1 // SPDX-License-Identifier: GPL-2.0-only
3 * Copyright (C) Sistina Software, Inc. 1997-2003 All rights reserved.
4 * Copyright 2004-2011 Red Hat, Inc.
7 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
10 #include <linux/dlm.h>
11 #include <linux/slab.h>
12 #include <linux/types.h>
13 #include <linux/delay.h>
14 #include <linux/gfs2_ondisk.h>
15 #include <linux/sched/signal.h>
23 #include "trace_gfs2.h"
26 * gfs2_update_stats - Update time based stats
27 * @mv: Pointer to mean/variance structure to update
28 * @sample: New data to include
30 * @delta is the difference between the current rtt sample and the
31 * running average srtt. We add 1/8 of that to the srtt in order to
32 * update the current srtt estimate. The variance estimate is a bit
33 * more complicated. We subtract the current variance estimate from
34 * the abs value of the @delta and add 1/4 of that to the running
35 * total. That's equivalent to 3/4 of the current variance
36 * estimate plus 1/4 of the abs of @delta.
38 * Note that the index points at the array entry containing the smoothed
39 * mean value, and the variance is always in the following entry
41 * Reference: TCP/IP Illustrated, vol 2, p. 831,832
42 * All times are in units of integer nanoseconds. Unlike the TCP/IP case,
43 * they are not scaled fixed point.
46 static inline void gfs2_update_stats(struct gfs2_lkstats
*s
, unsigned index
,
49 s64 delta
= sample
- s
->stats
[index
];
50 s
->stats
[index
] += (delta
>> 3);
52 s
->stats
[index
] += (s64
)(abs(delta
) - s
->stats
[index
]) >> 2;
56 * gfs2_update_reply_times - Update locking statistics
57 * @gl: The glock to update
59 * This assumes that gl->gl_dstamp has been set earlier.
61 * The rtt (lock round trip time) is an estimate of the time
62 * taken to perform a dlm lock request. We update it on each
65 * The blocking flag is set on the glock for all dlm requests
66 * which may potentially block due to lock requests from other nodes.
67 * DLM requests where the current lock state is exclusive, the
68 * requested state is null (or unlocked) or where the TRY or
69 * TRY_1CB flags are set are classified as non-blocking. All
70 * other DLM requests are counted as (potentially) blocking.
72 static inline void gfs2_update_reply_times(struct gfs2_glock
*gl
)
74 struct gfs2_pcpu_lkstats
*lks
;
75 const unsigned gltype
= gl
->gl_name
.ln_type
;
76 unsigned index
= test_bit(GLF_BLOCKING
, &gl
->gl_flags
) ?
77 GFS2_LKS_SRTTB
: GFS2_LKS_SRTT
;
81 rtt
= ktime_to_ns(ktime_sub(ktime_get_real(), gl
->gl_dstamp
));
82 lks
= this_cpu_ptr(gl
->gl_name
.ln_sbd
->sd_lkstats
);
83 gfs2_update_stats(&gl
->gl_stats
, index
, rtt
); /* Local */
84 gfs2_update_stats(&lks
->lkstats
[gltype
], index
, rtt
); /* Global */
87 trace_gfs2_glock_lock_time(gl
, rtt
);
91 * gfs2_update_request_times - Update locking statistics
92 * @gl: The glock to update
94 * The irt (lock inter-request times) measures the average time
95 * between requests to the dlm. It is updated immediately before
99 static inline void gfs2_update_request_times(struct gfs2_glock
*gl
)
101 struct gfs2_pcpu_lkstats
*lks
;
102 const unsigned gltype
= gl
->gl_name
.ln_type
;
107 dstamp
= gl
->gl_dstamp
;
108 gl
->gl_dstamp
= ktime_get_real();
109 irt
= ktime_to_ns(ktime_sub(gl
->gl_dstamp
, dstamp
));
110 lks
= this_cpu_ptr(gl
->gl_name
.ln_sbd
->sd_lkstats
);
111 gfs2_update_stats(&gl
->gl_stats
, GFS2_LKS_SIRT
, irt
); /* Local */
112 gfs2_update_stats(&lks
->lkstats
[gltype
], GFS2_LKS_SIRT
, irt
); /* Global */
116 static void gdlm_ast(void *arg
)
118 struct gfs2_glock
*gl
= arg
;
119 unsigned ret
= gl
->gl_state
;
121 gfs2_update_reply_times(gl
);
122 BUG_ON(gl
->gl_lksb
.sb_flags
& DLM_SBF_DEMOTED
);
124 if ((gl
->gl_lksb
.sb_flags
& DLM_SBF_VALNOTVALID
) && gl
->gl_lksb
.sb_lvbptr
)
125 memset(gl
->gl_lksb
.sb_lvbptr
, 0, GDLM_LVB_SIZE
);
127 switch (gl
->gl_lksb
.sb_status
) {
128 case -DLM_EUNLOCK
: /* Unlocked, so glock can be freed */
129 if (gl
->gl_ops
->go_free
)
130 gl
->gl_ops
->go_free(gl
);
133 case -DLM_ECANCEL
: /* Cancel while getting lock */
134 ret
|= LM_OUT_CANCELED
;
136 case -EAGAIN
: /* Try lock fails */
137 case -EDEADLK
: /* Deadlock detected */
139 case -ETIMEDOUT
: /* Canceled due to timeout */
142 case 0: /* Success */
144 default: /* Something unexpected */
149 if (gl
->gl_lksb
.sb_flags
& DLM_SBF_ALTMODE
) {
150 if (gl
->gl_req
== LM_ST_SHARED
)
151 ret
= LM_ST_DEFERRED
;
152 else if (gl
->gl_req
== LM_ST_DEFERRED
)
158 set_bit(GLF_INITIAL
, &gl
->gl_flags
);
159 gfs2_glock_complete(gl
, ret
);
162 if (!test_bit(GLF_INITIAL
, &gl
->gl_flags
))
163 gl
->gl_lksb
.sb_lkid
= 0;
164 gfs2_glock_complete(gl
, ret
);
167 static void gdlm_bast(void *arg
, int mode
)
169 struct gfs2_glock
*gl
= arg
;
173 gfs2_glock_cb(gl
, LM_ST_UNLOCKED
);
176 gfs2_glock_cb(gl
, LM_ST_DEFERRED
);
179 gfs2_glock_cb(gl
, LM_ST_SHARED
);
182 fs_err(gl
->gl_name
.ln_sbd
, "unknown bast mode %d\n", mode
