1 // SPDX-License-Identifier: GPL-2.0-only
5 * Copyright (C) 1991, 1992, 2002 Linus Torvalds
9 * Start bdflush() with kernel_thread not syscall - Paul Gortmaker, 12/95
11 * Removed a lot of unnecessary code and simplified things now that
12 * the buffer cache isn't our primary cache - Andrew Tridgell 12/96
14 * Speed up hash, lru, and free list operations. Use gfp() for allocating
15 * hash table, use SLAB cache for buffer heads. SMP threading. -DaveM
17 * Added 32k buffer block sizes - these are required older ARM systems. - RMK
19 * async buffer flushing, 1999 Andrea Arcangeli <andrea@suse.de>
22 #include <linux/kernel.h>
23 #include <linux/sched/signal.h>
24 #include <linux/syscalls.h>
26 #include <linux/iomap.h>
28 #include <linux/percpu.h>
29 #include <linux/slab.h>
30 #include <linux/capability.h>
31 #include <linux/blkdev.h>
32 #include <linux/file.h>
33 #include <linux/quotaops.h>
34 #include <linux/highmem.h>
35 #include <linux/export.h>
36 #include <linux/backing-dev.h>
37 #include <linux/writeback.h>
38 #include <linux/hash.h>
39 #include <linux/suspend.h>
40 #include <linux/buffer_head.h>
41 #include <linux/task_io_accounting_ops.h>
42 #include <linux/bio.h>
43 #include <linux/cpu.h>
44 #include <linux/bitops.h>
45 #include <linux/mpage.h>
46 #include <linux/bit_spinlock.h>
47 #include <linux/pagevec.h>
48 #include <linux/sched/mm.h>
49 #include <trace/events/block.h>
50 #include <linux/fscrypt.h>
54 static int fsync_buffers_list(spinlock_t
*lock
, struct list_head
*list
);
55 static int submit_bh_wbc(int op
, int op_flags
, struct buffer_head
*bh
,
56 enum rw_hint hint
, struct writeback_control
*wbc
);
58 #define BH_ENTRY(list) list_entry((list), struct buffer_head, b_assoc_buffers)
60 inline void touch_buffer(struct buffer_head
*bh
)
62 trace_block_touch_buffer(bh
);
63 mark_page_accessed(bh
->b_page
);
65 EXPORT_SYMBOL(touch_buffer
);
67 void __lock_buffer(struct buffer_head
*bh
)
69 wait_on_bit_lock_io(&bh
->b_state
, BH_Lock
, TASK_UNINTERRUPTIBLE
);
71 EXPORT_SYMBOL(__lock_buffer
);
73 void unlock_buffer(struct buffer_head
*bh
)
75 clear_bit_unlock(BH_Lock
, &bh
->b_state
);
76 smp_mb__after_atomic();
77 wake_up_bit(&bh
->b_state
, BH_Lock
);
79 EXPORT_SYMBOL(unlock_buffer
);
82 * Returns if the page has dirty or writeback buffers. If all the buffers
83 * are unlocked and clean then the PageDirty information is stale. If
84 * any of the pages are locked, it is assumed they are locked for IO.
86 void buffer_check_dirty_writeback(struct page
*page
,
87 bool *dirty
, bool *writeback
)
89 struct buffer_head
*head
, *bh
;
93 BUG_ON(!PageLocked(page
));
95 if (!page_has_buffers(page
))
98 if (PageWriteback(page
))
101 head
= page_buffers(page
);
104 if (buffer_locked(bh
))
107 if (buffer_dirty(bh
))
110 bh
= bh
->b_this_page
;
111 } while (bh
!= head
);
113 EXPORT_SYMBOL(buffer_check_dirty_writeback
);
116 * Block until a buffer comes unlocked. This doesn't stop it
117 * from becoming locked again - you have to lock it yourself
118 * if you want to preserve its state.
120 void __wait_on_buffer(struct buffer_head
* bh
)
122 wait_on_bit_io(&bh
->b_state
, BH_Lock
, TASK_UNINTERRUPTIBLE
);
124 EXPORT_SYMBOL(__wait_on_buffer
);
126 static void buffer_io_error(struct buffer_head
*bh
, char *msg
)
128 if (!test_bit(BH_Quiet
, &bh
->b_state
))
129 printk_ratelimited(KERN_ERR
130 "Buffer I/O error on dev %pg, logical block %llu%s\n",
131 bh
->b_bdev
, (unsigned long long)bh
->b_blocknr
, msg
);
135 * End-of-IO handler helper function which does not touch the bh after
137 * Note: unlock_buffer() sort-of does touch the bh after unlocking it, but
138 * a race there is benign: unlock_buffer() only use the bh's address for
139 * hashing after unlocking the buffer, so it doesn't actually touch the bh
142 static void __end_buffer_read_notouch(struct buffer_head
*bh
, int uptodate
)
145 set_buffer_uptodate(bh
);
147 /* This happens, due to failed read-ahead attempts. */
148 clear_buffer_uptodate(bh
);
154 * Default synchronous end-of-IO handler.. Just mark it up-to-date and
155 * unlock the buffer. This is what ll_rw_block uses too.
157 void end_buffer_read_sync(struct buffer_head
*bh
, int uptodate
)
159 __end_buffer_read_notouch(bh
, uptodate
);
162 EXPORT_SYMBOL(end_buffer_read_sync
);
164 void end_buffer_write_sync(struct buffer_head
*bh
, int uptodate
)
167 set_buffer_uptodate(bh
);
169 buffer_io_error(bh
, ", lost sync page write");
170 mark_buffer_write_io_error(bh
);
171 clear_buffer_uptodate(bh
);
176 EXPORT_SYMBOL(end_buffer_write_sync
);
179 * Various filesystems appear to want __find_get_block to be non-blocking.
180 * But it's the page lock which protects the buffers. To get around this,
181 * we get exclusion from try_to_free_buffers with the blockdev mapping's
184 * Hack idea: for the blockdev mapping, private_lock contention
185 * may be quite high. This code could TryLock the page, and if that
186 * succeeds, there is no need to take private_lock.
188 static struct buffer_head
*
189 __find_get_block_slow(struct block_device
*bdev
, sector_t block
)
191 struct inode
*bd_inode
= bdev
->bd_inode
;
192 struct address_space
*bd_mapping
= bd_inode
->i_mapping
;
193 struct buffer_head
*ret
= NULL
;
195 struct buffer_head
*bh
;
196 struct buffer_head
*head
;
199 static DEFINE_RATELIMIT_STATE(last_warned
, HZ
, 1);
201 index
= block
>> (PAGE_SHIFT
- bd_inode
->i_blkbits
);
202 page
= find_get_page_flags(bd_mapping
, index
, FGP_ACCESSED
);
206 spin_lock(&bd_mapping
->private_lock
);
207 if (!page_has_buffers(page
))
209 head
= page_buffers(page
);
212 if (!buffer_mapped(bh
))
214 else if (bh
->b_blocknr
== block
) {
219 bh
= bh
->b_this_page
;
220 } while (bh
!= head
);
222 /* we might be here because some of the buffers on this page are
223 * not mapped. This is due to various races between
224 * file io on the block device and getblk. It gets dealt with
225 * elsewhere, don't buffer_error if we had some unmapped buffers
227 ratelimit_set_flags(&last_warned
, RATELIMIT_MSG_ON_RELEASE
);
228 if (all_mapped
&& __ratelimit(&last_warned
)) {
229 printk("__find_get_block_slow() failed. block=%llu, "
230 "b_blocknr=%llu, b_state=0x%08lx, b_size=%zu, "
231 "device %pg blocksize: %d\n",
232 (unsigned long long)block
,
233 (unsigned long long)bh
->b_blocknr
,
234 bh
->b_state
, bh
->b_size
, bdev
,
235 1 << bd_inode
->i_blkbits
);
238 spin_unlock(&bd_mapping
->private_lock
);
244 static void end_buffer_async_read(struct buffer_head
*bh
, int uptodate
)
247 struct buffer_head
*first
;
248 struct buffer_head
*tmp
;
250 int page_uptodate
= 1;
252 BUG_ON(!buffer_async_read(bh
));
256 set_buffer_uptodate(bh
);
258 clear_buffer_uptodate(bh
);
259 buffer_io_error(bh
, ", async page read");
264 * Be _very_ careful from here on. Bad things can happen if
265 * two buffer heads end IO at almost the same time and both
266 * decide that the page is now completely done.
268 first
= page_buffers(page
);
269 spin_lock_irqsave(&first
->b_uptodate_lock
, flags
);
270 clear_buffer_async_read(bh
);
274 if (!buffer_uptodate(tmp
))
276 if (buffer_async_read(tmp
)) {
277 BUG_ON(!buffer_locked(tmp
));
280 tmp
= tmp
->b_this_page
;
282 spin_unlock_irqrestore(&first
->b_uptodate_lock
, flags
);
285 * If none of the buffers had errors and they are all
286 * uptodate then we can set the page uptodate.
288 if (page_uptodate
&& !PageError(page
))
289 SetPageUptodate(page
);
294 spin_unlock_irqrestore(&first
->b_uptodate_lock
, flags
);
298 struct decrypt_bh_ctx
{
299 struct work_struct work
;
300 struct buffer_head
*bh
;
303 static void decrypt_bh(struct work_struct
*work
)
305 struct decrypt_bh_ctx
*ctx
=
306 container_of(work
, struct decrypt_bh_ctx
, work
);
307 struct buffer_head
*bh
= ctx
->bh
;
310 err
= fscrypt_decrypt_pagecache_blocks(bh
->b_page
, bh
->b_size
,
312 end_buffer_async_read(bh
, err
== 0);
317 * I/O completion handler for block_read_full_page() - pages
318 * which come unlocked at the end of I/O.
320 static void end_buffer_async_read_io(struct buffer_head
*bh
, int uptodate
)
322 /* Decrypt if needed */
323 if (uptodate
&& IS_ENABLED(CONFIG_FS_ENCRYPTION
) &&
324 IS_ENCRYPTED(bh
->b_page
->mapping
->host
) &&
325 S_ISREG(bh
->b_page
->mapping
->host
->i_mode
)) {
326 struct decrypt_bh_ctx
*ctx
= kmalloc(sizeof(*ctx
), GFP_ATOMIC
);
329 INIT_WORK(&ctx
->work
, decrypt_bh
);
331 fscrypt_enqueue_decrypt_work(&ctx
->work
);
336 end_buffer_async_read(bh
, uptodate
);
340 * Completion handler for block_write_full_page() - pages which are unlocked
341 * during I/O, and which have PageWriteback cleared upon I/O completion.
343 void end_buffer_async_write(struct buffer_head
*bh
, int uptodate
)
346 struct buffer_head
*first
;
347 struct buffer_head
*tmp
;
350 BUG_ON(!buffer_async_write(bh
));
354 set_buffer_uptodate(bh
);
356 buffer_io_error(bh
, ", lost async page write");
357 mark_buffer_write_io_error(bh
);
358 clear_buffer_uptodate(bh
);
362 first
= page_buffers(page
);
363 spin_lock_irqsave(&first
->b_uptodate_lock
, flags
);
365 clear_buffer_async_write(bh
);
367 tmp
= bh
->b_this_page
;
369 if (buffer_async_write(tmp
)) {
370 BUG_ON(!buffer_locked(tmp
));
373 tmp
= tmp
->b_this_page
;
375 spin_unlock_irqrestore(&first
->b_uptodate_lock
, flags
);
376 end_page_writeback(page
);
380 spin_unlock_irqrestore(&first
->b_uptodate_lock
, flags
);
383 EXPORT_SYMBOL(end_buffer_async_write
);
386 * If a page's buffers are under async readin (end_buffer_async_read
387 * completion) then there is a possibility that another thread of
388 * control could lock one of the buffers after it has completed
389 * but while some of the other buffers have not completed. This
390 * locked buffer would confuse end_buffer_async_read() into not unlocking
391 * the page. So the absence of BH_Async_Read tells end_buffer_async_read()
392 * that this buffer is not under async I/O.
394 * The page comes unlocked when it has no locked buffer_async buffers
397 * PageLocked prevents anyone starting new async I/O reads any of
400 * PageWriteback is used to prevent simultaneous writeout of the same
403 * PageLocked prevents anyone from starting writeback of a page which is
404 * under read I/O (PageWriteback is only ever set against a locked page).
