Linux 5.8-rc4
[linux/fpc-iii.git] / fs / io_uring.c
blobd37d7ea5ebe58c079975788c4ab9110fbdcba57f
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Shared application/kernel submission and completion ring pairs, for
4 * supporting fast/efficient IO.
6 * A note on the read/write ordering memory barriers that are matched between
7 * the application and kernel side.
9 * After the application reads the CQ ring tail, it must use an
10 * appropriate smp_rmb() to pair with the smp_wmb() the kernel uses
11 * before writing the tail (using smp_load_acquire to read the tail will
12 * do). It also needs a smp_mb() before updating CQ head (ordering the
13 * entry load(s) with the head store), pairing with an implicit barrier
14 * through a control-dependency in io_get_cqring (smp_store_release to
15 * store head will do). Failure to do so could lead to reading invalid
16 * CQ entries.
18 * Likewise, the application must use an appropriate smp_wmb() before
19 * writing the SQ tail (ordering SQ entry stores with the tail store),
20 * which pairs with smp_load_acquire in io_get_sqring (smp_store_release
21 * to store the tail will do). And it needs a barrier ordering the SQ
22 * head load before writing new SQ entries (smp_load_acquire to read
23 * head will do).
25 * When using the SQ poll thread (IORING_SETUP_SQPOLL), the application
26 * needs to check the SQ flags for IORING_SQ_NEED_WAKEUP *after*
27 * updating the SQ tail; a full memory barrier smp_mb() is needed
28 * between.
30 * Also see the examples in the liburing library:
32 * git://git.kernel.dk/liburing
34 * io_uring also uses READ/WRITE_ONCE() for _any_ store or load that happens
35 * from data shared between the kernel and application. This is done both
36 * for ordering purposes, but also to ensure that once a value is loaded from
37 * data that the application could potentially modify, it remains stable.
39 * Copyright (C) 2018-2019 Jens Axboe
40 * Copyright (c) 2018-2019 Christoph Hellwig
42 #include <linux/kernel.h>
43 #include <linux/init.h>
44 #include <linux/errno.h>
45 #include <linux/syscalls.h>
46 #include <linux/compat.h>
47 #include <net/compat.h>
48 #include <linux/refcount.h>
49 #include <linux/uio.h>
50 #include <linux/bits.h>
52 #include <linux/sched/signal.h>
53 #include <linux/fs.h>
54 #include <linux/file.h>
55 #include <linux/fdtable.h>
56 #include <linux/mm.h>
57 #include <linux/mman.h>
58 #include <linux/percpu.h>
59 #include <linux/slab.h>
60 #include <linux/kthread.h>
61 #include <linux/blkdev.h>
62 #include <linux/bvec.h>
63 #include <linux/net.h>
64 #include <net/sock.h>
65 #include <net/af_unix.h>
66 #include <net/scm.h>
67 #include <linux/anon_inodes.h>
68 #include <linux/sched/mm.h>
69 #include <linux/uaccess.h>
70 #include <linux/nospec.h>
71 #include <linux/sizes.h>
72 #include <linux/hugetlb.h>
73 #include <linux/highmem.h>
74 #include <linux/namei.h>
75 #include <linux/fsnotify.h>
76 #include <linux/fadvise.h>
77 #include <linux/eventpoll.h>
78 #include <linux/fs_struct.h>
79 #include <linux/splice.h>
80 #include <linux/task_work.h>
82 #define CREATE_TRACE_POINTS
83 #include <trace/events/io_uring.h>
85 #include <uapi/linux/io_uring.h>
87 #include "internal.h"
88 #include "io-wq.h"
90 #define IORING_MAX_ENTRIES 32768
91 #define IORING_MAX_CQ_ENTRIES (2 * IORING_MAX_ENTRIES)
94 * Shift of 9 is 512 entries, or exactly one page on 64-bit archs
96 #define IORING_FILE_TABLE_SHIFT 9
97 #define IORING_MAX_FILES_TABLE (1U << IORING_FILE_TABLE_SHIFT)
98 #define IORING_FILE_TABLE_MASK (IORING_MAX_FILES_TABLE - 1)
99 #define IORING_MAX_FIXED_FILES (64 * IORING_MAX_FILES_TABLE)
101 struct io_uring {
102 u32 head ____cacheline_aligned_in_smp;
103 u32 tail ____cacheline_aligned_in_smp;
107 * This data is shared with the application through the mmap at offsets
108 * IORING_OFF_SQ_RING and IORING_OFF_CQ_RING.
110 * The offsets to the member fields are published through struct
111 * io_sqring_offsets when calling io_uring_setup.
113 struct io_rings {
115 * Head and tail offsets into the ring; the offsets need to be
116 * masked to get valid indices.
118 * The kernel controls head of the sq ring and the tail of the cq ring,
119 * and the application controls tail of the sq ring and the head of the
120 * cq ring.
122 struct io_uring sq, cq;
124 * Bitmasks to apply to head and tail offsets (constant, equals
125 * ring_entries - 1)
127 u32 sq_ring_mask, cq_ring_mask;
128 /* Ring sizes (constant, power of 2) */
129 u32 sq_ring_entries, cq_ring_entries;
131 * Number of invalid entries dropped by the kernel due to
132 * invalid index stored in array
134 * Written by the kernel, shouldn't be modified by the
135 * application (i.e. get number of "new events" by comparing to
136 * cached value).
138 * After a new SQ head value was read by the application this
139 * counter includes all submissions that were dropped reaching
140 * the new SQ head (and possibly more).
142 u32 sq_dropped;
144 * Runtime SQ flags
146 * Written by the kernel, shouldn't be modified by the
147 * application.
149 * The application needs a full memory barrier before checking
150 * for IORING_SQ_NEED_WAKEUP after updating the sq tail.
152 u32 sq_flags;
154 * Runtime CQ flags
156 * Written by the application, shouldn't be modified by the
157 * kernel.
159 u32 cq_flags;
161 * Number of completion events lost because the queue was full;
162 * this should be avoided by the application by making sure
163 * there are not more requests pending than there is space in
164 * the completion queue.
166 * Written by the kernel, shouldn't be modified by the
167 * application (i.e. get number of "new events" by comparing to
168 * cached value).
170 * As completion events come in out of order this counter is not
171 * ordered with any other data.
173 u32 cq_overflow;
175 * Ring buffer of completion events.
177 * The kernel writes completion events fresh every time they are
178 * produced, so the application is allowed to modify pending
179 * entries.
181 struct io_uring_cqe cqes[] ____cacheline_aligned_in_smp;
184 struct io_mapped_ubuf {
185 u64 ubuf;
186 size_t len;
187 struct bio_vec *bvec;
188 unsigned int nr_bvecs;
191 struct fixed_file_table {
192 struct file **files;
195 struct fixed_file_ref_node {
196 struct percpu_ref refs;
197 struct list_head node;
198 struct list_head file_list;
199 struct fixed_file_data *file_data;
200 struct llist_node llist;
203 struct fixed_file_data {
204 struct fixed_file_table *table;
205 struct io_ring_ctx *ctx;
207 struct percpu_ref *cur_refs;
208 struct percpu_ref refs;
209 struct completion done;
210 struct list_head ref_list;
211 spinlock_t lock;
214 struct io_buffer {
215 struct list_head list;
216 __u64 addr;
217 __s32 len;
218 __u16 bid;
221 struct io_ring_ctx {
222 struct {
223 struct percpu_ref refs;
224 } ____cacheline_aligned_in_smp;
226 struct {
227 unsigned int flags;
228 unsigned int compat: 1;
229 unsigned int account_mem: 1;
230 unsigned int cq_overflow_flushed: 1;
231 unsigned int drain_next: 1;
232 unsigned int eventfd_async: 1;
235 * Ring buffer of indices into array of io_uring_sqe, which is
236 * mmapped by the application using the IORING_OFF_SQES offset.
238 * This indirection could e.g. be used to assign fixed
239 * io_uring_sqe entries to operations and only submit them to
240 * the queue when needed.
242 * The kernel modifies neither the indices array nor the entries
243 * array.
245 u32 *sq_array;
246 unsigned cached_sq_head;
247 unsigned sq_entries;
248 unsigned sq_mask;
249 unsigned sq_thread_idle;
250 unsigned cached_sq_dropped;
251 atomic_t cached_cq_overflow;
252 unsigned long sq_check_overflow;
254 struct list_head defer_list;
255 struct list_head timeout_list;
256 struct list_head cq_overflow_list;
258 wait_queue_head_t inflight_wait;
259 struct io_uring_sqe *sq_sqes;
260 } ____cacheline_aligned_in_smp;
262 struct io_rings *rings;
264 /* IO offload */
265 struct io_wq *io_wq;
266 struct task_struct *sqo_thread; /* if using sq thread polling */
267 struct mm_struct *sqo_mm;
268 wait_queue_head_t sqo_wait;
271 * If used, fixed file set. Writers must ensure that ->refs is dead,
272 * readers must ensure that ->refs is alive as long as the file* is
273 * used. Only updated through io_uring_register(2).
275 struct fixed_file_data *file_data;
276 unsigned nr_user_files;
277 int ring_fd;
278 struct file *ring_file;
280 /* if used, fixed mapped user buffers */
281 unsigned nr_user_bufs;
282 struct io_mapped_ubuf *user_bufs;
284 struct user_struct *user;
286 const struct cred *creds;
288 struct completion ref_comp;
289 struct completion sq_thread_comp;
291 /* if all else fails... */
292 struct io_kiocb *fallback_req;
294 #if defined(CONFIG_UNIX)
295 struct socket *ring_sock;
296 #endif
298 struct idr io_buffer_idr;
300 struct idr personality_idr;
302 struct {
303 unsigned cached_cq_tail;
304 unsigned cq_entries;
305 unsigned cq_mask;
306 atomic_t cq_timeouts;
307 unsigned long cq_check_overflow;
308 struct wait_queue_head cq_wait;
309 struct fasync_struct *cq_fasync;
310 struct eventfd_ctx *cq_ev_fd;
311 } ____cacheline_aligned_in_smp;
313 struct {
314 struct mutex uring_lock;
315 wait_queue_head_t wait;
316 } ____cacheline_aligned_in_smp;
318 struct {
319 spinlock_t completion_lock;
322 * ->poll_list is protected by the ctx->uring_lock for
323 * io_uring instances that don't use IORING_SETUP_SQPOLL.
324 * For SQPOLL, only the single threaded io_sq_thread() will
325 * manipulate the list, hence no extra locking is needed there.
327 struct list_head poll_list;
328 struct hlist_head *cancel_hash;
329 unsigned cancel_hash_bits;
330 bool poll_multi_file;
332 spinlock_t inflight_lock;
333 struct list_head inflight_list;
334 } ____cacheline_aligned_in_smp;
336 struct delayed_work file_put_work;
337 struct llist_head file_put_llist;
339 struct work_struct exit_work;
343 * First field must be the file pointer in all the
344 * iocb unions! See also 'struct kiocb' in <linux/fs.h>
346 struct io_poll_iocb {
347 struct file *file;
348 union {
349 struct wait_queue_head *head;
350 u64 addr;
352 __poll_t events;
353 bool done;
354 bool canceled;
355 struct wait_queue_entry wait;
358 struct io_close {
359 struct file *file;
360 struct file *put_file;
361 int fd;
364 struct io_timeout_data {
365 struct io_kiocb *req;
366 struct hrtimer timer;
367 struct timespec64 ts;
368 enum hrtimer_mode mode;
371 struct io_accept {
372 struct file *file;
373 struct sockaddr __user *addr;
374 int __user *addr_len;
375 int flags;
376 unsigned long nofile;
379 struct io_sync {
380 struct file *file;
381 loff_t len;
382 loff_t off;
383 int flags;
384 int mode;
387 struct io_cancel {
388 struct file *file;
389 u64 addr;
392 struct io_timeout {
393 struct file *file;
394 u64 addr;
395 int flags;
396 u32 off;
397 u32 target_seq;
400 struct io_rw {
401 /* NOTE: kiocb has the file as the first member, so don't do it here */
402 struct kiocb kiocb;
403 u64 addr;
404 u64 len;
407 struct io_connect {
408 struct file *file;
409 struct sockaddr __user *addr;
410 int addr_len;
413 struct io_sr_msg {
414 struct file *file;
415 union {
416 struct user_msghdr __user *msg;
417 void __user *buf;
419 int msg_flags;
420 int bgid;
421 size_t len;
422 struct io_buffer *kbuf;
425 struct io_open {
426 struct file *file;
427 int dfd;
428 struct filename *filename;
429 struct open_how how;
430 unsigned long nofile;
433 struct io_files_update {
434 struct file *file;
435 u64 arg;
436 u32 nr_args;
437 u32 offset;
440 struct io_fadvise {
441 struct file *file;
442 u64 offset;
443 u32 len;
444 u32 advice;
447 struct io_madvise {
448 struct file *file;
449 u64 addr;
450 u32 len;
451 u32 advice;
454 struct io_epoll {
455 struct file *file;
456 int epfd;
457 int op;
458 int fd;
459 struct epoll_event event;
462 struct io_splice {
463 struct file *file_out;
464 struct file *file_in;
465 loff_t off_out;
466 loff_t off_in;
467 u64 len;
468 unsigned int flags;
471 struct io_provide_buf {
472 struct file *file;
473 __u64 addr;
474 __s32 len;
475 __u32 bgid;
476 __u16 nbufs;
477 __u16 bid;
480 struct io_statx {
481 struct file *file;
482 int dfd;
483 unsigned int mask;
484 unsigned int flags;
485 const char __user *filename;
486 struct statx __user *buffer;
489 struct io_async_connect {
490 struct sockaddr_storage address;
493 struct io_async_msghdr {
494 struct iovec fast_iov[UIO_FASTIOV];
495 struct iovec *iov;
496 struct sockaddr __user *uaddr;
497 struct msghdr msg;
498 struct sockaddr_storage addr;
501 struct io_async_rw {
502 struct iovec fast_iov[UIO_FASTIOV];
503 struct iovec *iov;
504 ssize_t nr_segs;
505 ssize_t size;
508 struct io_async_ctx {
509 union {
510 struct io_async_rw rw;
511 struct io_async_msghdr msg;
512 struct io_async_connect connect;
513 struct io_timeout_data timeout;
517 enum {
518 REQ_F_FIXED_FILE_BIT = IOSQE_FIXED_FILE_BIT,
519 REQ_F_IO_DRAIN_BIT = IOSQE_IO_DRAIN_BIT,
520 REQ_F_LINK_BIT = IOSQE_IO_LINK_BIT,
521 REQ_F_HARDLINK_BIT = IOSQE_IO_HARDLINK_BIT,
522 REQ_F_FORCE_ASYNC_BIT = IOSQE_ASYNC_BIT,
523 REQ_F_BUFFER_SELECT_BIT = IOSQE_BUFFER_SELECT_BIT,
525 REQ_F_LINK_HEAD_BIT,
526 REQ_F_LINK_NEXT_BIT,
527 REQ_F_FAIL_LINK_BIT,
528 REQ_F_INFLIGHT_BIT,
529 REQ_F_CUR_POS_BIT,
530 REQ_F_NOWAIT_BIT,
531 REQ_F_LINK_TIMEOUT_BIT,
532 REQ_F_TIMEOUT_BIT,
533 REQ_F_ISREG_BIT,
534 REQ_F_MUST_PUNT_BIT,
535 REQ_F_TIMEOUT_NOSEQ_BIT,
536 REQ_F_COMP_LOCKED_BIT,
537 REQ_F_NEED_CLEANUP_BIT,
538 REQ_F_OVERFLOW_BIT,
539 REQ_F_POLLED_BIT,
540 REQ_F_BUFFER_SELECTED_BIT,
541 REQ_F_NO_FILE_TABLE_BIT,
542 REQ_F_QUEUE_TIMEOUT_BIT,
543 REQ_F_WORK_INITIALIZED_BIT,
544 REQ_F_TASK_PINNED_BIT,
546 /* not a real bit, just to check we're not overflowing the space */
547 __REQ_F_LAST_BIT,
550 enum {
551 /* ctx owns file */
552 REQ_F_FIXED_FILE = BIT(REQ_F_FIXED_FILE_BIT),
553 /* drain existing IO first */
554 REQ_F_IO_DRAIN = BIT(REQ_F_IO_DRAIN_BIT),
555 /* linked sqes */
556 REQ_F_LINK = BIT(REQ_F_LINK_BIT),
557 /* doesn't sever on completion < 0 */
558 REQ_F_HARDLINK = BIT(REQ_F_HARDLINK_BIT),
559 /* IOSQE_ASYNC */
560 REQ_F_FORCE_ASYNC = BIT(REQ_F_FORCE_ASYNC_BIT),
561 /* IOSQE_BUFFER_SELECT */
562 REQ_F_BUFFER_SELECT = BIT(REQ_F_BUFFER_SELECT_BIT),
564 /* head of a link */
565 REQ_F_LINK_HEAD = BIT(REQ_F_LINK_HEAD_BIT),
566 /* already grabbed next link */
567 REQ_F_LINK_NEXT = BIT(REQ_F_LINK_NEXT_BIT),
568 /* fail rest of links */
569 REQ_F_FAIL_LINK = BIT(REQ_F_FAIL_LINK_BIT),
570 /* on inflight list */
571 REQ_F_INFLIGHT = BIT(REQ_F_INFLIGHT_BIT),
572 /* read/write uses file position */
573 REQ_F_CUR_POS = BIT(REQ_F_CUR_POS_BIT),
574 /* must not punt to workers */
575 REQ_F_NOWAIT = BIT(REQ_F_NOWAIT_BIT),
576 /* has linked timeout */
577 REQ_F_LINK_TIMEOUT = BIT(REQ_F_LINK_TIMEOUT_BIT),
578 /* timeout request */
579 REQ_F_TIMEOUT = BIT(REQ_F_TIMEOUT_BIT),
580 /* regular file */
581 REQ_F_ISREG = BIT(REQ_F_ISREG_BIT),
582 /* must be punted even for NONBLOCK */
583 REQ_F_MUST_PUNT = BIT(REQ_F_MUST_PUNT_BIT),
584 /* no timeout sequence */
585 REQ_F_TIMEOUT_NOSEQ = BIT(REQ_F_TIMEOUT_NOSEQ_BIT),
586 /* completion under lock */
587 REQ_F_COMP_LOCKED = BIT(REQ_F_COMP_LOCKED_BIT),
588 /* needs cleanup */
589 REQ_F_NEED_CLEANUP = BIT(REQ_F_NEED_CLEANUP_BIT),
590 /* in overflow list */
591 REQ_F_OVERFLOW = BIT(REQ_F_OVERFLOW_BIT),
592 /* already went through poll handler */
593 REQ_F_POLLED = BIT(REQ_F_POLLED_BIT),
594 /* buffer already selected */
595 REQ_F_BUFFER_SELECTED = BIT(REQ_F_BUFFER_SELECTED_BIT),
596 /* doesn't need file table for this request */
597 REQ_F_NO_FILE_TABLE = BIT(REQ_F_NO_FILE_TABLE_BIT),
598 /* needs to queue linked timeout */
599 REQ_F_QUEUE_TIMEOUT = BIT(REQ_F_QUEUE_TIMEOUT_BIT),
600 /* io_wq_work is initialized */
601 REQ_F_WORK_INITIALIZED = BIT(REQ_F_WORK_INITIALIZED_BIT),
602 /* req->task is refcounted */
603 REQ_F_TASK_PINNED = BIT(REQ_F_TASK_PINNED_BIT),
606 struct async_poll {
607 struct io_poll_iocb poll;
608 struct io_wq_work work;
612 * NOTE! Each of the iocb union members has the file pointer
613 * as the first entry in their struct definition. So you can
614 * access the file pointer through any of the sub-structs,
615 * or directly as just 'ki_filp' in this struct.
617 struct io_kiocb {
618 union {
619 struct file *file;
620 struct io_rw rw;
621 struct io_poll_iocb poll;
622 struct io_accept accept;
623 struct io_sync sync;
624 struct io_cancel cancel;
625 struct io_timeout timeout;
626 struct io_connect connect;
627 struct io_sr_msg sr_msg;
628 struct io_open open;
629 struct io_close close;
630 struct io_files_update files_update;
631 struct io_fadvise fadvise;
632 struct io_madvise madvise;
633 struct io_epoll epoll;
634 struct io_splice splice;
635 struct io_provide_buf pbuf;
636 struct io_statx statx;
639 struct io_async_ctx *io;
640 int cflags;
641 u8 opcode;
642 /* polled IO has completed */
643 u8 iopoll_completed;
645 u16 buf_index;
647 struct io_ring_ctx *ctx;
648 struct list_head list;
649 unsigned int flags;
650 refcount_t refs;
651 struct task_struct *task;
652 unsigned long fsize;
653 u64 user_data;
654 u32 result;
655 u32 sequence;
657 struct list_head link_list;
659 struct list_head inflight_entry;
661 struct percpu_ref *fixed_file_refs;
663 union {
665 * Only commands that never go async can use the below fields,
666 * obviously. Right now only IORING_OP_POLL_ADD uses them, and
667 * async armed poll handlers for regular commands. The latter
668 * restore the work, if needed.
670 struct {
671 struct callback_head task_work;
672 struct hlist_node hash_node;
673 struct async_poll *apoll;
675 struct io_wq_work work;
679 #define IO_PLUG_THRESHOLD 2
680 #define IO_IOPOLL_BATCH 8
682 struct io_submit_state {
683 struct blk_plug plug;
686 * io_kiocb alloc cache
688 void *reqs[IO_IOPOLL_BATCH];
689 unsigned int free_reqs;
692 * File reference cache
694 struct file *file;
695 unsigned int fd;
696 unsigned int has_refs;
697 unsigned int used_refs;
698 unsigned int ios_left;
701 struct io_op_def {
702 /* needs req->io allocated for deferral/async */
703 unsigned async_ctx : 1;
704 /* needs current->mm setup, does mm access */
705 unsigned needs_mm : 1;
706 /* needs req->file assigned */
707 unsigned needs_file : 1;
708 /* don't fail if file grab fails */
709 unsigned needs_file_no_error : 1;
710 /* hash wq insertion if file is a regular file */
711 unsigned hash_reg_file : 1;
712 /* unbound wq insertion if file is a non-regular file */
713 unsigned unbound_nonreg_file : 1;
714 /* opcode is not supported by this kernel */
715 unsigned not_supported : 1;
716 /* needs file table */
717 unsigned file_table : 1;
718 /* needs ->fs */
719 unsigned needs_fs : 1;
720 /* set if opcode supports polled "wait" */
721 unsigned pollin : 1;
722 unsigned pollout : 1;
723 /* op supports buffer selection */
724 unsigned buffer_select : 1;
727 static const struct io_op_def io_op_defs[] = {
728 [IORING_OP_NOP] = {},
729 [IORING_OP_READV] = {
730 .async_ctx = 1,
731 .needs_mm = 1,
732 .needs_file = 1,
733 .unbound_nonreg_file = 1,
734 .pollin = 1,
735 .buffer_select = 1,
737 [IORING_OP_WRITEV] = {
738 .async_ctx = 1,
739 .needs_mm = 1,
740 .needs_file = 1,
741 .hash_reg_file = 1,
742 .unbound_nonreg_file = 1,
743 .pollout = 1,
745 [IORING_OP_FSYNC] = {
746 .needs_file = 1,
748 [IORING_OP_READ_FIXED] = {
749 .needs_file = 1,
750 .unbound_nonreg_file = 1,
751 .pollin = 1,
753 [IORING_OP_WRITE_FIXED] = {
754 .needs_file = 1,
755 .hash_reg_file = 1,
756 .unbound_nonreg_file = 1,
757 .pollout = 1,
759 [IORING_OP_POLL_ADD] = {
760 .needs_file = 1,
761 .unbound_nonreg_file = 1,
763 [IORING_OP_POLL_REMOVE] = {},
764 [IORING_OP_SYNC_FILE_RANGE] = {
765 .needs_file = 1,
767 [IORING_OP_SENDMSG] = {
768 .async_ctx = 1,
769 .needs_mm = 1,
770 .needs_file = 1,
771 .unbound_nonreg_file = 1,
772 .needs_fs = 1,
773 .pollout = 1,
775 [IORING_OP_RECVMSG] = {
776 .async_ctx = 1,
777 .needs_mm = 1,
778 .needs_file = 1,
779 .unbound_nonreg_file = 1,
780 .needs_fs = 1,
781 .pollin = 1,
782 .buffer_select = 1,
784 [IORING_OP_TIMEOUT] = {
785 .async_ctx = 1,
786 .needs_mm = 1,
788 [IORING_OP_TIMEOUT_REMOVE] = {},
789 [IORING_OP_ACCEPT] = {
790 .needs_mm = 1,
791 .needs_file = 1,
792 .unbound_nonreg_file = 1,
793 .file_table = 1,
794 .pollin = 1,
796 [IORING_OP_ASYNC_CANCEL] = {},
797 [IORING_OP_LINK_TIMEOUT] = {
798 .async_ctx = 1,
799 .needs_mm = 1,
801 [IORING_OP_CONNECT] = {
802 .async_ctx = 1,
803 .needs_mm = 1,
804 .needs_file = 1,
805 .unbound_nonreg_file = 1,
806 .pollout = 1,
808 [IORING_OP_FALLOCATE] = {
809 .needs_file = 1,
811 [IORING_OP_OPENAT] = {
812 .file_table = 1,
813 .needs_fs = 1,
815 [IORING_OP_CLOSE] = {
816 .needs_file = 1,
817 .needs_file_no_error = 1,
818 .file_table = 1,
820 [IORING_OP_FILES_UPDATE] = {
821 .needs_mm = 1,
822 .file_table = 1,
824 [IORING_OP_STATX] = {
825 .needs_mm = 1,
826 .needs_fs = 1,
827 .file_table = 1,
829 [IORING_OP_READ] = {
830 .needs_mm = 1,
831 .needs_file = 1,
832 .unbound_nonreg_file = 1,
833 .pollin = 1,
834 .buffer_select = 1,
836 [IORING_OP_WRITE] = {
837 .needs_mm = 1,
838 .needs_file = 1,
839 .unbound_nonreg_file = 1,
840 .pollout = 1,
842 [IORING_OP_FADVISE] = {
843 .needs_file = 1,
845 [IORING_OP_MADVISE] = {
846 .needs_mm = 1,
848 [IORING_OP_SEND] = {
849 .needs_mm = 1,
850 .needs_file = 1,
851 .unbound_nonreg_file = 1,
852 .pollout = 1,
854 [IORING_OP_RECV] = {
855 .needs_mm = 1,
856 .needs_file = 1,
857 .unbound_nonreg_file = 1,
858 .pollin = 1,
859 .buffer_select = 1,
861 [IORING_OP_OPENAT2] = {
862 .file_table = 1,
863 .needs_fs = 1,
865 [IORING_OP_EPOLL_CTL] = {
866 .unbound_nonreg_file = 1,
867 .file_table = 1,
869 [IORING_OP_SPLICE] = {
870 .needs_file = 1,
871 .hash_reg_file = 1,
872 .unbound_nonreg_file = 1,
874 [IORING_OP_PROVIDE_BUFFERS] = {},
875 [IORING_OP_REMOVE_BUFFERS] = {},
876 [IORING_OP_TEE] = {
877 .needs_file = 1,
878 .hash_reg_file = 1,
879 .unbound_nonreg_file = 1,
883 static void io_wq_submit_work(struct io_wq_work **workptr);
884 static void io_cqring_fill_event(struct io_kiocb *req, long res);
885 static void io_put_req(struct io_kiocb *req);
886 static void __io_double_put_req(struct io_kiocb *req);
887 static struct io_kiocb *io_prep_linked_timeout(struct io_kiocb *req);
888 static void io_queue_linked_timeout(struct io_kiocb *req);
889 static int __io_sqe_files_update(struct io_ring_ctx *ctx,
890 struct io_uring_files_update *ip,
891 unsigned nr_args);
892 static int io_grab_files(struct io_kiocb *req);
893 static void io_complete_rw_common(struct kiocb *kiocb, long res);
894 static void io_cleanup_req(struct io_kiocb *req);
895 static int io_file_get(struct io_submit_state *state, struct io_kiocb *req,
896 int fd, struct file **out_file, bool fixed);
897 static void __io_queue_sqe(struct io_kiocb *req,
898 const struct io_uring_sqe *sqe);
900 static struct kmem_cache *req_cachep;
902 static const struct file_operations io_uring_fops;
904 struct sock *io_uring_get_socket(struct file *file)
906 #if defined(CONFIG_UNIX)
907 if (file->f_op == &io_uring_fops) {
908 struct io_ring_ctx *ctx = file->private_data;
910 return ctx->ring_sock->sk;
912 #endif
913 return NULL;
915 EXPORT_SYMBOL(io_uring_get_socket);
917 static void io_get_req_task(struct io_kiocb *req)
919 if (req->flags & REQ_F_TASK_PINNED)
920 return;
921 get_task_struct(req->task);
922 req->flags |= REQ_F_TASK_PINNED;
925 /* not idempotent -- it doesn't clear REQ_F_TASK_PINNED */
926 static void __io_put_req_task(struct io_kiocb *req)
928 if (req->flags & REQ_F_TASK_PINNED)
929 put_task_struct(req->task);
932 static void io_file_put_work(struct work_struct *work);
935 * Note: must call io_req_init_async() for the first time you
936 * touch any members of io_wq_work.
938 static inline void io_req_init_async(struct io_kiocb *req)
940 if (req->flags & REQ_F_WORK_INITIALIZED)
941 return;
943 memset(&req->work, 0, sizeof(req->work));
944 req->flags |= REQ_F_WORK_INITIALIZED;
947 static inline bool io_async_submit(struct io_ring_ctx *ctx)
949 return ctx->flags & IORING_SETUP_SQPOLL;
952 static void io_ring_ctx_ref_free(struct percpu_ref *ref)
954 struct io_ring_ctx *ctx = container_of(ref, struct io_ring_ctx, refs);
956 complete(&ctx->ref_comp);
959 static struct io_ring_ctx *io_ring_ctx_alloc(struct io_uring_params *p)
961 struct io_ring_ctx *ctx;
962 int hash_bits;
964 ctx = kzalloc(sizeof(*ctx), GFP_KERNEL);
965 if (!ctx)
966 return NULL;
968 ctx->fallback_req = kmem_cache_alloc(req_cachep, GFP_KERNEL);
969 if (!ctx->fallback_req)
970 goto err;
973 * Use 5 bits less than the max cq entries, that should give us around
974 * 32 entries per hash list if totally full and uniformly spread.