);
187 /* convert gfs lock-state to dlm lock-mode */
189 static int make_mode(struct gfs2_sbd
*sdp
, const unsigned int lmstate
)
194 case LM_ST_EXCLUSIVE
:
201 fs_err(sdp
, "unknown LM state %d\n", lmstate
);
206 static u32
make_flags(struct gfs2_glock
*gl
, const unsigned int gfs_flags
,
211 if (gl
->gl_lksb
.sb_lvbptr
)
212 lkf
|= DLM_LKF_VALBLK
;
214 if (gfs_flags
& LM_FLAG_TRY
)
215 lkf
|= DLM_LKF_NOQUEUE
;
217 if (gfs_flags
& LM_FLAG_TRY_1CB
) {
218 lkf
|= DLM_LKF_NOQUEUE
;
219 lkf
|= DLM_LKF_NOQUEUEBAST
;
222 if (gfs_flags
& LM_FLAG_PRIORITY
) {
223 lkf
|= DLM_LKF_NOORDER
;
224 lkf
|= DLM_LKF_HEADQUE
;
227 if (gfs_flags
& LM_FLAG_ANY
) {
228 if (req
== DLM_LOCK_PR
)
229 lkf
|= DLM_LKF_ALTCW
;
230 else if (req
== DLM_LOCK_CW
)
231 lkf
|= DLM_LKF_ALTPR
;
236 if (gl
->gl_lksb
.sb_lkid
!= 0) {
237 lkf
|= DLM_LKF_CONVERT
;
238 if (test_bit(GLF_BLOCKING
, &gl
->gl_flags
))
239 lkf
|= DLM_LKF_QUECVT
;
245 static void gfs2_reverse_hex(char *c
, u64 value
)
249 *c
-- = hex_asc
[value
& 0x0f];
254 static int gdlm_lock(struct gfs2_glock
*gl
, unsigned int req_state
,
257 struct lm_lockstruct
*ls
= &gl
->gl_name
.ln_sbd
->sd_lockstruct
;
260 char strname
[GDLM_STRNAME_BYTES
] = "";
262 req
= make_mode(gl
->gl_name
.ln_sbd
, req_state
);
263 lkf
= make_flags(gl
, flags
, req
);
264 gfs2_glstats_inc(gl
, GFS2_LKS_DCOUNT
);
265 gfs2_sbstats_inc(gl
, GFS2_LKS_DCOUNT
);
266 if (gl
->gl_lksb
.sb_lkid
) {
267 gfs2_update_request_times(gl
);
269 memset(strname
, ' ', GDLM_STRNAME_BYTES
- 1);
270 strname
[GDLM_STRNAME_BYTES
- 1] = '\0';
271 gfs2_reverse_hex(strname
+ 7, gl
->gl_name
.ln_type
);
272 gfs2_reverse_hex(strname
+ 23, gl
->gl_name
.ln_number
);
273 gl
->gl_dstamp
= ktime_get_real();
276 * Submit the actual lock request.
279 return dlm_lock(ls
->ls_dlm
, req
, &gl
->gl_lksb
, lkf
, strname
,
280 GDLM_STRNAME_BYTES
- 1, 0, gdlm_ast
, gl
, gdlm_bast
);
283 static void gdlm_put_lock(struct gfs2_glock
*gl
)
285 struct gfs2_sbd
*sdp
= gl
->gl_name
.ln_sbd
;
286 struct lm_lockstruct
*ls
= &sdp
->sd_lockstruct
;
287 int lvb_needs_unlock
= 0;
290 if (gl
->gl_lksb
.sb_lkid
== 0) {
295 clear_bit(GLF_BLOCKING
, &gl
->gl_flags
);
296 gfs2_glstats_inc(gl
, GFS2_LKS_DCOUNT
);
297 gfs2_sbstats_inc(gl
, GFS2_LKS_DCOUNT
);
298 gfs2_update_request_times(gl
);
300 /* don't want to skip dlm_unlock writing the lvb when lock is ex */
302 if (gl
->gl_lksb
.sb_lvbptr
&& (gl
->gl_state
== LM_ST_EXCLUSIVE
))
303 lvb_needs_unlock
= 1;
305 if (test_bit(SDF_SKIP_DLM_UNLOCK
, &sdp
->sd_flags
) &&
311 error
= dlm_unlock(ls
->ls_dlm
, gl
->gl_lksb
.sb_lkid
, DLM_LKF_VALBLK
,
314 fs_err(sdp
, "gdlm_unlock %x,%llx err=%d\n",
316 (unsigned long long)gl
->gl_name
.ln_number
, error
);
321 static void gdlm_cancel(struct gfs2_glock
*gl
)
323 struct lm_lockstruct
*ls
= &gl
->gl_name
.ln_sbd
->sd_lockstruct
;
324 dlm_unlock(ls
->ls_dlm
, gl
->gl_lksb
.sb_lkid
, DLM_LKF_CANCEL
, NULL
, gl
);
328 * dlm/gfs2 recovery coordination using dlm_recover callbacks
330 * 0. gfs2 checks for another cluster node withdraw, needing journal replay
331 * 1. dlm_controld sees lockspace members change
332 * 2. dlm_controld blocks dlm-kernel locking activity
333 * 3. dlm_controld within dlm-kernel notifies gfs2 (recover_prep)
334 * 4. dlm_controld starts and finishes its own user level recovery
335 * 5. dlm_controld starts dlm-kernel dlm_recoverd to do kernel recovery
336 * 6. dlm_recoverd notifies gfs2 of failed nodes (recover_slot)
337 * 7. dlm_recoverd does its own lock recovery
338 * 8. dlm_recoverd unblocks dlm-kernel locking activity
339 * 9. dlm_recoverd notifies gfs2 when done (recover_done with new generation)
340 * 10. gfs2_control updates control_lock lvb with new generation and jid bits
341 * 11. gfs2_control enqueues journals for gfs2_recover to recover (maybe none)
342 * 12. gfs2_recover dequeues and recovers journals of failed nodes
343 * 13. gfs2_recover provides recovery results to gfs2_control (recovery_result)
344 * 14. gfs2_control updates control_lock lvb jid bits for recovered journals
345 * 15. gfs2_control unblocks normal locking when all journals are recovered
347 * - failures during recovery
349 * recover_prep() may set BLOCK_LOCKS (step 3) again before gfs2_control
350 * clears BLOCK_LOCKS (step 15), e.g. another node fails while still
351 * recovering for a prior failure. gfs2_control needs a way to detect
352 * this so it can leave BLOCK_LOCKS set in step 15. This is managed using
353 * the recover_block and recover_start values.
355 * recover_done() provides a new lockspace generation number each time it
356 * is called (step 9). This generation number is saved as recover_start.
357 * When recover_prep() is called, it sets BLOCK_LOCKS and sets
358 * recover_block = recover_start. So, while recover_block is equal to
359 * recover_start, BLOCK_LOCKS should remain set. (recover_spin must
360 * be held around the BLOCK_LOCKS/recover_block/recover_start logic.)