406 static void mark_buffer_async_read(struct buffer_head
*bh
)
408 bh
->b_end_io
= end_buffer_async_read_io
;
409 set_buffer_async_read(bh
);
412 static void mark_buffer_async_write_endio(struct buffer_head
*bh
,
413 bh_end_io_t
*handler
)
415 bh
->b_end_io
= handler
;
416 set_buffer_async_write(bh
);
419 void mark_buffer_async_write(struct buffer_head
*bh
)
421 mark_buffer_async_write_endio(bh
, end_buffer_async_write
);
423 EXPORT_SYMBOL(mark_buffer_async_write
);
427 * fs/buffer.c contains helper functions for buffer-backed address space's
428 * fsync functions. A common requirement for buffer-based filesystems is
429 * that certain data from the backing blockdev needs to be written out for
430 * a successful fsync(). For example, ext2 indirect blocks need to be
431 * written back and waited upon before fsync() returns.
433 * The functions mark_buffer_inode_dirty(), fsync_inode_buffers(),
434 * inode_has_buffers() and invalidate_inode_buffers() are provided for the
435 * management of a list of dependent buffers at ->i_mapping->private_list.
437 * Locking is a little subtle: try_to_free_buffers() will remove buffers
438 * from their controlling inode's queue when they are being freed. But
439 * try_to_free_buffers() will be operating against the *blockdev* mapping
440 * at the time, not against the S_ISREG file which depends on those buffers.
441 * So the locking for private_list is via the private_lock in the address_space
442 * which backs the buffers. Which is different from the address_space
443 * against which the buffers are listed. So for a particular address_space,
444 * mapping->private_lock does *not* protect mapping->private_list! In fact,
445 * mapping->private_list will always be protected by the backing blockdev's
448 * Which introduces a requirement: all buffers on an address_space's
449 * ->private_list must be from the same address_space: the blockdev's.
451 * address_spaces which do not place buffers at ->private_list via these
452 * utility functions are free to use private_lock and private_list for
453 * whatever they want. The only requirement is that list_empty(private_list)
454 * be true at clear_inode() time.
456 * FIXME: clear_inode should not call invalidate_inode_buffers(). The
457 * filesystems should do that. invalidate_inode_buffers() should just go
458 * BUG_ON(!list_empty).
460 * FIXME: mark_buffer_dirty_inode() is a data-plane operation. It should
461 * take an address_space, not an inode. And it should be called
462 * mark_buffer_dirty_fsync() to clearly define why those buffers are being
465 * FIXME: mark_buffer_dirty_inode() doesn't need to add the buffer to the
466 * list if it is already on a list. Because if the buffer is on a list,
467 * it *must* already be on the right one. If not, the filesystem is being
468 * silly. This will save a ton of locking. But first we have to ensure
469 * that buffers are taken *off* the old inode's list when they are freed
470 * (presumably in truncate). That requires careful auditing of all
471 * filesystems (do it inside bforget()). It could also be done by bringing
476 * The buffer's backing address_space's private_lock must be held
478 static void __remove_assoc_queue(struct buffer_head
*bh
)
480 list_del_init(&bh
->b_assoc_buffers
);
481 WARN_ON(!bh
->b_assoc_map
);
482 bh
->b_assoc_map
= NULL
;
485 int inode_has_buffers(struct inode
*inode
)
487 return !list_empty(&inode
->i_data
.private_list
);
491 * osync is designed to support O_SYNC io. It waits synchronously for
492 * all already-submitted IO to complete, but does not queue any new
493 * writes to the disk.
495 * To do O_SYNC writes, just queue the buffer writes with ll_rw_block as
496 * you dirty the buffers, and then use osync_inode_buffers to wait for
497 * completion. Any other dirty buffers which are not yet queued for
498 * write will not be flushed to disk by the osync.
500 static int osync_buffers_list(spinlock_t
*lock
, struct list_head
*list
)
502 struct buffer_head
*bh
;
508 list_for_each_prev(p
, list
) {
510 if (buffer_locked(bh
)) {
514 if (!buffer_uptodate(bh
))
525 void emergency_thaw_bdev(struct super_block
*sb
)
527 while (sb
->s_bdev
&& !thaw_bdev(sb
->s_bdev
, sb
))
528 printk(KERN_WARNING
"Emergency Thaw on %pg\n", sb
->s_bdev
);
532 * sync_mapping_buffers - write out & wait upon a mapping's "associated" buffers
533 * @mapping: the mapping which wants those buffers written
535 * Starts I/O against the buffers at mapping->private_list, and waits upon
538 * Basically, this is a convenience function for fsync().
539 * @mapping is a file or directory which needs those buffers to be written for
540 * a successful fsync().
542 int sync_mapping_buffers(struct address_space
*mapping
)
544 struct address_space
*buffer_mapping
= mapping
->private_data
;
546 if (buffer_mapping
== NULL
|| list_empty(&mapping
->private_list
))
549 return fsync_buffers_list(&buffer_mapping
->private_lock
,
550 &mapping
->private_list
);
552 EXPORT_SYMBOL(sync_mapping_buffers
);
555 * Called when we've recently written block `bblock', and it is known that
556 * `bblock' was for a buffer_boundary() buffer. This means that the block at
557 * `bblock + 1' is probably a dirty indirect block. Hunt it down and, if it's
558 * dirty, schedule it for IO. So that indirects merge nicely with their data.
560 void write_boundary_block(struct block_device
*bdev
,
561 sector_t bblock
, unsigned blocksize
)
563 struct buffer_head
*bh
= __find_get_block(bdev
, bblock
+ 1, blocksize
);
565 if (buffer_dirty(bh
))
566 ll_rw_block(REQ_OP_WRITE
, 0, 1, &bh
);
571 void mark_buffer_dirty_inode(struct buffer_head
*bh
, struct inode
*inode
)
573 struct address_space
*mapping
= inode
->i_mapping
;
574 struct address_space
*buffer_mapping
= bh
->b_page
->mapping
;
576 mark_buffer_dirty(bh
);
577 if (!mapping
->private_data
) {
578 mapping
->private_data
= buffer_mapping
;
580 BUG_ON(mapping
->private_data
!= buffer_mapping
);
582 if (!bh
->b_assoc_map
) {
583 spin_lock(&buffer_mapping
->private_lock
);
584 list_move_tail(&bh
->b_assoc_buffers
,
585 &mapping
->private_list
);
586 bh
->b_assoc_map
= mapping
;
587 spin_unlock(&buffer_mapping
->private_lock
);
590 EXPORT_SYMBOL(mark_buffer_dirty_inode
);
593 * Mark the page dirty, and set it dirty in the page cache, and mark the inode
596 * If warn is true, then emit a warning if the page is not uptodate and has
597 * not been truncated.
599 * The caller must hold lock_page_memcg().
601 void __set_page_dirty(struct page
*page
, struct address_space
*mapping
,
606 xa_lock_irqsave(&mapping
->i_pages
, flags
);
607 if (page
->mapping
) { /* Race with truncate? */
608 WARN_ON_ONCE(warn
&& !PageUptodate(page
));
609 account_page_dirtied(page
, mapping
);
610 __xa_set_mark(&mapping
->i_pages
, page_index(page
),
611 PAGECACHE_TAG_DIRTY
);
613 xa_unlock_irqrestore(&mapping
->i_pages
, flags
);
615 EXPORT_SYMBOL_GPL(__set_page_dirty
);
618 * Add a page to the dirty page list.
620 * It is a sad fact of life that this function is called from several places
621 * deeply under spinlocking. It may not sleep.
623 * If the page has buffers, the uptodate buffers are set dirty, to preserve
624 * dirty-state coherency between the page and the buffers. It the page does
625 * not have buffers then when they are later attached they will all be set
628 * The buffers are dirtied before the page is dirtied. There's a small race
629 * window in which a writepage caller may see the page cleanness but not the
630 * buffer dirtiness. That's fine. If this code were to set the page dirty
631 * before the buffers, a concurrent writepage caller could clear the page dirty
632 * bit, see a bunch of clean buffers and we'd end up with dirty buffers/clean
633 * page on the dirty page list.
635 * We use private_lock to lock against try_to_free_buffers while using the
636 * page's buffer list. Also use this to protect against clean buffers being
637 * added to the page after it was set dirty.
639 * FIXME: may need to call ->reservepage here as well. That's rather up to the
640 * address_space though.
642 int __set_page_dirty_buffers(struct page
*page
)
645 struct address_space
*mapping
= page_mapping(page
);
647 if (unlikely(!mapping
))
648 return !TestSetPageDirty(page
);
650 spin_lock(&mapping
->private_lock
);
651 if (page_has_buffers(page
)) {
652 struct buffer_head
*head
= page_buffers(page
);
653 struct buffer_head
*bh
= head
;
656 set_buffer_dirty(bh
);
657 bh
= bh
->b_this_page
;
658 } while (bh
!= head
);
661 * Lock out page->mem_cgroup migration to keep PageDirty
662 * synchronized with per-memcg dirty page counters.
664 lock_page_memcg(page
);
665 newly_dirty
= !TestSetPageDirty(page
);
666 spin_unlock(&mapping
->private_lock
);
669 __set_page_dirty(page
, mapping
, 1);
671 unlock_page_memcg(page
);
674 __mark_inode_dirty(mapping
->host
, I_DIRTY_PAGES
);
678 EXPORT_SYMBOL(__set_page_dirty_buffers
);
681 * Write out and wait upon a list of buffers.
683 * We have conflicting pressures: we want to make sure that all
684 * initially dirty buffers get waited on, but that any subsequently
685 * dirtied buffers don't. After all, we don't want fsync to last
686 * forever if somebody is actively writing to the file.
688 * Do this in two main stages: first we copy dirty buffers to a
689 * temporary inode list, queueing the writes as we go. Then we clean
690 * up, waiting for those writes to complete.
692 * During this second stage, any subsequent updates to the file may end
693 * up refiling the buffer on the original inode's dirty list again, so
694 * there is a chance we will end up with a buffer queued for write but
695 * not yet completed on that list. So, as a final cleanup we go through
696 * the osync code to catch these locked, dirty buffers without requeuing
697 * any newly dirty buffers for write.
699 static int fsync_buffers_list(spinlock_t
*lock
, struct list_head
*list
)
701 struct buffer_head
*bh
;
702 struct list_head tmp
;
703 struct address_space
*mapping
;
705 struct blk_plug plug
;
707 INIT_LIST_HEAD(&tmp
);
708 blk_start_plug(&plug
);
711 while (!list_empty(list
)) {
712 bh
= BH_ENTRY(list
->next
);
713 mapping
= bh
->b_assoc_map
;
714 __remove_assoc_queue(bh
);
715 /* Avoid race with mark_buffer_dirty_inode() which does
716 * a lockless check and we rely on seeing the dirty bit */
718 if (buffer_dirty(bh
) || buffer_locked(bh
)) {
719 list_add(&bh
->b_assoc_buffers
, &tmp
);
720 bh
->b_assoc_map
= mapping
;
721 if (buffer_dirty(bh
)) {
725 * Ensure any pending I/O completes so that
726 * write_dirty_buffer() actually writes the
727 * current contents - it is a noop if I/O is
728 * still in flight on potentially older
731 write_dirty_buffer(bh
, REQ_SYNC
);
734 * Kick off IO for the previous mapping. Note
735 * that we will not run the very last mapping,
736 * wait_on_buffer() will do that for us
737 * through sync_buffer().
746 blk_finish_plug(&plug
);
749 while (!list_empty(&tmp
)) {
750 bh
= BH_ENTRY(tmp
.prev
);
752 mapping
= bh
->b_assoc_map
;
753 __remove_assoc_queue(bh
);
754 /* Avoid race with mark_buffer_dirty_inode() which does
755 * a lockless check and we rely on seeing the dirty bit */
757 if (buffer_dirty(bh
)) {
758 list_add(&bh
->b_assoc_buffers
,
759 &mapping
->private_list
);
760 bh
->b_assoc_map
= mapping
;
764 if (!buffer_uptodate(bh
))
771 err2
= osync_buffers_list(lock
, list
);
779 * Invalidate any and all dirty buffers on a given inode. We are
780 * probably unmounting the fs, but that doesn't mean we have already
781 * done a sync(). Just drop the buffers from the inode list.
783 * NOTE: we take the inode's blockdev's mapping's private_lock. Which
784 * assumes that all the buffers are against the blockdev. Not true
787 void invalidate_inode_buffers(struct inode
*inode
)
789 if (inode_has_buffers(inode
)) {
790 struct address_space
*mapping
= &inode
->i_data
;
791 struct list_head
*list
= &mapping
->private_list
;
792 struct address_space
*buffer_mapping
= mapping
->private_data
;
794 spin_lock(&buffer_mapping
->private_lock
);
795 while (!list_empty(list
))
796 __remove_assoc_queue(BH_ENTRY(list
->next
));
797 spin_unlock(&buffer_mapping
->private_lock
);
800 EXPORT_SYMBOL(invalidate_inode_buffers
);
803 * Remove any clean buffers from the inode's buffer list. This is called
804 * when we're trying to free the inode itself. Those buffers can pin it.
806 * Returns true if all buffers were removed.
