
->state
))
446 * see record_root_in_trans for comments about IN_TRANS_SETUP usage
450 if (root
->last_trans
== trans
->transid
&&
451 !test_bit(BTRFS_ROOT_IN_TRANS_SETUP
, &root
->state
))
454 mutex_lock(&fs_info
->reloc_mutex
);
455 record_root_in_trans(trans
, root
, 0);
456 mutex_unlock(&fs_info
->reloc_mutex
);
461 static inline int is_transaction_blocked(struct btrfs_transaction
*trans
)
463 return (trans
->state
>= TRANS_STATE_COMMIT_START
&&
464 trans
->state
< TRANS_STATE_UNBLOCKED
&&
465 !TRANS_ABORTED(trans
));
468 /* wait for commit against the current transaction to become unblocked
469 * when this is done, it is safe to start a new transaction, but the current
470 * transaction might not be fully on disk.
472 static void wait_current_trans(struct btrfs_fs_info
*fs_info
)
474 struct btrfs_transaction
*cur_trans
;
476 spin_lock(&fs_info
->trans_lock
);
477 cur_trans
= fs_info
->running_transaction
;
478 if (cur_trans
&& is_transaction_blocked(cur_trans
)) {
479 refcount_inc(&cur_trans
->use_count
);
480 spin_unlock(&fs_info
->trans_lock
);
482 wait_event(fs_info
->transaction_wait
,
483 cur_trans
->state
>= TRANS_STATE_UNBLOCKED
||
484 TRANS_ABORTED(cur_trans
));
485 btrfs_put_transaction(cur_trans
);
487 spin_unlock(&fs_info
->trans_lock
);
491 static int may_wait_transaction(struct btrfs_fs_info
*fs_info
, int type
)
493 if (test_bit(BTRFS_FS_LOG_RECOVERING
, &fs_info
->flags
))
496 if (type
== TRANS_START
)
502 static inline bool need_reserve_reloc_root(struct btrfs_root
*root
)
504 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
506 if (!fs_info
->reloc_ctl
||
507 !test_bit(BTRFS_ROOT_SHAREABLE
, &root
->state
) ||
508 root
->root_key
.objectid
== BTRFS_TREE_RELOC_OBJECTID
||
515 static struct btrfs_trans_handle
*
516 start_transaction(struct btrfs_root
*root
, unsigned int num_items
,
517 unsigned int type
, enum btrfs_reserve_flush_enum flush
,
518 bool enforce_qgroups
)
520 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
521 struct btrfs_block_rsv
*delayed_refs_rsv
= &fs_info
->delayed_refs_rsv
;
522 struct btrfs_trans_handle
*h
;
523 struct btrfs_transaction
*cur_trans
;
525 u64 qgroup_reserved
= 0;
526 bool reloc_reserved
= false;
527 bool do_chunk_alloc
= false;
530 /* Send isn't supposed to start transactions. */
531 ASSERT(current
->journal_info
!= BTRFS_SEND_TRANS_STUB
);
533 if (test_bit(BTRFS_FS_STATE_ERROR
, &fs_info
->fs_state
))
534 return ERR_PTR(-EROFS
);
536 if (current
->journal_info
) {
537 WARN_ON(type
& TRANS_EXTWRITERS
);
538 h
= current
->journal_info
;
539 refcount_inc(&h
->use_count
);
540 WARN_ON(refcount_read(&h
->use_count
) > 2);
541 h
->orig_rsv
= h
->block_rsv
;
547 * Do the reservation before we join the transaction so we can do all
548 * the appropriate flushing if need be.
550 if (num_items
&& root
!= fs_info
->chunk_root
) {
551 struct btrfs_block_rsv
*rsv
= &fs_info
->trans_block_rsv
;
552 u64 delayed_refs_bytes
= 0;
554 qgroup_reserved
= num_items
* fs_info
->nodesize
;
555 ret
= btrfs_qgroup_reserve_meta_pertrans(root
, qgroup_reserved
,
561 * We want to reserve all the bytes we may need all at once, so
562 * we only do 1 enospc flushing cycle per transaction start. We
563 * accomplish this by simply assuming we'll do 2 x num_items
564 * worth of delayed refs updates in this trans handle, and
565 * refill that amount for whatever is missing in the reserve.
567 num_bytes
= btrfs_calc_insert_metadata_size(fs_info
, num_items
);
568 if (flush
== BTRFS_RESERVE_FLUSH_ALL
&&
569 delayed_refs_rsv
->full
== 0) {
570 delayed_refs_bytes
= num_bytes
;
575 * Do the reservation for the relocation root creation
577 if (need_reserve_reloc_root(root
)) {
578 num_bytes
+= fs_info
->nodesize
;
579 reloc_reserved
= true;
582 ret
= btrfs_block_rsv_add(root
, rsv
, num_bytes
, flush
);
585 if (delayed_refs_bytes
) {
586 btrfs_migrate_to_delayed_refs_rsv(fs_info
, rsv
,
588 num_bytes
-= delayed_refs_bytes
;
591 if (rsv
->space_info
->force_alloc
)
592 do_chunk_alloc
= true;
593 } else if (num_items
== 0 && flush
== BTRFS_RESERVE_FLUSH_ALL
&&
594 !delayed_refs_rsv
->full
) {
596 * Some people call with btrfs_start_transaction(root, 0)
597 * because they can be throttled, but have some other mechanism
598 * for reserving space. We still want these guys to refill the
599 * delayed block_rsv so just add 1 items worth of reservation
602 ret
= btrfs_delayed_refs_rsv_refill(fs_info
, flush
);
607 h
= kmem_cache_zalloc(btrfs_trans_handle_cachep
, GFP_NOFS
);
614 * If we are JOIN_NOLOCK we're already committing a transaction and
615 * waiting on this guy, so we don't need to do the sb_start_intwrite
616 * because we're already holding a ref. We need this because we could
617 * have raced in and did an fsync() on a file which can kick a commit
618 * and then we deadlock with somebody doing a freeze.
620 * If we are ATTACH, it means we just want to catch the current
621 * transaction and commit it, so we needn't do sb_start_intwrite().
623 if (type
& __TRANS_FREEZABLE
)
624 sb_start_intwrite(fs_info
->sb
);
626 if (may_wait_transaction(fs_info
, type
))
627 wait_current_trans(fs_info
);
630 ret
= join_transaction(fs_info
, type
);
632 wait_current_trans(fs_info
);
633 if (unlikely(type
== TRANS_ATTACH
||
634 type
== TRANS_JOIN_NOSTART
))
637 } while (ret
== -EBUSY
);
642 cur_trans
= fs_info
->running_transaction
;
644 h
->transid
= cur_trans
->transid
;
645 h
->transaction
= cur_trans
;
647 refcount_set(&h
->use_count
, 1);
648 h
->fs_info
= root
->fs_info
;
651 h
->can_flush_pending_bgs
= true;
652 INIT_LIST_HEAD(&h
->new_bgs
);
655 if (cur_trans
->state
>= TRANS_STATE_COMMIT_START
&&
656 may_wait_transaction(fs_info
, type
)) {
657 current
->journal_info
= h
;
658 btrfs_commit_transaction(h
);
663 trace_btrfs_space_reservation(fs_info
, "transaction",
664 h
->transid
, num_bytes
, 1);
665 h
->block_rsv
= &fs_info
->trans_block_rsv
;
666 h
->bytes_reserved
= num_bytes
;
667 h
->reloc_reserved
= reloc_reserved
;
671 if (!current
->journal_info
)
672 current
->journal_info
= h
;
675 * If the space_info is marked ALLOC_FORCE then we'll get upgraded to
676 * ALLOC_FORCE the first run through, and then we won't allocate for
677 * anybody else who races in later. We don't care about the return
680 if (do_chunk_alloc
&& num_bytes
) {
681 u64 flags
= h
->block_rsv
->space_info
->flags
;
683 btrfs_chunk_alloc(h
, btrfs_get_alloc_profile(fs_info
, flags
),
684 CHUNK_ALLOC_NO_FORCE
);
688 * btrfs_record_root_in_trans() needs to alloc new extents, and may
689 * call btrfs_join_transaction() while we're also starting a
692 * Thus it need to be called after current->journal_info initialized,
693 * or we can deadlock.