362 * - more specific gfs2 steps in sequence above
364 * 3. recover_prep sets BLOCK_LOCKS and sets recover_block = recover_start
365 * 6. recover_slot records any failed jids (maybe none)
366 * 9. recover_done sets recover_start = new generation number
367 * 10. gfs2_control sets control_lock lvb = new gen + bits for failed jids
368 * 12. gfs2_recover does journal recoveries for failed jids identified above
369 * 14. gfs2_control clears control_lock lvb bits for recovered jids
370 * 15. gfs2_control checks if recover_block == recover_start (step 3 occured
371 * again) then do nothing, otherwise if recover_start > recover_block
372 * then clear BLOCK_LOCKS.
374 * - parallel recovery steps across all nodes
376 * All nodes attempt to update the control_lock lvb with the new generation
377 * number and jid bits, but only the first to get the control_lock EX will
378 * do so; others will see that it's already done (lvb already contains new
379 * generation number.)
381 * . All nodes get the same recover_prep/recover_slot/recover_done callbacks
382 * . All nodes attempt to set control_lock lvb gen + bits for the new gen
383 * . One node gets control_lock first and writes the lvb, others see it's done
384 * . All nodes attempt to recover jids for which they see control_lock bits set
385 * . One node succeeds for a jid, and that one clears the jid bit in the lvb
386 * . All nodes will eventually see all lvb bits clear and unblock locks
388 * - is there a problem with clearing an lvb bit that should be set
389 * and missing a journal recovery?
392 * 2. lvb bit set for step 1
393 * 3. jid recovered for step 1
394 * 4. jid taken again (new mount)
395 * 5. jid fails (for step 4)
396 * 6. lvb bit set for step 5 (will already be set)
397 * 7. lvb bit cleared for step 3
399 * This is not a problem because the failure in step 5 does not
400 * require recovery, because the mount in step 4 could not have
401 * progressed far enough to unblock locks and access the fs. The
402 * control_mount() function waits for all recoveries to be complete
403 * for the latest lockspace generation before ever unblocking locks
404 * and returning. The mount in step 4 waits until the recovery in
407 * - special case of first mounter: first node to mount the fs
409 * The first node to mount a gfs2 fs needs to check all the journals
410 * and recover any that need recovery before other nodes are allowed
411 * to mount the fs. (Others may begin mounting, but they must wait
412 * for the first mounter to be done before taking locks on the fs
413 * or accessing the fs.) This has two parts:
415 * 1. The mounted_lock tells a node it's the first to mount the fs.
416 * Each node holds the mounted_lock in PR while it's mounted.
417 * Each node tries to acquire the mounted_lock in EX when it mounts.
418 * If a node is granted the mounted_lock EX it means there are no
419 * other mounted nodes (no PR locks exist), and it is the first mounter.
420 * The mounted_lock is demoted to PR when first recovery is done, so
421 * others will fail to get an EX lock, but will get a PR lock.
423 * 2. The control_lock blocks others in control_mount() while the first
424 * mounter is doing first mount recovery of all journals.
425 * A mounting node needs to acquire control_lock in EX mode before
426 * it can proceed. The first mounter holds control_lock in EX while doing
427 * the first mount recovery, blocking mounts from other nodes, then demotes
428 * control_lock to NL when it's done (others_may_mount/first_done),
429 * allowing other nodes to continue mounting.
432 * control_lock EX/NOQUEUE success
433 * mounted_lock EX/NOQUEUE success (no other PR, so no other mounters)
435 * do first mounter recovery
436 * mounted_lock EX->PR
437 * control_lock EX->NL, write lvb generation
440 * control_lock EX/NOQUEUE success (if fail -EAGAIN, retry)
441 * mounted_lock EX/NOQUEUE fail -EAGAIN (expected due to other mounters PR)
442 * mounted_lock PR/NOQUEUE success
443 * read lvb generation
444 * control_lock EX->NL
447 * - mount during recovery
449 * If a node mounts while others are doing recovery (not first mounter),
450 * the mounting node will get its initial recover_done() callback without
451 * having seen any previous failures/callbacks.
453 * It must wait for all recoveries preceding its mount to be finished
454 * before it unblocks locks. It does this by repeating the "other mounter"
455 * steps above until the lvb generation number is >= its mount generation
456 * number (from initial recover_done) and all lvb bits are clear.
458 * - control_lock lvb format
460 * 4 bytes generation number: the latest dlm lockspace generation number
461 * from recover_done callback. Indicates the jid bitmap has been updated
462 * to reflect all slot failures through that generation.
464 * GDLM_LVB_SIZE-8 bytes of jid bit map. If bit N is set, it indicates
465 * that jid N needs recovery.