976 hash_bits = ilog2(p->cq_entries);
977 hash_bits -= 5;
978 if (hash_bits <= 0)
979 hash_bits = 1;
980 ctx->cancel_hash_bits = hash_bits;
981 ctx->cancel_hash = kmalloc((1U << hash_bits) * sizeof(struct hlist_head),
982 GFP_KERNEL);
983 if (!ctx->cancel_hash)
984 goto err;
985 __hash_init(ctx->cancel_hash, 1U << hash_bits);
987 if (percpu_ref_init(&ctx->refs, io_ring_ctx_ref_free,
988 PERCPU_REF_ALLOW_REINIT, GFP_KERNEL))
989 goto err;
991 ctx->flags = p->flags;
992 init_waitqueue_head(&ctx->sqo_wait);
993 init_waitqueue_head(&ctx->cq_wait);
994 INIT_LIST_HEAD(&ctx->cq_overflow_list);
995 init_completion(&ctx->ref_comp);
996 init_completion(&ctx->sq_thread_comp);
997 idr_init(&ctx->io_buffer_idr);
998 idr_init(&ctx->personality_idr);
999 mutex_init(&ctx->uring_lock);
1000 init_waitqueue_head(&ctx->wait);
1001 spin_lock_init(&ctx->completion_lock);
1002 INIT_LIST_HEAD(&ctx->poll_list);
1003 INIT_LIST_HEAD(&ctx->defer_list);
1004 INIT_LIST_HEAD(&ctx->timeout_list);
1005 init_waitqueue_head(&ctx->inflight_wait);
1006 spin_lock_init(&ctx->inflight_lock);
1007 INIT_LIST_HEAD(&ctx->inflight_list);
1008 INIT_DELAYED_WORK(&ctx->file_put_work, io_file_put_work);
1009 init_llist_head(&ctx->file_put_llist);
1010 return ctx;
1011 err:
1012 if (ctx->fallback_req)
1013 kmem_cache_free(req_cachep, ctx->fallback_req);
1014 kfree(ctx->cancel_hash);
1015 kfree(ctx);
1016 return NULL;
1019 static inline bool __req_need_defer(struct io_kiocb *req)
1021 struct io_ring_ctx *ctx = req->ctx;
1023 return req->sequence != ctx->cached_cq_tail
1024 + atomic_read(&ctx->cached_cq_overflow);
1027 static inline bool req_need_defer(struct io_kiocb *req)
1029 if (unlikely(req->flags & REQ_F_IO_DRAIN))
1030 return __req_need_defer(req);
1032 return false;
1035 static void __io_commit_cqring(struct io_ring_ctx *ctx)
1037 struct io_rings *rings = ctx->rings;
1039 /* order cqe stores with ring update */
1040 smp_store_release(&rings->cq.tail, ctx->cached_cq_tail);
1042 if (wq_has_sleeper(&ctx->cq_wait)) {
1043 wake_up_interruptible(&ctx->cq_wait);
1044 kill_fasync(&ctx->cq_fasync, SIGIO, POLL_IN);
1048 static inline void io_req_work_grab_env(struct io_kiocb *req,
1049 const struct io_op_def *def)
1051 if (!req->work.mm && def->needs_mm) {
1052 mmgrab(current->mm);
1053 req->work.mm = current->mm;
1055 if (!req->work.creds)
1056 req->work.creds = get_current_cred();
1057 if (!req->work.fs && def->needs_fs) {
1058 spin_lock(&current->fs->lock);
1059 if (!current->fs->in_exec) {
1060 req->work.fs = current->fs;
1061 req->work.fs->users++;
1062 } else {
1063 req->work.flags |= IO_WQ_WORK_CANCEL;
1065 spin_unlock(&current->fs->lock);
1069 static inline void io_req_work_drop_env(struct io_kiocb *req)
1071 if (!(req->flags & REQ_F_WORK_INITIALIZED))
1072 return;
1074 if (req->work.mm) {
1075 mmdrop(req->work.mm);
1076 req->work.mm = NULL;
1078 if (req->work.creds) {
1079 put_cred(req->work.creds);
1080 req->work.creds = NULL;
1082 if (req->work.fs) {
1083 struct fs_struct *fs = req->work.fs;
1085 spin_lock(&req->work.fs->lock);
1086 if (--fs->users)
1087 fs = NULL;
1088 spin_unlock(&req->work.fs->lock);
1089 if (fs)
1090 free_fs_struct(fs);
1094 static inline void io_prep_async_work(struct io_kiocb *req,
1095 struct io_kiocb **link)
1097 const struct io_op_def *def = &io_op_defs[req->opcode];
1099 if (req->flags & REQ_F_ISREG) {
1100 if (def->hash_reg_file)
1101 io_wq_hash_work(&req->work, file_inode(req->file));
1102 } else {
1103 if (def->unbound_nonreg_file)
1104 req->work.flags |= IO_WQ_WORK_UNBOUND;
1107 io_req_init_async(req);
1108 io_req_work_grab_env(req, def);
1110 *link = io_prep_linked_timeout(req);
1113 static inline void io_queue_async_work(struct io_kiocb *req)
1115 struct io_ring_ctx *ctx = req->ctx;
1116 struct io_kiocb *link;
1118 io_prep_async_work(req, &link);
1120 trace_io_uring_queue_async_work(ctx, io_wq_is_hashed(&req->work), req,
1121 &req->work, req->flags);
1122 io_wq_enqueue(ctx->io_wq, &req->work);
1124 if (link)
1125 io_queue_linked_timeout(link);
1128 static void io_kill_timeout(struct io_kiocb *req)
1130 int ret;
1132 ret = hrtimer_try_to_cancel(&req->io->timeout.timer);
1133 if (ret != -1) {
1134 atomic_inc(&req->ctx->cq_timeouts);
1135 list_del_init(&req->list);
1136 req->flags |= REQ_F_COMP_LOCKED;
1137 io_cqring_fill_event(req, 0);
1138 io_put_req(req);
1142 static void io_kill_timeouts(struct io_ring_ctx *ctx)
1144 struct io_kiocb *req, *tmp;
1146 spin_lock_irq(&ctx->completion_lock);
1147 list_for_each_entry_safe(req, tmp, &ctx->timeout_list, list)
1148 io_kill_timeout(req);
1149 spin_unlock_irq(&ctx->completion_lock);
1152 static void __io_queue_deferred(struct io_ring_ctx *ctx)
1154 do {
1155 struct io_kiocb *req = list_first_entry(&ctx->defer_list,
1156 struct io_kiocb, list);
1158 if (req_need_defer(req))
1159 break;
1160 list_del_init(&req->list);
1161 io_queue_async_work(req);
1162 } while (!list_empty(&ctx->defer_list));
1165 static void io_flush_timeouts(struct io_ring_ctx *ctx)
1167 while (!list_empty(&ctx->timeout_list)) {
1168 struct io_kiocb *req = list_first_entry(&ctx->timeout_list,
1169 struct io_kiocb, list);
1171 if (req->flags & REQ_F_TIMEOUT_NOSEQ)
1172 break;
1173 if (req->timeout.target_seq != ctx->cached_cq_tail
1174 - atomic_read(&ctx->cq_timeouts))
1175 break;
1177 list_del_init(&req->list);
1178 io_kill_timeout(req);
1182 static void io_commit_cqring(struct io_ring_ctx *ctx)
1184 io_flush_timeouts(ctx);
1185 __io_commit_cqring(ctx);
1187 if (unlikely(!list_empty(&ctx->defer_list)))
1188 __io_queue_deferred(ctx);
1191 static struct io_uring_cqe *io_get_cqring(struct io_ring_ctx *ctx)
1193 struct io_rings *rings = ctx->rings;
1194 unsigned tail;
1196 tail = ctx->cached_cq_tail;
1198 * writes to the cq entry need to come after reading head; the
1199 * control dependency is enough as we're using WRITE_ONCE to
1200 * fill the cq entry
1202 if (tail - READ_ONCE(rings->cq.head) == rings->cq_ring_entries)
1203 return NULL;
1205 ctx->cached_cq_tail++;
1206 return &rings->cqes[tail & ctx->cq_mask];
1209 static inline bool io_should_trigger_evfd(struct io_ring_ctx *ctx)
1211 if (!ctx->cq_ev_fd)
1212 return false;
1213 if (READ_ONCE(ctx->rings->cq_flags) & IORING_CQ_EVENTFD_DISABLED)
1214 return false;
1215 if (!ctx->eventfd_async)
1216 return true;
1217 return io_wq_current_is_worker();
1220 static void io_cqring_ev_posted(struct io_ring_ctx *ctx)
1222 if (waitqueue_active(&ctx->wait))
1223 wake_up(&ctx->wait);
1224 if (waitqueue_active(&ctx->sqo_wait))
1225 wake_up(&ctx->sqo_wait);
1226 if (io_should_trigger_evfd(ctx))
1227 eventfd_signal(ctx->cq_ev_fd, 1);
1230 /* Returns true if there are no backlogged entries after the flush */
1231 static bool io_cqring_overflow_flush(struct io_ring_ctx *ctx, bool force)
1233 struct io_rings *rings = ctx->rings;
1234 struct io_uring_cqe *cqe;
1235 struct io_kiocb *req;
1236 unsigned long flags;
1237 LIST_HEAD(list);
1239 if (!force) {
1240 if (list_empty_careful(&ctx->cq_overflow_list))
1241 return true;
1242 if ((ctx->cached_cq_tail - READ_ONCE(rings->cq.head) ==
1243 rings->cq_ring_entries))
1244 return false;
1247 spin_lock_irqsave(&ctx->completion_lock, flags);
1249 /* if force is set, the ring is going away. always drop after that */
1250 if (force)
1251 ctx->cq_overflow_flushed = 1;
1253 cqe = NULL;
1254 while (!list_empty(&ctx->cq_overflow_list)) {
1255 cqe = io_get_cqring(ctx);
1256 if (!cqe && !force)
1257 break;
1259 req = list_first_entry(&ctx->cq_overflow_list, struct io_kiocb,
1260 list);
1261 list_move(&req->list, &list);
1262 req->flags &= ~REQ_F_OVERFLOW;
1263 if (cqe) {
1264 WRITE_ONCE(cqe->user_data, req->user_data);
1265 WRITE_ONCE(cqe->res, req->result);
1266 WRITE_ONCE(cqe->flags, req->cflags);
1267 } else {
1268 WRITE_ONCE(ctx->rings->cq_overflow,
1269 atomic_inc_return(&ctx->cached_cq_overflow));
1273 io_commit_cqring(ctx);
1274 if (cqe) {
1275 clear_bit(0, &ctx->sq_check_overflow);
1276 clear_bit(0, &ctx->cq_check_overflow);
1278 spin_unlock_irqrestore(&ctx->completion_lock, flags);
1279 io_cqring_ev_posted(ctx);
1281 while (!list_empty(&list)) {
1282 req = list_first_entry(&list, struct io_kiocb, list);
1283 list_del(&req->list);
1284 io_put_req(req);
1287 return cqe != NULL;
1290 static void __io_cqring_fill_event(struct io_kiocb *req, long res, long cflags)
1292 struct io_ring_ctx *ctx = req->ctx;
1293 struct io_uring_cqe *cqe;
1295 trace_io_uring_complete(ctx, req->user_data, res);
1298 * If we can't get a cq entry, userspace overflowed the
1299 * submission (by quite a lot). Increment the overflow count in
1300 * the ring.
1302 cqe = io_get_cqring(ctx);
1303 if (likely(cqe)) {
1304 WRITE_ONCE(cqe->user_data, req->user_data);
1305 WRITE_ONCE(cqe->res, res);
1306 WRITE_ONCE(cqe->flags, cflags);
1307 } else if (ctx->cq_overflow_flushed) {
1308 WRITE_ONCE(ctx->rings->cq_overflow,
1309 atomic_inc_return(&ctx->cached_cq_overflow));
1310 } else {
1311 if (list_empty(&ctx->cq_overflow_list)) {
1312 set_bit(0, &ctx->sq_check_overflow);
1313 set_bit(0, &ctx->cq_check_overflow);
1315 req->flags |= REQ_F_OVERFLOW;
1316 refcount_inc(&req->refs);
1317 req->result = res;
1318 req->cflags = cflags;
1319 list_add_tail(&req->list, &ctx->cq_overflow_list);
1323 static void io_cqring_fill_event(struct io_kiocb *req, long res)
1325 __io_cqring_fill_event(req, res, 0);
1328 static void __io_cqring_add_event(struct io_kiocb *req, long res, long cflags)
1330 struct io_ring_ctx *ctx = req->ctx;
1331 unsigned long flags;
1333 spin_lock_irqsave(&ctx->completion_lock, flags);
1334 __io_cqring_fill_event(req, res, cflags);
1335 io_commit_cqring(ctx);
1336 spin_unlock_irqrestore(&ctx->completion_lock, flags);
1338 io_cqring_ev_posted(ctx);
1341 static void io_cqring_add_event(struct io_kiocb *req, long res)
1343 __io_cqring_add_event(req, res, 0);
1346 static inline bool io_is_fallback_req(struct io_kiocb *req)
1348 return req == (struct io_kiocb *)
1349 ((unsigned long) req->ctx->fallback_req & ~1UL);
1352 static struct io_kiocb *io_get_fallback_req(struct io_ring_ctx *ctx)
1354 struct io_kiocb *req;
1356 req = ctx->fallback_req;
1357 if (!test_and_set_bit_lock(0, (unsigned long *) &ctx->fallback_req))
1358 return req;
1360 return NULL;
1363 static struct io_kiocb *io_alloc_req(struct io_ring_ctx *ctx,
1364 struct io_submit_state *state)
1366 gfp_t gfp = GFP_KERNEL | __GFP_NOWARN;
1367 struct io_kiocb *req;
1369 if (!state) {
1370 req = kmem_cache_alloc(req_cachep, gfp);
1371 if (unlikely(!req))
1372 goto fallback;
1373 } else if (!state->free_reqs) {
1374 size_t sz;
1375 int ret;
1377 sz = min_t(size_t, state->ios_left, ARRAY_SIZE(state->reqs));
1378 ret = kmem_cache_alloc_bulk(req_cachep, gfp, sz, state->reqs);
1381 * Bulk alloc is all-or-nothing. If we fail to get a batch,
1382 * retry single alloc to be on the safe side.
1384 if (unlikely(ret <= 0)) {
1385 state->reqs[0] = kmem_cache_alloc(req_cachep, gfp);
1386 if (!state->reqs[0])
1387 goto fallback;
1388 ret = 1;
1390 state->free_reqs = ret - 1;
1391 req = state->reqs[ret - 1];
1392 } else {
1393 state->free_reqs--;
1394 req = state->reqs[state->free_reqs];
1397 return req;
1398 fallback:
1399 return io_get_fallback_req(ctx);
1402 static inline void io_put_file(struct io_kiocb *req, struct file *file,
1403 bool fixed)
1405 if (fixed)
1406 percpu_ref_put(req->fixed_file_refs);
1407 else
1408 fput(file);
1411 static void __io_req_aux_free(struct io_kiocb *req)
1413 if (req->flags & REQ_F_NEED_CLEANUP)
1414 io_cleanup_req(req);
1416 kfree(req->io);
1417 if (req->file)
1418 io_put_file(req, req->file, (req->flags & REQ_F_FIXED_FILE));
1419 __io_put_req_task(req);
1420 io_req_work_drop_env(req);
1423 static void __io_free_req(struct io_kiocb *req)
1425 __io_req_aux_free(req);
1427 if (req->flags & REQ_F_INFLIGHT) {
1428 struct io_ring_ctx *ctx = req->ctx;
1429 unsigned long flags;
1431 spin_lock_irqsave(&ctx->inflight_lock, flags);
1432 list_del(&req->inflight_entry);
1433 if (waitqueue_active(&ctx->inflight_wait))
1434 wake_up(&ctx->inflight_wait);
1435 spin_unlock_irqrestore(&ctx->inflight_lock, flags);
1438 percpu_ref_put(&req->ctx->refs);
1439 if (likely(!io_is_fallback_req(req)))
1440 kmem_cache_free(req_cachep, req);
1441 else
1442 clear_bit_unlock(0, (unsigned long *) &req->ctx->fallback_req);
1445 struct req_batch {
1446 void *reqs[IO_IOPOLL_BATCH];
1447 int to_free;
1448 int need_iter;
1451 static void io_free_req_many(struct io_ring_ctx *ctx, struct req_batch *rb)
1453 if (!rb->to_free)
1454 return;
1455 if (rb->need_iter) {
1456 int i, inflight = 0;
1457 unsigned long flags;
1459 for (i = 0; i < rb->to_free; i++) {
1460 struct io_kiocb *req = rb->reqs[i];
1462 if (req->flags & REQ_F_INFLIGHT)
1463 inflight++;
1464 __io_req_aux_free(req);
1466 if (!inflight)
1467 goto do_free;
1469 spin_lock_irqsave(&ctx->inflight_lock, flags);
1470 for (i = 0; i < rb->to_free; i++) {
1471 struct io_kiocb *req = rb->reqs[i];
1473 if (req->flags & REQ_F_INFLIGHT) {
1474 list_del(&req->inflight_entry);
1475 if (!--inflight)
1476 break;
1479 spin_unlock_irqrestore(&ctx->inflight_lock, flags);
1481 if (waitqueue_active(&ctx->inflight_wait))
1482 wake_up(&ctx->inflight_wait);
1484 do_free:
1485 kmem_cache_free_bulk(req_cachep, rb->to_free, rb->reqs);
1486 percpu_ref_put_many(&ctx->refs, rb->to_free);
1487 rb->to_free = rb->need_iter = 0;
1490 static bool io_link_cancel_timeout(struct io_kiocb *req)
1492 struct io_ring_ctx *ctx = req->ctx;
1493 int ret;
1495 ret = hrtimer_try_to_cancel(&req->io->timeout.timer);
1496 if (ret != -1) {
1497 io_cqring_fill_event(req, -ECANCELED);
1498 io_commit_cqring(ctx);
1499 req->flags &= ~REQ_F_LINK_HEAD;
1500 io_put_req(req);
1501 return true;
1504 return false;
1507 static void io_req_link_next(struct io_kiocb *req, struct io_kiocb **nxtptr)
1509 struct io_ring_ctx *ctx = req->ctx;
1510 bool wake_ev = false;
1512 /* Already got next link */
1513 if (req->flags & REQ_F_LINK_NEXT)
1514 return;
1517 * The list should never be empty when we are called here. But could
1518 * potentially happen if the chain is messed up, check to be on the
1519 * safe side.
1521 while (!list_empty(&req->link_list)) {
1522 struct io_kiocb *nxt = list_first_entry(&req->link_list,
1523 struct io_kiocb, link_list);
1525 if (unlikely((req->flags & REQ_F_LINK_TIMEOUT) &&
1526 (nxt->flags & REQ_F_TIMEOUT))) {
1527 list_del_init(&nxt->link_list);
1528 wake_ev |= io_link_cancel_timeout(nxt);
1529 req->flags &= ~REQ_F_LINK_TIMEOUT;
1530 continue;
1533 list_del_init(&req->link_list);
1534 if (!list_empty(&nxt->link_list))
1535 nxt->flags |= REQ_F_LINK_HEAD;
1536 *nxtptr = nxt;
1537 break;
1540 req->flags |= REQ_F_LINK_NEXT;
1541 if (wake_ev)
1542 io_cqring_ev_posted(ctx);
1546 * Called if REQ_F_LINK_HEAD is set, and we fail the head request
1548 static void io_fail_links(struct io_kiocb *req)
1550 struct io_ring_ctx *ctx = req->ctx;
1551 unsigned long flags;
1553 spin_lock_irqsave(&ctx->completion_lock, flags);
1555 while (!list_empty(&req->link_list)) {
1556 struct io_kiocb *link = list_first_entry(&req->link_list,
1557 struct io_kiocb, link_list);
1559 list_del_init(&link->link_list);
1560 trace_io_uring_fail_link(req, link);
1562 if ((req->flags & REQ_F_LINK_TIMEOUT) &&
1563 link->opcode == IORING_OP_LINK_TIMEOUT) {
1564 io_link_cancel_timeout(link);
1565 } else {
1566 io_cqring_fill_event(link, -ECANCELED);
1567 __io_double_put_req(link);
1569 req->flags &= ~REQ_F_LINK_TIMEOUT;
1572 io_commit_cqring(ctx);
1573 spin_unlock_irqrestore(&ctx->completion_lock, flags);
1574 io_cqring_ev_posted(ctx);
1577 static void io_req_find_next(struct io_kiocb *req, struct io_kiocb **nxt)
1579 if (likely(!(req->flags & REQ_F_LINK_HEAD)))
1580 return;
1583 * If LINK is set, we have dependent requests in this chain. If we
1584 * didn't fail this request, queue the first one up, moving any other
1585 * dependencies to the next request. In case of failure, fail the rest
1586 * of the chain.
1588 if (req->flags & REQ_F_FAIL_LINK) {
1589 io_fail_links(req);
1590 } else if ((req->flags & (REQ_F_LINK_TIMEOUT | REQ_F_COMP_LOCKED)) ==
1591 REQ_F_LINK_TIMEOUT) {
1592 struct io_ring_ctx *ctx = req->ctx;
1593 unsigned long flags;
1596 * If this is a timeout link, we could be racing with the
1597 * timeout timer. Grab the completion lock for this case to
1598 * protect against that.
1600 spin_lock_irqsave(&ctx->completion_lock, flags);
1601 io_req_link_next(req, nxt);
1602 spin_unlock_irqrestore(&ctx->completion_lock, flags);
1603 } else {
1604 io_req_link_next(req, nxt);
1608 static void io_free_req(struct io_kiocb *req)
1610 struct io_kiocb *nxt = NULL;
1612 io_req_find_next(req, &nxt);
1613 __io_free_req(req);
1615 if (nxt)
1616 io_queue_async_work(nxt);
1619 static void io_wq_assign_next(struct io_wq_work **workptr, struct io_kiocb *nxt)
1621 struct io_kiocb *link;
1622 const struct io_op_def *def = &io_op_defs[nxt->opcode];
1624 if ((nxt->flags & REQ_F_ISREG) && def->hash_reg_file)
1625 io_wq_hash_work(&nxt->work, file_inode(nxt->file));
1627 *workptr = &nxt->work;
1628 link = io_prep_linked_timeout(nxt);
1629 if (link)
1630 nxt->flags |= REQ_F_QUEUE_TIMEOUT;
1634 * Drop reference to request, return next in chain (if there is one) if this
1635 * was the last reference to this request.
1637 __attribute__((nonnull))
1638 static void io_put_req_find_next(struct io_kiocb *req, struct io_kiocb **nxtptr)
1640 if (refcount_dec_and_test(&req->refs)) {
1641 io_req_find_next(req, nxtptr);
1642 __io_free_req(req);
1646 static void io_put_req(struct io_kiocb *req)
1648 if (refcount_dec_and_test(&req->refs))
1649 io_free_req(req);
1652 static void io_steal_work(struct io_kiocb *req,
1653 struct io_wq_work **workptr)
1656 * It's in an io-wq worker, so there always should be at least
1657 * one reference, which will be dropped in io_put_work() just
1658 * after the current handler returns.
1660 * It also means, that if the counter dropped to 1, then there is
1661 * no asynchronous users left, so it's safe to steal the next work.
1663 if (refcount_read(&req->refs) == 1) {
1664 struct io_kiocb *nxt = NULL;
1666 io_req_find_next(req, &nxt);
1667 if (nxt)
1668 io_wq_assign_next(workptr, nxt);
1673 * Must only be used if we don't need to care about links, usually from
1674 * within the completion handling itself.
1676 static void __io_double_put_req(struct io_kiocb *req)
1678 /* drop both submit and complete references */
1679 if (refcount_sub_and_test(2, &req->refs))
1680 __io_free_req(req);
1683 static void io_double_put_req(struct io_kiocb *req)
1685 /* drop both submit and complete references */
1686 if (refcount_sub_and_test(2, &req->refs))
1687 io_free_req(req);
1690 static unsigned io_cqring_events(struct io_ring_ctx *ctx, bool noflush)
1692 struct io_rings *rings = ctx->rings;
1694 if (test_bit(0, &ctx->cq_check_overflow)) {
1696 * noflush == true is from the waitqueue handler, just ensure
1697 * we wake up the task, and the next invocation will flush the
1698 * entries. We cannot safely to it from here.
1700 if (noflush && !list_empty(&ctx->cq_overflow_list))
1701 return -1U;
1703 io_cqring_overflow_flush(ctx, false);
1706 /* See comment at the top of this file */
1707 smp_rmb();
1708 return ctx->cached_cq_tail - READ_ONCE(rings->cq.head);
1711 static inline unsigned int io_sqring_entries(struct io_ring_ctx *ctx)
1713 struct io_rings *rings = ctx->rings;
1715 /* make sure SQ entry isn't read before tail */
1716 return smp_load_acquire(&rings->sq.tail) - ctx->cached_sq_head;
1719 static inline bool io_req_multi_free(struct req_batch *rb, struct io_kiocb *req)
1721 if ((req->flags & REQ_F_LINK_HEAD) || io_is_fallback_req(req))
1722 return false;
1724 if (req->file || req->io)
1725 rb->need_iter++;
1727 rb->reqs[rb->to_free++] = req;
1728 if (unlikely(rb->to_free == ARRAY_SIZE(rb->reqs)))
1729 io_free_req_many(req->ctx, rb);
1730 return true;
1733 static int io_put_kbuf(struct io_kiocb *req)
1735 struct io_buffer *kbuf;
1736 int cflags;
1738 kbuf = (struct io_buffer *) (unsigned long) req->rw.addr;
1739 cflags = kbuf->bid << IORING_CQE_BUFFER_SHIFT;
1740 cflags |= IORING_CQE_F_BUFFER;
1741 req->rw.addr = 0;
1742 kfree(kbuf);
1743 return cflags;
1746 static void io_iopoll_queue(struct list_head *again)
1748 struct io_kiocb *req;
1750 do {
1751 req = list_first_entry(again, struct io_kiocb, list);
1752 list_del(&req->list);
1754 /* shouldn't happen unless io_uring is dying, cancel reqs */
1755 if (unlikely(!current->mm)) {
1756 io_complete_rw_common(&req->rw.kiocb, -EAGAIN);
1757 io_put_req(req);
1758 continue;
1761 refcount_inc(&req->refs);
1762 io_queue_async_work(req);
1763 } while (!list_empty(again));
1767 * Find and free completed poll iocbs
1769 static void io_iopoll_complete(struct io_ring_ctx *ctx, unsigned int *nr_events,
1770 struct list_head *done)
1772 struct req_batch rb;
1773 struct io_kiocb *req;
1774 LIST_HEAD(again);
1776 /* order with ->result store in io_complete_rw_iopoll() */
1777 smp_rmb();
1779 rb.to_free = rb.need_iter = 0;
1780 while (!list_empty(done)) {
1781 int cflags = 0;
1783 req = list_first_entry(done, struct io_kiocb, list);
1784 if (READ_ONCE(req->result) == -EAGAIN) {
1785 req->iopoll_completed = 0;
1786 list_move_tail(&req->list, &again);
1787 continue;
1789 list_del(&req->list);
1791 if (req->flags & REQ_F_BUFFER_SELECTED)
1792 cflags = io_put_kbuf(req);
1794 __io_cqring_fill_event(req, req->result, cflags);
1795 (*nr_events)++;
1797 if (refcount_dec_and_test(&req->refs) &&
1798 !io_req_multi_free(&rb, req))
1799 io_free_req(req);
1802 io_commit_cqring(ctx);
1803 if (ctx->flags & IORING_SETUP_SQPOLL)
1804 io_cqring_ev_posted(ctx);
1805 io_free_req_many(ctx, &rb);
1807 if (!list_empty(&again))
1808 io_iopoll_queue(&again);
1811 static int io_do_iopoll(struct io_ring_ctx *ctx, unsigned int *nr_events,
1812 long min)
1814 struct io_kiocb *req, *tmp;
1815 LIST_HEAD(done);
1816 bool spin;
1817 int ret;
1820 * Only spin for completions if we don't have multiple devices hanging
1821 * off our complete list, and we're under the requested amount.
1823 spin = !ctx->poll_multi_file && *nr_events < min;
1825 ret = 0;
1826 list_for_each_entry_safe(req, tmp, &ctx->poll_list, list) {
1827 struct kiocb *kiocb = &req->rw.kiocb;
1830 * Move completed and retryable entries to our local lists.
1831 * If we find a request that requires polling, break out
1832 * and complete those lists first, if we have entries there.
1834 if (READ_ONCE(req->iopoll_completed)) {
1835 list_move_tail(&req->list, &done);
1836 continue;
1838 if (!list_empty(&done))
1839 break;
1841 ret = kiocb->ki_filp->f_op->iopoll(kiocb, spin);
1842 if (ret < 0)
1843 break;
1845 if (ret && spin)
1846 spin = false;
1847 ret = 0;
1850 if (!list_empty(&done))
1851 io_iopoll_complete(ctx, nr_events, &done);
1853 return ret;
1857 * Poll for a minimum of 'min' events. Note that if min == 0 we consider that a
1858 * non-spinning poll check - we'll still enter the driver poll loop, but only
1859 * as a non-spinning completion check.
1861 static int io_iopoll_getevents(struct io_ring_ctx *ctx, unsigned int *nr_events,
1862 long min)
1864 while (!list_empty(&ctx->poll_list) && !need_resched()) {
1865 int ret;
1867 ret = io_do_iopoll(ctx, nr_events, min);
1868 if (ret < 0)
1869 return ret;
1870 if (!min || *nr_events >= min)
1871 return 0;
1874 return 1;
1878 * We can't just wait for polled events to come to us, we have to actively
1879 * find and complete them.
1881 static void io_iopoll_reap_events(struct io_ring_ctx *ctx)
1883 if (!(ctx->flags & IORING_SETUP_IOPOLL))
1884 return;
1886 mutex_lock(&ctx->uring_lock);
1887 while (!list_empty(&ctx->poll_list)) {
1888 unsigned int nr_events = 0;
1890 io_iopoll_getevents(ctx, &nr_events, 1);
1893 * Ensure we allow local-to-the-cpu processing to take place,
1894 * in this case we need to ensure that we reap all events.
1896 cond_resched();
1898 mutex_unlock(&ctx->uring_lock);
1901 static int io_iopoll_check(struct io_ring_ctx *ctx, unsigned *nr_events,
1902 long min)
1904 int iters = 0, ret = 0;
1907 * We disallow the app entering submit/complete with polling, but we
1908 * still need to lock the ring to prevent racing with polled issue
1909 * that got punted to a workqueue.
1911 mutex_lock(&ctx->uring_lock);
1912 do {
1913 int tmin = 0;
1916 * Don't enter poll loop if we already have events pending.
1917 * If we do, we can potentially be spinning for commands that
1918 * already triggered a CQE (eg in error).
1920 if (io_cqring_events(ctx, false))
1921 break;
1924 * If a submit got punted to a workqueue, we can have the
1925 * application entering polling for a command before it gets
1926 * issued. That app will hold the uring_lock for the duration
1927 * of the poll right here, so we need to take a breather every
1928 * now and then to ensure that the issue has a chance to add
1929 * the poll to the issued list. Otherwise we can spin here
1930 * forever, while the workqueue is stuck trying to acquire the
1931 * very same mutex.
1933 if (!(++iters & 7)) {
1934 mutex_unlock(&ctx->uring_lock);
1935 mutex_lock(&ctx->uring_lock);
1938 if (*nr_events < min)
1939 tmin = min - *nr_events;
1941 ret = io_iopoll_getevents(ctx, nr_events, tmin);
1942 if (ret <= 0)
1943 break;
1944 ret = 0;
1945 } while (min && !*nr_events && !need_resched());
1947 mutex_unlock(&ctx->uring_lock);
1948 return ret;
1951 static void kiocb_end_write(struct io_kiocb *req)
1954 * Tell lockdep we inherited freeze protection from submission
1955 * thread.
1957 if (req->flags & REQ_F_ISREG) {
1958 struct inode *inode = file_inode(req->file);
1960 __sb_writers_acquired(inode->i_sb, SB_FREEZE_WRITE);
1962 file_end_write(req->file);
1965 static inline void req_set_fail_links(struct io_kiocb *req)
1967 if ((req->flags & (REQ_F_LINK | REQ_F_HARDLINK)) == REQ_F_LINK)
1968 req->flags |= REQ_F_FAIL_LINK;
1971 static void io_complete_rw_common(struct kiocb *kiocb, long res)
1973 struct io_kiocb *req = container_of(kiocb, struct io_kiocb, rw.kiocb);
1974 int cflags = 0;
1976 if (kiocb->ki_flags & IOCB_WRITE)
1977 kiocb_end_write(req);
1979 if (res != req->result)
1980 req_set_fail_links(req);
1981 if (req->flags & REQ_F_BUFFER_SELECTED)
1982 cflags = io_put_kbuf(req);
1983 __io_cqring_add_event(req, res, cflags);
1986 static void io_complete_rw(struct kiocb *kiocb, long res, long res2)
1988 struct io_kiocb *req = container_of(kiocb, struct io_kiocb, rw.kiocb);
1990 io_complete_rw_common(kiocb, res);
1991 io_put_req(req);
1994 static void io_complete_rw_iopoll(struct kiocb *kiocb, long res, long res2)
1996 struct io_kiocb *req = container_of(kiocb, struct io_kiocb, rw.kiocb);
1998 if (kiocb->ki_flags & IOCB_WRITE)
1999 kiocb_end_write(req);
2001 if (res != -EAGAIN && res != req->result)
2002 req_set_fail_links(req);
2004 WRITE_ONCE(req->result, res);
2005 /* order with io_poll_complete() checking ->result */
2006 smp_wmb();
2007 WRITE_ONCE(req->iopoll_completed, 1);
2011 * After the iocb has been issued, it's safe to be found on the poll list.
2012 * Adding the kiocb to the list AFTER submission ensures that we don't
2013 * find it from a io_iopoll_getevents() thread before the issuer is done
2014 * accessing the kiocb cookie.
2016 static void io_iopoll_req_issued(struct io_kiocb *req)
2018 struct io_ring_ctx *ctx = req->ctx;
2021 * Track whether we have multiple files in our lists. This will impact
2022 * how we do polling eventually, not spinning if we're on potentially
2023 * different devices.
2025 if (list_empty(&ctx->poll_list)) {
2026 ctx->poll_multi_file = false;
2027 } else if (!ctx->poll_multi_file) {
2028 struct io_kiocb *list_req;
2030 list_req = list_first_entry(&ctx->poll_list, struct io_kiocb,
2031 list);
2032 if (list_req->file != req->file)
2033 ctx->poll_multi_file = true;
2037 * For fast devices, IO may have already completed. If it has, add
2038 * it to the front so we find it first.
2040 if (READ_ONCE(req->iopoll_completed))
2041 list_add(&req->list, &ctx->poll_list);
2042 else
2043 list_add_tail(&req->list, &ctx->poll_list);
2045 if ((ctx->flags & IORING_SETUP_SQPOLL) &&
2046 wq_has_sleeper(&ctx->sqo_wait))
2047 wake_up(&ctx->sqo_wait);
2050 static void __io_state_file_put(struct io_submit_state *state)
2052 int diff = state->has_refs - state->used_refs;
2054 if (diff)
2055 fput_many(state->file, diff);
2056 state->file = NULL;
2059 static inline void io_state_file_put(struct io_submit_state *state)
2061 if (state->file)
2062 __io_state_file_put(state);
2066 * Get as many references to a file as we have IOs left in this submission,
2067 * assuming most submissions are for one file, or at least that each file
2068 * has more than one submission.
2070 static struct file *__io_file_get(struct io_submit_state *state, int fd)
2072 if (!state)
2073 return fget(fd);
2075 if (state->file) {
2076 if (state->fd == fd) {
2077 state->used_refs++;
2078 state->ios_left--;
2079 return state->file;
2081 __io_state_file_put(state);
2083 state->file = fget_many(fd, state->ios_left);
2084 if (!state->file)
2085 return NULL;
2087 state->fd = fd;
2088 state->has_refs = state->ios_left;
2089 state->used_refs = 1;
2090 state->ios_left--;
2091 return state->file;
2095 * If we tracked the file through the SCM inflight mechanism, we could support
2096 * any file. For now, just ensure that anything potentially problematic is done
2097 * inline.