808 int remove_inode_buffers(struct inode
*inode
)
812 if (inode_has_buffers(inode
)) {
813 struct address_space
*mapping
= &inode
->i_data
;
814 struct list_head
*list
= &mapping
->private_list
;
815 struct address_space
*buffer_mapping
= mapping
->private_data
;
817 spin_lock(&buffer_mapping
->private_lock
);
818 while (!list_empty(list
)) {
819 struct buffer_head
*bh
= BH_ENTRY(list
->next
);
820 if (buffer_dirty(bh
)) {
824 __remove_assoc_queue(bh
);
826 spin_unlock(&buffer_mapping
->private_lock
);
832 * Create the appropriate buffers when given a page for data area and
833 * the size of each buffer.. Use the bh->b_this_page linked list to
834 * follow the buffers created. Return NULL if unable to create more
837 * The retry flag is used to differentiate async IO (paging, swapping)
838 * which may not fail from ordinary buffer allocations.
840 struct buffer_head
*alloc_page_buffers(struct page
*page
, unsigned long size
,
843 struct buffer_head
*bh
, *head
;
844 gfp_t gfp
= GFP_NOFS
| __GFP_ACCOUNT
;
846 struct mem_cgroup
*memcg
;
851 memcg
= get_mem_cgroup_from_page(page
);
852 memalloc_use_memcg(memcg
);
856 while ((offset
-= size
) >= 0) {
857 bh
= alloc_buffer_head(gfp
);
861 bh
->b_this_page
= head
;
867 /* Link the buffer to its page */
868 set_bh_page(bh
, page
, offset
);
871 memalloc_unuse_memcg();
872 mem_cgroup_put(memcg
);
875 * In case anything failed, we just free everything we got.
881 head
= head
->b_this_page
;
882 free_buffer_head(bh
);
888 EXPORT_SYMBOL_GPL(alloc_page_buffers
);
891 link_dev_buffers(struct page
*page
, struct buffer_head
*head
)
893 struct buffer_head
*bh
, *tail
;
898 bh
= bh
->b_this_page
;
900 tail
->b_this_page
= head
;
901 attach_page_private(page
, head
);
904 static sector_t
blkdev_max_block(struct block_device
*bdev
, unsigned int size
)
906 sector_t retval
= ~((sector_t
)0);
907 loff_t sz
= i_size_read(bdev
->bd_inode
);
910 unsigned int sizebits
= blksize_bits(size
);
911 retval
= (sz
>> sizebits
);
917 * Initialise the state of a blockdev page's buffers.
920 init_page_buffers(struct page
*page
, struct block_device
*bdev
,
921 sector_t block
, int size
)
923 struct buffer_head
*head
= page_buffers(page
);
924 struct buffer_head
*bh
= head
;
925 int uptodate
= PageUptodate(page
);
926 sector_t end_block
= blkdev_max_block(I_BDEV(bdev
->bd_inode
), size
);
929 if (!buffer_mapped(bh
)) {
931 bh
->b_private
= NULL
;
933 bh
->b_blocknr
= block
;
935 set_buffer_uptodate(bh
);
936 if (block
< end_block
)
937 set_buffer_mapped(bh
);
940 bh
= bh
->b_this_page
;
941 } while (bh
!= head
);
944 * Caller needs to validate requested block against end of device.
950 * Create the page-cache page that contains the requested block.
952 * This is used purely for blockdev mappings.
955 grow_dev_page(struct block_device
*bdev
, sector_t block
,
956 pgoff_t index
, int size
, int sizebits
, gfp_t gfp
)
958 struct inode
*inode
= bdev
->bd_inode
;
960 struct buffer_head
*bh
;
965 gfp_mask
= mapping_gfp_constraint(inode
->i_mapping
, ~__GFP_FS
) | gfp
;
968 * XXX: __getblk_slow() can not really deal with failure and
969 * will endlessly loop on improvised global reclaim. Prefer
970 * looping in the allocator rather than here, at least that
971 * code knows what it's doing.
973 gfp_mask
|= __GFP_NOFAIL
;
975 page
= find_or_create_page(inode
->i_mapping
, index
, gfp_mask
);
977 BUG_ON(!PageLocked(page
));
979 if (page_has_buffers(page
)) {
980 bh
= page_buffers(page
);
981 if (bh
->b_size
== size
) {
982 end_block
= init_page_buffers(page
, bdev
,
983 (sector_t
)index
<< sizebits
,
987 if (!try_to_free_buffers(page
))
992 * Allocate some buffers for this page
994 bh
= alloc_page_buffers(page
, size
, true);
997 * Link the page to the buffers and initialise them. Take the
998 * lock to be atomic wrt __find_get_block(), which does not
999 * run under the page lock.
1001 spin_lock(&inode
->i_mapping
->private_lock
);
1002 link_dev_buffers(page
, bh
);
1003 end_block
= init_page_buffers(page
, bdev
, (sector_t
)index
<< sizebits
,
1005 spin_unlock(&inode
->i_mapping
->private_lock
);
1007 ret
= (block
< end_block
) ? 1 : -ENXIO
;
1015 * Create buffers for the specified block device block's page. If
1016 * that page was dirty, the buffers are set dirty also.
1019 grow_buffers(struct block_device
*bdev
, sector_t block
, int size
, gfp_t gfp
)
1027 } while ((size
<< sizebits
) < PAGE_SIZE
);
1029 index
= block
>> sizebits
;
1032 * Check for a block which wants to lie outside our maximum possible
1033 * pagecache index. (this comparison is done using sector_t types).
1035 if (unlikely(index
!= block
>> sizebits
)) {
1036 printk(KERN_ERR
"%s: requested out-of-range block %llu for "
1038 __func__
, (unsigned long long)block
,
1043 /* Create a page with the proper size buffers.. */
1044 return grow_dev_page(bdev
, block
, index
, size
, sizebits
, gfp
);
1047 static struct buffer_head
*
1048 __getblk_slow(struct block_device
*bdev
, sector_t block
,
1049 unsigned size
, gfp_t gfp
)
1051 /* Size must be multiple of hard sectorsize */
1052 if (unlikely(size
& (bdev_logical_block_size(bdev
)-1) ||
1053 (size
< 512 || size
> PAGE_SIZE
))) {
1054 printk(KERN_ERR
"getblk(): invalid block size %d requested\n",
1056 printk(KERN_ERR
"logical block size: %d\n",
1057 bdev_logical_block_size(bdev
));
1064 struct buffer_head
*bh
;
1067 bh
= __find_get_block(bdev
, block
, size
);
1071 ret
= grow_buffers(bdev
, block
, size
, gfp
);
1078 * The relationship between dirty buffers and dirty pages:
1080 * Whenever a page has any dirty buffers, the page's dirty bit is set, and
1081 * the page is tagged dirty in the page cache.
1083 * At all times, the dirtiness of the buffers represents the dirtiness of
1084 * subsections of the page. If the page has buffers, the page dirty bit is
1085 * merely a hint about the true dirty state.
1087 * When a page is set dirty in its entirety, all its buffers are marked dirty
1088 * (if the page has buffers).
1090 * When a buffer is marked dirty, its page is dirtied, but the page's other
1093 * Also. When blockdev buffers are explicitly read with bread(), they
1094 * individually become uptodate. But their backing page remains not
1095 * uptodate - even if all of its buffers are uptodate. A subsequent
1096 * block_read_full_page() against that page will discover all the uptodate
1097 * buffers, will set the page uptodate and will perform no I/O.
1101 * mark_buffer_dirty - mark a buffer_head as needing writeout
1102 * @bh: the buffer_head to mark dirty
1104 * mark_buffer_dirty() will set the dirty bit against the buffer, then set
1105 * its backing page dirty, then tag the page as dirty in the page cache
1106 * and then attach the address_space's inode to its superblock's dirty
1109 * mark_buffer_dirty() is atomic. It takes bh->b_page->mapping->private_lock,
1110 * i_pages lock and mapping->host->i_lock.
1112 void mark_buffer_dirty(struct buffer_head
*bh
)
1114 WARN_ON_ONCE(!buffer_uptodate(bh
));
1116 trace_block_dirty_buffer(bh
);
1119 * Very *carefully* optimize the it-is-already-dirty case.
1121 * Don't let the final "is it dirty" escape to before we
1122 * perhaps modified the buffer.
1124 if (buffer_dirty(bh
)) {
1126 if (buffer_dirty(bh
))
1130 if (!test_set_buffer_dirty(bh
)) {
1131 struct page
*page
= bh
->b_page
;
1132 struct address_space
*mapping
= NULL
;
1134 lock_page_memcg(page
);
1135 if (!TestSetPageDirty(page
)) {
1136 mapping
= page_mapping(page
);
1138 __set_page_dirty(page
, mapping
, 0);
1140 unlock_page_memcg(page
);
1142 __mark_inode_dirty(mapping
->host
, I_DIRTY_PAGES
);
1145 EXPORT_SYMBOL(mark_buffer_dirty
);
1147 void mark_buffer_write_io_error(struct buffer_head
*bh
)
1149 struct super_block
*sb
;
1151 set_buffer_write_io_error(bh
);
1152 /* FIXME: do we need to set this in both places? */
1153 if (bh
->b_page
&& bh
->b_page
->mapping
)
1154 mapping_set_error(bh
->b_page
->mapping
, -EIO
);
1155 if (bh
->b_assoc_map
)
1156 mapping_set_error(bh
->b_assoc_map
, -EIO
);
1158 sb
= READ_ONCE(bh
->b_bdev
->bd_super
);
1160 errseq_set(&sb
->s_wb_err
, -EIO
);
1163 EXPORT_SYMBOL(mark_buffer_write_io_error
);
1166 * Decrement a buffer_head's reference count. If all buffers against a page
1167 * have zero reference count, are clean and unlocked, and if the page is clean
1168 * and unlocked then try_to_free_buffers() may strip the buffers from the page
1169 * in preparation for freeing it (sometimes, rarely, buffers are removed from
1170 * a page but it ends up not being freed, and buffers may later be reattached).
1172 void __brelse(struct buffer_head
* buf
)
1174 if (atomic_read(&buf
->b_count
)) {
1178 WARN(1, KERN_ERR
"VFS: brelse: Trying to free free buffer\n");
1180 EXPORT_SYMBOL(__brelse
);
1183 * bforget() is like brelse(), except it discards any
1184 * potentially dirty data.
1186 void __bforget(struct buffer_head
*bh
)
1188 clear_buffer_dirty(bh
);
1189 if (bh
->b_assoc_map
) {
1190 struct address_space
*buffer_mapping
= bh
->b_page
->mapping
;
1192 spin_lock(&buffer_mapping
->private_lock
);
1193 list_del_init(&bh
->b_assoc_buffers
);
1194 bh
->b_assoc_map
= NULL
;
1195 spin_unlock(&buffer_mapping
->private_lock
);
1199 EXPORT_SYMBOL(__bforget
);
1201 static struct buffer_head
*__bread_slow(struct buffer_head
*bh
)
1204 if (buffer_uptodate(bh
)) {
1209 bh
->b_end_io
= end_buffer_read_sync
;
1210 submit_bh(REQ_OP_READ
, 0, bh
);
1212 if (buffer_uptodate(bh
))
1220 * Per-cpu buffer LRU implementation. To reduce the cost of __find_get_block().
1221 * The bhs[] array is sorted - newest buffer is at bhs[0]. Buffers have their
1222 * refcount elevated by one when they're in an LRU. A buffer can only appear
1223 * once in a particular CPU's LRU. A single buffer can be present in multiple
1224 * CPU's LRUs at the same time.
1226 * This is a transparent caching front-end to sb_bread(), sb_getblk() and
1227 * sb_find_get_block().
1229 * The LRUs themselves only need locking against invalidate_bh_lrus. We use
1230 * a local interrupt disable for that.
1233 #define BH_LRU_SIZE 16
1236 struct buffer_head
*bhs
[BH_LRU_SIZE
];
1239 static DEFINE_PER_CPU(struct bh_lru
, bh_lrus
) = {{ NULL
}};
1242 #define bh_lru_lock() local_irq_disable()
1243 #define bh_lru_unlock() local_irq_enable()
1245 #define bh_lru_lock() preempt_disable()
1246 #define bh_lru_unlock() preempt_enable()
1249 static inline void check_irqs_on(void)
1251 #ifdef irqs_disabled
1252 BUG_ON(irqs_disabled());
1257 * Install a buffer_head into this cpu's LRU. If not already in the LRU, it is
1258 * inserted at the front, and the buffer_head at the back if any is evicted.
1259 * Or, if already in the LRU it is moved to the front.
1261 static void bh_lru_install(struct buffer_head
*bh
)
1263 struct buffer_head
*evictee
= bh
;
1270 b
= this_cpu_ptr(&bh_lrus
);
1271 for (i
= 0; i
< BH_LRU_SIZE
; i
++) {
1272 swap(evictee
, b
->bhs
[i
]);
1273 if (evictee
== bh
) {
1285 * Look up the bh in this cpu's LRU. If it's there, move it to the head.
