Linux 5.8-rc4
[linux/fpc-iii.git] / kernel / debug / debug_core.c
blob9e5934780f4141e600e0078dfba8195c1a4e0984
1 /*
2 * Kernel Debug Core
4 * Maintainer: Jason Wessel <jason.wessel@windriver.com>
6 * Copyright (C) 2000-2001 VERITAS Software Corporation.
7 * Copyright (C) 2002-2004 Timesys Corporation
8 * Copyright (C) 2003-2004 Amit S. Kale <amitkale@linsyssoft.com>
9 * Copyright (C) 2004 Pavel Machek <pavel@ucw.cz>
10 * Copyright (C) 2004-2006 Tom Rini <trini@kernel.crashing.org>
11 * Copyright (C) 2004-2006 LinSysSoft Technologies Pvt. Ltd.
12 * Copyright (C) 2005-2009 Wind River Systems, Inc.
13 * Copyright (C) 2007 MontaVista Software, Inc.
14 * Copyright (C) 2008 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
16 * Contributors at various stages not listed above:
17 * Jason Wessel ( jason.wessel@windriver.com )
18 * George Anzinger <george@mvista.com>
19 * Anurekh Saxena (anurekh.saxena@timesys.com)
20 * Lake Stevens Instrument Division (Glenn Engel)
21 * Jim Kingdon, Cygnus Support.
23 * Original KGDB stub: David Grothe <dave@gcom.com>,
24 * Tigran Aivazian <tigran@sco.com>
26 * This file is licensed under the terms of the GNU General Public License
27 * version 2. This program is licensed "as is" without any warranty of any
28 * kind, whether express or implied.
31 #define pr_fmt(fmt) "KGDB: " fmt
33 #include <linux/pid_namespace.h>
34 #include <linux/clocksource.h>
35 #include <linux/serial_core.h>
36 #include <linux/interrupt.h>
37 #include <linux/spinlock.h>
38 #include <linux/console.h>
39 #include <linux/threads.h>
40 #include <linux/uaccess.h>
41 #include <linux/kernel.h>
42 #include <linux/module.h>
43 #include <linux/ptrace.h>
44 #include <linux/string.h>
45 #include <linux/delay.h>
46 #include <linux/sched.h>
47 #include <linux/sysrq.h>
48 #include <linux/reboot.h>
49 #include <linux/init.h>
50 #include <linux/kgdb.h>
51 #include <linux/kdb.h>
52 #include <linux/nmi.h>
53 #include <linux/pid.h>
54 #include <linux/smp.h>
55 #include <linux/mm.h>
56 #include <linux/vmacache.h>
57 #include <linux/rcupdate.h>
58 #include <linux/irq.h>
60 #include <asm/cacheflush.h>
61 #include <asm/byteorder.h>
62 #include <linux/atomic.h>
64 #include "debug_core.h"
66 static int kgdb_break_asap;
68 struct debuggerinfo_struct kgdb_info[NR_CPUS];
70 /* kgdb_connected - Is a host GDB connected to us? */
71 int kgdb_connected;
72 EXPORT_SYMBOL_GPL(kgdb_connected);
74 /* All the KGDB handlers are installed */
75 int kgdb_io_module_registered;
77 /* Guard for recursive entry */
78 static int exception_level;
80 struct kgdb_io *dbg_io_ops;
81 static DEFINE_SPINLOCK(kgdb_registration_lock);
83 /* Action for the reboot notifiter, a global allow kdb to change it */
84 static int kgdbreboot;
85 /* kgdb console driver is loaded */
86 static int kgdb_con_registered;
87 /* determine if kgdb console output should be used */
88 static int kgdb_use_con;
89 /* Flag for alternate operations for early debugging */
90 bool dbg_is_early = true;
91 /* Next cpu to become the master debug core */
92 int dbg_switch_cpu;
94 /* Use kdb or gdbserver mode */
95 int dbg_kdb_mode = 1;
97 static int __init opt_kgdb_con(char *str)
99 kgdb_use_con = 1;
100 return 0;
103 early_param("kgdbcon", opt_kgdb_con);
105 module_param(kgdb_use_con, int, 0644);
106 module_param(kgdbreboot, int, 0644);
109 * Holds information about breakpoints in a kernel. These breakpoints are
110 * added and removed by gdb.