2099 static bool io_file_supports_async(struct file *file, int rw)
2101 umode_t mode = file_inode(file)->i_mode;
2103 if (S_ISBLK(mode) || S_ISCHR(mode) || S_ISSOCK(mode))
2104 return true;
2105 if (S_ISREG(mode) && file->f_op != &io_uring_fops)
2106 return true;
2108 /* any ->read/write should understand O_NONBLOCK */
2109 if (file->f_flags & O_NONBLOCK)
2110 return true;
2112 if (!(file->f_mode & FMODE_NOWAIT))
2113 return false;
2115 if (rw == READ)
2116 return file->f_op->read_iter != NULL;
2118 return file->f_op->write_iter != NULL;
2121 static int io_prep_rw(struct io_kiocb *req, const struct io_uring_sqe *sqe,
2122 bool force_nonblock)
2124 struct io_ring_ctx *ctx = req->ctx;
2125 struct kiocb *kiocb = &req->rw.kiocb;
2126 unsigned ioprio;
2127 int ret;
2129 if (S_ISREG(file_inode(req->file)->i_mode))
2130 req->flags |= REQ_F_ISREG;
2132 kiocb->ki_pos = READ_ONCE(sqe->off);
2133 if (kiocb->ki_pos == -1 && !(req->file->f_mode & FMODE_STREAM)) {
2134 req->flags |= REQ_F_CUR_POS;
2135 kiocb->ki_pos = req->file->f_pos;
2137 kiocb->ki_hint = ki_hint_validate(file_write_hint(kiocb->ki_filp));
2138 kiocb->ki_flags = iocb_flags(kiocb->ki_filp);
2139 ret = kiocb_set_rw_flags(kiocb, READ_ONCE(sqe->rw_flags));
2140 if (unlikely(ret))
2141 return ret;
2143 ioprio = READ_ONCE(sqe->ioprio);
2144 if (ioprio) {
2145 ret = ioprio_check_cap(ioprio);
2146 if (ret)
2147 return ret;
2149 kiocb->ki_ioprio = ioprio;
2150 } else
2151 kiocb->ki_ioprio = get_current_ioprio();
2153 /* don't allow async punt if RWF_NOWAIT was requested */
2154 if (kiocb->ki_flags & IOCB_NOWAIT)
2155 req->flags |= REQ_F_NOWAIT;
2157 if (force_nonblock)
2158 kiocb->ki_flags |= IOCB_NOWAIT;
2160 if (ctx->flags & IORING_SETUP_IOPOLL) {
2161 if (!(kiocb->ki_flags & IOCB_DIRECT) ||
2162 !kiocb->ki_filp->f_op->iopoll)
2163 return -EOPNOTSUPP;
2165 kiocb->ki_flags |= IOCB_HIPRI;
2166 kiocb->ki_complete = io_complete_rw_iopoll;
2167 req->result = 0;
2168 req->iopoll_completed = 0;
2169 } else {
2170 if (kiocb->ki_flags & IOCB_HIPRI)
2171 return -EINVAL;
2172 kiocb->ki_complete = io_complete_rw;
2175 req->rw.addr = READ_ONCE(sqe->addr);
2176 req->rw.len = READ_ONCE(sqe->len);
2177 req->buf_index = READ_ONCE(sqe->buf_index);
2178 return 0;
2181 static inline void io_rw_done(struct kiocb *kiocb, ssize_t ret)
2183 switch (ret) {
2184 case -EIOCBQUEUED:
2185 break;
2186 case -ERESTARTSYS:
2187 case -ERESTARTNOINTR:
2188 case -ERESTARTNOHAND:
2189 case -ERESTART_RESTARTBLOCK:
2191 * We can't just restart the syscall, since previously
2192 * submitted sqes may already be in progress. Just fail this
2193 * IO with EINTR.
2195 ret = -EINTR;
2196 /* fall through */
2197 default:
2198 kiocb->ki_complete(kiocb, ret, 0);
2202 static void kiocb_done(struct kiocb *kiocb, ssize_t ret)
2204 struct io_kiocb *req = container_of(kiocb, struct io_kiocb, rw.kiocb);
2206 if (req->flags & REQ_F_CUR_POS)
2207 req->file->f_pos = kiocb->ki_pos;
2208 if (ret >= 0 && kiocb->ki_complete == io_complete_rw)
2209 io_complete_rw(kiocb, ret, 0);
2210 else
2211 io_rw_done(kiocb, ret);
2214 static ssize_t io_import_fixed(struct io_kiocb *req, int rw,
2215 struct iov_iter *iter)
2217 struct io_ring_ctx *ctx = req->ctx;
2218 size_t len = req->rw.len;
2219 struct io_mapped_ubuf *imu;
2220 u16 index, buf_index;
2221 size_t offset;
2222 u64 buf_addr;
2224 /* attempt to use fixed buffers without having provided iovecs */
2225 if (unlikely(!ctx->user_bufs))
2226 return -EFAULT;
2228 buf_index = req->buf_index;
2229 if (unlikely(buf_index >= ctx->nr_user_bufs))
2230 return -EFAULT;
2232 index = array_index_nospec(buf_index, ctx->nr_user_bufs);
2233 imu = &ctx->user_bufs[index];
2234 buf_addr = req->rw.addr;
2236 /* overflow */
2237 if (buf_addr + len < buf_addr)
2238 return -EFAULT;
2239 /* not inside the mapped region */
2240 if (buf_addr < imu->ubuf || buf_addr + len > imu->ubuf + imu->len)
2241 return -EFAULT;
2244 * May not be a start of buffer, set size appropriately
2245 * and advance us to the beginning.
2247 offset = buf_addr - imu->ubuf;
2248 iov_iter_bvec(iter, rw, imu->bvec, imu->nr_bvecs, offset + len);
2250 if (offset) {
2252 * Don't use iov_iter_advance() here, as it's really slow for
2253 * using the latter parts of a big fixed buffer - it iterates
2254 * over each segment manually. We can cheat a bit here, because
2255 * we know that:
2257 * 1) it's a BVEC iter, we set it up
2258 * 2) all bvecs are PAGE_SIZE in size, except potentially the
2259 * first and last bvec
2261 * So just find our index, and adjust the iterator afterwards.
2262 * If the offset is within the first bvec (or the whole first
2263 * bvec, just use iov_iter_advance(). This makes it easier
2264 * since we can just skip the first segment, which may not
2265 * be PAGE_SIZE aligned.
2267 const struct bio_vec *bvec = imu->bvec;
2269 if (offset <= bvec->bv_len) {
2270 iov_iter_advance(iter, offset);
2271 } else {
2272 unsigned long seg_skip;
2274 /* skip first vec */
2275 offset -= bvec->bv_len;
2276 seg_skip = 1 + (offset >> PAGE_SHIFT);
2278 iter->bvec = bvec + seg_skip;
2279 iter->nr_segs -= seg_skip;
2280 iter->count -= bvec->bv_len + offset;
2281 iter->iov_offset = offset & ~PAGE_MASK;
2285 return len;
2288 static void io_ring_submit_unlock(struct io_ring_ctx *ctx, bool needs_lock)
2290 if (needs_lock)
2291 mutex_unlock(&ctx->uring_lock);
2294 static void io_ring_submit_lock(struct io_ring_ctx *ctx, bool needs_lock)
2297 * "Normal" inline submissions always hold the uring_lock, since we
2298 * grab it from the system call. Same is true for the SQPOLL offload.
2299 * The only exception is when we've detached the request and issue it
2300 * from an async worker thread, grab the lock for that case.
2302 if (needs_lock)
2303 mutex_lock(&ctx->uring_lock);
2306 static struct io_buffer *io_buffer_select(struct io_kiocb *req, size_t *len,
2307 int bgid, struct io_buffer *kbuf,
2308 bool needs_lock)
2310 struct io_buffer *head;
2312 if (req->flags & REQ_F_BUFFER_SELECTED)
2313 return kbuf;
2315 io_ring_submit_lock(req->ctx, needs_lock);
2317 lockdep_assert_held(&req->ctx->uring_lock);
2319 head = idr_find(&req->ctx->io_buffer_idr, bgid);
2320 if (head) {
2321 if (!list_empty(&head->list)) {
2322 kbuf = list_last_entry(&head->list, struct io_buffer,
2323 list);
2324 list_del(&kbuf->list);
2325 } else {
2326 kbuf = head;
2327 idr_remove(&req->ctx->io_buffer_idr, bgid);
2329 if (*len > kbuf->len)
2330 *len = kbuf->len;
2331 } else {
2332 kbuf = ERR_PTR(-ENOBUFS);
2335 io_ring_submit_unlock(req->ctx, needs_lock);
2337 return kbuf;
2340 static void __user *io_rw_buffer_select(struct io_kiocb *req, size_t *len,
2341 bool needs_lock)
2343 struct io_buffer *kbuf;
2344 u16 bgid;
2346 kbuf = (struct io_buffer *) (unsigned long) req->rw.addr;
2347 bgid = req->buf_index;
2348 kbuf = io_buffer_select(req, len, bgid, kbuf, needs_lock);
2349 if (IS_ERR(kbuf))
2350 return kbuf;
2351 req->rw.addr = (u64) (unsigned long) kbuf;
2352 req->flags |= REQ_F_BUFFER_SELECTED;
2353 return u64_to_user_ptr(kbuf->addr);
2356 #ifdef CONFIG_COMPAT
2357 static ssize_t io_compat_import(struct io_kiocb *req, struct iovec *iov,
2358 bool needs_lock)
2360 struct compat_iovec __user *uiov;
2361 compat_ssize_t clen;
2362 void __user *buf;
2363 ssize_t len;
2365 uiov = u64_to_user_ptr(req->rw.addr);
2366 if (!access_ok(uiov, sizeof(*uiov)))
2367 return -EFAULT;
2368 if (__get_user(clen, &uiov->iov_len))
2369 return -EFAULT;
2370 if (clen < 0)
2371 return -EINVAL;
2373 len = clen;
2374 buf = io_rw_buffer_select(req, &len, needs_lock);
2375 if (IS_ERR(buf))
2376 return PTR_ERR(buf);
2377 iov[0].iov_base = buf;
2378 iov[0].iov_len = (compat_size_t) len;
2379 return 0;
2381 #endif
2383 static ssize_t __io_iov_buffer_select(struct io_kiocb *req, struct iovec *iov,
2384 bool needs_lock)
2386 struct iovec __user *uiov = u64_to_user_ptr(req->rw.addr);
2387 void __user *buf;
2388 ssize_t len;
2390 if (copy_from_user(iov, uiov, sizeof(*uiov)))
2391 return -EFAULT;
2393 len = iov[0].iov_len;
2394 if (len < 0)
2395 return -EINVAL;
2396 buf = io_rw_buffer_select(req, &len, needs_lock);
2397 if (IS_ERR(buf))
2398 return PTR_ERR(buf);
2399 iov[0].iov_base = buf;
2400 iov[0].iov_len = len;
2401 return 0;
2404 static ssize_t io_iov_buffer_select(struct io_kiocb *req, struct iovec *iov,
2405 bool needs_lock)
2407 if (req->flags & REQ_F_BUFFER_SELECTED) {
2408 struct io_buffer *kbuf;
2410 kbuf = (struct io_buffer *) (unsigned long) req->rw.addr;
2411 iov[0].iov_base = u64_to_user_ptr(kbuf->addr);
2412 iov[0].iov_len = kbuf->len;
2413 return 0;
2415 if (!req->rw.len)
2416 return 0;
2417 else if (req->rw.len > 1)
2418 return -EINVAL;
2420 #ifdef CONFIG_COMPAT
2421 if (req->ctx->compat)
2422 return io_compat_import(req, iov, needs_lock);
2423 #endif
2425 return __io_iov_buffer_select(req, iov, needs_lock);
2428 static ssize_t io_import_iovec(int rw, struct io_kiocb *req,
2429 struct iovec **iovec, struct iov_iter *iter,
2430 bool needs_lock)
2432 void __user *buf = u64_to_user_ptr(req->rw.addr);
2433 size_t sqe_len = req->rw.len;
2434 ssize_t ret;
2435 u8 opcode;
2437 opcode = req->opcode;
2438 if (opcode == IORING_OP_READ_FIXED || opcode == IORING_OP_WRITE_FIXED) {
2439 *iovec = NULL;
2440 return io_import_fixed(req, rw, iter);
2443 /* buffer index only valid with fixed read/write, or buffer select */
2444 if (req->buf_index && !(req->flags & REQ_F_BUFFER_SELECT))
2445 return -EINVAL;
2447 if (opcode == IORING_OP_READ || opcode == IORING_OP_WRITE) {
2448 if (req->flags & REQ_F_BUFFER_SELECT) {
2449 buf = io_rw_buffer_select(req, &sqe_len, needs_lock);
2450 if (IS_ERR(buf)) {
2451 *iovec = NULL;
2452 return PTR_ERR(buf);
2454 req->rw.len = sqe_len;
2457 ret = import_single_range(rw, buf, sqe_len, *iovec, iter);
2458 *iovec = NULL;
2459 return ret < 0 ? ret : sqe_len;
2462 if (req->io) {
2463 struct io_async_rw *iorw = &req->io->rw;
2465 *iovec = iorw->iov;
2466 iov_iter_init(iter, rw, *iovec, iorw->nr_segs, iorw->size);
2467 if (iorw->iov == iorw->fast_iov)
2468 *iovec = NULL;
2469 return iorw->size;
2472 if (req->flags & REQ_F_BUFFER_SELECT) {
2473 ret = io_iov_buffer_select(req, *iovec, needs_lock);
2474 if (!ret) {
2475 ret = (*iovec)->iov_len;
2476 iov_iter_init(iter, rw, *iovec, 1, ret);
2478 *iovec = NULL;
2479 return ret;
2482 #ifdef CONFIG_COMPAT
2483 if (req->ctx->compat)
2484 return compat_import_iovec(rw, buf, sqe_len, UIO_FASTIOV,
2485 iovec, iter);
2486 #endif
2488 return import_iovec(rw, buf, sqe_len, UIO_FASTIOV, iovec, iter);
2492 * For files that don't have ->read_iter() and ->write_iter(), handle them
2493 * by looping over ->read() or ->write() manually.
2495 static ssize_t loop_rw_iter(int rw, struct file *file, struct kiocb *kiocb,
2496 struct iov_iter *iter)
2498 ssize_t ret = 0;
2501 * Don't support polled IO through this interface, and we can't
2502 * support non-blocking either. For the latter, this just causes
2503 * the kiocb to be handled from an async context.
2505 if (kiocb->ki_flags & IOCB_HIPRI)
2506 return -EOPNOTSUPP;
2507 if (kiocb->ki_flags & IOCB_NOWAIT)
2508 return -EAGAIN;
2510 while (iov_iter_count(iter)) {
2511 struct iovec iovec;
2512 ssize_t nr;
2514 if (!iov_iter_is_bvec(iter)) {
2515 iovec = iov_iter_iovec(iter);
2516 } else {
2517 /* fixed buffers import bvec */
2518 iovec.iov_base = kmap(iter->bvec->bv_page)
2519 + iter->iov_offset;
2520 iovec.iov_len = min(iter->count,
2521 iter->bvec->bv_len - iter->iov_offset);
2524 if (rw == READ) {
2525 nr = file->f_op->read(file, iovec.iov_base,
2526 iovec.iov_len, &kiocb->ki_pos);
2527 } else {
2528 nr = file->f_op->write(file, iovec.iov_base,
2529 iovec.iov_len, &kiocb->ki_pos);
2532 if (iov_iter_is_bvec(iter))
2533 kunmap(iter->bvec->bv_page);
2535 if (nr < 0) {
2536 if (!ret)
2537 ret = nr;
2538 break;
2540 ret += nr;
2541 if (nr != iovec.iov_len)
2542 break;
2543 iov_iter_advance(iter, nr);
2546 return ret;
2549 static void io_req_map_rw(struct io_kiocb *req, ssize_t io_size,
2550 struct iovec *iovec, struct iovec *fast_iov,
2551 struct iov_iter *iter)
2553 req->io->rw.nr_segs = iter->nr_segs;
2554 req->io->rw.size = io_size;
2555 req->io->rw.iov = iovec;
2556 if (!req->io->rw.iov) {
2557 req->io->rw.iov = req->io->rw.fast_iov;
2558 if (req->io->rw.iov != fast_iov)
2559 memcpy(req->io->rw.iov, fast_iov,
2560 sizeof(struct iovec) * iter->nr_segs);
2561 } else {
2562 req->flags |= REQ_F_NEED_CLEANUP;
2566 static inline int __io_alloc_async_ctx(struct io_kiocb *req)
2568 req->io = kmalloc(sizeof(*req->io), GFP_KERNEL);
2569 return req->io == NULL;
2572 static int io_alloc_async_ctx(struct io_kiocb *req)
2574 if (!io_op_defs[req->opcode].async_ctx)
2575 return 0;
2577 return __io_alloc_async_ctx(req);
2580 static int io_setup_async_rw(struct io_kiocb *req, ssize_t io_size,
2581 struct iovec *iovec, struct iovec *fast_iov,
2582 struct iov_iter *iter)
2584 if (!io_op_defs[req->opcode].async_ctx)
2585 return 0;
2586 if (!req->io) {
2587 if (__io_alloc_async_ctx(req))
2588 return -ENOMEM;
2590 io_req_map_rw(req, io_size, iovec, fast_iov, iter);
2592 return 0;
2595 static int io_read_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe,
2596 bool force_nonblock)
2598 struct io_async_ctx *io;
2599 struct iov_iter iter;
2600 ssize_t ret;
2602 ret = io_prep_rw(req, sqe, force_nonblock);
2603 if (ret)
2604 return ret;
2606 if (unlikely(!(req->file->f_mode & FMODE_READ)))
2607 return -EBADF;
2609 /* either don't need iovec imported or already have it */
2610 if (!req->io || req->flags & REQ_F_NEED_CLEANUP)
2611 return 0;
2613 io = req->io;
2614 io->rw.iov = io->rw.fast_iov;
2615 req->io = NULL;
2616 ret = io_import_iovec(READ, req, &io->rw.iov, &iter, !force_nonblock);
2617 req->io = io;
2618 if (ret < 0)
2619 return ret;
2621 io_req_map_rw(req, ret, io->rw.iov, io->rw.fast_iov, &iter);
2622 return 0;
2625 static int io_read(struct io_kiocb *req, bool force_nonblock)
2627 struct iovec inline_vecs[UIO_FASTIOV], *iovec = inline_vecs;
2628 struct kiocb *kiocb = &req->rw.kiocb;
2629 struct iov_iter iter;
2630 size_t iov_count;
2631 ssize_t io_size, ret;
2633 ret = io_import_iovec(READ, req, &iovec, &iter, !force_nonblock);
2634 if (ret < 0)
2635 return ret;
2637 /* Ensure we clear previously set non-block flag */
2638 if (!force_nonblock)
2639 kiocb->ki_flags &= ~IOCB_NOWAIT;
2641 req->result = 0;
2642 io_size = ret;
2643 if (req->flags & REQ_F_LINK_HEAD)
2644 req->result = io_size;
2647 * If the file doesn't support async, mark it as REQ_F_MUST_PUNT so
2648 * we know to async punt it even if it was opened O_NONBLOCK
2650 if (force_nonblock && !io_file_supports_async(req->file, READ))
2651 goto copy_iov;
2653 iov_count = iov_iter_count(&iter);
2654 ret = rw_verify_area(READ, req->file, &kiocb->ki_pos, iov_count);
2655 if (!ret) {
2656 ssize_t ret2;
2658 if (req->file->f_op->read_iter)
2659 ret2 = call_read_iter(req->file, kiocb, &iter);
2660 else
2661 ret2 = loop_rw_iter(READ, req->file, kiocb, &iter);
2663 /* Catch -EAGAIN return for forced non-blocking submission */
2664 if (!force_nonblock || ret2 != -EAGAIN) {
2665 kiocb_done(kiocb, ret2);
2666 } else {
2667 copy_iov:
2668 ret = io_setup_async_rw(req, io_size, iovec,
2669 inline_vecs, &iter);
2670 if (ret)
2671 goto out_free;
2672 /* any defer here is final, must blocking retry */
2673 if (!(req->flags & REQ_F_NOWAIT) &&
2674 !file_can_poll(req->file))
2675 req->flags |= REQ_F_MUST_PUNT;
2676 return -EAGAIN;
2679 out_free:
2680 if (!(req->flags & REQ_F_NEED_CLEANUP))
2681 kfree(iovec);
2682 return ret;
2685 static int io_write_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe,
2686 bool force_nonblock)
2688 struct io_async_ctx *io;
2689 struct iov_iter iter;
2690 ssize_t ret;
2692 ret = io_prep_rw(req, sqe, force_nonblock);
2693 if (ret)
2694 return ret;
2696 if (unlikely(!(req->file->f_mode & FMODE_WRITE)))
2697 return -EBADF;
2699 req->fsize = rlimit(RLIMIT_FSIZE);
2701 /* either don't need iovec imported or already have it */
2702 if (!req->io || req->flags & REQ_F_NEED_CLEANUP)
2703 return 0;
2705 io = req->io;
2706 io->rw.iov = io->rw.fast_iov;
2707 req->io = NULL;
2708 ret = io_import_iovec(WRITE, req, &io->rw.iov, &iter, !force_nonblock);
2709 req->io = io;
2710 if (ret < 0)
2711 return ret;
2713 io_req_map_rw(req, ret, io->rw.iov, io->rw.fast_iov, &iter);
2714 return 0;
2717 static int io_write(struct io_kiocb *req, bool force_nonblock)
2719 struct iovec inline_vecs[UIO_FASTIOV], *iovec = inline_vecs;
2720 struct kiocb *kiocb = &req->rw.kiocb;
2721 struct iov_iter iter;
2722 size_t iov_count;
2723 ssize_t ret, io_size;
2725 ret = io_import_iovec(WRITE, req, &iovec, &iter, !force_nonblock);
2726 if (ret < 0)
2727 return ret;
2729 /* Ensure we clear previously set non-block flag */
2730 if (!force_nonblock)
2731 req->rw.kiocb.ki_flags &= ~IOCB_NOWAIT;
2733 req->result = 0;
2734 io_size = ret;
2735 if (req->flags & REQ_F_LINK_HEAD)
2736 req->result = io_size;
2739 * If the file doesn't support async, mark it as REQ_F_MUST_PUNT so
2740 * we know to async punt it even if it was opened O_NONBLOCK
2742 if (force_nonblock && !io_file_supports_async(req->file, WRITE))
2743 goto copy_iov;
2745 /* file path doesn't support NOWAIT for non-direct_IO */
2746 if (force_nonblock && !(kiocb->ki_flags & IOCB_DIRECT) &&
2747 (req->flags & REQ_F_ISREG))
2748 goto copy_iov;
2750 iov_count = iov_iter_count(&iter);
2751 ret = rw_verify_area(WRITE, req->file, &kiocb->ki_pos, iov_count);
2752 if (!ret) {
2753 ssize_t ret2;
2756 * Open-code file_start_write here to grab freeze protection,
2757 * which will be released by another thread in
2758 * io_complete_rw(). Fool lockdep by telling it the lock got
2759 * released so that it doesn't complain about the held lock when
2760 * we return to userspace.
2762 if (req->flags & REQ_F_ISREG) {
2763 __sb_start_write(file_inode(req->file)->i_sb,
2764 SB_FREEZE_WRITE, true);
2765 __sb_writers_release(file_inode(req->file)->i_sb,
2766 SB_FREEZE_WRITE);
2768 kiocb->ki_flags |= IOCB_WRITE;
2770 if (!force_nonblock)
2771 current->signal->rlim[RLIMIT_FSIZE].rlim_cur = req->fsize;
2773 if (req->file->f_op->write_iter)
2774 ret2 = call_write_iter(req->file, kiocb, &iter);
2775 else
2776 ret2 = loop_rw_iter(WRITE, req->file, kiocb, &iter);
2778 if (!force_nonblock)
2779 current->signal->rlim[RLIMIT_FSIZE].rlim_cur = RLIM_INFINITY;
2782 * Raw bdev writes will return -EOPNOTSUPP for IOCB_NOWAIT. Just
2783 * retry them without IOCB_NOWAIT.
2785 if (ret2 == -EOPNOTSUPP && (kiocb->ki_flags & IOCB_NOWAIT))
2786 ret2 = -EAGAIN;
2787 if (!force_nonblock || ret2 != -EAGAIN) {
2788 kiocb_done(kiocb, ret2);
2789 } else {
2790 copy_iov:
2791 ret = io_setup_async_rw(req, io_size, iovec,
2792 inline_vecs, &iter);
2793 if (ret)
2794 goto out_free;
2795 /* any defer here is final, must blocking retry */
2796 if (!(req->flags & REQ_F_NOWAIT) &&
2797 !file_can_poll(req->file))
2798 req->flags |= REQ_F_MUST_PUNT;
2799 return -EAGAIN;
2802 out_free:
2803 if (!(req->flags & REQ_F_NEED_CLEANUP))
2804 kfree(iovec);
2805 return ret;
2808 static int __io_splice_prep(struct io_kiocb *req,
2809 const struct io_uring_sqe *sqe)
2811 struct io_splice* sp = &req->splice;
2812 unsigned int valid_flags = SPLICE_F_FD_IN_FIXED | SPLICE_F_ALL;
2813 int ret;
2815 if (req->flags & REQ_F_NEED_CLEANUP)
2816 return 0;
2817 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
2818 return -EINVAL;
2820 sp->file_in = NULL;
2821 sp->len = READ_ONCE(sqe->len);
2822 sp->flags = READ_ONCE(sqe->splice_flags);
2824 if (unlikely(sp->flags & ~valid_flags))
2825 return -EINVAL;
2827 ret = io_file_get(NULL, req, READ_ONCE(sqe->splice_fd_in), &sp->file_in,
2828 (sp->flags & SPLICE_F_FD_IN_FIXED));
2829 if (ret)
2830 return ret;
2831 req->flags |= REQ_F_NEED_CLEANUP;
2833 if (!S_ISREG(file_inode(sp->file_in)->i_mode)) {
2835 * Splice operation will be punted aync, and here need to
2836 * modify io_wq_work.flags, so initialize io_wq_work firstly.
2838 io_req_init_async(req);
2839 req->work.flags |= IO_WQ_WORK_UNBOUND;
2842 return 0;
2845 static int io_tee_prep(struct io_kiocb *req,
2846 const struct io_uring_sqe *sqe)
2848 if (READ_ONCE(sqe->splice_off_in) || READ_ONCE(sqe->off))
2849 return -EINVAL;
2850 return __io_splice_prep(req, sqe);
2853 static int io_tee(struct io_kiocb *req, bool force_nonblock)
2855 struct io_splice *sp = &req->splice;
2856 struct file *in = sp->file_in;
2857 struct file *out = sp->file_out;
2858 unsigned int flags = sp->flags & ~SPLICE_F_FD_IN_FIXED;
2859 long ret = 0;
2861 if (force_nonblock)
2862 return -EAGAIN;
2863 if (sp->len)
2864 ret = do_tee(in, out, sp->len, flags);
2866 io_put_file(req, in, (sp->flags & SPLICE_F_FD_IN_FIXED));
2867 req->flags &= ~REQ_F_NEED_CLEANUP;
2869 io_cqring_add_event(req, ret);
2870 if (ret != sp->len)
2871 req_set_fail_links(req);
2872 io_put_req(req);
2873 return 0;
2876 static int io_splice_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
2878 struct io_splice* sp = &req->splice;
2880 sp->off_in = READ_ONCE(sqe->splice_off_in);
2881 sp->off_out = READ_ONCE(sqe->off);
2882 return __io_splice_prep(req, sqe);
2885 static int io_splice(struct io_kiocb *req, bool force_nonblock)
2887 struct io_splice *sp = &req->splice;
2888 struct file *in = sp->file_in;
2889 struct file *out = sp->file_out;
2890 unsigned int flags = sp->flags & ~SPLICE_F_FD_IN_FIXED;
2891 loff_t *poff_in, *poff_out;
2892 long ret = 0;
2894 if (force_nonblock)
2895 return -EAGAIN;
2897 poff_in = (sp->off_in == -1) ? NULL : &sp->off_in;
2898 poff_out = (sp->off_out == -1) ? NULL : &sp->off_out;
2900 if (sp->len)
2901 ret = do_splice(in, poff_in, out, poff_out, sp->len, flags);
2903 io_put_file(req, in, (sp->flags & SPLICE_F_FD_IN_FIXED));
2904 req->flags &= ~REQ_F_NEED_CLEANUP;
2906 io_cqring_add_event(req, ret);
2907 if (ret != sp->len)
2908 req_set_fail_links(req);
2909 io_put_req(req);
2910 return 0;
2914 * IORING_OP_NOP just posts a completion event, nothing else.