1287 static struct buffer_head
*
1288 lookup_bh_lru(struct block_device
*bdev
, sector_t block
, unsigned size
)
1290 struct buffer_head
*ret
= NULL
;
1295 for (i
= 0; i
< BH_LRU_SIZE
; i
++) {
1296 struct buffer_head
*bh
= __this_cpu_read(bh_lrus
.bhs
[i
]);
1298 if (bh
&& bh
->b_blocknr
== block
&& bh
->b_bdev
== bdev
&&
1299 bh
->b_size
== size
) {
1302 __this_cpu_write(bh_lrus
.bhs
[i
],
1303 __this_cpu_read(bh_lrus
.bhs
[i
- 1]));
1306 __this_cpu_write(bh_lrus
.bhs
[0], bh
);
1318 * Perform a pagecache lookup for the matching buffer. If it's there, refresh
1319 * it in the LRU and mark it as accessed. If it is not present then return
1322 struct buffer_head
*
1323 __find_get_block(struct block_device
*bdev
, sector_t block
, unsigned size
)
1325 struct buffer_head
*bh
= lookup_bh_lru(bdev
, block
, size
);
1328 /* __find_get_block_slow will mark the page accessed */
1329 bh
= __find_get_block_slow(bdev
, block
);
1337 EXPORT_SYMBOL(__find_get_block
);
1340 * __getblk_gfp() will locate (and, if necessary, create) the buffer_head
1341 * which corresponds to the passed block_device, block and size. The
1342 * returned buffer has its reference count incremented.
1344 * __getblk_gfp() will lock up the machine if grow_dev_page's
1345 * try_to_free_buffers() attempt is failing. FIXME, perhaps?
1347 struct buffer_head
*
1348 __getblk_gfp(struct block_device
*bdev
, sector_t block
,
1349 unsigned size
, gfp_t gfp
)
1351 struct buffer_head
*bh
= __find_get_block(bdev
, block
, size
);
1355 bh
= __getblk_slow(bdev
, block
, size
, gfp
);
1358 EXPORT_SYMBOL(__getblk_gfp
);
1361 * Do async read-ahead on a buffer..
1363 void __breadahead(struct block_device
*bdev
, sector_t block
, unsigned size
)
1365 struct buffer_head
*bh
= __getblk(bdev
, block
, size
);
1367 ll_rw_block(REQ_OP_READ
, REQ_RAHEAD
, 1, &bh
);
1371 EXPORT_SYMBOL(__breadahead
);
1373 void __breadahead_gfp(struct block_device
*bdev
, sector_t block
, unsigned size
,
1376 struct buffer_head
*bh
= __getblk_gfp(bdev
, block
, size
, gfp
);
1378 ll_rw_block(REQ_OP_READ
, REQ_RAHEAD
, 1, &bh
);
1382 EXPORT_SYMBOL(__breadahead_gfp
);
1385 * __bread_gfp() - reads a specified block and returns the bh
1386 * @bdev: the block_device to read from
1387 * @block: number of block
1388 * @size: size (in bytes) to read
1389 * @gfp: page allocation flag
1391 * Reads a specified block, and returns buffer head that contains it.
1392 * The page cache can be allocated from non-movable area
1393 * not to prevent page migration if you set gfp to zero.
1394 * It returns NULL if the block was unreadable.
1396 struct buffer_head
*
1397 __bread_gfp(struct block_device
*bdev
, sector_t block
,
1398 unsigned size
, gfp_t gfp
)
1400 struct buffer_head
*bh
= __getblk_gfp(bdev
, block
, size
, gfp
);
1402 if (likely(bh
) && !buffer_uptodate(bh
))
1403 bh
= __bread_slow(bh
);
1406 EXPORT_SYMBOL(__bread_gfp
);
1409 * invalidate_bh_lrus() is called rarely - but not only at unmount.
1410 * This doesn't race because it runs in each cpu either in irq
1411 * or with preempt disabled.
1413 static void invalidate_bh_lru(void *arg
)
1415 struct bh_lru
*b
= &get_cpu_var(bh_lrus
);
1418 for (i
= 0; i
< BH_LRU_SIZE
; i
++) {
1422 put_cpu_var(bh_lrus
);
1425 static bool has_bh_in_lru(int cpu
, void *dummy
)
1427 struct bh_lru
*b
= per_cpu_ptr(&bh_lrus
, cpu
);
1430 for (i
= 0; i
< BH_LRU_SIZE
; i
++) {
1438 void invalidate_bh_lrus(void)
1440 on_each_cpu_cond(has_bh_in_lru
, invalidate_bh_lru
, NULL
, 1);
1442 EXPORT_SYMBOL_GPL(invalidate_bh_lrus
);
1444 void set_bh_page(struct buffer_head
*bh
,
1445 struct page
*page
, unsigned long offset
)
1448 BUG_ON(offset
>= PAGE_SIZE
);
1449 if (PageHighMem(page
))
1451 * This catches illegal uses and preserves the offset:
1453 bh
->b_data
= (char *)(0 + offset
);
1455 bh
->b_data
= page_address(page
) + offset
;
1457 EXPORT_SYMBOL(set_bh_page
);
1460 * Called when truncating a buffer on a page completely.
1463 /* Bits that are cleared during an invalidate */
1464 #define BUFFER_FLAGS_DISCARD \
1465 (1 << BH_Mapped | 1 << BH_New | 1 << BH_Req | \
1466 1 << BH_Delay | 1 << BH_Unwritten)
1468 static void discard_buffer(struct buffer_head
* bh
)
1470 unsigned long b_state
, b_state_old
;
1473 clear_buffer_dirty(bh
);
1475 b_state
= bh
->b_state
;
1477 b_state_old
= cmpxchg(&bh
->b_state
, b_state
,
1478 (b_state
& ~BUFFER_FLAGS_DISCARD
));
1479 if (b_state_old
== b_state
)
1481 b_state
= b_state_old
;
1487 * block_invalidatepage - invalidate part or all of a buffer-backed page
1489 * @page: the page which is affected
1490 * @offset: start of the range to invalidate
1491 * @length: length of the range to invalidate
1493 * block_invalidatepage() is called when all or part of the page has become
1494 * invalidated by a truncate operation.
1496 * block_invalidatepage() does not have to release all buffers, but it must
1497 * ensure that no dirty buffer is left outside @offset and that no I/O
1498 * is underway against any of the blocks which are outside the truncation
1499 * point. Because the caller is about to free (and possibly reuse) those
1502 void block_invalidatepage(struct page
*page
, unsigned int offset
,
1503 unsigned int length
)
1505 struct buffer_head
*head
, *bh
, *next
;
1506 unsigned int curr_off
= 0;
1507 unsigned int stop
= length
+ offset
;
1509 BUG_ON(!PageLocked(page
));
1510 if (!page_has_buffers(page
))
1514 * Check for overflow
1516 BUG_ON(stop
> PAGE_SIZE
|| stop
< length
);
1518 head
= page_buffers(page
);
1521 unsigned int next_off
= curr_off
+ bh
->b_size
;
1522 next
= bh
->b_this_page
;
1525 * Are we still fully in range ?
1527 if (next_off
> stop
)
1531 * is this block fully invalidated?
1533 if (offset
<= curr_off
)
1535 curr_off
= next_off
;
1537 } while (bh
!= head
);
1540 * We release buffers only if the entire page is being invalidated.
1541 * The get_block cached value has been unconditionally invalidated,
1542 * so real IO is not possible anymore.
1544 if (length
== PAGE_SIZE
)
1545 try_to_release_page(page
, 0);
1549 EXPORT_SYMBOL(block_invalidatepage
);
1553 * We attach and possibly dirty the buffers atomically wrt
1554 * __set_page_dirty_buffers() via private_lock. try_to_free_buffers
1555 * is already excluded via the page lock.
1557 void create_empty_buffers(struct page
*page
,
1558 unsigned long blocksize
, unsigned long b_state
)
1560 struct buffer_head
*bh
, *head
, *tail
;
1562 head
= alloc_page_buffers(page
, blocksize
, true);
1565 bh
->b_state
|= b_state
;
1567 bh
= bh
->b_this_page
;
1569 tail
->b_this_page
= head
;
1571 spin_lock(&page
->mapping
->private_lock
);
1572 if (PageUptodate(page
) || PageDirty(page
)) {
1575 if (PageDirty(page
))
1576 set_buffer_dirty(bh
);
1577 if (PageUptodate(page
))
1578 set_buffer_uptodate(bh
);
1579 bh
= bh
->b_this_page
;
1580 } while (bh
!= head
);
1582 attach_page_private(page
, head
);
1583 spin_unlock(&page
->mapping
->private_lock
);
1585 EXPORT_SYMBOL(create_empty_buffers
);
1588 * clean_bdev_aliases: clean a range of buffers in block device
1589 * @bdev: Block device to clean buffers in
1590 * @block: Start of a range of blocks to clean
1591 * @len: Number of blocks to clean
1593 * We are taking a range of blocks for data and we don't want writeback of any
1594 * buffer-cache aliases starting from return from this function and until the
1595 * moment when something will explicitly mark the buffer dirty (hopefully that
1596 * will not happen until we will free that block ;-) We don't even need to mark
1597 * it not-uptodate - nobody can expect anything from a newly allocated buffer
1598 * anyway. We used to use unmap_buffer() for such invalidation, but that was
1599 * wrong. We definitely don't want to mark the alias unmapped, for example - it
1600 * would confuse anyone who might pick it with bread() afterwards...
1602 * Also.. Note that bforget() doesn't lock the buffer. So there can be
1603 * writeout I/O going on against recently-freed buffers. We don't wait on that
1604 * I/O in bforget() - it's more efficient to wait on the I/O only if we really
1605 * need to. That happens here.
1607 void clean_bdev_aliases(struct block_device
*bdev
, sector_t block
, sector_t len
)
1609 struct inode
*bd_inode
= bdev
->bd_inode
;
1610 struct address_space
*bd_mapping
= bd_inode
->i_mapping
;
1611 struct pagevec pvec
;
1612 pgoff_t index
= block
>> (PAGE_SHIFT
- bd_inode
->i_blkbits
);
1615 struct buffer_head
*bh
;
1616 struct buffer_head
*head
;
1618 end
= (block
+ len
- 1) >> (PAGE_SHIFT
- bd_inode
->i_blkbits
);
1619 pagevec_init(&pvec
);
1620 while (pagevec_lookup_range(&pvec
, bd_mapping
, &index
, end
)) {
1621 count
= pagevec_count(&pvec
);
1622 for (i
= 0; i
< count
; i
++) {
1623 struct page
*page
= pvec
.pages
[i
];
1625 if (!page_has_buffers(page
))
1628 * We use page lock instead of bd_mapping->private_lock
1629 * to pin buffers here since we can afford to sleep and
1630 * it scales better than a global spinlock lock.
1633 /* Recheck when the page is locked which pins bhs */
1634 if (!page_has_buffers(page
))
1636 head
= page_buffers(page
);
1639 if (!buffer_mapped(bh
) || (bh
->b_blocknr
< block
))
1641 if (bh
->b_blocknr
>= block
+ len
)
1643 clear_buffer_dirty(bh
);
1645 clear_buffer_req(bh
);
1647 bh
= bh
->b_this_page
;
1648 } while (bh
!= head
);
1652 pagevec_release(&pvec
);
1654 /* End of range already reached? */
1655 if (index
> end
|| !index
)
1659 EXPORT_SYMBOL(clean_bdev_aliases
);
1662 * Size is a power-of-two in the range 512..PAGE_SIZE,
1663 * and the case we care about most is PAGE_SIZE.
1665 * So this *could* possibly be written with those
1666 * constraints in mind (relevant mostly if some
1667 * architecture has a slow bit-scan instruction)
1669 static inline int block_size_bits(unsigned int blocksize
)
1671 return ilog2(blocksize
);
1674 static struct buffer_head
*create_page_buffers(struct page
*page
, struct inode
*inode
, unsigned int b_state
)
1676 BUG_ON(!PageLocked(page
));
1678 if (!page_has_buffers(page
))
1679 create_empty_buffers(page
, 1 << READ_ONCE(inode
->i_blkbits
),
1681 return page_buffers(page
);
1685 * NOTE! All mapped/uptodate combinations are valid:
1687 * Mapped Uptodate Meaning
1689 * No No "unknown" - must do get_block()
1690 * No Yes "hole" - zero-filled
1691 * Yes No "allocated" - allocated on disk, not read in
1692 * Yes Yes "valid" - allocated and up-to-date in memory.
1694 * "Dirty" is valid only with the last case (mapped+uptodate).