695 btrfs_record_root_in_trans(h
, root
);
700 if (type
& __TRANS_FREEZABLE
)
701 sb_end_intwrite(fs_info
->sb
);
702 kmem_cache_free(btrfs_trans_handle_cachep
, h
);
705 btrfs_block_rsv_release(fs_info
, &fs_info
->trans_block_rsv
,
708 btrfs_qgroup_free_meta_pertrans(root
, qgroup_reserved
);
712 struct btrfs_trans_handle
*btrfs_start_transaction(struct btrfs_root
*root
,
713 unsigned int num_items
)
715 return start_transaction(root
, num_items
, TRANS_START
,
716 BTRFS_RESERVE_FLUSH_ALL
, true);
719 struct btrfs_trans_handle
*btrfs_start_transaction_fallback_global_rsv(
720 struct btrfs_root
*root
,
721 unsigned int num_items
)
723 return start_transaction(root
, num_items
, TRANS_START
,
724 BTRFS_RESERVE_FLUSH_ALL_STEAL
, false);
727 struct btrfs_trans_handle
*btrfs_join_transaction(struct btrfs_root
*root
)
729 return start_transaction(root
, 0, TRANS_JOIN
, BTRFS_RESERVE_NO_FLUSH
,
733 struct btrfs_trans_handle
*btrfs_join_transaction_spacecache(struct btrfs_root
*root
)
735 return start_transaction(root
, 0, TRANS_JOIN_NOLOCK
,
736 BTRFS_RESERVE_NO_FLUSH
, true);
740 * Similar to regular join but it never starts a transaction when none is
741 * running or after waiting for the current one to finish.
743 struct btrfs_trans_handle
*btrfs_join_transaction_nostart(struct btrfs_root
*root
)
745 return start_transaction(root
, 0, TRANS_JOIN_NOSTART
,
746 BTRFS_RESERVE_NO_FLUSH
, true);
750 * btrfs_attach_transaction() - catch the running transaction
752 * It is used when we want to commit the current the transaction, but
753 * don't want to start a new one.
755 * Note: If this function return -ENOENT, it just means there is no
756 * running transaction. But it is possible that the inactive transaction
757 * is still in the memory, not fully on disk. If you hope there is no
758 * inactive transaction in the fs when -ENOENT is returned, you should
760 * btrfs_attach_transaction_barrier()
762 struct btrfs_trans_handle
*btrfs_attach_transaction(struct btrfs_root
*root
)
764 return start_transaction(root
, 0, TRANS_ATTACH
,
765 BTRFS_RESERVE_NO_FLUSH
, true);
769 * btrfs_attach_transaction_barrier() - catch the running transaction
771 * It is similar to the above function, the difference is this one
772 * will wait for all the inactive transactions until they fully
775 struct btrfs_trans_handle
*
776 btrfs_attach_transaction_barrier(struct btrfs_root
*root
)
778 struct btrfs_trans_handle
*trans
;
780 trans
= start_transaction(root
, 0, TRANS_ATTACH
,
781 BTRFS_RESERVE_NO_FLUSH
, true);
782 if (trans
== ERR_PTR(-ENOENT
))
783 btrfs_wait_for_commit(root
->fs_info
, 0);
788 /* wait for a transaction commit to be fully complete */
789 static noinline
void wait_for_commit(struct btrfs_transaction
*commit
)
791 wait_event(commit
->commit_wait
, commit
->state
== TRANS_STATE_COMPLETED
);
794 int btrfs_wait_for_commit(struct btrfs_fs_info
*fs_info
, u64 transid
)
796 struct btrfs_transaction
*cur_trans
= NULL
, *t
;
800 if (transid
<= fs_info
->last_trans_committed
)
803 /* find specified transaction */
804 spin_lock(&fs_info
->trans_lock
);
805 list_for_each_entry(t
, &fs_info
->trans_list
, list
) {
806 if (t
->transid
== transid
) {
808 refcount_inc(&cur_trans
->use_count
);
812 if (t
->transid
> transid
) {
817 spin_unlock(&fs_info
->trans_lock
);
820 * The specified transaction doesn't exist, or we
821 * raced with btrfs_commit_transaction
824 if (transid
> fs_info
->last_trans_committed
)
829 /* find newest transaction that is committing | committed */
830 spin_lock(&fs_info
->trans_lock
);
831 list_for_each_entry_reverse(t
, &fs_info
->trans_list
,
833 if (t
->state
>= TRANS_STATE_COMMIT_START
) {
834 if (t
->state
== TRANS_STATE_COMPLETED
)
837 refcount_inc(&cur_trans
->use_count
);
841 spin_unlock(&fs_info
->trans_lock
);
843 goto out
; /* nothing committing|committed */
846 wait_for_commit(cur_trans
);
847 btrfs_put_transaction(cur_trans
);
852 void btrfs_throttle(struct btrfs_fs_info
*fs_info
)
854 wait_current_trans(fs_info
);
857 static int should_end_transaction(struct btrfs_trans_handle
*trans
)
859 struct btrfs_fs_info
*fs_info
= trans
->fs_info
;
861 if (btrfs_check_space_for_delayed_refs(fs_info
))
864 return !!btrfs_block_rsv_check(&fs_info
->global_block_rsv
, 5);
867 int btrfs_should_end_transaction(struct btrfs_trans_handle
*trans
)
869 struct btrfs_transaction
*cur_trans
= trans
->transaction
;
872 if (cur_trans
->state
>= TRANS_STATE_COMMIT_START
||
873 cur_trans
->delayed_refs
.flushing
)
876 return should_end_transaction(trans
);
879 static void btrfs_trans_release_metadata(struct btrfs_trans_handle
*trans
)
882 struct btrfs_fs_info
*fs_info
= trans
->fs_info
;
884 if (!trans
->block_rsv
) {
885 ASSERT(!trans
->bytes_reserved
);
889 if (!trans
->bytes_reserved
)
892 ASSERT(trans
->block_rsv
== &fs_info
->trans_block_rsv
);
893 trace_btrfs_space_reservation(fs_info
, "transaction",
894 trans
->transid
, trans
->bytes_reserved
, 0);
895 btrfs_block_rsv_release(fs_info
, trans
->block_rsv
,
896 trans
->bytes_reserved
, NULL
);
897 trans
->bytes_reserved
= 0;
900 static int __btrfs_end_transaction(struct btrfs_trans_handle
*trans
,
903 struct btrfs_fs_info
*info
= trans
->fs_info
;
904 struct btrfs_transaction
*cur_trans
= trans
->transaction
;
907 if (refcount_read(&trans
->use_count
) > 1) {
908 refcount_dec(&trans
->use_count
);
909 trans
->block_rsv
= trans
->orig_rsv
;
913 btrfs_trans_release_metadata(trans
);
914 trans
->block_rsv
= NULL
;
916 btrfs_create_pending_block_groups(trans
);
918 btrfs_trans_release_chunk_metadata(trans
);
920 if (trans
->type
& __TRANS_FREEZABLE
)
921 sb_end_intwrite(info
->sb
);
923 WARN_ON(cur_trans
!= info
->running_transaction
);
924 WARN_ON(atomic_read(&cur_trans
->num_writers
) < 1);
925 atomic_dec(&cur_trans
->num_writers
);
926 extwriter_counter_dec(cur_trans
, trans
->type
);
928 cond_wake_up(&cur_trans
->writer_wait
);
929 btrfs_put_transaction(cur_trans
);
931 if (current
->journal_info
== trans
)
932 current
->journal_info
= NULL
;
935 btrfs_run_delayed_iputs(info
);
937 if (TRANS_ABORTED(trans
) ||
938 test_bit(BTRFS_FS_STATE_ERROR
, &info
->fs_state
)) {
939 wake_up_process(info
->transaction_kthread
);
943 kmem_cache_free(btrfs_trans_handle_cachep
, trans
);
947 int btrfs_end_transaction(struct btrfs_trans_handle
*trans
)
949 return __btrfs_end_transaction(trans
, 0);
952 int btrfs_end_transaction_throttle(struct btrfs_trans_handle
*trans
)
954 return __btrfs_end_transaction(trans
, 1);
958 * when btree blocks are allocated, they have some corresponding bits set for
959 * them in one of two extent_io trees. This is used to make sure all of
960 * those extents are sent to disk but does not wait on them
962 int btrfs_write_marked_extents(struct btrfs_fs_info
*fs_info
,
963 struct extent_io_tree
*dirty_pages
, int mark
)
967 struct address_space
*mapping
= fs_info
->btree_inode
->i_mapping
;
968 struct extent_state
*cached_state
= NULL
;
972 atomic_inc(&BTRFS_I(fs_info
->btree_inode
)->sync_writers
);
973 while (!find_first_extent_bit(dirty_pages
, start
, &start
, &end
,
974 mark
, &cached_state
)) {
975 bool wait_writeback
= false;
977 err
= convert_extent_bit(dirty_pages
, start
, end
,
979 mark
, &cached_state
);
981 * convert_extent_bit can return -ENOMEM, which is most of the
982 * time a temporary error. So when it happens, ignore the error
983 * and wait for writeback of this range to finish - because we
984 * failed to set the bit EXTENT_NEED_WAIT for the range, a call
985 * to __btrfs_wait_marked_extents() would not know that
986 * writeback for this range started and therefore wouldn't
987 * wait for it to finish - we don't want to commit a
988 * superblock that points to btree nodes/leafs for which
989 * writeback hasn't finished yet (and without errors).