468 #define JID_BITMAP_OFFSET 8 /* 4 byte generation number + 4 byte unused */
470 static void control_lvb_read(struct lm_lockstruct
*ls
, uint32_t *lvb_gen
,
474 memcpy(lvb_bits
, ls
->ls_control_lvb
, GDLM_LVB_SIZE
);
475 memcpy(&gen
, lvb_bits
, sizeof(__le32
));
476 *lvb_gen
= le32_to_cpu(gen
);
479 static void control_lvb_write(struct lm_lockstruct
*ls
, uint32_t lvb_gen
,
483 memcpy(ls
->ls_control_lvb
, lvb_bits
, GDLM_LVB_SIZE
);
484 gen
= cpu_to_le32(lvb_gen
);
485 memcpy(ls
->ls_control_lvb
, &gen
, sizeof(__le32
));
488 static int all_jid_bits_clear(char *lvb
)
490 return !memchr_inv(lvb
+ JID_BITMAP_OFFSET
, 0,
491 GDLM_LVB_SIZE
- JID_BITMAP_OFFSET
);
494 static void sync_wait_cb(void *arg
)
496 struct lm_lockstruct
*ls
= arg
;
497 complete(&ls
->ls_sync_wait
);
500 static int sync_unlock(struct gfs2_sbd
*sdp
, struct dlm_lksb
*lksb
, char *name
)
502 struct lm_lockstruct
*ls
= &sdp
->sd_lockstruct
;
505 error
= dlm_unlock(ls
->ls_dlm
, lksb
->sb_lkid
, 0, lksb
, ls
);
507 fs_err(sdp
, "%s lkid %x error %d\n",
508 name
, lksb
->sb_lkid
, error
);
512 wait_for_completion(&ls
->ls_sync_wait
);
514 if (lksb
->sb_status
!= -DLM_EUNLOCK
) {
515 fs_err(sdp
, "%s lkid %x status %d\n",
516 name
, lksb
->sb_lkid
, lksb
->sb_status
);
522 static int sync_lock(struct gfs2_sbd
*sdp
, int mode
, uint32_t flags
,
523 unsigned int num
, struct dlm_lksb
*lksb
, char *name
)
525 struct lm_lockstruct
*ls
= &sdp
->sd_lockstruct
;
526 char strname
[GDLM_STRNAME_BYTES
];
529 memset(strname
, 0, GDLM_STRNAME_BYTES
);
530 snprintf(strname
, GDLM_STRNAME_BYTES
, "%8x%16x", LM_TYPE_NONDISK
, num
);
532 error
= dlm_lock(ls
->ls_dlm
, mode
, lksb
, flags
,
533 strname
, GDLM_STRNAME_BYTES
- 1,
534 0, sync_wait_cb
, ls
, NULL
);
536 fs_err(sdp
, "%s lkid %x flags %x mode %d error %d\n",
537 name
, lksb
->sb_lkid
, flags
, mode
, error
);
541 wait_for_completion(&ls
->ls_sync_wait
);
543 status
= lksb
->sb_status
;
545 if (status
&& status
!= -EAGAIN
) {
546 fs_err(sdp
, "%s lkid %x flags %x mode %d status %d\n",
547 name
, lksb
->sb_lkid
, flags
, mode
, status
);
553 static int mounted_unlock(struct gfs2_sbd
*sdp
)
555 struct lm_lockstruct
*ls
= &sdp
->sd_lockstruct
;
556 return sync_unlock(sdp
, &ls
->ls_mounted_lksb
, "mounted_lock");
559 static int mounted_lock(struct gfs2_sbd
*sdp
, int mode
, uint32_t flags
)
561 struct lm_lockstruct
*ls
= &sdp
->sd_lockstruct
;
562 return sync_lock(sdp
, mode
, flags
, GFS2_MOUNTED_LOCK
,
563 &ls
->ls_mounted_lksb
, "mounted_lock");
566 static int control_unlock(struct gfs2_sbd
*sdp
)
568 struct lm_lockstruct
*ls
= &sdp
->sd_lockstruct
;
569 return sync_unlock(sdp
, &ls
->ls_control_lksb
, "control_lock");
572 static int control_lock(struct gfs2_sbd
*sdp
, int mode
, uint32_t flags
)
574 struct lm_lockstruct
*ls
= &sdp
->sd_lockstruct
;
575 return sync_lock(sdp
, mode
, flags
, GFS2_CONTROL_LOCK
,
576 &ls
->ls_control_lksb
, "control_lock");
580 * remote_withdraw - react to a node withdrawing from the file system
581 * @sdp: The superblock
583 static void remote_withdraw(struct gfs2_sbd
*sdp
)
585 struct gfs2_jdesc
*jd
;
586 int ret
= 0, count
= 0;
588 list_for_each_entry(jd
, &sdp
->sd_jindex_list
, jd_list
) {
589 if (jd
->jd_jid
== sdp
->sd_lockstruct
.ls_jid
)
591 ret
= gfs2_recover_journal(jd
, true);
597 /* Now drop the additional reference we acquired */
598 fs_err(sdp
, "Journals checked: %d, ret = %d.\n", count
, ret
);
601 static void gfs2_control_func(struct work_struct
*work
)
603 struct gfs2_sbd
*sdp
= container_of(work
, struct gfs2_sbd
, sd_control_work
.work
);
604 struct lm_lockstruct
*ls
= &sdp
->sd_lockstruct
;
605 uint32_t block_gen
, start_gen
, lvb_gen
, flags
;
611 /* First check for other nodes that may have done a withdraw. */
612 if (test_bit(SDF_REMOTE_WITHDRAW
, &sdp
->sd_flags
)) {
613 remote_withdraw(sdp
);
614 clear_bit(SDF_REMOTE_WITHDRAW
, &sdp
->sd_flags
);
618 spin_lock(&ls
->ls_recover_spin
);
620 * No MOUNT_DONE means we're still mounting; control_mount()
621 * will set this flag, after which this thread will take over
622 * all further clearing of BLOCK_LOCKS.
624 * FIRST_MOUNT means this node is doing first mounter recovery,
625 * for which recovery control is handled by
626 * control_mount()/control_first_done(), not this thread.
628 if (!test_bit(DFL_MOUNT_DONE
, &ls
->ls_recover_flags
) ||
629 test_bit(DFL_FIRST_MOUNT
, &ls
->ls_recover_flags
)) {
630 spin_unlock(&ls
->ls_recover_spin
);
633 block_gen
= ls
->ls_recover_block
;
634 start_gen
= ls
->ls_recover_start
;
635 spin_unlock(&ls
->ls_recover_spin
);
638 * Equal block_gen and start_gen implies we are between
639 * recover_prep and recover_done callbacks, which means
640 * dlm recovery is in progress and dlm locking is blocked.
641 * There's no point trying to do any work until recover_done.
644 if (block_gen
== start_gen
)
648 * Propagate recover_submit[] and recover_result[] to lvb:
649 * dlm_recoverd adds to recover_submit[] jids needing recovery
650 * gfs2_recover adds to recover_result[] journal recovery results
652 * set lvb bit for jids in recover_submit[] if the lvb has not
653 * yet been updated for the generation of the failure
655 * clear lvb bit for jids in recover_result[] if the result of
656 * the journal recovery is SUCCESS
659 error
= control_lock(sdp
, DLM_LOCK_EX
, DLM_LKF_CONVERT
|DLM_LKF_VALBLK
);
661 fs_err(sdp
, "control lock EX error %d\n", error
);
665 control_lvb_read(ls
, &lvb_gen
, ls
->ls_lvb_bits
);
667 spin_lock(&ls
->ls_recover_spin
);
668 if (block_gen
!= ls
->ls_recover_block
||
669 start_gen
!= ls
->ls_recover_start
) {
670 fs_info(sdp
, "recover generation %u block1 %u %u\n",
671 start_gen
, block_gen
, ls
->ls_recover_block
);
672 spin_unlock(&ls
->ls_recover_spin
);
673 control_lock(sdp
, DLM_LOCK_NL
, DLM_LKF_CONVERT
);
677 recover_size
= ls
->ls_recover_size
;
679 if (lvb_gen
<= start_gen
) {
681 * Clear lvb bits for jids we've successfully recovered.
682 * Because all nodes attempt to recover failed journals,
683 * a journal can be recovered multiple times successfully
684 * in succession. Only the first will really do recovery,
685 * the others find it clean, but still report a successful
686 * recovery. So, another node may have already recovered
687 * the jid and cleared the lvb bit for it.