2916 static int io_nop(struct io_kiocb *req)
2918 struct io_ring_ctx *ctx = req->ctx;
2920 if (unlikely(ctx->flags & IORING_SETUP_IOPOLL))
2921 return -EINVAL;
2923 io_cqring_add_event(req, 0);
2924 io_put_req(req);
2925 return 0;
2928 static int io_prep_fsync(struct io_kiocb *req, const struct io_uring_sqe *sqe)
2930 struct io_ring_ctx *ctx = req->ctx;
2932 if (!req->file)
2933 return -EBADF;
2935 if (unlikely(ctx->flags & IORING_SETUP_IOPOLL))
2936 return -EINVAL;
2937 if (unlikely(sqe->addr || sqe->ioprio || sqe->buf_index))
2938 return -EINVAL;
2940 req->sync.flags = READ_ONCE(sqe->fsync_flags);
2941 if (unlikely(req->sync.flags & ~IORING_FSYNC_DATASYNC))
2942 return -EINVAL;
2944 req->sync.off = READ_ONCE(sqe->off);
2945 req->sync.len = READ_ONCE(sqe->len);
2946 return 0;
2949 static int io_fsync(struct io_kiocb *req, bool force_nonblock)
2951 loff_t end = req->sync.off + req->sync.len;
2952 int ret;
2954 /* fsync always requires a blocking context */
2955 if (force_nonblock)
2956 return -EAGAIN;
2958 ret = vfs_fsync_range(req->file, req->sync.off,
2959 end > 0 ? end : LLONG_MAX,
2960 req->sync.flags & IORING_FSYNC_DATASYNC);
2961 if (ret < 0)
2962 req_set_fail_links(req);
2963 io_cqring_add_event(req, ret);
2964 io_put_req(req);
2965 return 0;
2968 static int io_fallocate_prep(struct io_kiocb *req,
2969 const struct io_uring_sqe *sqe)
2971 if (sqe->ioprio || sqe->buf_index || sqe->rw_flags)
2972 return -EINVAL;
2973 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
2974 return -EINVAL;
2976 req->sync.off = READ_ONCE(sqe->off);
2977 req->sync.len = READ_ONCE(sqe->addr);
2978 req->sync.mode = READ_ONCE(sqe->len);
2979 req->fsize = rlimit(RLIMIT_FSIZE);
2980 return 0;
2983 static int io_fallocate(struct io_kiocb *req, bool force_nonblock)
2985 int ret;
2987 /* fallocate always requiring blocking context */
2988 if (force_nonblock)
2989 return -EAGAIN;
2991 current->signal->rlim[RLIMIT_FSIZE].rlim_cur = req->fsize;
2992 ret = vfs_fallocate(req->file, req->sync.mode, req->sync.off,
2993 req->sync.len);
2994 current->signal->rlim[RLIMIT_FSIZE].rlim_cur = RLIM_INFINITY;
2995 if (ret < 0)
2996 req_set_fail_links(req);
2997 io_cqring_add_event(req, ret);
2998 io_put_req(req);
2999 return 0;
3002 static int __io_openat_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
3004 const char __user *fname;
3005 int ret;
3007 if (unlikely(req->ctx->flags & (IORING_SETUP_IOPOLL|IORING_SETUP_SQPOLL)))
3008 return -EINVAL;
3009 if (unlikely(sqe->ioprio || sqe->buf_index))
3010 return -EINVAL;
3011 if (unlikely(req->flags & REQ_F_FIXED_FILE))
3012 return -EBADF;
3014 /* open.how should be already initialised */
3015 if (!(req->open.how.flags & O_PATH) && force_o_largefile())
3016 req->open.how.flags |= O_LARGEFILE;
3018 req->open.dfd = READ_ONCE(sqe->fd);
3019 fname = u64_to_user_ptr(READ_ONCE(sqe->addr));
3020 req->open.filename = getname(fname);
3021 if (IS_ERR(req->open.filename)) {
3022 ret = PTR_ERR(req->open.filename);
3023 req->open.filename = NULL;
3024 return ret;
3026 req->open.nofile = rlimit(RLIMIT_NOFILE);
3027 req->flags |= REQ_F_NEED_CLEANUP;
3028 return 0;
3031 static int io_openat_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
3033 u64 flags, mode;
3035 if (req->flags & REQ_F_NEED_CLEANUP)
3036 return 0;
3037 mode = READ_ONCE(sqe->len);
3038 flags = READ_ONCE(sqe->open_flags);
3039 req->open.how = build_open_how(flags, mode);
3040 return __io_openat_prep(req, sqe);
3043 static int io_openat2_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
3045 struct open_how __user *how;
3046 size_t len;
3047 int ret;
3049 if (req->flags & REQ_F_NEED_CLEANUP)
3050 return 0;
3051 how = u64_to_user_ptr(READ_ONCE(sqe->addr2));
3052 len = READ_ONCE(sqe->len);
3053 if (len < OPEN_HOW_SIZE_VER0)
3054 return -EINVAL;
3056 ret = copy_struct_from_user(&req->open.how, sizeof(req->open.how), how,
3057 len);
3058 if (ret)
3059 return ret;
3061 return __io_openat_prep(req, sqe);
3064 static int io_openat2(struct io_kiocb *req, bool force_nonblock)
3066 struct open_flags op;
3067 struct file *file;
3068 int ret;
3070 if (force_nonblock)
3071 return -EAGAIN;
3073 ret = build_open_flags(&req->open.how, &op);
3074 if (ret)
3075 goto err;
3077 ret = __get_unused_fd_flags(req->open.how.flags, req->open.nofile);
3078 if (ret < 0)
3079 goto err;
3081 file = do_filp_open(req->open.dfd, req->open.filename, &op);
3082 if (IS_ERR(file)) {
3083 put_unused_fd(ret);
3084 ret = PTR_ERR(file);
3085 } else {
3086 fsnotify_open(file);
3087 fd_install(ret, file);
3089 err:
3090 putname(req->open.filename);
3091 req->flags &= ~REQ_F_NEED_CLEANUP;
3092 if (ret < 0)
3093 req_set_fail_links(req);
3094 io_cqring_add_event(req, ret);
3095 io_put_req(req);
3096 return 0;
3099 static int io_openat(struct io_kiocb *req, bool force_nonblock)
3101 return io_openat2(req, force_nonblock);
3104 static int io_remove_buffers_prep(struct io_kiocb *req,
3105 const struct io_uring_sqe *sqe)
3107 struct io_provide_buf *p = &req->pbuf;
3108 u64 tmp;
3110 if (sqe->ioprio || sqe->rw_flags || sqe->addr || sqe->len || sqe->off)
3111 return -EINVAL;
3113 tmp = READ_ONCE(sqe->fd);
3114 if (!tmp || tmp > USHRT_MAX)
3115 return -EINVAL;
3117 memset(p, 0, sizeof(*p));
3118 p->nbufs = tmp;
3119 p->bgid = READ_ONCE(sqe->buf_group);
3120 return 0;
3123 static int __io_remove_buffers(struct io_ring_ctx *ctx, struct io_buffer *buf,
3124 int bgid, unsigned nbufs)
3126 unsigned i = 0;
3128 /* shouldn't happen */
3129 if (!nbufs)
3130 return 0;
3132 /* the head kbuf is the list itself */
3133 while (!list_empty(&buf->list)) {
3134 struct io_buffer *nxt;
3136 nxt = list_first_entry(&buf->list, struct io_buffer, list);
3137 list_del(&nxt->list);
3138 kfree(nxt);
3139 if (++i == nbufs)
3140 return i;
3142 i++;
3143 kfree(buf);
3144 idr_remove(&ctx->io_buffer_idr, bgid);
3146 return i;
3149 static int io_remove_buffers(struct io_kiocb *req, bool force_nonblock)
3151 struct io_provide_buf *p = &req->pbuf;
3152 struct io_ring_ctx *ctx = req->ctx;
3153 struct io_buffer *head;
3154 int ret = 0;
3156 io_ring_submit_lock(ctx, !force_nonblock);
3158 lockdep_assert_held(&ctx->uring_lock);
3160 ret = -ENOENT;
3161 head = idr_find(&ctx->io_buffer_idr, p->bgid);
3162 if (head)
3163 ret = __io_remove_buffers(ctx, head, p->bgid, p->nbufs);
3165 io_ring_submit_lock(ctx, !force_nonblock);
3166 if (ret < 0)
3167 req_set_fail_links(req);
3168 io_cqring_add_event(req, ret);
3169 io_put_req(req);
3170 return 0;
3173 static int io_provide_buffers_prep(struct io_kiocb *req,
3174 const struct io_uring_sqe *sqe)
3176 struct io_provide_buf *p = &req->pbuf;
3177 u64 tmp;
3179 if (sqe->ioprio || sqe->rw_flags)
3180 return -EINVAL;
3182 tmp = READ_ONCE(sqe->fd);
3183 if (!tmp || tmp > USHRT_MAX)
3184 return -E2BIG;
3185 p->nbufs = tmp;
3186 p->addr = READ_ONCE(sqe->addr);
3187 p->len = READ_ONCE(sqe->len);
3189 if (!access_ok(u64_to_user_ptr(p->addr), (p->len * p->nbufs)))
3190 return -EFAULT;
3192 p->bgid = READ_ONCE(sqe->buf_group);
3193 tmp = READ_ONCE(sqe->off);
3194 if (tmp > USHRT_MAX)
3195 return -E2BIG;
3196 p->bid = tmp;
3197 return 0;
3200 static int io_add_buffers(struct io_provide_buf *pbuf, struct io_buffer **head)
3202 struct io_buffer *buf;
3203 u64 addr = pbuf->addr;
3204 int i, bid = pbuf->bid;
3206 for (i = 0; i < pbuf->nbufs; i++) {
3207 buf = kmalloc(sizeof(*buf), GFP_KERNEL);
3208 if (!buf)
3209 break;
3211 buf->addr = addr;
3212 buf->len = pbuf->len;
3213 buf->bid = bid;
3214 addr += pbuf->len;
3215 bid++;
3216 if (!*head) {
3217 INIT_LIST_HEAD(&buf->list);
3218 *head = buf;
3219 } else {
3220 list_add_tail(&buf->list, &(*head)->list);
3224 return i ? i : -ENOMEM;
3227 static int io_provide_buffers(struct io_kiocb *req, bool force_nonblock)
3229 struct io_provide_buf *p = &req->pbuf;
3230 struct io_ring_ctx *ctx = req->ctx;
3231 struct io_buffer *head, *list;
3232 int ret = 0;
3234 io_ring_submit_lock(ctx, !force_nonblock);
3236 lockdep_assert_held(&ctx->uring_lock);
3238 list = head = idr_find(&ctx->io_buffer_idr, p->bgid);
3240 ret = io_add_buffers(p, &head);
3241 if (ret < 0)
3242 goto out;
3244 if (!list) {
3245 ret = idr_alloc(&ctx->io_buffer_idr, head, p->bgid, p->bgid + 1,
3246 GFP_KERNEL);
3247 if (ret < 0) {
3248 __io_remove_buffers(ctx, head, p->bgid, -1U);
3249 goto out;
3252 out:
3253 io_ring_submit_unlock(ctx, !force_nonblock);
3254 if (ret < 0)
3255 req_set_fail_links(req);
3256 io_cqring_add_event(req, ret);
3257 io_put_req(req);
3258 return 0;
3261 static int io_epoll_ctl_prep(struct io_kiocb *req,
3262 const struct io_uring_sqe *sqe)
3264 #if defined(CONFIG_EPOLL)
3265 if (sqe->ioprio || sqe->buf_index)
3266 return -EINVAL;
3267 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
3268 return -EINVAL;
3270 req->epoll.epfd = READ_ONCE(sqe->fd);
3271 req->epoll.op = READ_ONCE(sqe->len);
3272 req->epoll.fd = READ_ONCE(sqe->off);
3274 if (ep_op_has_event(req->epoll.op)) {
3275 struct epoll_event __user *ev;
3277 ev = u64_to_user_ptr(READ_ONCE(sqe->addr));
3278 if (copy_from_user(&req->epoll.event, ev, sizeof(*ev)))
3279 return -EFAULT;
3282 return 0;
3283 #else
3284 return -EOPNOTSUPP;
3285 #endif
3288 static int io_epoll_ctl(struct io_kiocb *req, bool force_nonblock)
3290 #if defined(CONFIG_EPOLL)
3291 struct io_epoll *ie = &req->epoll;
3292 int ret;
3294 ret = do_epoll_ctl(ie->epfd, ie->op, ie->fd, &ie->event, force_nonblock);
3295 if (force_nonblock && ret == -EAGAIN)
3296 return -EAGAIN;
3298 if (ret < 0)
3299 req_set_fail_links(req);
3300 io_cqring_add_event(req, ret);
3301 io_put_req(req);
3302 return 0;
3303 #else
3304 return -EOPNOTSUPP;
3305 #endif
3308 static int io_madvise_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
3310 #if defined(CONFIG_ADVISE_SYSCALLS) && defined(CONFIG_MMU)
3311 if (sqe->ioprio || sqe->buf_index || sqe->off)
3312 return -EINVAL;
3313 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
3314 return -EINVAL;
3316 req->madvise.addr = READ_ONCE(sqe->addr);
3317 req->madvise.len = READ_ONCE(sqe->len);
3318 req->madvise.advice = READ_ONCE(sqe->fadvise_advice);
3319 return 0;
3320 #else
3321 return -EOPNOTSUPP;
3322 #endif
3325 static int io_madvise(struct io_kiocb *req, bool force_nonblock)
3327 #if defined(CONFIG_ADVISE_SYSCALLS) && defined(CONFIG_MMU)
3328 struct io_madvise *ma = &req->madvise;
3329 int ret;
3331 if (force_nonblock)
3332 return -EAGAIN;
3334 ret = do_madvise(ma->addr, ma->len, ma->advice);
3335 if (ret < 0)
3336 req_set_fail_links(req);
3337 io_cqring_add_event(req, ret);
3338 io_put_req(req);
3339 return 0;
3340 #else
3341 return -EOPNOTSUPP;
3342 #endif
3345 static int io_fadvise_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
3347 if (sqe->ioprio || sqe->buf_index || sqe->addr)
3348 return -EINVAL;
3349 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
3350 return -EINVAL;
3352 req->fadvise.offset = READ_ONCE(sqe->off);
3353 req->fadvise.len = READ_ONCE(sqe->len);
3354 req->fadvise.advice = READ_ONCE(sqe->fadvise_advice);
3355 return 0;
3358 static int io_fadvise(struct io_kiocb *req, bool force_nonblock)
3360 struct io_fadvise *fa = &req->fadvise;
3361 int ret;
3363 if (force_nonblock) {
3364 switch (fa->advice) {
3365 case POSIX_FADV_NORMAL:
3366 case POSIX_FADV_RANDOM:
3367 case POSIX_FADV_SEQUENTIAL:
3368 break;
3369 default:
3370 return -EAGAIN;
3374 ret = vfs_fadvise(req->file, fa->offset, fa->len, fa->advice);
3375 if (ret < 0)
3376 req_set_fail_links(req);
3377 io_cqring_add_event(req, ret);
3378 io_put_req(req);
3379 return 0;
3382 static int io_statx_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
3384 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
3385 return -EINVAL;
3386 if (sqe->ioprio || sqe->buf_index)
3387 return -EINVAL;
3388 if (req->flags & REQ_F_FIXED_FILE)
3389 return -EBADF;
3391 req->statx.dfd = READ_ONCE(sqe->fd);
3392 req->statx.mask = READ_ONCE(sqe->len);
3393 req->statx.filename = u64_to_user_ptr(READ_ONCE(sqe->addr));
3394 req->statx.buffer = u64_to_user_ptr(READ_ONCE(sqe->addr2));
3395 req->statx.flags = READ_ONCE(sqe->statx_flags);
3397 return 0;
3400 static int io_statx(struct io_kiocb *req, bool force_nonblock)
3402 struct io_statx *ctx = &req->statx;
3403 int ret;
3405 if (force_nonblock) {
3406 /* only need file table for an actual valid fd */
3407 if (ctx->dfd == -1 || ctx->dfd == AT_FDCWD)
3408 req->flags |= REQ_F_NO_FILE_TABLE;
3409 return -EAGAIN;
3412 ret = do_statx(ctx->dfd, ctx->filename, ctx->flags, ctx->mask,
3413 ctx->buffer);
3415 if (ret < 0)
3416 req_set_fail_links(req);
3417 io_cqring_add_event(req, ret);
3418 io_put_req(req);
3419 return 0;
3422 static int io_close_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
3425 * If we queue this for async, it must not be cancellable. That would
3426 * leave the 'file' in an undeterminate state, and here need to modify
3427 * io_wq_work.flags, so initialize io_wq_work firstly.
3429 io_req_init_async(req);
3430 req->work.flags |= IO_WQ_WORK_NO_CANCEL;
3432 if (unlikely(req->ctx->flags & (IORING_SETUP_IOPOLL|IORING_SETUP_SQPOLL)))
3433 return -EINVAL;
3434 if (sqe->ioprio || sqe->off || sqe->addr || sqe->len ||
3435 sqe->rw_flags || sqe->buf_index)
3436 return -EINVAL;
3437 if (req->flags & REQ_F_FIXED_FILE)
3438 return -EBADF;
3440 req->close.fd = READ_ONCE(sqe->fd);
3441 if ((req->file && req->file->f_op == &io_uring_fops) ||
3442 req->close.fd == req->ctx->ring_fd)
3443 return -EBADF;
3445 req->close.put_file = NULL;
3446 return 0;
3449 static int io_close(struct io_kiocb *req, bool force_nonblock)
3451 struct io_close *close = &req->close;
3452 int ret;
3454 /* might be already done during nonblock submission */
3455 if (!close->put_file) {
3456 ret = __close_fd_get_file(close->fd, &close->put_file);
3457 if (ret < 0)
3458 return (ret == -ENOENT) ? -EBADF : ret;
3461 /* if the file has a flush method, be safe and punt to async */
3462 if (close->put_file->f_op->flush && force_nonblock) {
3463 /* avoid grabbing files - we don't need the files */
3464 req->flags |= REQ_F_NO_FILE_TABLE | REQ_F_MUST_PUNT;
3465 return -EAGAIN;
3468 /* No ->flush() or already async, safely close from here */
3469 ret = filp_close(close->put_file, req->work.files);
3470 if (ret < 0)
3471 req_set_fail_links(req);
3472 io_cqring_add_event(req, ret);
3473 fput(close->put_file);
3474 close->put_file = NULL;
3475 io_put_req(req);
3476 return 0;
3479 static int io_prep_sfr(struct io_kiocb *req, const struct io_uring_sqe *sqe)
3481 struct io_ring_ctx *ctx = req->ctx;
3483 if (!req->file)
3484 return -EBADF;
3486 if (unlikely(ctx->flags & IORING_SETUP_IOPOLL))
3487 return -EINVAL;
3488 if (unlikely(sqe->addr || sqe->ioprio || sqe->buf_index))
3489 return -EINVAL;
3491 req->sync.off = READ_ONCE(sqe->off);
3492 req->sync.len = READ_ONCE(sqe->len);
3493 req->sync.flags = READ_ONCE(sqe->sync_range_flags);
3494 return 0;
3497 static int io_sync_file_range(struct io_kiocb *req, bool force_nonblock)
3499 int ret;
3501 /* sync_file_range always requires a blocking context */
3502 if (force_nonblock)
3503 return -EAGAIN;
3505 ret = sync_file_range(req->file, req->sync.off, req->sync.len,
3506 req->sync.flags);
3507 if (ret < 0)
3508 req_set_fail_links(req);
3509 io_cqring_add_event(req, ret);
3510 io_put_req(req);
3511 return 0;
3514 #if defined(CONFIG_NET)
3515 static int io_setup_async_msg(struct io_kiocb *req,
3516 struct io_async_msghdr *kmsg)
3518 if (req->io)
3519 return -EAGAIN;
3520 if (io_alloc_async_ctx(req)) {
3521 if (kmsg->iov != kmsg->fast_iov)
3522 kfree(kmsg->iov);
3523 return -ENOMEM;
3525 req->flags |= REQ_F_NEED_CLEANUP;
3526 memcpy(&req->io->msg, kmsg, sizeof(*kmsg));
3527 return -EAGAIN;
3530 static int io_sendmsg_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
3532 struct io_sr_msg *sr = &req->sr_msg;
3533 struct io_async_ctx *io = req->io;
3534 int ret;
3536 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
3537 return -EINVAL;
3539 sr->msg_flags = READ_ONCE(sqe->msg_flags);
3540 sr->msg = u64_to_user_ptr(READ_ONCE(sqe->addr));
3541 sr->len = READ_ONCE(sqe->len);
3543 #ifdef CONFIG_COMPAT
3544 if (req->ctx->compat)
3545 sr->msg_flags |= MSG_CMSG_COMPAT;
3546 #endif
3548 if (!io || req->opcode == IORING_OP_SEND)
3549 return 0;
3550 /* iovec is already imported */
3551 if (req->flags & REQ_F_NEED_CLEANUP)
3552 return 0;
3554 io->msg.iov = io->msg.fast_iov;
3555 ret = sendmsg_copy_msghdr(&io->msg.msg, sr->msg, sr->msg_flags,
3556 &io->msg.iov);
3557 if (!ret)
3558 req->flags |= REQ_F_NEED_CLEANUP;
3559 return ret;
3562 static int io_sendmsg(struct io_kiocb *req, bool force_nonblock)
3564 struct io_async_msghdr *kmsg = NULL;
3565 struct socket *sock;
3566 int ret;
3568 sock = sock_from_file(req->file, &ret);
3569 if (sock) {
3570 struct io_async_ctx io;
3571 unsigned flags;
3573 if (req->io) {
3574 kmsg = &req->io->msg;
3575 kmsg->msg.msg_name = &req->io->msg.addr;
3576 /* if iov is set, it's allocated already */
3577 if (!kmsg->iov)
3578 kmsg->iov = kmsg->fast_iov;
3579 kmsg->msg.msg_iter.iov = kmsg->iov;
3580 } else {
3581 struct io_sr_msg *sr = &req->sr_msg;
3583 kmsg = &io.msg;
3584 kmsg->msg.msg_name = &io.msg.addr;
3586 io.msg.iov = io.msg.fast_iov;
3587 ret = sendmsg_copy_msghdr(&io.msg.msg, sr->msg,
3588 sr->msg_flags, &io.msg.iov);
3589 if (ret)
3590 return ret;
3593 flags = req->sr_msg.msg_flags;
3594 if (flags & MSG_DONTWAIT)
3595 req->flags |= REQ_F_NOWAIT;
3596 else if (force_nonblock)
3597 flags |= MSG_DONTWAIT;
3599 ret = __sys_sendmsg_sock(sock, &kmsg->msg, flags);
3600 if (force_nonblock && ret == -EAGAIN)
3601 return io_setup_async_msg(req, kmsg);
3602 if (ret == -ERESTARTSYS)
3603 ret = -EINTR;
3606 if (kmsg && kmsg->iov != kmsg->fast_iov)
3607 kfree(kmsg->iov);
3608 req->flags &= ~REQ_F_NEED_CLEANUP;
3609 io_cqring_add_event(req, ret);
3610 if (ret < 0)
3611 req_set_fail_links(req);
3612 io_put_req(req);
3613 return 0;
3616 static int io_send(struct io_kiocb *req, bool force_nonblock)
3618 struct socket *sock;
3619 int ret;
3621 sock = sock_from_file(req->file, &ret);
3622 if (sock) {
3623 struct io_sr_msg *sr = &req->sr_msg;
3624 struct msghdr msg;
3625 struct iovec iov;
3626 unsigned flags;
3628 ret = import_single_range(WRITE, sr->buf, sr->len, &iov,
3629 &msg.msg_iter);
3630 if (ret)
3631 return ret;
3633 msg.msg_name = NULL;
3634 msg.msg_control = NULL;
3635 msg.msg_controllen = 0;
3636 msg.msg_namelen = 0;
3638 flags = req->sr_msg.msg_flags;
3639 if (flags & MSG_DONTWAIT)
3640 req->flags |= REQ_F_NOWAIT;
3641 else if (force_nonblock)
3642 flags |= MSG_DONTWAIT;
3644 msg.msg_flags = flags;
3645 ret = sock_sendmsg(sock, &msg);
3646 if (force_nonblock && ret == -EAGAIN)
3647 return -EAGAIN;
3648 if (ret == -ERESTARTSYS)
3649 ret = -EINTR;
3652 io_cqring_add_event(req, ret);
3653 if (ret < 0)
3654 req_set_fail_links(req);
3655 io_put_req(req);
3656 return 0;
3659 static int __io_recvmsg_copy_hdr(struct io_kiocb *req, struct io_async_ctx *io)
3661 struct io_sr_msg *sr = &req->sr_msg;
3662 struct iovec __user *uiov;
3663 size_t iov_len;
3664 int ret;
3666 ret = __copy_msghdr_from_user(&io->msg.msg, sr->msg, &io->msg.uaddr,
3667 &uiov, &iov_len);
3668 if (ret)
3669 return ret;
3671 if (req->flags & REQ_F_BUFFER_SELECT) {
3672 if (iov_len > 1)
3673 return -EINVAL;
3674 if (copy_from_user(io->msg.iov, uiov, sizeof(*uiov)))
3675 return -EFAULT;
3676 sr->len = io->msg.iov[0].iov_len;
3677 iov_iter_init(&io->msg.msg.msg_iter, READ, io->msg.iov, 1,
3678 sr->len);
3679 io->msg.iov = NULL;
3680 } else {
3681 ret = import_iovec(READ, uiov, iov_len, UIO_FASTIOV,
3682 &io->msg.iov, &io->msg.msg.msg_iter);
3683 if (ret > 0)
3684 ret = 0;
3687 return ret;
3690 #ifdef CONFIG_COMPAT
3691 static int __io_compat_recvmsg_copy_hdr(struct io_kiocb *req,
3692 struct io_async_ctx *io)
3694 struct compat_msghdr __user *msg_compat;
3695 struct io_sr_msg *sr = &req->sr_msg;
3696 struct compat_iovec __user *uiov;
3697 compat_uptr_t ptr;
3698 compat_size_t len;
3699 int ret;
3701 msg_compat = (struct compat_msghdr __user *) sr->msg;
3702 ret = __get_compat_msghdr(&io->msg.msg, msg_compat, &io->msg.uaddr,
3703 &ptr, &len);
3704 if (ret)
3705 return ret;
3707 uiov = compat_ptr(ptr);
3708 if (req->flags & REQ_F_BUFFER_SELECT) {
3709 compat_ssize_t clen;
3711 if (len > 1)
3712 return -EINVAL;
3713 if (!access_ok(uiov, sizeof(*uiov)))
3714 return -EFAULT;
3715 if (__get_user(clen, &uiov->iov_len))
3716 return -EFAULT;
3717 if (clen < 0)
3718 return -EINVAL;
3719 sr->len = io->msg.iov[0].iov_len;
3720 io->msg.iov = NULL;
3721 } else {
3722 ret = compat_import_iovec(READ, uiov, len, UIO_FASTIOV,
3723 &io->msg.iov,
3724 &io->msg.msg.msg_iter);
3725 if (ret < 0)
3726 return ret;
3729 return 0;
3731 #endif
3733 static int io_recvmsg_copy_hdr(struct io_kiocb *req, struct io_async_ctx *io)
3735 io->msg.iov = io->msg.fast_iov;
3737 #ifdef CONFIG_COMPAT
3738 if (req->ctx->compat)
3739 return __io_compat_recvmsg_copy_hdr(req, io);
3740 #endif
3742 return __io_recvmsg_copy_hdr(req, io);
3745 static struct io_buffer *io_recv_buffer_select(struct io_kiocb *req,
3746 int *cflags, bool needs_lock)
3748 struct io_sr_msg *sr = &req->sr_msg;
3749 struct io_buffer *kbuf;
3751 if (!(req->flags & REQ_F_BUFFER_SELECT))
3752 return NULL;
3754 kbuf = io_buffer_select(req, &sr->len, sr->bgid, sr->kbuf, needs_lock);
3755 if (IS_ERR(kbuf))
3756 return kbuf;
3758 sr->kbuf = kbuf;
3759 req->flags |= REQ_F_BUFFER_SELECTED;
3761 *cflags = kbuf->bid << IORING_CQE_BUFFER_SHIFT;
3762 *cflags |= IORING_CQE_F_BUFFER;
3763 return kbuf;
3766 static int io_recvmsg_prep(struct io_kiocb *req,
3767 const struct io_uring_sqe *sqe)
3769 struct io_sr_msg *sr = &req->sr_msg;
3770 struct io_async_ctx *io = req->io;
3771 int ret;
3773 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
3774 return -EINVAL;
3776 sr->msg_flags = READ_ONCE(sqe->msg_flags);
3777 sr->msg = u64_to_user_ptr(READ_ONCE(sqe->addr));
3778 sr->len = READ_ONCE(sqe->len);
3779 sr->bgid = READ_ONCE(sqe->buf_group);
3781 #ifdef CONFIG_COMPAT
3782 if (req->ctx->compat)
3783 sr->msg_flags |= MSG_CMSG_COMPAT;
3784 #endif
3786 if (!io || req->opcode == IORING_OP_RECV)
3787 return 0;
3788 /* iovec is already imported */
3789 if (req->flags & REQ_F_NEED_CLEANUP)
3790 return 0;
3792 ret = io_recvmsg_copy_hdr(req, io);
3793 if (!ret)
3794 req->flags |= REQ_F_NEED_CLEANUP;
3795 return ret;
3798 static int io_recvmsg(struct io_kiocb *req, bool force_nonblock)
3800 struct io_async_msghdr *kmsg = NULL;
3801 struct socket *sock;
3802 int ret, cflags = 0;
3804 sock = sock_from_file(req->file, &ret);
3805 if (sock) {
3806 struct io_buffer *kbuf;
3807 struct io_async_ctx io;
3808 unsigned flags;
3810 if (req->io) {
3811 kmsg = &req->io->msg;
3812 kmsg->msg.msg_name = &req->io->msg.addr;
3813 /* if iov is set, it's allocated already */
3814 if (!kmsg->iov)
3815 kmsg->iov = kmsg->fast_iov;
3816 kmsg->msg.msg_iter.iov = kmsg->iov;
3817 } else {
3818 kmsg = &io.msg;
3819 kmsg->msg.msg_name = &io.msg.addr;
3821 ret = io_recvmsg_copy_hdr(req, &io);
3822 if (ret)
3823 return ret;
3826 kbuf = io_recv_buffer_select(req, &cflags, !force_nonblock);
3827 if (IS_ERR(kbuf)) {
3828 return PTR_ERR(kbuf);
3829 } else if (kbuf) {
3830 kmsg->fast_iov[0].iov_base = u64_to_user_ptr(kbuf->addr);
3831 iov_iter_init(&kmsg->msg.msg_iter, READ, kmsg->iov,
3832 1, req->sr_msg.len);
3835 flags = req->sr_msg.msg_flags;
3836 if (flags & MSG_DONTWAIT)
3837 req->flags |= REQ_F_NOWAIT;
3838 else if (force_nonblock)
3839 flags |= MSG_DONTWAIT;
3841 ret = __sys_recvmsg_sock(sock, &kmsg->msg, req->sr_msg.msg,
3842 kmsg->uaddr, flags);
3843 if (force_nonblock && ret == -EAGAIN)
3844 return io_setup_async_msg(req, kmsg);
3845 if (ret == -ERESTARTSYS)
3846 ret = -EINTR;
3849 if (kmsg && kmsg->iov != kmsg->fast_iov)
3850 kfree(kmsg->iov);
3851 req->flags &= ~REQ_F_NEED_CLEANUP;
3852 __io_cqring_add_event(req, ret, cflags);
3853 if (ret < 0)
3854 req_set_fail_links(req);
3855 io_put_req(req);
3856 return 0;
3859 static int io_recv(struct io_kiocb *req, bool force_nonblock)
3861 struct io_buffer *kbuf = NULL;
3862 struct socket *sock;
3863 int ret, cflags = 0;
3865 sock = sock_from_file(req->file, &ret);
3866 if (sock) {
3867 struct io_sr_msg *sr = &req->sr_msg;
3868 void __user *buf = sr->buf;
3869 struct msghdr msg;
3870 struct iovec iov;
3871 unsigned flags;
3873 kbuf = io_recv_buffer_select(req, &cflags, !force_nonblock);
3874 if (IS_ERR(kbuf))
3875 return PTR_ERR(kbuf);
3876 else if (kbuf)
3877 buf = u64_to_user_ptr(kbuf->addr);
3879 ret = import_single_range(READ, buf, sr->len, &iov,
3880 &msg.msg_iter);
3881 if (ret) {
3882 kfree(kbuf);
3883 return ret;
3886 req->flags |= REQ_F_NEED_CLEANUP;
3887 msg.msg_name = NULL;
3888 msg.msg_control = NULL;
3889 msg.msg_controllen = 0;
3890 msg.msg_namelen = 0;
3891 msg.msg_iocb = NULL;
3892 msg.msg_flags = 0;
3894 flags = req->sr_msg.msg_flags;
3895 if (flags & MSG_DONTWAIT)
3896 req->flags |= REQ_F_NOWAIT;
3897 else if (force_nonblock)
3898 flags |= MSG_DONTWAIT;
3900 ret = sock_recvmsg(sock, &msg, flags);
3901 if (force_nonblock && ret == -EAGAIN)
3902 return -EAGAIN;
3903 if (ret == -ERESTARTSYS)
3904 ret = -EINTR;
3907 kfree(kbuf);
3908 req->flags &= ~REQ_F_NEED_CLEANUP;
3909 __io_cqring_add_event(req, ret, cflags);
3910 if (ret < 0)
3911 req_set_fail_links(req);
3912 io_put_req(req);
3913 return 0;
3916 static int io_accept_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
3918 struct io_accept *accept = &req->accept;
3920 if (unlikely(req->ctx->flags & (IORING_SETUP_IOPOLL|IORING_SETUP_SQPOLL)))
3921 return -EINVAL;
3922 if (sqe->ioprio || sqe->len || sqe->buf_index)
3923 return -EINVAL;
3925 accept->addr = u64_to_user_ptr(READ_ONCE(sqe->addr));
3926 accept->addr_len = u64_to_user_ptr(READ_ONCE(sqe->addr2));
3927 accept->flags = READ_ONCE(sqe->accept_flags);
3928 accept->nofile = rlimit(RLIMIT_NOFILE);
3929 return 0;
3932 static int io_accept(struct io_kiocb *req, bool force_nonblock)
3934 struct io_accept *accept = &req->accept;
3935 unsigned int file_flags = force_nonblock ? O_NONBLOCK : 0;
3936 int ret;
3938 if (req->file->f_flags & O_NONBLOCK)
3939 req->flags |= REQ_F_NOWAIT;
3941 ret = __sys_accept4_file(req->file, file_flags, accept->addr,
3942 accept->addr_len, accept->flags,
3943 accept->nofile);
3944 if (ret == -EAGAIN && force_nonblock)
3945 return -EAGAIN;
3946 if (ret < 0) {
3947 if (ret == -ERESTARTSYS)
3948 ret = -EINTR;
3949 req_set_fail_links(req);
3951 io_cqring_add_event(req, ret);
3952 io_put_req(req);
3953 return 0;
3956 static int io_connect_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
3958 struct io_connect *conn = &req->connect;
3959 struct io_async_ctx *io = req->io;
3961 if (unlikely(req->ctx->flags & (IORING_SETUP_IOPOLL|IORING_SETUP_SQPOLL)))
3962 return -EINVAL;
3963 if (sqe->ioprio || sqe->len || sqe->buf_index || sqe->rw_flags)
3964 return -EINVAL;
3966 conn->addr = u64_to_user_ptr(READ_ONCE(sqe->addr));
3967 conn->addr_len = READ_ONCE(sqe->addr2);
3969 if (!io)
3970 return 0;
3972 return move_addr_to_kernel(conn->addr, conn->addr_len,
3973 &io->connect.address);
3976 static int io_connect(struct io_kiocb *req, bool force_nonblock)
3978 struct io_async_ctx __io, *io;
3979 unsigned file_flags;
3980 int ret;
3982 if (req->io) {
3983 io = req->io;
3984 } else {
3985 ret = move_addr_to_kernel(req->connect.addr,
3986 req->connect.addr_len,
3987 &__io.connect.address);
3988 if (ret)
3989 goto out;
3990 io = &__io;
3993 file_flags = force_nonblock ? O_NONBLOCK : 0;
3995 ret = __sys_connect_file(req->file, &io->connect.address,
3996 req->connect.addr_len, file_flags);
3997 if ((ret == -EAGAIN || ret == -EINPROGRESS) && force_nonblock) {
3998 if (req->io)
3999 return -EAGAIN;
4000 if (io_alloc_async_ctx(req)) {
4001 ret = -ENOMEM;
4002 goto out;
4004 memcpy(&req->io->connect, &__io.connect, sizeof(__io.connect));
4005 return -EAGAIN;
4007 if (ret == -ERESTARTSYS)
4008 ret = -EINTR;
4009 out:
4010 if (ret < 0)
4011 req_set_fail_links(req);
4012 io_cqring_add_event(req, ret);
4013 io_put_req(req);
4014 return 0;
4016 #else /* !CONFIG_NET */
4017 static int io_sendmsg_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
4019 return -EOPNOTSUPP;
4022 static int io_sendmsg(struct io_kiocb *req, bool force_nonblock)
4024 return -EOPNOTSUPP;
4027 static int io_send(struct io_kiocb *req, bool force_nonblock)
4029 return -EOPNOTSUPP;
4032 static int io_recvmsg_prep(struct io_kiocb *req,
4033 const struct io_uring_sqe *sqe)
4035 return -EOPNOTSUPP;
4038 static int io_recvmsg(struct io_kiocb *req, bool force_nonblock)
4040 return -EOPNOTSUPP;
4043 static int io_recv(struct io_kiocb *req, bool force_nonblock)
4045 return -EOPNOTSUPP;
4048 static int io_accept_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
4050 return -EOPNOTSUPP;
4053 static int io_accept(struct io_kiocb *req, bool force_nonblock)
4055 return -EOPNOTSUPP;
4058 static int io_connect_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
4060 return -EOPNOTSUPP;
4063 static int io_connect(struct io_kiocb *req, bool force_nonblock)
4065 return -EOPNOTSUPP;
4067 #endif /* CONFIG_NET */
4069 struct io_poll_table {
4070 struct poll_table_struct pt;
4071 struct io_kiocb *req;
4072 int error;
4075 static int io_req_task_work_add(struct io_kiocb *req, struct callback_head *cb)
4077 struct task_struct *tsk = req->task;
4078 struct io_ring_ctx *ctx = req->ctx;
4079 int ret, notify = TWA_RESUME;
4082 * SQPOLL kernel thread doesn't need notification, just a wakeup.
4083 * If we're not using an eventfd, then TWA_RESUME is always fine,
4084 * as we won't have dependencies between request completions for
4085 * other kernel wait conditions.
4087 if (ctx->flags & IORING_SETUP_SQPOLL)
4088 notify = 0;
4089 else if (ctx->cq_ev_fd)
4090 notify = TWA_SIGNAL;
4092 ret = task_work_add(tsk, cb, notify);
4093 if (!ret)
4094 wake_up_process(tsk);
4095 return ret;
4098 static int __io_async_wake(struct io_kiocb *req, struct io_poll_iocb *poll,
4099 __poll_t mask, task_work_func_t func)
4101 struct task_struct *tsk;
4102 int ret;
4104 /* for instances that support it check for an event match first: */
4105 if (mask && !(mask & poll->events))
4106 return 0;
4108 trace_io_uring_task_add(req->ctx, req->opcode, req->user_data, mask);
4110 list_del_init(&poll->wait.entry);
4112 tsk = req->task;
4113 req->result = mask;
4114 init_task_work(&req->task_work, func);
4116 * If this fails, then the task is exiting. When a task exits, the
4117 * work gets canceled, so just cancel this request as well instead
4118 * of executing it. We can't safely execute it anyway, as we may not
4119 * have the needed state needed for it anyway.