112 static struct kgdb_bkpt kgdb_break[KGDB_MAX_BREAKPOINTS] = {
113 [0 ... KGDB_MAX_BREAKPOINTS-1] = { .state = BP_UNDEFINED }
117 * The CPU# of the active CPU, or -1 if none:
119 atomic_t kgdb_active = ATOMIC_INIT(-1);
120 EXPORT_SYMBOL_GPL(kgdb_active);
121 static DEFINE_RAW_SPINLOCK(dbg_master_lock);
122 static DEFINE_RAW_SPINLOCK(dbg_slave_lock);
125 * We use NR_CPUs not PERCPU, in case kgdb is used to debug early
126 * bootup code (which might not have percpu set up yet):
128 static atomic_t masters_in_kgdb;
129 static atomic_t slaves_in_kgdb;
130 static atomic_t kgdb_break_tasklet_var;
131 atomic_t kgdb_setting_breakpoint;
133 struct task_struct *kgdb_usethread;
134 struct task_struct *kgdb_contthread;
136 int kgdb_single_step;
137 static pid_t kgdb_sstep_pid;
139 /* to keep track of the CPU which is doing the single stepping*/
140 atomic_t kgdb_cpu_doing_single_step = ATOMIC_INIT(-1);
143 * If you are debugging a problem where roundup (the collection of
144 * all other CPUs) is a problem [this should be extremely rare],
145 * then use the nokgdbroundup option to avoid roundup. In that case
146 * the other CPUs might interfere with your debugging context, so
147 * use this with care:
149 static int kgdb_do_roundup = 1;
151 static int __init opt_nokgdbroundup(char *str)
153 kgdb_do_roundup = 0;
155 return 0;
158 early_param("nokgdbroundup", opt_nokgdbroundup);
161 * Finally, some KGDB code :-)
165 * Weak aliases for breakpoint management,
166 * can be overriden by architectures when needed:
168 int __weak kgdb_arch_set_breakpoint(struct kgdb_bkpt *bpt)
170 int err;
172 err = copy_from_kernel_nofault(bpt->saved_instr, (char *)bpt->bpt_addr,
173 BREAK_INSTR_SIZE);
174 if (err)
175 return err;
176 err = copy_to_kernel_nofault((char *)bpt->bpt_addr,
177 arch_kgdb_ops.gdb_bpt_instr, BREAK_INSTR_SIZE);
178 return err;
181 int __weak kgdb_arch_remove_breakpoint(struct kgdb_bkpt *bpt)
183 return copy_to_kernel_nofault((char *)bpt->bpt_addr,
184 (char *)bpt->saved_instr, BREAK_INSTR_SIZE);
187 int __weak kgdb_validate_break_address(unsigned long addr)
189 struct kgdb_bkpt tmp;
190 int err;
191 /* Validate setting the breakpoint and then removing it. If the
192 * remove fails, the kernel needs to emit a bad message because we
193 * are deep trouble not being able to put things back the way we
194 * found them.
196 tmp.bpt_addr = addr;
197 err = kgdb_arch_set_breakpoint(&tmp);
198 if (err)
199 return err;
200 err = kgdb_arch_remove_breakpoint(&tmp);
201 if (err)
202 pr_err("Critical breakpoint error, kernel memory destroyed at: %lx\n",
203 addr);
204 return err;
207 unsigned long __weak kgdb_arch_pc(int exception, struct pt_regs *regs)
209 return instruction_pointer(regs);
212 int __weak kgdb_arch_init(void)
214 return 0;
217 int __weak kgdb_skipexception(int exception, struct pt_regs *regs)
219 return 0;
222 #ifdef CONFIG_SMP
225 * Default (weak) implementation for kgdb_roundup_cpus
228 static DEFINE_PER_CPU(call_single_data_t, kgdb_roundup_csd);
230 void __weak kgdb_call_nmi_hook(void *ignored)
233 * NOTE: get_irq_regs() is supposed to get the registers from
234 * before the IPI interrupt happened and so is supposed to
235 * show where the processor was. In some situations it's
236 * possible we might be called without an IPI, so it might be
237 * safer to figure out how to make kgdb_breakpoint() work
238 * properly here.
240 kgdb_nmicallback(raw_smp_processor_id(), get_irq_regs());
243 void __weak kgdb_roundup_cpus(void)
245 call_single_data_t *csd;
246 int this_cpu = raw_smp_processor_id();
247 int cpu;
248 int ret;
250 for_each_online_cpu(cpu) {
251 /* No need to roundup ourselves */
252 if (cpu == this_cpu)
253 continue;
255 csd = &per_cpu(kgdb_roundup_csd, cpu);
258 * If it didn't round up last time, don't try again
259 * since smp_call_function_single_async() will block.
261 * If rounding_up is false then we know that the
262 * previous call must have at least started and that
263 * means smp_call_function_single_async() won't block.