689 for (i
= 0; i
< recover_size
; i
++) {
690 if (ls
->ls_recover_result
[i
] != LM_RD_SUCCESS
)
693 ls
->ls_recover_result
[i
] = 0;
695 if (!test_bit_le(i
, ls
->ls_lvb_bits
+ JID_BITMAP_OFFSET
))
698 __clear_bit_le(i
, ls
->ls_lvb_bits
+ JID_BITMAP_OFFSET
);
703 if (lvb_gen
== start_gen
) {
705 * Failed slots before start_gen are already set in lvb.
707 for (i
= 0; i
< recover_size
; i
++) {
708 if (!ls
->ls_recover_submit
[i
])
710 if (ls
->ls_recover_submit
[i
] < lvb_gen
)
711 ls
->ls_recover_submit
[i
] = 0;
713 } else if (lvb_gen
< start_gen
) {
715 * Failed slots before start_gen are not yet set in lvb.
717 for (i
= 0; i
< recover_size
; i
++) {
718 if (!ls
->ls_recover_submit
[i
])
720 if (ls
->ls_recover_submit
[i
] < start_gen
) {
721 ls
->ls_recover_submit
[i
] = 0;
722 __set_bit_le(i
, ls
->ls_lvb_bits
+ JID_BITMAP_OFFSET
);
725 /* even if there are no bits to set, we need to write the
726 latest generation to the lvb */
730 * we should be getting a recover_done() for lvb_gen soon
733 spin_unlock(&ls
->ls_recover_spin
);
736 control_lvb_write(ls
, start_gen
, ls
->ls_lvb_bits
);
737 flags
= DLM_LKF_CONVERT
| DLM_LKF_VALBLK
;
739 flags
= DLM_LKF_CONVERT
;
742 error
= control_lock(sdp
, DLM_LOCK_NL
, flags
);
744 fs_err(sdp
, "control lock NL error %d\n", error
);
749 * Everyone will see jid bits set in the lvb, run gfs2_recover_set(),
750 * and clear a jid bit in the lvb if the recovery is a success.
751 * Eventually all journals will be recovered, all jid bits will
752 * be cleared in the lvb, and everyone will clear BLOCK_LOCKS.
755 for (i
= 0; i
< recover_size
; i
++) {
756 if (test_bit_le(i
, ls
->ls_lvb_bits
+ JID_BITMAP_OFFSET
)) {
757 fs_info(sdp
, "recover generation %u jid %d\n",
759 gfs2_recover_set(sdp
, i
);
767 * No more jid bits set in lvb, all recovery is done, unblock locks
768 * (unless a new recover_prep callback has occured blocking locks
769 * again while working above)
772 spin_lock(&ls
->ls_recover_spin
);
773 if (ls
->ls_recover_block
== block_gen
&&
774 ls
->ls_recover_start
== start_gen
) {
775 clear_bit(DFL_BLOCK_LOCKS
, &ls
->ls_recover_flags
);
776 spin_unlock(&ls
->ls_recover_spin
);
777 fs_info(sdp
, "recover generation %u done\n", start_gen
);
778 gfs2_glock_thaw(sdp
);
780 fs_info(sdp
, "recover generation %u block2 %u %u\n",
781 start_gen
, block_gen
, ls
->ls_recover_block
);
782 spin_unlock(&ls
->ls_recover_spin
);
786 static int control_mount(struct gfs2_sbd
*sdp
)
788 struct lm_lockstruct
*ls
= &sdp
->sd_lockstruct
;
789 uint32_t start_gen
, block_gen
, mount_gen
, lvb_gen
;
794 memset(&ls
->ls_mounted_lksb
, 0, sizeof(struct dlm_lksb
));
795 memset(&ls
->ls_control_lksb
, 0, sizeof(struct dlm_lksb
));
796 memset(&ls
->ls_control_lvb
, 0, GDLM_LVB_SIZE
);
797 ls
->ls_control_lksb
.sb_lvbptr
= ls
->ls_control_lvb
;
798 init_completion(&ls
->ls_sync_wait
);
800 set_bit(DFL_BLOCK_LOCKS
, &ls
->ls_recover_flags
);
802 error
= control_lock(sdp
, DLM_LOCK_NL
, DLM_LKF_VALBLK
);
804 fs_err(sdp
, "control_mount control_lock NL error %d\n", error
);
808 error
= mounted_lock(sdp
, DLM_LOCK_NL
, 0);
810 fs_err(sdp
, "control_mount mounted_lock NL error %d\n", error
);
814 mounted_mode
= DLM_LOCK_NL
;
817 if (retries
++ && signal_pending(current
)) {
823 * We always start with both locks in NL. control_lock is
824 * demoted to NL below so we don't need to do it here.
827 if (mounted_mode
!= DLM_LOCK_NL
) {
828 error
= mounted_lock(sdp
, DLM_LOCK_NL
, DLM_LKF_CONVERT
);
831 mounted_mode
= DLM_LOCK_NL
;
835 * Other nodes need to do some work in dlm recovery and gfs2_control
836 * before the recover_done and control_lock will be ready for us below.
837 * A delay here is not required but often avoids having to retry.
840 msleep_interruptible(500);
843 * Acquire control_lock in EX and mounted_lock in either EX or PR.
844 * control_lock lvb keeps track of any pending journal recoveries.
845 * mounted_lock indicates if any other nodes have the fs mounted.
848 error
= control_lock(sdp
, DLM_LOCK_EX
, DLM_LKF_CONVERT
|DLM_LKF_NOQUEUE
|DLM_LKF_VALBLK
);
849 if (error
== -EAGAIN
) {
852 fs_err(sdp
, "control_mount control_lock EX error %d\n", error
);
857 * If we're a spectator, we don't want to take the lock in EX because
858 * we cannot do the first-mount responsibility it implies: recovery.
860 if (sdp
->sd_args
.ar_spectator
)
863 error
= mounted_lock(sdp
, DLM_LOCK_EX
, DLM_LKF_CONVERT
|DLM_LKF_NOQUEUE
);
865 mounted_mode
= DLM_LOCK_EX
;
867 } else if (error
!= -EAGAIN
) {
868 fs_err(sdp
, "control_mount mounted_lock EX error %d\n", error
);
872 error
= mounted_lock(sdp
, DLM_LOCK_PR
, DLM_LKF_CONVERT
|DLM_LKF_NOQUEUE
);
874 mounted_mode
= DLM_LOCK_PR
;
877 /* not even -EAGAIN should happen here */
878 fs_err(sdp
, "control_mount mounted_lock PR error %d\n", error
);
884 * If we got both locks above in EX, then we're the first mounter.
885 * If not, then we need to wait for the control_lock lvb to be
886 * updated by other mounted nodes to reflect our mount generation.