990 * We cleanup any entries left in the io tree when committing
991 * the transaction (through extent_io_tree_release()).
993 if (err
== -ENOMEM
) {
995 wait_writeback
= true;
998 err
= filemap_fdatawrite_range(mapping
, start
, end
);
1001 else if (wait_writeback
)
1002 werr
= filemap_fdatawait_range(mapping
, start
, end
);
1003 free_extent_state(cached_state
);
1004 cached_state
= NULL
;
1008 atomic_dec(&BTRFS_I(fs_info
->btree_inode
)->sync_writers
);
1013 * when btree blocks are allocated, they have some corresponding bits set for
1014 * them in one of two extent_io trees. This is used to make sure all of
1015 * those extents are on disk for transaction or log commit. We wait
1016 * on all the pages and clear them from the dirty pages state tree
1018 static int __btrfs_wait_marked_extents(struct btrfs_fs_info
*fs_info
,
1019 struct extent_io_tree
*dirty_pages
)
1023 struct address_space
*mapping
= fs_info
->btree_inode
->i_mapping
;
1024 struct extent_state
*cached_state
= NULL
;
1028 while (!find_first_extent_bit(dirty_pages
, start
, &start
, &end
,
1029 EXTENT_NEED_WAIT
, &cached_state
)) {
1031 * Ignore -ENOMEM errors returned by clear_extent_bit().
1032 * When committing the transaction, we'll remove any entries
1033 * left in the io tree. For a log commit, we don't remove them
1034 * after committing the log because the tree can be accessed
1035 * concurrently - we do it only at transaction commit time when
1036 * it's safe to do it (through extent_io_tree_release()).
1038 err
= clear_extent_bit(dirty_pages
, start
, end
,
1039 EXTENT_NEED_WAIT
, 0, 0, &cached_state
);
1043 err
= filemap_fdatawait_range(mapping
, start
, end
);
1046 free_extent_state(cached_state
);
1047 cached_state
= NULL
;
1056 static int btrfs_wait_extents(struct btrfs_fs_info
*fs_info
,
1057 struct extent_io_tree
*dirty_pages
)
1059 bool errors
= false;
1062 err
= __btrfs_wait_marked_extents(fs_info
, dirty_pages
);
1063 if (test_and_clear_bit(BTRFS_FS_BTREE_ERR
, &fs_info
->flags
))
1071 int btrfs_wait_tree_log_extents(struct btrfs_root
*log_root
, int mark
)
1073 struct btrfs_fs_info
*fs_info
= log_root
->fs_info
;
1074 struct extent_io_tree
*dirty_pages
= &log_root
->dirty_log_pages
;
1075 bool errors
= false;
1078 ASSERT(log_root
->root_key
.objectid
== BTRFS_TREE_LOG_OBJECTID
);
1080 err
= __btrfs_wait_marked_extents(fs_info
, dirty_pages
);
1081 if ((mark
& EXTENT_DIRTY
) &&
1082 test_and_clear_bit(BTRFS_FS_LOG1_ERR
, &fs_info
->flags
))
1085 if ((mark
& EXTENT_NEW
) &&
1086 test_and_clear_bit(BTRFS_FS_LOG2_ERR
, &fs_info
->flags
))
1095 * When btree blocks are allocated the corresponding extents are marked dirty.
1096 * This function ensures such extents are persisted on disk for transaction or
1099 * @trans: transaction whose dirty pages we'd like to write
1101 static int btrfs_write_and_wait_transaction(struct btrfs_trans_handle
*trans
)
1105 struct extent_io_tree
*dirty_pages
= &trans
->transaction
->dirty_pages
;
1106 struct btrfs_fs_info
*fs_info
= trans
->fs_info
;
1107 struct blk_plug plug
;
1109 blk_start_plug(&plug
);
1110 ret
= btrfs_write_marked_extents(fs_info
, dirty_pages
, EXTENT_DIRTY
);
1111 blk_finish_plug(&plug
);
1112 ret2
= btrfs_wait_extents(fs_info
, dirty_pages
);
1114 extent_io_tree_release(&trans
->transaction
->dirty_pages
);
1125 * this is used to update the root pointer in the tree of tree roots.
1127 * But, in the case of the extent allocation tree, updating the root
1128 * pointer may allocate blocks which may change the root of the extent
1131 * So, this loops and repeats and makes sure the cowonly root didn't
1132 * change while the root pointer was being updated in the metadata.
1134 static int update_cowonly_root(struct btrfs_trans_handle
*trans
,
1135 struct btrfs_root
*root
)
1138 u64 old_root_bytenr
;
1140 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
1141 struct btrfs_root
*tree_root
= fs_info
->tree_root
;
1143 old_root_used
= btrfs_root_used(&root
->root_item
);
1146 old_root_bytenr
= btrfs_root_bytenr(&root
->root_item
);
1147 if (old_root_bytenr
== root
->node
->start
&&
1148 old_root_used
== btrfs_root_used(&root
->root_item
))
1151 btrfs_set_root_node(&root
->root_item
, root
->node
);
1152 ret
= btrfs_update_root(trans
, tree_root
,
1158 old_root_used
= btrfs_root_used(&root
->root_item
);
1165 * update all the cowonly tree roots on disk
1167 * The error handling in this function may not be obvious. Any of the
1168 * failures will cause the file system to go offline. We still need
1169 * to clean up the delayed refs.