4121 ret = io_req_task_work_add(req, &req->task_work);
4122 if (unlikely(ret)) {
4123 WRITE_ONCE(poll->canceled, true);
4124 tsk = io_wq_get_task(req->ctx->io_wq);
4125 task_work_add(tsk, &req->task_work, 0);
4126 wake_up_process(tsk);
4128 return 1;
4131 static bool io_poll_rewait(struct io_kiocb *req, struct io_poll_iocb *poll)
4132 __acquires(&req->ctx->completion_lock)
4134 struct io_ring_ctx *ctx = req->ctx;
4136 if (!req->result && !READ_ONCE(poll->canceled)) {
4137 struct poll_table_struct pt = { ._key = poll->events };
4139 req->result = vfs_poll(req->file, &pt) & poll->events;
4142 spin_lock_irq(&ctx->completion_lock);
4143 if (!req->result && !READ_ONCE(poll->canceled)) {
4144 add_wait_queue(poll->head, &poll->wait);
4145 return true;
4148 return false;
4151 static void io_poll_remove_double(struct io_kiocb *req)
4153 struct io_poll_iocb *poll = (struct io_poll_iocb *) req->io;
4155 lockdep_assert_held(&req->ctx->completion_lock);
4157 if (poll && poll->head) {
4158 struct wait_queue_head *head = poll->head;
4160 spin_lock(&head->lock);
4161 list_del_init(&poll->wait.entry);
4162 if (poll->wait.private)
4163 refcount_dec(&req->refs);
4164 poll->head = NULL;
4165 spin_unlock(&head->lock);
4169 static void io_poll_complete(struct io_kiocb *req, __poll_t mask, int error)
4171 struct io_ring_ctx *ctx = req->ctx;
4173 io_poll_remove_double(req);
4174 req->poll.done = true;
4175 io_cqring_fill_event(req, error ? error : mangle_poll(mask));
4176 io_commit_cqring(ctx);
4179 static void io_poll_task_handler(struct io_kiocb *req, struct io_kiocb **nxt)
4181 struct io_ring_ctx *ctx = req->ctx;
4183 if (io_poll_rewait(req, &req->poll)) {
4184 spin_unlock_irq(&ctx->completion_lock);
4185 return;
4188 hash_del(&req->hash_node);
4189 io_poll_complete(req, req->result, 0);
4190 req->flags |= REQ_F_COMP_LOCKED;
4191 io_put_req_find_next(req, nxt);
4192 spin_unlock_irq(&ctx->completion_lock);
4194 io_cqring_ev_posted(ctx);
4197 static void io_poll_task_func(struct callback_head *cb)
4199 struct io_kiocb *req = container_of(cb, struct io_kiocb, task_work);
4200 struct io_kiocb *nxt = NULL;
4202 io_poll_task_handler(req, &nxt);
4203 if (nxt) {
4204 struct io_ring_ctx *ctx = nxt->ctx;
4206 mutex_lock(&ctx->uring_lock);
4207 __io_queue_sqe(nxt, NULL);
4208 mutex_unlock(&ctx->uring_lock);
4212 static int io_poll_double_wake(struct wait_queue_entry *wait, unsigned mode,
4213 int sync, void *key)
4215 struct io_kiocb *req = wait->private;
4216 struct io_poll_iocb *poll = (struct io_poll_iocb *) req->io;
4217 __poll_t mask = key_to_poll(key);
4219 /* for instances that support it check for an event match first: */
4220 if (mask && !(mask & poll->events))
4221 return 0;
4223 if (req->poll.head) {
4224 bool done;
4226 spin_lock(&req->poll.head->lock);
4227 done = list_empty(&req->poll.wait.entry);
4228 if (!done)
4229 list_del_init(&req->poll.wait.entry);
4230 spin_unlock(&req->poll.head->lock);
4231 if (!done)
4232 __io_async_wake(req, poll, mask, io_poll_task_func);
4234 refcount_dec(&req->refs);
4235 return 1;
4238 static void io_init_poll_iocb(struct io_poll_iocb *poll, __poll_t events,
4239 wait_queue_func_t wake_func)
4241 poll->head = NULL;
4242 poll->done = false;
4243 poll->canceled = false;
4244 poll->events = events;
4245 INIT_LIST_HEAD(&poll->wait.entry);
4246 init_waitqueue_func_entry(&poll->wait, wake_func);
4249 static void __io_queue_proc(struct io_poll_iocb *poll, struct io_poll_table *pt,
4250 struct wait_queue_head *head)
4252 struct io_kiocb *req = pt->req;
4255 * If poll->head is already set, it's because the file being polled
4256 * uses multiple waitqueues for poll handling (eg one for read, one
4257 * for write). Setup a separate io_poll_iocb if this happens.
4259 if (unlikely(poll->head)) {
4260 /* already have a 2nd entry, fail a third attempt */
4261 if (req->io) {
4262 pt->error = -EINVAL;
4263 return;
4265 poll = kmalloc(sizeof(*poll), GFP_ATOMIC);
4266 if (!poll) {
4267 pt->error = -ENOMEM;
4268 return;
4270 io_init_poll_iocb(poll, req->poll.events, io_poll_double_wake);
4271 refcount_inc(&req->refs);
4272 poll->wait.private = req;
4273 req->io = (void *) poll;
4276 pt->error = 0;
4277 poll->head = head;
4278 add_wait_queue(head, &poll->wait);
4281 static void io_async_queue_proc(struct file *file, struct wait_queue_head *head,
4282 struct poll_table_struct *p)
4284 struct io_poll_table *pt = container_of(p, struct io_poll_table, pt);
4286 __io_queue_proc(&pt->req->apoll->poll, pt, head);
4289 static void io_sq_thread_drop_mm(struct io_ring_ctx *ctx)
4291 struct mm_struct *mm = current->mm;
4293 if (mm) {
4294 kthread_unuse_mm(mm);
4295 mmput(mm);
4299 static int io_sq_thread_acquire_mm(struct io_ring_ctx *ctx,
4300 struct io_kiocb *req)
4302 if (io_op_defs[req->opcode].needs_mm && !current->mm) {
4303 if (unlikely(!mmget_not_zero(ctx->sqo_mm)))
4304 return -EFAULT;
4305 kthread_use_mm(ctx->sqo_mm);
4308 return 0;
4311 static void io_async_task_func(struct callback_head *cb)
4313 struct io_kiocb *req = container_of(cb, struct io_kiocb, task_work);
4314 struct async_poll *apoll = req->apoll;
4315 struct io_ring_ctx *ctx = req->ctx;
4316 bool canceled = false;
4318 trace_io_uring_task_run(req->ctx, req->opcode, req->user_data);
4320 if (io_poll_rewait(req, &apoll->poll)) {
4321 spin_unlock_irq(&ctx->completion_lock);
4322 return;
4325 /* If req is still hashed, it cannot have been canceled. Don't check. */
4326 if (hash_hashed(&req->hash_node)) {
4327 hash_del(&req->hash_node);
4328 } else {
4329 canceled = READ_ONCE(apoll->poll.canceled);
4330 if (canceled) {
4331 io_cqring_fill_event(req, -ECANCELED);
4332 io_commit_cqring(ctx);
4336 spin_unlock_irq(&ctx->completion_lock);
4338 /* restore ->work in case we need to retry again */
4339 if (req->flags & REQ_F_WORK_INITIALIZED)
4340 memcpy(&req->work, &apoll->work, sizeof(req->work));
4341 kfree(apoll);
4343 if (!canceled) {
4344 __set_current_state(TASK_RUNNING);
4345 if (io_sq_thread_acquire_mm(ctx, req)) {
4346 io_cqring_add_event(req, -EFAULT);
4347 goto end_req;
4349 mutex_lock(&ctx->uring_lock);
4350 __io_queue_sqe(req, NULL);
4351 mutex_unlock(&ctx->uring_lock);
4352 } else {
4353 io_cqring_ev_posted(ctx);
4354 end_req:
4355 req_set_fail_links(req);
4356 io_double_put_req(req);
4360 static int io_async_wake(struct wait_queue_entry *wait, unsigned mode, int sync,
4361 void *key)
4363 struct io_kiocb *req = wait->private;
4364 struct io_poll_iocb *poll = &req->apoll->poll;
4366 trace_io_uring_poll_wake(req->ctx, req->opcode, req->user_data,
4367 key_to_poll(key));
4369 return __io_async_wake(req, poll, key_to_poll(key), io_async_task_func);
4372 static void io_poll_req_insert(struct io_kiocb *req)
4374 struct io_ring_ctx *ctx = req->ctx;
4375 struct hlist_head *list;
4377 list = &ctx->cancel_hash[hash_long(req->user_data, ctx->cancel_hash_bits)];
4378 hlist_add_head(&req->hash_node, list);
4381 static __poll_t __io_arm_poll_handler(struct io_kiocb *req,
4382 struct io_poll_iocb *poll,
4383 struct io_poll_table *ipt, __poll_t mask,
4384 wait_queue_func_t wake_func)
4385 __acquires(&ctx->completion_lock)
4387 struct io_ring_ctx *ctx = req->ctx;
4388 bool cancel = false;
4390 poll->file = req->file;
4391 io_init_poll_iocb(poll, mask, wake_func);
4392 poll->wait.private = req;
4394 ipt->pt._key = mask;
4395 ipt->req = req;
4396 ipt->error = -EINVAL;
4398 mask = vfs_poll(req->file, &ipt->pt) & poll->events;
4400 spin_lock_irq(&ctx->completion_lock);
4401 if (likely(poll->head)) {
4402 spin_lock(&poll->head->lock);
4403 if (unlikely(list_empty(&poll->wait.entry))) {
4404 if (ipt->error)
4405 cancel = true;
4406 ipt->error = 0;
4407 mask = 0;
4409 if (mask || ipt->error)
4410 list_del_init(&poll->wait.entry);
4411 else if (cancel)
4412 WRITE_ONCE(poll->canceled, true);
4413 else if (!poll->done) /* actually waiting for an event */
4414 io_poll_req_insert(req);
4415 spin_unlock(&poll->head->lock);
4418 return mask;
4421 static bool io_arm_poll_handler(struct io_kiocb *req)
4423 const struct io_op_def *def = &io_op_defs[req->opcode];
4424 struct io_ring_ctx *ctx = req->ctx;
4425 struct async_poll *apoll;
4426 struct io_poll_table ipt;
4427 __poll_t mask, ret;
4428 bool had_io;
4430 if (!req->file || !file_can_poll(req->file))
4431 return false;
4432 if (req->flags & (REQ_F_MUST_PUNT | REQ_F_POLLED))
4433 return false;
4434 if (!def->pollin && !def->pollout)
4435 return false;
4437 apoll = kmalloc(sizeof(*apoll), GFP_ATOMIC);
4438 if (unlikely(!apoll))
4439 return false;
4441 req->flags |= REQ_F_POLLED;
4442 if (req->flags & REQ_F_WORK_INITIALIZED)
4443 memcpy(&apoll->work, &req->work, sizeof(req->work));
4444 had_io = req->io != NULL;
4446 io_get_req_task(req);
4447 req->apoll = apoll;
4448 INIT_HLIST_NODE(&req->hash_node);
4450 mask = 0;
4451 if (def->pollin)
4452 mask |= POLLIN | POLLRDNORM;
4453 if (def->pollout)
4454 mask |= POLLOUT | POLLWRNORM;
4455 mask |= POLLERR | POLLPRI;
4457 ipt.pt._qproc = io_async_queue_proc;
4459 ret = __io_arm_poll_handler(req, &apoll->poll, &ipt, mask,
4460 io_async_wake);
4461 if (ret) {
4462 ipt.error = 0;
4463 /* only remove double add if we did it here */
4464 if (!had_io)
4465 io_poll_remove_double(req);
4466 spin_unlock_irq(&ctx->completion_lock);
4467 if (req->flags & REQ_F_WORK_INITIALIZED)
4468 memcpy(&req->work, &apoll->work, sizeof(req->work));
4469 kfree(apoll);
4470 return false;
4472 spin_unlock_irq(&ctx->completion_lock);
4473 trace_io_uring_poll_arm(ctx, req->opcode, req->user_data, mask,
4474 apoll->poll.events);
4475 return true;
4478 static bool __io_poll_remove_one(struct io_kiocb *req,
4479 struct io_poll_iocb *poll)
4481 bool do_complete = false;
4483 spin_lock(&poll->head->lock);
4484 WRITE_ONCE(poll->canceled, true);
4485 if (!list_empty(&poll->wait.entry)) {
4486 list_del_init(&poll->wait.entry);
4487 do_complete = true;
4489 spin_unlock(&poll->head->lock);
4490 hash_del(&req->hash_node);
4491 return do_complete;
4494 static bool io_poll_remove_one(struct io_kiocb *req)
4496 bool do_complete;
4498 if (req->opcode == IORING_OP_POLL_ADD) {
4499 io_poll_remove_double(req);
4500 do_complete = __io_poll_remove_one(req, &req->poll);
4501 } else {
4502 struct async_poll *apoll = req->apoll;
4504 /* non-poll requests have submit ref still */
4505 do_complete = __io_poll_remove_one(req, &apoll->poll);
4506 if (do_complete) {
4507 io_put_req(req);
4509 * restore ->work because we will call
4510 * io_req_work_drop_env below when dropping the
4511 * final reference.
4513 if (req->flags & REQ_F_WORK_INITIALIZED)
4514 memcpy(&req->work, &apoll->work,
4515 sizeof(req->work));
4516 kfree(apoll);
4520 if (do_complete) {
4521 io_cqring_fill_event(req, -ECANCELED);
4522 io_commit_cqring(req->ctx);
4523 req->flags |= REQ_F_COMP_LOCKED;
4524 io_put_req(req);
4527 return do_complete;
4530 static void io_poll_remove_all(struct io_ring_ctx *ctx)
4532 struct hlist_node *tmp;
4533 struct io_kiocb *req;
4534 int posted = 0, i;
4536 spin_lock_irq(&ctx->completion_lock);
4537 for (i = 0; i < (1U << ctx->cancel_hash_bits); i++) {
4538 struct hlist_head *list;
4540 list = &ctx->cancel_hash[i];
4541 hlist_for_each_entry_safe(req, tmp, list, hash_node)
4542 posted += io_poll_remove_one(req);
4544 spin_unlock_irq(&ctx->completion_lock);
4546 if (posted)
4547 io_cqring_ev_posted(ctx);
4550 static int io_poll_cancel(struct io_ring_ctx *ctx, __u64 sqe_addr)
4552 struct hlist_head *list;
4553 struct io_kiocb *req;
4555 list = &ctx->cancel_hash[hash_long(sqe_addr, ctx->cancel_hash_bits)];
4556 hlist_for_each_entry(req, list, hash_node) {
4557 if (sqe_addr != req->user_data)
4558 continue;
4559 if (io_poll_remove_one(req))
4560 return 0;
4561 return -EALREADY;
4564 return -ENOENT;
4567 static int io_poll_remove_prep(struct io_kiocb *req,
4568 const struct io_uring_sqe *sqe)
4570 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
4571 return -EINVAL;
4572 if (sqe->ioprio || sqe->off || sqe->len || sqe->buf_index ||
4573 sqe->poll_events)
4574 return -EINVAL;
4576 req->poll.addr = READ_ONCE(sqe->addr);
4577 return 0;
4581 * Find a running poll command that matches one specified in sqe->addr,
4582 * and remove it if found.
4584 static int io_poll_remove(struct io_kiocb *req)
4586 struct io_ring_ctx *ctx = req->ctx;
4587 u64 addr;
4588 int ret;
4590 addr = req->poll.addr;
4591 spin_lock_irq(&ctx->completion_lock);
4592 ret = io_poll_cancel(ctx, addr);
4593 spin_unlock_irq(&ctx->completion_lock);
4595 io_cqring_add_event(req, ret);
4596 if (ret < 0)
4597 req_set_fail_links(req);
4598 io_put_req(req);
4599 return 0;
4602 static int io_poll_wake(struct wait_queue_entry *wait, unsigned mode, int sync,
4603 void *key)
4605 struct io_kiocb *req = wait->private;
4606 struct io_poll_iocb *poll = &req->poll;
4608 return __io_async_wake(req, poll, key_to_poll(key), io_poll_task_func);
4611 static void io_poll_queue_proc(struct file *file, struct wait_queue_head *head,
4612 struct poll_table_struct *p)
4614 struct io_poll_table *pt = container_of(p, struct io_poll_table, pt);
4616 __io_queue_proc(&pt->req->poll, pt, head);
4619 static int io_poll_add_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
4621 struct io_poll_iocb *poll = &req->poll;
4622 u16 events;
4624 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
4625 return -EINVAL;
4626 if (sqe->addr || sqe->ioprio || sqe->off || sqe->len || sqe->buf_index)
4627 return -EINVAL;
4628 if (!poll->file)
4629 return -EBADF;
4631 events = READ_ONCE(sqe->poll_events);
4632 poll->events = demangle_poll(events) | EPOLLERR | EPOLLHUP;
4634 io_get_req_task(req);
4635 return 0;
4638 static int io_poll_add(struct io_kiocb *req)
4640 struct io_poll_iocb *poll = &req->poll;
4641 struct io_ring_ctx *ctx = req->ctx;
4642 struct io_poll_table ipt;
4643 __poll_t mask;
4645 INIT_HLIST_NODE(&req->hash_node);
4646 INIT_LIST_HEAD(&req->list);
4647 ipt.pt._qproc = io_poll_queue_proc;
4649 mask = __io_arm_poll_handler(req, &req->poll, &ipt, poll->events,
4650 io_poll_wake);
4652 if (mask) { /* no async, we'd stolen it */
4653 ipt.error = 0;
4654 io_poll_complete(req, mask, 0);
4656 spin_unlock_irq(&ctx->completion_lock);
4658 if (mask) {
4659 io_cqring_ev_posted(ctx);
4660 io_put_req(req);
4662 return ipt.error;
4665 static enum hrtimer_restart io_timeout_fn(struct hrtimer *timer)
4667 struct io_timeout_data *data = container_of(timer,
4668 struct io_timeout_data, timer);
4669 struct io_kiocb *req = data->req;
4670 struct io_ring_ctx *ctx = req->ctx;
4671 unsigned long flags;
4673 atomic_inc(&ctx->cq_timeouts);
4675 spin_lock_irqsave(&ctx->completion_lock, flags);
4677 * We could be racing with timeout deletion. If the list is empty,
4678 * then timeout lookup already found it and will be handling it.
4680 if (!list_empty(&req->list))
4681 list_del_init(&req->list);
4683 io_cqring_fill_event(req, -ETIME);
4684 io_commit_cqring(ctx);
4685 spin_unlock_irqrestore(&ctx->completion_lock, flags);
4687 io_cqring_ev_posted(ctx);
4688 req_set_fail_links(req);
4689 io_put_req(req);
4690 return HRTIMER_NORESTART;
4693 static int io_timeout_cancel(struct io_ring_ctx *ctx, __u64 user_data)
4695 struct io_kiocb *req;
4696 int ret = -ENOENT;
4698 list_for_each_entry(req, &ctx->timeout_list, list) {
4699 if (user_data == req->user_data) {
4700 list_del_init(&req->list);
4701 ret = 0;
4702 break;
4706 if (ret == -ENOENT)
4707 return ret;
4709 ret = hrtimer_try_to_cancel(&req->io->timeout.timer);
4710 if (ret == -1)
4711 return -EALREADY;
4713 req_set_fail_links(req);
4714 io_cqring_fill_event(req, -ECANCELED);
4715 io_put_req(req);
4716 return 0;
4719 static int io_timeout_remove_prep(struct io_kiocb *req,
4720 const struct io_uring_sqe *sqe)
4722 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
4723 return -EINVAL;
4724 if (sqe->flags || sqe->ioprio || sqe->buf_index || sqe->len)
4725 return -EINVAL;
4727 req->timeout.addr = READ_ONCE(sqe->addr);
4728 req->timeout.flags = READ_ONCE(sqe->timeout_flags);
4729 if (req->timeout.flags)
4730 return -EINVAL;
4732 return 0;
4736 * Remove or update an existing timeout command
4738 static int io_timeout_remove(struct io_kiocb *req)
4740 struct io_ring_ctx *ctx = req->ctx;
4741 int ret;
4743 spin_lock_irq(&ctx->completion_lock);
4744 ret = io_timeout_cancel(ctx, req->timeout.addr);
4746 io_cqring_fill_event(req, ret);
4747 io_commit_cqring(ctx);
4748 spin_unlock_irq(&ctx->completion_lock);
4749 io_cqring_ev_posted(ctx);
4750 if (ret < 0)
4751 req_set_fail_links(req);
4752 io_put_req(req);
4753 return 0;
4756 static int io_timeout_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe,
4757 bool is_timeout_link)
4759 struct io_timeout_data *data;
4760 unsigned flags;
4761 u32 off = READ_ONCE(sqe->off);
4763 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
4764 return -EINVAL;
4765 if (sqe->ioprio || sqe->buf_index || sqe->len != 1)
4766 return -EINVAL;
4767 if (off && is_timeout_link)
4768 return -EINVAL;
4769 flags = READ_ONCE(sqe->timeout_flags);
4770 if (flags & ~IORING_TIMEOUT_ABS)
4771 return -EINVAL;
4773 req->timeout.off = off;
4775 if (!req->io && io_alloc_async_ctx(req))
4776 return -ENOMEM;
4778 data = &req->io->timeout;
4779 data->req = req;
4780 req->flags |= REQ_F_TIMEOUT;
4782 if (get_timespec64(&data->ts, u64_to_user_ptr(sqe->addr)))
4783 return -EFAULT;
4785 if (flags & IORING_TIMEOUT_ABS)
4786 data->mode = HRTIMER_MODE_ABS;
4787 else
4788 data->mode = HRTIMER_MODE_REL;
4790 hrtimer_init(&data->timer, CLOCK_MONOTONIC, data->mode);
4791 return 0;
4794 static int io_timeout(struct io_kiocb *req)
4796 struct io_ring_ctx *ctx = req->ctx;
4797 struct io_timeout_data *data = &req->io->timeout;
4798 struct list_head *entry;
4799 u32 tail, off = req->timeout.off;
4801 spin_lock_irq(&ctx->completion_lock);
4804 * sqe->off holds how many events that need to occur for this
4805 * timeout event to be satisfied. If it isn't set, then this is
4806 * a pure timeout request, sequence isn't used.
4808 if (!off) {
4809 req->flags |= REQ_F_TIMEOUT_NOSEQ;
4810 entry = ctx->timeout_list.prev;
4811 goto add;
4814 tail = ctx->cached_cq_tail - atomic_read(&ctx->cq_timeouts);
4815 req->timeout.target_seq = tail + off;
4818 * Insertion sort, ensuring the first entry in the list is always
4819 * the one we need first.
4821 list_for_each_prev(entry, &ctx->timeout_list) {
4822 struct io_kiocb *nxt = list_entry(entry, struct io_kiocb, list);
4824 if (nxt->flags & REQ_F_TIMEOUT_NOSEQ)
4825 continue;
4826 /* nxt.seq is behind @tail, otherwise would've been completed */
4827 if (off >= nxt->timeout.target_seq - tail)
4828 break;
4830 add:
4831 list_add(&req->list, entry);
4832 data->timer.function = io_timeout_fn;
4833 hrtimer_start(&data->timer, timespec64_to_ktime(data->ts), data->mode);
4834 spin_unlock_irq(&ctx->completion_lock);
4835 return 0;
4838 static bool io_cancel_cb(struct io_wq_work *work, void *data)
4840 struct io_kiocb *req = container_of(work, struct io_kiocb, work);
4842 return req->user_data == (unsigned long) data;
4845 static int io_async_cancel_one(struct io_ring_ctx *ctx, void *sqe_addr)
4847 enum io_wq_cancel cancel_ret;
4848 int ret = 0;
4850 cancel_ret = io_wq_cancel_cb(ctx->io_wq, io_cancel_cb, sqe_addr, false);
4851 switch (cancel_ret) {
4852 case IO_WQ_CANCEL_OK:
4853 ret = 0;
4854 break;
4855 case IO_WQ_CANCEL_RUNNING:
4856 ret = -EALREADY;
4857 break;
4858 case IO_WQ_CANCEL_NOTFOUND:
4859 ret = -ENOENT;
4860 break;
4863 return ret;
4866 static void io_async_find_and_cancel(struct io_ring_ctx *ctx,
4867 struct io_kiocb *req, __u64 sqe_addr,
4868 int success_ret)
4870 unsigned long flags;
4871 int ret;
4873 ret = io_async_cancel_one(ctx, (void *) (unsigned long) sqe_addr);
4874 if (ret != -ENOENT) {
4875 spin_lock_irqsave(&ctx->completion_lock, flags);
4876 goto done;
4879 spin_lock_irqsave(&ctx->completion_lock, flags);
4880 ret = io_timeout_cancel(ctx, sqe_addr);
4881 if (ret != -ENOENT)
4882 goto done;
4883 ret = io_poll_cancel(ctx, sqe_addr);
4884 done:
4885 if (!ret)
4886 ret = success_ret;
4887 io_cqring_fill_event(req, ret);
4888 io_commit_cqring(ctx);
4889 spin_unlock_irqrestore(&ctx->completion_lock, flags);
4890 io_cqring_ev_posted(ctx);
4892 if (ret < 0)
4893 req_set_fail_links(req);
4894 io_put_req(req);
4897 static int io_async_cancel_prep(struct io_kiocb *req,
4898 const struct io_uring_sqe *sqe)
4900 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
4901 return -EINVAL;
4902 if (sqe->flags || sqe->ioprio || sqe->off || sqe->len ||
4903 sqe->cancel_flags)
4904 return -EINVAL;
4906 req->cancel.addr = READ_ONCE(sqe->addr);
4907 return 0;
4910 static int io_async_cancel(struct io_kiocb *req)
4912 struct io_ring_ctx *ctx = req->ctx;
4914 io_async_find_and_cancel(ctx, req, req->cancel.addr, 0);
4915 return 0;
4918 static int io_files_update_prep(struct io_kiocb *req,
4919 const struct io_uring_sqe *sqe)
4921 if (sqe->flags || sqe->ioprio || sqe->rw_flags)
4922 return -EINVAL;
4924 req->files_update.offset = READ_ONCE(sqe->off);
4925 req->files_update.nr_args = READ_ONCE(sqe->len);
4926 if (!req->files_update.nr_args)
4927 return -EINVAL;
4928 req->files_update.arg = READ_ONCE(sqe->addr);
4929 return 0;
4932 static int io_files_update(struct io_kiocb *req, bool force_nonblock)
4934 struct io_ring_ctx *ctx = req->ctx;
4935 struct io_uring_files_update up;
4936 int ret;
4938 if (force_nonblock)
4939 return -EAGAIN;
4941 up.offset = req->files_update.offset;
4942 up.fds = req->files_update.arg;
4944 mutex_lock(&ctx->uring_lock);
4945 ret = __io_sqe_files_update(ctx, &up, req->files_update.nr_args);
4946 mutex_unlock(&ctx->uring_lock);
4948 if (ret < 0)
4949 req_set_fail_links(req);
4950 io_cqring_add_event(req, ret);
4951 io_put_req(req);
4952 return 0;
4955 static int io_req_defer_prep(struct io_kiocb *req,
4956 const struct io_uring_sqe *sqe)
4958 ssize_t ret = 0;
4960 if (!sqe)
4961 return 0;
4963 io_req_init_async(req);
4965 if (io_op_defs[req->opcode].file_table) {
4966 ret = io_grab_files(req);
4967 if (unlikely(ret))
4968 return ret;
4971 io_req_work_grab_env(req, &io_op_defs[req->opcode]);
4973 switch (req->opcode) {
4974 case IORING_OP_NOP:
4975 break;
4976 case IORING_OP_READV:
4977 case IORING_OP_READ_FIXED:
4978 case IORING_OP_READ:
4979 ret = io_read_prep(req, sqe, true);
4980 break;
4981 case IORING_OP_WRITEV:
4982 case IORING_OP_WRITE_FIXED:
4983 case IORING_OP_WRITE:
4984 ret = io_write_prep(req, sqe, true);
4985 break;
4986 case IORING_OP_POLL_ADD:
4987 ret = io_poll_add_prep(req, sqe);
4988 break;
4989 case IORING_OP_POLL_REMOVE:
4990 ret = io_poll_remove_prep(req, sqe);
4991 break;
4992 case IORING_OP_FSYNC:
4993 ret = io_prep_fsync(req, sqe);
4994 break;
4995 case IORING_OP_SYNC_FILE_RANGE:
4996 ret = io_prep_sfr(req, sqe);
4997 break;
4998 case IORING_OP_SENDMSG:
4999 case IORING_OP_SEND:
5000 ret = io_sendmsg_prep(req, sqe);
5001 break;
5002 case IORING_OP_RECVMSG:
5003 case IORING_OP_RECV:
5004 ret = io_recvmsg_prep(req, sqe);
5005 break;
5006 case IORING_OP_CONNECT:
5007 ret = io_connect_prep(req, sqe);
5008 break;
5009 case IORING_OP_TIMEOUT:
5010 ret = io_timeout_prep(req, sqe, false);
5011 break;
5012 case IORING_OP_TIMEOUT_REMOVE:
5013 ret = io_timeout_remove_prep(req, sqe);
5014 break;
5015 case IORING_OP_ASYNC_CANCEL:
5016 ret = io_async_cancel_prep(req, sqe);
5017 break;
5018 case IORING_OP_LINK_TIMEOUT:
5019 ret = io_timeout_prep(req, sqe, true);
5020 break;
5021 case IORING_OP_ACCEPT:
5022 ret = io_accept_prep(req, sqe);
5023 break;
5024 case IORING_OP_FALLOCATE:
5025 ret = io_fallocate_prep(req, sqe);
5026 break;
5027 case IORING_OP_OPENAT:
5028 ret = io_openat_prep(req, sqe);
5029 break;
5030 case IORING_OP_CLOSE:
5031 ret = io_close_prep(req, sqe);
5032 break;
5033 case IORING_OP_FILES_UPDATE:
5034 ret = io_files_update_prep(req, sqe);
5035 break;
5036 case IORING_OP_STATX:
5037 ret = io_statx_prep(req, sqe);
5038 break;
5039 case IORING_OP_FADVISE:
5040 ret = io_fadvise_prep(req, sqe);
5041 break;
5042 case IORING_OP_MADVISE:
5043 ret = io_madvise_prep(req, sqe);
5044 break;
5045 case IORING_OP_OPENAT2:
5046 ret = io_openat2_prep(req, sqe);
5047 break;
5048 case IORING_OP_EPOLL_CTL:
5049 ret = io_epoll_ctl_prep(req, sqe);
5050 break;
5051 case IORING_OP_SPLICE:
5052 ret = io_splice_prep(req, sqe);
5053 break;
5054 case IORING_OP_PROVIDE_BUFFERS:
5055 ret = io_provide_buffers_prep(req, sqe);
5056 break;
5057 case IORING_OP_REMOVE_BUFFERS:
5058 ret = io_remove_buffers_prep(req, sqe);
5059 break;
5060 case IORING_OP_TEE:
5061 ret = io_tee_prep(req, sqe);
5062 break;
5063 default:
5064 printk_once(KERN_WARNING "io_uring: unhandled opcode %d\n",
5065 req->opcode);
5066 ret = -EINVAL;
5067 break;
5070 return ret;
5073 static int io_req_defer(struct io_kiocb *req, const struct io_uring_sqe *sqe)
5075 struct io_ring_ctx *ctx = req->ctx;
5076 int ret;
5078 /* Still need defer if there is pending req in defer list. */
5079 if (!req_need_defer(req) && list_empty_careful(&ctx->defer_list))
5080 return 0;
5082 if (!req->io) {
5083 if (io_alloc_async_ctx(req))
5084 return -EAGAIN;
5085 ret = io_req_defer_prep(req, sqe);
5086 if (ret < 0)
5087 return ret;
5090 spin_lock_irq(&ctx->completion_lock);
5091 if (!req_need_defer(req) && list_empty(&ctx->defer_list)) {
5092 spin_unlock_irq(&ctx->completion_lock);
5093 return 0;
5096 trace_io_uring_defer(ctx, req, req->user_data);
5097 list_add_tail(&req->list, &ctx->defer_list);
5098 spin_unlock_irq(&ctx->completion_lock);
5099 return -EIOCBQUEUED;
5102 static void io_cleanup_req(struct io_kiocb *req)
5104 struct io_async_ctx *io = req->io;
5106 switch (req->opcode) {
5107 case IORING_OP_READV:
5108 case IORING_OP_READ_FIXED:
5109 case IORING_OP_READ:
5110 if (req->flags & REQ_F_BUFFER_SELECTED)
5111 kfree((void *)(unsigned long)req->rw.addr);
5112 /* fallthrough */
5113 case IORING_OP_WRITEV:
5114 case IORING_OP_WRITE_FIXED:
5115 case IORING_OP_WRITE:
5116 if (io->rw.iov != io->rw.fast_iov)
5117 kfree(io->rw.iov);
5118 break;
5119 case IORING_OP_RECVMSG:
5120 if (req->flags & REQ_F_BUFFER_SELECTED)
5121 kfree(req->sr_msg.kbuf);
5122 /* fallthrough */
5123 case IORING_OP_SENDMSG:
5124 if (io->msg.iov != io->msg.fast_iov)
5125 kfree(io->msg.iov);
5126 break;
5127 case IORING_OP_RECV:
5128 if (req->flags & REQ_F_BUFFER_SELECTED)
5129 kfree(req->sr_msg.kbuf);
5130 break;
5131 case IORING_OP_OPENAT:
5132 case IORING_OP_OPENAT2:
5133 break;
5134 case IORING_OP_SPLICE:
5135 case IORING_OP_TEE:
5136 io_put_file(req, req->splice.file_in,
5137 (req->splice.flags & SPLICE_F_FD_IN_FIXED));
5138 break;
5141 req->flags &= ~REQ_F_NEED_CLEANUP;
5144 static int io_issue_sqe(struct io_kiocb *req, const struct io_uring_sqe *sqe,
5145 bool force_nonblock)
5147 struct io_ring_ctx *ctx = req->ctx;
5148 int ret;
5150 switch (req->opcode) {
5151 case IORING_OP_NOP:
5152 ret = io_nop(req);
5153 break;
5154 case IORING_OP_READV:
5155 case IORING_OP_READ_FIXED:
5156 case IORING_OP_READ:
5157 if (sqe) {
5158 ret = io_read_prep(req, sqe, force_nonblock);
5159 if (ret < 0)
5160 break;
5162 ret = io_read(req, force_nonblock);
5163 break;
5164 case IORING_OP_WRITEV:
5165 case IORING_OP_WRITE_FIXED:
5166 case IORING_OP_WRITE:
5167 if (sqe) {
5168 ret = io_write_prep(req, sqe, force_nonblock);
5169 if (ret < 0)
5170 break;
5172 ret = io_write(req, force_nonblock);
5173 break;
5174 case IORING_OP_FSYNC:
5175 if (sqe) {
5176 ret = io_prep_fsync(req, sqe);
5177 if (ret < 0)
5178 break;
5180 ret = io_fsync(req, force_nonblock);
5181 break;
5182 case IORING_OP_POLL_ADD:
5183 if (sqe) {
5184 ret = io_poll_add_prep(req, sqe);
5185 if (ret)
5186 break;
5188 ret = io_poll_add(req);
5189 break;
5190 case IORING_OP_POLL_REMOVE:
5191 if (sqe) {
5192 ret = io_poll_remove_prep(req, sqe);
5193 if (ret < 0)
5194 break;
5196 ret = io_poll_remove(req);
5197 break;
5198 case IORING_OP_SYNC_FILE_RANGE:
5199 if (sqe) {
5200 ret = io_prep_sfr(req, sqe);
5201 if (ret < 0)
5202 break;
5204 ret = io_sync_file_range(req, force_nonblock);
5205 break;
5206 case IORING_OP_SENDMSG:
5207 case IORING_OP_SEND:
5208 if (sqe) {
5209 ret = io_sendmsg_prep(req, sqe);
5210 if (ret < 0)
5211 break;
5213 if (req->opcode == IORING_OP_SENDMSG)
5214 ret = io_sendmsg(req, force_nonblock);
5215 else
5216 ret = io_send(req, force_nonblock);
5217 break;
5218 case IORING_OP_RECVMSG:
5219 case IORING_OP_RECV:
5220 if (sqe) {
5221 ret = io_recvmsg_prep(req, sqe);
5222 if (ret)
5223 break;
5225 if (req->opcode == IORING_OP_RECVMSG)
5226 ret = io_recvmsg(req, force_nonblock);
5227 else
5228 ret = io_recv(req, force_nonblock);
5229 break;
5230 case IORING_OP_TIMEOUT:
5231 if (sqe) {
5232 ret = io_timeout_prep(req, sqe, false);
5233 if (ret)
5234 break;
5236 ret = io_timeout(req);
5237 break;
5238 case IORING_OP_TIMEOUT_REMOVE:
5239 if (sqe) {
5240 ret = io_timeout_remove_prep(req, sqe);
5241 if (ret)
5242 break;
5244 ret = io_timeout_remove(req);
5245 break;
5246 case IORING_OP_ACCEPT:
5247 if (sqe) {
5248 ret = io_accept_prep(req, sqe);
5249 if (ret)
5250 break;
5252 ret = io_accept(req, force_nonblock);
5253 break;
5254 case IORING_OP_CONNECT:
5255 if (sqe) {
5256 ret = io_connect_prep(req, sqe);
5257 if (ret)
5258 break;
5260 ret = io_connect(req, force_nonblock);
5261 break;
5262 case IORING_OP_ASYNC_CANCEL:
5263 if (sqe) {
5264 ret = io_async_cancel_prep(req, sqe);
5265 if (ret)
5266 break;
5268 ret = io_async_cancel(req);
5269 break;
5270 case IORING_OP_FALLOCATE:
5271 if (sqe) {
5272 ret = io_fallocate_prep(req, sqe);
5273 if (ret)
5274 break;
5276 ret = io_fallocate(req, force_nonblock);
5277 break;
5278 case IORING_OP_OPENAT:
5279 if (sqe) {
5280 ret = io_openat_prep(req, sqe);
5281 if (ret)
5282 break;
5284 ret = io_openat(req, force_nonblock);
5285 break;
5286 case IORING_OP_CLOSE:
5287 if (sqe) {
5288 ret = io_close_prep(req, sqe);
5289 if (ret)
5290 break;
5292 ret = io_close(req, force_nonblock);
5293 break;
5294 case IORING_OP_FILES_UPDATE:
5295 if (sqe) {
5296 ret = io_files_update_prep(req, sqe);
5297 if (ret)
5298 break;
5300 ret = io_files_update(req, force_nonblock);
5301 break;
5302 case IORING_OP_STATX:
5303 if (sqe) {
5304 ret = io_statx_prep(req, sqe);
5305 if (ret)
5306 break;
5308 ret = io_statx(req, force_nonblock);
5309 break;
5310 case IORING_OP_FADVISE:
5311 if (sqe) {
5312 ret = io_fadvise_prep(req, sqe);
5313 if (ret)
5314 break;
5316 ret = io_fadvise(req, force_nonblock);
5317 break;
5318 case IORING_OP_MADVISE:
5319 if (sqe) {
5320 ret = io_madvise_prep(req, sqe);
5321 if (ret)
5322 break;
5324 ret = io_madvise(req, force_nonblock);
5325 break;
5326 case IORING_OP_OPENAT2:
5327 if (sqe) {
5328 ret = io_openat2_prep(req, sqe);
5329 if (ret)
5330 break;
5332 ret = io_openat2(req, force_nonblock);
5333 break;
5334 case IORING_OP_EPOLL_CTL:
5335 if (sqe) {
5336 ret = io_epoll_ctl_prep(req, sqe);
5337 if (ret)
5338 break;
5340 ret = io_epoll_ctl(req, force_nonblock);
5341 break;
5342 case IORING_OP_SPLICE:
5343 if (sqe) {
5344 ret = io_splice_prep(req, sqe);
5345 if (ret < 0)
5346 break;
5348 ret = io_splice(req, force_nonblock);
5349 break;
5350 case IORING_OP_PROVIDE_BUFFERS:
5351 if (sqe) {
5352 ret = io_provide_buffers_prep(req, sqe);
5353 if (ret)
5354 break;
5356 ret = io_provide_buffers(req, force_nonblock);
5357 break;
5358 case IORING_OP_REMOVE_BUFFERS:
5359 if (sqe) {
5360 ret = io_remove_buffers_prep(req, sqe);
5361 if (ret)
5362 break;
5364 ret = io_remove_buffers(req, force_nonblock);
5365 break;
5366 case IORING_OP_TEE:
5367 if (sqe) {
5368 ret = io_tee_prep(req, sqe);
5369 if (ret < 0)
5370 break;
5372 ret = io_tee(req, force_nonblock);
5373 break;
5374 default:
5375 ret = -EINVAL;
5376 break;
5379 if (ret)
5380 return ret;
5382 /* If the op doesn't have a file, we're not polling for it */
5383 if ((ctx->flags & IORING_SETUP_IOPOLL) && req->file) {
5384 const bool in_async = io_wq_current_is_worker();
5386 /* workqueue context doesn't hold uring_lock, grab it now */
5387 if (in_async)
5388 mutex_lock(&ctx->uring_lock);
5390 io_iopoll_req_issued(req);
5392 if (in_async)
5393 mutex_unlock(&ctx->uring_lock);
5396 return 0;
5399 static void io_arm_async_linked_timeout(struct io_kiocb *req)
5401 struct io_kiocb *link;
5403 /* link head's timeout is queued in io_queue_async_work() */
5404 if (!(req->flags & REQ_F_QUEUE_TIMEOUT))
5405 return;
5407 link = list_first_entry(&req->link_list, struct io_kiocb, link_list);
5408 io_queue_linked_timeout(link);
5411 static void io_wq_submit_work(struct io_wq_work **workptr)
5413 struct io_wq_work *work = *workptr;
5414 struct io_kiocb *req = container_of(work, struct io_kiocb, work);
5415 int ret = 0;
5417 io_arm_async_linked_timeout(req);
5419 /* if NO_CANCEL is set, we must still run the work */
5420 if ((work->flags & (IO_WQ_WORK_CANCEL|IO_WQ_WORK_NO_CANCEL)) ==
5421 IO_WQ_WORK_CANCEL) {
5422 ret = -ECANCELED;
5425 if (!ret) {
5426 do {
5427 ret = io_issue_sqe(req, NULL, false);
5429 * We can get EAGAIN for polled IO even though we're
5430 * forcing a sync submission from here, since we can't
5431 * wait for request slots on the block side.