888 * In simple first mounter cases, first mounter will see zero lvb_gen,
889 * but in cases where all existing nodes leave/fail before mounting
890 * nodes finish control_mount, then all nodes will be mounting and
891 * lvb_gen will be non-zero.
894 control_lvb_read(ls
, &lvb_gen
, ls
->ls_lvb_bits
);
896 if (lvb_gen
== 0xFFFFFFFF) {
897 /* special value to force mount attempts to fail */
898 fs_err(sdp
, "control_mount control_lock disabled\n");
903 if (mounted_mode
== DLM_LOCK_EX
) {
904 /* first mounter, keep both EX while doing first recovery */
905 spin_lock(&ls
->ls_recover_spin
);
906 clear_bit(DFL_BLOCK_LOCKS
, &ls
->ls_recover_flags
);
907 set_bit(DFL_MOUNT_DONE
, &ls
->ls_recover_flags
);
908 set_bit(DFL_FIRST_MOUNT
, &ls
->ls_recover_flags
);
909 spin_unlock(&ls
->ls_recover_spin
);
910 fs_info(sdp
, "first mounter control generation %u\n", lvb_gen
);
914 error
= control_lock(sdp
, DLM_LOCK_NL
, DLM_LKF_CONVERT
);
919 * We are not first mounter, now we need to wait for the control_lock
920 * lvb generation to be >= the generation from our first recover_done
921 * and all lvb bits to be clear (no pending journal recoveries.)
924 if (!all_jid_bits_clear(ls
->ls_lvb_bits
)) {
925 /* journals need recovery, wait until all are clear */
926 fs_info(sdp
, "control_mount wait for journal recovery\n");
930 spin_lock(&ls
->ls_recover_spin
);
931 block_gen
= ls
->ls_recover_block
;
932 start_gen
= ls
->ls_recover_start
;
933 mount_gen
= ls
->ls_recover_mount
;
935 if (lvb_gen
< mount_gen
) {
936 /* wait for mounted nodes to update control_lock lvb to our
937 generation, which might include new recovery bits set */
938 if (sdp
->sd_args
.ar_spectator
) {
939 fs_info(sdp
, "Recovery is required. Waiting for a "
940 "non-spectator to mount.\n");
941 msleep_interruptible(1000);
943 fs_info(sdp
, "control_mount wait1 block %u start %u "
944 "mount %u lvb %u flags %lx\n", block_gen
,
945 start_gen
, mount_gen
, lvb_gen
,
946 ls
->ls_recover_flags
);
948 spin_unlock(&ls
->ls_recover_spin
);
952 if (lvb_gen
!= start_gen
) {
953 /* wait for mounted nodes to update control_lock lvb to the
954 latest recovery generation */
955 fs_info(sdp
, "control_mount wait2 block %u start %u mount %u "
956 "lvb %u flags %lx\n", block_gen
, start_gen
, mount_gen
,
957 lvb_gen
, ls
->ls_recover_flags
);
958 spin_unlock(&ls
->ls_recover_spin
);
962 if (block_gen
== start_gen
) {
963 /* dlm recovery in progress, wait for it to finish */
964 fs_info(sdp
, "control_mount wait3 block %u start %u mount %u "
965 "lvb %u flags %lx\n", block_gen
, start_gen
, mount_gen
,
966 lvb_gen
, ls
->ls_recover_flags
);
967 spin_unlock(&ls
->ls_recover_spin
);
971 clear_bit(DFL_BLOCK_LOCKS
, &ls
->ls_recover_flags
);
972 set_bit(DFL_MOUNT_DONE
, &ls
->ls_recover_flags
);
973 memset(ls
->ls_recover_submit
, 0, ls
->ls_recover_size
*sizeof(uint32_t));
974 memset(ls
->ls_recover_result
, 0, ls
->ls_recover_size
*sizeof(uint32_t));
975 spin_unlock(&ls
->ls_recover_spin
);
984 static int control_first_done(struct gfs2_sbd
*sdp
)
986 struct lm_lockstruct
*ls
= &sdp
->sd_lockstruct
;
987 uint32_t start_gen
, block_gen
;
991 spin_lock(&ls
->ls_recover_spin
);
992 start_gen
= ls
->ls_recover_start
;
993 block_gen
= ls
->ls_recover_block
;
995 if (test_bit(DFL_BLOCK_LOCKS
, &ls
->ls_recover_flags
) ||
996 !test_bit(DFL_MOUNT_DONE
, &ls
->ls_recover_flags
) ||
997 !test_bit(DFL_FIRST_MOUNT
, &ls
->ls_recover_flags
)) {
998 /* sanity check, should not happen */
999 fs_err(sdp
, "control_first_done start %u block %u flags %lx\n",
1000 start_gen
, block_gen
, ls
->ls_recover_flags
);
1001 spin_unlock(&ls
->ls_recover_spin
);
1002 control_unlock(sdp
);
1006 if (start_gen
== block_gen
) {
1008 * Wait for the end of a dlm recovery cycle to switch from
1009 * first mounter recovery. We can ignore any recover_slot
1010 * callbacks between the recover_prep and next recover_done
1011 * because we are still the first mounter and any failed nodes
1012 * have not fully mounted, so they don't need recovery.