265 if (kgdb_info[cpu].rounding_up)
266 continue;
267 kgdb_info[cpu].rounding_up = true;
269 csd->func = kgdb_call_nmi_hook;
270 ret = smp_call_function_single_async(cpu, csd);
271 if (ret)
272 kgdb_info[cpu].rounding_up = false;
276 #endif
279 * Some architectures need cache flushes when we set/clear a
280 * breakpoint:
282 static void kgdb_flush_swbreak_addr(unsigned long addr)
284 if (!CACHE_FLUSH_IS_SAFE)
285 return;
287 if (current->mm) {
288 int i;
290 for (i = 0; i < VMACACHE_SIZE; i++) {
291 if (!current->vmacache.vmas[i])
292 continue;
293 flush_cache_range(current->vmacache.vmas[i],
294 addr, addr + BREAK_INSTR_SIZE);
298 /* Force flush instruction cache if it was outside the mm */
299 flush_icache_range(addr, addr + BREAK_INSTR_SIZE);
303 * SW breakpoint management:
305 int dbg_activate_sw_breakpoints(void)
307 int error;
308 int ret = 0;
309 int i;
311 for (i = 0; i < KGDB_MAX_BREAKPOINTS; i++) {
312 if (kgdb_break[i].state != BP_SET)
313 continue;
315 error = kgdb_arch_set_breakpoint(&kgdb_break[i]);
316 if (error) {
317 ret = error;
318 pr_info("BP install failed: %lx\n",
319 kgdb_break[i].bpt_addr);
320 continue;
323 kgdb_flush_swbreak_addr(kgdb_break[i].bpt_addr);
324 kgdb_break[i].state = BP_ACTIVE;
326 return ret;
329 int dbg_set_sw_break(unsigned long addr)
331 int err = kgdb_validate_break_address(addr);
332 int breakno = -1;
333 int i;
335 if (err)
336 return err;
338 for (i = 0; i < KGDB_MAX_BREAKPOINTS; i++) {
339 if ((kgdb_break[i].state == BP_SET) &&
340 (kgdb_break[i].bpt_addr == addr))
341 return -EEXIST;
343 for (i = 0; i < KGDB_MAX_BREAKPOINTS; i++) {
344 if (kgdb_break[i].state == BP_REMOVED &&
345 kgdb_break[i].bpt_addr == addr) {
346 breakno = i;
347 break;
351 if (breakno == -1) {
352 for (i = 0; i < KGDB_MAX_BREAKPOINTS; i++) {
353 if (kgdb_break[i].state == BP_UNDEFINED) {
354 breakno = i;
355 break;
360 if (breakno == -1)
361 return -E2BIG;
363 kgdb_break[breakno].state = BP_SET;
364 kgdb_break[breakno].type = BP_BREAKPOINT;
365 kgdb_break[breakno].bpt_addr = addr;
367 return 0;
370 int dbg_deactivate_sw_breakpoints(void)
372 int error;
373 int ret = 0;
374 int i;
376 for (i = 0; i < KGDB_MAX_BREAKPOINTS; i++) {
377 if (kgdb_break[i].state != BP_ACTIVE)
378 continue;
379 error = kgdb_arch_remove_breakpoint(&kgdb_break[i]);
380 if (error) {
381 pr_info("BP remove failed: %lx\n",
382 kgdb_break[i].bpt_addr);
383 ret = error;
386 kgdb_flush_swbreak_addr(kgdb_break[i].bpt_addr);
387 kgdb_break[i].state = BP_SET;
389 return ret;
392 int dbg_remove_sw_break(unsigned long addr)
394 int i;
396 for (i = 0; i < KGDB_MAX_BREAKPOINTS; i++) {
397 if ((kgdb_break[i].state == BP_SET) &&
398 (kgdb_break[i].bpt_addr == addr)) {
399 kgdb_break[i].state = BP_REMOVED;
400 return 0;
403 return -ENOENT;
406 int kgdb_isremovedbreak(unsigned long addr)
408 int i;
410 for (i = 0; i < KGDB_MAX_BREAKPOINTS; i++) {
411 if ((kgdb_break[i].state == BP_REMOVED) &&
412 (kgdb_break[i].bpt_addr == addr))
413 return 1;
415 return 0;
418 int kgdb_has_hit_break(unsigned long addr)
420 int i;
422 for (i = 0; i < KGDB_MAX_BREAKPOINTS; i++) {
423 if (kgdb_break[i].state == BP_ACTIVE &&
424 kgdb_break[i].bpt_addr == addr)
425 return 1;
427 return 0;
430 int dbg_remove_all_break(void)
432 int error;
433 int i;
435 /* Clear memory breakpoints. */
436 for (i = 0; i < KGDB_MAX_BREAKPOINTS; i++) {
437 if (kgdb_break[i].state != BP_ACTIVE)
438 goto setundefined;
439 error = kgdb_arch_remove_breakpoint(&kgdb_break[i]);
440 if (error)
441 pr_err("breakpoint remove failed: %lx\n",
442 kgdb_break[i].bpt_addr);
443 setundefined:
444 kgdb_break[i].state = BP_UNDEFINED;
447 /* Clear hardware breakpoints. */
448 if (arch_kgdb_ops.remove_all_hw_break)
449 arch_kgdb_ops.remove_all_hw_break();
451 return 0;
454 #ifdef CONFIG_KGDB_KDB
455 void kdb_dump_stack_on_cpu(int cpu)
457 if (cpu == raw_smp_processor_id() || !IS_ENABLED(CONFIG_SMP)) {
458 dump_stack();
459 return;
462 if (!(kgdb_info[cpu].exception_state & DCPU_IS_SLAVE)) {
463 kdb_printf("ERROR: Task on cpu %d didn't stop in the debugger\n",
464 cpu);
465 return;
469 * In general, architectures don't support dumping the stack of a
470 * "running" process that's not the current one. From the point of
471 * view of the Linux, kernel processes that are looping in the kgdb
472 * slave loop are still "running". There's also no API (that actually
473 * works across all architectures) that can do a stack crawl based
474 * on registers passed as a parameter.