1171 static noinline
int commit_cowonly_roots(struct btrfs_trans_handle
*trans
)
1173 struct btrfs_fs_info
*fs_info
= trans
->fs_info
;
1174 struct list_head
*dirty_bgs
= &trans
->transaction
->dirty_bgs
;
1175 struct list_head
*io_bgs
= &trans
->transaction
->io_bgs
;
1176 struct list_head
*next
;
1177 struct extent_buffer
*eb
;
1180 eb
= btrfs_lock_root_node(fs_info
->tree_root
);
1181 ret
= btrfs_cow_block(trans
, fs_info
->tree_root
, eb
, NULL
,
1183 btrfs_tree_unlock(eb
);
1184 free_extent_buffer(eb
);
1189 ret
= btrfs_run_delayed_refs(trans
, (unsigned long)-1);
1193 ret
= btrfs_run_dev_stats(trans
);
1196 ret
= btrfs_run_dev_replace(trans
);
1199 ret
= btrfs_run_qgroups(trans
);
1203 ret
= btrfs_setup_space_cache(trans
);
1207 /* run_qgroups might have added some more refs */
1208 ret
= btrfs_run_delayed_refs(trans
, (unsigned long)-1);
1212 while (!list_empty(&fs_info
->dirty_cowonly_roots
)) {
1213 struct btrfs_root
*root
;
1214 next
= fs_info
->dirty_cowonly_roots
.next
;
1215 list_del_init(next
);
1216 root
= list_entry(next
, struct btrfs_root
, dirty_list
);
1217 clear_bit(BTRFS_ROOT_DIRTY
, &root
->state
);
1219 if (root
!= fs_info
->extent_root
)
1220 list_add_tail(&root
->dirty_list
,
1221 &trans
->transaction
->switch_commits
);
1222 ret
= update_cowonly_root(trans
, root
);
1225 ret
= btrfs_run_delayed_refs(trans
, (unsigned long)-1);
1230 while (!list_empty(dirty_bgs
) || !list_empty(io_bgs
)) {
1231 ret
= btrfs_write_dirty_block_groups(trans
);
1234 ret
= btrfs_run_delayed_refs(trans
, (unsigned long)-1);
1239 if (!list_empty(&fs_info
->dirty_cowonly_roots
))
1242 list_add_tail(&fs_info
->extent_root
->dirty_list
,
1243 &trans
->transaction
->switch_commits
);
1245 /* Update dev-replace pointer once everything is committed */
1246 fs_info
->dev_replace
.committed_cursor_left
=
1247 fs_info
->dev_replace
.cursor_left_last_write_of_item
;
1253 * dead roots are old snapshots that need to be deleted. This allocates
1254 * a dirty root struct and adds it into the list of dead roots that need to
1257 void btrfs_add_dead_root(struct btrfs_root
*root
)
1259 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
1261 spin_lock(&fs_info
->trans_lock
);
1262 if (list_empty(&root
->root_list
)) {
1263 btrfs_grab_root(root
);
1264 list_add_tail(&root
->root_list
, &fs_info
->dead_roots
);
1266 spin_unlock(&fs_info
->trans_lock
);
1270 * update all the cowonly tree roots on disk
1272 static noinline
int commit_fs_roots(struct btrfs_trans_handle
*trans
)
1274 struct btrfs_fs_info
*fs_info
= trans
->fs_info
;
1275 struct btrfs_root
*gang
[8];
1280 spin_lock(&fs_info
->fs_roots_radix_lock
);
1282 ret
= radix_tree_gang_lookup_tag(&fs_info
->fs_roots_radix
,
1285 BTRFS_ROOT_TRANS_TAG
);
1288 for (i
= 0; i
< ret
; i
++) {
1289 struct btrfs_root
*root
= gang
[i
];
1290 radix_tree_tag_clear(&fs_info
->fs_roots_radix
,
1291 (unsigned long)root
->root_key
.objectid
,
1292 BTRFS_ROOT_TRANS_TAG
);
1293 spin_unlock(&fs_info
->fs_roots_radix_lock
);
1295 btrfs_free_log(trans
, root
);
1296 btrfs_update_reloc_root(trans
, root
);
1298 btrfs_save_ino_cache(root
, trans
);
1300 /* see comments in should_cow_block() */
1301 clear_bit(BTRFS_ROOT_FORCE_COW
, &root
->state
);
1302 smp_mb__after_atomic();
1304 if (root
->commit_root
!= root
->node
) {
1305 list_add_tail(&root
->dirty_list
,
1306 &trans
->transaction
->switch_commits
);
1307 btrfs_set_root_node(&root
->root_item
,
1311 err
= btrfs_update_root(trans
, fs_info
->tree_root
,
1314 spin_lock(&fs_info
->fs_roots_radix_lock
);
1317 btrfs_qgroup_free_meta_all_pertrans(root
);
1320 spin_unlock(&fs_info
->fs_roots_radix_lock
);
1325 * defrag a given btree.
1326 * Every leaf in the btree is read and defragged.
1328 int btrfs_defrag_root(struct btrfs_root
*root
)
1330 struct btrfs_fs_info
*info
= root
->fs_info
;
1331 struct btrfs_trans_handle
*trans
;
1334 if (test_and_set_bit(BTRFS_ROOT_DEFRAG_RUNNING
, &root
->state
))
1338 trans
= btrfs_start_transaction(root
, 0);
1340 return PTR_ERR(trans
);
1342 ret
= btrfs_defrag_leaves(trans
, root
);
1344 btrfs_end_transaction(trans
);
1345 btrfs_btree_balance_dirty(info
);
1348 if (btrfs_fs_closing(info
) || ret
!= -EAGAIN
)
1351 if (btrfs_defrag_cancelled(info
)) {
1352 btrfs_debug(info
, "defrag_root cancelled");
1357 clear_bit(BTRFS_ROOT_DEFRAG_RUNNING
, &root
->state
);
1362 * Do all special snapshot related qgroup dirty hack.
1364 * Will do all needed qgroup inherit and dirty hack like switch commit
1365 * roots inside one transaction and write all btree into disk, to make
1368 static int qgroup_account_snapshot(struct btrfs_trans_handle
*trans
,
1369 struct btrfs_root
*src
,
1370 struct btrfs_root
*parent
,
1371 struct btrfs_qgroup_inherit
*inherit
,
1374 struct btrfs_fs_info
*fs_info
= src
->fs_info
;
1378 * Save some performance in the case that qgroups are not
1379 * enabled. If this check races with the ioctl, rescan will
1382 if (!test_bit(BTRFS_FS_QUOTA_ENABLED
, &fs_info
->flags
))
1386 * Ensure dirty @src will be committed. Or, after coming
1387 * commit_fs_roots() and switch_commit_roots(), any dirty but not
1388 * recorded root will never be updated again, causing an outdated root
1391 record_root_in_trans(trans
, src
, 1);
1394 * We are going to commit transaction, see btrfs_commit_transaction()
1395 * comment for reason locking tree_log_mutex
1397 mutex_lock(&fs_info
->tree_log_mutex
);
1399 ret
= commit_fs_roots(trans
);
1402 ret
= btrfs_qgroup_account_extents(trans
);
1406 /* Now qgroup are all updated, we can inherit it to new qgroups */
1407 ret
= btrfs_qgroup_inherit(trans
, src
->root_key
.objectid
, dst_objectid
,
1413 * Now we do a simplified commit transaction, which will:
1414 * 1) commit all subvolume and extent tree
1415 * To ensure all subvolume and extent tree have a valid
1416 * commit_root to accounting later insert_dir_item()
1417 * 2) write all btree blocks onto disk
1418 * This is to make sure later btree modification will be cowed
1419 * Or commit_root can be populated and cause wrong qgroup numbers
1420 * In this simplified commit, we don't really care about other trees
1421 * like chunk and root tree, as they won't affect qgroup.
1422 * And we don't write super to avoid half committed status.
1424 ret
= commit_cowonly_roots(trans
);
1427 switch_commit_roots(trans
);
1428 ret
= btrfs_write_and_wait_transaction(trans
);
1430 btrfs_handle_fs_error(fs_info
, ret
,
1431 "Error while writing out transaction for qgroup");
1434 mutex_unlock(&fs_info
->tree_log_mutex
);
1437 * Force parent root to be updated, as we recorded it before so its
1438 * last_trans == cur_transid.
1439 * Or it won't be committed again onto disk after later
1443 record_root_in_trans(trans
, parent
, 1);
1448 * new snapshots need to be created at a very specific time in the
1449 * transaction commit. This does the actual creation.
1452 * If the error which may affect the commitment of the current transaction
1453 * happens, we should return the error number. If the error which just affect
1454 * the creation of the pending snapshots, just return 0.
1456 static noinline
int create_pending_snapshot(struct btrfs_trans_handle
*trans
,
1457 struct btrfs_pending_snapshot
*pending
)
1460 struct btrfs_fs_info
*fs_info
= trans
->fs_info
;
1461 struct btrfs_key key
;
1462 struct btrfs_root_item
*new_root_item
;
1463 struct btrfs_root
*tree_root
= fs_info
->tree_root
;
1464 struct btrfs_root
*root
= pending
->root
;
1465 struct btrfs_root
*parent_root
;
1466 struct btrfs_block_rsv
*rsv
;
1467 struct inode
*parent_inode
;
1468 struct btrfs_path
*path
;
1469 struct btrfs_dir_item
*dir_item
;
1470 struct dentry
*dentry
;
1471 struct extent_buffer
*tmp
;
1472 struct extent_buffer
*old
;
1473 struct timespec64 cur_time
;
1480 ASSERT(pending
->path
);
1481 path
= pending
->path
;
1483 ASSERT(pending
->root_item
);
1484 new_root_item
= pending
->root_item
;
1486 pending
->error
= btrfs_find_free_objectid(tree_root
, &objectid
);
1488 goto no_free_objectid
;
1491 * Make qgroup to skip current new snapshot's qgroupid, as it is
1492 * accounted by later btrfs_qgroup_inherit().