1698 * While block_write_full_page is writing back the dirty buffers under
1699 * the page lock, whoever dirtied the buffers may decide to clean them
1700 * again at any time. We handle that by only looking at the buffer
1701 * state inside lock_buffer().
1703 * If block_write_full_page() is called for regular writeback
1704 * (wbc->sync_mode == WB_SYNC_NONE) then it will redirty a page which has a
1705 * locked buffer. This only can happen if someone has written the buffer
1706 * directly, with submit_bh(). At the address_space level PageWriteback
1707 * prevents this contention from occurring.
1709 * If block_write_full_page() is called with wbc->sync_mode ==
1710 * WB_SYNC_ALL, the writes are posted using REQ_SYNC; this
1711 * causes the writes to be flagged as synchronous writes.
1713 int __block_write_full_page(struct inode
*inode
, struct page
*page
,
1714 get_block_t
*get_block
, struct writeback_control
*wbc
,
1715 bh_end_io_t
*handler
)
1719 sector_t last_block
;
1720 struct buffer_head
*bh
, *head
;
1721 unsigned int blocksize
, bbits
;
1722 int nr_underway
= 0;
1723 int write_flags
= wbc_to_write_flags(wbc
);
1725 head
= create_page_buffers(page
, inode
,
1726 (1 << BH_Dirty
)|(1 << BH_Uptodate
));
1729 * Be very careful. We have no exclusion from __set_page_dirty_buffers
1730 * here, and the (potentially unmapped) buffers may become dirty at
1731 * any time. If a buffer becomes dirty here after we've inspected it
1732 * then we just miss that fact, and the page stays dirty.
1734 * Buffers outside i_size may be dirtied by __set_page_dirty_buffers;
1735 * handle that here by just cleaning them.
1739 blocksize
= bh
->b_size
;
1740 bbits
= block_size_bits(blocksize
);
1742 block
= (sector_t
)page
->index
<< (PAGE_SHIFT
- bbits
);
1743 last_block
= (i_size_read(inode
) - 1) >> bbits
;
1746 * Get all the dirty buffers mapped to disk addresses and
1747 * handle any aliases from the underlying blockdev's mapping.
1750 if (block
> last_block
) {
1752 * mapped buffers outside i_size will occur, because
1753 * this page can be outside i_size when there is a
1754 * truncate in progress.
1757 * The buffer was zeroed by block_write_full_page()
1759 clear_buffer_dirty(bh
);
1760 set_buffer_uptodate(bh
);
1761 } else if ((!buffer_mapped(bh
) || buffer_delay(bh
)) &&
1763 WARN_ON(bh
->b_size
!= blocksize
);
1764 err
= get_block(inode
, block
, bh
, 1);
1767 clear_buffer_delay(bh
);
1768 if (buffer_new(bh
)) {
1769 /* blockdev mappings never come here */
1770 clear_buffer_new(bh
);
1771 clean_bdev_bh_alias(bh
);
1774 bh
= bh
->b_this_page
;
1776 } while (bh
!= head
);
1779 if (!buffer_mapped(bh
))
1782 * If it's a fully non-blocking write attempt and we cannot
1783 * lock the buffer then redirty the page. Note that this can
1784 * potentially cause a busy-wait loop from writeback threads
1785 * and kswapd activity, but those code paths have their own
1786 * higher-level throttling.
1788 if (wbc
->sync_mode
!= WB_SYNC_NONE
) {
1790 } else if (!trylock_buffer(bh
)) {
1791 redirty_page_for_writepage(wbc
, page
);
1794 if (test_clear_buffer_dirty(bh
)) {
1795 mark_buffer_async_write_endio(bh
, handler
);
1799 } while ((bh
= bh
->b_this_page
) != head
);
1802 * The page and its buffers are protected by PageWriteback(), so we can
1803 * drop the bh refcounts early.
1805 BUG_ON(PageWriteback(page
));
1806 set_page_writeback(page
);
1809 struct buffer_head
*next
= bh
->b_this_page
;
1810 if (buffer_async_write(bh
)) {
1811 submit_bh_wbc(REQ_OP_WRITE
, write_flags
, bh
,
1812 inode
->i_write_hint
, wbc
);
1816 } while (bh
!= head
);
1821 if (nr_underway
== 0) {
1823 * The page was marked dirty, but the buffers were
1824 * clean. Someone wrote them back by hand with
1825 * ll_rw_block/submit_bh. A rare case.
1827 end_page_writeback(page
);
1830 * The page and buffer_heads can be released at any time from
1838 * ENOSPC, or some other error. We may already have added some
1839 * blocks to the file, so we need to write these out to avoid
1840 * exposing stale data.
1841 * The page is currently locked and not marked for writeback
1844 /* Recovery: lock and submit the mapped buffers */
1846 if (buffer_mapped(bh
) && buffer_dirty(bh
) &&
1847 !buffer_delay(bh
)) {
1849 mark_buffer_async_write_endio(bh
, handler
);
1852 * The buffer may have been set dirty during
1853 * attachment to a dirty page.
1855 clear_buffer_dirty(bh
);
1857 } while ((bh
= bh
->b_this_page
) != head
);
1859 BUG_ON(PageWriteback(page
));
1860 mapping_set_error(page
->mapping
, err
);
1861 set_page_writeback(page
);
1863 struct buffer_head
*next
= bh
->b_this_page
;
1864 if (buffer_async_write(bh
)) {
1865 clear_buffer_dirty(bh
);
1866 submit_bh_wbc(REQ_OP_WRITE
, write_flags
, bh
,
1867 inode
->i_write_hint
, wbc
);
1871 } while (bh
!= head
);
1875 EXPORT_SYMBOL(__block_write_full_page
);
1878 * If a page has any new buffers, zero them out here, and mark them uptodate
1879 * and dirty so they'll be written out (in order to prevent uninitialised
1880 * block data from leaking). And clear the new bit.
1882 void page_zero_new_buffers(struct page
*page
, unsigned from
, unsigned to
)
1884 unsigned int block_start
, block_end
;
1885 struct buffer_head
*head
, *bh
;
1887 BUG_ON(!PageLocked(page
));
1888 if (!page_has_buffers(page
))
1891 bh
= head
= page_buffers(page
);
1894 block_end
= block_start
+ bh
->b_size
;
1896 if (buffer_new(bh
)) {
1897 if (block_end
> from
&& block_start
< to
) {
1898 if (!PageUptodate(page
)) {
1899 unsigned start
, size
;
1901 start
= max(from
, block_start
);
1902 size
= min(to
, block_end
) - start
;
1904 zero_user(page
, start
, size
);
1905 set_buffer_uptodate(bh
);
1908 clear_buffer_new(bh
);
1909 mark_buffer_dirty(bh
);
1913 block_start
= block_end
;
1914 bh
= bh
->b_this_page
;
1915 } while (bh
!= head
);
1917 EXPORT_SYMBOL(page_zero_new_buffers
);
1920 iomap_to_bh(struct inode
*inode
, sector_t block
, struct buffer_head
*bh
,
1921 struct iomap
*iomap
)
1923 loff_t offset
= block
<< inode
->i_blkbits
;
1925 bh
->b_bdev
= iomap
->bdev
;
1928 * Block points to offset in file we need to map, iomap contains
1929 * the offset at which the map starts. If the map ends before the
1930 * current block, then do not map the buffer and let the caller
1933 BUG_ON(offset
>= iomap
->offset
+ iomap
->length
);
1935 switch (iomap
->type
) {
1938 * If the buffer is not up to date or beyond the current EOF,
1939 * we need to mark it as new to ensure sub-block zeroing is
1940 * executed if necessary.
1942 if (!buffer_uptodate(bh
) ||
1943 (offset
>= i_size_read(inode
)))
1946 case IOMAP_DELALLOC
:
1947 if (!buffer_uptodate(bh
) ||
1948 (offset
>= i_size_read(inode
)))
1950 set_buffer_uptodate(bh
);
1951 set_buffer_mapped(bh
);
1952 set_buffer_delay(bh
);
1954 case IOMAP_UNWRITTEN
:
1956 * For unwritten regions, we always need to ensure that regions
1957 * in the block we are not writing to are zeroed. Mark the
1958 * buffer as new to ensure this.
1961 set_buffer_unwritten(bh
);
1964 if ((iomap
->flags
& IOMAP_F_NEW
) ||
1965 offset
>= i_size_read(inode
))
1967 bh
->b_blocknr
= (iomap
->addr
+ offset
- iomap
->offset
) >>
1969 set_buffer_mapped(bh
);
1974 int __block_write_begin_int(struct page
*page
, loff_t pos
, unsigned len
,
1975 get_block_t
*get_block
, struct iomap
*iomap
)
1977 unsigned from
= pos
& (PAGE_SIZE
- 1);
1978 unsigned to
= from
+ len
;
1979 struct inode
*inode
= page
->mapping
->host
;
1980 unsigned block_start
, block_end
;
1983 unsigned blocksize
, bbits
;
1984 struct buffer_head
*bh
, *head
, *wait
[2], **wait_bh
=wait
;
1986 BUG_ON(!PageLocked(page
));
1987 BUG_ON(from
> PAGE_SIZE
);
1988 BUG_ON(to
> PAGE_SIZE
);
1991 head
= create_page_buffers(page
, inode
, 0);
1992 blocksize
= head
->b_size
;
1993 bbits
= block_size_bits(blocksize
);
1995 block
= (sector_t
)page
->index
<< (PAGE_SHIFT
- bbits
);
1997 for(bh
= head
, block_start
= 0; bh
!= head
|| !block_start
;
1998 block
++, block_start
=block_end
, bh
= bh
->b_this_page
) {
1999 block_end
= block_start
+ blocksize
;
2000 if (block_end
<= from
|| block_start
>= to
) {
2001 if (PageUptodate(page
)) {
2002 if (!buffer_uptodate(bh
))
2003 set_buffer_uptodate(bh
);
2008 clear_buffer_new(bh
);
2009 if (!buffer_mapped(bh
)) {
2010 WARN_ON(bh
->b_size
!= blocksize
);
2012 err
= get_block(inode
, block
, bh
, 1);
2016 iomap_to_bh(inode
, block
, bh
, iomap
);
2019 if (buffer_new(bh
)) {
2020 clean_bdev_bh_alias(bh
);
2021 if (PageUptodate(page
)) {
2022 clear_buffer_new(bh
);
2023 set_buffer_uptodate(bh
);
2024 mark_buffer_dirty(bh
);
2027 if (block_end
> to
|| block_start
< from
)
2028 zero_user_segments(page
,
2034 if (PageUptodate(page
)) {
2035 if (!buffer_uptodate(bh
))
2036 set_buffer_uptodate(bh
);
2039 if (!buffer_uptodate(bh
) && !buffer_delay(bh
) &&
2040 !buffer_unwritten(bh
) &&
2041 (block_start
< from
|| block_end
> to
)) {
2042 ll_rw_block(REQ_OP_READ
, 0, 1, &bh
);
2047 * If we issued read requests - let them complete.
2049 while(wait_bh
> wait
) {
2050 wait_on_buffer(*--wait_bh
);
2051 if (!buffer_uptodate(*wait_bh
))
2055 page_zero_new_buffers(page
, from
, to
);
2059 int __block_write_begin(struct page
*page
, loff_t pos
, unsigned len
,
2060 get_block_t
*get_block
)
2062 return __block_write_begin_int(page
, pos
, len
, get_block
, NULL
);
2064 EXPORT_SYMBOL(__block_write_begin
);
2066 static int __block_commit_write(struct inode
*inode
, struct page
*page
,
2067 unsigned from
, unsigned to
)
2069 unsigned block_start
, block_end
;
2072 struct buffer_head
*bh
, *head
;
2074 bh
= head
= page_buffers(page
);
2075 blocksize
= bh
->b_size
;
2079 block_end
= block_start
+ blocksize
;
2080 if (block_end
<= from
|| block_start
>= to
) {
2081 if (!buffer_uptodate(bh
))
2084 set_buffer_uptodate(bh
);
2085 mark_buffer_dirty(bh
);
2087 clear_buffer_new(bh
);
2089 block_start
= block_end
;
2090 bh
= bh
->b_this_page
;
2091 } while (bh
!= head
);
2094 * If this is a partial write which happened to make all buffers
2095 * uptodate then we can optimize away a bogus readpage() for
2096 * the next read(). Here we 'discover' whether the page went
2097 * uptodate as a result of this (potentially partial) write.
2100 SetPageUptodate(page
);
2105 * block_write_begin takes care of the basic task of block allocation and
2106 * bringing partial write blocks uptodate first.
2108 * The filesystem needs to handle block truncation upon failure.