476 * Solve this conundrum by asking slave CPUs to do the backtrace
477 * themselves.
479 kgdb_info[cpu].exception_state |= DCPU_WANT_BT;
480 while (kgdb_info[cpu].exception_state & DCPU_WANT_BT)
481 cpu_relax();
483 #endif
486 * Return true if there is a valid kgdb I/O module. Also if no
487 * debugger is attached a message can be printed to the console about
488 * waiting for the debugger to attach.
490 * The print_wait argument is only to be true when called from inside
491 * the core kgdb_handle_exception, because it will wait for the
492 * debugger to attach.
494 static int kgdb_io_ready(int print_wait)
496 if (!dbg_io_ops)
497 return 0;
498 if (kgdb_connected)
499 return 1;
500 if (atomic_read(&kgdb_setting_breakpoint))
501 return 1;
502 if (print_wait) {
503 #ifdef CONFIG_KGDB_KDB
504 if (!dbg_kdb_mode)
505 pr_crit("waiting... or $3#33 for KDB\n");
506 #else
507 pr_crit("Waiting for remote debugger\n");
508 #endif
510 return 1;
513 static int kgdb_reenter_check(struct kgdb_state *ks)
515 unsigned long addr;
517 if (atomic_read(&kgdb_active) != raw_smp_processor_id())
518 return 0;
520 /* Panic on recursive debugger calls: */
521 exception_level++;
522 addr = kgdb_arch_pc(ks->ex_vector, ks->linux_regs);
523 dbg_deactivate_sw_breakpoints();
526 * If the break point removed ok at the place exception
527 * occurred, try to recover and print a warning to the end
528 * user because the user planted a breakpoint in a place that
529 * KGDB needs in order to function.
531 if (dbg_remove_sw_break(addr) == 0) {
532 exception_level = 0;
533 kgdb_skipexception(ks->ex_vector, ks->linux_regs);
534 dbg_activate_sw_breakpoints();
535 pr_crit("re-enter error: breakpoint removed %lx\n", addr);
536 WARN_ON_ONCE(1);
538 return 1;
540 dbg_remove_all_break();
541 kgdb_skipexception(ks->ex_vector, ks->linux_regs);
543 if (exception_level > 1) {
544 dump_stack();
545 kgdb_io_module_registered = false;
546 panic("Recursive entry to debugger");
549 pr_crit("re-enter exception: ALL breakpoints killed\n");
550 #ifdef CONFIG_KGDB_KDB
551 /* Allow kdb to debug itself one level */
552 return 0;
553 #endif
554 dump_stack();
555 panic("Recursive entry to debugger");
557 return 1;
560 static void dbg_touch_watchdogs(void)
562 touch_softlockup_watchdog_sync();
563 clocksource_touch_watchdog();
564 rcu_cpu_stall_reset();
567 static int kgdb_cpu_enter(struct kgdb_state *ks, struct pt_regs *regs,
568 int exception_state)
570 unsigned long flags;
571 int sstep_tries = 100;
572 int error;
573 int cpu;
574 int trace_on = 0;
575 int online_cpus = num_online_cpus();
576 u64 time_left;
578 kgdb_info[ks->cpu].enter_kgdb++;
579 kgdb_info[ks->cpu].exception_state |= exception_state;
581 if (exception_state == DCPU_WANT_MASTER)
582 atomic_inc(&masters_in_kgdb);
583 else
584 atomic_inc(&slaves_in_kgdb);
586 if (arch_kgdb_ops.disable_hw_break)
587 arch_kgdb_ops.disable_hw_break(regs);
589 acquirelock:
590 rcu_read_lock();
592 * Interrupts will be restored by the 'trap return' code, except when
593 * single stepping.