1494 btrfs_set_skip_qgroup(trans
, objectid
);
1496 btrfs_reloc_pre_snapshot(pending
, &to_reserve
);
1498 if (to_reserve
> 0) {
1499 pending
->error
= btrfs_block_rsv_add(root
,
1500 &pending
->block_rsv
,
1502 BTRFS_RESERVE_NO_FLUSH
);
1504 goto clear_skip_qgroup
;
1507 key
.objectid
= objectid
;
1508 key
.offset
= (u64
)-1;
1509 key
.type
= BTRFS_ROOT_ITEM_KEY
;
1511 rsv
= trans
->block_rsv
;
1512 trans
->block_rsv
= &pending
->block_rsv
;
1513 trans
->bytes_reserved
= trans
->block_rsv
->reserved
;
1514 trace_btrfs_space_reservation(fs_info
, "transaction",
1516 trans
->bytes_reserved
, 1);
1517 dentry
= pending
->dentry
;
1518 parent_inode
= pending
->dir
;
1519 parent_root
= BTRFS_I(parent_inode
)->root
;
1520 record_root_in_trans(trans
, parent_root
, 0);
1522 cur_time
= current_time(parent_inode
);
1525 * insert the directory item
1527 ret
= btrfs_set_inode_index(BTRFS_I(parent_inode
), &index
);
1528 BUG_ON(ret
); /* -ENOMEM */
1530 /* check if there is a file/dir which has the same name. */
1531 dir_item
= btrfs_lookup_dir_item(NULL
, parent_root
, path
,
1532 btrfs_ino(BTRFS_I(parent_inode
)),
1533 dentry
->d_name
.name
,
1534 dentry
->d_name
.len
, 0);
1535 if (dir_item
!= NULL
&& !IS_ERR(dir_item
)) {
1536 pending
->error
= -EEXIST
;
1537 goto dir_item_existed
;
1538 } else if (IS_ERR(dir_item
)) {
1539 ret
= PTR_ERR(dir_item
);
1540 btrfs_abort_transaction(trans
, ret
);
1543 btrfs_release_path(path
);
1546 * pull in the delayed directory update
1547 * and the delayed inode item
1548 * otherwise we corrupt the FS during
1551 ret
= btrfs_run_delayed_items(trans
);
1552 if (ret
) { /* Transaction aborted */
1553 btrfs_abort_transaction(trans
, ret
);
1557 record_root_in_trans(trans
, root
, 0);
1558 btrfs_set_root_last_snapshot(&root
->root_item
, trans
->transid
);
1559 memcpy(new_root_item
, &root
->root_item
, sizeof(*new_root_item
));
1560 btrfs_check_and_init_root_item(new_root_item
);
1562 root_flags
= btrfs_root_flags(new_root_item
);
1563 if (pending
->readonly
)
1564 root_flags
|= BTRFS_ROOT_SUBVOL_RDONLY
;
1566 root_flags
&= ~BTRFS_ROOT_SUBVOL_RDONLY
;
1567 btrfs_set_root_flags(new_root_item
, root_flags
);
1569 btrfs_set_root_generation_v2(new_root_item
,
1571 generate_random_guid(new_root_item
->uuid
);
1572 memcpy(new_root_item
->parent_uuid
, root
->root_item
.uuid
,
1574 if (!(root_flags
& BTRFS_ROOT_SUBVOL_RDONLY
)) {
1575 memset(new_root_item
->received_uuid
, 0,
1576 sizeof(new_root_item
->received_uuid
));
1577 memset(&new_root_item
->stime
, 0, sizeof(new_root_item
->stime
));
1578 memset(&new_root_item
->rtime
, 0, sizeof(new_root_item
->rtime
));
1579 btrfs_set_root_stransid(new_root_item
, 0);
1580 btrfs_set_root_rtransid(new_root_item
, 0);
1582 btrfs_set_stack_timespec_sec(&new_root_item
->otime
, cur_time
.tv_sec
);
1583 btrfs_set_stack_timespec_nsec(&new_root_item
->otime
, cur_time
.tv_nsec
);
1584 btrfs_set_root_otransid(new_root_item
, trans
->transid
);
1586 old
= btrfs_lock_root_node(root
);
1587 ret
= btrfs_cow_block(trans
, root
, old
, NULL
, 0, &old
);
1589 btrfs_tree_unlock(old
);
1590 free_extent_buffer(old
);
1591 btrfs_abort_transaction(trans
, ret
);
1595 btrfs_set_lock_blocking_write(old
);
1597 ret
= btrfs_copy_root(trans
, root
, old
, &tmp
, objectid
);
1598 /* clean up in any case */
1599 btrfs_tree_unlock(old
);
1600 free_extent_buffer(old
);
1602 btrfs_abort_transaction(trans
, ret
);
1605 /* see comments in should_cow_block() */
1606 set_bit(BTRFS_ROOT_FORCE_COW
, &root
->state
);
1609 btrfs_set_root_node(new_root_item
, tmp
);
1610 /* record when the snapshot was created in key.offset */
1611 key
.offset
= trans
->transid
;
1612 ret
= btrfs_insert_root(trans
, tree_root
, &key
, new_root_item
);
1613 btrfs_tree_unlock(tmp
);
1614 free_extent_buffer(tmp
);
1616 btrfs_abort_transaction(trans
, ret
);
1621 * insert root back/forward references
1623 ret
= btrfs_add_root_ref(trans
, objectid
,
1624 parent_root
->root_key
.objectid
,
1625 btrfs_ino(BTRFS_I(parent_inode
)), index
,
1626 dentry
->d_name
.name
, dentry
->d_name
.len
);
1628 btrfs_abort_transaction(trans
, ret
);
1632 key
.offset
= (u64
)-1;
1633 pending
->snap
= btrfs_get_fs_root(fs_info
, objectid
, true);
1634 if (IS_ERR(pending
->snap
)) {
1635 ret
= PTR_ERR(pending
->snap
);
1636 btrfs_abort_transaction(trans
, ret
);
1640 ret
= btrfs_reloc_post_snapshot(trans
, pending
);
1642 btrfs_abort_transaction(trans
, ret
);
1646 ret
= btrfs_run_delayed_refs(trans
, (unsigned long)-1);
1648 btrfs_abort_transaction(trans
, ret
);
1653 * Do special qgroup accounting for snapshot, as we do some qgroup
1654 * snapshot hack to do fast snapshot.
1655 * To co-operate with that hack, we do hack again.
1656 * Or snapshot will be greatly slowed down by a subtree qgroup rescan
1658 ret
= qgroup_account_snapshot(trans
, root
, parent_root
,
1659 pending
->inherit
, objectid
);
1663 ret
= btrfs_insert_dir_item(trans
, dentry
->d_name
.name
,
1664 dentry
->d_name
.len
, BTRFS_I(parent_inode
),
1665 &key
, BTRFS_FT_DIR
, index
);
1666 /* We have check then name at the beginning, so it is impossible. */
1667 BUG_ON(ret
== -EEXIST
|| ret
== -EOVERFLOW
);
1669 btrfs_abort_transaction(trans
, ret
);
1673 btrfs_i_size_write(BTRFS_I(parent_inode
), parent_inode
->i_size
+
1674 dentry
->d_name
.len
* 2);
1675 parent_inode
->i_mtime
= parent_inode
->i_ctime
=
1676 current_time(parent_inode
);
1677 ret
= btrfs_update_inode_fallback(trans
, parent_root
, parent_inode
);
1679 btrfs_abort_transaction(trans
, ret
);
1682 ret
= btrfs_uuid_tree_add(trans
, new_root_item
->uuid
,
1683 BTRFS_UUID_KEY_SUBVOL
,
1686 btrfs_abort_transaction(trans
, ret
);
1689 if (!btrfs_is_empty_uuid(new_root_item
->received_uuid
)) {
1690 ret
= btrfs_uuid_tree_add(trans
, new_root_item
->received_uuid
,
1691 BTRFS_UUID_KEY_RECEIVED_SUBVOL
,
1693 if (ret
&& ret
!= -EEXIST
) {
1694 btrfs_abort_transaction(trans
, ret
);
1699 ret
= btrfs_run_delayed_refs(trans
, (unsigned long)-1);
1701 btrfs_abort_transaction(trans
, ret
);
1706 pending
->error
= ret
;
1708 trans
->block_rsv
= rsv
;
1709 trans
->bytes_reserved
= 0;
1711 btrfs_clear_skip_qgroup(trans
);
1713 kfree(new_root_item
);
1714 pending
->root_item
= NULL
;
1715 btrfs_free_path(path
);
1716 pending
->path
= NULL
;
1722 * create all the snapshots we've scheduled for creation
1724 static noinline
int create_pending_snapshots(struct btrfs_trans_handle
*trans
)
1726 struct btrfs_pending_snapshot
*pending
, *next
;
1727 struct list_head
*head
= &trans
->transaction
->pending_snapshots
;
1730 list_for_each_entry_safe(pending
, next
, head
, list
) {
1731 list_del(&pending
->list
);
1732 ret
= create_pending_snapshot(trans
, pending
);
1739 static void update_super_roots(struct btrfs_fs_info
*fs_info
)
1741 struct btrfs_root_item
*root_item
;
1742 struct btrfs_super_block
*super
;
1744 super
= fs_info
->super_copy
;
1746 root_item
= &fs_info
->chunk_root
->root_item
;
1747 super
->chunk_root
= root_item
->bytenr
;
1748 super
->chunk_root_generation
= root_item
->generation
;
1749 super
->chunk_root_level
= root_item
->level
;
1751 root_item
= &fs_info
->tree_root
->root_item
;
1752 super
->root
= root_item
->bytenr
;
1753 super
->generation
= root_item
->generation
;
1754 super
->root_level
= root_item
->level
;
1755 if (btrfs_test_opt(fs_info
, SPACE_CACHE
))
1756 super
->cache_generation
= root_item
->generation
;
1757 if (test_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN
, &fs_info
->flags
))
1758 super
->uuid_tree_generation
= root_item
->generation
;
1761 int btrfs_transaction_in_commit(struct btrfs_fs_info
*info
)
1763 struct btrfs_transaction
*trans
;
1766 spin_lock(&info
->trans_lock
);
1767 trans
= info
->running_transaction
;
1769 ret
= (trans
->state
>= TRANS_STATE_COMMIT_START
);
1770 spin_unlock(&info
->trans_lock
);
1774 int btrfs_transaction_blocked(struct btrfs_fs_info
*info
)
1776 struct btrfs_transaction
*trans
;
1779 spin_lock(&info
->trans_lock
);
1780 trans
= info
->running_transaction
;
1782 ret
= is_transaction_blocked(trans
);
1783 spin_unlock(&info
->trans_lock
);
1788 * wait for the current transaction commit to start and block subsequent
1791 static void wait_current_trans_commit_start(struct btrfs_fs_info
*fs_info
,
1792 struct btrfs_transaction
*trans
)
1794 wait_event(fs_info
->transaction_blocked_wait
,
1795 trans
->state
>= TRANS_STATE_COMMIT_START
||
1796 TRANS_ABORTED(trans
));
1800 * wait for the current transaction to start and then become unblocked.