5433 if (ret != -EAGAIN)
5434 break;
5435 cond_resched();
5436 } while (1);
5439 if (ret) {
5440 req_set_fail_links(req);
5441 io_cqring_add_event(req, ret);
5442 io_put_req(req);
5445 io_steal_work(req, workptr);
5448 static inline struct file *io_file_from_index(struct io_ring_ctx *ctx,
5449 int index)
5451 struct fixed_file_table *table;
5453 table = &ctx->file_data->table[index >> IORING_FILE_TABLE_SHIFT];
5454 return table->files[index & IORING_FILE_TABLE_MASK];
5457 static int io_file_get(struct io_submit_state *state, struct io_kiocb *req,
5458 int fd, struct file **out_file, bool fixed)
5460 struct io_ring_ctx *ctx = req->ctx;
5461 struct file *file;
5463 if (fixed) {
5464 if (unlikely(!ctx->file_data ||
5465 (unsigned) fd >= ctx->nr_user_files))
5466 return -EBADF;
5467 fd = array_index_nospec(fd, ctx->nr_user_files);
5468 file = io_file_from_index(ctx, fd);
5469 if (file) {
5470 req->fixed_file_refs = ctx->file_data->cur_refs;
5471 percpu_ref_get(req->fixed_file_refs);
5473 } else {
5474 trace_io_uring_file_get(ctx, fd);
5475 file = __io_file_get(state, fd);
5478 if (file || io_op_defs[req->opcode].needs_file_no_error) {
5479 *out_file = file;
5480 return 0;
5482 return -EBADF;
5485 static int io_req_set_file(struct io_submit_state *state, struct io_kiocb *req,
5486 int fd)
5488 bool fixed;
5490 fixed = (req->flags & REQ_F_FIXED_FILE) != 0;
5491 if (unlikely(!fixed && io_async_submit(req->ctx)))
5492 return -EBADF;
5494 return io_file_get(state, req, fd, &req->file, fixed);
5497 static int io_grab_files(struct io_kiocb *req)
5499 int ret = -EBADF;
5500 struct io_ring_ctx *ctx = req->ctx;
5502 if (req->work.files || (req->flags & REQ_F_NO_FILE_TABLE))
5503 return 0;
5504 if (!ctx->ring_file)
5505 return -EBADF;
5507 rcu_read_lock();
5508 spin_lock_irq(&ctx->inflight_lock);
5510 * We use the f_ops->flush() handler to ensure that we can flush
5511 * out work accessing these files if the fd is closed. Check if
5512 * the fd has changed since we started down this path, and disallow
5513 * this operation if it has.
5515 if (fcheck(ctx->ring_fd) == ctx->ring_file) {
5516 list_add(&req->inflight_entry, &ctx->inflight_list);
5517 req->flags |= REQ_F_INFLIGHT;
5518 req->work.files = current->files;
5519 ret = 0;
5521 spin_unlock_irq(&ctx->inflight_lock);
5522 rcu_read_unlock();
5524 return ret;
5527 static enum hrtimer_restart io_link_timeout_fn(struct hrtimer *timer)
5529 struct io_timeout_data *data = container_of(timer,
5530 struct io_timeout_data, timer);
5531 struct io_kiocb *req = data->req;
5532 struct io_ring_ctx *ctx = req->ctx;
5533 struct io_kiocb *prev = NULL;
5534 unsigned long flags;
5536 spin_lock_irqsave(&ctx->completion_lock, flags);
5539 * We don't expect the list to be empty, that will only happen if we
5540 * race with the completion of the linked work.
5542 if (!list_empty(&req->link_list)) {
5543 prev = list_entry(req->link_list.prev, struct io_kiocb,
5544 link_list);
5545 if (refcount_inc_not_zero(&prev->refs)) {
5546 list_del_init(&req->link_list);
5547 prev->flags &= ~REQ_F_LINK_TIMEOUT;
5548 } else
5549 prev = NULL;
5552 spin_unlock_irqrestore(&ctx->completion_lock, flags);
5554 if (prev) {
5555 req_set_fail_links(prev);
5556 io_async_find_and_cancel(ctx, req, prev->user_data, -ETIME);
5557 io_put_req(prev);
5558 } else {
5559 io_cqring_add_event(req, -ETIME);
5560 io_put_req(req);
5562 return HRTIMER_NORESTART;
5565 static void io_queue_linked_timeout(struct io_kiocb *req)
5567 struct io_ring_ctx *ctx = req->ctx;
5570 * If the list is now empty, then our linked request finished before
5571 * we got a chance to setup the timer
5573 spin_lock_irq(&ctx->completion_lock);
5574 if (!list_empty(&req->link_list)) {
5575 struct io_timeout_data *data = &req->io->timeout;
5577 data->timer.function = io_link_timeout_fn;
5578 hrtimer_start(&data->timer, timespec64_to_ktime(data->ts),
5579 data->mode);
5581 spin_unlock_irq(&ctx->completion_lock);
5583 /* drop submission reference */
5584 io_put_req(req);
5587 static struct io_kiocb *io_prep_linked_timeout(struct io_kiocb *req)
5589 struct io_kiocb *nxt;
5591 if (!(req->flags & REQ_F_LINK_HEAD))
5592 return NULL;
5593 /* for polled retry, if flag is set, we already went through here */
5594 if (req->flags & REQ_F_POLLED)
5595 return NULL;
5597 nxt = list_first_entry_or_null(&req->link_list, struct io_kiocb,
5598 link_list);
5599 if (!nxt || nxt->opcode != IORING_OP_LINK_TIMEOUT)
5600 return NULL;
5602 req->flags |= REQ_F_LINK_TIMEOUT;
5603 return nxt;
5606 static void __io_queue_sqe(struct io_kiocb *req, const struct io_uring_sqe *sqe)
5608 struct io_kiocb *linked_timeout;
5609 struct io_kiocb *nxt;
5610 const struct cred *old_creds = NULL;
5611 int ret;
5613 again:
5614 linked_timeout = io_prep_linked_timeout(req);
5616 if ((req->flags & REQ_F_WORK_INITIALIZED) && req->work.creds &&
5617 req->work.creds != current_cred()) {
5618 if (old_creds)
5619 revert_creds(old_creds);
5620 if (old_creds == req->work.creds)
5621 old_creds = NULL; /* restored original creds */
5622 else
5623 old_creds = override_creds(req->work.creds);
5626 ret = io_issue_sqe(req, sqe, true);
5629 * We async punt it if the file wasn't marked NOWAIT, or if the file
5630 * doesn't support non-blocking read/write attempts
5632 if (ret == -EAGAIN && (!(req->flags & REQ_F_NOWAIT) ||
5633 (req->flags & REQ_F_MUST_PUNT))) {
5634 if (io_arm_poll_handler(req)) {
5635 if (linked_timeout)
5636 io_queue_linked_timeout(linked_timeout);
5637 goto exit;
5639 punt:
5640 io_req_init_async(req);
5642 if (io_op_defs[req->opcode].file_table) {
5643 ret = io_grab_files(req);
5644 if (ret)
5645 goto err;
5649 * Queued up for async execution, worker will release
5650 * submit reference when the iocb is actually submitted.
5652 io_queue_async_work(req);
5653 goto exit;
5656 err:
5657 nxt = NULL;
5658 /* drop submission reference */
5659 io_put_req_find_next(req, &nxt);
5661 if (linked_timeout) {
5662 if (!ret)
5663 io_queue_linked_timeout(linked_timeout);
5664 else
5665 io_put_req(linked_timeout);
5668 /* and drop final reference, if we failed */
5669 if (ret) {
5670 io_cqring_add_event(req, ret);
5671 req_set_fail_links(req);
5672 io_put_req(req);
5674 if (nxt) {
5675 req = nxt;
5677 if (req->flags & REQ_F_FORCE_ASYNC)
5678 goto punt;
5679 goto again;
5681 exit:
5682 if (old_creds)
5683 revert_creds(old_creds);
5686 static void io_queue_sqe(struct io_kiocb *req, const struct io_uring_sqe *sqe)
5688 int ret;
5690 ret = io_req_defer(req, sqe);
5691 if (ret) {
5692 if (ret != -EIOCBQUEUED) {
5693 fail_req:
5694 io_cqring_add_event(req, ret);
5695 req_set_fail_links(req);
5696 io_double_put_req(req);
5698 } else if (req->flags & REQ_F_FORCE_ASYNC) {
5699 if (!req->io) {
5700 ret = -EAGAIN;
5701 if (io_alloc_async_ctx(req))
5702 goto fail_req;
5703 ret = io_req_defer_prep(req, sqe);
5704 if (unlikely(ret < 0))
5705 goto fail_req;
5709 * Never try inline submit of IOSQE_ASYNC is set, go straight
5710 * to async execution.
5712 req->work.flags |= IO_WQ_WORK_CONCURRENT;
5713 io_queue_async_work(req);
5714 } else {
5715 __io_queue_sqe(req, sqe);
5719 static inline void io_queue_link_head(struct io_kiocb *req)
5721 if (unlikely(req->flags & REQ_F_FAIL_LINK)) {
5722 io_cqring_add_event(req, -ECANCELED);
5723 io_double_put_req(req);
5724 } else
5725 io_queue_sqe(req, NULL);
5728 static int io_submit_sqe(struct io_kiocb *req, const struct io_uring_sqe *sqe,
5729 struct io_kiocb **link)
5731 struct io_ring_ctx *ctx = req->ctx;
5732 int ret;
5735 * If we already have a head request, queue this one for async
5736 * submittal once the head completes. If we don't have a head but
5737 * IOSQE_IO_LINK is set in the sqe, start a new head. This one will be
5738 * submitted sync once the chain is complete. If none of those
5739 * conditions are true (normal request), then just queue it.
5741 if (*link) {
5742 struct io_kiocb *head = *link;
5745 * Taking sequential execution of a link, draining both sides
5746 * of the link also fullfils IOSQE_IO_DRAIN semantics for all
5747 * requests in the link. So, it drains the head and the
5748 * next after the link request. The last one is done via
5749 * drain_next flag to persist the effect across calls.
5751 if (req->flags & REQ_F_IO_DRAIN) {
5752 head->flags |= REQ_F_IO_DRAIN;
5753 ctx->drain_next = 1;
5755 if (io_alloc_async_ctx(req))
5756 return -EAGAIN;
5758 ret = io_req_defer_prep(req, sqe);
5759 if (ret) {
5760 /* fail even hard links since we don't submit */
5761 head->flags |= REQ_F_FAIL_LINK;
5762 return ret;
5764 trace_io_uring_link(ctx, req, head);
5765 list_add_tail(&req->link_list, &head->link_list);
5767 /* last request of a link, enqueue the link */
5768 if (!(req->flags & (REQ_F_LINK | REQ_F_HARDLINK))) {
5769 io_queue_link_head(head);
5770 *link = NULL;
5772 } else {
5773 if (unlikely(ctx->drain_next)) {
5774 req->flags |= REQ_F_IO_DRAIN;
5775 ctx->drain_next = 0;
5777 if (req->flags & (REQ_F_LINK | REQ_F_HARDLINK)) {
5778 req->flags |= REQ_F_LINK_HEAD;
5779 INIT_LIST_HEAD(&req->link_list);
5781 if (io_alloc_async_ctx(req))
5782 return -EAGAIN;
5784 ret = io_req_defer_prep(req, sqe);
5785 if (ret)
5786 req->flags |= REQ_F_FAIL_LINK;
5787 *link = req;
5788 } else {
5789 io_queue_sqe(req, sqe);
5793 return 0;
5797 * Batched submission is done, ensure local IO is flushed out.
5799 static void io_submit_state_end(struct io_submit_state *state)
5801 blk_finish_plug(&state->plug);
5802 io_state_file_put(state);
5803 if (state->free_reqs)
5804 kmem_cache_free_bulk(req_cachep, state->free_reqs, state->reqs);
5808 * Start submission side cache.
5810 static void io_submit_state_start(struct io_submit_state *state,
5811 unsigned int max_ios)
5813 blk_start_plug(&state->plug);
5814 state->free_reqs = 0;
5815 state->file = NULL;
5816 state->ios_left = max_ios;
5819 static void io_commit_sqring(struct io_ring_ctx *ctx)
5821 struct io_rings *rings = ctx->rings;
5824 * Ensure any loads from the SQEs are done at this point,
5825 * since once we write the new head, the application could
5826 * write new data to them.
5828 smp_store_release(&rings->sq.head, ctx->cached_sq_head);
5832 * Fetch an sqe, if one is available. Note that sqe_ptr will point to memory
5833 * that is mapped by userspace. This means that care needs to be taken to
5834 * ensure that reads are stable, as we cannot rely on userspace always
5835 * being a good citizen. If members of the sqe are validated and then later
5836 * used, it's important that those reads are done through READ_ONCE() to
5837 * prevent a re-load down the line.
5839 static const struct io_uring_sqe *io_get_sqe(struct io_ring_ctx *ctx)
5841 u32 *sq_array = ctx->sq_array;
5842 unsigned head;
5845 * The cached sq head (or cq tail) serves two purposes:
5847 * 1) allows us to batch the cost of updating the user visible
5848 * head updates.
5849 * 2) allows the kernel side to track the head on its own, even
5850 * though the application is the one updating it.
5852 head = READ_ONCE(sq_array[ctx->cached_sq_head & ctx->sq_mask]);
5853 if (likely(head < ctx->sq_entries))
5854 return &ctx->sq_sqes[head];
5856 /* drop invalid entries */
5857 ctx->cached_sq_dropped++;
5858 WRITE_ONCE(ctx->rings->sq_dropped, ctx->cached_sq_dropped);
5859 return NULL;
5862 static inline void io_consume_sqe(struct io_ring_ctx *ctx)
5864 ctx->cached_sq_head++;
5867 #define SQE_VALID_FLAGS (IOSQE_FIXED_FILE|IOSQE_IO_DRAIN|IOSQE_IO_LINK| \
5868 IOSQE_IO_HARDLINK | IOSQE_ASYNC | \
5869 IOSQE_BUFFER_SELECT)
5871 static int io_init_req(struct io_ring_ctx *ctx, struct io_kiocb *req,
5872 const struct io_uring_sqe *sqe,
5873 struct io_submit_state *state)
5875 unsigned int sqe_flags;
5876 int id;
5879 * All io need record the previous position, if LINK vs DARIN,
5880 * it can be used to mark the position of the first IO in the
5881 * link list.
5883 req->sequence = ctx->cached_sq_head - ctx->cached_sq_dropped;
5884 req->opcode = READ_ONCE(sqe->opcode);
5885 req->user_data = READ_ONCE(sqe->user_data);
5886 req->io = NULL;
5887 req->file = NULL;
5888 req->ctx = ctx;
5889 req->flags = 0;
5890 /* one is dropped after submission, the other at completion */
5891 refcount_set(&req->refs, 2);
5892 req->task = current;
5893 req->result = 0;
5895 if (unlikely(req->opcode >= IORING_OP_LAST))
5896 return -EINVAL;
5898 if (unlikely(io_sq_thread_acquire_mm(ctx, req)))
5899 return -EFAULT;
5901 sqe_flags = READ_ONCE(sqe->flags);
5902 /* enforce forwards compatibility on users */
5903 if (unlikely(sqe_flags & ~SQE_VALID_FLAGS))
5904 return -EINVAL;
5906 if ((sqe_flags & IOSQE_BUFFER_SELECT) &&
5907 !io_op_defs[req->opcode].buffer_select)
5908 return -EOPNOTSUPP;
5910 id = READ_ONCE(sqe->personality);
5911 if (id) {
5912 io_req_init_async(req);
5913 req->work.creds = idr_find(&ctx->personality_idr, id);
5914 if (unlikely(!req->work.creds))
5915 return -EINVAL;
5916 get_cred(req->work.creds);
5919 /* same numerical values with corresponding REQ_F_*, safe to copy */
5920 req->flags |= sqe_flags;
5922 if (!io_op_defs[req->opcode].needs_file)
5923 return 0;
5925 return io_req_set_file(state, req, READ_ONCE(sqe->fd));
5928 static int io_submit_sqes(struct io_ring_ctx *ctx, unsigned int nr,
5929 struct file *ring_file, int ring_fd)
5931 struct io_submit_state state, *statep = NULL;
5932 struct io_kiocb *link = NULL;
5933 int i, submitted = 0;
5935 /* if we have a backlog and couldn't flush it all, return BUSY */
5936 if (test_bit(0, &ctx->sq_check_overflow)) {
5937 if (!list_empty(&ctx->cq_overflow_list) &&
5938 !io_cqring_overflow_flush(ctx, false))
5939 return -EBUSY;
5942 /* make sure SQ entry isn't read before tail */
5943 nr = min3(nr, ctx->sq_entries, io_sqring_entries(ctx));
5945 if (!percpu_ref_tryget_many(&ctx->refs, nr))
5946 return -EAGAIN;
5948 if (nr > IO_PLUG_THRESHOLD) {
5949 io_submit_state_start(&state, nr);
5950 statep = &state;
5953 ctx->ring_fd = ring_fd;
5954 ctx->ring_file = ring_file;
5956 for (i = 0; i < nr; i++) {
5957 const struct io_uring_sqe *sqe;
5958 struct io_kiocb *req;
5959 int err;
5961 sqe = io_get_sqe(ctx);
5962 if (unlikely(!sqe)) {
5963 io_consume_sqe(ctx);
5964 break;
5966 req = io_alloc_req(ctx, statep);
5967 if (unlikely(!req)) {
5968 if (!submitted)
5969 submitted = -EAGAIN;
5970 break;
5973 err = io_init_req(ctx, req, sqe, statep);
5974 io_consume_sqe(ctx);
5975 /* will complete beyond this point, count as submitted */
5976 submitted++;
5978 if (unlikely(err)) {
5979 fail_req:
5980 io_cqring_add_event(req, err);
5981 io_double_put_req(req);
5982 break;
5985 trace_io_uring_submit_sqe(ctx, req->opcode, req->user_data,
5986 true, io_async_submit(ctx));
5987 err = io_submit_sqe(req, sqe, &link);
5988 if (err)
5989 goto fail_req;
5992 if (unlikely(submitted != nr)) {
5993 int ref_used = (submitted == -EAGAIN) ? 0 : submitted;
5995 percpu_ref_put_many(&ctx->refs, nr - ref_used);
5997 if (link)
5998 io_queue_link_head(link);
5999 if (statep)
6000 io_submit_state_end(&state);
6002 /* Commit SQ ring head once we've consumed and submitted all SQEs */
6003 io_commit_sqring(ctx);
6005 return submitted;
6008 static int io_sq_thread(void *data)
6010 struct io_ring_ctx *ctx = data;
6011 const struct cred *old_cred;
6012 DEFINE_WAIT(wait);
6013 unsigned long timeout;
6014 int ret = 0;
6016 complete(&ctx->sq_thread_comp);
6018 old_cred = override_creds(ctx->creds);
6020 timeout = jiffies + ctx->sq_thread_idle;
6021 while (!kthread_should_park()) {
6022 unsigned int to_submit;
6024 if (!list_empty(&ctx->poll_list)) {
6025 unsigned nr_events = 0;
6027 mutex_lock(&ctx->uring_lock);
6028 if (!list_empty(&ctx->poll_list))
6029 io_iopoll_getevents(ctx, &nr_events, 0);
6030 else
6031 timeout = jiffies + ctx->sq_thread_idle;
6032 mutex_unlock(&ctx->uring_lock);
6035 to_submit = io_sqring_entries(ctx);
6038 * If submit got -EBUSY, flag us as needing the application
6039 * to enter the kernel to reap and flush events.
6041 if (!to_submit || ret == -EBUSY || need_resched()) {
6043 * Drop cur_mm before scheduling, we can't hold it for
6044 * long periods (or over schedule()). Do this before
6045 * adding ourselves to the waitqueue, as the unuse/drop
6046 * may sleep.
6048 io_sq_thread_drop_mm(ctx);
6051 * We're polling. If we're within the defined idle
6052 * period, then let us spin without work before going
6053 * to sleep. The exception is if we got EBUSY doing
6054 * more IO, we should wait for the application to
6055 * reap events and wake us up.
6057 if (!list_empty(&ctx->poll_list) || need_resched() ||
6058 (!time_after(jiffies, timeout) && ret != -EBUSY &&
6059 !percpu_ref_is_dying(&ctx->refs))) {
6060 if (current->task_works)
6061 task_work_run();
6062 cond_resched();
6063 continue;
6066 prepare_to_wait(&ctx->sqo_wait, &wait,
6067 TASK_INTERRUPTIBLE);
6070 * While doing polled IO, before going to sleep, we need
6071 * to check if there are new reqs added to poll_list, it
6072 * is because reqs may have been punted to io worker and
6073 * will be added to poll_list later, hence check the
6074 * poll_list again.
6076 if ((ctx->flags & IORING_SETUP_IOPOLL) &&
6077 !list_empty_careful(&ctx->poll_list)) {
6078 finish_wait(&ctx->sqo_wait, &wait);
6079 continue;
6082 /* Tell userspace we may need a wakeup call */
6083 ctx->rings->sq_flags |= IORING_SQ_NEED_WAKEUP;
6084 /* make sure to read SQ tail after writing flags */
6085 smp_mb();
6087 to_submit = io_sqring_entries(ctx);
6088 if (!to_submit || ret == -EBUSY) {
6089 if (kthread_should_park()) {
6090 finish_wait(&ctx->sqo_wait, &wait);
6091 break;
6093 if (current->task_works) {
6094 task_work_run();
6095 finish_wait(&ctx->sqo_wait, &wait);
6096 continue;
6098 if (signal_pending(current))
6099 flush_signals(current);
6100 schedule();
6101 finish_wait(&ctx->sqo_wait, &wait);
6103 ctx->rings->sq_flags &= ~IORING_SQ_NEED_WAKEUP;
6104 ret = 0;
6105 continue;
6107 finish_wait(&ctx->sqo_wait, &wait);
6109 ctx->rings->sq_flags &= ~IORING_SQ_NEED_WAKEUP;
6112 mutex_lock(&ctx->uring_lock);
6113 if (likely(!percpu_ref_is_dying(&ctx->refs)))
6114 ret = io_submit_sqes(ctx, to_submit, NULL, -1);
6115 mutex_unlock(&ctx->uring_lock);
6116 timeout = jiffies + ctx->sq_thread_idle;
6119 if (current->task_works)
6120 task_work_run();
6122 io_sq_thread_drop_mm(ctx);
6123 revert_creds(old_cred);
6125 kthread_parkme();
6127 return 0;
6130 struct io_wait_queue {
6131 struct wait_queue_entry wq;
6132 struct io_ring_ctx *ctx;
6133 unsigned to_wait;
6134 unsigned nr_timeouts;
6137 static inline bool io_should_wake(struct io_wait_queue *iowq, bool noflush)
6139 struct io_ring_ctx *ctx = iowq->ctx;
6142 * Wake up if we have enough events, or if a timeout occurred since we
6143 * started waiting. For timeouts, we always want to return to userspace,
6144 * regardless of event count.
6146 return io_cqring_events(ctx, noflush) >= iowq->to_wait ||
6147 atomic_read(&ctx->cq_timeouts) != iowq->nr_timeouts;
6150 static int io_wake_function(struct wait_queue_entry *curr, unsigned int mode,
6151 int wake_flags, void *key)
6153 struct io_wait_queue *iowq = container_of(curr, struct io_wait_queue,
6154 wq);
6156 /* use noflush == true, as we can't safely rely on locking context */
6157 if (!io_should_wake(iowq, true))
6158 return -1;
6160 return autoremove_wake_function(curr, mode, wake_flags, key);
6164 * Wait until events become available, if we don't already have some. The
6165 * application must reap them itself, as they reside on the shared cq ring.
6167 static int io_cqring_wait(struct io_ring_ctx *ctx, int min_events,
6168 const sigset_t __user *sig, size_t sigsz)
6170 struct io_wait_queue iowq = {
6171 .wq = {
6172 .private = current,
6173 .func = io_wake_function,
6174 .entry = LIST_HEAD_INIT(iowq.wq.entry),
6176 .ctx = ctx,
6177 .to_wait = min_events,
6179 struct io_rings *rings = ctx->rings;
6180 int ret = 0;
6182 do {
6183 if (io_cqring_events(ctx, false) >= min_events)
6184 return 0;
6185 if (!current->task_works)
6186 break;
6187 task_work_run();
6188 } while (1);
6190 if (sig) {
6191 #ifdef CONFIG_COMPAT
6192 if (in_compat_syscall())
6193 ret = set_compat_user_sigmask((const compat_sigset_t __user *)sig,
6194 sigsz);
6195 else
6196 #endif
6197 ret = set_user_sigmask(sig, sigsz);
6199 if (ret)
6200 return ret;
6203 iowq.nr_timeouts = atomic_read(&ctx->cq_timeouts);
6204 trace_io_uring_cqring_wait(ctx, min_events);
6205 do {
6206 prepare_to_wait_exclusive(&ctx->wait, &iowq.wq,
6207 TASK_INTERRUPTIBLE);
6208 /* make sure we run task_work before checking for signals */
6209 if (current->task_works)
6210 task_work_run();
6211 if (signal_pending(current)) {
6212 if (current->jobctl & JOBCTL_TASK_WORK) {
6213 spin_lock_irq(&current->sighand->siglock);
6214 current->jobctl &= ~JOBCTL_TASK_WORK;
6215 recalc_sigpending();
6216 spin_unlock_irq(&current->sighand->siglock);
6217 continue;
6219 ret = -EINTR;
6220 break;
6222 if (io_should_wake(&iowq, false))
6223 break;
6224 schedule();
6225 } while (1);
6226 finish_wait(&ctx->wait, &iowq.wq);
6228 restore_saved_sigmask_unless(ret == -EINTR);
6230 return READ_ONCE(rings->cq.head) == READ_ONCE(rings->cq.tail) ? ret : 0;
6233 static void __io_sqe_files_unregister(struct io_ring_ctx *ctx)
6235 #if defined(CONFIG_UNIX)
6236 if (ctx->ring_sock) {
6237 struct sock *sock = ctx->ring_sock->sk;
6238 struct sk_buff *skb;
6240 while ((skb = skb_dequeue(&sock->sk_receive_queue)) != NULL)
6241 kfree_skb(skb);
6243 #else
6244 int i;
6246 for (i = 0; i < ctx->nr_user_files; i++) {
6247 struct file *file;
6249 file = io_file_from_index(ctx, i);
6250 if (file)
6251 fput(file);
6253 #endif
6256 static void io_file_ref_kill(struct percpu_ref *ref)
6258 struct fixed_file_data *data;
6260 data = container_of(ref, struct fixed_file_data, refs);
6261 complete(&data->done);
6264 static int io_sqe_files_unregister(struct io_ring_ctx *ctx)
6266 struct fixed_file_data *data = ctx->file_data;
6267 struct fixed_file_ref_node *ref_node = NULL;
6268 unsigned nr_tables, i;
6270 if (!data)
6271 return -ENXIO;
6273 spin_lock(&data->lock);
6274 if (!list_empty(&data->ref_list))
6275 ref_node = list_first_entry(&data->ref_list,
6276 struct fixed_file_ref_node, node);
6277 spin_unlock(&data->lock);
6278 if (ref_node)
6279 percpu_ref_kill(&ref_node->refs);
6281 percpu_ref_kill(&data->refs);
6283 /* wait for all refs nodes to complete */
6284 flush_delayed_work(&ctx->file_put_work);
6285 wait_for_completion(&data->done);
6287 __io_sqe_files_unregister(ctx);
6288 nr_tables = DIV_ROUND_UP(ctx->nr_user_files, IORING_MAX_FILES_TABLE);
6289 for (i = 0; i < nr_tables; i++)
6290 kfree(data->table[i].files);
6291 kfree(data->table);
6292 percpu_ref_exit(&data->refs);
6293 kfree(data);
6294 ctx->file_data = NULL;
6295 ctx->nr_user_files = 0;
6296 return 0;
6299 static void io_sq_thread_stop(struct io_ring_ctx *ctx)
6301 if (ctx->sqo_thread) {
6302 wait_for_completion(&ctx->sq_thread_comp);
6304 * The park is a bit of a work-around, without it we get
6305 * warning spews on shutdown with SQPOLL set and affinity
6306 * set to a single CPU.