595 local_irq_save(flags);
597 cpu = ks->cpu;
598 kgdb_info[cpu].debuggerinfo = regs;
599 kgdb_info[cpu].task = current;
600 kgdb_info[cpu].ret_state = 0;
601 kgdb_info[cpu].irq_depth = hardirq_count() >> HARDIRQ_SHIFT;
603 /* Make sure the above info reaches the primary CPU */
604 smp_mb();
606 if (exception_level == 1) {
607 if (raw_spin_trylock(&dbg_master_lock))
608 atomic_xchg(&kgdb_active, cpu);
609 goto cpu_master_loop;
613 * CPU will loop if it is a slave or request to become a kgdb
614 * master cpu and acquire the kgdb_active lock:
616 while (1) {
617 cpu_loop:
618 if (kgdb_info[cpu].exception_state & DCPU_NEXT_MASTER) {
619 kgdb_info[cpu].exception_state &= ~DCPU_NEXT_MASTER;
620 goto cpu_master_loop;
621 } else if (kgdb_info[cpu].exception_state & DCPU_WANT_MASTER) {
622 if (raw_spin_trylock(&dbg_master_lock)) {
623 atomic_xchg(&kgdb_active, cpu);
624 break;
626 } else if (kgdb_info[cpu].exception_state & DCPU_WANT_BT) {
627 dump_stack();
628 kgdb_info[cpu].exception_state &= ~DCPU_WANT_BT;
629 } else if (kgdb_info[cpu].exception_state & DCPU_IS_SLAVE) {
630 if (!raw_spin_is_locked(&dbg_slave_lock))
631 goto return_normal;
632 } else {
633 return_normal:
634 /* Return to normal operation by executing any
635 * hw breakpoint fixup.
637 if (arch_kgdb_ops.correct_hw_break)
638 arch_kgdb_ops.correct_hw_break();
639 if (trace_on)
640 tracing_on();
641 kgdb_info[cpu].debuggerinfo = NULL;
642 kgdb_info[cpu].task = NULL;
643 kgdb_info[cpu].exception_state &=
644 ~(DCPU_WANT_MASTER | DCPU_IS_SLAVE);
645 kgdb_info[cpu].enter_kgdb--;
646 smp_mb__before_atomic();
647 atomic_dec(&slaves_in_kgdb);
648 dbg_touch_watchdogs();
649 local_irq_restore(flags);
650 rcu_read_unlock();
651 return 0;
653 cpu_relax();
657 * For single stepping, try to only enter on the processor
658 * that was single stepping. To guard against a deadlock, the
659 * kernel will only try for the value of sstep_tries before
660 * giving up and continuing on.
662 if (atomic_read(&kgdb_cpu_doing_single_step) != -1 &&
663 (kgdb_info[cpu].task &&
664 kgdb_info[cpu].task->pid != kgdb_sstep_pid) && --sstep_tries) {
665 atomic_set(&kgdb_active, -1);
666 raw_spin_unlock(&dbg_master_lock);
667 dbg_touch_watchdogs();
668 local_irq_restore(flags);
669 rcu_read_unlock();
671 goto acquirelock;
674 if (!kgdb_io_ready(1)) {
675 kgdb_info[cpu].ret_state = 1;
676 goto kgdb_restore; /* No I/O connection, resume the system */
680 * Don't enter if we have hit a removed breakpoint.
682 if (kgdb_skipexception(ks->ex_vector, ks->linux_regs))
683 goto kgdb_restore;
685 atomic_inc(&ignore_console_lock_warning);
687 /* Call the I/O driver's pre_exception routine */
688 if (dbg_io_ops->pre_exception)
689 dbg_io_ops->pre_exception();
692 * Get the passive CPU lock which will hold all the non-primary
693 * CPU in a spin state while the debugger is active
695 if (!kgdb_single_step)
696 raw_spin_lock(&dbg_slave_lock);
698 #ifdef CONFIG_SMP
699 /* If send_ready set, slaves are already waiting */
700 if (ks->send_ready)
701 atomic_set(ks->send_ready, 1);
703 /* Signal the other CPUs to enter kgdb_wait() */
704 else if ((!kgdb_single_step) && kgdb_do_roundup)
705 kgdb_roundup_cpus();
706 #endif
709 * Wait for the other CPUs to be notified and be waiting for us:
711 time_left = MSEC_PER_SEC;
712 while (kgdb_do_roundup && --time_left &&
713 (atomic_read(&masters_in_kgdb) + atomic_read(&slaves_in_kgdb)) !=
714 online_cpus)
715 udelay(1000);
716 if (!time_left)
717 pr_crit("Timed out waiting for secondary CPUs.\n");
720 * At this point the primary processor is completely
721 * in the debugger and all secondary CPUs are quiescent
723 dbg_deactivate_sw_breakpoints();
724 kgdb_single_step = 0;
725 kgdb_contthread = current;
726 exception_level = 0;
727 trace_on = tracing_is_on();
728 if (trace_on)
729 tracing_off();
731 while (1) {
732 cpu_master_loop:
733 if (dbg_kdb_mode) {
734 kgdb_connected = 1;
735 error = kdb_stub(ks);
736 if (error == -1)