1803 static void wait_current_trans_commit_start_and_unblock(
1804 struct btrfs_fs_info
*fs_info
,
1805 struct btrfs_transaction
*trans
)
1807 wait_event(fs_info
->transaction_wait
,
1808 trans
->state
>= TRANS_STATE_UNBLOCKED
||
1809 TRANS_ABORTED(trans
));
1813 * commit transactions asynchronously. once btrfs_commit_transaction_async
1814 * returns, any subsequent transaction will not be allowed to join.
1816 struct btrfs_async_commit
{
1817 struct btrfs_trans_handle
*newtrans
;
1818 struct work_struct work
;
1821 static void do_async_commit(struct work_struct
*work
)
1823 struct btrfs_async_commit
*ac
=
1824 container_of(work
, struct btrfs_async_commit
, work
);
1827 * We've got freeze protection passed with the transaction.
1828 * Tell lockdep about it.
1830 if (ac
->newtrans
->type
& __TRANS_FREEZABLE
)
1831 __sb_writers_acquired(ac
->newtrans
->fs_info
->sb
, SB_FREEZE_FS
);
1833 current
->journal_info
= ac
->newtrans
;
1835 btrfs_commit_transaction(ac
->newtrans
);
1839 int btrfs_commit_transaction_async(struct btrfs_trans_handle
*trans
,
1840 int wait_for_unblock
)
1842 struct btrfs_fs_info
*fs_info
= trans
->fs_info
;
1843 struct btrfs_async_commit
*ac
;
1844 struct btrfs_transaction
*cur_trans
;
1846 ac
= kmalloc(sizeof(*ac
), GFP_NOFS
);
1850 INIT_WORK(&ac
->work
, do_async_commit
);
1851 ac
->newtrans
= btrfs_join_transaction(trans
->root
);
1852 if (IS_ERR(ac
->newtrans
)) {
1853 int err
= PTR_ERR(ac
->newtrans
);
1858 /* take transaction reference */
1859 cur_trans
= trans
->transaction
;
1860 refcount_inc(&cur_trans
->use_count
);
1862 btrfs_end_transaction(trans
);
1865 * Tell lockdep we've released the freeze rwsem, since the
1866 * async commit thread will be the one to unlock it.
1868 if (ac
->newtrans
->type
& __TRANS_FREEZABLE
)
1869 __sb_writers_release(fs_info
->sb
, SB_FREEZE_FS
);
1871 schedule_work(&ac
->work
);
1873 /* wait for transaction to start and unblock */
1874 if (wait_for_unblock
)
1875 wait_current_trans_commit_start_and_unblock(fs_info
, cur_trans
);
1877 wait_current_trans_commit_start(fs_info
, cur_trans
);
1879 if (current
->journal_info
== trans
)
1880 current
->journal_info
= NULL
;
1882 btrfs_put_transaction(cur_trans
);
1887 static void cleanup_transaction(struct btrfs_trans_handle
*trans
, int err
)
1889 struct btrfs_fs_info
*fs_info
= trans
->fs_info
;
1890 struct btrfs_transaction
*cur_trans
= trans
->transaction
;
1892 WARN_ON(refcount_read(&trans
->use_count
) > 1);
1894 btrfs_abort_transaction(trans
, err
);
1896 spin_lock(&fs_info
->trans_lock
);
1899 * If the transaction is removed from the list, it means this
1900 * transaction has been committed successfully, so it is impossible
1901 * to call the cleanup function.
1903 BUG_ON(list_empty(&cur_trans
->list
));
1905 list_del_init(&cur_trans
->list
);
1906 if (cur_trans
== fs_info
->running_transaction
) {
1907 cur_trans
->state
= TRANS_STATE_COMMIT_DOING
;
1908 spin_unlock(&fs_info
->trans_lock
);
1909 wait_event(cur_trans
->writer_wait
,
1910 atomic_read(&cur_trans
->num_writers
) == 1);
1912 spin_lock(&fs_info
->trans_lock
);
1914 spin_unlock(&fs_info
->trans_lock
);
1916 btrfs_cleanup_one_transaction(trans
->transaction
, fs_info
);
1918 spin_lock(&fs_info
->trans_lock
);
1919 if (cur_trans
== fs_info
->running_transaction
)
1920 fs_info
->running_transaction
= NULL
;
1921 spin_unlock(&fs_info
->trans_lock
);
1923 if (trans
->type
& __TRANS_FREEZABLE
)
1924 sb_end_intwrite(fs_info
->sb
);
1925 btrfs_put_transaction(cur_trans
);
1926 btrfs_put_transaction(cur_trans
);
1928 trace_btrfs_transaction_commit(trans
->root
);
1930 if (current
->journal_info
== trans
)
1931 current
->journal_info
= NULL
;
1932 btrfs_scrub_cancel(fs_info
);
1934 kmem_cache_free(btrfs_trans_handle_cachep
, trans
);
1938 * Release reserved delayed ref space of all pending block groups of the
1939 * transaction and remove them from the list
1941 static void btrfs_cleanup_pending_block_groups(struct btrfs_trans_handle
*trans
)
1943 struct btrfs_fs_info
*fs_info
= trans
->fs_info
;
1944 struct btrfs_block_group
*block_group
, *tmp
;
1946 list_for_each_entry_safe(block_group
, tmp
, &trans
->new_bgs
, bg_list
) {
1947 btrfs_delayed_refs_rsv_release(fs_info
, 1);
1948 list_del_init(&block_group
->bg_list
);
1952 static inline int btrfs_start_delalloc_flush(struct btrfs_trans_handle
*trans
)
1954 struct btrfs_fs_info
*fs_info
= trans
->fs_info
;
1957 * We use writeback_inodes_sb here because if we used
1958 * btrfs_start_delalloc_roots we would deadlock with fs freeze.
1959 * Currently are holding the fs freeze lock, if we do an async flush
1960 * we'll do btrfs_join_transaction() and deadlock because we need to
1961 * wait for the fs freeze lock. Using the direct flushing we benefit
1962 * from already being in a transaction and our join_transaction doesn't
1963 * have to re-take the fs freeze lock.
1965 if (btrfs_test_opt(fs_info
, FLUSHONCOMMIT
)) {
1966 writeback_inodes_sb(fs_info
->sb
, WB_REASON_SYNC
);
1968 struct btrfs_pending_snapshot
*pending
;
1969 struct list_head
*head
= &trans
->transaction
->pending_snapshots
;
1972 * Flush dellaloc for any root that is going to be snapshotted.