1014 spin_unlock(&ls
->ls_recover_spin
);
1015 fs_info(sdp
, "control_first_done wait gen %u\n", start_gen
);
1017 wait_on_bit(&ls
->ls_recover_flags
, DFL_DLM_RECOVERY
,
1018 TASK_UNINTERRUPTIBLE
);
1022 clear_bit(DFL_FIRST_MOUNT
, &ls
->ls_recover_flags
);
1023 set_bit(DFL_FIRST_MOUNT_DONE
, &ls
->ls_recover_flags
);
1024 memset(ls
->ls_recover_submit
, 0, ls
->ls_recover_size
*sizeof(uint32_t));
1025 memset(ls
->ls_recover_result
, 0, ls
->ls_recover_size
*sizeof(uint32_t));
1026 spin_unlock(&ls
->ls_recover_spin
);
1028 memset(ls
->ls_lvb_bits
, 0, GDLM_LVB_SIZE
);
1029 control_lvb_write(ls
, start_gen
, ls
->ls_lvb_bits
);
1031 error
= mounted_lock(sdp
, DLM_LOCK_PR
, DLM_LKF_CONVERT
);
1033 fs_err(sdp
, "control_first_done mounted PR error %d\n", error
);
1035 error
= control_lock(sdp
, DLM_LOCK_NL
, DLM_LKF_CONVERT
|DLM_LKF_VALBLK
);
1037 fs_err(sdp
, "control_first_done control NL error %d\n", error
);
1043 * Expand static jid arrays if necessary (by increments of RECOVER_SIZE_INC)
1044 * to accomodate the largest slot number. (NB dlm slot numbers start at 1,
1045 * gfs2 jids start at 0, so jid = slot - 1)
1048 #define RECOVER_SIZE_INC 16
1050 static int set_recover_size(struct gfs2_sbd
*sdp
, struct dlm_slot
*slots
,
1053 struct lm_lockstruct
*ls
= &sdp
->sd_lockstruct
;
1054 uint32_t *submit
= NULL
;
1055 uint32_t *result
= NULL
;
1056 uint32_t old_size
, new_size
;
1059 if (!ls
->ls_lvb_bits
) {
1060 ls
->ls_lvb_bits
= kzalloc(GDLM_LVB_SIZE
, GFP_NOFS
);
1061 if (!ls
->ls_lvb_bits
)
1066 for (i
= 0; i
< num_slots
; i
++) {
1067 if (max_jid
< slots
[i
].slot
- 1)
1068 max_jid
= slots
[i
].slot
- 1;
1071 old_size
= ls
->ls_recover_size
;
1072 new_size
= old_size
;
1073 while (new_size
< max_jid
+ 1)
1074 new_size
+= RECOVER_SIZE_INC
;
1075 if (new_size
== old_size
)
1078 submit
= kcalloc(new_size
, sizeof(uint32_t), GFP_NOFS
);
1079 result
= kcalloc(new_size
, sizeof(uint32_t), GFP_NOFS
);
1080 if (!submit
|| !result
) {
1086 spin_lock(&ls
->ls_recover_spin
);
1087 memcpy(submit
, ls
->ls_recover_submit
, old_size
* sizeof(uint32_t));
1088 memcpy(result
, ls
->ls_recover_result
, old_size
* sizeof(uint32_t));
1089 kfree(ls
->ls_recover_submit
);
1090 kfree(ls
->ls_recover_result
);
1091 ls
->ls_recover_submit
= submit
;
1092 ls
->ls_recover_result
= result
;
1093 ls
->ls_recover_size
= new_size
;
1094 spin_unlock(&ls
->ls_recover_spin
);
1098 static void free_recover_size(struct lm_lockstruct
*ls
)
1100 kfree(ls
->ls_lvb_bits
);
1101 kfree(ls
->ls_recover_submit
);
1102 kfree(ls
->ls_recover_result
);
1103 ls
->ls_recover_submit
= NULL
;
1104 ls
->ls_recover_result
= NULL
;
1105 ls
->ls_recover_size
= 0;
1106 ls
->ls_lvb_bits
= NULL
;
1109 /* dlm calls before it does lock recovery */
1111 static void gdlm_recover_prep(void *arg
)
1113 struct gfs2_sbd
*sdp
= arg
;
1114 struct lm_lockstruct
*ls
= &sdp
->sd_lockstruct
;
1116 if (gfs2_withdrawn(sdp
)) {
1117 fs_err(sdp
, "recover_prep ignored due to withdraw.\n");
1120 spin_lock(&ls
->ls_recover_spin
);
1121 ls
->ls_recover_block
= ls
->ls_recover_start
;
1122 set_bit(DFL_DLM_RECOVERY
, &ls
->ls_recover_flags
);
1124 if (!test_bit(DFL_MOUNT_DONE
, &ls
->ls_recover_flags
) ||
1125 test_bit(DFL_FIRST_MOUNT
, &ls
->ls_recover_flags
)) {
1126 spin_unlock(&ls
->ls_recover_spin
);
1129 set_bit(DFL_BLOCK_LOCKS
, &ls
->ls_recover_flags
);
1130 spin_unlock(&ls
->ls_recover_spin
);
1133 /* dlm calls after recover_prep has been completed on all lockspace members;
1134 identifies slot/jid of failed member */
1136 static void gdlm_recover_slot(void *arg
, struct dlm_slot
*slot
)
1138 struct gfs2_sbd
*sdp
= arg
;
1139 struct lm_lockstruct
*ls
= &sdp
->sd_lockstruct
;
1140 int jid
= slot
->slot
- 1;
1142 if (gfs2_withdrawn(sdp
)) {
1143 fs_err(sdp
, "recover_slot jid %d ignored due to withdraw.\n",
1147 spin_lock(&ls
->ls_recover_spin
);
1148 if (ls
->ls_recover_size
< jid
+ 1) {
1149 fs_err(sdp
, "recover_slot jid %d gen %u short size %d\n",
1150 jid
, ls
->ls_recover_block
, ls
->ls_recover_size
);
1151 spin_unlock(&ls
->ls_recover_spin
);
1155 if (ls
->ls_recover_submit
[jid
]) {
1156 fs_info(sdp
, "recover_slot jid %d gen %u prev %u\n",
1157 jid
, ls
->ls_recover_block
, ls
->ls_recover_submit
[jid
]);
1159 ls
->ls_recover_submit
[jid
] = ls
->ls_recover_block
;
1160 spin_unlock(&ls
->ls_recover_spin
);
1163 /* dlm calls after recover_slot and after it completes lock recovery */
1165 static void gdlm_recover_done(void *arg
, struct dlm_slot
*slots
, int num_slots
,
1166 int our_slot
, uint32_t generation
)
1168 struct gfs2_sbd
*sdp
= arg
;
1169 struct lm_lockstruct
*ls
= &sdp
->sd_lockstruct
;
1171 if (gfs2_withdrawn(sdp
)) {
1172 fs_err(sdp
, "recover_done ignored due to withdraw.\n");
1175 /* ensure the ls jid arrays are large enough */
1176 set_recover_size(sdp
, slots
, num_slots
);
1178 spin_lock(&ls
->ls_recover_spin
);
1179 ls
->ls_recover_start
= generation
;
1181 if (!ls
->ls_recover_mount
) {
1182 ls
->ls_recover_mount
= generation
;
1183 ls
->ls_jid
= our_slot
- 1;
1186 if (!test_bit(DFL_UNMOUNT
, &ls
->ls_recover_flags
))
1187 queue_delayed_work(gfs2_control_wq
, &sdp