737 continue;
738 kgdb_connected = 0;
739 } else {
740 error = gdb_serial_stub(ks);
743 if (error == DBG_PASS_EVENT) {
744 dbg_kdb_mode = !dbg_kdb_mode;
745 } else if (error == DBG_SWITCH_CPU_EVENT) {
746 kgdb_info[dbg_switch_cpu].exception_state |=
747 DCPU_NEXT_MASTER;
748 goto cpu_loop;
749 } else {
750 kgdb_info[cpu].ret_state = error;
751 break;
755 /* Call the I/O driver's post_exception routine */
756 if (dbg_io_ops->post_exception)
757 dbg_io_ops->post_exception();
759 atomic_dec(&ignore_console_lock_warning);
761 if (!kgdb_single_step) {
762 raw_spin_unlock(&dbg_slave_lock);
763 /* Wait till all the CPUs have quit from the debugger. */
764 while (kgdb_do_roundup && atomic_read(&slaves_in_kgdb))
765 cpu_relax();
768 kgdb_restore:
769 if (atomic_read(&kgdb_cpu_doing_single_step) != -1) {
770 int sstep_cpu = atomic_read(&kgdb_cpu_doing_single_step);
771 if (kgdb_info[sstep_cpu].task)
772 kgdb_sstep_pid = kgdb_info[sstep_cpu].task->pid;
773 else
774 kgdb_sstep_pid = 0;
776 if (arch_kgdb_ops.correct_hw_break)
777 arch_kgdb_ops.correct_hw_break();
778 if (trace_on)
779 tracing_on();
781 kgdb_info[cpu].debuggerinfo = NULL;
782 kgdb_info[cpu].task = NULL;
783 kgdb_info[cpu].exception_state &=
784 ~(DCPU_WANT_MASTER | DCPU_IS_SLAVE);
785 kgdb_info[cpu].enter_kgdb--;
786 smp_mb__before_atomic();
787 atomic_dec(&masters_in_kgdb);
788 /* Free kgdb_active */
789 atomic_set(&kgdb_active, -1);
790 raw_spin_unlock(&dbg_master_lock);
791 dbg_touch_watchdogs();
792 local_irq_restore(flags);
793 rcu_read_unlock();
795 return kgdb_info[cpu].ret_state;
799 * kgdb_handle_exception() - main entry point from a kernel exception
801 * Locking hierarchy:
802 * interface locks, if any (begin_session)
803 * kgdb lock (kgdb_active)
806 kgdb_handle_exception(int evector, int signo, int ecode, struct pt_regs *regs)
808 struct kgdb_state kgdb_var;
809 struct kgdb_state *ks = &kgdb_var;
810 int ret = 0;
812 if (arch_kgdb_ops.enable_nmi)
813 arch_kgdb_ops.enable_nmi(0);
815 * Avoid entering the debugger if we were triggered due to an oops
816 * but panic_timeout indicates the system should automatically
817 * reboot on panic. We don't want to get stuck waiting for input
818 * on such systems, especially if its "just" an oops.
820 if (signo != SIGTRAP && panic_timeout)
821 return 1;
823 memset(ks, 0, sizeof(struct kgdb_state));
824 ks->cpu = raw_smp_processor_id();
825 ks->ex_vector = evector;
826 ks->signo = signo;
827 ks->err_code = ecode;
828 ks->linux_regs = regs;
830 if (kgdb_reenter_check(ks))
831 goto out; /* Ouch, double exception ! */
832 if (kgdb_info[ks->cpu].enter_kgdb != 0)
833 goto out;
835 ret = kgdb_cpu_enter(ks, regs, DCPU_WANT_MASTER);
836 out:
837 if (arch_kgdb_ops.enable_nmi)
838 arch_kgdb_ops.enable_nmi(1);
839 return ret;
843 * GDB places a breakpoint at this function to know dynamically loaded objects.
845 static int module_event(struct notifier_block *self, unsigned long val,
846 void *data)
848 return 0;
851 static struct notifier_block dbg_module_load_nb = {
852 .notifier_call = module_event,
855 int kgdb_nmicallback(int cpu, void *regs)
857 #ifdef CONFIG_SMP
858 struct kgdb_state kgdb_var;
859 struct kgdb_state *ks = &kgdb_var;
861 kgdb_info[cpu].rounding_up = false;
863 memset(ks, 0, sizeof(struct kgdb_state));
864 ks->cpu = cpu;
865 ks->linux_regs = regs;
867 if (kgdb_info[ks->cpu].enter_kgdb == 0 &&
868 raw_spin_is_locked(&dbg_master_lock)) {
869 kgdb_cpu_enter(ks, regs, DCPU_IS_SLAVE);
870 return 0;
872 #endif
873 return 1;
876 int kgdb_nmicallin(int cpu, int trapnr, void *regs, int err_code,
877 atomic_t *send_ready)
879 #ifdef CONFIG_SMP
880 if (!kgdb_io_ready(0) || !send_ready)
881 return 1;
883 if (kgdb_info[cpu].enter_kgdb == 0) {
884 struct kgdb_state kgdb_var;
885 struct kgdb_state *ks = &kgdb_var;
887 memset(ks, 0, sizeof(struct kgdb_state));
888 ks->cpu = cpu;
889 ks->ex_vector = trapnr;
890 ks->signo = SIGTRAP;
891 ks->err_code = err_code;