1973 * This is done to avoid a corrupted version of files, in the
1974 * snapshots, that had both buffered and direct IO writes (even
1975 * if they were done sequentially) due to an unordered update of
1976 * the inode's size on disk.
1978 list_for_each_entry(pending
, head
, list
) {
1981 ret
= btrfs_start_delalloc_snapshot(pending
->root
);
1989 static inline void btrfs_wait_delalloc_flush(struct btrfs_trans_handle
*trans
)
1991 struct btrfs_fs_info
*fs_info
= trans
->fs_info
;
1993 if (btrfs_test_opt(fs_info
, FLUSHONCOMMIT
)) {
1994 btrfs_wait_ordered_roots(fs_info
, U64_MAX
, 0, (u64
)-1);
1996 struct btrfs_pending_snapshot
*pending
;
1997 struct list_head
*head
= &trans
->transaction
->pending_snapshots
;
2000 * Wait for any dellaloc that we started previously for the roots
2001 * that are going to be snapshotted. This is to avoid a corrupted
2002 * version of files in the snapshots that had both buffered and
2003 * direct IO writes (even if they were done sequentially).
2005 list_for_each_entry(pending
, head
, list
)
2006 btrfs_wait_ordered_extents(pending
->root
,
2007 U64_MAX
, 0, U64_MAX
);
2011 int btrfs_commit_transaction(struct btrfs_trans_handle
*trans
)
2013 struct btrfs_fs_info
*fs_info
= trans
->fs_info
;
2014 struct btrfs_transaction
*cur_trans
= trans
->transaction
;
2015 struct btrfs_transaction
*prev_trans
= NULL
;
2018 ASSERT(refcount_read(&trans
->use_count
) == 1);
2021 * Some places just start a transaction to commit it. We need to make
2022 * sure that if this commit fails that the abort code actually marks the
2023 * transaction as failed, so set trans->dirty to make the abort code do
2026 trans
->dirty
= true;
2028 /* Stop the commit early if ->aborted is set */
2029 if (TRANS_ABORTED(cur_trans
)) {
2030 ret
= cur_trans
->aborted
;
2031 btrfs_end_transaction(trans
);
2035 btrfs_trans_release_metadata(trans
);
2036 trans
->block_rsv
= NULL
;
2038 /* make a pass through all the delayed refs we have so far
2039 * any runnings procs may add more while we are here
2041 ret
= btrfs_run_delayed_refs(trans
, 0);
2043 btrfs_end_transaction(trans
);
2047 cur_trans
= trans
->transaction
;
2050 * set the flushing flag so procs in this transaction have to
2051 * start sending their work down.
2053 cur_trans
->delayed_refs
.flushing
= 1;
2056 btrfs_create_pending_block_groups(trans
);
2058 ret
= btrfs_run_delayed_refs(trans
, 0);
2060 btrfs_end_transaction(trans
);
2064 if (!test_bit(BTRFS_TRANS_DIRTY_BG_RUN
, &cur_trans
->flags
)) {
2067 /* this mutex is also taken before trying to set
2068 * block groups readonly. We need to make sure
2069 * that nobody has set a block group readonly
2070 * after a extents from that block group have been
2071 * allocated for cache files. btrfs_set_block_group_ro
2072 * will wait for the transaction to commit if it
2073 * finds BTRFS_TRANS_DIRTY_BG_RUN set.
2075 * The BTRFS_TRANS_DIRTY_BG_RUN flag is also used to make sure
2076 * only one process starts all the block group IO. It wouldn't
2077 * hurt to have more than one go through, but there's no
2078 * real advantage to it either.
2080 mutex_lock(&fs_info
->ro_block_group_mutex
);
2081 if (!test_and_set_bit(BTRFS_TRANS_DIRTY_BG_RUN
,
2084 mutex_unlock(&fs_info
->ro_block_group_mutex
);
2087 ret
= btrfs_start_dirty_block_groups(trans
);
2089 btrfs_end_transaction(trans
);
2095 spin_lock(&fs_info
->trans_lock
);
2096 if (cur_trans
->state
>= TRANS_STATE_COMMIT_START
) {
2097 spin_unlock(&fs_info
->trans_lock
);
2098 refcount_inc(&cur_trans
->use_count
);
2099 ret
= btrfs_end_transaction(trans
);
2101 wait_for_commit(cur_trans
);
2103 if (TRANS_ABORTED(cur_trans
))
2104 ret
= cur_trans
->aborted
;
2106 btrfs_put_transaction(cur_trans
);
2111 cur_trans
->state
= TRANS_STATE_COMMIT_START
;
2112 wake_up(&fs_info
->transaction_blocked_wait
);
2114 if (cur_trans
->list
.prev
!= &fs_info
->trans_list
) {
2115 prev_trans
= list_entry(cur_trans
->list
.prev
,
2116 struct btrfs_transaction
, list
);
2117 if (prev_trans
->state
!= TRANS_STATE_COMPLETED
) {
2118 refcount_inc(&prev_trans
->use_count
);
2119 spin_unlock(&fs_info
->trans_lock
);
2121 wait_for_commit(prev_trans
);
2122 ret
= READ_ONCE(prev_trans
->aborted
);
2124 btrfs_put_transaction(prev_trans
);
2126 goto cleanup_transaction
;
2128 spin_unlock(&fs_info
->trans_lock
);
2131 spin_unlock(&fs_info
->trans_lock
);
2133 * The previous transaction was aborted and was already removed
2134 * from the list of transactions at fs_info->trans_list. So we
2135 * abort to prevent writing a new superblock that reflects a
2136 * corrupt state (pointing to trees with unwritten nodes/leafs).
2138 if (test_bit(BTRFS_FS_STATE_TRANS_ABORTED
, &fs_info
->fs_state
)) {
2140 goto cleanup_transaction
;
2144 extwriter_counter_dec(cur_trans
, trans
->type
);
2146 ret
= btrfs_start_delalloc_flush(trans
);
2148 goto cleanup_transaction
;
2150 ret
= btrfs_run_delayed_items(trans
);
2152 goto cleanup_transaction
;
2154 wait_event(cur_trans
->writer_wait
,
2155 extwriter_counter_read(cur_trans
) == 0);
2157 /* some pending stuffs might be added after the previous flush. */
2158 ret
= btrfs_run_delayed_items(trans
);
2160 goto cleanup_transaction
;
2162 btrfs_wait_delalloc_flush(trans
);
2164 btrfs_scrub_pause(fs_info
);
2166 * Ok now we need to make sure to block out any other joins while we
2167 * commit the transaction. We could have started a join before setting
2168 * COMMIT_DOING so make sure to wait for num_writers to == 1 again.
2170 spin_lock(&fs_info
->trans_lock
);
2171 cur_trans
->state
= TRANS_STATE_COMMIT_DOING
;
2172 spin_unlock(&fs_info
->trans_lock
);
2173 wait_event(cur_trans
->writer_wait
,
2174 atomic_read(&cur_trans
->num_writers
) == 1);
2176 if (TRANS_ABORTED(cur_trans
)) {
2177 ret
= cur_trans
->aborted
;
2178 goto scrub_continue
;
2181 * the reloc mutex makes sure that we stop
2182 * the balancing code from coming in and moving
2183 * extents around in the middle of the commit
2185 mutex_lock(&fs_info
->reloc_mutex
);
2188 * We needn't worry about the delayed items because we will
2189 * deal with them in create_pending_snapshot(), which is the
2190 * core function of the snapshot creation.
2192 ret
= create_pending_snapshots(trans
);
2197 * We insert the dir indexes of the snapshots and update the inode
2198 * of the snapshots' parents after the snapshot creation, so there
2199 * are some delayed items which are not dealt with. Now deal with
2202 * We needn't worry that this operation will corrupt the snapshots,
2203 * because all the tree which are snapshoted will be forced to COW
2204 * the nodes and leaves.
2206 ret
= btrfs_run_delayed_items(trans
);
2210 ret
= btrfs_run_delayed_refs(trans
, (unsigned long)-1);
2215 * make sure none of the code above managed to slip in a
2218 btrfs_assert_delayed_root_empty(fs_info
);
2220 WARN_ON(cur_trans
!= trans
->transaction
);
2222 /* btrfs_commit_tree_roots is responsible for getting the
2223 * various roots consistent with each other. Every pointer
2224 * in the tree of tree roots has to point to the most up to date
2225 * root for every subvolume and other tree. So, we have to keep
2226 * the tree logging code from jumping in and changing any
2229 * At this point in the commit, there can't be any tree-log
2230 * writers, but a little lower down we drop the trans mutex
2231 * and let new people in. By holding the tree_log_mutex
2232 * from now until after the super is written, we avoid races
2233 * with the tree-log code.