6308 kthread_park(ctx->sqo_thread);
6309 kthread_stop(ctx->sqo_thread);
6310 ctx->sqo_thread = NULL;
6314 static void io_finish_async(struct io_ring_ctx *ctx)
6316 io_sq_thread_stop(ctx);
6318 if (ctx->io_wq) {
6319 io_wq_destroy(ctx->io_wq);
6320 ctx->io_wq = NULL;
6324 #if defined(CONFIG_UNIX)
6326 * Ensure the UNIX gc is aware of our file set, so we are certain that
6327 * the io_uring can be safely unregistered on process exit, even if we have
6328 * loops in the file referencing.
6330 static int __io_sqe_files_scm(struct io_ring_ctx *ctx, int nr, int offset)
6332 struct sock *sk = ctx->ring_sock->sk;
6333 struct scm_fp_list *fpl;
6334 struct sk_buff *skb;
6335 int i, nr_files;
6337 fpl = kzalloc(sizeof(*fpl), GFP_KERNEL);
6338 if (!fpl)
6339 return -ENOMEM;
6341 skb = alloc_skb(0, GFP_KERNEL);
6342 if (!skb) {
6343 kfree(fpl);
6344 return -ENOMEM;
6347 skb->sk = sk;
6349 nr_files = 0;
6350 fpl->user = get_uid(ctx->user);
6351 for (i = 0; i < nr; i++) {
6352 struct file *file = io_file_from_index(ctx, i + offset);
6354 if (!file)
6355 continue;
6356 fpl->fp[nr_files] = get_file(file);
6357 unix_inflight(fpl->user, fpl->fp[nr_files]);
6358 nr_files++;
6361 if (nr_files) {
6362 fpl->max = SCM_MAX_FD;
6363 fpl->count = nr_files;
6364 UNIXCB(skb).fp = fpl;
6365 skb->destructor = unix_destruct_scm;
6366 refcount_add(skb->truesize, &sk->sk_wmem_alloc);
6367 skb_queue_head(&sk->sk_receive_queue, skb);
6369 for (i = 0; i < nr_files; i++)
6370 fput(fpl->fp[i]);
6371 } else {
6372 kfree_skb(skb);
6373 kfree(fpl);
6376 return 0;
6380 * If UNIX sockets are enabled, fd passing can cause a reference cycle which
6381 * causes regular reference counting to break down. We rely on the UNIX
6382 * garbage collection to take care of this problem for us.
6384 static int io_sqe_files_scm(struct io_ring_ctx *ctx)
6386 unsigned left, total;
6387 int ret = 0;
6389 total = 0;
6390 left = ctx->nr_user_files;
6391 while (left) {
6392 unsigned this_files = min_t(unsigned, left, SCM_MAX_FD);
6394 ret = __io_sqe_files_scm(ctx, this_files, total);
6395 if (ret)
6396 break;
6397 left -= this_files;
6398 total += this_files;
6401 if (!ret)
6402 return 0;
6404 while (total < ctx->nr_user_files) {
6405 struct file *file = io_file_from_index(ctx, total);
6407 if (file)
6408 fput(file);
6409 total++;
6412 return ret;
6414 #else
6415 static int io_sqe_files_scm(struct io_ring_ctx *ctx)
6417 return 0;
6419 #endif
6421 static int io_sqe_alloc_file_tables(struct io_ring_ctx *ctx, unsigned nr_tables,
6422 unsigned nr_files)
6424 int i;
6426 for (i = 0; i < nr_tables; i++) {
6427 struct fixed_file_table *table = &ctx->file_data->table[i];
6428 unsigned this_files;
6430 this_files = min(nr_files, IORING_MAX_FILES_TABLE);
6431 table->files = kcalloc(this_files, sizeof(struct file *),
6432 GFP_KERNEL);
6433 if (!table->files)
6434 break;
6435 nr_files -= this_files;
6438 if (i == nr_tables)
6439 return 0;
6441 for (i = 0; i < nr_tables; i++) {
6442 struct fixed_file_table *table = &ctx->file_data->table[i];
6443 kfree(table->files);
6445 return 1;
6448 static void io_ring_file_put(struct io_ring_ctx *ctx, struct file *file)
6450 #if defined(CONFIG_UNIX)
6451 struct sock *sock = ctx->ring_sock->sk;
6452 struct sk_buff_head list, *head = &sock->sk_receive_queue;
6453 struct sk_buff *skb;
6454 int i;
6456 __skb_queue_head_init(&list);
6459 * Find the skb that holds this file in its SCM_RIGHTS. When found,
6460 * remove this entry and rearrange the file array.
6462 skb = skb_dequeue(head);
6463 while (skb) {
6464 struct scm_fp_list *fp;
6466 fp = UNIXCB(skb).fp;
6467 for (i = 0; i < fp->count; i++) {
6468 int left;
6470 if (fp->fp[i] != file)
6471 continue;
6473 unix_notinflight(fp->user, fp->fp[i]);
6474 left = fp->count - 1 - i;
6475 if (left) {
6476 memmove(&fp->fp[i], &fp->fp[i + 1],
6477 left * sizeof(struct file *));
6479 fp->count--;
6480 if (!fp->count) {
6481 kfree_skb(skb);
6482 skb = NULL;
6483 } else {
6484 __skb_queue_tail(&list, skb);
6486 fput(file);
6487 file = NULL;
6488 break;
6491 if (!file)
6492 break;
6494 __skb_queue_tail(&list, skb);
6496 skb = skb_dequeue(head);
6499 if (skb_peek(&list)) {
6500 spin_lock_irq(&head->lock);
6501 while ((skb = __skb_dequeue(&list)) != NULL)
6502 __skb_queue_tail(head, skb);
6503 spin_unlock_irq(&head->lock);
6505 #else
6506 fput(file);
6507 #endif
6510 struct io_file_put {
6511 struct list_head list;
6512 struct file *file;
6515 static void __io_file_put_work(struct fixed_file_ref_node *ref_node)
6517 struct fixed_file_data *file_data = ref_node->file_data;
6518 struct io_ring_ctx *ctx = file_data->ctx;
6519 struct io_file_put *pfile, *tmp;
6521 list_for_each_entry_safe(pfile, tmp, &ref_node->file_list, list) {
6522 list_del(&pfile->list);
6523 io_ring_file_put(ctx, pfile->file);
6524 kfree(pfile);
6527 spin_lock(&file_data->lock);
6528 list_del(&ref_node->node);
6529 spin_unlock(&file_data->lock);
6531 percpu_ref_exit(&ref_node->refs);
6532 kfree(ref_node);
6533 percpu_ref_put(&file_data->refs);
6536 static void io_file_put_work(struct work_struct *work)
6538 struct io_ring_ctx *ctx;
6539 struct llist_node *node;
6541 ctx = container_of(work, struct io_ring_ctx, file_put_work.work);
6542 node = llist_del_all(&ctx->file_put_llist);
6544 while (node) {
6545 struct fixed_file_ref_node *ref_node;
6546 struct llist_node *next = node->next;
6548 ref_node = llist_entry(node, struct fixed_file_ref_node, llist);
6549 __io_file_put_work(ref_node);
6550 node = next;
6554 static void io_file_data_ref_zero(struct percpu_ref *ref)
6556 struct fixed_file_ref_node *ref_node;
6557 struct io_ring_ctx *ctx;
6558 bool first_add;
6559 int delay = HZ;
6561 ref_node = container_of(ref, struct fixed_file_ref_node, refs);
6562 ctx = ref_node->file_data->ctx;
6564 if (percpu_ref_is_dying(&ctx->file_data->refs))
6565 delay = 0;
6567 first_add = llist_add(&ref_node->llist, &ctx->file_put_llist);
6568 if (!delay)
6569 mod_delayed_work(system_wq, &ctx->file_put_work, 0);
6570 else if (first_add)
6571 queue_delayed_work(system_wq, &ctx->file_put_work, delay);
6574 static struct fixed_file_ref_node *alloc_fixed_file_ref_node(
6575 struct io_ring_ctx *ctx)
6577 struct fixed_file_ref_node *ref_node;
6579 ref_node = kzalloc(sizeof(*ref_node), GFP_KERNEL);
6580 if (!ref_node)
6581 return ERR_PTR(-ENOMEM);
6583 if (percpu_ref_init(&ref_node->refs, io_file_data_ref_zero,
6584 0, GFP_KERNEL)) {
6585 kfree(ref_node);
6586 return ERR_PTR(-ENOMEM);
6588 INIT_LIST_HEAD(&ref_node->node);
6589 INIT_LIST_HEAD(&ref_node->file_list);
6590 ref_node->file_data = ctx->file_data;
6591 return ref_node;
6594 static void destroy_fixed_file_ref_node(struct fixed_file_ref_node *ref_node)
6596 percpu_ref_exit(&ref_node->refs);
6597 kfree(ref_node);
6600 static int io_sqe_files_register(struct io_ring_ctx *ctx, void __user *arg,
6601 unsigned nr_args)
6603 __s32 __user *fds = (__s32 __user *) arg;
6604 unsigned nr_tables;
6605 struct file *file;
6606 int fd, ret = 0;
6607 unsigned i;
6608 struct fixed_file_ref_node *ref_node;
6610 if (ctx->file_data)
6611 return -EBUSY;
6612 if (!nr_args)
6613 return -EINVAL;
6614 if (nr_args > IORING_MAX_FIXED_FILES)
6615 return -EMFILE;
6617 ctx->file_data = kzalloc(sizeof(*ctx->file_data), GFP_KERNEL);
6618 if (!ctx->file_data)
6619 return -ENOMEM;
6620 ctx->file_data->ctx = ctx;
6621 init_completion(&ctx->file_data->done);
6622 INIT_LIST_HEAD(&ctx->file_data->ref_list);
6623 spin_lock_init(&ctx->file_data->lock);
6625 nr_tables = DIV_ROUND_UP(nr_args, IORING_MAX_FILES_TABLE);
6626 ctx->file_data->table = kcalloc(nr_tables,
6627 sizeof(struct fixed_file_table),
6628 GFP_KERNEL);
6629 if (!ctx->file_data->table) {
6630 kfree(ctx->file_data);
6631 ctx->file_data = NULL;
6632 return -ENOMEM;
6635 if (percpu_ref_init(&ctx->file_data->refs, io_file_ref_kill,
6636 PERCPU_REF_ALLOW_REINIT, GFP_KERNEL)) {
6637 kfree(ctx->file_data->table);
6638 kfree(ctx->file_data);
6639 ctx->file_data = NULL;
6640 return -ENOMEM;
6643 if (io_sqe_alloc_file_tables(ctx, nr_tables, nr_args)) {
6644 percpu_ref_exit(&ctx->file_data->refs);
6645 kfree(ctx->file_data->table);
6646 kfree(ctx->file_data);
6647 ctx->file_data = NULL;
6648 return -ENOMEM;
6651 for (i = 0; i < nr_args; i++, ctx->nr_user_files++) {
6652 struct fixed_file_table *table;
6653 unsigned index;
6655 ret = -EFAULT;
6656 if (copy_from_user(&fd, &fds[i], sizeof(fd)))
6657 break;
6658 /* allow sparse sets */
6659 if (fd == -1) {
6660 ret = 0;
6661 continue;
6664 table = &ctx->file_data->table[i >> IORING_FILE_TABLE_SHIFT];
6665 index = i & IORING_FILE_TABLE_MASK;
6666 file = fget(fd);
6668 ret = -EBADF;
6669 if (!file)
6670 break;
6673 * Don't allow io_uring instances to be registered. If UNIX
6674 * isn't enabled, then this causes a reference cycle and this
6675 * instance can never get freed. If UNIX is enabled we'll
6676 * handle it just fine, but there's still no point in allowing
6677 * a ring fd as it doesn't support regular read/write anyway.
6679 if (file->f_op == &io_uring_fops) {
6680 fput(file);
6681 break;
6683 ret = 0;
6684 table->files[index] = file;
6687 if (ret) {
6688 for (i = 0; i < ctx->nr_user_files; i++) {
6689 file = io_file_from_index(ctx, i);
6690 if (file)
6691 fput(file);
6693 for (i = 0; i < nr_tables; i++)
6694 kfree(ctx->file_data->table[i].files);
6696 kfree(ctx->file_data->table);
6697 kfree(ctx->file_data);
6698 ctx->file_data = NULL;
6699 ctx->nr_user_files = 0;
6700 return ret;
6703 ret = io_sqe_files_scm(ctx);
6704 if (ret) {
6705 io_sqe_files_unregister(ctx);
6706 return ret;
6709 ref_node = alloc_fixed_file_ref_node(ctx);
6710 if (IS_ERR(ref_node)) {
6711 io_sqe_files_unregister(ctx);
6712 return PTR_ERR(ref_node);
6715 ctx->file_data->cur_refs = &ref_node->refs;
6716 spin_lock(&ctx->file_data->lock);
6717 list_add(&ref_node->node, &ctx->file_data->ref_list);
6718 spin_unlock(&ctx->file_data->lock);
6719 percpu_ref_get(&ctx->file_data->refs);
6720 return ret;
6723 static int io_sqe_file_register(struct io_ring_ctx *ctx, struct file *file,
6724 int index)
6726 #if defined(CONFIG_UNIX)
6727 struct sock *sock = ctx->ring_sock->sk;
6728 struct sk_buff_head *head = &sock->sk_receive_queue;
6729 struct sk_buff *skb;
6732 * See if we can merge this file into an existing skb SCM_RIGHTS
6733 * file set. If there's no room, fall back to allocating a new skb
6734 * and filling it in.
6736 spin_lock_irq(&head->lock);
6737 skb = skb_peek(head);
6738 if (skb) {
6739 struct scm_fp_list *fpl = UNIXCB(skb).fp;
6741 if (fpl->count < SCM_MAX_FD) {
6742 __skb_unlink(skb, head);
6743 spin_unlock_irq(&head->lock);
6744 fpl->fp[fpl->count] = get_file(file);
6745 unix_inflight(fpl->user, fpl->fp[fpl->count]);
6746 fpl->count++;
6747 spin_lock_irq(&head->lock);
6748 __skb_queue_head(head, skb);
6749 } else {
6750 skb = NULL;
6753 spin_unlock_irq(&head->lock);
6755 if (skb) {
6756 fput(file);
6757 return 0;
6760 return __io_sqe_files_scm(ctx, 1, index);
6761 #else
6762 return 0;
6763 #endif
6766 static int io_queue_file_removal(struct fixed_file_data *data,
6767 struct file *file)
6769 struct io_file_put *pfile;
6770 struct percpu_ref *refs = data->cur_refs;
6771 struct fixed_file_ref_node *ref_node;
6773 pfile = kzalloc(sizeof(*pfile), GFP_KERNEL);
6774 if (!pfile)
6775 return -ENOMEM;
6777 ref_node = container_of(refs, struct fixed_file_ref_node, refs);
6778 pfile->file = file;
6779 list_add(&pfile->list, &ref_node->file_list);
6781 return 0;
6784 static int __io_sqe_files_update(struct io_ring_ctx *ctx,
6785 struct io_uring_files_update *up,
6786 unsigned nr_args)
6788 struct fixed_file_data *data = ctx->file_data;
6789 struct fixed_file_ref_node *ref_node;
6790 struct file *file;
6791 __s32 __user *fds;
6792 int fd, i, err;
6793 __u32 done;
6794 bool needs_switch = false;
6796 if (check_add_overflow(up->offset, nr_args, &done))
6797 return -EOVERFLOW;
6798 if (done > ctx->nr_user_files)
6799 return -EINVAL;
6801 ref_node = alloc_fixed_file_ref_node(ctx);
6802 if (IS_ERR(ref_node))
6803 return PTR_ERR(ref_node);
6805 done = 0;
6806 fds = u64_to_user_ptr(up->fds);
6807 while (nr_args) {
6808 struct fixed_file_table *table;
6809 unsigned index;
6811 err = 0;
6812 if (copy_from_user(&fd, &fds[done], sizeof(fd))) {
6813 err = -EFAULT;
6814 break;
6816 i = array_index_nospec(up->offset, ctx->nr_user_files);
6817 table = &ctx->file_data->table[i >> IORING_FILE_TABLE_SHIFT];
6818 index = i & IORING_FILE_TABLE_MASK;
6819 if (table->files[index]) {
6820 file = io_file_from_index(ctx, index);
6821 err = io_queue_file_removal(data, file);
6822 if (err)
6823 break;
6824 table->files[index] = NULL;
6825 needs_switch = true;
6827 if (fd != -1) {
6828 file = fget(fd);
6829 if (!file) {
6830 err = -EBADF;
6831 break;
6834 * Don't allow io_uring instances to be registered. If
6835 * UNIX isn't enabled, then this causes a reference
6836 * cycle and this instance can never get freed. If UNIX
6837 * is enabled we'll handle it just fine, but there's
6838 * still no point in allowing a ring fd as it doesn't
6839 * support regular read/write anyway.
6841 if (file->f_op == &io_uring_fops) {
6842 fput(file);
6843 err = -EBADF;
6844 break;
6846 table->files[index] = file;
6847 err = io_sqe_file_register(ctx, file, i);
6848 if (err)
6849 break;
6851 nr_args--;
6852 done++;
6853 up->offset++;
6856 if (needs_switch) {
6857 percpu_ref_kill(data->cur_refs);
6858 spin_lock(&data->lock);
6859 list_add(&ref_node->node, &data->ref_list);
6860 data->cur_refs = &ref_node->refs;
6861 spin_unlock(&data->lock);
6862 percpu_ref_get(&ctx->file_data->refs);
6863 } else
6864 destroy_fixed_file_ref_node(ref_node);
6866 return done ? done : err;
6869 static int io_sqe_files_update(struct io_ring_ctx *ctx, void __user *arg,
6870 unsigned nr_args)
6872 struct io_uring_files_update up;
6874 if (!ctx->file_data)
6875 return -ENXIO;
6876 if (!nr_args)
6877 return -EINVAL;
6878 if (copy_from_user(&up, arg, sizeof(up)))
6879 return -EFAULT;
6880 if (up.resv)
6881 return -EINVAL;
6883 return __io_sqe_files_update(ctx, &up, nr_args);
6886 static void io_free_work(struct io_wq_work *work)
6888 struct io_kiocb *req = container_of(work, struct io_kiocb, work);
6890 /* Consider that io_steal_work() relies on this ref */
6891 io_put_req(req);
6894 static int io_init_wq_offload(struct io_ring_ctx *ctx,
6895 struct io_uring_params *p)
6897 struct io_wq_data data;
6898 struct fd f;
6899 struct io_ring_ctx *ctx_attach;
6900 unsigned int concurrency;
6901 int ret = 0;
6903 data.user = ctx->user;
6904 data.free_work = io_free_work;
6905 data.do_work = io_wq_submit_work;
6907 if (!(p->flags & IORING_SETUP_ATTACH_WQ)) {
6908 /* Do QD, or 4 * CPUS, whatever is smallest */
6909 concurrency = min(ctx->sq_entries, 4 * num_online_cpus());
6911 ctx->io_wq = io_wq_create(concurrency, &data);
6912 if (IS_ERR(ctx->io_wq)) {
6913 ret = PTR_ERR(ctx->io_wq);
6914 ctx->io_wq = NULL;
6916 return ret;
6919 f = fdget(p->wq_fd);
6920 if (!f.file)
6921 return -EBADF;
6923 if (f.file->f_op != &io_uring_fops) {
6924 ret = -EINVAL;
6925 goto out_fput;
6928 ctx_attach = f.file->private_data;
6929 /* @io_wq is protected by holding the fd */
6930 if (!io_wq_get(ctx_attach->io_wq, &data)) {
6931 ret = -EINVAL;
6932 goto out_fput;
6935 ctx->io_wq = ctx_attach->io_wq;
6936 out_fput:
6937 fdput(f);
6938 return ret;
6941 static int io_sq_offload_start(struct io_ring_ctx *ctx,
6942 struct io_uring_params *p)
6944 int ret;
6946 mmgrab(current->mm);
6947 ctx->sqo_mm = current->mm;
6949 if (ctx->flags & IORING_SETUP_SQPOLL) {
6950 ret = -EPERM;
6951 if (!capable(CAP_SYS_ADMIN))
6952 goto err;
6954 ctx->sq_thread_idle = msecs_to_jiffies(p->sq_thread_idle);
6955 if (!ctx->sq_thread_idle)
6956 ctx->sq_thread_idle = HZ;
6958 if (p->flags & IORING_SETUP_SQ_AFF) {
6959 int cpu = p->sq_thread_cpu;
6961 ret = -EINVAL;
6962 if (cpu >= nr_cpu_ids)
6963 goto err;
6964 if (!cpu_online(cpu))
6965 goto err;
6967 ctx->sqo_thread = kthread_create_on_cpu(io_sq_thread,
6968 ctx, cpu,
6969 "io_uring-sq");
6970 } else {
6971 ctx->sqo_thread = kthread_create(io_sq_thread, ctx,
6972 "io_uring-sq");
6974 if (IS_ERR(ctx->sqo_thread)) {
6975 ret = PTR_ERR(ctx->sqo_thread);
6976 ctx->sqo_thread = NULL;
6977 goto err;
6979 wake_up_process(ctx->sqo_thread);
6980 } else if (p->flags & IORING_SETUP_SQ_AFF) {
6981 /* Can't have SQ_AFF without SQPOLL */
6982 ret = -EINVAL;
6983 goto err;
6986 ret = io_init_wq_offload(ctx, p);
6987 if (ret)
6988 goto err;
6990 return 0;
6991 err:
6992 io_finish_async(ctx);
6993 mmdrop(ctx->sqo_mm);
6994 ctx->sqo_mm = NULL;
6995 return ret;
6998 static void io_unaccount_mem(struct user_struct *user, unsigned long nr_pages)
7000 atomic_long_sub(nr_pages, &user->locked_vm);
7003 static int io_account_mem(struct user_struct *user, unsigned long nr_pages)
7005 unsigned long page_limit, cur_pages, new_pages;
7007 /* Don't allow more pages than we can safely lock */
7008 page_limit = rlimit(RLIMIT_MEMLOCK) >> PAGE_SHIFT;
7010 do {
7011 cur_pages = atomic_long_read(&user->locked_vm);
7012 new_pages = cur_pages + nr_pages;
7013 if (new_pages > page_limit)
7014 return -ENOMEM;
7015 } while (atomic_long_cmpxchg(&user->locked_vm, cur_pages,
7016 new_pages) != cur_pages);
7018 return 0;
7021 static void io_mem_free(void *ptr)
7023 struct page *page;
7025 if (!ptr)
7026 return;
7028 page = virt_to_head_page(ptr);
7029 if (put_page_testzero(page))
7030 free_compound_page(page);
7033 static void *io_mem_alloc(size_t size)
7035 gfp_t gfp_flags = GFP_KERNEL | __GFP_ZERO | __GFP_NOWARN | __GFP_COMP |
7036 __GFP_NORETRY;
7038 return (void *) __get_free_pages(gfp_flags, get_order(size));
7041 static unsigned long rings_size(unsigned sq_entries, unsigned cq_entries,
7042 size_t *sq_offset)
7044 struct io_rings *rings;
7045 size_t off, sq_array_size;
7047 off = struct_size(rings, cqes, cq_entries);
7048 if (off == SIZE_MAX)
7049 return SIZE_MAX;
7051 #ifdef CONFIG_SMP
7052 off = ALIGN(off, SMP_CACHE_BYTES);
7053 if (off == 0)
7054 return SIZE_MAX;
7055 #endif
7057 sq_array_size = array_size(sizeof(u32), sq_entries);
7058 if (sq_array_size == SIZE_MAX)
7059 return SIZE_MAX;
7061 if (check_add_overflow(off, sq_array_size, &off))
7062 return SIZE_MAX;
7064 if (sq_offset)
7065 *sq_offset = off;
7067 return off;
7070 static unsigned long ring_pages(unsigned sq_entries, unsigned cq_entries)
7072 size_t pages;
7074 pages = (size_t)1 << get_order(
7075 rings_size(sq_entries, cq_entries, NULL));
7076 pages += (size_t)1 << get_order(
7077 array_size(sizeof(struct io_uring_sqe), sq_entries));
7079 return pages;
7082 static int io_sqe_buffer_unregister(struct io_ring_ctx *ctx)
7084 int i, j;
7086 if (!ctx->user_bufs)
7087 return -ENXIO;
7089 for (i = 0; i < ctx->nr_user_bufs; i++) {
7090 struct io_mapped_ubuf *imu = &ctx->user_bufs[i];
7092 for (j = 0; j < imu->nr_bvecs; j++)
7093 unpin_user_page(imu->bvec[j].bv_page);
7095 if (ctx->account_mem)
7096 io_unaccount_mem(ctx->user, imu->nr_bvecs);
7097 kvfree(imu->bvec);
7098 imu->nr_bvecs = 0;
7101 kfree(ctx->user_bufs);
7102 ctx->user_bufs = NULL;
7103 ctx->nr_user_bufs = 0;
7104 return 0;
7107 static int io_copy_iov(struct io_ring_ctx *ctx, struct iovec *dst,
7108 void __user *arg, unsigned index)
7110 struct iovec __user *src;
7112 #ifdef CONFIG_COMPAT
7113 if (ctx->compat) {
7114 struct compat_iovec __user *ciovs;
7115 struct compat_iovec ciov;
7117 ciovs = (struct compat_iovec __user *) arg;
7118 if (copy_from_user(&ciov, &ciovs[index], sizeof(ciov)))
7119 return -EFAULT;
7121 dst->iov_base = u64_to_user_ptr((u64)ciov.iov_base);
7122 dst->iov_len = ciov.iov_len;
7123 return 0;
7125 #endif
7126 src = (struct iovec __user *) arg;
7127 if (copy_from_user(dst, &src[index], sizeof(*dst)))
7128 return -EFAULT;
7129 return 0;
7132 static int io_sqe_buffer_register(struct io_ring_ctx *ctx, void __user *arg,
7133 unsigned nr_args)
7135 struct vm_area_struct **vmas = NULL;
7136 struct page **pages = NULL;
7137 int i, j, got_pages = 0;
7138 int ret = -EINVAL;
7140 if (ctx->user_bufs)
7141 return -EBUSY;
7142 if (!nr_args || nr_args > UIO_MAXIOV)
7143 return -EINVAL;
7145 ctx->user_bufs = kcalloc(nr_args, sizeof(struct io_mapped_ubuf),
7146 GFP_KERNEL);
7147 if (!ctx->user_bufs)
7148 return -ENOMEM;
7150 for (i = 0; i < nr_args; i++) {
7151 struct io_mapped_ubuf *imu = &ctx->user_bufs[i];
7152 unsigned long off, start, end, ubuf;
7153 int pret, nr_pages;
7154 struct iovec iov;
7155 size_t size;
7157 ret = io_copy_iov(ctx, &iov, arg, i);
7158 if (ret)
7159 goto err;
7162 * Don't impose further limits on the size and buffer
7163 * constraints here, we'll -EINVAL later when IO is
7164 * submitted if they are wrong.
7166 ret = -EFAULT;
7167 if (!iov.iov_base || !iov.iov_len)
7168 goto err;
7170 /* arbitrary limit, but we need something */
7171 if (iov.iov_len > SZ_1G)
7172 goto err;
7174 ubuf = (unsigned long) iov.iov_base;
7175 end = (ubuf + iov.iov_len + PAGE_SIZE - 1) >> PAGE_SHIFT;
7176 start = ubuf >> PAGE_SHIFT;
7177 nr_pages = end - start;
7179 if (ctx->account_mem) {
7180 ret = io_account_mem(ctx->user, nr_pages);
7181 if (ret)
7182 goto err;
7185 ret = 0;
7186 if (!pages || nr_pages > got_pages) {
7187 kvfree(vmas);
7188 kvfree(pages);
7189 pages = kvmalloc_array(nr_pages, sizeof(struct page *),
7190 GFP_KERNEL);
7191 vmas = kvmalloc_array(nr_pages,
7192 sizeof(struct vm_area_struct *),
7193 GFP_KERNEL);
7194 if (!pages || !vmas) {
7195 ret = -ENOMEM;
7196 if (ctx->account_mem)
7197 io_unaccount_mem(ctx->user, nr_pages);
7198 goto err;
7200 got_pages = nr_pages;
7203 imu->bvec = kvmalloc_array(nr_pages, sizeof(struct bio_vec),
7204 GFP_KERNEL);
7205 ret = -ENOMEM;
7206 if (!imu->bvec) {
7207 if (ctx->account_mem)
7208 io_unaccount_mem(ctx->user, nr_pages);
7209 goto err;
7212 ret = 0;
7213 mmap_read_lock(current->mm);
7214 pret = pin_user_pages(ubuf, nr_pages,
7215 FOLL_WRITE | FOLL_LONGTERM,
7216 pages, vmas);
7217 if (pret == nr_pages) {
7218 /* don't support file backed memory */
7219 for (j = 0; j < nr_pages; j++) {
7220 struct vm_area_struct *vma = vmas[j];
7222 if (vma->vm_file &&
7223 !is_file_hugepages(vma->vm_file)) {
7224 ret = -EOPNOTSUPP;
7225 break;
7228 } else {
7229 ret = pret < 0 ? pret : -EFAULT;
7231 mmap_read_unlock(current->mm);
7232 if (ret) {
7234 * if we did partial map, or found file backed vmas,
7235 * release any pages we did get
7237 if (pret > 0)
7238 unpin_user_pages(pages, pret);
7239 if (ctx->account_mem)
7240 io_unaccount_mem(ctx->user, nr_pages);
7241 kvfree(imu->bvec);
7242 goto err;
7245 off = ubuf & ~PAGE_MASK;
7246 size = iov.iov_len;
7247 for (j = 0; j < nr_pages; j++) {
7248 size_t vec_len;
7250 vec_len = min_t(size_t, size, PAGE_SIZE - off);
7251 imu->bvec[j].bv_page = pages[j];
7252 imu->bvec[j].bv_len = vec_len;
7253 imu->bvec[j].bv_offset = off;
7254 off = 0;
7255 size -= vec_len;
7257 /* store original address for later verification */
7258 imu->ubuf = ubuf;
7259 imu->len = iov.iov_len;
7260 imu->nr_bvecs = nr_pages;
7262 ctx->nr_user_bufs++;
7264 kvfree(pages);
7265 kvfree(vmas);
7266 return 0;
7267 err:
7268 kvfree(pages);
7269 kvfree(vmas);
7270 io_sqe_buffer_unregister(ctx);
7271 return ret;
7274 static int io_eventfd_register(struct io_ring_ctx *ctx, void __user *arg)
7276 __s32 __user *fds = arg;
7277 int fd;
7279 if (ctx->cq_ev_fd)
7280 return -EBUSY;
7282 if (copy_from_user(&fd, fds, sizeof(*fds)))
7283 return -EFAULT;
7285 ctx->cq_ev_fd = eventfd_ctx_fdget(fd);
7286 if (IS_ERR(ctx->cq_ev_fd)) {
7287 int ret = PTR_ERR(ctx->cq_ev_fd);
7288 ctx->cq_ev_fd = NULL;
7289 return ret;
7292 return 0;
7295 static int io_eventfd_unregister(struct io_ring_ctx *ctx)
7297 if (ctx->cq_ev_fd) {
7298 eventfd_ctx_put(ctx->cq_ev_fd);
7299 ctx->cq_ev_fd = NULL;
7300 return 0;
7303 return -ENXIO;
7306 static int __io_destroy_buffers(int id, void *p, void *data)
7308 struct io_ring_ctx *ctx = data;
7309 struct io_buffer *buf = p;
7311 __io_remove_buffers(ctx, buf, id, -1U);
7312 return 0;
7315 static void io_destroy_buffers(struct io_ring_ctx *ctx)
7317 idr_for_each(&ctx->io_buffer_idr, __io_destroy_buffers, ctx);
7318 idr_destroy(&ctx->io_buffer_idr);
7321 static void io_ring_ctx_free(struct io_ring_ctx *ctx)
7323 io_finish_async(ctx);
7324 if (ctx->sqo_mm)
7325 mmdrop(ctx->sqo_mm);
7327 io_iopoll_reap_events(ctx);
7328 io_sqe_buffer_unregister(ctx);
7329 io_sqe_files_unregister(ctx);
7330 io_eventfd_unregister(ctx);
7331 io_destroy_buffers(ctx);
7332 idr_destroy(&ctx->personality_idr);
7334 #if defined(CONFIG_UNIX)
7335 if (ctx->ring_sock) {
7336 ctx->ring_sock->file = NULL; /* so that iput() is called */
7337 sock_release(ctx->ring_sock);
7339 #endif
7341 io_mem_free(ctx->rings);
7342 io_mem_free(ctx->sq_sqes);
7344 percpu_ref_exit(&ctx->refs);
7345 if (ctx->account_mem)
7346 io_unaccount_mem(ctx->user,
7347 ring_pages(ctx->sq_entries, ctx->cq_entries));
7348 free_uid(ctx->user);
7349 put_cred(ctx->creds);
7350 kfree(ctx->cancel_hash);
7351 kmem_cache_free(req_cachep, ctx->fallback_req);
7352 kfree(ctx);
7355 static __poll_t io_uring_poll(struct file *file, poll_table *wait)
7357 struct io_ring_ctx *ctx = file->private_data;
7358 __poll_t mask = 0;
7360 poll_wait(file, &ctx->cq_wait, wait);
7362 * synchronizes with barrier from wq_has_sleeper call in
7363 * io_commit_cqring
7365 smp_rmb();
7366 if (READ_ONCE(ctx->rings->sq.tail) - ctx->cached_sq_head !=
7367 ctx->rings->sq_ring_entries)
7368 mask |= EPOLLOUT | EPOLLWRNORM;
7369 if (io_cqring_events(ctx, false))
7370 mask |= EPOLLIN | EPOLLRDNORM;
7372 return mask;
7375 static int io_uring_fasync(int fd, struct file *file, int on)
7377 struct io_ring_ctx *ctx = file->private_data;
7379 return fasync_helper(fd, file, on, &ctx->cq_fasync);
7382 static int io_remove_personalities(int id, void *p, void *data)
7384 struct io_ring_ctx *ctx = data;
7385 const struct cred *cred;
7387 cred = idr_remove(&ctx->personality_idr, id);
7388 if (cred)
7389 put_cred(cred);
7390 return 0;
7393 static void io_ring_exit_work(struct work_struct *work)
7395 struct io_ring_ctx *ctx;
7397 ctx = container_of(work, struct io_ring_ctx, exit_work);
7398 if (ctx->rings)
7399 io_cqring_overflow_flush(ctx, true);
7402 * If we're doing polled IO and end up having requests being
7403 * submitted async (out-of-line), then completions can come in while
7404 * we're waiting for refs to drop. We need to reap these manually,
7405 * as nobody else will be looking for them.