892 ks->linux_regs = regs;
893 ks->send_ready = send_ready;
894 kgdb_cpu_enter(ks, regs, DCPU_WANT_MASTER);
895 return 0;
897 #endif
898 return 1;
901 static void kgdb_console_write(struct console *co, const char *s,
902 unsigned count)
904 unsigned long flags;
906 /* If we're debugging, or KGDB has not connected, don't try
907 * and print. */
908 if (!kgdb_connected || atomic_read(&kgdb_active) != -1 || dbg_kdb_mode)
909 return;
911 local_irq_save(flags);
912 gdbstub_msg_write(s, count);
913 local_irq_restore(flags);
916 static struct console kgdbcons = {
917 .name = "kgdb",
918 .write = kgdb_console_write,
919 .flags = CON_PRINTBUFFER | CON_ENABLED,
920 .index = -1,
923 #ifdef CONFIG_MAGIC_SYSRQ
924 static void sysrq_handle_dbg(int key)
926 if (!dbg_io_ops) {
927 pr_crit("ERROR: No KGDB I/O module available\n");
928 return;
930 if (!kgdb_connected) {
931 #ifdef CONFIG_KGDB_KDB
932 if (!dbg_kdb_mode)
933 pr_crit("KGDB or $3#33 for KDB\n");
934 #else
935 pr_crit("Entering KGDB\n");
936 #endif
939 kgdb_breakpoint();
942 static const struct sysrq_key_op sysrq_dbg_op = {
943 .handler = sysrq_handle_dbg,
944 .help_msg = "debug(g)",
945 .action_msg = "DEBUG",
947 #endif
949 void kgdb_panic(const char *msg)
951 if (!kgdb_io_module_registered)
952 return;
955 * We don't want to get stuck waiting for input from user if
956 * "panic_timeout" indicates the system should automatically
957 * reboot on panic.
959 if (panic_timeout)
960 return;
962 if (dbg_kdb_mode)
963 kdb_printf("PANIC: %s\n", msg);
965 kgdb_breakpoint();
968 static void kgdb_initial_breakpoint(void)
970 kgdb_break_asap = 0;
972 pr_crit("Waiting for connection from remote gdb...\n");
973 kgdb_breakpoint();
976 void __weak kgdb_arch_late(void)
980 void __init dbg_late_init(void)
982 dbg_is_early = false;
983 if (kgdb_io_module_registered)
984 kgdb_arch_late();
985 kdb_init(KDB_INIT_FULL);
987 if (kgdb_io_module_registered && kgdb_break_asap)
988 kgdb_initial_breakpoint();
991 static int
992 dbg_notify_reboot(struct notifier_block *this, unsigned long code, void *x)
995 * Take the following action on reboot notify depending on value:
996 * 1 == Enter debugger
997 * 0 == [the default] detatch debug client
998 * -1 == Do nothing... and use this until the board resets
1000 switch (kgdbreboot) {
1001 case 1:
1002 kgdb_breakpoint();
1003 case -1:
1004 goto done;
1006 if (!dbg_kdb_mode)
1007 gdbstub_exit(code);
1008 done:
1009 return NOTIFY_DONE;
1012 static struct notifier_block dbg_reboot_notifier = {
1013 .notifier_call = dbg_notify_reboot,
1014 .next = NULL,
1015 .priority = INT_MAX,
1018 static void kgdb_register_callbacks(void)
1020 if (!kgdb_io_module_registered) {
1021 kgdb_io_module_registered = 1;
1022 kgdb_arch_init();
1023 if (!dbg_is_early)
1024 kgdb_arch_late();
1025 register_module_notifier(&dbg_module_load_nb);
1026 register_reboot_notifier(&dbg_reboot_notifier);
1027 #ifdef CONFIG_MAGIC_SYSRQ
1028 register_sysrq_key('g', &sysrq_dbg_op);
1029 #endif
1030 if (kgdb_use_con && !kgdb_con_registered) {
1031 register_console(&kgdbcons);
1032 kgdb_con_registered = 1;
1037 static void kgdb_unregister_callbacks(void)
1040 * When this routine is called KGDB should unregister from
1041 * handlers and clean up, making sure it is not handling any
1042 * break exceptions at the time.
1044 if (kgdb_io_module_registered) {
1045 kgdb_io_module_registered = 0;
1046 unregister_reboot_notifier(&dbg_reboot_notifier);
1047 unregister_module_notifier(&dbg_module_load_nb);
1048 kgdb_arch_exit();
1049 #ifdef CONFIG_MAGIC_SYSRQ
1050 unregister_sysrq_key('g', &sysrq_dbg_op);
1051 #endif
1052 if (kgdb_con_registered) {
1053 unregister_console(&kgdbcons);
1054 kgdb_con_registered = 0;
1060 * There are times a tasklet needs to be used vs a compiled in
1061 * break point so as to cause an exception outside a kgdb I/O module,
1062 * such as is the case with kgdboe, where calling a breakpoint in the
1063 * I/O driver itself would be fatal.