2110 int block_write_begin(struct address_space
*mapping
, loff_t pos
, unsigned len
,
2111 unsigned flags
, struct page
**pagep
, get_block_t
*get_block
)
2113 pgoff_t index
= pos
>> PAGE_SHIFT
;
2117 page
= grab_cache_page_write_begin(mapping
, index
, flags
);
2121 status
= __block_write_begin(page
, pos
, len
, get_block
);
2122 if (unlikely(status
)) {
2131 EXPORT_SYMBOL(block_write_begin
);
2133 int block_write_end(struct file
*file
, struct address_space
*mapping
,
2134 loff_t pos
, unsigned len
, unsigned copied
,
2135 struct page
*page
, void *fsdata
)
2137 struct inode
*inode
= mapping
->host
;
2140 start
= pos
& (PAGE_SIZE
- 1);
2142 if (unlikely(copied
< len
)) {
2144 * The buffers that were written will now be uptodate, so we
2145 * don't have to worry about a readpage reading them and
2146 * overwriting a partial write. However if we have encountered
2147 * a short write and only partially written into a buffer, it
2148 * will not be marked uptodate, so a readpage might come in and
2149 * destroy our partial write.
2151 * Do the simplest thing, and just treat any short write to a
2152 * non uptodate page as a zero-length write, and force the
2153 * caller to redo the whole thing.
2155 if (!PageUptodate(page
))
2158 page_zero_new_buffers(page
, start
+copied
, start
+len
);
2160 flush_dcache_page(page
);
2162 /* This could be a short (even 0-length) commit */
2163 __block_commit_write(inode
, page
, start
, start
+copied
);
2167 EXPORT_SYMBOL(block_write_end
);
2169 int generic_write_end(struct file
*file
, struct address_space
*mapping
,
2170 loff_t pos
, unsigned len
, unsigned copied
,
2171 struct page
*page
, void *fsdata
)
2173 struct inode
*inode
= mapping
->host
;
2174 loff_t old_size
= inode
->i_size
;
2175 bool i_size_changed
= false;
2177 copied
= block_write_end(file
, mapping
, pos
, len
, copied
, page
, fsdata
);
2180 * No need to use i_size_read() here, the i_size cannot change under us
2181 * because we hold i_rwsem.
2183 * But it's important to update i_size while still holding page lock:
2184 * page writeout could otherwise come in and zero beyond i_size.
2186 if (pos
+ copied
> inode
->i_size
) {
2187 i_size_write(inode
, pos
+ copied
);
2188 i_size_changed
= true;
2195 pagecache_isize_extended(inode
, old_size
, pos
);
2197 * Don't mark the inode dirty under page lock. First, it unnecessarily
2198 * makes the holding time of page lock longer. Second, it forces lock
2199 * ordering of page lock and transaction start for journaling
2203 mark_inode_dirty(inode
);
2206 EXPORT_SYMBOL(generic_write_end
);
2209 * block_is_partially_uptodate checks whether buffers within a page are
2212 * Returns true if all buffers which correspond to a file portion
2213 * we want to read are uptodate.
2215 int block_is_partially_uptodate(struct page
*page
, unsigned long from
,
2216 unsigned long count
)
2218 unsigned block_start
, block_end
, blocksize
;
2220 struct buffer_head
*bh
, *head
;
2223 if (!page_has_buffers(page
))
2226 head
= page_buffers(page
);
2227 blocksize
= head
->b_size
;
2228 to
= min_t(unsigned, PAGE_SIZE
- from
, count
);
2230 if (from
< blocksize
&& to
> PAGE_SIZE
- blocksize
)
2236 block_end
= block_start
+ blocksize
;
2237 if (block_end
> from
&& block_start
< to
) {
2238 if (!buffer_uptodate(bh
)) {
2242 if (block_end
>= to
)
2245 block_start
= block_end
;
2246 bh
= bh
->b_this_page
;
2247 } while (bh
!= head
);
2251 EXPORT_SYMBOL(block_is_partially_uptodate
);
2254 * Generic "read page" function for block devices that have the normal
2255 * get_block functionality. This is most of the block device filesystems.
2256 * Reads the page asynchronously --- the unlock_buffer() and
2257 * set/clear_buffer_uptodate() functions propagate buffer state into the
2258 * page struct once IO has completed.
2260 int block_read_full_page(struct page
*page
, get_block_t
*get_block
)
2262 struct inode
*inode
= page
->mapping
->host
;
2263 sector_t iblock
, lblock
;
2264 struct buffer_head
*bh
, *head
, *arr
[MAX_BUF_PER_PAGE
];
2265 unsigned int blocksize
, bbits
;
2267 int fully_mapped
= 1;
2269 head
= create_page_buffers(page
, inode
, 0);
2270 blocksize
= head
->b_size
;
2271 bbits
= block_size_bits(blocksize
);
2273 iblock
= (sector_t
)page
->index
<< (PAGE_SHIFT
- bbits
);
2274 lblock
= (i_size_read(inode
)+blocksize
-1) >> bbits
;
2280 if (buffer_uptodate(bh
))
2283 if (!buffer_mapped(bh
)) {
2287 if (iblock
< lblock
) {
2288 WARN_ON(bh
->b_size
!= blocksize
);
2289 err
= get_block(inode
, iblock
, bh
, 0);
2293 if (!buffer_mapped(bh
)) {
2294 zero_user(page
, i
* blocksize
, blocksize
);
2296 set_buffer_uptodate(bh
);
2300 * get_block() might have updated the buffer
2303 if (buffer_uptodate(bh
))
2307 } while (i
++, iblock
++, (bh
= bh
->b_this_page
) != head
);
2310 SetPageMappedToDisk(page
);
2314 * All buffers are uptodate - we can set the page uptodate
2315 * as well. But not if get_block() returned an error.
2317 if (!PageError(page
))
2318 SetPageUptodate(page
);
2323 /* Stage two: lock the buffers */
2324 for (i
= 0; i
< nr
; i
++) {
2327 mark_buffer_async_read(bh
);
2331 * Stage 3: start the IO. Check for uptodateness
2332 * inside the buffer lock in case another process reading
2333 * the underlying blockdev brought it uptodate (the sct fix).
2335 for (i
= 0; i
< nr
; i
++) {
2337 if (buffer_uptodate(bh
))
2338 end_buffer_async_read(bh
, 1);
2340 submit_bh(REQ_OP_READ
, 0, bh
);
2344 EXPORT_SYMBOL(block_read_full_page
);
2346 /* utility function for filesystems that need to do work on expanding
2347 * truncates. Uses filesystem pagecache writes to allow the filesystem to
2348 * deal with the hole.
2350 int generic_cont_expand_simple(struct inode
*inode
, loff_t size
)
2352 struct address_space
*mapping
= inode
->i_mapping
;
2357 err
= inode_newsize_ok(inode
, size
);
2361 err
= pagecache_write_begin(NULL
, mapping
, size
, 0,
2362 AOP_FLAG_CONT_EXPAND
, &page
, &fsdata
);
2366 err
= pagecache_write_end(NULL
, mapping
, size
, 0, 0, page
, fsdata
);
2372 EXPORT_SYMBOL(generic_cont_expand_simple
);
2374 static int cont_expand_zero(struct file
*file
, struct address_space
*mapping
,
2375 loff_t pos
, loff_t
*bytes
)
2377 struct inode
*inode
= mapping
->host
;
2378 unsigned int blocksize
= i_blocksize(inode
);
2381 pgoff_t index
, curidx
;
2383 unsigned zerofrom
, offset
, len
;
2386 index
= pos
>> PAGE_SHIFT
;
2387 offset
= pos
& ~PAGE_MASK
;
2389 while (index
> (curidx
= (curpos
= *bytes
)>>PAGE_SHIFT
)) {
2390 zerofrom
= curpos
& ~PAGE_MASK
;
2391 if (zerofrom
& (blocksize
-1)) {
2392 *bytes
|= (blocksize
-1);
2395 len
= PAGE_SIZE
- zerofrom
;
2397 err
= pagecache_write_begin(file
, mapping
, curpos
, len
, 0,
2401 zero_user(page
, zerofrom
, len
);
2402 err
= pagecache_write_end(file
, mapping
, curpos
, len
, len
,
2409 balance_dirty_pages_ratelimited(mapping
);
2411 if (fatal_signal_pending(current
)) {
2417 /* page covers the boundary, find the boundary offset */
2418 if (index
== curidx
) {
2419 zerofrom
= curpos
& ~PAGE_MASK
;
2420 /* if we will expand the thing last block will be filled */
2421 if (offset
<= zerofrom
) {
2424 if (zerofrom
& (blocksize
-1)) {
2425 *bytes
|= (blocksize
-1);
2428 len
= offset
- zerofrom
;
2430 err
= pagecache_write_begin(file
, mapping
, curpos
, len
, 0,
2434 zero_user(page
, zerofrom
, len
);
2435 err
= pagecache_write_end(file
, mapping
, curpos
, len
, len
,
2447 * For moronic filesystems that do not allow holes in file.
2448 * We may have to extend the file.
2450 int cont_write_begin(struct file
*file
, struct address_space
*mapping
,
2451 loff_t pos
, unsigned len
, unsigned flags
,
2452 struct page
**pagep
, void **fsdata
,
2453 get_block_t
*get_block
, loff_t
*bytes
)
2455 struct inode
*inode
= mapping
->host
;
2456 unsigned int blocksize
= i_blocksize(inode
);
2457 unsigned int zerofrom
;
2460 err
= cont_expand_zero(file
, mapping
, pos
, bytes
);
2464 zerofrom
= *bytes
& ~PAGE_MASK
;
2465 if (pos
+len
> *bytes
&& zerofrom
& (blocksize
-1)) {
2466 *bytes
|= (blocksize
-1);
2470 return block_write_begin(mapping
, pos
, len
, flags
, pagep
, get_block
);
2472 EXPORT_SYMBOL(cont_write_begin
);
2474 int block_commit_write(struct page
*page
, unsigned from
, unsigned to
)
2476 struct inode
*inode
= page
->mapping
->host
;
2477 __block_commit_write(inode
,page
,from
,to
);
2480 EXPORT_SYMBOL(block_commit_write
);
2483 * block_page_mkwrite() is not allowed to change the file size as it gets
2484 * called from a page fault handler when a page is first dirtied. Hence we must
2485 * be careful to check for EOF conditions here. We set the page up correctly
2486 * for a written page which means we get ENOSPC checking when writing into
2487 * holes and correct delalloc and unwritten extent mapping on filesystems that
2488 * support these features.
2490 * We are not allowed to take the i_mutex here so we have to play games to
2491 * protect against truncate races as the page could now be beyond EOF. Because
2492 * truncate writes the inode size before removing pages, once we have the
2493 * page lock we can determine safely if the page is beyond EOF. If it is not
2494 * beyond EOF, then the page is guaranteed safe against truncation until we
2497 * Direct callers of this function should protect against filesystem freezing
2498 * using sb_start_pagefault() - sb_end_pagefault() functions.
2500 int block_page_mkwrite(struct vm_area_struct
*vma
, struct vm_fault
*vmf
,
2501 get_block_t get_block
)
2503 struct page
*page
= vmf
->page
;
2504 struct inode
*inode
= file_inode(vma
->vm_file
);
2510 size
= i_size_read(inode
);
2511 if ((page
->mapping
!= inode
->i_mapping
) ||
2512 (page_offset(page
) > size
)) {
2513 /* We overload EFAULT to mean page got truncated */
2518 /* page is wholly or partially inside EOF */
2519 if (((page
->index
+ 1) << PAGE_SHIFT
) > size
)
2520 end
= size
& ~PAGE_MASK
;
2524 ret
= __block_write_begin(page
, 0, end
, get_block
);
2526 ret
= block_commit_write(page
, 0, end
);
2528 if (unlikely(ret
< 0))
2530 set_page_dirty(page
);
2531 wait_for_stable_page(page
);
2537 EXPORT_SYMBOL(block_page_mkwrite
);
2540 * nobh_write_begin()'s prereads are special: the buffer_heads are freed
2541 * immediately, while under the page lock. So it needs a special end_io
2542 * handler which does not touch the bh after unlocking it.
2544 static void end_buffer_read_nobh(struct buffer_head
*bh
, int uptodate
)
2546 __end_buffer_read_notouch(bh
, uptodate
);
2550 * Attach the singly-linked list of buffers created by nobh_write_begin, to
2551 * the page (converting it to circular linked list and taking care of page
2554 static void attach_nobh_buffers(struct page
*page
, struct buffer_head
*head
)
2556 struct buffer_head
*bh
;
2558 BUG_ON(!PageLocked(page
));
2560 spin_lock(&page
->mapping
->private_lock
);
2563 if (PageDirty(page
))
2564 set_buffer_dirty(bh
);
2565 if (!bh
->b_this_page
)
2566 bh
->b_this_page
= head
;
2567 bh
= bh
->b_this_page
;
2568 } while (bh
!= head
);
2569 attach_page_private(page
, head
);
2570 spin_unlock(&page
->mapping
->private_lock
);
2574 * On entry, the page is fully not uptodate.