2235 mutex_lock(&fs_info
->tree_log_mutex
);
2237 ret
= commit_fs_roots(trans
);
2239 goto unlock_tree_log
;
2242 * Since the transaction is done, we can apply the pending changes
2243 * before the next transaction.
2245 btrfs_apply_pending_changes(fs_info
);
2247 /* commit_fs_roots gets rid of all the tree log roots, it is now
2248 * safe to free the root of tree log roots
2250 btrfs_free_log_root_tree(trans
, fs_info
);
2253 * commit_fs_roots() can call btrfs_save_ino_cache(), which generates
2254 * new delayed refs. Must handle them or qgroup can be wrong.
2256 ret
= btrfs_run_delayed_refs(trans
, (unsigned long)-1);
2258 goto unlock_tree_log
;
2261 * Since fs roots are all committed, we can get a quite accurate
2262 * new_roots. So let's do quota accounting.
2264 ret
= btrfs_qgroup_account_extents(trans
);
2266 goto unlock_tree_log
;
2268 ret
= commit_cowonly_roots(trans
);
2270 goto unlock_tree_log
;
2273 * The tasks which save the space cache and inode cache may also
2274 * update ->aborted, check it.
2276 if (TRANS_ABORTED(cur_trans
)) {
2277 ret
= cur_trans
->aborted
;
2278 goto unlock_tree_log
;
2281 btrfs_prepare_extent_commit(fs_info
);
2283 cur_trans
= fs_info
->running_transaction
;
2285 btrfs_set_root_node(&fs_info
->tree_root
->root_item
,
2286 fs_info
->tree_root
->node
);
2287 list_add_tail(&fs_info
->tree_root
->dirty_list
,
2288 &cur_trans
->switch_commits
);
2290 btrfs_set_root_node(&fs_info
->chunk_root
->root_item
,
2291 fs_info
->chunk_root
->node
);
2292 list_add_tail(&fs_info
->chunk_root
->dirty_list
,
2293 &cur_trans
->switch_commits
);
2295 switch_commit_roots(trans
);
2297 ASSERT(list_empty(&cur_trans
->dirty_bgs
));
2298 ASSERT(list_empty(&cur_trans
->io_bgs
));
2299 update_super_roots(fs_info
);
2301 btrfs_set_super_log_root(fs_info
->super_copy
, 0);
2302 btrfs_set_super_log_root_level(fs_info
->super_copy
, 0);
2303 memcpy(fs_info
->super_for_commit
, fs_info
->super_copy
,
2304 sizeof(*fs_info
->super_copy
));
2306 btrfs_commit_device_sizes(cur_trans
);
2308 clear_bit(BTRFS_FS_LOG1_ERR
, &fs_info
->flags
);
2309 clear_bit(BTRFS_FS_LOG2_ERR
, &fs_info
->flags
);
2311 btrfs_trans_release_chunk_metadata(trans
);
2313 spin_lock(&fs_info
->trans_lock
);
2314 cur_trans
->state
= TRANS_STATE_UNBLOCKED
;
2315 fs_info
->running_transaction
= NULL
;
2316 spin_unlock(&fs_info
->trans_lock
);
2317 mutex_unlock(&fs_info
->reloc_mutex
);
2319 wake_up(&fs_info
->transaction_wait
);
2321 ret
= btrfs_write_and_wait_transaction(trans
);
2323 btrfs_handle_fs_error(fs_info
, ret
,
2324 "Error while writing out transaction");
2326 * reloc_mutex has been unlocked, tree_log_mutex is still held
2327 * but we can't jump to unlock_tree_log causing double unlock
2329 mutex_unlock(&fs_info
->tree_log_mutex
);
2330 goto scrub_continue
;
2333 ret
= write_all_supers(fs_info
, 0);
2335 * the super is written, we can safely allow the tree-loggers
2336 * to go about their business
2338 mutex_unlock(&fs_info
->tree_log_mutex
);
2340 goto scrub_continue
;
2342 btrfs_finish_extent_commit(trans
);
2344 if (test_bit(BTRFS_TRANS_HAVE_FREE_BGS
, &cur_trans
->flags
))
2345 btrfs_clear_space_info_full(fs_info
);
2347 fs_info
->last_trans_committed
= cur_trans
->transid
;
2349 * We needn't acquire the lock here because there is no other task
2350 * which can change it.
2352 cur_trans
->state
= TRANS_STATE_COMPLETED
;
2353 wake_up(&cur_trans
->commit_wait
);
2354 clear_bit(BTRFS_FS_NEED_ASYNC_COMMIT
, &fs_info
->flags
);
2356 spin_lock(&fs_info
->trans_lock
);
2357 list_del_init(&cur_trans
->list
);
2358 spin_unlock(&fs_info
->trans_lock
);
2360 btrfs_put_transaction(cur_trans
);
2361 btrfs_put_transaction(cur_trans
);
2363 if (trans
->type
& __TRANS_FREEZABLE
)
2364 sb_end_intwrite(fs_info
->sb
);
2366 trace_btrfs_transaction_commit(trans
->root
);
2368 btrfs_scrub_continue(fs_info
);
2370 if (current
->journal_info
== trans
)
2371 current
->journal_info
= NULL
;
2373 kmem_cache_free(btrfs_trans_handle_cachep
, trans
);
2378 mutex_unlock(&fs_info
->tree_log_mutex
);
2380 mutex_unlock(&fs_info
->reloc_mutex
);
2382 btrfs_scrub_continue(fs_info
);
2383 cleanup_transaction
:
2384 btrfs_trans_release_metadata(trans
);
2385 btrfs_cleanup_pending_block_groups(trans
);
2386 btrfs_trans_release_chunk_metadata(trans
);
2387 trans
->block_rsv
= NULL
;
2388 btrfs_warn(fs_info
, "Skipping commit of aborted transaction.");
2389 if (current
->journal_info
== trans
)
2390 current
->journal_info
= NULL
;
2391 cleanup_transaction(trans
, ret
);
2397 * return < 0 if error
2398 * 0 if there are no more dead_roots at the time of call
2399 * 1 there are more to be processed, call me again
2401 * The return value indicates there are certainly more snapshots to delete, but
2402 * if there comes a new one during processing, it may return 0. We don't mind,
2403 * because btrfs_commit_super will poke cleaner thread and it will process it a
2404 * few seconds later.
2406 int btrfs_clean_one_deleted_snapshot(struct btrfs_root
*root
)
2409 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
2411 spin_lock(&fs_info
->trans_lock
);
2412 if (list_empty(&fs_info
->dead_roots
)) {
2413 spin_unlock(&fs_info
->trans_lock
);
2416 root
= list_first_entry(&fs_info
->dead_roots
,
2417 struct btrfs_root
, root_list
);
2418 list_del_init(&root
->root_list
);
2419 spin_unlock(&fs_info
->trans_lock
);
2421 btrfs_debug(fs_info
, "cleaner removing %llu", root
->root_key
.objectid
);
2423 btrfs_kill_all_delayed_nodes(root
);
2424 if (root
->ino_cache_inode
) {
2425 iput(root
->ino_cache_inode
);
2426 root
->ino_cache_inode
= NULL
;
2429 if (btrfs_header_backref_rev(root
->node
) <
2430 BTRFS_MIXED_BACKREF_REV
)
2431 ret
= btrfs_drop_snapshot(root
, 0, 0);
2433 ret
= btrfs_drop_snapshot(root
, 1, 0);
2435 btrfs_put_root(root
);
2436 return (ret
< 0) ? 0 : 1;
2439 void btrfs_apply_pending_changes(struct btrfs_fs_info
*fs_info
)
2444 prev
= xchg(&fs_info
->pending_changes
, 0);
2448 bit
= 1 << BTRFS_PENDING_SET_INODE_MAP_CACHE
;
2450 btrfs_set_opt(fs_info
->mount_opt
, INODE_MAP_CACHE
);
2453 bit
= 1 << BTRFS_PENDING_CLEAR_INODE_MAP_CACHE
;
2455 btrfs_clear_opt(fs_info
->mount_opt
, INODE_MAP_CACHE
);
2458 bit
= 1 << BTRFS_PENDING_COMMIT
;
2460 btrfs_debug(fs_info
, "pending commit done");
2465 "unknown pending changes left 0x%lx, ignoring", prev
);