7407 while (!wait_for_completion_timeout(&ctx->ref_comp, HZ/20)) {
7408 io_iopoll_reap_events(ctx);
7409 if (ctx->rings)
7410 io_cqring_overflow_flush(ctx, true);
7412 io_ring_ctx_free(ctx);
7415 static void io_ring_ctx_wait_and_kill(struct io_ring_ctx *ctx)
7417 mutex_lock(&ctx->uring_lock);
7418 percpu_ref_kill(&ctx->refs);
7419 mutex_unlock(&ctx->uring_lock);
7421 io_kill_timeouts(ctx);
7422 io_poll_remove_all(ctx);
7424 if (ctx->io_wq)
7425 io_wq_cancel_all(ctx->io_wq);
7427 io_iopoll_reap_events(ctx);
7428 /* if we failed setting up the ctx, we might not have any rings */
7429 if (ctx->rings)
7430 io_cqring_overflow_flush(ctx, true);
7431 idr_for_each(&ctx->personality_idr, io_remove_personalities, ctx);
7432 INIT_WORK(&ctx->exit_work, io_ring_exit_work);
7433 queue_work(system_wq, &ctx->exit_work);
7436 static int io_uring_release(struct inode *inode, struct file *file)
7438 struct io_ring_ctx *ctx = file->private_data;
7440 file->private_data = NULL;
7441 io_ring_ctx_wait_and_kill(ctx);
7442 return 0;
7445 static bool io_wq_files_match(struct io_wq_work *work, void *data)
7447 struct files_struct *files = data;
7449 return work->files == files;
7452 static void io_uring_cancel_files(struct io_ring_ctx *ctx,
7453 struct files_struct *files)
7455 if (list_empty_careful(&ctx->inflight_list))
7456 return;
7458 /* cancel all at once, should be faster than doing it one by one*/
7459 io_wq_cancel_cb(ctx->io_wq, io_wq_files_match, files, true);
7461 while (!list_empty_careful(&ctx->inflight_list)) {
7462 struct io_kiocb *cancel_req = NULL, *req;
7463 DEFINE_WAIT(wait);
7465 spin_lock_irq(&ctx->inflight_lock);
7466 list_for_each_entry(req, &ctx->inflight_list, inflight_entry) {
7467 if (req->work.files != files)
7468 continue;
7469 /* req is being completed, ignore */
7470 if (!refcount_inc_not_zero(&req->refs))
7471 continue;
7472 cancel_req = req;
7473 break;
7475 if (cancel_req)
7476 prepare_to_wait(&ctx->inflight_wait, &wait,
7477 TASK_UNINTERRUPTIBLE);
7478 spin_unlock_irq(&ctx->inflight_lock);
7480 /* We need to keep going until we don't find a matching req */
7481 if (!cancel_req)
7482 break;
7484 if (cancel_req->flags & REQ_F_OVERFLOW) {
7485 spin_lock_irq(&ctx->completion_lock);
7486 list_del(&cancel_req->list);
7487 cancel_req->flags &= ~REQ_F_OVERFLOW;
7488 if (list_empty(&ctx->cq_overflow_list)) {
7489 clear_bit(0, &ctx->sq_check_overflow);
7490 clear_bit(0, &ctx->cq_check_overflow);
7492 spin_unlock_irq(&ctx->completion_lock);
7494 WRITE_ONCE(ctx->rings->cq_overflow,
7495 atomic_inc_return(&ctx->cached_cq_overflow));
7498 * Put inflight ref and overflow ref. If that's
7499 * all we had, then we're done with this request.
7501 if (refcount_sub_and_test(2, &cancel_req->refs)) {
7502 io_free_req(cancel_req);
7503 finish_wait(&ctx->inflight_wait, &wait);
7504 continue;
7506 } else {
7507 io_wq_cancel_work(ctx->io_wq, &cancel_req->work);
7508 io_put_req(cancel_req);
7511 schedule();
7512 finish_wait(&ctx->inflight_wait, &wait);
7516 static bool io_cancel_task_cb(struct io_wq_work *work, void *data)
7518 struct io_kiocb *req = container_of(work, struct io_kiocb, work);
7519 struct task_struct *task = data;
7521 return req->task == task;
7524 static int io_uring_flush(struct file *file, void *data)
7526 struct io_ring_ctx *ctx = file->private_data;
7528 io_uring_cancel_files(ctx, data);
7531 * If the task is going away, cancel work it may have pending
7533 if (fatal_signal_pending(current) || (current->flags & PF_EXITING))
7534 io_wq_cancel_cb(ctx->io_wq, io_cancel_task_cb, current, true);
7536 return 0;
7539 static void *io_uring_validate_mmap_request(struct file *file,
7540 loff_t pgoff, size_t sz)
7542 struct io_ring_ctx *ctx = file->private_data;
7543 loff_t offset = pgoff << PAGE_SHIFT;
7544 struct page *page;
7545 void *ptr;
7547 switch (offset) {
7548 case IORING_OFF_SQ_RING:
7549 case IORING_OFF_CQ_RING:
7550 ptr = ctx->rings;
7551 break;
7552 case IORING_OFF_SQES:
7553 ptr = ctx->sq_sqes;
7554 break;
7555 default:
7556 return ERR_PTR(-EINVAL);
7559 page = virt_to_head_page(ptr);
7560 if (sz > page_size(page))
7561 return ERR_PTR(-EINVAL);
7563 return ptr;
7566 #ifdef CONFIG_MMU
7568 static int io_uring_mmap(struct file *file, struct vm_area_struct *vma)
7570 size_t sz = vma->vm_end - vma->vm_start;
7571 unsigned long pfn;
7572 void *ptr;
7574 ptr = io_uring_validate_mmap_request(file, vma->vm_pgoff, sz);
7575 if (IS_ERR(ptr))
7576 return PTR_ERR(ptr);
7578 pfn = virt_to_phys(ptr) >> PAGE_SHIFT;
7579 return remap_pfn_range(vma, vma->vm_start, pfn, sz, vma->vm_page_prot);
7582 #else /* !CONFIG_MMU */
7584 static int io_uring_mmap(struct file *file, struct vm_area_struct *vma)
7586 return vma->vm_flags & (VM_SHARED | VM_MAYSHARE) ? 0 : -EINVAL;
7589 static unsigned int io_uring_nommu_mmap_capabilities(struct file *file)
7591 return NOMMU_MAP_DIRECT | NOMMU_MAP_READ | NOMMU_MAP_WRITE;
7594 static unsigned long io_uring_nommu_get_unmapped_area(struct file *file,
7595 unsigned long addr, unsigned long len,
7596 unsigned long pgoff, unsigned long flags)
7598 void *ptr;
7600 ptr = io_uring_validate_mmap_request(file, pgoff, len);
7601 if (IS_ERR(ptr))
7602 return PTR_ERR(ptr);
7604 return (unsigned long) ptr;
7607 #endif /* !CONFIG_MMU */
7609 SYSCALL_DEFINE6(io_uring_enter, unsigned int, fd, u32, to_submit,
7610 u32, min_complete, u32, flags, const sigset_t __user *, sig,
7611 size_t, sigsz)
7613 struct io_ring_ctx *ctx;
7614 long ret = -EBADF;
7615 int submitted = 0;
7616 struct fd f;
7618 if (current->task_works)
7619 task_work_run();
7621 if (flags & ~(IORING_ENTER_GETEVENTS | IORING_ENTER_SQ_WAKEUP))
7622 return -EINVAL;
7624 f = fdget(fd);
7625 if (!f.file)
7626 return -EBADF;
7628 ret = -EOPNOTSUPP;
7629 if (f.file->f_op != &io_uring_fops)
7630 goto out_fput;
7632 ret = -ENXIO;
7633 ctx = f.file->private_data;
7634 if (!percpu_ref_tryget(&ctx->refs))
7635 goto out_fput;
7638 * For SQ polling, the thread will do all submissions and completions.
7639 * Just return the requested submit count, and wake the thread if
7640 * we were asked to.
7642 ret = 0;
7643 if (ctx->flags & IORING_SETUP_SQPOLL) {
7644 if (!list_empty_careful(&ctx->cq_overflow_list))
7645 io_cqring_overflow_flush(ctx, false);
7646 if (flags & IORING_ENTER_SQ_WAKEUP)
7647 wake_up(&ctx->sqo_wait);
7648 submitted = to_submit;
7649 } else if (to_submit) {
7650 mutex_lock(&ctx->uring_lock);
7651 submitted = io_submit_sqes(ctx, to_submit, f.file, fd);
7652 mutex_unlock(&ctx->uring_lock);
7654 if (submitted != to_submit)
7655 goto out;
7657 if (flags & IORING_ENTER_GETEVENTS) {
7658 unsigned nr_events = 0;
7660 min_complete = min(min_complete, ctx->cq_entries);
7663 * When SETUP_IOPOLL and SETUP_SQPOLL are both enabled, user
7664 * space applications don't need to do io completion events
7665 * polling again, they can rely on io_sq_thread to do polling
7666 * work, which can reduce cpu usage and uring_lock contention.
7668 if (ctx->flags & IORING_SETUP_IOPOLL &&
7669 !(ctx->flags & IORING_SETUP_SQPOLL)) {
7670 ret = io_iopoll_check(ctx, &nr_events, min_complete);
7671 } else {
7672 ret = io_cqring_wait(ctx, min_complete, sig, sigsz);
7676 out:
7677 percpu_ref_put(&ctx->refs);
7678 out_fput:
7679 fdput(f);
7680 return submitted ? submitted : ret;
7683 #ifdef CONFIG_PROC_FS
7684 static int io_uring_show_cred(int id, void *p, void *data)
7686 const struct cred *cred = p;
7687 struct seq_file *m = data;
7688 struct user_namespace *uns = seq_user_ns(m);
7689 struct group_info *gi;
7690 kernel_cap_t cap;
7691 unsigned __capi;
7692 int g;
7694 seq_printf(m, "%5d\n", id);
7695 seq_put_decimal_ull(m, "\tUid:\t", from_kuid_munged(uns, cred->uid));
7696 seq_put_decimal_ull(m, "\t\t", from_kuid_munged(uns, cred->euid));
7697 seq_put_decimal_ull(m, "\t\t", from_kuid_munged(uns, cred->suid));
7698 seq_put_decimal_ull(m, "\t\t", from_kuid_munged(uns, cred->fsuid));
7699 seq_put_decimal_ull(m, "\n\tGid:\t", from_kgid_munged(uns, cred->gid));
7700 seq_put_decimal_ull(m, "\t\t", from_kgid_munged(uns, cred->egid));
7701 seq_put_decimal_ull(m, "\t\t", from_kgid_munged(uns, cred->sgid));
7702 seq_put_decimal_ull(m, "\t\t", from_kgid_munged(uns, cred->fsgid));
7703 seq_puts(m, "\n\tGroups:\t");
7704 gi = cred->group_info;
7705 for (g = 0; g < gi->ngroups; g++) {
7706 seq_put_decimal_ull(m, g ? " " : "",
7707 from_kgid_munged(uns, gi->gid[g]));
7709 seq_puts(m, "\n\tCapEff:\t");
7710 cap = cred->cap_effective;
7711 CAP_FOR_EACH_U32(__capi)
7712 seq_put_hex_ll(m, NULL, cap.cap[CAP_LAST_U32 - __capi], 8);
7713 seq_putc(m, '\n');
7714 return 0;
7717 static void __io_uring_show_fdinfo(struct io_ring_ctx *ctx, struct seq_file *m)
7719 int i;
7721 mutex_lock(&ctx->uring_lock);
7722 seq_printf(m, "UserFiles:\t%u\n", ctx->nr_user_files);
7723 for (i = 0; i < ctx->nr_user_files; i++) {
7724 struct fixed_file_table *table;
7725 struct file *f;
7727 table = &ctx->file_data->table[i >> IORING_FILE_TABLE_SHIFT];
7728 f = table->files[i & IORING_FILE_TABLE_MASK];
7729 if (f)
7730 seq_printf(m, "%5u: %s\n", i, file_dentry(f)->d_iname);
7731 else
7732 seq_printf(m, "%5u: <none>\n", i);
7734 seq_printf(m, "UserBufs:\t%u\n", ctx->nr_user_bufs);
7735 for (i = 0; i < ctx->nr_user_bufs; i++) {
7736 struct io_mapped_ubuf *buf = &ctx->user_bufs[i];
7738 seq_printf(m, "%5u: 0x%llx/%u\n", i, buf->ubuf,
7739 (unsigned int) buf->len);
7741 if (!idr_is_empty(&ctx->personality_idr)) {
7742 seq_printf(m, "Personalities:\n");
7743 idr_for_each(&ctx->personality_idr, io_uring_show_cred, m);
7745 seq_printf(m, "PollList:\n");
7746 spin_lock_irq(&ctx->completion_lock);
7747 for (i = 0; i < (1U << ctx->cancel_hash_bits); i++) {
7748 struct hlist_head *list = &ctx->cancel_hash[i];
7749 struct io_kiocb *req;
7751 hlist_for_each_entry(req, list, hash_node)
7752 seq_printf(m, " op=%d, task_works=%d\n", req->opcode,
7753 req->task->task_works != NULL);
7755 spin_unlock_irq(&ctx->completion_lock);
7756 mutex_unlock(&ctx->uring_lock);
7759 static void io_uring_show_fdinfo(struct seq_file *m, struct file *f)
7761 struct io_ring_ctx *ctx = f->private_data;
7763 if (percpu_ref_tryget(&ctx->refs)) {
7764 __io_uring_show_fdinfo(ctx, m);
7765 percpu_ref_put(&ctx->refs);
7768 #endif
7770 static const struct file_operations io_uring_fops = {
7771 .release = io_uring_release,
7772 .flush = io_uring_flush,
7773 .mmap = io_uring_mmap,
7774 #ifndef CONFIG_MMU
7775 .get_unmapped_area = io_uring_nommu_get_unmapped_area,
7776 .mmap_capabilities = io_uring_nommu_mmap_capabilities,
7777 #endif
7778 .poll = io_uring_poll,
7779 .fasync = io_uring_fasync,
7780 #ifdef CONFIG_PROC_FS
7781 .show_fdinfo = io_uring_show_fdinfo,
7782 #endif
7785 static int io_allocate_scq_urings(struct io_ring_ctx *ctx,
7786 struct io_uring_params *p)
7788 struct io_rings *rings;
7789 size_t size, sq_array_offset;
7791 size = rings_size(p->sq_entries, p->cq_entries, &sq_array_offset);
7792 if (size == SIZE_MAX)
7793 return -EOVERFLOW;
7795 rings = io_mem_alloc(size);
7796 if (!rings)
7797 return -ENOMEM;
7799 ctx->rings = rings;
7800 ctx->sq_array = (u32 *)((char *)rings + sq_array_offset);
7801 rings->sq_ring_mask = p->sq_entries - 1;
7802 rings->cq_ring_mask = p->cq_entries - 1;
7803 rings->sq_ring_entries = p->sq_entries;
7804 rings->cq_ring_entries = p->cq_entries;
7805 ctx->sq_mask = rings->sq_ring_mask;
7806 ctx->cq_mask = rings->cq_ring_mask;
7807 ctx->sq_entries = rings->sq_ring_entries;
7808 ctx->cq_entries = rings->cq_ring_entries;
7810 size = array_size(sizeof(struct io_uring_sqe), p->sq_entries);
7811 if (size == SIZE_MAX) {
7812 io_mem_free(ctx->rings);
7813 ctx->rings = NULL;
7814 return -EOVERFLOW;
7817 ctx->sq_sqes = io_mem_alloc(size);
7818 if (!ctx->sq_sqes) {
7819 io_mem_free(ctx->rings);
7820 ctx->rings = NULL;
7821 return -ENOMEM;
7824 return 0;
7828 * Allocate an anonymous fd, this is what constitutes the application
7829 * visible backing of an io_uring instance. The application mmaps this
7830 * fd to gain access to the SQ/CQ ring details. If UNIX sockets are enabled,
7831 * we have to tie this fd to a socket for file garbage collection purposes.
7833 static int io_uring_get_fd(struct io_ring_ctx *ctx)
7835 struct file *file;
7836 int ret;
7838 #if defined(CONFIG_UNIX)
7839 ret = sock_create_kern(&init_net, PF_UNIX, SOCK_RAW, IPPROTO_IP,
7840 &ctx->ring_sock);
7841 if (ret)
7842 return ret;
7843 #endif
7845 ret = get_unused_fd_flags(O_RDWR | O_CLOEXEC);
7846 if (ret < 0)
7847 goto err;
7849 file = anon_inode_getfile("[io_uring]", &io_uring_fops, ctx,
7850 O_RDWR | O_CLOEXEC);
7851 if (IS_ERR(file)) {
7852 put_unused_fd(ret);
7853 ret = PTR_ERR(file);
7854 goto err;
7857 #if defined(CONFIG_UNIX)
7858 ctx->ring_sock->file = file;
7859 #endif
7860 fd_install(ret, file);
7861 return ret;
7862 err:
7863 #if defined(CONFIG_UNIX)
7864 sock_release(ctx->ring_sock);
7865 ctx->ring_sock = NULL;
7866 #endif
7867 return ret;
7870 static int io_uring_create(unsigned entries, struct io_uring_params *p,
7871 struct io_uring_params __user *params)
7873 struct user_struct *user = NULL;
7874 struct io_ring_ctx *ctx;
7875 bool account_mem;
7876 int ret;
7878 if (!entries)
7879 return -EINVAL;
7880 if (entries > IORING_MAX_ENTRIES) {
7881 if (!(p->flags & IORING_SETUP_CLAMP))
7882 return -EINVAL;
7883 entries = IORING_MAX_ENTRIES;
7887 * Use twice as many entries for the CQ ring. It's possible for the
7888 * application to drive a higher depth than the size of the SQ ring,
7889 * since the sqes are only used at submission time. This allows for
7890 * some flexibility in overcommitting a bit. If the application has
7891 * set IORING_SETUP_CQSIZE, it will have passed in the desired number
7892 * of CQ ring entries manually.
7894 p->sq_entries = roundup_pow_of_two(entries);
7895 if (p->flags & IORING_SETUP_CQSIZE) {
7897 * If IORING_SETUP_CQSIZE is set, we do the same roundup
7898 * to a power-of-two, if it isn't already. We do NOT impose
7899 * any cq vs sq ring sizing.
7901 if (p->cq_entries < p->sq_entries)
7902 return -EINVAL;
7903 if (p->cq_entries > IORING_MAX_CQ_ENTRIES) {
7904 if (!(p->flags & IORING_SETUP_CLAMP))
7905 return -EINVAL;
7906 p->cq_entries = IORING_MAX_CQ_ENTRIES;
7908 p->cq_entries = roundup_pow_of_two(p->cq_entries);
7909 } else {
7910 p->cq_entries = 2 * p->sq_entries;
7913 user = get_uid(current_user());
7914 account_mem = !capable(CAP_IPC_LOCK);
7916 if (account_mem) {
7917 ret = io_account_mem(user,
7918 ring_pages(p->sq_entries, p->cq_entries));
7919 if (ret) {
7920 free_uid(user);
7921 return ret;
7925 ctx = io_ring_ctx_alloc(p);
7926 if (!ctx) {
7927 if (account_mem)
7928 io_unaccount_mem(user, ring_pages(p->sq_entries,
7929 p->cq_entries));
7930 free_uid(user);
7931 return -ENOMEM;
7933 ctx->compat = in_compat_syscall();
7934 ctx->account_mem = account_mem;
7935 ctx->user = user;
7936 ctx->creds = get_current_cred();
7938 ret = io_allocate_scq_urings(ctx, p);
7939 if (ret)
7940 goto err;
7942 ret = io_sq_offload_start(ctx, p);
7943 if (ret)
7944 goto err;
7946 memset(&p->sq_off, 0, sizeof(p->sq_off));
7947 p->sq_off.head = offsetof(struct io_rings, sq.head);
7948 p->sq_off.tail = offsetof(struct io_rings, sq.tail);
7949 p->sq_off.ring_mask = offsetof(struct io_rings, sq_ring_mask);
7950 p->sq_off.ring_entries = offsetof(struct io_rings, sq_ring_entries);
7951 p->sq_off.flags = offsetof(struct io_rings, sq_flags);
7952 p->sq_off.dropped = offsetof(struct io_rings, sq_dropped);
7953 p->sq_off.array = (char *)ctx->sq_array - (char *)ctx->rings;
7955 memset(&p->cq_off, 0, sizeof(p->cq_off));
7956 p->cq_off.head = offsetof(struct io_rings, cq.head);
7957 p->cq_off.tail = offsetof(struct io_rings, cq.tail);
7958 p->cq_off.ring_mask = offsetof(struct io_rings, cq_ring_mask);
7959 p->cq_off.ring_entries = offsetof(struct io_rings, cq_ring_entries);
7960 p->cq_off.overflow = offsetof(struct io_rings, cq_overflow);
7961 p->cq_off.cqes = offsetof(struct io_rings, cqes);
7962 p->cq_off.flags = offsetof(struct io_rings, cq_flags);
7964 p->features = IORING_FEAT_SINGLE_MMAP | IORING_FEAT_NODROP |
7965 IORING_FEAT_SUBMIT_STABLE | IORING_FEAT_RW_CUR_POS |
7966 IORING_FEAT_CUR_PERSONALITY | IORING_FEAT_FAST_POLL;
7968 if (copy_to_user(params, p, sizeof(*p))) {
7969 ret = -EFAULT;
7970 goto err;
7973 * Install ring fd as the very last thing, so we don't risk someone
7974 * having closed it before we finish setup
7976 ret = io_uring_get_fd(ctx);
7977 if (ret < 0)
7978 goto err;
7980 trace_io_uring_create(ret, ctx, p->sq_entries, p->cq_entries, p->flags);
7981 return ret;
7982 err:
7983 io_ring_ctx_wait_and_kill(ctx);
7984 return ret;
7988 * Sets up an aio uring context, and returns the fd. Applications asks for a
7989 * ring size, we return the actual sq/cq ring sizes (among other things) in the
7990 * params structure passed in.
7992 static long io_uring_setup(u32 entries, struct io_uring_params __user *params)
7994 struct io_uring_params p;
7995 int i;
7997 if (copy_from_user(&p, params, sizeof(p)))
7998 return -EFAULT;
7999 for (i = 0; i < ARRAY_SIZE(p.resv); i++) {
8000 if (p.resv[i])
8001 return -EINVAL;
8004 if (p.flags & ~(IORING_SETUP_IOPOLL | IORING_SETUP_SQPOLL |
8005 IORING_SETUP_SQ_AFF | IORING_SETUP_CQSIZE |
8006 IORING_SETUP_CLAMP | IORING_SETUP_ATTACH_WQ))
8007 return -EINVAL;
8009 return io_uring_create(entries, &p, params);
8012 SYSCALL_DEFINE2(io_uring_setup, u32, entries,
8013 struct io_uring_params __user *, params)
8015 return io_uring_setup(entries, params);
8018 static int io_probe(struct io_ring_ctx *ctx, void __user *arg, unsigned nr_args)
8020 struct io_uring_probe *p;
8021 size_t size;
8022 int i, ret;
8024 size = struct_size(p, ops, nr_args);
8025 if (size == SIZE_MAX)
8026 return -EOVERFLOW;
8027 p = kzalloc(size, GFP_KERNEL);
8028 if (!p)
8029 return -ENOMEM;
8031 ret = -EFAULT;
8032 if (copy_from_user(p, arg, size))
8033 goto out;
8034 ret = -EINVAL;
8035 if (memchr_inv(p, 0, size))
8036 goto out;
8038 p->last_op = IORING_OP_LAST - 1;
8039 if (nr_args > IORING_OP_LAST)
8040 nr_args = IORING_OP_LAST;
8042 for (i = 0; i < nr_args; i++) {
8043 p->ops[i].op = i;
8044 if (!io_op_defs[i].not_supported)
8045 p->ops[i].flags = IO_URING_OP_SUPPORTED;
8047 p->ops_len = i;
8049 ret = 0;
8050 if (copy_to_user(arg, p, size))
8051 ret = -EFAULT;
8052 out:
8053 kfree(p);
8054 return ret;
8057 static int io_register_personality(struct io_ring_ctx *ctx)
8059 const struct cred *creds = get_current_cred();
8060 int id;
8062 id = idr_alloc_cyclic(&ctx->personality_idr, (void *) creds, 1,
8063 USHRT_MAX, GFP_KERNEL);
8064 if (id < 0)
8065 put_cred(creds);
8066 return id;
8069 static int io_unregister_personality(struct io_ring_ctx *ctx, unsigned id)
8071 const struct cred *old_creds;
8073 old_creds = idr_remove(&ctx->personality_idr, id);
8074 if (old_creds) {
8075 put_cred(old_creds);
8076 return 0;
8079 return -EINVAL;
8082 static bool io_register_op_must_quiesce(int op)
8084 switch (op) {
8085 case IORING_UNREGISTER_FILES:
8086 case IORING_REGISTER_FILES_UPDATE:
8087 case IORING_REGISTER_PROBE:
8088 case IORING_REGISTER_PERSONALITY:
8089 case IORING_UNREGISTER_PERSONALITY:
8090 return false;
8091 default:
8092 return true;
8096 static int __io_uring_register(struct io_ring_ctx *ctx, unsigned opcode,
8097 void __user *arg, unsigned nr_args)
8098 __releases(ctx->uring_lock)
8099 __acquires(ctx->uring_lock)
8101 int ret;
8104 * We're inside the ring mutex, if the ref is already dying, then
8105 * someone else killed the ctx or is already going through
8106 * io_uring_register().
8108 if (percpu_ref_is_dying(&ctx->refs))
8109 return -ENXIO;
8111 if (io_register_op_must_quiesce(opcode)) {
8112 percpu_ref_kill(&ctx->refs);
8115 * Drop uring mutex before waiting for references to exit. If
8116 * another thread is currently inside io_uring_enter() it might
8117 * need to grab the uring_lock to make progress. If we hold it
8118 * here across the drain wait, then we can deadlock. It's safe
8119 * to drop the mutex here, since no new references will come in
8120 * after we've killed the percpu ref.
8122 mutex_unlock(&ctx->uring_lock);
8123 ret = wait_for_completion_interruptible(&ctx->ref_comp);
8124 mutex_lock(&ctx->uring_lock);
8125 if (ret) {
8126 percpu_ref_resurrect(&ctx->refs);
8127 ret = -EINTR;
8128 goto out;
8132 switch (opcode) {
8133 case IORING_REGISTER_BUFFERS:
8134 ret = io_sqe_buffer_register(ctx, arg, nr_args);
8135 break;
8136 case IORING_UNREGISTER_BUFFERS:
8137 ret = -EINVAL;
8138 if (arg || nr_args)
8139 break;
8140 ret = io_sqe_buffer_unregister(ctx);
8141 break;
8142 case IORING_REGISTER_FILES:
8143 ret = io_sqe_files_register(ctx, arg, nr_args);
8144 break;
8145 case IORING_UNREGISTER_FILES:
8146 ret = -EINVAL;
8147 if (arg || nr_args)
8148 break;
8149 ret = io_sqe_files_unregister(ctx);
8150 break;
8151 case IORING_REGISTER_FILES_UPDATE:
8152 ret = io_sqe_files_update(ctx, arg, nr_args);
8153 break;
8154 case IORING_REGISTER_EVENTFD:
8155 case IORING_REGISTER_EVENTFD_ASYNC:
8156 ret = -EINVAL;
8157 if (nr_args != 1)
8158 break;
8159 ret = io_eventfd_register(ctx, arg);
8160 if (ret)
8161 break;
8162 if (opcode == IORING_REGISTER_EVENTFD_ASYNC)
8163 ctx->eventfd_async = 1;
8164 else
8165 ctx->eventfd_async = 0;
8166 break;
8167 case IORING_UNREGISTER_EVENTFD:
8168 ret = -EINVAL;
8169 if (arg || nr_args)
8170 break;
8171 ret = io_eventfd_unregister(ctx);
8172 break;
8173 case IORING_REGISTER_PROBE:
8174 ret = -EINVAL;
8175 if (!arg || nr_args > 256)
8176 break;
8177 ret = io_probe(ctx, arg, nr_args);
8178 break;
8179 case IORING_REGISTER_PERSONALITY:
8180 ret = -EINVAL;
8181 if (arg || nr_args)
8182 break;
8183 ret = io_register_personality(ctx);
8184 break;
8185 case IORING_UNREGISTER_PERSONALITY:
8186 ret = -EINVAL;
8187 if (arg)
8188 break;
8189 ret = io_unregister_personality(ctx, nr_args);
8190 break;
8191 default:
8192 ret = -EINVAL;
8193 break;
8196 if (io_register_op_must_quiesce(opcode)) {
8197 /* bring the ctx back to life */
8198 percpu_ref_reinit(&ctx->refs);
8199 out:
8200 reinit_completion(&ctx->ref_comp);
8202 return ret;
8205 SYSCALL_DEFINE4(io_uring_register, unsigned int, fd, unsigned int, opcode,
8206 void __user *, arg, unsigned int, nr_args)
8208 struct io_ring_ctx *ctx;
8209 long ret = -EBADF;
8210 struct fd f;
8212 f = fdget(fd);
8213 if (!f.file)
8214 return -EBADF;
8216 ret = -EOPNOTSUPP;
8217 if (f.file->f_op != &io_uring_fops)
8218 goto out_fput;
8220 ctx = f.file->private_data;
8222 mutex_lock(&ctx->uring_lock);
8223 ret = __io_uring_register(ctx, opcode, arg, nr_args);
8224 mutex_unlock(&ctx->uring_lock);
8225 trace_io_uring_register(ctx, opcode, ctx->nr_user_files, ctx->nr_user_bufs,
8226 ctx->cq_ev_fd != NULL, ret);
8227 out_fput:
8228 fdput(f);
8229 return ret;
8232 static int __init io_uring_init(void)
8234 #define __BUILD_BUG_VERIFY_ELEMENT(stype, eoffset, etype, ename) do { \
8235 BUILD_BUG_ON(offsetof(stype, ename) != eoffset); \
8236 BUILD_BUG_ON(sizeof(etype) != sizeof_field(stype, ename)); \
8237 } while (0)
8239 #define BUILD_BUG_SQE_ELEM(eoffset, etype, ename) \
8240 __BUILD_BUG_VERIFY_ELEMENT(struct io_uring_sqe, eoffset, etype, ename)
8241 BUILD_BUG_ON(sizeof(struct io_uring_sqe) != 64);
8242 BUILD_BUG_SQE_ELEM(0, __u8, opcode);
8243 BUILD_BUG_SQE_ELEM(1, __u8, flags);
8244 BUILD_BUG_SQE_ELEM(2, __u16, ioprio);
8245 BUILD_BUG_SQE_ELEM(4, __s32, fd);
8246 BUILD_BUG_SQE_ELEM(8, __u64, off);
8247 BUILD_BUG_SQE_ELEM(8, __u64, addr2);
8248 BUILD_BUG_SQE_ELEM(16, __u64, addr);
8249 BUILD_BUG_SQE_ELEM(16, __u64, splice_off_in);
8250 BUILD_BUG_SQE_ELEM(24, __u32, len);
8251 BUILD_BUG_SQE_ELEM(28, __kernel_rwf_t, rw_flags);
8252 BUILD_BUG_SQE_ELEM(28, /* compat */ int, rw_flags);
8253 BUILD_BUG_SQE_ELEM(28, /* compat */ __u32, rw_flags);
8254 BUILD_BUG_SQE_ELEM(28, __u32, fsync_flags);
8255 BUILD_BUG_SQE_ELEM(28, __u16, poll_events);
8256 BUILD_BUG_SQE_ELEM(28, __u32, sync_range_flags);
8257 BUILD_BUG_SQE_ELEM(28, __u32, msg_flags);
8258 BUILD_BUG_SQE_ELEM(28, __u32, timeout_flags);
8259 BUILD_BUG_SQE_ELEM(28, __u32, accept_flags);
8260 BUILD_BUG_SQE_ELEM(28, __u32, cancel_flags);
8261 BUILD_BUG_SQE_ELEM(28, __u32, open_flags);
8262 BUILD_BUG_SQE_ELEM(28, __u32, statx_flags);
8263 BUILD_BUG_SQE_ELEM(28, __u32, fadvise_advice);
8264 BUILD_BUG_SQE_ELEM(28, __u32, splice_flags);
8265 BUILD_BUG_SQE_ELEM(32, __u64, user_data);
8266 BUILD_BUG_SQE_ELEM(40, __u16, buf_index);
8267 BUILD_BUG_SQE_ELEM(42, __u16, personality);
8268 BUILD_BUG_SQE_ELEM(44, __s32, splice_fd_in);
8270 BUILD_BUG_ON(ARRAY_SIZE(io_op_defs) != IORING_OP_LAST);
8271 BUILD_BUG_ON(__REQ_F_LAST_BIT >= 8 * sizeof(int));
8272 req_cachep = KMEM_CACHE(io_kiocb, SLAB_HWCACHE_ALIGN | SLAB_PANIC);
8273 return 0;
8275 __initcall(io_uring_init);