2575 * On exit the page is fully uptodate in the areas outside (from,to)
2576 * The filesystem needs to handle block truncation upon failure.
2578 int nobh_write_begin(struct address_space
*mapping
,
2579 loff_t pos
, unsigned len
, unsigned flags
,
2580 struct page
**pagep
, void **fsdata
,
2581 get_block_t
*get_block
)
2583 struct inode
*inode
= mapping
->host
;
2584 const unsigned blkbits
= inode
->i_blkbits
;
2585 const unsigned blocksize
= 1 << blkbits
;
2586 struct buffer_head
*head
, *bh
;
2590 unsigned block_in_page
;
2591 unsigned block_start
, block_end
;
2592 sector_t block_in_file
;
2595 int is_mapped_to_disk
= 1;
2597 index
= pos
>> PAGE_SHIFT
;
2598 from
= pos
& (PAGE_SIZE
- 1);
2601 page
= grab_cache_page_write_begin(mapping
, index
, flags
);
2607 if (page_has_buffers(page
)) {
2608 ret
= __block_write_begin(page
, pos
, len
, get_block
);
2614 if (PageMappedToDisk(page
))
2618 * Allocate buffers so that we can keep track of state, and potentially
2619 * attach them to the page if an error occurs. In the common case of
2620 * no error, they will just be freed again without ever being attached
2621 * to the page (which is all OK, because we're under the page lock).
2623 * Be careful: the buffer linked list is a NULL terminated one, rather
2624 * than the circular one we're used to.
2626 head
= alloc_page_buffers(page
, blocksize
, false);
2632 block_in_file
= (sector_t
)page
->index
<< (PAGE_SHIFT
- blkbits
);
2635 * We loop across all blocks in the page, whether or not they are
2636 * part of the affected region. This is so we can discover if the
2637 * page is fully mapped-to-disk.
2639 for (block_start
= 0, block_in_page
= 0, bh
= head
;
2640 block_start
< PAGE_SIZE
;
2641 block_in_page
++, block_start
+= blocksize
, bh
= bh
->b_this_page
) {
2644 block_end
= block_start
+ blocksize
;
2647 if (block_start
>= to
)
2649 ret
= get_block(inode
, block_in_file
+ block_in_page
,
2653 if (!buffer_mapped(bh
))
2654 is_mapped_to_disk
= 0;
2656 clean_bdev_bh_alias(bh
);
2657 if (PageUptodate(page
)) {
2658 set_buffer_uptodate(bh
);
2661 if (buffer_new(bh
) || !buffer_mapped(bh
)) {
2662 zero_user_segments(page
, block_start
, from
,
2666 if (buffer_uptodate(bh
))
2667 continue; /* reiserfs does this */
2668 if (block_start
< from
|| block_end
> to
) {
2670 bh
->b_end_io
= end_buffer_read_nobh
;
2671 submit_bh(REQ_OP_READ
, 0, bh
);
2678 * The page is locked, so these buffers are protected from
2679 * any VM or truncate activity. Hence we don't need to care
2680 * for the buffer_head refcounts.
2682 for (bh
= head
; bh
; bh
= bh
->b_this_page
) {
2684 if (!buffer_uptodate(bh
))
2691 if (is_mapped_to_disk
)
2692 SetPageMappedToDisk(page
);
2694 *fsdata
= head
; /* to be released by nobh_write_end */
2701 * Error recovery is a bit difficult. We need to zero out blocks that
2702 * were newly allocated, and dirty them to ensure they get written out.
2703 * Buffers need to be attached to the page at this point, otherwise
2704 * the handling of potential IO errors during writeout would be hard
2705 * (could try doing synchronous writeout, but what if that fails too?)
2707 attach_nobh_buffers(page
, head
);
2708 page_zero_new_buffers(page
, from
, to
);
2717 EXPORT_SYMBOL(nobh_write_begin
);
2719 int nobh_write_end(struct file
*file
, struct address_space
*mapping
,
2720 loff_t pos
, unsigned len
, unsigned copied
,
2721 struct page
*page
, void *fsdata
)
2723 struct inode
*inode
= page
->mapping
->host
;
2724 struct buffer_head
*head
= fsdata
;
2725 struct buffer_head
*bh
;
2726 BUG_ON(fsdata
!= NULL
&& page_has_buffers(page
));
2728 if (unlikely(copied
< len
) && head
)
2729 attach_nobh_buffers(page
, head
);
2730 if (page_has_buffers(page
))
2731 return generic_write_end(file
, mapping
, pos
, len
,
2732 copied
, page
, fsdata
);
2734 SetPageUptodate(page
);
2735 set_page_dirty(page
);
2736 if (pos
+copied
> inode
->i_size
) {
2737 i_size_write(inode
, pos
+copied
);
2738 mark_inode_dirty(inode
);
2746 head
= head
->b_this_page
;
2747 free_buffer_head(bh
);
2752 EXPORT_SYMBOL(nobh_write_end
);
2755 * nobh_writepage() - based on block_full_write_page() except
2756 * that it tries to operate without attaching bufferheads to
2759 int nobh_writepage(struct page
*page
, get_block_t
*get_block
,
2760 struct writeback_control
*wbc
)
2762 struct inode
* const inode
= page
->mapping
->host
;
2763 loff_t i_size
= i_size_read(inode
);
2764 const pgoff_t end_index
= i_size
>> PAGE_SHIFT
;
2768 /* Is the page fully inside i_size? */
2769 if (page
->index
< end_index
)
2772 /* Is the page fully outside i_size? (truncate in progress) */
2773 offset
= i_size
& (PAGE_SIZE
-1);
2774 if (page
->index
>= end_index
+1 || !offset
) {
2776 * The page may have dirty, unmapped buffers. For example,
2777 * they may have been added in ext3_writepage(). Make them
2778 * freeable here, so the page does not leak.
2781 /* Not really sure about this - do we need this ? */
2782 if (page
->mapping
->a_ops
->invalidatepage
)
2783 page
->mapping
->a_ops
->invalidatepage(page
, offset
);
2786 return 0; /* don't care */
2790 * The page straddles i_size. It must be zeroed out on each and every
2791 * writepage invocation because it may be mmapped. "A file is mapped
2792 * in multiples of the page size. For a file that is not a multiple of
2793 * the page size, the remaining memory is zeroed when mapped, and
2794 * writes to that region are not written out to the file."
2796 zero_user_segment(page
, offset
, PAGE_SIZE
);
2798 ret
= mpage_writepage(page
, get_block
, wbc
);
2800 ret
= __block_write_full_page(inode
, page
, get_block
, wbc
,
2801 end_buffer_async_write
);
2804 EXPORT_SYMBOL(nobh_writepage
);
2806 int nobh_truncate_page(struct address_space
*mapping
,
2807 loff_t from
, get_block_t
*get_block
)
2809 pgoff_t index
= from
>> PAGE_SHIFT
;
2810 unsigned offset
= from
& (PAGE_SIZE
-1);
2813 unsigned length
, pos
;
2814 struct inode
*inode
= mapping
->host
;
2816 struct buffer_head map_bh
;
2819 blocksize
= i_blocksize(inode
);
2820 length
= offset
& (blocksize
- 1);
2822 /* Block boundary? Nothing to do */
2826 length
= blocksize
- length
;
2827 iblock
= (sector_t
)index
<< (PAGE_SHIFT
- inode
->i_blkbits
);
2829 page
= grab_cache_page(mapping
, index
);
2834 if (page_has_buffers(page
)) {
2838 return block_truncate_page(mapping
, from
, get_block
);
2841 /* Find the buffer that contains "offset" */
2843 while (offset
>= pos
) {
2848 map_bh
.b_size
= blocksize
;
2850 err
= get_block(inode
, iblock
, &map_bh
, 0);
2853 /* unmapped? It's a hole - nothing to do */
2854 if (!buffer_mapped(&map_bh
))
2857 /* Ok, it's mapped. Make sure it's up-to-date */
2858 if (!PageUptodate(page
)) {
2859 err
= mapping
->a_ops
->readpage(NULL
, page
);
2865 if (!PageUptodate(page
)) {
2869 if (page_has_buffers(page
))
2872 zero_user(page
, offset
, length
);
2873 set_page_dirty(page
);
2882 EXPORT_SYMBOL(nobh_truncate_page
);
2884 int block_truncate_page(struct address_space
*mapping
,
2885 loff_t from
, get_block_t
*get_block
)
2887 pgoff_t index
= from
>> PAGE_SHIFT
;
2888 unsigned offset
= from
& (PAGE_SIZE
-1);
2891 unsigned length
, pos
;
2892 struct inode
*inode
= mapping
->host
;
2894 struct buffer_head
*bh
;
2897 blocksize
= i_blocksize(inode
);
2898 length
= offset
& (blocksize
- 1);
2900 /* Block boundary? Nothing to do */
2904 length
= blocksize
- length
;
2905 iblock
= (sector_t
)index
<< (PAGE_SHIFT
- inode
->i_blkbits
);
2907 page
= grab_cache_page(mapping
, index
);
2912 if (!page_has_buffers(page
))
2913 create_empty_buffers(page
, blocksize
, 0);
2915 /* Find the buffer that contains "offset" */
2916 bh
= page_buffers(page
);
2918 while (offset
>= pos
) {
2919 bh
= bh
->b_this_page
;
2925 if (!buffer_mapped(bh
)) {
2926 WARN_ON(bh
->b_size
!= blocksize
);
2927 err
= get_block(inode
, iblock
, bh
, 0);
2930 /* unmapped? It's a hole - nothing to do */
2931 if (!buffer_mapped(bh
))
2935 /* Ok, it's mapped. Make sure it's up-to-date */
2936 if (PageUptodate(page
))
2937 set_buffer_uptodate(bh
);
2939 if (!buffer_uptodate(bh
) && !buffer_delay(bh
) && !buffer_unwritten(bh
)) {
2941 ll_rw_block(REQ_OP_READ
, 0, 1, &bh
);
2943 /* Uhhuh. Read error. Complain and punt. */
2944 if (!buffer_uptodate(bh
))
2948 zero_user(page
, offset
, length
);
2949 mark_buffer_dirty(bh
);
2958 EXPORT_SYMBOL(block_truncate_page
);
2961 * The generic ->writepage function for buffer-backed address_spaces
2963 int block_write_full_page(struct page
*page
, get_block_t
*get_block
,
2964 struct writeback_control
*wbc
)
2966 struct inode
* const inode
= page
->mapping
->host
;
2967 loff_t i_size
= i_size_read(inode
);
2968 const pgoff_t end_index
= i_size
>> PAGE_SHIFT
;
2971 /* Is the page fully inside i_size? */
2972 if (page
->index
< end_index
)
2973 return __block_write_full_page(inode
, page
, get_block
, wbc
,
2974 end_buffer_async_write
);
2976 /* Is the page fully outside i_size? (truncate in progress) */
2977 offset
= i_size
& (PAGE_SIZE
-1);
2978 if (page
->index
>= end_index
+1 || !offset
) {
2980 * The page may have dirty, unmapped buffers. For example,
2981 * they may have been added in ext3_writepage(). Make them
2982 * freeable here, so the page does not leak.
2984 do_invalidatepage(page
, 0, PAGE_SIZE
);
2986 return 0; /* don't care */
2990 * The page straddles i_size. It must be zeroed out on each and every
2991 * writepage invocation because it may be mmapped. "A file is mapped
2992 * in multiples of the page size. For a file that is not a multiple of
2993 * the page size, the remaining memory is zeroed when mapped, and
2994 * writes to that region are not written out to the file."