1065 static void kgdb_tasklet_bpt(unsigned long ing)
1067 kgdb_breakpoint();
1068 atomic_set(&kgdb_break_tasklet_var, 0);
1071 static DECLARE_TASKLET(kgdb_tasklet_breakpoint, kgdb_tasklet_bpt, 0);
1073 void kgdb_schedule_breakpoint(void)
1075 if (atomic_read(&kgdb_break_tasklet_var) ||
1076 atomic_read(&kgdb_active) != -1 ||
1077 atomic_read(&kgdb_setting_breakpoint))
1078 return;
1079 atomic_inc(&kgdb_break_tasklet_var);
1080 tasklet_schedule(&kgdb_tasklet_breakpoint);
1082 EXPORT_SYMBOL_GPL(kgdb_schedule_breakpoint);
1085 * kgdb_register_io_module - register KGDB IO module
1086 * @new_dbg_io_ops: the io ops vector
1088 * Register it with the KGDB core.
1090 int kgdb_register_io_module(struct kgdb_io *new_dbg_io_ops)
1092 struct kgdb_io *old_dbg_io_ops;
1093 int err;
1095 spin_lock(&kgdb_registration_lock);
1097 old_dbg_io_ops = dbg_io_ops;
1098 if (old_dbg_io_ops) {
1099 if (!old_dbg_io_ops->deinit) {
1100 spin_unlock(&kgdb_registration_lock);
1102 pr_err("KGDB I/O driver %s can't replace %s.\n",
1103 new_dbg_io_ops->name, old_dbg_io_ops->name);
1104 return -EBUSY;
1106 pr_info("Replacing I/O driver %s with %s\n",
1107 old_dbg_io_ops->name, new_dbg_io_ops->name);
1110 if (new_dbg_io_ops->init) {
1111 err = new_dbg_io_ops->init();
1112 if (err) {
1113 spin_unlock(&kgdb_registration_lock);
1114 return err;
1118 dbg_io_ops = new_dbg_io_ops;
1120 spin_unlock(&kgdb_registration_lock);
1122 if (old_dbg_io_ops) {
1123 old_dbg_io_ops->deinit();
1124 return 0;
1127 pr_info("Registered I/O driver %s\n", new_dbg_io_ops->name);
1129 /* Arm KGDB now. */
1130 kgdb_register_callbacks();
1132 if (kgdb_break_asap &&
1133 (!dbg_is_early || IS_ENABLED(CONFIG_ARCH_HAS_EARLY_DEBUG)))
1134 kgdb_initial_breakpoint();
1136 return 0;
1138 EXPORT_SYMBOL_GPL(kgdb_register_io_module);
1141 * kkgdb_unregister_io_module - unregister KGDB IO module
1142 * @old_dbg_io_ops: the io ops vector
1144 * Unregister it with the KGDB core.
1146 void kgdb_unregister_io_module(struct kgdb_io *old_dbg_io_ops)
1148 BUG_ON(kgdb_connected);
1151 * KGDB is no longer able to communicate out, so
1152 * unregister our callbacks and reset state.
1154 kgdb_unregister_callbacks();
1156 spin_lock(&kgdb_registration_lock);
1158 WARN_ON_ONCE(dbg_io_ops != old_dbg_io_ops);
1159 dbg_io_ops = NULL;
1161 spin_unlock(&kgdb_registration_lock);
1163 if (old_dbg_io_ops->deinit)
1164 old_dbg_io_ops->deinit();
1166 pr_info("Unregistered I/O driver %s, debugger disabled\n",
1167 old_dbg_io_ops->name);
1169 EXPORT_SYMBOL_GPL(kgdb_unregister_io_module);
1171 int dbg_io_get_char(void)
1173 int ret = dbg_io_ops->read_char();
1174 if (ret == NO_POLL_CHAR)
1175 return -1;
1176 if (!dbg_kdb_mode)
1177 return ret;
1178 if (ret == 127)
1179 return 8;
1180 return ret;
1184 * kgdb_breakpoint - generate breakpoint exception
1186 * This function will generate a breakpoint exception. It is used at the
1187 * beginning of a program to sync up with a debugger and can be used
1188 * otherwise as a quick means to stop program execution and "break" into
1189 * the debugger.
1191 noinline void kgdb_breakpoint(void)
1193 atomic_inc(&kgdb_setting_breakpoint);
1194 wmb(); /* Sync point before breakpoint */
1195 arch_kgdb_breakpoint();
1196 wmb(); /* Sync point after breakpoint */
1197 atomic_dec(&kgdb_setting_breakpoint);
1199 EXPORT_SYMBOL_GPL(kgdb_breakpoint);
1201 static int __init opt_kgdb_wait(char *str)
1203 kgdb_break_asap = 1;
1205 kdb_init(KDB_INIT_EARLY);
1206 if (kgdb_io_module_registered &&
1207 IS_ENABLED(CONFIG_ARCH_HAS_EARLY_DEBUG))
1208 kgdb_initial_breakpoint();
1210 return 0;
1213 early_param("kgdbwait", opt_kgdb_wait);