->sd_control_work
, 0);
1189 clear_bit(DFL_DLM_RECOVERY
, &ls
->ls_recover_flags
);
1190 smp_mb__after_atomic();
1191 wake_up_bit(&ls
->ls_recover_flags
, DFL_DLM_RECOVERY
);
1192 spin_unlock(&ls
->ls_recover_spin
);
1195 /* gfs2_recover thread has a journal recovery result */
1197 static void gdlm_recovery_result(struct gfs2_sbd
*sdp
, unsigned int jid
,
1198 unsigned int result
)
1200 struct lm_lockstruct
*ls
= &sdp
->sd_lockstruct
;
1202 if (gfs2_withdrawn(sdp
)) {
1203 fs_err(sdp
, "recovery_result jid %d ignored due to withdraw.\n",
1207 if (test_bit(DFL_NO_DLM_OPS
, &ls
->ls_recover_flags
))
1210 /* don't care about the recovery of own journal during mount */
1211 if (jid
== ls
->ls_jid
)
1214 spin_lock(&ls
->ls_recover_spin
);
1215 if (test_bit(DFL_FIRST_MOUNT
, &ls
->ls_recover_flags
)) {
1216 spin_unlock(&ls
->ls_recover_spin
);
1219 if (ls
->ls_recover_size
< jid
+ 1) {
1220 fs_err(sdp
, "recovery_result jid %d short size %d\n",
1221 jid
, ls
->ls_recover_size
);
1222 spin_unlock(&ls
->ls_recover_spin
);
1226 fs_info(sdp
, "recover jid %d result %s\n", jid
,
1227 result
== LM_RD_GAVEUP
? "busy" : "success");
1229 ls
->ls_recover_result
[jid
] = result
;
1231 /* GAVEUP means another node is recovering the journal; delay our
1232 next attempt to recover it, to give the other node a chance to
1233 finish before trying again */
1235 if (!test_bit(DFL_UNMOUNT
, &ls
->ls_recover_flags
))
1236 queue_delayed_work(gfs2_control_wq
, &sdp
->sd_control_work
,
1237 result
== LM_RD_GAVEUP
? HZ
: 0);
1238 spin_unlock(&ls
->ls_recover_spin
);
1241 static const struct dlm_lockspace_ops gdlm_lockspace_ops
= {
1242 .recover_prep
= gdlm_recover_prep
,
1243 .recover_slot
= gdlm_recover_slot
,
1244 .recover_done
= gdlm_recover_done
,
1247 static int gdlm_mount(struct gfs2_sbd
*sdp
, const char *table
)
1249 struct lm_lockstruct
*ls
= &sdp
->sd_lockstruct
;
1250 char cluster
[GFS2_LOCKNAME_LEN
];
1253 int error
, ops_result
;
1256 * initialize everything
1259 INIT_DELAYED_WORK(&sdp
->sd_control_work
, gfs2_control_func
);
1260 spin_lock_init(&ls
->ls_recover_spin
);
1261 ls
->ls_recover_flags
= 0;
1262 ls
->ls_recover_mount
= 0;
1263 ls
->ls_recover_start
= 0;
1264 ls
->ls_recover_block
= 0;
1265 ls
->ls_recover_size
= 0;
1266 ls
->ls_recover_submit
= NULL
;
1267 ls
->ls_recover_result
= NULL
;
1268 ls
->ls_lvb_bits
= NULL
;
1270 error
= set_recover_size(sdp
, NULL
, 0);
1275 * prepare dlm_new_lockspace args
1278 fsname
= strchr(table
, ':');
1280 fs_info(sdp
, "no fsname found\n");
1284 memset(cluster
, 0, sizeof(cluster
));
1285 memcpy(cluster
, table
, strlen(table
) - strlen(fsname
));
1288 flags
= DLM_LSFL_FS
| DLM_LSFL_NEWEXCL
;
1291 * create/join lockspace
1294 error
= dlm_new_lockspace(fsname
, cluster
, flags
, GDLM_LVB_SIZE
,
1295 &gdlm_lockspace_ops
, sdp
, &ops_result
,
1298 fs_err(sdp
, "dlm_new_lockspace error %d\n", error
);
1302 if (ops_result
< 0) {
1304 * dlm does not support ops callbacks,
1305 * old dlm_controld/gfs_controld are used, try without ops.
1307 fs_info(sdp
, "dlm lockspace ops not used\n");
1308 free_recover_size(ls
);
1309 set_bit(DFL_NO_DLM_OPS
, &ls
->ls_recover_flags
);
1313 if (!test_bit(SDF_NOJOURNALID
, &sdp
->sd_flags
)) {
1314 fs_err(sdp
, "dlm lockspace ops disallow jid preset\n");
1320 * control_mount() uses control_lock to determine first mounter,
1321 * and for later mounts, waits for any recoveries to be cleared.
1324 error
= control_mount(sdp
);
1326 fs_err(sdp
, "mount control error %d\n", error
);
1330 ls
->ls_first
= !!test_bit(DFL_FIRST_MOUNT
, &ls
->ls_recover_flags
);
1331 clear_bit(SDF_NOJOURNALID
, &sdp
->sd_flags
);
1332 smp_mb__after_atomic();
1333 wake_up_bit(&sdp
->sd_flags
, SDF_NOJOURNALID
);
1337 dlm_release_lockspace(ls
->ls_dlm
, 2);
1339 free_recover_size(ls
);
1344 static void gdlm_first_done(struct gfs2_sbd
*sdp
)
1346 struct lm_lockstruct
*ls
= &sdp
->sd_lockstruct
;
1349 if (test_bit(DFL_NO_DLM_OPS
, &ls
->ls_recover_flags
))
1352 error
= control_first_done(sdp
);
1354 fs_err(sdp
, "mount first_done error %d\n", error
);
1357 static void gdlm_unmount(struct gfs2_sbd
*sdp
)
1359 struct lm_lockstruct
*ls
= &sdp
->sd_lockstruct
;
1361 if (test_bit(DFL_NO_DLM_OPS
, &ls
->ls_recover_flags
))
1364 /* wait for gfs2_control_wq to be done with this mount */
1366 spin_lock(&ls
->ls_recover_spin
);
1367 set_bit(DFL_UNMOUNT
, &ls
->ls_recover_flags
);
1368 spin_unlock(&ls
->ls_recover_spin
);
1369 flush_delayed_work(&sdp
->sd_control_work
);
1371 /* mounted_lock and control_lock will be purged in dlm recovery */
1374 dlm_release_lockspace(ls
->ls_dlm
, 2);
1378 free_recover_size(ls
);
1381 static const match_table_t dlm_tokens
= {
1382 { Opt_jid
, "jid=%d"},
1384 { Opt_first
, "first=%d"},
1385 { Opt_nodir
, "nodir=%d"},
1389 const struct lm_lockops gfs2_dlm_ops
= {
1390 .lm_proto_name
= "lock_dlm",
1391 .lm_mount
= gdlm_mount
,
1392 .lm_first_done
= gdlm_first_done
,
1393 .lm_recovery_result
= gdlm_recovery_result
,
1394 .lm_unmount
= gdlm_unmount
,
1395 .lm_put_lock
= gdlm_put_lock
,
1396 .lm_lock
= gdlm_lock
,
1397 .lm_cancel
= gdlm_cancel
,
1398 .lm_tokens
= &dlm_tokens
,