2996 zero_user_segment(page
, offset
, PAGE_SIZE
);
2997 return __block_write_full_page(inode
, page
, get_block
, wbc
,
2998 end_buffer_async_write
);
3000 EXPORT_SYMBOL(block_write_full_page
);
3002 sector_t
generic_block_bmap(struct address_space
*mapping
, sector_t block
,
3003 get_block_t
*get_block
)
3005 struct inode
*inode
= mapping
->host
;
3006 struct buffer_head tmp
= {
3007 .b_size
= i_blocksize(inode
),
3010 get_block(inode
, block
, &tmp
, 0);
3011 return tmp
.b_blocknr
;
3013 EXPORT_SYMBOL(generic_block_bmap
);
3015 static void end_bio_bh_io_sync(struct bio
*bio
)
3017 struct buffer_head
*bh
= bio
->bi_private
;
3019 if (unlikely(bio_flagged(bio
, BIO_QUIET
)))
3020 set_bit(BH_Quiet
, &bh
->b_state
);
3022 bh
->b_end_io(bh
, !bio
->bi_status
);
3026 static int submit_bh_wbc(int op
, int op_flags
, struct buffer_head
*bh
,
3027 enum rw_hint write_hint
, struct writeback_control
*wbc
)
3031 BUG_ON(!buffer_locked(bh
));
3032 BUG_ON(!buffer_mapped(bh
));
3033 BUG_ON(!bh
->b_end_io
);
3034 BUG_ON(buffer_delay(bh
));
3035 BUG_ON(buffer_unwritten(bh
));
3038 * Only clear out a write error when rewriting
3040 if (test_set_buffer_req(bh
) && (op
== REQ_OP_WRITE
))
3041 clear_buffer_write_io_error(bh
);
3044 * from here on down, it's all bio -- do the initial mapping,
3045 * submit_bio -> generic_make_request may further map this bio around
3047 bio
= bio_alloc(GFP_NOIO
, 1);
3049 bio
->bi_iter
.bi_sector
= bh
->b_blocknr
* (bh
->b_size
>> 9);
3050 bio_set_dev(bio
, bh
->b_bdev
);
3051 bio
->bi_write_hint
= write_hint
;
3053 bio_add_page(bio
, bh
->b_page
, bh
->b_size
, bh_offset(bh
));
3054 BUG_ON(bio
->bi_iter
.bi_size
!= bh
->b_size
);
3056 bio
->bi_end_io
= end_bio_bh_io_sync
;
3057 bio
->bi_private
= bh
;
3059 if (buffer_meta(bh
))
3060 op_flags
|= REQ_META
;
3061 if (buffer_prio(bh
))
3062 op_flags
|= REQ_PRIO
;
3063 bio_set_op_attrs(bio
, op
, op_flags
);
3065 /* Take care of bh's that straddle the end of the device */
3069 wbc_init_bio(wbc
, bio
);
3070 wbc_account_cgroup_owner(wbc
, bh
->b_page
, bh
->b_size
);
3077 int submit_bh(int op
, int op_flags
, struct buffer_head
*bh
)
3079 return submit_bh_wbc(op
, op_flags
, bh
, 0, NULL
);
3081 EXPORT_SYMBOL(submit_bh
);
3084 * ll_rw_block: low-level access to block devices (DEPRECATED)
3085 * @op: whether to %READ or %WRITE
3086 * @op_flags: req_flag_bits
3087 * @nr: number of &struct buffer_heads in the array
3088 * @bhs: array of pointers to &struct buffer_head
3090 * ll_rw_block() takes an array of pointers to &struct buffer_heads, and
3091 * requests an I/O operation on them, either a %REQ_OP_READ or a %REQ_OP_WRITE.
3092 * @op_flags contains flags modifying the detailed I/O behavior, most notably
3095 * This function drops any buffer that it cannot get a lock on (with the
3096 * BH_Lock state bit), any buffer that appears to be clean when doing a write
3097 * request, and any buffer that appears to be up-to-date when doing read
3098 * request. Further it marks as clean buffers that are processed for
3099 * writing (the buffer cache won't assume that they are actually clean
3100 * until the buffer gets unlocked).
3102 * ll_rw_block sets b_end_io to simple completion handler that marks
3103 * the buffer up-to-date (if appropriate), unlocks the buffer and wakes
3106 * All of the buffers must be for the same device, and must also be a
3107 * multiple of the current approved size for the device.
3109 void ll_rw_block(int op
, int op_flags
, int nr
, struct buffer_head
*bhs
[])
3113 for (i
= 0; i
< nr
; i
++) {
3114 struct buffer_head
*bh
= bhs
[i
];
3116 if (!trylock_buffer(bh
))
3119 if (test_clear_buffer_dirty(bh
)) {
3120 bh
->b_end_io
= end_buffer_write_sync
;
3122 submit_bh(op
, op_flags
, bh
);
3126 if (!buffer_uptodate(bh
)) {
3127 bh
->b_end_io
= end_buffer_read_sync
;
3129 submit_bh(op
, op_flags
, bh
);
3136 EXPORT_SYMBOL(ll_rw_block
);
3138 void write_dirty_buffer(struct buffer_head
*bh
, int op_flags
)
3141 if (!test_clear_buffer_dirty(bh
)) {
3145 bh
->b_end_io
= end_buffer_write_sync
;
3147 submit_bh(REQ_OP_WRITE
, op_flags
, bh
);
3149 EXPORT_SYMBOL(write_dirty_buffer
);
3152 * For a data-integrity writeout, we need to wait upon any in-progress I/O
3153 * and then start new I/O and then wait upon it. The caller must have a ref on
3156 int __sync_dirty_buffer(struct buffer_head
*bh
, int op_flags
)
3160 WARN_ON(atomic_read(&bh
->b_count
) < 1);
3162 if (test_clear_buffer_dirty(bh
)) {
3164 bh
->b_end_io
= end_buffer_write_sync
;
3165 ret
= submit_bh(REQ_OP_WRITE
, op_flags
, bh
);
3167 if (!ret
&& !buffer_uptodate(bh
))
3174 EXPORT_SYMBOL(__sync_dirty_buffer
);
3176 int sync_dirty_buffer(struct buffer_head
*bh
)
3178 return __sync_dirty_buffer(bh
, REQ_SYNC
);
3180 EXPORT_SYMBOL(sync_dirty_buffer
);
3183 * try_to_free_buffers() checks if all the buffers on this particular page
3184 * are unused, and releases them if so.
3186 * Exclusion against try_to_free_buffers may be obtained by either
3187 * locking the page or by holding its mapping's private_lock.
3189 * If the page is dirty but all the buffers are clean then we need to
3190 * be sure to mark the page clean as well. This is because the page
3191 * may be against a block device, and a later reattachment of buffers
3192 * to a dirty page will set *all* buffers dirty. Which would corrupt
3193 * filesystem data on the same device.
3195 * The same applies to regular filesystem pages: if all the buffers are
3196 * clean then we set the page clean and proceed. To do that, we require
3197 * total exclusion from __set_page_dirty_buffers(). That is obtained with
3200 * try_to_free_buffers() is non-blocking.
3202 static inline int buffer_busy(struct buffer_head
*bh
)
3204 return atomic_read(&bh
->b_count
) |
3205 (bh
->b_state
& ((1 << BH_Dirty
) | (1 << BH_Lock
)));
3209 drop_buffers(struct page
*page
, struct buffer_head
**buffers_to_free
)
3211 struct buffer_head
*head
= page_buffers(page
);
3212 struct buffer_head
*bh
;
3216 if (buffer_busy(bh
))
3218 bh
= bh
->b_this_page
;
3219 } while (bh
!= head
);
3222 struct buffer_head
*next
= bh
->b_this_page
;
3224 if (bh
->b_assoc_map
)
3225 __remove_assoc_queue(bh
);
3227 } while (bh
!= head
);
3228 *buffers_to_free
= head
;
3229 detach_page_private(page
);
3235 int try_to_free_buffers(struct page
*page
)
3237 struct address_space
* const mapping
= page
->mapping
;
3238 struct buffer_head
*buffers_to_free
= NULL
;
3241 BUG_ON(!PageLocked(page
));
3242 if (PageWriteback(page
))
3245 if (mapping
== NULL
) { /* can this still happen? */
3246 ret
= drop_buffers(page
, &buffers_to_free
);
3250 spin_lock(&mapping
->private_lock
);
3251 ret
= drop_buffers(page
, &buffers_to_free
);
3254 * If the filesystem writes its buffers by hand (eg ext3)
3255 * then we can have clean buffers against a dirty page. We
3256 * clean the page here; otherwise the VM will never notice
3257 * that the filesystem did any IO at all.
3259 * Also, during truncate, discard_buffer will have marked all
3260 * the page's buffers clean. We discover that here and clean
3263 * private_lock must be held over this entire operation in order
3264 * to synchronise against __set_page_dirty_buffers and prevent the
3265 * dirty bit from being lost.
3268 cancel_dirty_page(page
);
3269 spin_unlock(&mapping
->private_lock
);
3271 if (buffers_to_free
) {
3272 struct buffer_head
*bh
= buffers_to_free
;
3275 struct buffer_head
*next
= bh
->b_this_page
;
3276 free_buffer_head(bh
);
3278 } while (bh
!= buffers_to_free
);
3282 EXPORT_SYMBOL(try_to_free_buffers
);
3285 * There are no bdflush tunables left. But distributions are
3286 * still running obsolete flush daemons, so we terminate them here.
3288 * Use of bdflush() is deprecated and will be removed in a future kernel.
3289 * The `flush-X' kernel threads fully replace bdflush daemons and this call.
3291 SYSCALL_DEFINE2(bdflush
, int, func
, long, data
)
3293 static int msg_count
;
3295 if (!capable(CAP_SYS_ADMIN
))
3298 if (msg_count
< 5) {
3301 "warning: process `%s' used the obsolete bdflush"
3302 " system call\n", current
->comm
);
3303 printk(KERN_INFO
"Fix your initscripts?\n");
3312 * Buffer-head allocation
3314 static struct kmem_cache
*bh_cachep __read_mostly
;
3317 * Once the number of bh's in the machine exceeds this level, we start
3318 * stripping them in writeback.
3320 static unsigned long max_buffer_heads
;
3322 int buffer_heads_over_limit
;
3324 struct bh_accounting
{
3325 int nr
; /* Number of live bh's */
3326 int ratelimit
; /* Limit cacheline bouncing */
3329 static DEFINE_PER_CPU(struct bh_accounting
, bh_accounting
) = {0, 0};
3331 static void recalc_bh_state(void)
3336 if (__this_cpu_inc_return(bh_accounting
.ratelimit
) - 1 < 4096)
3338 __this_cpu_write(bh_accounting
.ratelimit
, 0);
3339 for_each_online_cpu(i
)
3340 tot
+= per_cpu(bh_accounting
, i
).nr
;
3341 buffer_heads_over_limit
= (tot
> max_buffer_heads
);
3344 struct buffer_head
*alloc_buffer_head(gfp_t gfp_flags
)
3346 struct buffer_head
*ret
= kmem_cache_zalloc(bh_cachep
, gfp_flags
);
3348 INIT_LIST_HEAD(&ret
->b_assoc_buffers
);
3349 spin_lock_init(&ret
->b_uptodate_lock
);
3351 __this_cpu_inc(bh_accounting
.nr
);
3357 EXPORT_SYMBOL(alloc_buffer_head
);
3359 void free_buffer_head(struct buffer_head
*bh
)
3361 BUG_ON(!list_empty(&bh
->b_assoc_buffers
));
3362 kmem_cache_free(bh_cachep
, bh
);
3364 __this_cpu_dec(bh_accounting
.nr
);
3368 EXPORT_SYMBOL(free_buffer_head
);
3370 static int buffer_exit_cpu_dead(unsigned int cpu
)
3373 struct bh_lru
*b
= &per_cpu(bh_lrus
, cpu
);
3375 for (i
= 0; i
< BH_LRU_SIZE
; i
++) {
3379 this_cpu_add(bh_accounting
.nr
, per_cpu(bh_accounting
, cpu
).nr
);
3380 per_cpu(bh_accounting
, cpu
).nr
= 0;
3385 * bh_uptodate_or_lock - Test whether the buffer is uptodate
3386 * @bh: struct buffer_head
3388 * Return true if the buffer is up-to-date and false,
3389 * with the buffer locked, if not.
3391 int bh_uptodate_or_lock(struct buffer_head
*bh
)
3393 if (!buffer_uptodate(bh
)) {
3395 if (!buffer_uptodate(bh
))
3401 EXPORT_SYMBOL(bh_uptodate_or_lock
);
3404 * bh_submit_read - Submit a locked buffer for reading
3405 * @bh: struct buffer_head
3407 * Returns zero on success and -EIO on error.
3409 int bh_submit_read(struct buffer_head
*bh
)
3411 BUG_ON(!buffer_locked(bh
));
3413 if (buffer_uptodate(bh
)) {
3419 bh
->b_end_io
= end_buffer_read_sync
;
3420 submit_bh(REQ_OP_READ
, 0, bh
);
3422 if (buffer_uptodate(bh
))
3426 EXPORT_SYMBOL(bh_submit_read
);
3428 void __init
buffer_init(void)
3430 unsigned long nrpages
;
3433 bh_cachep
= kmem_cache_create("buffer_head",
3434 sizeof(struct buffer_head
), 0,
3435 (SLAB_RECLAIM_ACCOUNT
|SLAB_PANIC
|
3440 * Limit the bh occupancy to 10% of ZONE_NORMAL
3442 nrpages
= (nr_free_buffer_pages() * 10) / 100;
3443 max_buffer_heads
= nrpages
* (PAGE_SIZE
/ sizeof(struct buffer_head
));
3444 ret
= cpuhp_setup_state_nocalls(CPUHP_FS_BUFF_DEAD
, "fs/buffer:dead",
3445 NULL
, buffer_exit_cpu_dead
);